JP2002050931A - High frequency oscillator using copper oxide superconducting single crystal - Google Patents

High frequency oscillator using copper oxide superconducting single crystal

Info

Publication number
JP2002050931A
JP2002050931A JP2000235654A JP2000235654A JP2002050931A JP 2002050931 A JP2002050931 A JP 2002050931A JP 2000235654 A JP2000235654 A JP 2000235654A JP 2000235654 A JP2000235654 A JP 2000235654A JP 2002050931 A JP2002050931 A JP 2002050931A
Authority
JP
Japan
Prior art keywords
junction
single crystal
copper oxide
layers
oxide superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000235654A
Other languages
Japanese (ja)
Inventor
Tsutomu Yamashita
努 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2000235654A priority Critical patent/JP2002050931A/en
Publication of JP2002050931A publication Critical patent/JP2002050931A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a high frequency oscillator of a copper oxide superconducting single crystal which operates at a frequency in the range of 100 GHz to several THz (1012 Hz) using a layered crystalline structure formed in a dimension of several micrometers. SOLUTION: A junction 13 of copper oxide superconducting single crystal with a layered structure is formed, and a strong magnetic field Bout is applied in parallel with the layers so that a magnetic flux quantum is generated in each of the layers, and the magnitude of the junction in the direction of the layers is made to be almost equal to the magnitude of the magnetic flux quantum in the direction of the layers then, a current Idc more than the critical current is fed into the layer of the junction in the direction perpendicular to it to generate a voltage, so that the magnetic flux quantum is moved rapidly in the direction of the layers to generate a high frequency electric field of 100 GHz to about 10 THz in the direction perpendicular to the layers. An electromagnetic wave resonator 10 electromagnetically coupled with the junction is provided, wherein an electromagnetic wave is excited in the electromagnetic resonator 10 by the high frequency electric field generated in the junction and is accumulated as energy, and is taken out for use when needed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、銅酸化物超伝導単
結晶を用いる高周波発振器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-frequency oscillator using a copper oxide superconducting single crystal.

【0002】[0002]

【従来の技術】大量の情報を処理して高速に送信する情
報通信技術は一層高度なものが要求されている。大量情
報を高速伝送するためには、高い周波数で動作する電子
素子と伝送線路が必要である。現在、情報通信技術に使
用されている周波数の上限は、数10GHz(1010
z)から100GHz(1011Hz)である。
2. Description of the Related Art Information communication technology for processing a large amount of information and transmitting it at high speed is required to be more advanced. In order to transmit a large amount of information at a high speed, an electronic element operating at a high frequency and a transmission line are required. Currently, the upper limit of the frequency used for information communication technology is several tens of GHz (10 10 H).
z) to 100 GHz (10 11 Hz).

【0003】[0003]

【発明が解決しようとする課題】上記したように、従来
は、情報通信技術に使用されている周波数の上限が、数
10GHz(1010Hz)から100GHz(1011
z)であり、これは技術的に満足のいくものではなかっ
た。
As described above, conventionally, the upper limit of the frequency used in the information communication technology is several tens of GHz (10 10 Hz) to 100 GHz (10 11 H).
z), which was not technically satisfactory.

【0004】本発明は、上記状況に鑑みて、層状結晶構
造を持つ銅酸化物超伝導単結晶を数ミクロンメータの寸
法に加工して、100GHz以上数THz(1012
z)で動作する銅酸化物超伝導単結晶を用いる高周波発
振器を提供することを目的とする。
In view of the above situation, the present invention is to process a copper oxide superconducting single crystal having a layered crystal structure into a size of several micrometers, and to process it over 100 GHz to several THz (10 12 H).
An object is to provide a high-frequency oscillator using a copper oxide superconducting single crystal operating in z).

