WO2003016283A1 - Substituted dihydro 3-halo-1h-pyrazole-5-carboxylates their preparation and use - Google Patents

Substituted dihydro 3-halo-1h-pyrazole-5-carboxylates their preparation and use Download PDF

Info

Publication number
WO2003016283A1
WO2003016283A1 PCT/US2002/025614 US0225614W WO03016283A1 WO 2003016283 A1 WO2003016283 A1 WO 2003016283A1 US 0225614 W US0225614 W US 0225614W WO 03016283 A1 WO03016283 A1 WO 03016283A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
alkyl
mol
compounds
Prior art date
Application number
PCT/US2002/025614
Other languages
French (fr)
Inventor
John Herbert Freudenberger
George Philip Lahm
Thomas Paul Selby
Thomas Martin Stevenson
Original Assignee
E.I. Du Pont De Nemours And Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27405544&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2003016283(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to JP2003521209A priority Critical patent/JP4564748B2/en
Priority to HU0401019A priority patent/HU230124B1/en
Priority to BRPI0212185-9B1A priority patent/BR0212185B1/en
Priority to AU2002355952A priority patent/AU2002355952B2/en
Priority to DK02752810.8T priority patent/DK1417175T3/en
Priority to MXPA04001323A priority patent/MXPA04001323A/en
Priority to US10/482,458 priority patent/US6965032B2/en
Application filed by E.I. Du Pont De Nemours And Company filed Critical E.I. Du Pont De Nemours And Company
Priority to ES02752810T priority patent/ES2428888T3/en
Priority to UA2004021086A priority patent/UA81104C2/en
Priority to CA2454306A priority patent/CA2454306C/en
Priority to EP02752810.8A priority patent/EP1417175B1/en
Priority to CNB028157753A priority patent/CN1307161C/en
Priority to IL15950702A priority patent/IL159507A0/en
Publication of WO2003016283A1 publication Critical patent/WO2003016283A1/en
Priority to ZA2003/09911A priority patent/ZA200309911B/en
Priority to US11/175,584 priority patent/US7227025B2/en
Priority to US11/796,023 priority patent/US7402676B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/561,2-Diazoles; Hydrogenated 1,2-diazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C251/00Compounds containing nitrogen atoms doubly-bound to a carbon skeleton
    • C07C251/72Hydrazones
    • C07C251/74Hydrazones having doubly-bound carbon atoms of hydrazone groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C251/76Hydrazones having doubly-bound carbon atoms of hydrazone groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of a saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/76Nitrogen atoms to which a second hetero atom is attached
    • C07D213/77Hydrazine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/06Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/06Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member
    • C07D231/08Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having one double bond between ring members or between a ring member and a non-ring member with oxygen or sulfur atoms directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/14Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D231/16Halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings

Definitions

  • This invention relates to novel carboxylic acid derivatives of 3-halo- 1 -aryl- substituted dihydro-lH-pyrazoles and pyrazoles. These compounds are useful for preparation of certain anthranilic amide compounds that are of interest as insecticides (see e.g. PCT Publication WO 01/070671).
  • 3-bromopyrazole-5-carboxylic acid derivatives involving generation of a reactive bromonitrilimine intermediate Cycloaddition of this intermediate with an acrylic ester gives a l-phenyl-3-bromo-2-pyrazoline-5-carboxylate ester, which can be subsequently oxidized to the desired l-phenyl-3-bromo-2-pyrazole-5-carboxylate ester.
  • cycloaddition with a propiolate ester gives the 1 -phenyl-3-bromo-2-pyrazole- 5-carboxylate ester directly.
  • U.S. Patent 3,153,654 discloses condensation of certain optionally substituted aryl (e.g. phenyl or naphthyl which are optionally substituted with lower alkyl, lower alkoxy or halogen) hydrazines with certain fumaric or maleic esters to provide 3-pyrazolidinone carboxylic acid derivatives.
  • aryl e.g. phenyl or naphthyl which are optionally substituted with lower alkyl, lower alkoxy or halogen
  • Japanese Unexamined Patent Publications 9-316055 and 9-176124 disclose production of pyrazole carboxylic acid ester derivatives and pyrazoline derivatives, respectively, which are substituted with alkyl at the 1 -position.
  • J. Med. Chem. 2001, 44, 566-578 discloses a preparation of l-(3-cyanophenyl)-3- methyl- lH-pyrazol-5-carboxylic acid and its use in preparing inhibitors of blood coagulation factor Xa.
  • the present invention provides technology useful for conveniently preparing 3-halo-5-carboxylate-l-aryl-substiruted dihydro-lH-pyrazoles and pyrazoles.
  • R 1 is halogen; each R 2 is independently C 1 -C 4 alkyl, C 2 -C 4 alkenyl, C 2 -C 4 alkynyl, C 3 -C 6 cycloalkyl, C 1 -C 4 haloalkyl, C2-C 4 haloalkenyl, C2-C 4 haloalkynyl, C 3 -C 6 halocycloalkyl, halogen, CN, NO 2 , Ci ⁇ alkoxy, C 1 -C 4 haloalkoxy, C J -C 4 alkylthio, Cx ⁇ alkylsulfinyl, 0 ⁇ 4 alkylsulfonyl, C r C alkylamino, C 2 -C 8 dialkylamino, C 3 -C 6 cycloalkylamino, C 3 -C6 (alkyl)cycloalkylamino, C 2 -C alkylcarbonyl, C 2 -C 6
  • X is N or CR 4 ; R 4 is H orR 2 ; and n is 0 to 3, provided when X is CH then n is at least 1.
  • This invention also relates to a method for preparing a compound of Formula I comprising ( 1 ) treating a compound of Formula 4
  • This invention also relates to a compound of Formula II
  • R 1 is halogen (and X, R 2 , R 3 and n are defined as above for Formula I) and a method of preparing a compound of Formula II.
  • the method comprises (3) treating a compound of Formula I with an oxidant, optionally in the presence of an acid, to form a compound of Formula II; and when a compound of Formula I wherein R 3 is C 1 -C 4 alkyl is used to prepare a compound of Formula II wherein R 3 is H, (4) converting the compound formed in (2) to a compound of Formula II wherein R 3 is H.
  • This invention also provides compounds of Formula 4 wherein X is N, and their use in preparing compounds of Formulae I and II, wherein X is N (and R 2 , R 3 and n are defined as above for Formula I).
  • This invention also involves a method of preparing a compound of Formula III,
  • R 6 is CH 3 . Cl or Br; R 7 is F, Cl, Br, I or CF 3 ; and R 8 is C 1 -C 4 alkyl, using a compound of Formula II wherein R 6 is H.
  • This method is characterized by preparing the compound of Formula II by the method as indicated above.
  • alkyl used either alone or in compound words such as “alkylthio” or “haloalkyl” includes straight-chain or branched alkyl, such as methyl, ethyl, «-propyl, z-propyl, or the different butyl, pentyl or hexyl isomers.
  • alkenyl can include straight-chain or branched alkenes such as 1-propenyl, 2-propenyl, and the different butenyl, pentenyl and hexenyl isomers.
  • Alkenyl also includes polyenes such as 1,2-propadienyl and 2,4-hexadienyl.
  • Alkynyl includes straight-chain or branched alkynes such as 1-propynyl, 2-propynyl and the different butynyl, pentynyl and hexynyl isomers.
  • Alkynyl can also include moieties comprised of multiple triple bonds such as 2,5-hexadiynyl.
  • Alkoxy includes, for example, methoxy, ethoxy, «- ⁇ ropyloxy, isopropyloxy and the different butoxy, pentoxy and hexyloxy isomers.
  • Alkoxyalkyl denotes alkoxy substitution on alkyl. Examples of “alkoxyalkyl” include CH 3 OCH 2 , CH 3 OCH 2 CH 2 , CH 3 CH 2 OCH 2 ,
  • Alkylthio includes branched or straight-chain alkylthio moieties such as methylthio, ethylthio, and the different propylthio, butylthio, pentylthio and hexylthio isomers.
  • Cycloalkyl includes, for example, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl.
  • Cycloalkylalkyl indicates an alkyl group substituted with a cycloalky group and includes, for example, cyclopropylmethyl, cyclobutylethyl, cyclopentylpropyl and cyclohexylmethyl.
  • Cycloalkylamino means the amino nitrogen atom is attached to a cycloalkyl radical and a hydrogen atom and includes groups such as cyclopropylamino, cyclobutylamino, cyclopentylarnino and cyclohexylamino.
  • (Alkyl)cycloalkylamino means a cycloalkylamino group where the hydrogen atom is replaced by an alkyl radical; examples include groups such as (alkyl)cyclopropylamino, (alkyl)cyclobutylamino, (alkyl)cyclopentylamino and (alkyl)cyclohexylamino.
  • the alkyl in (alkyl)cycloalkylamino is C 1 -C 4 alkyl
  • the cycloalkyl in cycloalkylamino and (alkyl)cycloalkylamino is C 3 -Cg cycloalkyl.
  • aryl refers to an aromatic ring or ring system or a heteroaromatic ring or ring system, each ring or ring system optionally substituted.
  • aromatic ring system denotes fully unsaturated carbocycles and heterocycles in which at least one ring of a polycyclic ring system is aromatic.
  • Aromatic indicates that each of ring atoms is essentially in the same plane and has a ju-orbital perpendicular to the ring plane, and in which (4n + 2) ⁇ electrons, when n is 0 or a positive integer, are associated with the ring to comply with HuckePs rule.
  • aromatic carbocyclic ring system includes fully aromatic carbocycles and carbocycles in which at least one ring of a polycyclic ring system is aromatic (e.g. phenyl and naphthyl).
  • heterocyclic ring or ring system includes fully aromatic heterocycles and heterocycles in which at least one ring of a polycyclic ring system is aromatic and in which at least one ring atom is not carbon and can contain 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, oxygen and sulfur, provided that each heteroaromatic ring contains no more than 4 nitrogens, no more than 2 oxygens and no more than 2 sulfurs (where aromatic indicates that the H ⁇ ckel rule is satisfied).
  • the heterocyclic ring systems can be attached through any available carbon or nitrogen by replacement of a hydrogen on said carbon or nitrogen. More specifically, the term "aryl" refers to the moiety
  • halogen either alone or in compound words such as “haloalkyl”, includes fluorine, chlorine, bromine or iodine. Further, when used in compound words such as “haloalkyl", said alkyl may be partially or fully substituted with halogen atoms which may be the same or different. Examples of “haloalkyl” include F 3 C, C1CH 2 , CF 3 CH 2 and CF 3 CC1 2 .
  • haloalkenyl “haloalkynyl", “haloalkoxy”, and the like, are defined analogously to the term “haloalkyl”.
  • haloalkynyl examples include HC ⁇ CCHCl, CF 3 C ⁇ C, CC1 3 C ⁇ C and FCH 2 C ⁇ CCH 2 .
  • haloalkoxy examples include CF 3 O, CCl 3 CH 2 O, HCF 2 CH 2 CH 2 O and CF 3 CH 2 O.
  • alkylcarbonyl examples include C(O)CH 3 , C(O)CH 2 CH 2 CH 3 and C(O)CH(CH 3 ) 2 .
  • the total number of carbon atoms in a substituent group is indicated by the
  • C 1 -C 3 alkylsulfonyl designates methylsulfonyl through propylsulfonyl.
  • Certain compounds of this invention can exist as one or more stereoisomers.
  • the various stereoisomers include enantiomers, diastereomers, atropisomers and geometric isomers.
  • one stereoisomer may be more active and/or may exhibit beneficial effects when enriched relative to the other stereoisomer(s) or when separated from the other stereoisomer(s).
  • the skilled artisan knows how to separate, enrich, and/or to selectively prepare said stereoisomers.
  • the compounds of the invention may be present as a mixture of stereoisomers, individual stereoisomers, or as an optically active form.
  • Preferred for cost, ease of synthesis and/or greatest utility are: Preferred 1. Compounds of Formula I wherein R 1 is Cl or Br; each R 2 is independently Cl or Br, and one R 2 is at the 3-position; and
  • X is N.
  • Preferred 2. Compounds of Formula I wherein RHs Cl orBr; X is N; and n is O.
  • R 2 is independently Cl or Br, and one R 2 is at the 3-position.
  • Preferred 7 Compounds of Formula 4 (wherein R 3 is C 1 -C 4 alkyl) wherein X is N; and n is O. Of note are compounds of Formula 4 (wherein R 3 is C 1 -C 4 alkyl) including but not limited to Preferred 6, wherein n is 1 to 3.
  • the 3-position is identified by the "3" shown in the aryl moiety included in Formula I, Formula II and Formula 4 above.
  • Preferred methods are those comprising the preferred compounds above.
  • Methods of note are those comprising the compounds of note above.
  • a stepwise process of preparing compounds of Formula I and Formula II provided herein comprises (a) treating a compound of Formula 2
  • R 3 is Ci -C 4 alkyl, in the presence of a base, to form a compound of Formula 4
  • R 3 is H or Cj-0 4 alkyl.
  • the compound of Formula 4 wherein R 3 is C 1 -C alkyl can then be (1) treated with a halogenating agent to form a compound of Formula I; and when preparing compounds of Formula I wherein R 3 is H, (2) converting the compound formed in (1) to a compound wherein R 3 is H.
  • the compound of Formula I prepared in (1) or (2) can then be (3) treated with an oxidant, optionally in the presence of an acid, to form a compound of Formula II; and when compounds of Formula I wherein R 3 is C ⁇ -C ⁇ alkyl are used to prepare compounds of Formula II wherein R 3 is H, (4) converting the compound formed in (3) to a compound of Formula II wherein R 3 is H
  • Scheme 1 illustrates step (a).
  • a compound of Formula 2 is treated with a compound of Formula 3 wherein R 3 is C1-C 4 alkyl (a fumarate ester or maleate ester or a mixture thereof may be used) in the presence of a base and a solvent.
  • the base is typically a metal alkoxide salt, such as sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, potassium tert-butoxide, lithium tert-butoxide, and the like.
  • Greater than 0.5 equivalents of base versus the compound of Formula 2 should be used, preferably between 0.9 and 1.3 equivalents.
  • Greater than 1.0 equivalents of the compound of Formula 3 should be used, preferably between 1.0 to 1.3 equivalents.
  • Polar protic and polar aprotic organic solvents can be used, such as alcohols, acetonitrile, tetrahydrofuran, N,N-dimethylformamide, dimethyl sulfoxide and the like.
  • Preferred solvents are alcohols such as methanol and ethanol. It is especially preferred that the alcohol be the same as that making up the fumarate or maleate ester and the alkoxide base.
  • the reaction is typically conducted by mixing the compound of Formula 2 and the base in the solvent. The mixture can be heated or cooled to a desired temperature and the compound of Formula 3 added over a period of time. Typically reaction temperatures are between 0 °C and the boiling point of the solvent used.
  • the reaction may be conducted under greater than atmospheric pressure in order to increase the boiling point of the solvent. Temperatures between about 30 and 90 °C are generally preferred.
  • the addition time can be as quick as heat transfer allows. Typical addition times are between 1 minute and 2 hours. Optimum reaction temperature and addition time vary depending upon the identities of the compounds of Formula 2 and Formula 3.
  • the reaction mixture can be held for a time at the reaction temperature. Depending upon the reaction temperature, the required hold time maybe from 0 to 2 hours. Typical hold times are from about 10 to 60 minutes.
  • the reaction mass then can be acidified by adding an organic acid, such as acetic acid and the like, or an inorganic acid, such as hydrochloric acid, sulfuric acid and the like.
  • compounds of Formula 4 wherein R 3 is H or compounds of Formula 4 wherein R 3 is C1-C 4 alkyl can be prepared.
  • a compound of Formula 4 wherein R 3 is -C 4 alkyl can be hydrolyzed in situ to a compound of Formula 4 wherein R 3 is H when water is present in the reaction mixture.
  • Compounds of Formula 4 wherein R 3 is H can be readily transformed to compounds of Formula 4 wherein R 3 is C1-C 4 alkyl using esterification methods well-known in the art.
  • Compounds of Formula 4 wherein R 3 is C1-C 4 alkyl are preferred.
  • the desired product, a compound of Formula 4 can be isolated by methods known to those skilled in the art, such as crystallization, extraction or distillation.
  • a compound of Formula 4 is treated with a halogenating reagent usually in the presence of a solvent.
  • Halogenating reagents that can be used include phosphorus oxyhalides, phosphorus trihalides, phosphorus pentahalides, thionyl chloride, dihalotrialkylphophoranes, dihalodiphenylphosphoranes, oxalyl chloride and phosgene.
  • at least 0.33 equivalents of phosphorus oxyhalide versus the compound of Formula 4 should be used, preferably between 0.33 and 1.2 equivalents.
  • At least 0.20 equivalents of phosphorus pentahalide versus the compound of Formula 4 should be used, preferably between about 0.20 and 1.0 equivalents.
  • Compounds of Formula 4 wherein R 3 is C -C 4 alkyl are preferred for this reaction.
  • Typical solvents for this halogenation include halogenated alkanes, such as dichloromethane, chloroform, chlorobutane and the like, aromatic solvents, such as benzene, xylene, chlorobenzene and the like, ethers, such as tettahydrofuran,/?-dioxane, diethyl ether, and the like, and polar aprotic solvents such as acetonitrile, N,N-dimethylformamide, and the like.
  • an organic base such as triethylamine, pyridine, N,N-dimethylaniline or the like, can be added.
  • Addition of a catalyst is also an option.
  • Preferred is the process in which the solvent is acetonitrile and a base is absent. Typically, neither a base nor a catalyst is required when acetonitrile solvent is used.
  • the preferred process is conducted by mixing the compound of Formula 4 in acetonitrile. The halogenating reagent is then added over a convenient time and the mixture is then held at the desired temperature until the reaction is complete.
  • the reaction temperature is typically between 20 °C and the boiling point of acetonitrile, and the reaction time is typically less than 2 hours.
  • step (2) the compound of Formula I wherein R 3 is C1-C 4 alkyl, an ester, can be hydrolyzed to a compound of Formula I wherein R 3 is H, a carboxylic acid.
  • the hydrolysis can be catalyzed by acids, metal ions, and by enzymes.
  • Iodotrimethylsilane is noted as an example of an acid which can be used to catalyze the hydrolysis (see Advanced Organic Chemistry, Third Ed., Jerry March, John Wiley & Sons, Inc. New York, 1985, pp. 334-338 for a review of methods). Base-catalyzed hydrolytic methods are not recommended for the hydrolysis of compounds of Formula I and can result in decomposition.
  • the carboxylic acid can be isolated by methods known to those skilled in the art, including crystallization, extraction and distillation.
  • step (3) a compound of Formula I is treated with an oxidizing agent optionally in the presence of acid.
  • a compound of Formula I wherein R 3 is C 1 -C 4 alkyl i.e. a preferred product of step (1)
  • the oxidizing agent can be hydrogen peroxide, organic peroxides, potassium persulfate, sodium persulfate, ammonium persulfate, potassium monopersulfate (e.g., Oxone®) or potassium permanganate.
  • at least one equivalent of oxidizing agent versus the compound of Formula I should be used, preferably from about one to two equivalents. This oxidation is typically carried out in the presence of a solvent.
  • the solvent can be an ether, such as tetrahydrofuran, ⁇ - dioxane and the like, an organic ester, such as ethyl acetate, dimethyl carbonate and the like, or a polar aprotic organic such as NN-dimethylformamide, acetonitrile and the like.
  • Acids suitable for use in the oxidation step include inorganic acids, such as sulfuric acid, phosphoric acid and the like, and organic acids, such as acetic acid, benzoic acid and the like.
  • the acid, when used, should be used in greater than 0.1 equivalents versus the compound of Formula I. To obtain complete conversion, one to five equivalents of acid can be used.
  • the preferred oxidant is hydrogen peroxide and the oxidation is preferably carried out in the absence of acid.
  • the preferred oxidant is potassium persulfate and the oxidation is preferably carried out in the presence of sulfuric acid.
  • the reaction can be carried out by mixing the compound of Formula I in the desired solvent and, if used, the acid. The oxidant can then be added at a convenient rate.
  • the reaction temperature is typically varied from as low as about 0 °C up to the boiling point of the solvent in order to obtain a reasonable reaction time to complete the reaction, preferably less than 8 hours.
  • the desired product, a compound of Formula II wherein R 3 is C1-C 4 alkyl can be isolated by methods known to those skilled in the art, including crystallization, extraction and distillation.
  • C 1 -C 4 alkyl, an ester can be converted to a compound of Formula II wherein R 3 is H, a carboxylic acid.
  • R 3 is H
  • Methods for converting esters to carboxylic acids are well known to those skilled in the art.
  • Compounds of Formula II (R 3 is C 1 -C 4 alkyl) can be converted to compounds of Formula II (R 3 is H) by numerous methods including nucleophilic cleavage under anhydrous conditions or hydrolytic methods involving the use of either acids or bases (see T. W. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, 2nd ed., John Wiley & Sons, Inc., New York, 1991, pp. 224-269 for a review of methods).
  • Suitable bases include alkali metal (such as lithium, sodium or potassium hydroxides.
  • the ester can be dissolved in a mixture of water and an alcohol such as ethanol. Upon treatment with sodium hydroxide or potassium hydroxide, the ester is saponified to provide the sodium or potassium salt of the carboxylic acid. Acidification with a strong acid, such as hydrochloric acid or sulfuric acid, yields the carboxylic acid.
  • the carboxylic acid can be isolated by methods known to those skilled in the art, including crystallization, extraction and distillation.
  • R 1 is halogen
  • R 1 is a different halogen or is a sulfonate group such as ?-toluenesulfonate, benzenesulfonate and methanesulfonate.
  • a compound of Formula I wherein R 1 is Br can be prepared by treating with hydrogen bromide the corresponding compound of Formula I wherein R 1 is Cl or ?-toluenesulfonate.
  • the reaction is conducted in a suitable solvent such as dibromomethane, dichloromethane or acetonitrile.
  • the reaction can be conducted at or near atmospheric pressure or above atmospheric pressure in a pressure vessel.
  • R 1 in the starting compound of Formula I is a halogen such as Cl
  • the reaction is preferably conducted in such a way that the hydrogen halide generated from the reaction is removed by sparging or other suitable means.
  • the reaction can be conducted between about 0 and 100 °C, most conveniently near ambient temperature (e.g., about 10 to 40 °C), and more preferably between about 20 and 30 °C.
  • Addition of a Lewis acid catalyst e.g., aluminum tribromide for preparing Formula I wherein R 1 is Br
  • the product of Formula I is isolated by the usual methods known to those skilled in the art, including extraction, distillation and crystallization.
  • Starting compounds of Formula I wherein R 1 is halogen can be prepared as already described for Scheme 2.
  • Starting compounds of Formula I wherein R 1 is a sulfonate group can likewise be prepared from corresponding compounds of Formula 4 by standard methods such as treatment with a sulfonyl chloride (e.g., -toluenesulfonyl chloride) and base such as a tertiary amine (e.g., triethylamine) in a suitable solvent such as dichloromethane.
  • a sulfonyl chloride e.g., -toluenesulfonyl chloride
  • base such as a tertiary amine (e.g., triethylamine) in a suitable solvent such as dichloromethane.
  • EXAMPLE 1 Preparation of Ethyl 5-Oxo-2-phenyl-3-pyrazolidinecarboxylate (alternatively named Ethyl l-Phenyl-3-pyrazolidinone-5-carboxylate using Diethyl Maleate
  • the resulting orange-red solution was held under ambient conditions for 30 minutes. It was then added to a separatory funnel containing 20.0 mL (0.349 mol) of glacial acetic acid and 700 mL of water. The mixture was extracted with 250 mL of dichloromethane. The extract was dried over magnesium sulfate, filtered, and then concentrated on a rotary evaporator. The resulting yellow-black oil (52.7 g) was diluted with 100 mL of ether, whereupon crystallization of the product was rapid enough to cause mild boiling. The slurry was held for 2 hours under ambient conditions. It was then cooled to about 0 °C.
  • the product was isolated via filtration, washed with 2 x 20 mL of cold ether, and then air- dried on the filter for about 15 minutes.
  • the product consisted of 29.1 g (61%) of a highly crystalline, white powder. No significant impurities were observed by *H NMR.
  • the filtrate was concentrated to 20.8 g of a brown oil. Analysis of the oil showed the presence of an additional 6.4 g (13%) of the desired product. Hence, the overall yield of the reaction was 74%.
  • EXAMPLE 2 Preparation of Ethyl 5-Oxo-2-phenyl-3-pyrazolidinecarboxylate (alternatively named Ethyl l-Phenyl-3-pyrazolidinone-5-carboxylate ' ) using Diethyl Fumarate
  • a 500-mL four-necked flask equipped with a mechanical stirrer, thermometer, addition funnel, reflux condenser, and nitrogen inlet was charged 150 mL of absolute ethanol, 15.0 g (0.212 mol) of 96% sodium ethoxide in ethanol, and 20.0 mL (0.203 mol) of phenylhydrazine.
  • the orange mixture was treated dropwise with 40.0 mL (0.247 mol) of diethyl fumarate over a period of 75 minutes.
  • the temperature of the reaction mass rose from 28 to a maximum of 37 °C during the addition, and the final temperature was 32 °C.
  • the resulting somewhat cloudy, orange solution was held under ambient conditions for 135 minutes.
  • the reaction mixture was then poured into a separatory funnel containing 15.0 mL (0.262 mol) of glacial acetic acid and 700 mL of water.
  • the mixture was extracted with 150 mL of dichloromethane.
  • the extract was dried over magnesium sulfate, filtered, and then concentrated on a rotary evaporator.
  • the resulting brown-yellow oil (41.3 g) was diluted with 100 L of ether. Several seed crystals were added. The mixture was held for 30 minutes under ambient conditions. It was then cooled to about 0 °C. The product was isolated via filtration, washed with 2 x 10 mL of cold ether, and then air-dried on the filter for about 15 minutes. The product consisted of 9.5 g (20%) of a highly crystalline, white powder. No significant impurities were observed by 1H NMR. The filtrate was concentrated to 31 g of a brown oil. Analysis of the oil showed the presence of an additional 7.8 g (16%) of the desired product. Hence, the overall selectivity of the reaction was 36%. EXAMPLE 3
  • Ethyl 5-Oxo-2-(2-pyridinylV3-pyrazolidinecarboxylate (alternatively named Ethyl l-(2-PyridinylV3-pyrazolidinone-5-carboxylate
  • Ethyl l-(2-PyridinylV3-pyrazolidinone-5-carboxylate was charged 18 mL of absolute ethanol, 18.0 mL (0.0482 mol) of 21% sodium ethoxide in ethanol, and 5.00 g
  • the product was isolated by filtration, washed with 50 mL of ether, and then dried overnight at room temperature in vacuo.
  • the product consisted of 12.5 g (46%) of a crystalline powder. No significant impurities were observed by *H NMR.
  • the filtrate was concentrated to 16.3 g of a brown oil. Analysis of the oil showed the presence of an additional 6.7 g (25%) of the desired product. Hence, the overall selectivity of the reaction was 71%. !
  • the mixture was diluted with 650 mL of water, whereupon the precipitate dissolved.
  • the orange solution was cooled in an ice bath.
  • Product began to precipitate at 28 °C.
  • the slurry was held at about 2 °C for 2 hours.
  • the product was isolated via filtration, washed with 3 x 50 mL of 40% aqueous ethanol, and then air-dried on the filter for about 1 hour.
  • the product consisted of 70.3 g (55%) of a highly crystalline, light orange powder. No significant impurities were observed by * ⁇ NMR.
  • EXAMPLE 6B Using Phosphorus Oxychloride in Chloroform in Absence of Base To a 100-mL two-necked flask equipped with a magnetic stirrer, thermometer, reflux condenser, and nitrogen inlet was charged 50 mL of chloroform, 5.00 g (0.0213 mol) of ethyl 5-oxo-2-phenyl-3-pyrazolidinecarboxylate, 2.10 mL (0.0225 mol) of phosphorus oxychloride, and 2 drops of N,N-dimethylformamide. The red-orange solution was heated to reflux at 64 °C over a period of 60 minutes.
  • Emyl 3-CMoro-4.5-dihydro-l-(2-pyridinylVlH-pyrazole-5-carboxylate (alternatively named Ethyl l-(2-PyridinylV3-chloro-2-pyrazoline-5-carbo ⁇ ylate
  • acetonitrile 50 mL
  • 4.70 g (0.0188 mol) of 5-oxo-2-(2-pyridinyl)-3-pyrazolidinecarboxylate was charged to a 250-mL four-necked flask equipped with a mechanical stirrer, thermometer, reflux condenser, and nitrogen inlet was charged 50 mL of acetonitrile, 4.70 g (0.0188 mol) of 5-oxo-2-(2-pyridinyl)-3-pyrazolidinecarboxylate, and 2.00 mL
  • the mixture was treated with 11 g of Celite 545® diatomaceous earth and then filtered to remove a black, tarry substance that inhibited phase separation. Since the filtrate was slow to separate into distinct phases, it was diluted with 200 mL of dichloromethane and 200 mL of water and treated with another 15 g of Celite 545®. The mixture was filtered, and the filtrate was transferred to a separatory funnel. The heavier, deep green organic layer was separated. A 50 mL rag layer was refiltered and then added to the organic layer. The organic solution (800 mL) was treated with 30 g of magnesium sulfate and 12 g of silica gel and the slurry was stirred magnetically for 30 minutes.
  • the slurry was filtered to remove the magnesium sulfate and silica gel, which had become deep blue-green.
  • the filter cake was washed with 100 mL of dichloromethane.
  • the filtrate was concentrated on a rotary evaporator.
  • the product consisted of 92.0 g (93%) of a dark amber oil.
  • the only appreciable impurities observed by l R NMR were 1% starting material and 0.7% acetonitrile.
  • the reflux condenser was replaced with a distillation head, and 300 mL of a cloudy, colorless distillate was collected.
  • a second 1-L four-necked flask equipped with a mechanical stirrer was charged with 45 g (0.54 mol) of sodium bicarbonate and 200 mL of water.
  • the concentrated reaction mixture was added to the sodium bicarbonate slurry over a period of 5 minutes.
  • the resulting, two-phase mixture was stirred vigorously for 5 minutes, at which time gas evolution had ceased.
  • the mixture was diluted with 200 mL of dichloromethane, and then was stirred for 75 minutes.
  • the mixture was treated with 5 g of Celite 545®, and then filtered to remove a brown, tarry substance.
  • the filtrate was transferred to a separatory funnel.
  • the brown organic layer 400 mL was separated, and then was treated with 15 g of magnesium sulfate and 2.0 g of Darco G60 activated charcoal.
  • the resulting slurry was stirred magnetically for 15 minutes and then filtered to remove the magnesium sulfate and charcoal.
  • the green filtrate was treated with 3 g of silica gel and stirred for several minutes.
  • the deep blue-green silica gel was removed by filtration and the filtrate was concentrated on a rotary evaporator.
  • the product consisted of 58.6 g (95%) of a light amber oil, which crystallized upon standing .
  • the only appreciable impurity observed by *H NMR was 0.3% acetonitrile.
  • the reflux condenser was replaced with a distillation head, and 220 mL of a cloudy, colorless distillate was collected.
  • a second 1-L four-necked flask equipped with a mechanical stirrer was charged with 40 g (0.48 mol) of sodium bicarbonate and 200 mL of water.
  • the concentrated reaction mixture was added to the sodium bicarbonate slurry over a period of 5 minutes.
  • the resulting, two-phase mixture was stirred vigorously for 10 minutes, at which time gas evolution had ceased.
  • the mixture was diluted with 200 mL of dichloromethane, and then was stirred for 10 minutes.
  • the mixture was treated with 5 g of Celite 545®, and then filtered to remove a purple, tarry substance.
  • the filter cake was washed with 50 mL of dichloromethane. The filtrate was transferred to a separatory funnel. The purple-red organic layer (400 mL) was separated, then was treated with 15 g of magnesium sulfate and 2.2 g of Darco G60 activated charcoal. The slurry was stirred magnetically for 40 minutes. The slurry was filtered to remove the magnesium sulfate and charcoal. The filtrate was concentrated on a rotary evaporator. The product consisted of 61.2 g (95%) of a dark amber oil, which crystallized upon standing . The only appreciable impurity observed by *H NMR was 0.7% acetonitrile.
  • EXAMPLE 10B Using Manganese Dioxide To a 100-mL two-necked flask equipped with a magnetic stirrer, thermometer, reflux condenser, and nitrogen inlet was charged 3.00 g (0.0119 mol) of ethyl 3-chloro- 4,5-dihydro-l -phenyl- lH-pyrazole-5-carboxylate, 25 mL of chloroform, and 2.50 g (0.0245 mol) of activated manganese dioxide. The mixture was heated to reflux at 62 °C for a period of 1 hour.
  • OMSO-d 6 4,5-dihydro-lH-pyrazole-5-carboxylate ⁇ 7.41 (d, IH), 7.30 (m, 2H), 7.14 (m, IH), 5.22 (dd, IH), 3.90 (q, 2H), 3.68 (dd, IH), 3.38 (dd, IH), 0.91 (t, 3H).
  • EXAMPLE 11 Preparation of Ethyl 3 -Chloro- 1 -(3 -chloro-2-pyridinyl)- lH-pyrazole-5-carboxylate (alternatively named Ethyl l-(3-Chloro-2-pyridinylV3-cMoropyrazole-5-carbo ⁇ ylate)
  • Ethyl l-(3-Chloro-2-pyridinylV3-cMoropyrazole-5-carbo ⁇ ylate To a 2-L four-necked flask equipped with a mechanical stirrer, thermometer, reflux condenser, and nitrogen inlet was charged 99.5 g (0.328 mol) of 95% pure ethyl 3-chloro-l-(3-chloro-2-pyridinyl)-4,5-dihydro-lH-pyrazole-5-carboxylate, 1000 mL of acetonitrile and 35.0 mL (0.6
  • the mixture self-heated from 22 to 35 °C upon adding the sulfuric acid. After being stirred for several minutes, the mixture was treated with 140 g (0.518 mol) of potassium persulfate. The slurry was heated to reflux at 84 °C for 4.5 hours. The resulting orange slurry was filtered while still warm (50-65 °C) to remove a fine, white precipitate. The filter cake was washed with 50 mL of acetonitrile. The filtrate was concentrated to about 500 mL on a rotary evaporator. A second 2-L four-necked flask equipped with a mechanical stirrer was charged with 1250 mL of water. The concentrated reaction mass was added to the water over a period of about 5 minutes.
  • the product was isolated via filtration, washed with 100 mL of 20% aqueous acetonitrile, washed with 75 mL of water, and then air-dried on the filter for 1 hour.
  • the product consisted of 36.6 g (90%) of a crystalline, orange powder.
  • the only appreciable impurities observed by *H NMR were about 1% of an unknown and 0.5% acetonitrile.
  • the mixture self-heated from 22 to 35 °C and the starting material began to dissolve upon adding the sodium hydroxide. After being stirred for 45 minutes under ambient conditions, all of the starting material had dissolved.
  • the resulting deep orange-brown solution was concentrated to about 250 mL on a rotary evaporator.
  • the concentrated reaction mixture was then diluted with 400 mL of water.
  • the aqueous solution was extracted with 200 mL of ether.
  • the aqueous layer was transferred to a 1-L Erlenmeyer flask equipped with a magnetic stirrer. The solution was then treated dropwise with 36.0 g (0.355 mol) of concentrated hydrochloric acid over a period of about 10 minutes.
  • the mixture self-heated from 29 to 34 °C and the starting material began to dissolve upon adding the sodium hydroxide. After being stirred for 90 minutes under ambient conditions, all of the starting material had dissolved.
  • the resulting dark orange solution was concentrated to about 90 mL on a rotary evaporator.
  • the concentrated reaction mixture was then diluted with 160 mL of water.
  • the aqueous solution was extracted with 100 mL of ether.
  • the aqueous layer was transferred to a 500-mL Erlenmeyer flask equipped with a magnetic stirrer. The solution was then treated dropwise with 8.50 g (0.0839 mol) of concentrated hydrochloric acid over a period of about 10 minutes.
  • the product was isolated via filtration, reslurried with 2 x 40 mL of water, cover washed once with 25 mL of water, and then air-dried on the filter for 2 hours.
  • the product consisted of 20.9g (91%) of a crystalline, tan powder.
  • the only appreciable impurities observed by *H NMR were about 0.8% of an unknown and 0.7% ether.
  • Example 16 illustrates the preparation of ethyl l-(3-chloro-2- pyridinyl)-4,5-dihydro-3-[[(4-methylphenyl)sulfonyl]oxy]-lH-pyrazole-5-carboxylate, which can be used to prepare ethyl 3-bromo-l-(3-chloro-2-pyridinyl)-4,5-dihydro- lH-pyrazole-5-carboxylate by procedures similar to that described in Example 15.
  • Triethylamine (3.75 g, 37.1 mmol) was added dropwise to a mixture of ethyl 2-(3-chloro-2-pyridinyl)-5-oxo-3-pyrazolidinecarboxylate (10.0 g, 37.1 mmol) and /7-toluenesulfonyl chloride (7.07 g, 37.1 mmol) in dichloromethane (100 mL) at 0 °C. Further portions ofp-toluenesulfonyl chloride (0.35 g, 1.83 mmol) and triethylamine (0.19 g, 1.88 mmol) were added. The reaction mixture was then allowed to warm to room temperature and was stirred overnight.
  • Et is ethyl
  • Pr is propyl
  • t-Pr is isopropyl
  • t-Bu is tertiary butyl.
  • X is N X is CH X is CC1 X is CBr
  • X is N X is CH X is CC1 X is CBr
  • X is N X is CH X is CC1 X is CBr
  • R 6 is CH 3 , Cl or Br
  • R 7 is F, Cl, Br, I or CF 3
  • R « is Cr-C 4 alkyl
  • Compounds of Formula III are useful as insecticides.
  • Compounds of Formula III can be prepared from compounds of Formula II (and in turn from compounds of Formula 4 and I) by the processes outlined in Schemes 5-7.
  • a benzoxazinone of Formula 6 is prepared directly via sequential addition of methanesulfonyl chloride in the presence of a tertiary amine such as triethylamine or pyridine to a pyrazolecarboxylic acid of Formula Ila, followed by the addition of an anthranilic acid of Formula 5, followed by a second addition of tertiary amine and methanesulfonyl chloride. This procedure generally affords good yields of the benzoxazinone.
  • Scheme 6 depicts an alternate preparation for benzoxazinones of Formula 6 involving coupling of a pyrazole acid chloride of Formula 8 with an isatoic anhydride of
  • Solvents such as pyridine or pyridine/acetonitrile are suitable for this reaction.
  • the acid chlorides of Formula 8 are available from the corresponding acids of Formula Ila by known procedures such as chlorination with thionyl chloride or oxalyl chloride.
  • Compounds of Formula III can be prepared by the reaction of benzoxazinones of Formula 6 with C 1 -C 4 alkyl amines as outlined in Scheme 7.
  • the reaction can be run neat or in a variety of suitable solvents including tetrahydrofuran, diethyl ether, dichloromethane or chloroform with optimum temperatures ranging from room temperature to the reflux temperature of the solvent.
  • suitable solvents including tetrahydrofuran, diethyl ether, dichloromethane or chloroform
  • benzoxazinones with amines to produce anthranilamides is well documented in the chemical literature.
  • Jakobsen et al. see Jakobsen et al.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dentistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Agronomy & Crop Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

This invention relates to a compound of Formula I, a method for its preparation and its use in the preparation of a compound of Formula II wherein R1, R2, R3, X and n are as defined in the disclosure.This invention also discloses preparation of compounds of Formula III wherein R1, R2, R6, R7, R8 and n are as defined in the disclosure.Also disclosed are certain intermediates of Formula 4 for the preparation of compounds of Formula I wherein X is N and R2, R3 and n are as defined in the disclosure.