【0005】[0005]

【課題を解決するための手段】本発明は、上記目的を達
成するために、 〔1〕銅酸化物超伝導単結晶を用いる高周波発振器にお
いて、層状構造を持つ銅酸化物超伝導単結晶接合を作
り、層に平行に強い磁界を印加し、各層内に磁束量子を
発生させて、前記接合の層方向の大きさと前記磁束量子
の層方向の大きさを同じ程度とし、前記接合の層に直角
方向に電流を臨界電流以上流して電圧を発生させ、前記
磁束量子を層方向に高速に運動させて100GHz以上
10THz程度までの層に直角方向高周波電界を発生さ
せ、前記接合に電磁気的に結合した電磁波共振器を設
け、接合中に発生した高周波電界により前記電磁波共振
器中に電磁波を励起してエネルギーとして蓄え、必要に
応じて外部に取り出して使用することを特徴とする。
In order to achieve the above object, the present invention provides: [1] A high-frequency oscillator using a copper oxide superconducting single crystal, wherein a copper oxide superconducting single crystal junction having a layered structure is formed. A strong magnetic field is applied in parallel to the layers to generate magnetic flux quanta in each layer so that the size of the junction in the layer direction and the size of the magnetic flux quanta in the layer direction are approximately the same, and are perpendicular to the layer of the junction. The magnetic flux quantum is caused to move at high speed in the layer direction to generate a voltage in a direction perpendicular to the direction of 100 GHz to about 10 THz to generate a voltage by flowing the current in the direction more than the critical current, and electromagnetically coupled to the junction. An electromagnetic wave resonator is provided, an electromagnetic wave is excited in the electromagnetic wave resonator by a high-frequency electric field generated during joining, stored as energy, and taken out to use as needed.

【0006】このように、銅酸化物超伝導単結晶を用い
るミクロンサイズの接合と共振器を電磁的に結合させて
THz帯高周波発振器を作る。
As described above, a THz band high frequency oscillator is manufactured by electromagnetically coupling a micron-sized junction using a copper oxide superconducting single crystal and a resonator.

【0007】[0007]

【発明の実施の形態】以下、本発明の実施の形態につい
て詳細に説明する。
Embodiments of the present invention will be described below in detail.

【0008】図1は本発明の実施例を示すBi2 Sr2
Ca1 Cu2 y の化学組成の銅酸化物超伝導単結晶
(以下、Bi2212という)の結晶構造とその接合の
IV特性を示す図、図2は本発明の実施例を示す集束イ
オンビーム加工により作製した高温超伝導Bi2212
の斜視図、図3は本発明の実施例を示す銅酸化物超伝導
単結晶の接合の電流IC 対磁界Bの特性図、図4はその
接合中の一列の磁束量子の模式図、図5は本発明の実施
例を示す銅酸化物超伝導単結晶を用いる高周波THz発
振器の説明図、図6は本発明の実施例を示す銅酸化物超
伝導単結晶を用いる大出力分布形発振器の説明図であ
る。 (動作原理)Bi2212は、臨界温度90K程の高温
超伝導体であり、結晶構造は、図1(a)に示すよう
に、超伝導層1と半導体層2が原子レベルで積層してい
る。ここで、超伝導層1の厚さtは3Å、半導体層2の
厚さdは12Åである。そのため電流Iを各層に直角に
流して電圧を測定すると、図1(b)に示すように、多
くの電圧分岐が現れ、多くのトンネル接合が積層してい
ることが分かった(これについては、本願発明者らによ
って既に提案された特開2000−49395号公報や
特開2000−91654号公報を参照)。
FIG. 1 shows an embodiment of the present invention, Bi 2 Sr 2.
FIG. 2 is a view showing a crystal structure of a copper oxide superconducting single crystal (hereinafter, referred to as Bi2212) having a chemical composition of Ca 1 Cu 2 O y and IV characteristics of a junction thereof. FIG. 2 is a focused ion beam processing showing an embodiment of the present invention. -Temperature superconducting Bi2212 produced by
FIG. 3 is a characteristic diagram of a current I C versus a magnetic field B at a junction of a copper oxide superconducting single crystal showing an embodiment of the present invention, and FIG. 4 is a schematic diagram of a row of magnetic flux quanta in the junction. 5 is an explanatory view of a high-frequency THz oscillator using a copper oxide superconducting single crystal showing an embodiment of the present invention, and FIG. 6 is a diagram of a large power distribution type oscillator using a copper oxide superconducting single crystal showing an embodiment of the present invention. FIG. (Operating principle) Bi2212 is a high-temperature superconductor having a critical temperature of about 90 K, and has a crystal structure in which a superconducting layer 1 and a semiconductor layer 2 are laminated at an atomic level, as shown in FIG. Here, the thickness t of the superconducting layer 1 is 3 °, and the thickness d of the semiconductor layer 2 is 12 °. Therefore, when the voltage was measured by flowing the current I at right angles to each layer, as shown in FIG. 1 (b), many voltage branches appeared, and it was found that many tunnel junctions were stacked. See JP-A-2000-49395 and JP-A-2000-91654, which have already been proposed by the present inventors.

【0009】そこで、Bi2212単結晶を、集束イオ
ンビーム加工法で加工し(例えば、本願発明者らによっ
て既に提案された特開2000−91654号公報参
照)、図2に示すような積層トンネル接合の作製に成功
した。なお、図2において、Bi2212のメサ寸法は
10×10μm2 :JC =150μA、単位接合個数4
0:臨界温度TC =90K、トンネリングスタック5の
高さ200nmである。
Therefore, the Bi2212 single crystal is processed by a focused ion beam processing method (for example, see Japanese Patent Application Laid-Open No. 2000-91654 already proposed by the present inventors) to form a stacked tunnel junction as shown in FIG. Successful fabrication. In FIG. 2, the mesa size of Bi2212 is 10 × 10 μm 2 : J C = 150 μA, the number of unit junctions is 4
0: Critical temperature T C = 90K, height of the tunneling stack 5 is 200 nm.

【0010】この素子の電流方向の面積を1.5×1.
5μm2 とし、強い磁界を層に平行に加えて、素子の臨
界電流IC と磁界Bの特性をとると、図3に示すように
なった。図3において、縦軸は接合の臨界電流IC /最
大臨界電流IcO(比)を、横軸は磁界(テスラ)を示し
ており、接合の最大臨界電流IcOは0.3μAである。
The area of this element in the current direction is 1.5 × 1.
FIG. 3 shows the characteristics of the critical current I C and the magnetic field B of the device when the intensity was set to 5 μm 2 and a strong magnetic field was applied in parallel to the layer. In FIG. 3, the vertical axis represents the critical current I c / maximum critical current I cO (ratio) of the junction, and the horizontal axis represents the magnetic field (tesla). The maximum critical current I cO of the junction is 0.3 μA.

【0011】B≒1テスラ付近で接合の臨界電流IC
極小になる。これは、図4に示すように磁束量子が各層
に一個ずつ入り、少しの電流Iで層内を高速運動するこ
とを意味している。このとき、電流Iを接合の臨界電流
C の極小値より多く流すと各層の磁束量子は電流Iに
よるローレンツ力を受けて、左から右に速度Vffで運動
する。
In the vicinity of B ≒ 1 Tesla, the critical current I C of the junction becomes extremely small. This means that one magnetic flux quantum enters each layer as shown in FIG. 4 and moves at a high speed in the layer with a small current I. At this time, when the current I is made to flow more than the minimum value of the critical current I C of the junction, the magnetic flux quantum of each layer receives the Lorentz force by the current I and moves from left to right at the speed V ff .

【0012】このとき接合に発生する電圧Vは、 V=BVffh …(1) と表される。ここで、hは接合の高さ、B=1テスラ、
h=75nmでV=100mVが実験で得られたことか
ら、Vff=1.5×106 m/sの速度で磁束量子が運
動することが分かった。一列の磁束量子が左から入り右
側に出ていく時間Δtは長さLの場合、ΔtVff=Lよ
り、Δt=10-12 秒となる。この一回の通過で、Δt
=10-12 秒の電圧パルスが電極間に発生する。磁束量
子は次々に左から入り右に出るから、その繰り返し周波
数f0 は、 f0 =1/Δt より、1012Hz、すなわち1THzの周波数の振動が
1.5μmの大きさの接合中で励起されていることが分
かる。1THzの空間波長λは約400μmであるか
ら、空間への1THzの振動を取り出すためには適当な
工夫が必要である。
The voltage V generated at the junction at this time is expressed as follows: V = BV ffh (1) Where h is the height of the junction, B = 1 Tesla,
From the experiment, V = 100 mV was obtained at h = 75 nm, indicating that the magnetic flux quantum moves at a speed of V ff = 1.5 × 10 6 m / s. The time Δt at which a row of magnetic flux quanta enters from the left and exits to the right is Δt = 10 −12 seconds from ΔtV ff = L when the length is L. In this single pass, Δt
A voltage pulse of = 10-12 seconds is generated between the electrodes. Since the magnetic flux quantum sequentially enters from the left and exits to the right, the repetition frequency f 0 is f 0 = 1 / Δt, so that a vibration at a frequency of 10 12 Hz, that is, 1 THz is excited in a junction having a size of 1.5 μm. You can see that it is done. Since the spatial wavelength λ of 1 THz is about 400 μm, an appropriate device is required to extract 1 THz vibration to the space.