Description

TITLE
SUBSTITUTED DIHYDRO 3-HAL0-1H-PYRAZ0 E-5-CARB0XYLATES THEIR' PREPARATION AND USE
FIELD OF THE INVENTION This invention relates to novel carboxylic acid derivatives of 3-halo- 1 -aryl- substituted dihydro-lH-pyrazoles and pyrazoles. These compounds are useful for preparation of certain anthranilic amide compounds that are of interest as insecticides (see e.g. PCT Publication WO 01/070671).
BACKGROUND OF THE INVENTION Tetrahedron Letters, 1999, 40, 2605-2606 discloses preparation of 1 -phenyl-
3-bromopyrazole-5-carboxylic acid derivatives involving generation of a reactive bromonitrilimine intermediate. Cycloaddition of this intermediate with an acrylic ester gives a l-phenyl-3-bromo-2-pyrazoline-5-carboxylate ester, which can be subsequently oxidized to the desired l-phenyl-3-bromo-2-pyrazole-5-carboxylate ester. Alternatively, cycloaddition with a propiolate ester gives the 1 -phenyl-3-bromo-2-pyrazole- 5-carboxylate ester directly.
U.S. Patent 3,153,654 discloses condensation of certain optionally substituted aryl (e.g. phenyl or naphthyl which are optionally substituted with lower alkyl, lower alkoxy or halogen) hydrazines with certain fumaric or maleic esters to provide 3-pyrazolidinone carboxylic acid derivatives.
Japanese Unexamined Patent Publications 9-316055 and 9-176124 disclose production of pyrazole carboxylic acid ester derivatives and pyrazoline derivatives, respectively, which are substituted with alkyl at the 1 -position.
J. Med. Chem. 2001, 44, 566-578 discloses a preparation of l-(3-cyanophenyl)-3- methyl- lH-pyrazol-5-carboxylic acid and its use in preparing inhibitors of blood coagulation factor Xa.
The present invention provides technology useful for conveniently preparing 3-halo-5-carboxylate-l-aryl-substiruted dihydro-lH-pyrazoles and pyrazoles.
SUMMARY OF THE INVENTION This invention relates to a compound of Formula I
Figure imgf000003_0001
wherein
R1 is halogen; each R2 is independently C1-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C3-C6 cycloalkyl, C1-C4 haloalkyl, C2-C4 haloalkenyl, C2-C4 haloalkynyl, C3-C6 halocycloalkyl, halogen, CN, NO2, Ci^ alkoxy, C1-C4 haloalkoxy, CJ-C4 alkylthio, Cx^ alkylsulfinyl, 0^4 alkylsulfonyl, CrC alkylamino, C2-C8 dialkylamino, C3-C6 cycloalkylamino, C3-C6 (alkyl)cycloalkylamino, C2-C alkylcarbonyl, C2-C6 alkoxycarbonyl, C2-C6 alkylaminocarbonyl, C3-C8 dialkylaminocarbonyl or C3-C6 trialkylsilyl; R3 is H or C1-C4 alkyl;
X is N or CR4; R4 is H orR2; and n is 0 to 3, provided when X is CH then n is at least 1. This invention also relates to a method for preparing a compound of Formula I comprising ( 1 ) treating a compound of Formula 4
Figure imgf000004_0001
4
(wherein X, R2, and n are as described above for Formula I and R3 is C1-C4 alkyl) with a halogenating agent to form a compound of Formula I; and when preparing compounds of Formula I wherein R3 is H, (2) converting the compound formed in (1) to a compound wherein R3 is H.
This invention also relates to a compound of Formula II
Figure imgf000004_0002
wherein R1 is halogen (and X, R2, R3 and n are defined as above for Formula I) and a method of preparing a compound of Formula II. The method comprises (3) treating a compound of Formula I with an oxidant, optionally in the presence of an acid, to form a compound of Formula II; and when a compound of Formula I wherein R3 is C1-C4 alkyl is used to prepare a compound of Formula II wherein R3 is H, (4) converting the compound formed in (2) to a compound of Formula II wherein R3 is H.
This invention also provides compounds of Formula 4 wherein X is N, and their use in preparing compounds of Formulae I and II, wherein X is N (and R2, R3 and n are defined as above for Formula I).
This invention also involves a method of preparing a compound of Formula III,
Figure imgf000005_0001
wherein X, R1, R2, and n are defined as above for Formula II; R6 is CH3. Cl or Br; R7 is F, Cl, Br, I or CF3; and R8 is C1-C4 alkyl, using a compound of Formula II wherein R6 is H. This method is characterized by preparing the compound of Formula II by the method as indicated above.
DETAILED DESCRIPTION OF THE INVENTION In the above recitations, the term "alkyl", used either alone or in compound words such as "alkylthio" or "haloalkyl" includes straight-chain or branched alkyl, such as methyl, ethyl, «-propyl, z-propyl, or the different butyl, pentyl or hexyl isomers. "Alkenyl" can include straight-chain or branched alkenes such as 1-propenyl, 2-propenyl, and the different butenyl, pentenyl and hexenyl isomers. "Alkenyl" also includes polyenes such as 1,2-propadienyl and 2,4-hexadienyl. "Alkynyl" includes straight-chain or branched alkynes such as 1-propynyl, 2-propynyl and the different butynyl, pentynyl and hexynyl isomers. "Alkynyl" can also include moieties comprised of multiple triple bonds such as 2,5-hexadiynyl. "Alkoxy" includes, for example, methoxy, ethoxy, «-ρropyloxy, isopropyloxy and the different butoxy, pentoxy and hexyloxy isomers. "Alkoxyalkyl" denotes alkoxy substitution on alkyl. Examples of "alkoxyalkyl" include CH3OCH2, CH3OCH2CH2, CH3CH2OCH2,
CH3CH2CH2CH2OCH2 and CH3CH2OCH2CH2. "Alkylthio" includes branched or straight-chain alkylthio moieties such as methylthio, ethylthio, and the different propylthio, butylthio, pentylthio and hexylthio isomers. "Cycloalkyl" includes, for example, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. "Cycloalkylalkyl" indicates an alkyl group substituted with a cycloalky group and includes, for example, cyclopropylmethyl, cyclobutylethyl, cyclopentylpropyl and cyclohexylmethyl. "Cycloalkylamino" means the amino nitrogen atom is attached to a cycloalkyl radical and a hydrogen atom and includes groups such as cyclopropylamino, cyclobutylamino, cyclopentylarnino and cyclohexylamino. "(Alkyl)cycloalkylamino" means a cycloalkylamino group where the hydrogen atom is replaced by an alkyl radical; examples include groups such as (alkyl)cyclopropylamino, (alkyl)cyclobutylamino, (alkyl)cyclopentylamino and (alkyl)cyclohexylamino. Preferably the alkyl in (alkyl)cycloalkylamino is C1-C4 alkyl, while the cycloalkyl in cycloalkylamino and (alkyl)cycloalkylamino is C3-Cg cycloalkyl.
The term in this application "aryl" refers to an aromatic ring or ring system or a heteroaromatic ring or ring system, each ring or ring system optionally substituted. The term "aromatic ring system" denotes fully unsaturated carbocycles and heterocycles in which at least one ring of a polycyclic ring system is aromatic. Aromatic indicates that each of ring atoms is essentially in the same plane and has a ju-orbital perpendicular to the ring plane, and in which (4n + 2) π electrons, when n is 0 or a positive integer, are associated with the ring to comply with HuckePs rule. The term "aromatic carbocyclic ring system" includes fully aromatic carbocycles and carbocycles in which at least one ring of a polycyclic ring system is aromatic (e.g. phenyl and naphthyl). The term "heteroaromatic ring or ring system" includes fully aromatic heterocycles and heterocycles in which at least one ring of a polycyclic ring system is aromatic and in which at least one ring atom is not carbon and can contain 1 to 4 heteroatoms independently selected from the group consisting of nitrogen, oxygen and sulfur, provided that each heteroaromatic ring contains no more than 4 nitrogens, no more than 2 oxygens and no more than 2 sulfurs (where aromatic indicates that the Hύckel rule is satisfied). The heterocyclic ring systems can be attached through any available carbon or nitrogen by replacement of a hydrogen on said carbon or nitrogen. More specifically, the term "aryl" refers to the moiety
Figure imgf000006_0001
wherein R2 and n are defined as above and the "3" indicates the 3-position for substituents on the moiety. The term "halogen", either alone or in compound words such as "haloalkyl", includes fluorine, chlorine, bromine or iodine. Further, when used in compound words such as "haloalkyl", said alkyl may be partially or fully substituted with halogen atoms which may be the same or different. Examples of "haloalkyl" include F3C, C1CH2, CF3CH2 and CF3CC12. The terms "haloalkenyl", "haloalkynyl", "haloalkoxy", and the like, are defined analogously to the term "haloalkyl". Examples of "haloalkenyl" include (C1)2C=CHCH2 and CF3CH2CH=CHCH2. Examples of "haloalkynyl" include HC≡CCHCl, CF3C≡C, CC13C≡C and FCH2C≡CCH2. Examples of "haloalkoxy" include CF3O, CCl3CH2O, HCF2CH2CH2O and CF3CH2O.
Examples of "alkylcarbonyl" include C(O)CH3, C(O)CH2CH2CH3 and C(O)CH(CH3)2. Examples of "alkoxycarbonyl" include CH3OC(=O),
CH3CH2OC(=O), CH3CH2CH2OC(=O), (CH3)2CHOC(=O) and the different butoxy- or pentoxycarbonyl isomers. The terms "alkylaminocarbonyl" and "dialkylaminocarbonyl" include, for example, CH3NHC(=O), CH3CH2NHC(=O) and (CH3)2NC(=O). The total number of carbon atoms in a substituent group is indicated by the
"Ci-Cj" prefix where i and j are numbers from 1 to 8. For example, C1-C3 alkylsulfonyl designates methylsulfonyl through propylsulfonyl. In the above recitations, when a compound of Formula I contains a heteroaromatic ring, all substituents are attached to this ring through any available carbon or nitrogen by replacement of a hydrogen on said carbon or nitrogen.
When a group contains a substituent which can be hydrogen, for example R4, then, when this substituent is taken as hydrogen, it is recognized that this is equivalent to said group being unsubstituted.
Certain compounds of this invention can exist as one or more stereoisomers. The various stereoisomers include enantiomers, diastereomers, atropisomers and geometric isomers. One skilled in the art will appreciate that one stereoisomer may be more active and/or may exhibit beneficial effects when enriched relative to the other stereoisomer(s) or when separated from the other stereoisomer(s). Additionally, the skilled artisan knows how to separate, enrich, and/or to selectively prepare said stereoisomers. Accordingly, the compounds of the invention may be present as a mixture of stereoisomers, individual stereoisomers, or as an optically active form. Preferred for cost, ease of synthesis and/or greatest utility are: Preferred 1. Compounds of Formula I wherein R1 is Cl or Br; each R2 is independently Cl or Br, and one R2 is at the 3-position; and
X is N. Preferred 2. Compounds of Formula I wherein RHs Cl orBr; X is N; and n is O.
Of note are compounds of Formula I (including but not limited to Preferred 1) wherein n is 1 to 3.
Preferred 3. Compounds of Formula II wherein X is N. Preferred 4. Compounds of Formula II wherein R1 is Cl or Br; each R2 is independently Cl or Br, and one R2 is at the 3-position; and X is N.
Preferred 5. Compounds of Formula II wherein RHs Cl or Br; X is N; and n is O. Of note are compounds of Formula II (including but not limited to Preferred 3 and Preferred 4) wherein n is 1 to 3.
Preferred 6. Compounds of Formula 4 (wherein R3 is C1-C4 alkyl) wherein each
R2 is independently Cl or Br, and one R2 is at the 3-position. Preferred 7. Compounds of Formula 4 (wherein R3 is C1-C4 alkyl) wherein X is N; and n is O. Of note are compounds of Formula 4 (wherein R3 is C1-C4 alkyl) including but not limited to Preferred 6, wherein n is 1 to 3.
The 3-position is identified by the "3" shown in the aryl moiety included in Formula I, Formula II and Formula 4 above.
Of note are compounds of Formula II wherein when R1 is Cl or Br, n is 1, and R2 selected from Cl or Br is at the 3-position; then X is N. Included are compounds wherein n is from 1 to 3.
Of note are compounds of Formula II wherein when R1 is Cl or Br, n is 1, and R2 selected from Cl or Br is at the 3-position; then X is CR4. Included are compounds wherein n is from 1 to 3.
Preferred methods are those comprising the preferred compounds above. Methods of note are those comprising the compounds of note above. Of particular note are a method of preparing a compound of Formula I wherein n is from 1 to 3; and a method of preparing a compound of Formula II wherein n is from 1 to 3.
A stepwise process of preparing compounds of Formula I and Formula II provided herein comprises (a) treating a compound of Formula 2
Figure imgf000008_0001
with a compound of Formula 3 R302CHOCHC02R3
wherein R3 is Ci -C4 alkyl, in the presence of a base, to form a compound of Formula 4
Figure imgf000009_0001
wherein X, R2 and n are defined as above and R3 is H or Cj-04 alkyl. The compound of Formula 4 wherein R3 is C1-C alkyl can then be (1) treated with a halogenating agent to form a compound of Formula I; and when preparing compounds of Formula I wherein R3 is H, (2) converting the compound formed in (1) to a compound wherein R3 is H.
Figure imgf000009_0002
The compound of Formula I prepared in (1) or (2) can then be (3) treated with an oxidant, optionally in the presence of an acid, to form a compound of Formula II; and when compounds of Formula I wherein R3 is C^-C^ alkyl are used to prepare compounds of Formula II wherein R3 is H, (4) converting the compound formed in (3) to a compound of Formula II wherein R3 is H
Figure imgf000009_0003
Scheme 1 illustrates step (a).
Scheme 1
Figure imgf000010_0001
4
In step (a), a compound of Formula 2 is treated with a compound of Formula 3 wherein R3 is C1-C4 alkyl (a fumarate ester or maleate ester or a mixture thereof may be used) in the presence of a base and a solvent. The base is typically a metal alkoxide salt, such as sodium methoxide, potassium methoxide, sodium ethoxide, potassium ethoxide, potassium tert-butoxide, lithium tert-butoxide, and the like. Greater than 0.5 equivalents of base versus the compound of Formula 2 should be used, preferably between 0.9 and 1.3 equivalents. Greater than 1.0 equivalents of the compound of Formula 3 should be used, preferably between 1.0 to 1.3 equivalents. Polar protic and polar aprotic organic solvents can be used, such as alcohols, acetonitrile, tetrahydrofuran, N,N-dimethylformamide, dimethyl sulfoxide and the like. Preferred solvents are alcohols such as methanol and ethanol. It is especially preferred that the alcohol be the same as that making up the fumarate or maleate ester and the alkoxide base. The reaction is typically conducted by mixing the compound of Formula 2 and the base in the solvent. The mixture can be heated or cooled to a desired temperature and the compound of Formula 3 added over a period of time. Typically reaction temperatures are between 0 °C and the boiling point of the solvent used. The reaction may be conducted under greater than atmospheric pressure in order to increase the boiling point of the solvent. Temperatures between about 30 and 90 °C are generally preferred. The addition time can be as quick as heat transfer allows. Typical addition times are between 1 minute and 2 hours. Optimum reaction temperature and addition time vary depending upon the identities of the compounds of Formula 2 and Formula 3. After addition, the reaction mixture can be held for a time at the reaction temperature. Depending upon the reaction temperature, the required hold time maybe from 0 to 2 hours. Typical hold times are from about 10 to 60 minutes. The reaction mass then can be acidified by adding an organic acid, such as acetic acid and the like, or an inorganic acid, such as hydrochloric acid, sulfuric acid and the like. Depending on the reaction conditions and the means of isolation, compounds of Formula 4 wherein R3 is H or compounds of Formula 4 wherein R3 is C1-C4 alkyl can be prepared. For example, a compound of Formula 4 wherein R3 is -C4 alkyl can be hydrolyzed in situ to a compound of Formula 4 wherein R3 is H when water is present in the reaction mixture. Compounds of Formula 4 wherein R3 is H can be readily transformed to compounds of Formula 4 wherein R3 is C1-C4 alkyl using esterification methods well-known in the art. Compounds of Formula 4 wherein R3 is C1-C4 alkyl are preferred. The desired product, a compound of Formula 4, can be isolated by methods known to those skilled in the art, such as crystallization, extraction or distillation.
In step (1) as illustrated in Scheme 2, a compound of Formula 4 is treated with a halogenating reagent usually in the presence of a solvent. Halogenating reagents that can be used include phosphorus oxyhalides, phosphorus trihalides, phosphorus pentahalides, thionyl chloride, dihalotrialkylphophoranes, dihalodiphenylphosphoranes, oxalyl chloride and phosgene. Preferred are phosphorus oxyhalides and phosphorus pentahalides. To obtain complete conversion, at least 0.33 equivalents of phosphorus oxyhalide versus the compound of Formula 4 should be used, preferably between 0.33 and 1.2 equivalents. To obtain complete conversion, at least 0.20 equivalents of phosphorus pentahalide versus the compound of Formula 4 should be used, preferably between about 0.20 and 1.0 equivalents. Compounds of Formula 4 wherein R3 is C -C4 alkyl are preferred for this reaction.
Scheme 2
Figure imgf000011_0001
I Typical solvents for this halogenation include halogenated alkanes, such as dichloromethane, chloroform, chlorobutane and the like, aromatic solvents, such as benzene, xylene, chlorobenzene and the like, ethers, such as tettahydrofuran,/?-dioxane, diethyl ether, and the like, and polar aprotic solvents such as acetonitrile, N,N-dimethylformamide, and the like. Optionally, an organic base, such as triethylamine, pyridine, N,N-dimethylaniline or the like, can be added. Addition of a catalyst, such as N,N-dimethylformamide, is also an option. Preferred is the process in which the solvent is acetonitrile and a base is absent. Typically, neither a base nor a catalyst is required when acetonitrile solvent is used. The preferred process is conducted by mixing the compound of Formula 4 in acetonitrile. The halogenating reagent is then added over a convenient time and the mixture is then held at the desired temperature until the reaction is complete. The reaction temperature is typically between 20 °C and the boiling point of acetonitrile, and the reaction time is typically less than 2 hours. The reaction mass is then neutralized with an inorganic base, such as sodium bicarbonate, sodium hydroxide and the like, or an organic base, such as sodium acetate. The desired product, a compound of Formula I, can be isolated by methods known to those skilled in the art, including crystallization, extraction and distillation. In step (2) the compound of Formula I wherein R3 is C1-C4 alkyl, an ester, can be hydrolyzed to a compound of Formula I wherein R3 is H, a carboxylic acid. The hydrolysis can be catalyzed by acids, metal ions, and by enzymes. Iodotrimethylsilane is noted as an example of an acid which can be used to catalyze the hydrolysis (see Advanced Organic Chemistry, Third Ed., Jerry March, John Wiley & Sons, Inc. New York, 1985, pp. 334-338 for a review of methods). Base-catalyzed hydrolytic methods are not recommended for the hydrolysis of compounds of Formula I and can result in decomposition. The carboxylic acid can be isolated by methods known to those skilled in the art, including crystallization, extraction and distillation.
In step (3) as illustrated in Scheme 3, a compound of Formula I is treated with an oxidizing agent optionally in the presence of acid. A compound of Formula I wherein R3 is C1-C4 alkyl (i.e. a preferred product of step (1)) is preferred as starting material for step (3). The oxidizing agent can be hydrogen peroxide, organic peroxides, potassium persulfate, sodium persulfate, ammonium persulfate, potassium monopersulfate (e.g., Oxone®) or potassium permanganate. To obtain complete conversion, at least one equivalent of oxidizing agent versus the compound of Formula I should be used, preferably from about one to two equivalents. This oxidation is typically carried out in the presence of a solvent. The solvent can be an ether, such as tetrahydrofuran,^- dioxane and the like, an organic ester, such as ethyl acetate, dimethyl carbonate and the like, or a polar aprotic organic such as NN-dimethylformamide, acetonitrile and the like. Acids suitable for use in the oxidation step include inorganic acids, such as sulfuric acid, phosphoric acid and the like, and organic acids, such as acetic acid, benzoic acid and the like. The acid, when used, should be used in greater than 0.1 equivalents versus the compound of Formula I. To obtain complete conversion, one to five equivalents of acid can be used. For the compounds of Formula I wherein X is CR2, the preferred oxidant is hydrogen peroxide and the oxidation is preferably carried out in the absence of acid. For the compounds of Formula I wherein X is N, the preferred oxidant is potassium persulfate and the oxidation is preferably carried out in the presence of sulfuric acid. The reaction can be carried out by mixing the compound of Formula I in the desired solvent and, if used, the acid. The oxidant can then be added at a convenient rate. The reaction temperature is typically varied from as low as about 0 °C up to the boiling point of the solvent in order to obtain a reasonable reaction time to complete the reaction, preferably less than 8 hours. The desired product, a compound of Formula II wherein R3 is C1-C4 alkyl, can be isolated by methods known to those skilled in the art, including crystallization, extraction and distillation.
Scheme 3
Figure imgf000013_0001
II In step (4) as illustrated in Scheme 4, a compound of Formula II wherein R3 is