【0013】図5(a)にその共振器の一例を示す。FIG. 5A shows an example of the resonator.

【0014】ここで、10は共振器、11,12は導体
(ストリップ線路)、13は接合(IJJのVorte
x)である。
Here, 10 is a resonator, 11 and 12 are conductors (strip lines), and 13 is a junction (IJJ's Vorte).
x).

【0015】そこで、この共振器10に、1.5μmの
長さの接合(IJJ)13に磁界Bout≒1テスラを
加え、直流電流Idcを流す。その接合13は長さλ/4
のストリップ線路11,12と接合している。接合13
で励起された交流電界Eと磁界Hは、図5(b)、図5
(c)に示すように、共振器を励起して線路内に1TH
zの電磁波エネルギーが蓄えられることになり、これを
外部に取り出すことが可能となる。
[0015] Therefore, in the resonator 10, the magnetic field Bout ≒ 1 tesla addition to 1.5μm of the bond length (IJJ) 13, a DC current I dc. The joint 13 has a length of λ / 4
And the strip lines 11 and 12. Junction 13
The alternating electric field E and the magnetic field H excited in FIG.
As shown in (c), the resonator is excited to generate 1TH in the line.
The electromagnetic wave energy of z is stored and can be taken out.

【0016】このエネルギーは接合の直流電力から供給
される。得られた接合のI−V特性は、図5(d)に示
すようになり、V=Nf0 Φ0 ≒100mVとなる。こ
こで、Nは層数でN=50である。得られる電力は、図
5(d)の(A)点の電力 W=50μA×100mV=10-6W より1μW程度であった。
This energy is supplied from the DC power at the junction. The IV characteristics of the obtained junction are as shown in FIG. 5D, and V = Nf 0 Φ 0 ≒ 100 mV. Here, N is the number of layers and N = 50. The obtained power was about 1 μW from the power W = 50 μA × 100 mV = 10 −6 W at the point (A) in FIG.

【0017】図6において、20は大出力分布形発振
器、21,22は導体(ストリップ線路)、23は接合
(IJJのVortex)である。
In FIG. 6, reference numeral 20 denotes a large output distributed oscillator, 21 and 22 denote conductors (strip lines), and 23 denotes a junction (Vortex of IJJ).

【0018】図6(a)に示すように単位発振器を4個
並列にすると、右側から放出される電力は、図6(b)
に示すように4倍になる。2次元的に分布させる構造も
可能であり、より大きな電力が得られる。
When four unit oscillators are arranged in parallel as shown in FIG. 6A, the power emitted from the right side becomes as shown in FIG.
As shown in FIG. A two-dimensional distribution structure is also possible, and higher power can be obtained.

【0019】なお、本発明は上記実施例に限定されるも
のではなく、本発明の趣旨に基づいて種々の変形が可能
であり、これらを本発明の範囲から排除するものではな
い。
It should be noted that the present invention is not limited to the above embodiment, but various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

【0020】[0020]

【発明の効果】以上、詳細に説明したように、本発明に
よれば、銅酸化物超伝導単結晶を用いるミクロンサイズ
の接合と共振器を電磁的に結合させてTHz帯の高周波
発振器を作ることができる。
As described above in detail, according to the present invention, a THz band high-frequency oscillator is manufactured by electromagnetically coupling a micron-sized junction using a copper oxide superconducting single crystal and a resonator. be able to.