C1-C4 alkyl, an ester, can be converted to a compound of Formula II wherein R3 is H, a carboxylic acid. Methods for converting esters to carboxylic acids are well known to those skilled in the art. Compounds of Formula II (R3 is C1-C4 alkyl) can be converted to compounds of Formula II (R3 is H) by numerous methods including nucleophilic cleavage under anhydrous conditions or hydrolytic methods involving the use of either acids or bases (see T. W. Greene and P. G. M. Wuts, Protective Groups in Organic Synthesis, 2nd ed., John Wiley & Sons, Inc., New York, 1991, pp. 224-269 for a review of methods). For the method of Scheme 4, base-catalyzed hydrolytic methods are preferred. Suitable bases include alkali metal (such as lithium, sodium or potassium hydroxides. For example, the ester can be dissolved in a mixture of water and an alcohol such as ethanol. Upon treatment with sodium hydroxide or potassium hydroxide, the ester is saponified to provide the sodium or potassium salt of the carboxylic acid. Acidification with a strong acid, such as hydrochloric acid or sulfuric acid, yields the carboxylic acid. The carboxylic acid can be isolated by methods known to those skilled in the art, including crystallization, extraction and distillation.
Scheme 4
Figure imgf000013_0002
II (R3 is CrC4 alkyl) π (R3is B)
It is noted that certain compounds of Formula I wherein R1 is halogen can be prepared from other compounds of Formula I wherein R1 is a different halogen or is a sulfonate group such as ?-toluenesulfonate, benzenesulfonate and methanesulfonate. For example, a compound of Formula I wherein R1 is Br can be prepared by treating with hydrogen bromide the corresponding compound of Formula I wherein R1 is Cl or ?-toluenesulfonate. The reaction is conducted in a suitable solvent such as dibromomethane, dichloromethane or acetonitrile. The reaction can be conducted at or near atmospheric pressure or above atmospheric pressure in a pressure vessel. When R1 in the starting compound of Formula I is a halogen such as Cl, the reaction is preferably conducted in such a way that the hydrogen halide generated from the reaction is removed by sparging or other suitable means. The reaction can be conducted between about 0 and 100 °C, most conveniently near ambient temperature (e.g., about 10 to 40 °C), and more preferably between about 20 and 30 °C. Addition of a Lewis acid catalyst (e.g., aluminum tribromide for preparing Formula I wherein R1 is Br) can facilitate the reaction. The product of Formula I is isolated by the usual methods known to those skilled in the art, including extraction, distillation and crystallization. Starting compounds of Formula I wherein R1 is halogen can be prepared as already described for Scheme 2. Starting compounds of Formula I wherein R1 is a sulfonate group can likewise be prepared from corresponding compounds of Formula 4 by standard methods such as treatment with a sulfonyl chloride (e.g., -toluenesulfonyl chloride) and base such as a tertiary amine (e.g., triethylamine) in a suitable solvent such as dichloromethane.
Without further elaboration, it is believed that one skilled in the art using the preceding description can utilize the present invention to its fullest extent. The following Examples are, therefore, to be construed as merely illustrative, and not limiting of the disclosure in any way whatsoever. The starting material for the following Examples may not have necessarily been prepared by a particular preparative run whose procedure is described in other Examples. Percentages are by weight except for chromatographic solvent mixtures or where otherwise indicated. Parts and percentages for chromatographic solvent mixtures are by volume unless otherwise indicated. *H NMR spectra are reported in ppm downfield from tetramethylsilane; "s" means singlet, "d" means doublet, "t" means triplet, "q" means quartet, "m" means multiplet, "dd" means doublet of doublets, "dt" means doublet of triplets, and "br s" means broad singlet.
EXAMPLE 1 Preparation of Ethyl 5-Oxo-2-phenyl-3-pyrazolidinecarboxylate (alternatively named Ethyl l-Phenyl-3-pyrazolidinone-5-carboxylate using Diethyl Maleate
To a 300-mL four-necked flask equipped with a mechanical stirrer, thermometer, addition funnel, reflux condenser, and nitrogen inlet was charged 80 mL of absolute ethanol, 80.0 mL (0.214 mol) of 21% sodium ethoxide in ethanol, and 20.0 mL (0.203 mol) of phenylhydrazine. The orange solution was treated dropwise with 40.0 mL (0.247 mol) of diethyl maleate over a period of about 18 minutes. The temperature of the reaction mass rose from 25 to 38 °C during the first 5 minutes of the addition. A water bath was used intermittently throughout the remainder of the addition to moderate the reaction temperature between 38-42 °C. The resulting orange-red solution was held under ambient conditions for 30 minutes. It was then added to a separatory funnel containing 20.0 mL (0.349 mol) of glacial acetic acid and 700 mL of water. The mixture was extracted with 250 mL of dichloromethane. The extract was dried over magnesium sulfate, filtered, and then concentrated on a rotary evaporator. The resulting yellow-black oil (52.7 g) was diluted with 100 mL of ether, whereupon crystallization of the product was rapid enough to cause mild boiling. The slurry was held for 2 hours under ambient conditions. It was then cooled to about 0 °C. The product was isolated via filtration, washed with 2 x 20 mL of cold ether, and then air- dried on the filter for about 15 minutes. The product consisted of 29.1 g (61%) of a highly crystalline, white powder. No significant impurities were observed by *H NMR. The filtrate was concentrated to 20.8 g of a brown oil. Analysis of the oil showed the presence of an additional 6.4 g (13%) of the desired product. Hence, the overall yield of the reaction was 74%. *H NMR (OMSO-d6) δ 10.25 (s, 1H), 7.32 (t, 2H), 7.15 (d, 2H), 7.00 (t, 1H), 4.61 (dd, 1H), 4.21 (q, 2H), 2.95 (dd, 1H), 2.45 (dd, 1H), 1.25 (t, 3H).
EXAMPLE 2 Preparation of Ethyl 5-Oxo-2-phenyl-3-pyrazolidinecarboxylate (alternatively named Ethyl l-Phenyl-3-pyrazolidinone-5-carboxylate') using Diethyl Fumarate To a 500-mL four-necked flask equipped with a mechanical stirrer, thermometer, addition funnel, reflux condenser, and nitrogen inlet was charged 150 mL of absolute ethanol, 15.0 g (0.212 mol) of 96% sodium ethoxide in ethanol, and 20.0 mL (0.203 mol) of phenylhydrazine. The orange mixture was treated dropwise with 40.0 mL (0.247 mol) of diethyl fumarate over a period of 75 minutes. The temperature of the reaction mass rose from 28 to a maximum of 37 °C during the addition, and the final temperature was 32 °C. The resulting somewhat cloudy, orange solution was held under ambient conditions for 135 minutes. The reaction mixture was then poured into a separatory funnel containing 15.0 mL (0.262 mol) of glacial acetic acid and 700 mL of water. The mixture was extracted with 150 mL of dichloromethane. The extract was dried over magnesium sulfate, filtered, and then concentrated on a rotary evaporator. The resulting brown-yellow oil (41.3 g) was diluted with 100 L of ether. Several seed crystals were added. The mixture was held for 30 minutes under ambient conditions. It was then cooled to about 0 °C. The product was isolated via filtration, washed with 2 x 10 mL of cold ether, and then air-dried on the filter for about 15 minutes. The product consisted of 9.5 g (20%) of a highly crystalline, white powder. No significant impurities were observed by 1H NMR. The filtrate was concentrated to 31 g of a brown oil. Analysis of the oil showed the presence of an additional 7.8 g (16%) of the desired product. Hence, the overall selectivity of the reaction was 36%. EXAMPLE 3
Preparation of Ethyl 5-Oxo-2-(2-pyridinylV3-pyrazolidinecarboxylate (alternatively named Ethyl l-(2-PyridinylV3-pyrazolidinone-5-carboxylate To a 200-mL four-necked flask equipped with a mechanical stirrer, thermometer, addition funnel, reflux condenser, and nitrogen inlet was charged 18 mL of absolute ethanol, 18.0 mL (0.0482 mol) of 21% sodium ethoxide in ethanol, and 5.00 g
(0.0458 mol) of 2-hydrazinopyridine. The solution was heated to 34 °C. It was then treated dropwise with 9.0 mL (0.056 mol) of diethyl maleate over a period of 20 minutes. The temperature of the reaction mass rose to a maximum of 48 °C during the addition. The resulting orange solution was held under ambient conditions for 85 minutes. It was then poured into a separatory funnel containing 4.0 mL (0.070 mol) of glacial acetic acid and 300 mL of water. The mixture was extracted with 2 x 50 mL of dichloromethane. The extract was dried over magnesium sulfate, filtered, then concentrated on a rotary evaporator. The resulting orange oil (10.7 g) was subjected to flash chromatography on a column of 200 g of silica gel using 4% methanol in chloroform as the eluant (50 mL fractions). Fractions 9-12 were evaporated on a rotary evaporator to give 3.00 g of an orange oil which contained 77% the desired product, 15% chloroform and 8% diethyl 2-ethoxybutanedioate. Fractions 13-17 were concentrated to give 4.75 g of an orange-yellow oil which contained 94% the desired product and 6% chloroform. Fractions 18-21 were concentrated to give 1.51 g of an olive-green oil which contained 80% the desired product and 20% chloroform. Overall yield of the desired product was 8.0 g (74%).
*H NMR (OMSO-d6) δ 10.68 (br, 1H), 8.22 (d, 1H), 7.70 (t, 1H), 6.90 (m, 2H), 5.33 (dd, 1H), 4.17 (q, 2H), 3.05 (dd, 1H), 2.48 (dd, 1H), 1.21 (t, 3H).
EXAMPLE 4 Preparation of Ethyl 2-(2-ChlorophenylV5-Oxo-3-pyrazolidinecarboxylate
(alternatively named Ethyl l-(2-ChlorophenylV3-pyrazolidinone-5-carboxylate) To a 250-mL four-necked flask equipped with a mechanical stirrer, thermometer, addition funnel, reflux condenser, and nitrogen inlet was charged 40 mL of absolute ethanol, 40.0 mL (0.107 mol) of 21% sodium ethoxide in ethanol, and 14.5 g (0.102 mol) of (2-chlorophenyl)hydrazine. The purple solution was heated to 35 °C. It was then treated dropwise with 19.0 mL (0.117 mol) of diethyl maleate over a period of about 23 minutes. A water/ice bath was used intermittently throughout the addition to moderate the reaction temperature between 35-40 °C. The reaction mixture was held at this temperature for 30 minutes. It was then added to a separatory funnel containing 10.0 mL (0.175 mol) of glacial acetic acid and 400 mL of water. The mixture was extracted with 2 x 100 mL of dichloromethane. The extract was dried over magnesium sulfate, filtered, and then concentrated on a rotary evaporator. The resulting dark brown oil (31.0 g) crystallized upon standing. The material was suspended in 100 mL of ether and the slurry was stirred for about 1 hour. The product was isolated by filtration, washed with 50 mL of ether, and then dried overnight at room temperature in vacuo. The product consisted of 12.5 g (46%) of a crystalline powder. No significant impurities were observed by *H NMR. The filtrate was concentrated to 16.3 g of a brown oil. Analysis of the oil showed the presence of an additional 6.7 g (25%) of the desired product. Hence, the overall selectivity of the reaction was 71%. !H NMR (DMSO-i6) δ 10.14 (s, IH), 7.47 (6, IH), 7.32 (m, 2H), 7.14 (t, IH), 4.39 (d, IH), 4.19 (q, 2H), 3.07 (dd, IH), 2.29 (d, IH), 1.22 (t, 3H). EXAMPLE 5
Preparation of Ethyl 2-(3-Chloro-2-pyridinyl)-5-oxo-3-pyrazolidinecarboχylate (alternatively named Ethyl l-(3-Chloro-2-pyridinyl)-3-pwazolidinone-5-carboxylate') To a 2-L four-necked flask equipped with a mechanical stirrer, thermometer, addition funnel, reflux condenser, and nitrogen inlet was charged 250 mL of absolute ethanol and 190 mL (0.504 mol) of 21% sodium ethoxide in ethanol. The mixture was heated to reflux at about 83°C. It was then treated with 68.0 g (0.474 mol) of 3-chloro- 2(lH)-pyridinone hydrazone (alternatively named 3-chloro-2-hydrazinopyridine). The mixture was re-heated to reflux over a period of 5 minutes. The yellow slurry was then treated dropwise with 88.0 mL (0.544 mol) of diethyl maleate over a period of 5 minutes. The boil-up rate increased markedly during the addition. By the end of the addition all of the starting material had dissolved. The resulting orange-red solution was held at reflux for 10 minutes. After being cooled to 65 °C, the reaction mixture was treated with 50.0 mL (0.873 mol) of glacial acetic acid. A precipitate formed. The mixture was diluted with 650 mL of water, whereupon the precipitate dissolved. The orange solution was cooled in an ice bath. Product began to precipitate at 28 °C. The slurry was held at about 2 °C for 2 hours. The product was isolated via filtration, washed with 3 x 50 mL of 40% aqueous ethanol, and then air-dried on the filter for about 1 hour. The product consisted of 70.3 g (55%) of a highly crystalline, light orange powder. No significant impurities were observed by *Η NMR. IH NMR (DMSO- 6) δ 10.18 (s, IH), 8.27 (d, IH), 7.92 (d, IH), 7.20 (dd, IH), 4.84 (d, IH), 4.20 (q, 2H), 2.91 (dd, IH), 2.35 (d, IH), 1.22 (t, 3H). EXAMPLE 6
Preparation of Ethyl 3-Chloro-4,5-dihvdro-l-phenyl-lH-pyrazole-5-carboxylate
(alternatively named Ethyl l-Phenyl-3-chloro-2-pyrazoline-5-carboxylate')
EXAMPLE 6A Using Phosphorus Oxychloride in Acetonitrile in Absence of Base
To a 500-mL four-necked flask equipped with a mechanical stirrer, thermometer, addition funnel, reflux condenser, and nitrogen inlet was charged 150 mL of acetonitrile, 25.0 g (0.107 mol) of ethyl 5-oxo-2-phenyl-3-pyrazolidinecarboxylate, and 11.0 mL (0.118 mol) of phosphorus oxychloride. The light-yellow solution was heated to 78-80°C for a period of 45 minutes. After being cooled to 54 °C, the resulting, deep blue-green mixture was treated dropwise with a solution of 25.0 g (0.298 mol) of sodium bicarbonate in 250 mL of water. An orange oil separated during the 15-minute addition. After being stirred for about 5 minutes, the pΗ of the mixture was about 1. An additional 10.0 g (0.119 mol) of sodium bicarbonate were added as a solid over a period of about 3 minutes, resulting in a final pΗ of about 6. The mixture was diluted with 400 mL of water, whereupon the orange oil crystallized. The crystalline mass was broken up with a spatula. The product was isolated via filtration, washed with 4 x 100 mL of water, and then air-dried on the filter for about 2 hours. The product consisted of 24.5 g (91%) of a fluffy, crystalline, light yellow powder. No significant impurities were observed by *Η NMR.
*H NMR (DMSO- 6) δ 2.74 (t, 2H), 6.88 (d, 2H), 6.83 (t, IH), 5.02 (dd, IH), 4.14 (q, 2H), 3.68 (dd, IH), 3.34 (d, IH), 1.16 (t, 3H).
EXAMPLE 6B Using Phosphorus Oxychloride in Chloroform in Absence of Base To a 100-mL two-necked flask equipped with a magnetic stirrer, thermometer, reflux condenser, and nitrogen inlet was charged 50 mL of chloroform, 5.00 g (0.0213 mol) of ethyl 5-oxo-2-phenyl-3-pyrazolidinecarboxylate, 2.10 mL (0.0225 mol) of phosphorus oxychloride, and 2 drops of N,N-dimethylformamide. The red-orange solution was heated to reflux at 64 °C over a period of 60 minutes. The resulting mixture, a yellow-brown liquid and deep green, gummy solids, was held at reflux for 140 minutes. It was then diluted with 100 mL of dichloromethane and transferred to a separatory funnel. The solution was washed twice with 50 mL of 6% aqueous sodium bicarbonate. The organic layer was dried over magnesium sulfate, filtered, then concentrated on a rotary evaporator. The crude product consisted of 1.50 g of an orange oil, which crystallized upon standing. Analysis of the crude product by *H ΝMR showed it to be about 65% the desired product and 35% starting material. The yield of the desired product was therefore about 18%. EXAMPLE 6C Using Phosphorus Oxychloride in Chloroform in Presence of Triethylamine To a 100-mL two-necked flask equipped with a magnetic stirrer, thermometer, reflux condenser, and nitrogen inlet was charged 20 mL of chloroform, 2.00 g (0.00854 mol) of ethyl 5-oxo-2-phenyl-3-pyrazolidinecarboxylate, 1.30 mL
(0.00933 mol) of triethylamine, 2 drops of N,N-dimethylformamide, and 0.0850 mL (0.00912 mol) of phosphorus oxychloride. An immediate and vigorous reaction took place when the phosphorus oxychloride was added. The mixture was heated to reflux at 64 °C for 25 minutes. The resulting yellow solution was diluted with 50 mL of water and then treated with 3.0 g (0.036 mol) of solid sodium bicarbonate. The two-phase mixture was stirred for 50 minutes under ambient conditions. It was then transferred to a separatory funnel and diluted with 100 mL of dichloromethane. The organic layer was separated and then washed in turn with 50 mL of 5.5% aqueous hydrochloric acid and 50 mL of 3.8%o aqueous sodium carbonate. The washed, organic layer was dried over magnesium sulfate, filtered, and then concentrated on a rotary evaporator. The crude product consisted of 1.90 g of a yellow oil, which crystallized upon standing. Analysis of the crude product by *H ΝMR showed it to be about 94% the desired product, 2% starting material and 2% an unidentified impurity. The yield of the desired product was therefore about 83%. EXAMPLE 7
Preparation of Emyl 3-CMoro-4.5-dihydro-l-(2-pyridinylVlH-pyrazole-5-carboxylate (alternatively named Ethyl l-(2-PyridinylV3-chloro-2-pyrazoline-5-carboχylate To a 250-mL four-necked flask equipped with a mechanical stirrer, thermometer, reflux condenser, and nitrogen inlet was charged 50 mL of acetonitrile, 4.70 g (0.0188 mol) of 5-oxo-2-(2-pyridinyl)-3-pyrazolidinecarboxylate, and 2.00 mL
(0.0215 mol) of phosphorus oxychloride. The mixture self-heated from 22 to 33 °C. After being held for 60 minutes under ambient conditions, a sample was taken. Analysis by 1H ΝMR showed a 70% conversion of the starting material to the desired product. The mixture was heated to reflux at 85 °C for 80 minutes. The heating mantle was removed. The resulting yellow-orange solution was diluted with 50 mL of water. It was then treated dropwise with 3.9 g (0.049 mol) of 50% aqueous caustic, resulting in a pΗ of about 7.5. After being stirred for 20 minutes, the pΗ of the mixture had dropped to about 3. An additional 3.0 g (0.038 mol) of 50% aqueous caustic were added, whereupon the pΗ increased to about 9.0. A small amount of concentrated hydrochloric acid was added to adjust the pΗ to about 7.5. The neutralized mixture was transferred to a separatory funnel containing 300 mL of water and 100 mL of dichloromethane. The organic layer was separated, dried over magnesium sulfate, filtered, and then concentrated on a rotary evaporator. The product consisted of 4.10 g (84%) of a pale yellow oil, which crystallized upon standing. The only appreciable impurities observed by *H NMR were 1.0% starting material and 0.6% acetonitrile. iH NMR (OMSO-d6) δ 8.18 (d, IH), 8.63 (t, IH), 8.13 (d, IH), 7.80 (t, IH), 5.08 (dd, IH), 4.11 (m, 2H), 3.65 (dd, IH), 3.27 (dd, IH), 1.14 (t, 3H). EXAMPLE 8
Preparation of Ethyl 3-Chloro-l-(3-chloro-2-pyridinylV4.5-dihvdro-lH-pyrazole-5- carboxylate (alternatively named Ethyl l-(3-Chloro-2-pyridinylV3-chloro-2-pyrazoline-
5-carboxylate To a 2-L four-necked flask equipped with a mechanical stirrer, thermometer, reflux condenser, and nitrogen inlet was charged 1000 mL of acetonitrile, 91.0 g (0.337 mol) of ethyl 2-(3-chloro-2-pyridinyl)-5-oxo-3-pyrazolidinecarboxylate, and 35.0 mL (0.375 mol) of phosphorus oxychloride. Upon adding the phosphorus oxychloride, the mixture self-heated from 22 to 25 °C and a precipitate formed. The light-yellow slurry was heated to reflux at 83 °C over a period of 35 minutes, whereupon the precipitate dissolved. The resulting orange solution was held at reflux for
45 minutes, whereupon it had become black-green. The reflux condenser was replaced with a distillation head, and 650 mL of solvent was removed by distillation. A second 2-L four-necked flask equipped with a mechanical stirrer was charged with 130 g (1.55 mol) of sodium bicarbonate and 400 mL of water. The concentrated reaction mixture was added to the sodium bicarbonate slurry over a period of 15 minutes. The resulting, two-phase mixture was stirred vigorously for 20 minutes, at which time gas evolution had ceased. The mixture was diluted with 250 mL of dichloromethane and then was stirred for 50 minutes. The mixture was treated with 11 g of Celite 545® diatomaceous earth and then filtered to remove a black, tarry substance that inhibited phase separation. Since the filtrate was slow to separate into distinct phases, it was diluted with 200 mL of dichloromethane and 200 mL of water and treated with another 15 g of Celite 545®. The mixture was filtered, and the filtrate was transferred to a separatory funnel. The heavier, deep green organic layer was separated. A 50 mL rag layer was refiltered and then added to the organic layer. The organic solution (800 mL) was treated with 30 g of magnesium sulfate and 12 g of silica gel and the slurry was stirred magnetically for 30 minutes. The slurry was filtered to remove the magnesium sulfate and silica gel, which had become deep blue-green. The filter cake was washed with 100 mL of dichloromethane. The filtrate was concentrated on a rotary evaporator. The product consisted of 92.0 g (93%) of a dark amber oil. The only appreciable impurities observed by lR NMR were 1% starting material and 0.7% acetonitrile.
*Η NMR (OMSO-d6) δ 8.12 (d, 1Η), 7.84 (d, 1Η), 7.00 (dd, 1Η), 5.25 (dd, 1Η), 4.11 (q, 2Η), 3.58 (dd, IH), 3.26 (dd, IH), 1.15 (t, 3H). EXAMPLE 9
Preparation of Ethyl 3-Bromo- 1 -(3-chloro-2-pyridinylV4.5-dihydro- lH-pyrazole-5- carboxylate (alternatively named Ethyl l-(3-Chloro-2-pyridinyl')-3-bromo-2-pyrazoline-
5-carboxylate) EXAMPLE 9A
Using Phosphorus Oxybromide To a 1-L four-necked flask equipped with a mechanical stirrer, thermometer, reflux condenser, and nitrogen inlet was charged 400 mL of acetonitrile, 50.0 g (0.185 mol) of ethyl 2-(3-chloro-2-pyridinyl)-5-oxo-3-pyrazolidinecarboxylate, and 34.0 g (0.119 mol) of phosphorus oxybromide. The orange slurry was heated to reflux at 83 °C over a period of 20 minutes. The resulting turbid, orange solution was held at reflux for 75 minutes, at which time a dense, tan, crystalline precipitate had formed. The reflux condenser was replaced with a distillation head, and 300 mL of a cloudy, colorless distillate was collected. A second 1-L four-necked flask equipped with a mechanical stirrer was charged with 45 g (0.54 mol) of sodium bicarbonate and 200 mL of water. The concentrated reaction mixture was added to the sodium bicarbonate slurry over a period of 5 minutes. The resulting, two-phase mixture was stirred vigorously for 5 minutes, at which time gas evolution had ceased. The mixture was diluted with 200 mL of dichloromethane, and then was stirred for 75 minutes. The mixture was treated with 5 g of Celite 545®, and then filtered to remove a brown, tarry substance. The filtrate was transferred to a separatory funnel. The brown organic layer (400 mL) was separated, and then was treated with 15 g of magnesium sulfate and 2.0 g of Darco G60 activated charcoal. The resulting slurry was stirred magnetically for 15 minutes and then filtered to remove the magnesium sulfate and charcoal. The green filtrate was treated with 3 g of silica gel and stirred for several minutes. The deep blue-green silica gel was removed by filtration and the filtrate was concentrated on a rotary evaporator. The product consisted of 58.6 g (95%) of a light amber oil, which crystallized upon standing . The only appreciable impurity observed by *H NMR was 0.3% acetonitrile. IH NMR (DMSO- 6) δ 8.12 (d, IH), 7.84 (d, IH), 6.99 (dd, IH), 5.20 (dd, IH), 4.11 (q, 2H), 3.60 (dd, IH), 3.29 (dd, IH), 1.15 (t, 3H).
EXAMPLE 9B Using Phosphorus Pentabromide To a 1-L four-necked flask equipped with a mechanical stirrer, thermometer, reflux condenser, and nitrogen inlet was charged 330 mL of acetonitrile, 52.0 g (0.193 mol) of ethyl 2-(3-chloro-2-pyridinyl)-5-oxo-3-pyrazolidinecarboxylate, and 41.0 g (0.0952 mol) of phosphorus pentabromide. The orange slurry was heated to reflux at 84 °C over a period of 20 minutes. The resulting brick-red mixture was held at reflux for 90 minutes, at which time a dense, tan, crystalline precipitate had formed. The reflux condenser was replaced with a distillation head, and 220 mL of a cloudy, colorless distillate was collected. A second 1-L four-necked flask equipped with a mechanical stirrer was charged with 40 g (0.48 mol) of sodium bicarbonate and 200 mL of water. The concentrated reaction mixture was added to the sodium bicarbonate slurry over a period of 5 minutes. The resulting, two-phase mixture was stirred vigorously for 10 minutes, at which time gas evolution had ceased. The mixture was diluted with 200 mL of dichloromethane, and then was stirred for 10 minutes. The mixture was treated with 5 g of Celite 545®, and then filtered to remove a purple, tarry substance. The filter cake was washed with 50 mL of dichloromethane. The filtrate was transferred to a separatory funnel. The purple-red organic layer (400 mL) was separated, then was treated with 15 g of magnesium sulfate and 2.2 g of Darco G60 activated charcoal. The slurry was stirred magnetically for 40 minutes. The slurry was filtered to remove the magnesium sulfate and charcoal. The filtrate was concentrated on a rotary evaporator. The product consisted of 61.2 g (95%) of a dark amber oil, which crystallized upon standing . The only appreciable impurity observed by *H NMR was 0.7% acetonitrile. *H NMR (OMSO-d6) δ 8.12 (d, IH), 7.84 (d, IH), 6.99 (dd, IH), 5.20 (dd, IH), 4.11 (q, 2H), 3.60 (dd, IH), 3.29 (dd, IH), 1.15 (t, 3H).
EXAMPLE 10 Preparation of Ethyl 3-Chloro-l-phenyl-lH-pyrazole-5-carboxylate (alternatively named
Ethyl 1 -Phenyl-3 -chloropyrazole-5 -carboxylate
EXAMPLE 10A Using Hydrogen Peroxide To a 100-mL two-necked flask equipped with a magnetic stirrer, thermometer, reflux condenser, and nitrogen inlet was charged 1.50 g (0.00594 mol) of ethyl 3-chloro- 4,5-dihydro-l-phenyl-lH-pyrazole-5-carboxylate and 15 mL of acetonitrile. The mixture was heated to 80 °C. It was then treated with 0.700 mL (0.00685 mol) of 30% aqueous hydrogen peroxide. The mixture was held at 78-80 °C for 5 hours. The reaction mass was then added to 70 mL of water. The precipitated product was isolated via filtration, and then washed with 15 mL of water. The wet cake was dissolved in 100 mL of dichloromethane. The solution was dried over magnesium sulfate, filtered, and then concentrated on a rotary evaporator. The product consisted of 1.24 g (about 79%) of an orange oil, which crystallized upon standing. The product was about 95% pure based upon lU NMR. *Η NMR (OMSO-d6) δ 7.50 (s, 5H), 7.20 (s, IH), 7.92 (d, IH), 4.18 (q, 2H), 1.14 (t, 3H). EXAMPLE 10B Using Manganese Dioxide To a 100-mL two-necked flask equipped with a magnetic stirrer, thermometer, reflux condenser, and nitrogen inlet was charged 3.00 g (0.0119 mol) of ethyl 3-chloro- 4,5-dihydro-l -phenyl- lH-pyrazole-5-carboxylate, 25 mL of chloroform, and 2.50 g (0.0245 mol) of activated manganese dioxide. The mixture was heated to reflux at 62 °C for a period of 1 hour. Analysis of a sample of the reaction mass by *Η NMR showed about 6% conversion of the starting material to mainly the desired ethyl l-phenyl-3-chloropyrazole-5-carboxylate. The mixture was held for another 5 hours at reflux. Analysis of a second sample showed about 9% conversion.
EXAMPLE 10C Using Sodium Hvpochlorite To a 100-mL two-necked flask equipped with a magnetic stirrer, thermometer, reflux condenser, and nitrogen inlet was charged 1.00 g (0.00396 mol) of ethyl 3-chloro- 4,5-dihydro- 1 -phenyl- lH-pyrazole-5-carboxylate, 10 mL of acetonitrile, 0.55 g
(0.0040 mol) of sodium dihydrogen phosphate monohydrate, and 5.65 g (0.00398 mol) of 5.25% aqueous sodium hypochlorite. The orange solution was held under ambient conditions for 85 minutes. Analysis of a sample of the reaction mass by *Η NMR showed about 71% conversion of the starting material to two main products. The solution was heated to 60 °C for 60 minutes. Analysis of a second sample showed no increase in conversion from the first sample. The reaction mixture was treated with an additional 3.00 g (0.00211 mol) of 5.25% aqueous sodium hypochlorite. After being held for 60 minutes at 60 °C, the reaction mass was added to 100 mL of water. The mixture was extracted with 100 mL of dichloromethane. The extract was separated, dried over magnesium sulfate, filtered, and then concentrated on a rotary evaporator. The crude product consisted of 0.92 g of a red-orange oil. *H NMR showed the crude product to consist mainly of ethyl 3-chloro-l-(4-chlorophenyl)-4,5-dihydro- lH-pyrazole-5-carboxylate (alternatively named ethyl l-(4-chlorophenyl)-3-chloro-2- pyrazoline-5-carboxylate) and ethyl 3-chloro-l-(2-chlorophenyl)-4,5-dihydro- lH-pyrazole-5-carboxylate (alternatively named ethyl l-(2-chlorophenyl)-3-chloro-2- pyrazoline-5-carboxylate) in a ratio of 2: 1. The isomer could be separated by chromatography on silica gel using 10% ethyl acetate in hexanes as the eluant. XΗ NMR for ethyl 3-chloro-l-(4-chlorophenyl)-4,5-dihydro-lH-pyrazole-5-carboxylate (DMSO- 6) δ 7.28 (d, 2Η), 6.89 (d, 2H), 5.08 (dd, IH), 4.14 (q, 2H), 3.71 (dd, IH), 3.37 (dd, IH), 1.16 (t, 3H). *H NMR for ethyl 3-chloro-l-(2-chlorophenyl)-
4,5-dihydro-lH-pyrazole-5-carboxylate (OMSO-d6) δ 7.41 (d, IH), 7.30 (m, 2H), 7.14 (m, IH), 5.22 (dd, IH), 3.90 (q, 2H), 3.68 (dd, IH), 3.38 (dd, IH), 0.91 (t, 3H). EXAMPLE 11 Preparation of Ethyl 3 -Chloro- 1 -(3 -chloro-2-pyridinyl)- lH-pyrazole-5-carboxylate (alternatively named Ethyl l-(3-Chloro-2-pyridinylV3-cMoropyrazole-5-carboχylate) To a 2-L four-necked flask equipped with a mechanical stirrer, thermometer, reflux condenser, and nitrogen inlet was charged 99.5 g (0.328 mol) of 95% pure ethyl 3-chloro-l-(3-chloro-2-pyridinyl)-4,5-dihydro-lH-pyrazole-5-carboxylate, 1000 mL of acetonitrile and 35.0 mL (0.661 mol) of 98% sulfuric acid. The mixture self-heated from 22 to 35 °C upon adding the sulfuric acid. After being stirred for several minutes, the mixture was treated with 140 g (0.518 mol) of potassium persulfate. The slurry was heated to reflux at 84 °C for 4.5 hours. The resulting orange slurry was filtered while still warm (50-65 °C) to remove a fine, white precipitate. The filter cake was washed with 50 mL of acetonitrile. The filtrate was concentrated to about 500 mL on a rotary evaporator. A second 2-L four-necked flask equipped with a mechanical stirrer was charged with 1250 mL of water. The concentrated reaction mass was added to the water over a period of about 5 minutes. The product was isolated via filtration, washed with 3 x 125 mL of 25% aqueous acetonitrile, washed once with 100 mL of water, and then dried overnight in vacuo at room temperature. The product consisted of 79.3 g (82%) of a crystalline, orange powder. The only appreciable impurities observed by *Η NMR were about 1.9% water and 0.6% acetonitrile. IH NMR (OMSO-d6) δ 8.59 (d, IH), 8.38 (d, IH), 7.71 (dd, IH), 7.31 (s, IH), 4.16 (q, 2H), 1.09 (t, 3H).
EXAMPLE 12
Preparation of Ethyl 3 -Bromo- 1 -(3 -chloro-2-pyridinylV 1 H-pyrazole-5-carboxylate
(alternatively named Ethyl l-(3-CMoro-2-pyridmylV3-bromopyrazole-5-carboxylate) To a 1 -L four-necked flask equipped with a mechanical stirrer, thermometer, reflux condenser, and nitrogen inlet was charged 40.2 g (0.121 mol) of ethyl 3-bromo- l-(3-chloro-2-pyridinyl)-4,5-dihydro-lH-pyrazole-5-carboxylate, 300 mL of acetonitrile and 13.0 mL (0.245 mol) of 98% sulfuric acid. The mixture self-heated from 22 to 36 °C upon adding the sulfuric acid. After being stirred for several minutes, the mixture was treated with 48.0 g (0.178 mol) of potassium persulfate. The slurry was heated to reflux at 84 °C for 2 hours. The resulting orange slurry was filtered while still warm (50-65 °C) to remove a white precipitate. The filter cake was washed with 2 x 50 mL of acetonitrile. The filtrate was concentrated to about 200 mL on a rotary evaporator. A second 1-L four-necked flask equipped with a mechanical stirrer was charged with 400 mL of water. The concentrated reaction mass was added to the water over a period of about 5 minutes. The product was isolated via filtration, washed with 100 mL of 20% aqueous acetonitrile, washed with 75 mL of water, and then air-dried on the filter for 1 hour. The product consisted of 36.6 g (90%) of a crystalline, orange powder. The only appreciable impurities observed by *H NMR were about 1% of an unknown and 0.5% acetonitrile.
*H NMR (OMSO-d6) δ 8.59 (d, IH), 8.39 (d, IH), 7.72 (dd, IH), 7.35 (s, IH), 4.16 (q, 2H), 1.09 (t, 3H). EXAMPLE 13
Preparation of 3-Chloro-l-(3-chloro-2-pyridinylVlH-pyrazole-5-carboxylic acid (alternatively named l-(3-Chloro-2-pyridinylV3-chloropyrazole-5-carboxylic acid) To a 1-L four-necked flask equipped with a mechanical stirrer, thermometer, and nitrogen inlet was charged 79.3 g (0.270 mol) of 97.5% ethyl 3-chloro-l-(3-chloro- 2-pyridinyl)- lH-pyrazole-5-carboxylate, 260 mL of methanol, 140 mL of water, and 13.0 g (0.325 mol) of sodium hydroxide pellets. The mixture self-heated from 22 to 35 °C and the starting material began to dissolve upon adding the sodium hydroxide. After being stirred for 45 minutes under ambient conditions, all of the starting material had dissolved. The resulting deep orange-brown solution was concentrated to about 250 mL on a rotary evaporator. The concentrated reaction mixture was then diluted with 400 mL of water. The aqueous solution was extracted with 200 mL of ether. The aqueous layer was transferred to a 1-L Erlenmeyer flask equipped with a magnetic stirrer. The solution was then treated dropwise with 36.0 g (0.355 mol) of concentrated hydrochloric acid over a period of about 10 minutes. The product was isolated via filtration, reslurried with 2 x 200 mL of water, cover washed once with 100 mL of water, and then air-dried on the filter for 1.5 hours. The product consisted of 58.1 g (83%) of a crystalline, light brown powder. About 0.7% ether was the only appreciable impurity observed by *H NMR. *H NMR (OMSO-d6) δ 13.95 (brs, IH), 8.56 (d, IH), 8.25 (d, IH), 7.68 (dd, IH), 7.20 (s, IH).
EXAMPLE 14 Preparation of 3-Bromo- 1 -(3-chloro-2-pyridinyl - lH-pyrazole-5-carboxylic acid (alternatively named l-(3-Chloro-2-pyridinyl -3-bromopyrazole-5-carboxylic acid) To a 300-mL four-necked flask equipped with a mechanical stirrer, thermometer, and nitrogen inlet was charged 25.0 g (0.0756 mol) of 98.5% pure ethyl 3-bromo- l-(3-chloro-2-pyridinyl)-lH-pyrazole-5-carboxylate, 75 mL of methanol, 50 mL of water, and 3.30 g (0.0825 mol) of sodium hydroxide pellets. The mixture self-heated from 29 to 34 °C and the starting material began to dissolve upon adding the sodium hydroxide. After being stirred for 90 minutes under ambient conditions, all of the starting material had dissolved. The resulting dark orange solution was concentrated to about 90 mL on a rotary evaporator. The concentrated reaction mixture was then diluted with 160 mL of water. The aqueous solution was extracted with 100 mL of ether. The aqueous layer was transferred to a 500-mL Erlenmeyer flask equipped with a magnetic stirrer. The solution was then treated dropwise with 8.50 g (0.0839 mol) of concentrated hydrochloric acid over a period of about 10 minutes. The product was isolated via filtration, reslurried with 2 x 40 mL of water, cover washed once with 25 mL of water, and then air-dried on the filter for 2 hours. The product consisted of 20.9g (91%) of a crystalline, tan powder. The only appreciable impurities observed by *H NMR were about 0.8% of an unknown and 0.7% ether.
*H NMR (DMSO-ύ?6) δ 13.95 (br s, IH), 8.56 (d, IH), 8.25 (d, IH), 7.68 (dd, IH), 7.25 (s, IH). EXAMPLE 15
Preparation of ethyl 3-bromo-l-(3-chloro-2-pyridinyl)-4.5-dihvdro-lH-pyrazole- 5-carboxylate from ethyl 3-chloro-l-(3-chloro-2-pyridinyl)-4.5-dihvdro-lH-pyrazole-
5-carboxylate using hydrogen bromide Hydrogen bromide was passed through a solution of ethyl 3-chloro-l-(3-chloro- 2-pyridinyl)-4,5-dihydro-lH-pyrazole-5-carboxylate (8.45 g, 29.3 mmol) in dibromomethane (85 mL). After 90 minutes the gas flow was terminated, and the reaction mixture was washed with aqueous sodium bicarbonate solution (100 mL). The organic phase was dried and evaporated under reduced pressure to give the title product as an oil (9.7 g, 99% yield), which crystallized on standing. *H NMR (CDC13) δ 8.07 (dd, J= 1.6, 4.8 Hz, IH), 7.65 (dd, J= 1.6, 7.8 Hz, IH), 6.85 (dd, J= 4.7, 7.7 Hz, IH), 5.25 (X of ABX, IH, J= 9.3, 11.9 Hz), 4.18 (q, 2H), 3.44 (1/2 of AB in ABX pattern, J= 11.7, 17.3 Hz, IH), 3.24 (1/2 of AB in ABX pattern, J= 9.3, 17.3 Hz, IH), 1.19 (t, 3H).
The following Example 16 illustrates the preparation of ethyl l-(3-chloro-2- pyridinyl)-4,5-dihydro-3-[[(4-methylphenyl)sulfonyl]oxy]-lH-pyrazole-5-carboxylate, which can be used to prepare ethyl 3-bromo-l-(3-chloro-2-pyridinyl)-4,5-dihydro- lH-pyrazole-5-carboxylate by procedures similar to that described in Example 15.
EXAMPLE 16 Preparation of ethyl l-(3-chloro-2-pyridinyl')-4.5-dihvdro- 3-rr(4-methylphenyl)sulfonylloxy1-lH-pyrazole-5-carboxylate
Triethylamine (3.75 g, 37.1 mmol) was added dropwise to a mixture of ethyl 2-(3-chloro-2-pyridinyl)-5-oxo-3-pyrazolidinecarboxylate (10.0 g, 37.1 mmol) and /7-toluenesulfonyl chloride (7.07 g, 37.1 mmol) in dichloromethane (100 mL) at 0 °C. Further portions ofp-toluenesulfonyl chloride (0.35 g, 1.83 mmol) and triethylamine (0.19 g, 1.88 mmol) were added. The reaction mixture was then allowed to warm to room temperature and was stirred overnight. The mixture was then diluted with dichloromethane (200 mL) and washed with water (3 x 70 mL). The organic phase was dried and evaporated to leave the title product as an oil (13.7 g, 87% yield), which slowly formed crystals. Product recrystallized from ethyl acetate/hexanes melted at
99.5-100 °C.
IR (nujol): 1740, 1638, 1576, 1446, 1343, 1296, 1228, 1191, 1178, 1084, 1027, 948, 969, 868, 845 cm-1. lU NMR (CDC13) δ 8.01 (dd, J= 1.4, 4.6 Hz, IH), 7.95 (d, J= 8.4 Hz, 2H), 7.56 (dd, J= 1.6, 7.8 Hz, IH), 7.36 (d, J= 8.4 Hz, 2H), 6.79 (dd, J= 4.6, 7.7 Hz, IH), 5.72 (X of ABX, J= 9, 11.8 Hz, IH), 4.16 (q, 2H), 3.33 (1/2 of AB in ABX pattern, J= 17.5, 11.8 Hz, IH), 3.12 (1/2 of AB in ABX pattern, J= 17.3, 9 Hz, IH), 2.45 (s, 3H), 1.19 (t, 3H).
By the procedures described herein together with methods known in the art, the following compounds of Tables 1 to 3 can be prepared. The following abbreviations are used in the Tables: t is tertiary, s is secondary, n is normal, i is iso, Me is methyl,
Et is ethyl, Pr is propyl, t-Pr is isopropyl and t-Bu is tertiary butyl.
Figure imgf000027_0001
R s Cl
X is N X is CH X is CC1 X is CBr
R2 R3 R2 R3 R2 R3 R2 R3 R2 R3 R2 R3 R2 R3 R2 R3
Cl H Br H Cl H Br H Cl H Br H Cl H Br H
Cl Me Br Me Cl Me Br Me Cl Me Br Me Cl Me Br Me
Cl Et Br Et Cl Et Br Et Cl Et Br Et Cl Et Br Et
Cl n-Pr Br n-Pr Cl n-Pr Br n-Pr Cl n-Pr Br n-Pr Cl n-Pr Br n-Pr
Cl z'-Pr Br z'-Pr Cl z'-Pr Br z'-Pr Cl z'-Pr Br z'-Pr Cl z'-Pr Br z'-Pr
Cl n-Bu Br n-Bu Cl n-Bu Br n-Bu Cl n-Bu Br n-Bu Cl n-Bu Br n-Bu
Cl z'-Bu Br z'-Bu Cl z'-Bu Br z'-Bu Cl z'-Bu Br z'-Bu Cl z'-Bu Br z'-Bu
Cl s-Bu Br s-Bu Cl s-Bu Br ■Ϊ-BU Cl s-Bxx Br s-Bu Cl 5-Bu Br 5-Bu
Cl f-Bu Br t-Bu Cl t-Bu Br t-Bu Cl t-Bu Br t-Bu Cl t-Bu Br t-Bu R1 .! s Br
X is N X is L ΠL X is CC1 X is CBr
R2 R3 R2 R3 R2 R3 R2 R3 R2 R3 R2 R3 R2 R3 R2 R3
Cl H Br H Cl H Br H Cl H Br H Cl H Br H
Cl Me Br Me Cl Me Br Me Cl Me Br Me Cl Me Br Me
Cl Et Br Et Cl Et Br Et Cl Et Br Et Cl Et Br Et
Cl n-Pr Br n-Pr Cl n-Pr Br n-Pr Cl n-Pr Br n-Pr Cl n-Pr Br n-Pr
Cl z'-Pr Br z'-Pr Cl z'-Pr Br z'-Pr Cl z'-Pr Br z'-Pr Cl z'-Pr Br z'-Pr
Cl n-Bu Br n-Bu Cl n-Bu Br n-Bu Cl n-Bu Br n-Bu Cl n-Bu Br n-Bu
Cl z'-Bu Br z'-Bu Cl z'-Bu Br z'-Bu Cl z'-Bu Br z'-Bu Cl z'-Bu Br z'-Bu
Cl s-Bu Br s-Bu Cl s-Bu Br s-Bu Cl s-Bu Br s-Bu Cl s-Bu Br s-Bu
Cl t-Bu Br t-Bu Cl t-Bu Br t-Bu Cl t-Bu Br t-Bu Cl t-Bu Br t-Bu
Figure imgf000028_0001
R s Cl
X is N X is CH X is CC1 X is CBr
R2 R3 R2 R3 R2 R3 R2 R3 R2 R3 R2 R3 R2 R3 R2 R3
Cl H Br H Cl H Br H Cl H Br H Cl H Br H
Cl Me Br Me Cl Me Br Me Cl Me Br Me Cl Me Br Me
Cl Et Br Et Cl Et Br Et Cl Et Br Et Cl Et Br Et
Cl n-Pr Br n-Pr Cl n-Pr Br n-Pr Cl n-Pr Br n-Pr Cl n-Pr Br n-Pr
Cl z'-Pr Br z'-Pr Cl z'-Pr Br z'-Pr Cl z'-Pr Br z'-Pr Cl z'-Pr Br z'-Pr
Cl n-Bu Br n-Bu Cl n-Bu Br n-Bu Cl n-Bu Br n-Bu Cl n-Bu Br n-Bu
Cl z'-Bu Br z'-Bu Cl z'-Bu Br z'-Bu Cl z'-Bu Br z'-Bu Cl z'-Bu Br z'-Bu
Cl s-Bu Br s-Bu Cl s-Bu Br s-Bu Cl s-Bu Br s-Bu Cl s-Bu Br s-Bu
Cl t-Bu Br t-Bu Cl t-Bu Br t-Bu Cl t-Bu Br t-Bu Cl t-Bu Br t-Bu RΪ ia Br
X is N X is CH X is CC1 X is CBr
R2 R3 R2 R3 R2 R3 R2 R3 R2 R3 R2 R3 R2 R3 R2 R3
Cl H Br H Cl H Br H Cl H Br H Cl H Br H
Cl Me Br Me Cl Me Br Me Cl Me Br Me Cl Me Br Me
Cl Et Br Et Cl Et Br Et Cl Et Br Et Cl Et Br Et
Cl n-Pr Br n-Pr Cl n-Pr Br n-Pr Cl n-Pr Br n-Pr Cl n-Pr Br n-Pr
Cl z'-Pr Br z'-Pr Cl z'-Pr Br z'-Pr Cl z'-Pr Br z'-Pr Cl z'-Pr Br z'-Pr
Cl n-Bu Br n-Bu Cl n-Bu Br n-Bu Cl n-Bu Br n-Bu Cl n-Bu Br n-Bu
Cl z'-Bu Br z'-Bu Cl z'-Bu Br z'-Bu Cl z'-Bu Br z'-Bu Cl z'-Bu Br z'-Bu
Cl s-Bu Br s-Bu Cl s-Bu Br s-Bu Cl s-Bu Br s-Bu Cl s-Bu Br s-Bu
Cl t-Bu Br t-Bu Cl t-Bu Br t-Bu Cl t-Bu Br t-Bu Cl t-Bu Br t-Bu
TABLE 3
Figure imgf000029_0001
R2 R3 R2 R3 R2 R3 R2 R3 R2 R3 R2 R3
Cl H Cl n-Pr Cl z'-Bu Br H Br n-Pr Br z'-Bu
Cl Me Cl z'-Pr Cl s-Bu Br Me Br z'-Pr Br s-Bu
Cl Et Cl n-Bu Cl t-Bu Br Et Br n-Bu Br t-Bu
Utility
The compounds of Formulae I, II and 4 are useful as synthetic intermediates for preparing a compound of Formula III
Figure imgf000029_0002
wherein X, R1, R2 and n are defined as above; R6 is CH3, Cl or Br; R7 is F, Cl, Br, I or CF3; and R« is Cr-C4 alkyl.
Compounds of Formula III are useful as insecticides. Compounds of Formula III can be prepared from compounds of Formula II (and in turn from compounds of Formula 4 and I) by the processes outlined in Schemes 5-7.
Coupling of a pyrazolecarboxylic acid of Formula Ila (a compound of Formula II wherein R3 is H) with an anthranilic acid of Formula 5 provides the benzoxazinone of Formula 6. In Scheme 5, a benzoxazinone of Formula 6 is prepared directly via sequential addition of methanesulfonyl chloride in the presence of a tertiary amine such as triethylamine or pyridine to a pyrazolecarboxylic acid of Formula Ila, followed by the addition of an anthranilic acid of Formula 5, followed by a second addition of tertiary amine and methanesulfonyl chloride. This procedure generally affords good yields of the benzoxazinone.
Scheme 5
Figure imgf000030_0001
3. tertiary amine
4. MeS(0)2Cl
Scheme 6 depicts an alternate preparation for benzoxazinones of Formula 6 involving coupling of a pyrazole acid chloride of Formula 8 with an isatoic anhydride of
Formula 7 to provide the Formula 6 benzoxazinone directly.
Scheme 6
Figure imgf000030_0002
Solvents such as pyridine or pyridine/acetonitrile are suitable for this reaction. The acid chlorides of Formula 8 are available from the corresponding acids of Formula Ila by known procedures such as chlorination with thionyl chloride or oxalyl chloride.
Compounds of Formula III can be prepared by the reaction of benzoxazinones of Formula 6 with C1-C4 alkyl amines as outlined in Scheme 7. The reaction can be run neat or in a variety of suitable solvents including tetrahydrofuran, diethyl ether, dichloromethane or chloroform with optimum temperatures ranging from room temperature to the reflux temperature of the solvent. The general reaction of benzoxazinones with amines to produce anthranilamides is well documented in the chemical literature. For a review of benzoxazinone chemistry see Jakobsen et al.,
Biorganic and Medicinal Chemistry 2000, 8, 2095-2103 and references cited within.
See also Coppola, J. Heterocyclic Chemistry 1999, 36, 563-588.
Scheme 7
Figure imgf000031_0001