【0021】したがって、次世代のテラビット情報通信
技術の重要な高速電子素子を得ることができる。
Therefore, an important high-speed electronic device of the next generation terabit information communication technology can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を示すBi2212の結晶構造
とその接合のIV特性を示す図である。
FIG. 1 is a diagram showing a crystal structure of Bi2212 and an IV characteristic of a junction thereof according to an example of the present invention.

【図2】本発明の実施例を示す集束イオンビーム加工に
より作製した高温超伝導Bi2212の斜視図である。
FIG. 2 is a perspective view of a high-temperature superconducting Bi2212 manufactured by focused ion beam processing, showing an example of the present invention.

【図3】本発明の実施例を示す銅酸化物超伝導単結晶の
接合の電流IC 対磁界Bの特性図である。
FIG. 3 is a characteristic diagram of a current I C versus a magnetic field B at a junction of a copper oxide superconducting single crystal showing an example of the present invention.

【図4】本発明の実施例を示す銅酸化物超伝導単結晶の
接合中の一列の磁束量子の模式図である。
FIG. 4 is a schematic view of a row of magnetic flux quanta during the joining of a copper oxide superconducting single crystal, showing an example of the present invention.

【図5】本発明の実施例を示す銅酸化物超伝導単結晶を
用いる高周波THz発振器の説明図である。
FIG. 5 is a diagram illustrating a high-frequency THz oscillator using a copper oxide superconducting single crystal according to an embodiment of the present invention.

【図6】本発明の実施例を示す銅酸化物超伝導単結晶を
用いる大出力分布形発振器の説明図である。
FIG. 6 is an explanatory diagram of a large power distributed oscillator using a copper oxide superconducting single crystal according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 超伝導層 2 半導体層 5 トンネリングスタック 10 共振器 11,12,21,22 導体(ストリップ線路) 13,23 接合(IJJのVortex) 20 大出力分布形発振器 REFERENCE SIGNS LIST 1 superconducting layer 2 semiconductor layer 5 tunneling stack 10 resonator 11, 12, 21, 22 conductor (strip line) 13, 23 junction (Vortex of IJJ) 20 large power distributed oscillator

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 層状構造を持つ銅酸化物超伝導単結晶接
合を作り、層に平行に強い磁界を印加し、各層内に磁束
量子を発生させて、前記接合の層方向の大きさと前記磁
束量子の層方向の大きさを同じ程度とし、前記接合の層
に直角方向に電流を臨界電流以上流して電圧を発生さ
せ、前記磁束量子を層方向に高速に運動させて100G
Hz以上10THz程度までの層に直角方向高周波電界
を発生させ、前記接合に電磁気的に結合した電磁波共振
器を設け、接合中に発生した高周波電界により前記電磁
波共振器中に電磁波を励起してエネルギーとして蓄え、
必要に応じて外部に取り出して使用することを特徴とす
る銅酸化物超伝導単結晶を用いる高周波発振器。
1. A copper oxide superconducting single crystal junction having a layered structure is formed, a strong magnetic field is applied in parallel to the layers, magnetic flux quanta are generated in each layer, and the size of the junction in the layer direction and the magnetic flux are generated. The quantum is made to have the same size in the layer direction, and a current is flowed in the direction perpendicular to the junction layer at a critical current or more to generate a voltage.
A high-frequency electric field in the perpendicular direction is generated in a layer of not less than about 10 Hz and about 10 THz, an electromagnetic wave resonator electromagnetically coupled to the junction is provided, and an electromagnetic wave is excited in the electromagnetic wave resonator by the high-frequency electric field generated during the junction, thereby reducing energy. Stored as
A high-frequency oscillator using a copper oxide superconducting single crystal, which is taken out and used as needed.
JP2000235654A 2000-08-03 2000-08-03 High frequency oscillator using copper oxide superconducting single crystal Pending JP2002050931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000235654A JP2002050931A (en) 2000-08-03 2000-08-03 High frequency oscillator using copper oxide superconducting single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000235654A JP2002050931A (en) 2000-08-03 2000-08-03 High frequency oscillator using copper oxide superconducting single crystal

Publications (1)