Claims

CLAIMS What is claimed is:
1. A compound of Formula I
Figure imgf000032_0001
I wherein
R1 is halogen; each R2 is independently C1-C4 alkyl, C -C4 alkenyl, C2-C4 alkynyl, C3-C6 cycloalkyl, C1-C4 haloalkyl, C2-C4 haloalkenyl, C2-C4 haloalkynyl, C3-C6 halocycloalkyl, halogen, CN, NO2, C!-C4 alkoxy, C!-C haloalkoxy, CrC alkylthio, CrC4 alkylsulfinyl, C2-C4 alkylsulfonyl, C1-C4 alkylamino,
C2-Cg dialkylamino, C3-C6 cycloalkylamino, C3-C6 (alkyl)cycloalkylamino, C2-C alkylcarbonyl, C2-C6 alkoxycarbonyl, C2-C6 alkylaminocarbonyl, C3-C8 dialkylaminocarbonyl or C3-C6 trialkylsilyl; R3 is H or CrC4 alkyl; X is N or CR4;
R4 is H or R2; and n is 0 to 3, provided when X is CH then n is at least 1.
2. A compound of Claim 1 wherein n is 1 to 3.
3. A compound of Claim 1 wherein R1 is Cl or Br; each R2 is independently Cl or Br, and one R2 is at the 3-position; and X is N.
4. A method for preparing a compound of Claim 1 comprising (1) treating a compound of Formula 4
Figure imgf000032_0002
wherein R3 is C -C4 alkyl; with a halogenating agent to form a compound of Formula I; and when preparing compounds of Formula I wherein R3 is H
(2) converting the compound formed in (1) to a compound wherein R3 is H.
5. The method of Claim 4 wherein n is 1 to 3.
6. The method of Claim 4 wherein R1 is Cl or Br; each R2 is independently Cl or Br, and one R2 is at the 3-position; R3 is C -C4 alkyl; and X is N.
7. The method of Claim 6 wherein the halogenating agent is a phosphorus oxyhalide or a phosphorus pentahalide.
8. The method of Claim 7 wherein step (1) is carried out in the absence of a base using acetonitrile as the solvent.
9. A compound of Formula II
Figure imgf000033_0001
wherein
R1 is halogen; each R2 is independently C C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C3-Cg cycloalkyl, C1-C4 haloalkyl, C2-C4 haloalkenyl, C2-C4 haloalkynyl, C3-C6 halocycloalkyl, halogen, CN, NO2, Cχ-04 alkoxy, CrC4 haloalkoxy, 0^4 alkylthio, C1-C4 alkylsulfinyl, CrC4 alkylsulfonyl, C^Q^ alkylamino, C2-C8 dialkylamino, C3-C6 cycloalkylamino, C3-C6 (alkyl)cycloalkylamino, C2-C4 alkylcarbonyl, C2-C6 alkoxycarbonyl, C2-C6 alkylaminocarbonyl,
C3-C8 dialkylaminocarbonyl or C -Cg trialkylsilyl; R3 is H or C1-C4 alkyl; X is N or CR4; R4 is H or R ; and n is 0 to 3, provided when X is CH then n is at least 1.
10. A compound of Claim 9 wherein n is 1 to 3.
11. A compound of Claim 9 wherein R1 is Cl or Br; each R2 is independently Cl or Br, and one R2 is at the 3-position; and X is N.
12. A method of preparing a compound of Formula II of Claim 9 comprising (3) treating a compound of Formula I
Figure imgf000034_0001
I with an oxidant, optionally in the presence of an acid, to form a compound of Formula II; and when a compound of Formula I wherein R3 is C1-C4 alkyl is used to prepare a compound of Formula II wherein R3 is H,
(4) converting the compound formed in (3) to a compound of Formula II wherein R3 is H.
13. The method of Claim 12 wherein n is 1 to 3.
14. The method of Claim 12 wherein the oxidant is hydrogen peroxide or a persulfate salt.
15. The method of Claim 14 wherein X is CR4; and the oxidant is hydrogen peroxide.
16. The method of Claim 14 wherein X is N; the oxidant is potassium persulfate; and step (3) is carried out in the presence of sulfuric acid.
17. The method of Claim 12 wherein in Formula I wherein R1 is Cl or Br; each R2 is independently Cl or Br, and one R2 is at the 3-position; R3 is CrC4 alkyl; and X is
N.
18. The method of Claim 12 wherein the compound of Formulal is prepared by a method comprising (1) treating a compound of Formula 4
Figure imgf000034_0002
wherein R3 is Ci -C alkyl; with a halogenating agent to form a compound of Formula I; and when preparing compounds of Formula I wherein R3 is H
(2) converting the compound formed in (1) to a compound wherein R3 is H.
19. A compound of Formula 4
Figure imgf000035_0001
wherein each R2 is independently CrC4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C3-C6 cycloalkyl, C1-C4 haloalkyl, C2-C4 haloalkenyl, C2-C haloalkynyl,
Figure imgf000035_0002
halocycloalkyl, halogen, CN, NO2, CrC4 alkoxy, C1-C4 haloalkoxy, Cj_-C alkylthio, CrC4 alkylsulfinyl, CrC alkylsulfonyl, Ci^ alkylamino,
C2-C§ dialkylamino, C3-C6 cycloalkylamino, C -C6 (alkyl)cycloalkylamino, C2-C4 alkylcarbonyl, Gj-Cg alkoxycarbonyl, C2-C6 alkylaminocarbonyl, C3-Cg dialkylaminocarbonyl or C3-Cg trialkylsilyl; X is N; R3 is H or CrC4 alkyl; and n is 0 to 3, provided when X is CH then n is at least 1.
20. A compound of Claim 19 wherein n is 1 to 3.
21. A compound of Claim 19 wherein each R2 is independently Cl or Br, and one R2 is at the 3-position.
22. A method of preparing a compound of Formula III
Figure imgf000035_0003
wherein
R1 is halogen; each R2 is independently C1-C4 alkyl, C2-C4 alkenyl, C2-C4 alkynyl, C3-C6 cycloalkyl, C1-C4 haloalkyl, C -C4 haloalkenyl, C2-C haloalkynyl, C3-C6 halocycloalkyl, halogen, CN, NO2, C1-C4 alkoxy, C1-C4 haloalkoxy, C1-C4 alkylthio, C1-C4 alkylsulfinyl, C!-C4 alkylsulfonyl, CJ-C4 alkylamino, C2-C§ dialkylamino, C3-C6 cycloalkylamino, C3-C6 (alkyl)cycloalkylamino,
C2-C4 alkylcarbonyl, C2-C6 alkoxycarbonyl, C2-C6 alkylaminocarbonyl, C3-C8 dialkylaminocarbonyl or C3-C6 trialkylsilyl;
X is or CR4;
R4 is H, Cl or Br; R6 is CH3, Cl orBr;
R7 is F, Cl, Br, I or CF3;
R8 is C!-C4 alkyl and n is 0, 1 , 2 or 3; provided when X is CH then n is at least 1 ; using a compound of Formula II
Figure imgf000036_0001
wherein R3 is H; characterized by: preparing said compound of Formula II by the method of Claim 12.
23. The method of Claim 22 wherein n is 1 to 3.
PCT/US2002/025614 2001-08-13 2002-08-13 Substituted dihydro 3-halo-1h-pyrazole-5-carboxylates their preparation and use WO2003016283A1 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
ES02752810T ES2428888T3 (en) 2001-08-13 2002-08-13 Dihydro-3-halo-1H-pyrazol-5-substituted carboxylates, their preparation and use
UA2004021086A UA81104C2 (en) 2002-04-02 2002-08-13 Substituted dihydro 3-halo-1h-pyrazole-5-carboxylates and their preparation
HU0401019A HU230124B1 (en) 2001-08-13 2002-08-13 Substituted dihydro 3-halo-1h-pyrazole-5-carboxylates their preparation and use
CA2454306A CA2454306C (en) 2001-08-13 2002-08-13 Substituted dihydro 3-halo-1h-pyrazole-5-carboxylates their preparation and use
DK02752810.8T DK1417175T3 (en) 2001-08-13 2002-08-13 SUBSTITUTED DIHYDRO-3-HALO-1H-PYRAZOL-5-CARBOXYLATES AND PREPARATION AND USE THEREOF
MXPA04001323A MXPA04001323A (en) 2001-08-13 2002-08-13 Substituted dihydro 3-halo-1h-pyrazole-5-carboxylates their preparation and use.
US10/482,458 US6965032B2 (en) 2001-08-13 2002-08-13 Substituted dihydro 3-halo-1h-pyrazole-5-carboxylates and their preparation and use
JP2003521209A JP4564748B2 (en) 2001-08-13 2002-08-13 Substituted dihydro 3-halo-1H-pyrazole-5-carboxylates, their preparation and use
IL15950702A IL159507A0 (en) 2001-08-13 2002-08-13 Substituted dihydro 3-halo-1h pyrazole-5-carboxylates, their preparation and use
BRPI0212185-9B1A BR0212185B1 (en) 2001-08-13 2002-08-13 carboxylic acid-derived compounds of 3-halo-1-aryl-substituted pyrazols and dihydro-1hpyrazoles and methods for their preparation
AU2002355952A AU2002355952B2 (en) 2001-08-13 2002-08-13 Substituted dihydro 3-halo-1H-pyrazole-5-carboxylates their preparation and use
EP02752810.8A EP1417175B1 (en) 2001-08-13 2002-08-13 Substituted dihydro 3-halo-1h-pyrazole-5-carboxylates, their preparation and use
CNB028157753A CN1307161C (en) 2001-08-13 2002-08-13 Substituted dihydro 3-hylo-1H-pyrazoloe-5-carboxylates their prepn. and use
ZA2003/09911A ZA200309911B (en) 2001-08-13 2003-12-22 Substituted dihydro-3halo-1h-pyrazole-5-carboxylates their preparation and use
US11/175,584 US7227025B2 (en) 2001-08-13 2005-07-06 Substituted dihydro 3-halo-1H-pyrazole-T-carboxylates, their preparation and use
US11/796,023 US7402676B2 (en) 2001-08-13 2007-04-26 Substituted dihydro 3-halo-1H-pyrazole-5-carboxylates their preparation and use