Publication Number Publication Date
JP2002050931A true JP2002050931A (en) 2002-02-15

Family

ID=18727832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000235654A Pending JP2002050931A (en) 2000-08-03 2000-08-03 High frequency oscillator using copper oxide superconducting single crystal

Country Status (1)

Country Link
JP (1) JP2002050931A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003019738A1 (en) * 2001-08-27 2003-03-06 Japan Science And Technology Corporation Cw-oscillation millimeter wave/submillimeter wave laser composed of integrated circuit including intrinsic josephson device
JP2006210585A (en) * 2005-01-27 2006-08-10 National Institute For Materials Science New type terahertz oscillator using laminated josephson junction
JPWO2006035610A1 (en) * 2004-09-09 2008-05-15 国立大学法人 北海道大学 Functional element, memory element, magnetic recording element, solar cell, photoelectric conversion element, light emitting element, catalytic reaction device, and clean unit
JP2016051871A (en) * 2014-09-02 2016-04-11 国立大学法人 筑波大学 Terahertz band electromagnetic wave oscillating device and terahertz band electromagnetic wave oscillating apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003019738A1 (en) * 2001-08-27 2003-03-06 Japan Science And Technology Corporation Cw-oscillation millimeter wave/submillimeter wave laser composed of integrated circuit including intrinsic josephson device
JP2003069096A (en) * 2001-08-27 2003-03-07 Japan Science & Technology Corp Continuous oscillation milliwave/sub-milliwave laser based on integrated circuit including intrinsic josephson element
JPWO2006035610A1 (en) * 2004-09-09 2008-05-15 国立大学法人 北海道大学 Functional element, memory element, magnetic recording element, solar cell, photoelectric conversion element, light emitting element, catalytic reaction device, and clean unit
JP2006210585A (en) * 2005-01-27 2006-08-10 National Institute For Materials Science New type terahertz oscillator using laminated josephson junction
JP2016051871A (en) * 2014-09-02 2016-04-11 国立大学法人 筑波大学 Terahertz band electromagnetic wave oscillating device and terahertz band electromagnetic wave oscillating apparatus

Similar Documents

Publication Publication Date Title
Rice tJ ladders and cuprate ladder compounds
JP3329127B2 (en) Superconducting oscillator
US20070235070A1 (en) Efficient thermoelectric device
JPH0828536B2 (en) Superconductor device and method of manufacturing superconductor device
Pedersen et al. Fluxons in Josephson transmission lines: new developments
JP2006210585A (en) New type terahertz oscillator using laminated josephson junction
Shah et al. Hot carrier energy loss rates in GaAs quantum wells: Large differences between electrons and holes
JP2002050931A (en) High frequency oscillator using copper oxide superconducting single crystal
Auvil et al. Propagation and generation of Josephson radiation in superconductor/insulator superlattices
JPH05206530A (en) High-temperature superconductor josephson junction and its manufacture
US6813056B2 (en) High amplitude fast optical modulator
Suzuki et al. Development of scribing process of coated conductors for reduction of AC losses
Takano et al. A cross-whiskers junction as a novel fabrication process for intrinsic Josephson junctions
US5168259A (en) Superconducting coil
US5338934A (en) Radiation detecting device and method for fabricating the same
Hechtfischer et al. High frequency applications of intrinsic Josephson junctions in mesa structures on Bi/sub 2/Sr/sub 2/CaCu/sub 2/O/sub 8+ y/single crystals
US3697826A (en) Josephson junction having an intermediate layer of a hard superconducting material
JPH0537037A (en) Superconductive device and manufacture thereof
Shitov et al. On‐chip radiation detection from stacked Josephson flux‐flow oscillators
JP2002136144A (en) Superconducting power circuit
Yanson The ac Josephson effect: observation of electromagnetic radiation
US5544181A (en) Liquid nitrogen temperature micro-wiggler
WO2022158413A1 (en) High-temperature superconducting wire and method for manufacturing same
JP2022034096A (en) Terahertz oscillation element, method for manufacturing the same, and terahertz oscillation device
Holubek et al. Magnetic performance of a laser structured YBCO tape suitable for insertion devices technology

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021112