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US31191901P 2001-08-13 2001-08-13
US60/311,919 2001-08-13
US34195801P 2001-12-19 2001-12-19
US60/341,958 2001-12-19
US36966002P 2002-04-02 2002-04-02
US60/369,660 2002-04-02

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10482458 A-371-Of-International 2002-08-13
US11/175,584 Division US7227025B2 (en) 2001-08-13 2005-07-06 Substituted dihydro 3-halo-1H-pyrazole-T-carboxylates, their preparation and use

Publications (1)

Publication Number Publication Date
WO2003016283A1 true WO2003016283A1 (en) 2003-02-27

Family

ID=27405544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/025614 WO2003016283A1 (en) 2001-08-13 2002-08-13 Substituted dihydro 3-halo-1h-pyrazole-5-carboxylates their preparation and use

Country Status (19)

Country Link
US (3) US6965032B2 (en)
EP (1) EP1417175B1 (en)
JP (1) JP4564748B2 (en)
KR (1) KR100953251B1 (en)
CN (1) CN1307161C (en)
AU (1) AU2002355952B2 (en)
BR (1) BR0212185B1 (en)
CA (1) CA2454306C (en)
DK (1) DK1417175T3 (en)
ES (1) ES2428888T3 (en)
HU (1) HU230124B1 (en)
IL (1) IL159507A0 (en)
IN (2) IN215218B (en)
MX (1) MXPA04001323A (en)
PL (1) PL214276B1 (en)
PT (1) PT1417175E (en)
TW (3) TWI356822B (en)
WO (1) WO2003016283A1 (en)
ZA (1) ZA200309911B (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004011447A2 (en) * 2002-07-31 2004-02-05 E.I. Du Pont De Nemours And Company Method for preparing fused oxazinones from ortho-amino aromatic carboxylic acid and a carboxylic acid in the presence of a sulfonyl chloride and pyridine
WO2004011453A2 (en) * 2002-07-31 2004-02-05 E.I. Du Pont De Nemours And Company Method for preparing 3-halo-4,5-dihydro-1h-pyrazoles
WO2004046129A2 (en) * 2002-11-15 2004-06-03 E.I. Du Pont De Nemours And Company Novel anthranilamide insecticides
WO2006000336A2 (en) * 2004-06-28 2006-01-05 Bayer Cropscience Ag Anthranilamides serving as pesticides
US7038057B2 (en) 2001-08-13 2006-05-02 E.I. Du Pont De Nemours And Company Substituted 1H-dihydropyrazoles, their preparation and use
WO2006102025A1 (en) 2005-03-18 2006-09-28 E.I. Dupont De Nemours And Company Conversion of 2-pyrazolines to pyrazoles using bromine
WO2007144100A1 (en) 2006-06-13 2007-12-21 Bayer Cropscience Ag Anthranilic acid diamide derivative with hetero-aromatic and hetero-cyclic substituents
WO2008072745A1 (en) 2006-12-15 2008-06-19 Ishihara Sangyo Kaisha, Ltd. Process for production of anthranilamide compound
EP1974607A2 (en) 2004-07-20 2008-10-01 Bayer CropScience AG Selective insecticides based on anthranilic acid diamides and safeners
EP1982594A1 (en) 2003-11-14 2008-10-22 Bayer CropScience AG Active agent combinations with insecticidal and acaricidal properties
WO2009128408A1 (en) 2008-04-16 2009-10-22 石原産業株式会社 Process for producing an anthranilamide compound
EP2213654A1 (en) 2006-12-21 2010-08-04 E. I. Du Pont de Nemours and Company Process for preparing 2-amino-5-bromobenzamide derivatives
WO2011098408A2 (en) 2010-02-09 2011-08-18 Bayer Cropscience Ag Hydrazine-substituted anthranilic acid derivatives
WO2011128329A1 (en) 2010-04-16 2011-10-20 Bayer Cropscience Ag Triazole-substituted anthranilic acid amides as pesticides
US8062995B2 (en) 2005-09-15 2011-11-22 Bayer Cropscience Ag Dioxazine-substituted arylamides
WO2011157654A1 (en) 2010-06-15 2011-12-22 Bayer Cropscience Ag Anthranilic acid diamide derivatives
WO2011157663A1 (en) 2010-06-15 2011-12-22 Bayer Cropscience Ag Novel ortho-substituted aryl amide derivatives
WO2011157653A1 (en) 2010-06-15 2011-12-22 Bayer Cropscience Ag Anthranilic acid derivatives
WO2011157651A1 (en) 2010-06-15 2011-12-22 Bayer Cropscience Ag Anthranilic acid diamide derivatives with cyclical side chains
WO2012004208A1 (en) 2010-07-09 2012-01-12 Bayer Cropscience Ag Anthranilic acid diamide derivative as a pesticide
WO2012044650A1 (en) 2010-09-29 2012-04-05 E. I. Du Pont De Nemours And Company Fungicidal imidazoles
WO2012103436A1 (en) 2011-01-28 2012-08-02 E. I. Du Pont De Nemours And Company Method for preparing 2-aminobenzamide derivatives
EP2484676A2 (en) 2008-12-18 2012-08-08 Bayer CropScience AG Tetrazol-substituted anthranilic acid amides as pesticides
US8268751B2 (en) 2003-11-14 2012-09-18 Bayer Cropscience Ag Combination of active substances with insecticidal properties
CN102783489A (en) * 2003-12-04 2012-11-21 拜尔农作物科学股份公司 Active substance combinations having insecticidal properties
EP2606732A1 (en) 2011-12-19 2013-06-26 Bayer CropScience AG Use of an anthranilic diamide derivatives with heteroaromatic and heterocyclic substituents in combination with a biological control agent
WO2013092519A1 (en) 2011-12-19 2013-06-27 Bayer Cropscience Ag Use of anthranilic acid diamide derivatives for pest control in transgenic crops
CN103755700A (en) * 2013-12-26 2014-04-30 青岛科技大学 Novel pyrazol amides compound and application thereof
US8865683B2 (en) 2003-12-04 2014-10-21 Bayer Cropscience Ag Active compound combinations having insecticidal properties
US8993483B2 (en) 2003-11-14 2015-03-31 Bayer Intellectual Property Gmbh Combination of active substances with insecticidal properties
CN104496901A (en) * 2006-12-15 2015-04-08 石原产业株式会社 Process for production of anthranilamide compound
US9609868B2 (en) 2013-03-06 2017-04-04 Bayer Cropscience Ag Alkoximino-substituted anthranilic acid diamides as pesticides
WO2019123195A1 (en) 2017-12-20 2019-06-27 Pi Industries Ltd. Pyrazolopyridine-diamides, their use as insecticide and processes for preparing the same.
WO2019123194A1 (en) 2017-12-20 2019-06-27 Pi Industries Ltd. Anthranilamides, their use as insecticide and processes for preparing the same.
WO2019150220A1 (en) 2018-01-30 2019-08-08 Pi Industries Ltd. Novel anthranilamides, their use as insecticide and processes for preparing the same.
WO2020117493A1 (en) 2018-12-03 2020-06-11 Fmc Corporation Method for preparing n-phenylpyrazole-1-carboxamides
CN111620850A (en) * 2020-05-27 2020-09-04 江苏七洲绿色化工股份有限公司 Preparation method of 1- (3-chloropyridine-2-yl) -3-bromo-1H-pyrazole-5-formic ether
WO2020212991A1 (en) 2019-04-19 2020-10-22 Adama Makhteshim Ltd. Preparation of substituted pyrazoles and their use as anthranilamides precursors
WO2021033166A1 (en) * 2019-08-21 2021-02-25 Gharda Chemicals Limited Process for synthesis of pyrazolidinone compounds
WO2021034904A1 (en) * 2019-08-19 2021-02-25 Fmc Corporation Process for the preparation of carboxylic acid derivatives of 3-bromo-4,5-dihydro-1h-pyrazoles
WO2021096903A1 (en) 2019-11-11 2021-05-20 Fmc Corporation Methods for the preparation of ethyl 3-bromo-1-(3-chloropyridin-2-yl)-1h-pyrazole-5-carboxylate
KR20220157967A (en) 2020-03-25 2022-11-29 이시하라 산교 가부시끼가이샤 Method for producing intermediates for the production of cyclaniliprole
WO2023110710A1 (en) 2021-12-13 2023-06-22 Syngenta Crop Protection Ag Method for controlling diamide resistant pests & compounds therefor
KR20230155447A (en) 2021-03-09 2023-11-10 이시하라 산교 가부시끼가이샤 Method for producing 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylic acid ester
WO2024049748A1 (en) 2022-08-29 2024-03-07 Fmc Corporation A new and efficient process for preparing 3 -halo-4, 5-dihydro-1h-pyrazoles

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI325302B (en) * 2001-08-13 2010-06-01 Du Pont Benzoxazinone compounds
AR036872A1 (en) 2001-08-13 2004-10-13 Du Pont ANTRANILAMIDE COMPOSITE, COMPOSITION THAT INCLUDES IT AND METHOD FOR CONTROLLING AN INVERTEBRATE PEST
DE60226875D1 (en) * 2001-08-15 2008-07-10 Du Pont ORTHOSUBSTITUTED ARYLAMIDES FOR COMBATING WIRELESS PESTS
ES2319743T3 (en) * 2001-08-16 2009-05-12 E.I. Du Pont De Nemours And Company ANTRANILAMIDS REPLACED TO CONTROL INVERTEBRATE PESTS.
TW200724033A (en) 2001-09-21 2007-07-01 Du Pont Anthranilamide arthropodicide treatment
US20040110777A1 (en) * 2001-12-03 2004-06-10 Annis Gary David Quinazolinones and pyridinylpyrimidinones for controlling invertebrate pests
JP4394953B2 (en) * 2002-01-22 2010-01-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Quinazoline (di) one for invertebrate pest control
JP4287816B2 (en) * 2002-06-13 2009-07-01 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Pyrazole carboxamide insecticide
AU2004207848B2 (en) 2003-01-28 2010-03-25 Fmc Agro Singapore Pte. Ltd. Cyano anthranilamide insecticides
TWI367882B (en) * 2003-03-26 2012-07-11 Du Pont Preparation and use of 2-substituted-5-oxo-3-pyrazolidinecarboxylates
CN100376565C (en) * 2003-06-12 2008-03-26 杜邦公司 Method for preparing fused oxazinones
AR048669A1 (en) * 2004-03-03 2006-05-17 Syngenta Ltd BISAMIDE BICYCLE DERIVATIVES
RU2006139953A (en) * 2004-04-13 2008-05-20 Е.И. Дюпон Де Немур Энд Компани (Us) ANTRANILAMIDE INSECTICIDES
GT200500179A (en) * 2004-07-01 2006-02-23 SYNERGIST MIXTURES OF ANTRANILAMIDE AGENTS FOR THE CONTROL OF INVERTEBRATE PESTS
MY140912A (en) * 2004-07-26 2010-01-29 Du Pont Mixtures of anthranilamide invertebrate pest control agents
MX2008002236A (en) * 2005-08-24 2008-03-27 Du Pont Anthranilamides for controlling invertebrate pests.
JP2009001541A (en) * 2006-12-15 2009-01-08 Ishihara Sangyo Kaisha Ltd Method for producing anthranilamide compound using new pyrazole compound as intermediate
US8399490B2 (en) * 2007-07-16 2013-03-19 Syngenta Crop Protection Llc Insecticides
CN101550130B (en) * 2008-04-01 2012-11-07 中国中化股份有限公司 Method for preparing 3-halo-1-(3-chloro -2-pyridyl)-1H-pyrazole-5-formyl halide
AR076719A1 (en) * 2009-06-02 2011-06-29 Sanofi Aventis Deutschland MEDICINAL MODULE WITH DERIVATION AND NEEDLE PROTECTOR
KR101701335B1 (en) * 2009-07-23 2017-02-01 바이엘 인텔렉쳐 프로퍼티 게엠베하 Process for producing aryl-substituted pyrazoles
KR101042930B1 (en) * 2009-08-21 2011-06-21 문형태 Child pillow
KR101758201B1 (en) * 2009-12-15 2017-07-14 바이엘 크롭사이언스 악티엔게젤샤프트 Method for producing 1-alkyl-/1-aryl-5-pyrazole-carboxylic acid derivatives
CN102399211A (en) * 2011-07-29 2012-04-04 山东永农作物科学有限公司 Preparation method of 3-bromo-1-(3-chloro-2-pyridyl) -4,5-dihydro-1H-pyrazole-5-formiate
JP6256771B2 (en) 2012-12-06 2018-01-10 セルジーン クオンティセル リサーチ,インク. Histone demethylase inhibitor
US9108946B2 (en) * 2013-10-17 2015-08-18 Dow Agrosciences Llc Processes for the preparation of pesticidal compounds
EP3057425A4 (en) 2013-10-17 2017-08-02 Dow AgroSciences LLC Processes for the preparation of pesticidal compounds
WO2015058028A1 (en) * 2013-10-17 2015-04-23 Dow Agrosciences Llc Processes for the preparation of pesticidal compounds
CN105636442B (en) 2013-10-17 2018-04-27 美国陶氏益农公司 The method for preparing Pesticidal compound
WO2015058026A1 (en) 2013-10-17 2015-04-23 Dow Agrosciences Llc Processes for the preparation of pesticidal compounds
MX2016004946A (en) 2013-10-17 2016-06-28 Dow Agrosciences Llc Processes for the preparation of pesticidal compounds.
JP2016536296A (en) 2013-10-17 2016-11-24 ダウ アグロサイエンシィズ エルエルシー Method for producing pest control compound
EP3186229A4 (en) 2014-07-31 2018-01-10 Dow AgroSciences LLC Process for the preparation of 3-(3-chloro-1h-pyrazol-1-yl)pyridine
US9029555B1 (en) 2014-07-31 2015-05-12 Dow Agrosciences Llc Process for the preparation of 3-(3-chloro-1H-pyrazol-1-yl)pyridine
BR112017000565A2 (en) * 2014-07-31 2017-11-07 Dow Agrosciences Llc Process for the preparation of 3- (3-chloro-1h-pyrazol-1-yl) pyridine
WO2016028328A1 (en) 2014-08-19 2016-02-25 Dow Agrosciences Llc Process for the preparation of 3-(3-chloro-1h-pyrazol-1-yl)pyridine
CN107074775A (en) 2014-09-12 2017-08-18 美国陶氏益农公司 The preparation method of 3 (base of 3 chlorine 1H pyrazoles 1) pyridines
CN106187998A (en) * 2016-07-20 2016-12-07 南通雅本化学有限公司 A kind of preparation technology of 1 (3 chloropyridine 2 base) 3 bromine 1H pyrazoles 5 formic acid
CN110139853B (en) 2016-12-29 2023-06-16 美国陶氏益农公司 Process for the preparation of pesticidal compounds
WO2018125817A1 (en) 2016-12-29 2018-07-05 Dow Agrosciences Llc Processes for the preparation of pesticidal compounds
WO2020026260A1 (en) * 2018-07-31 2020-02-06 Sumitomo Chemical India Ltd. Novel 2-(3-halo-5-methyl-1 h-pyrazol-1-yl)-3-halopyridine compounds and intermediates thereof
WO2020026259A1 (en) * 2018-07-31 2020-02-06 Sumitomo Chemical India Ltd. Ethyl 2-bromo-4-[2-(3-halopyridin-2-yl)-hydrazinyl]-4-oxobutanoate hbr salt, method of preparation and use thereof
WO2020130575A1 (en) * 2018-12-17 2020-06-25 주식회사 엘지화학 Electrolyte for lithium secondary battery, and lithium secondary battery comprising same
CN110483480A (en) * 2019-09-11 2019-11-22 江苏优普生物化学科技股份有限公司 The synthetic method of 2- (3- chloropyridine -2- base) -5- hydroxyl -3- pyrazolidinecarboxylate
US12010989B2 (en) 2019-11-07 2024-06-18 S. C. Johnson & Son, Inc. Roach gel formulations
CN114957214A (en) * 2022-06-22 2022-08-30 九江善水科技股份有限公司 Preparation method of chlorantraniliprole intermediate
CN115745956B (en) * 2022-09-13 2024-04-12 浙江新安化工集团股份有限公司 Synthesis method of 3-bromo-1- (3-chloro-2-pyridyl) -1 hydrogen-pyrazole-5-formic acid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3153654A (en) 1961-05-31 1964-10-20 Ilford Ltd 3-pyrazolidinone carboxylic acid derivatives
NL9202078A (en) * 1992-11-30 1994-06-16 Rijkslandbouwhogeschool Novel N-acyl-anthranilic acid compounds, and use of N- acyl-anthranilic acid compounds in insect control
JPH09176124A (en) 1995-12-25 1997-07-08 Nissan Chem Ind Ltd Pyrazoline derivative and plant blight controlling agent
JPH09316055A (en) 1996-05-24 1997-12-09 Nissan Chem Ind Ltd Production of pyrazolecarboxylic ester derivative
WO2001070671A2 (en) 2000-03-22 2001-09-27 E.I. Du Pont De Nemours And Company Insecticidal anthranilamides

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3159654A (en) * 1958-09-25 1964-12-01 Norwich Pharma Co New series of carboxylic acid esters of 5-nitro-2-furyl alkylidene hydroxyalkyl semicbazones
DE3545786A1 (en) * 1985-12-21 1987-06-25 Schering Ag Pyrazoline derivatives, their preparation, and their use as insecticides
AU598633B2 (en) * 1987-01-05 1990-06-28 E.I. Du Pont De Nemours And Company 1-sub-phenyl-3-sub-phenylamino(thio) carbonyl-pyrazolines as insecticides
DE3808896A1 (en) * 1988-03-17 1989-09-28 Hoechst Ag PLANT PROTECTION AGENTS BASED ON PYRAZOL CARBON SEA DERIVATIVES
IT1216152B (en) 1988-03-18 1990-02-22 Merloni Elettrodomestici Spa HYDRAULIC PUMP, PARTICULARLY FOR DISHWASHER OR SIMILAR.
DE4142778C2 (en) 1991-12-23 1997-11-20 Man Takraf Foerdertechnik Gmbh Spreader positioning device for container cranes
JP4004082B2 (en) 1996-05-23 2007-11-07 三井化学株式会社 Method for producing cyclic nitroguanidine derivatives
US6114425A (en) 1997-07-17 2000-09-05 Unitex Chemical Corporation Plasticized polyvinyl chloride compound
WO2001070761A1 (en) * 2000-03-23 2001-09-27 The University Of Toledo Uses of alkylammonium salts in protein renaturation
ATE469892T1 (en) 2001-08-13 2010-06-15 Du Pont SUBSTITUTED 1H-DIHYDROPYRAZOLES, THEIR PREPARATION AND USE
AR036872A1 (en) * 2001-08-13 2004-10-13 Du Pont ANTRANILAMIDE COMPOSITE, COMPOSITION THAT INCLUDES IT AND METHOD FOR CONTROLLING AN INVERTEBRATE PEST

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3153654A (en) 1961-05-31 1964-10-20 Ilford Ltd 3-pyrazolidinone carboxylic acid derivatives
NL9202078A (en) * 1992-11-30 1994-06-16 Rijkslandbouwhogeschool Novel N-acyl-anthranilic acid compounds, and use of N- acyl-anthranilic acid compounds in insect control
JPH09176124A (en) 1995-12-25 1997-07-08 Nissan Chem Ind Ltd Pyrazoline derivative and plant blight controlling agent
JPH09316055A (en) 1996-05-24 1997-12-09 Nissan Chem Ind Ltd Production of pyrazolecarboxylic ester derivative
WO2001070671A2 (en) 2000-03-22 2001-09-27 E.I. Du Pont De Nemours And Company Insecticidal anthranilamides

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Advanced Organic Chemistry", 1985, JOHN WILEY & SONS, INC., pages: 334 - 338
FOTI F ET AL: "First Synthesis of a Bromonitrilimine. Direct Formation of 3-Bromopyrazole Derivatives", TETRAHEDRON LETTERS, ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM, NL, vol. 40, no. 13, 26 March 1999 (1999-03-26), pages 2605 - 2606, XP004158096, ISSN: 0040-4039 *
J MED. CHEM., vol. 44, 2001, pages 566 - 578
TETRAHEDRON LETTERS, vol. 40, 1999, pages 2605 - 2606

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7622595B2 (en) 2001-08-13 2009-11-24 E.I. Du Pont De Nemours And Company Substituted 1H-dihydropyrazoles, their preparation and use
US7038057B2 (en) 2001-08-13 2006-05-02 E.I. Du Pont De Nemours And Company Substituted 1H-dihydropyrazoles, their preparation and use
US7932395B2 (en) 2001-08-13 2011-04-26 E. I. Du Pont De Nemours And Company Substituted 1H-dihydropyrazoles, their preparation and use
US7335780B2 (en) 2002-07-31 2008-02-26 E.I. Du Pont De Nemours And Company Method for preparing 3-halo-4,5-dihydro-1H-pyrazoles
WO2004011453A2 (en) * 2002-07-31 2004-02-05 E.I. Du Pont De Nemours And Company Method for preparing 3-halo-4,5-dihydro-1h-pyrazoles
WO2004011447A3 (en) * 2002-07-31 2004-03-18 Du Pont Method for preparing fused oxazinones from ortho-amino aromatic carboxylic acid and a carboxylic acid in the presence of a sulfonyl chloride and pyridine
WO2004011453A3 (en) * 2002-07-31 2004-03-18 Du Pont Method for preparing 3-halo-4,5-dihydro-1h-pyrazoles
EP2100889A1 (en) * 2002-07-31 2009-09-16 E. I. du Pont de Nemours and Company Method for preparing 3-halo-4, 5-dihydro-1h-pyrazoles
AU2003257027B2 (en) * 2002-07-31 2010-09-16 Fmc Agro Singapore Pte. Ltd. Method for preparing 3-halo-4,5-dihydro-1H-pyrazoles
WO2004011447A2 (en) * 2002-07-31 2004-02-05 E.I. Du Pont De Nemours And Company Method for preparing fused oxazinones from ortho-amino aromatic carboxylic acid and a carboxylic acid in the presence of a sulfonyl chloride and pyridine
US7339057B2 (en) 2002-07-31 2008-03-04 E.I. Du Pont De Nemours And Company Method for preparing fused oxazinones from ortho-amino aromatic carboxylic acid and carboxylic acid in the presence of a sulfonyl chloride and pyridine
WO2004046129A2 (en) * 2002-11-15 2004-06-03 E.I. Du Pont De Nemours And Company Novel anthranilamide insecticides
US7666882B2 (en) 2002-11-15 2010-02-23 E.I. Du Pont De Nemours And Company Anthranilamide insecticides
WO2004046129A3 (en) * 2002-11-15 2004-07-15 Du Pont Novel anthranilamide insecticides
US8268751B2 (en) 2003-11-14 2012-09-18 Bayer Cropscience Ag Combination of active substances with insecticidal properties
EP2540164A1 (en) 2003-11-14 2013-01-02 Bayer CropScience AG Active agent combinations with insecticide properties
US8993483B2 (en) 2003-11-14 2015-03-31 Bayer Intellectual Property Gmbh Combination of active substances with insecticidal properties
EP1982594A1 (en) 2003-11-14 2008-10-22 Bayer CropScience AG Active agent combinations with insecticidal and acaricidal properties
CN102783489A (en) * 2003-12-04 2012-11-21 拜尔农作物科学股份公司 Active substance combinations having insecticidal properties
US8865683B2 (en) 2003-12-04 2014-10-21 Bayer Cropscience Ag Active compound combinations having insecticidal properties
US8735431B2 (en) 2003-12-04 2014-05-27 Bayer Cropscience Ag Active compound combinations having insecticidal properties
WO2006000336A3 (en) * 2004-06-28 2006-12-14 Bayer Cropscience Ag Anthranilamides serving as pesticides
WO2006000336A2 (en) * 2004-06-28 2006-01-05 Bayer Cropscience Ag Anthranilamides serving as pesticides
US8685985B2 (en) 2004-07-20 2014-04-01 Bayer Cropscience Ag Selective insecticides based on anthranilic acid diamides and safeners
EP1974607A2 (en) 2004-07-20 2008-10-01 Bayer CropScience AG Selective insecticides based on anthranilic acid diamides and safeners
US8841328B2 (en) 2004-07-20 2014-09-23 Bayer Cropscience Ag Selective insecticides based on anthranilic acid diamides and safeners
US8017632B2 (en) 2004-07-20 2011-09-13 Bayer Cropscience Ag Selective insecticides based on haloalkylnicotinic acid derivatives, anthranilic acid diamides, or phthalic acid diamides and safeners
AU2006227484B2 (en) * 2005-03-18 2011-08-11 Fmc Agro Singapore Pte. Ltd. Conversion of 2-pyrazolines to pyrazoles using bromine
US7951953B2 (en) 2005-03-18 2011-05-31 E. I. Du Pont De Nemours And Company Conversion of 2-pyrazolines to pyrazoles using bromine
KR101337159B1 (en) 2005-03-18 2013-12-05 이 아이 듀폰 디 네모아 앤드 캄파니 Conversion of 2-Pyrazolines to Pyrazoles Using Bromine
WO2006102025A1 (en) 2005-03-18 2006-09-28 E.I. Dupont De Nemours And Company Conversion of 2-pyrazolines to pyrazoles using bromine
US8062995B2 (en) 2005-09-15 2011-11-22 Bayer Cropscience Ag Dioxazine-substituted arylamides
US8486934B2 (en) 2005-09-15 2013-07-16 Bayer Cropscience Ag Oxadiazine-substituted arylamides
US8946236B2 (en) 2006-06-13 2015-02-03 Bayer Cropscience Ag Anthranilic acid diamide derivative with hetero-aromatic and hetero-cyclic substituents
WO2007144100A1 (en) 2006-06-13 2007-12-21 Bayer Cropscience Ag Anthranilic acid diamide derivative with hetero-aromatic and hetero-cyclic substituents
US8536092B2 (en) 2006-06-13 2013-09-17 Bayer Cropscience Ag Anthranilic acid diamide derivative with hetero-aromatic and hetero-cyclic substituents
US8101550B2 (en) 2006-06-13 2012-01-24 Bayer Cropscience Ag Anthranilic acid diamide derivative with hetero-aromatic and hetero-cyclic substituents
KR101732924B1 (en) 2006-06-13 2017-05-08 바이엘 인텔렉쳐 프로퍼티 게엠베하 Anthranilic acid diamide derivatives with hetero-aromatic and hetero-cyclic substituents
EP2093223A4 (en) * 2006-12-15 2012-03-28 Ishihara Sangyo Kaisha Process for production of anthranilamide compound
EP2093223A1 (en) * 2006-12-15 2009-08-26 Ishihara Sangyo Kaisha, Ltd. Process for production of anthranilamide compound
CN104496901B (en) * 2006-12-15 2016-05-25 石原产业株式会社 The manufacture method of anthranilamide compound
CN104496901A (en) * 2006-12-15 2015-04-08 石原产业株式会社 Process for production of anthranilamide compound
WO2008072745A1 (en) 2006-12-15 2008-06-19 Ishihara Sangyo Kaisha, Ltd. Process for production of anthranilamide compound
EP2213654A1 (en) 2006-12-21 2010-08-04 E. I. Du Pont de Nemours and Company Process for preparing 2-amino-5-bromobenzamide derivatives
WO2009128408A1 (en) 2008-04-16 2009-10-22 石原産業株式会社 Process for producing an anthranilamide compound
US8481744B2 (en) 2008-04-16 2013-07-09 Ishihara Sangyo Kaisha, Ltd. Process for producing anthranilamide compound
EP2484676A2 (en) 2008-12-18 2012-08-08 Bayer CropScience AG Tetrazol-substituted anthranilic acid amides as pesticides
US8324390B2 (en) 2008-12-18 2012-12-04 Bayer Cropscience Ag Tetrazole-substituted anthranilamides as pesticides
US8410106B2 (en) 2010-02-09 2013-04-02 Bayer Cropscience Ag Hydrazine-substituted anthranilic acid derivatives
WO2011098408A2 (en) 2010-02-09 2011-08-18 Bayer Cropscience Ag Hydrazine-substituted anthranilic acid derivatives
US8536202B2 (en) 2010-04-16 2013-09-17 Bayer Cropscience Ag Triazole-substituted anthranilamides as pesticides
WO2011128329A1 (en) 2010-04-16 2011-10-20 Bayer Cropscience Ag Triazole-substituted anthranilic acid amides as pesticides
US8791139B2 (en) 2010-06-15 2014-07-29 Bayer Cropscience Ag Anthranilic diamide derivatives
US8658800B2 (en) 2010-06-15 2014-02-25 Bayer Cropscience Ag Ortho-substituted arylamide derivatives
WO2011157663A1 (en) 2010-06-15 2011-12-22 Bayer Cropscience Ag Novel ortho-substituted aryl amide derivatives
WO2011157654A1 (en) 2010-06-15 2011-12-22 Bayer Cropscience Ag Anthranilic acid diamide derivatives
US8791143B2 (en) 2010-06-15 2014-07-29 Bayer Cropscience Ag Anthranilic diamide derivatives having cyclic side-chains
WO2011157653A1 (en) 2010-06-15 2011-12-22 Bayer Cropscience Ag Anthranilic acid derivatives
WO2011157651A1 (en) 2010-06-15 2011-12-22 Bayer Cropscience Ag Anthranilic acid diamide derivatives with cyclical side chains
US8980886B2 (en) 2010-06-15 2015-03-17 Bayer Cropscience Ag Anthranilic acid derivatives
US9790202B2 (en) 2010-07-09 2017-10-17 Bayer Intellectual Property Gmbh Anthranilamide derivatives as pesticides
WO2012004208A1 (en) 2010-07-09 2012-01-12 Bayer Cropscience Ag Anthranilic acid diamide derivative as a pesticide
WO2012044650A1 (en) 2010-09-29 2012-04-05 E. I. Du Pont De Nemours And Company Fungicidal imidazoles
WO2012103436A1 (en) 2011-01-28 2012-08-02 E. I. Du Pont De Nemours And Company Method for preparing 2-aminobenzamide derivatives
US9854802B2 (en) 2011-12-19 2018-01-02 Bayer Intellectual Property Gmbh Use of an anthranilic diamide derivatives with heteroaromatic and heterocyclic substituents in combination with a biological control agent
EP2606732A1 (en) 2011-12-19 2013-06-26 Bayer CropScience AG Use of an anthranilic diamide derivatives with heteroaromatic and heterocyclic substituents in combination with a biological control agent
WO2013092519A1 (en) 2011-12-19 2013-06-27 Bayer Cropscience Ag Use of anthranilic acid diamide derivatives for pest control in transgenic crops
US9414595B2 (en) 2011-12-19 2016-08-16 Bayer Cropscience Ag Use of anthranilic acid diamide derivatives for pest control in transgenic crops
US9572342B2 (en) 2011-12-19 2017-02-21 Bayer Intellectual Property Gmbh Use of an anthranilic diamide derivatives with heteroaromatic and heterocyclic substituents in combination with a biologicalcontrol agent
WO2013092516A1 (en) 2011-12-19 2013-06-27 Bayer Intellectual Property Gmbh Use of an anthranilic diamide derivatives with heteroaromatic and heterocyclic substituents in combination with a biological control agent
US9609868B2 (en) 2013-03-06 2017-04-04 Bayer Cropscience Ag Alkoximino-substituted anthranilic acid diamides as pesticides
CN103755700A (en) * 2013-12-26 2014-04-30 青岛科技大学 Novel pyrazol amides compound and application thereof
CN103755700B (en) * 2013-12-26 2015-07-29 青岛科技大学 A kind of pyrazol acid amide compounds and uses thereof
WO2019123195A1 (en) 2017-12-20 2019-06-27 Pi Industries Ltd. Pyrazolopyridine-diamides, their use as insecticide and processes for preparing the same.
WO2019123194A1 (en) 2017-12-20 2019-06-27 Pi Industries Ltd. Anthranilamides, their use as insecticide and processes for preparing the same.
US12024510B2 (en) 2017-12-20 2024-07-02 Pi Industries Ltd. Pyrazolopyridine-diamides, their use as insecticide and processes for preparing the same
WO2019150220A1 (en) 2018-01-30 2019-08-08 Pi Industries Ltd. Novel anthranilamides, their use as insecticide and processes for preparing the same.
WO2020117493A1 (en) 2018-12-03 2020-06-11 Fmc Corporation Method for preparing n-phenylpyrazole-1-carboxamides
WO2020212991A1 (en) 2019-04-19 2020-10-22 Adama Makhteshim Ltd. Preparation of substituted pyrazoles and their use as anthranilamides precursors
WO2021034904A1 (en) * 2019-08-19 2021-02-25 Fmc Corporation Process for the preparation of carboxylic acid derivatives of 3-bromo-4,5-dihydro-1h-pyrazoles
WO2021033166A1 (en) * 2019-08-21 2021-02-25 Gharda Chemicals Limited Process for synthesis of pyrazolidinone compounds
WO2021096903A1 (en) 2019-11-11 2021-05-20 Fmc Corporation Methods for the preparation of ethyl 3-bromo-1-(3-chloropyridin-2-yl)-1h-pyrazole-5-carboxylate
KR20220157967A (en) 2020-03-25 2022-11-29 이시하라 산교 가부시끼가이샤 Method for producing intermediates for the production of cyclaniliprole
CN111620850A (en) * 2020-05-27 2020-09-04 江苏七洲绿色化工股份有限公司 Preparation method of 1- (3-chloropyridine-2-yl) -3-bromo-1H-pyrazole-5-formic ether
KR20230155447A (en) 2021-03-09 2023-11-10 이시하라 산교 가부시끼가이샤 Method for producing 3-bromo-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxylic acid ester
WO2023110710A1 (en) 2021-12-13 2023-06-22 Syngenta Crop Protection Ag Method for controlling diamide resistant pests & compounds therefor
WO2024049748A1 (en) 2022-08-29 2024-03-07 Fmc Corporation A new and efficient process for preparing 3 -halo-4, 5-dihydro-1h-pyrazoles

Also Published As

Publication number Publication date
AU2002355952B2 (en) 2008-02-28
KR100953251B1 (en) 2010-04-16
TWI356822B (en) 2012-01-21
US20070203342A1 (en) 2007-08-30
BR0212185B1 (en) 2013-09-10
CN1541206A (en) 2004-10-27
CN1307161C (en) 2007-03-28
JP4564748B2 (en) 2010-10-20
IN2005MU00437A (en) 2005-12-02
IL159507A0 (en) 2004-06-01
MXPA04001323A (en) 2004-05-20
TWI371450B (en) 2012-09-01
EP1417175A1 (en) 2004-05-12
ES2428888T3 (en) 2013-11-12
KR20040029434A (en) 2004-04-06
IN205622B (en) 2007-06-29
TWI327566B (en) 2010-07-21
US20040198987A1 (en) 2004-10-07
US20050245580A1 (en) 2005-11-03
PT1417175E (en) 2013-10-17
US6965032B2 (en) 2005-11-15
TW201022229A (en) 2010-06-16
IN215218B (en) 2008-03-28
PL214276B1 (en) 2013-07-31
ZA200309911B (en) 2005-05-25
CA2454306A1 (en) 2003-02-27
BR0212185A (en) 2004-10-05
HUP0401019A2 (en) 2004-09-28
CA2454306C (en) 2012-11-13
DK1417175T3 (en) 2013-10-28
PL369031A1 (en) 2005-04-18
HU230124B1 (en) 2015-08-28
EP1417175B1 (en) 2013-07-24
TW201018664A (en) 2010-05-16
JP2005502658A (en) 2005-01-27
US7402676B2 (en) 2008-07-22
HUP0401019A3 (en) 2005-11-28
IN2004MU00007A (en) 2005-11-18
US7227025B2 (en) 2007-06-05

Similar Documents

Publication Publication Date Title
EP1417175B1 (en) Substituted dihydro 3-halo-1h-pyrazole-5-carboxylates, their preparation and use
AU2002355952A1 (en) Substituted dihydro 3-halo-1H-pyrazole-5-carboxylates their preparation and use
EP1537097B1 (en) Method for preparing 3-halo-4,5-dihydro-1 i h /i -pyrazoles
US20040171649A1 (en) Novel substituted 1h-dihydropyrazoles, their preparation and use
US7834186B2 (en) Preparation and use of 2-substituted-5-oxo-3-pyrazolidinecarboxylates
RU2317983C2 (en) Substituted dihydro-3-halogen-1h-pyrazol-5-carboxylates, their preparing and using
EP1944304B1 (en) Substituted 1h-dihydropyrazoles, their preparation and use

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BY BZ CA CH CN CO CR CU CZ DE DM DZ EC EE ES FI GB GD GE GH HR HU ID IL IN IS JP KE KG KP KR LC LK LR LS LT LU LV MA MD MG MN MW MX MZ NO NZ OM PH PL PT RU SD SE SG SI SK SL TJ TM TN TR TZ UA UG US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ UG ZM ZW AM AZ BY KG KZ RU TJ TM AT BE BG CH CY CZ DK EE ES FI FR GB GR IE IT LU MC PT SE SK TR BF BJ CF CG CI GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003/09911

Country of ref document: ZA

Ref document number: 159507

Country of ref document: IL

Ref document number: 200309911

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: 2002355952

Country of ref document: AU

Ref document number: 10482458

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2454306

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2003521209

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: PA/A/2004/001323

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 20028157753

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020047002150

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002752810

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002752810

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642