WO2003012399A1 - Method for determining polymerization conversion, method and apparatus for producing polymer and polymerization reactor - Google Patents

Method for determining polymerization conversion, method and apparatus for producing polymer and polymerization reactor Download PDF

Info

Publication number
WO2003012399A1
WO2003012399A1 PCT/JP2002/007721 JP0207721W WO03012399A1 WO 2003012399 A1 WO2003012399 A1 WO 2003012399A1 JP 0207721 W JP0207721 W JP 0207721W WO 03012399 A1 WO03012399 A1 WO 03012399A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerization
polymerization reaction
reaction solution
density
conversion rate
Prior art date
Application number
PCT/JP2002/007721
Other languages
French (fr)
Japanese (ja)
Inventor
Minoru Matsuura
Original Assignee
Zeon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corporation filed Critical Zeon Corporation
Priority to JP2003517543A priority Critical patent/JPWO2003012399A1/en
Publication of WO2003012399A1 publication Critical patent/WO2003012399A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/36Analysing materials by measuring the density or specific gravity, e.g. determining quantity of moisture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/002Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity using variation of the resonant frequency of an element vibrating in contact with the material submitted to analysis

Definitions

  • the present invention relates to a method for measuring a polymerization conversion rate of a polymerization reaction solution, a method and an apparatus for producing a polymer using the method, and a polymerization reaction tank used for these.
  • the polymerization conversion is widely used as one of the indicators of the progress of polymerization.
  • a polymerization reaction solution is sampled and the amount of unreacted monomer contained therein is measured or the amount of polymer is measured. I have to call. It takes a long time to directly measure the polymerization conversion rate using either method, and if it is intended to determine the end time of polymerization based on the polymerization conversion rate obtained by such a method, the measurement results When this is obtained, a situation may occur in which the polymerization conversion rate has already exceeded the target. If the termination time is determined based on the polymerization conversion at an early stage to avoid this problem, there is a problem because the difference from the target polymerization conversion becomes large. For this reason, a method for obtaining the polymerization conversion rate from properties that are considered to be correlated with the polymerization conversion rate is being studied.
  • An object of the present invention is to provide a method for measuring the polymerization conversion rate which can accurately and quickly measure the polymerization conversion rate of a polymerization reaction liquid without taking the polymerization reaction liquid out of the polymerization reaction tank.
  • the present invention provides a method and an apparatus for producing a polymer capable of industrially producing a polymer having a desired quality without delaying the completion of the reaction, and a polymerization reaction used in these. The purpose is to provide a tank.
  • the present inventors do not directly measure the polymerization conversion rate of the polymerization reaction solution during and after the polymerization or after the completion of the polymerization, but can perform the measurement in a relatively short time, and have a correlation with the polymerization conversion rate.
  • We also found that the use of a vibratory densitometer enables the density of a polymerization reaction solution to be measured in a short time with high measurement accuracy.
  • the polymerization conversion rate of the polymerization reaction solution is not directly measured, and the density of the polymerization reaction solution, which is a substitute property thereof, is measured using a vibrating densitometer, and the density is measured.
  • the value of the polymerization conversion rate of the polymerization reaction solution is calculated. Since the density of the polymerization reaction solution is measured using a vibrating densitometer, the density of the polymerization reaction solution can be obtained with a simple operation with high measurement accuracy and in a short time. In addition, since the vibrating densitometer is installed inside the polymerization reaction tank, the density can be measured inside the polymerization reaction tank without taking out the polymerization reaction solution outside the polymerization reaction tank.
  • a method for producing a polymer comprising: a polymerization step of polymerizing a monomer in the polymerization reaction tank to obtain a polymerization reaction solution; and a polymerization termination step of terminating polymerization at a predetermined polymerization conversion rate. Measuring the density of the polymerization reaction solution in the polymerization reaction tank using a vibration type densitometer attached inside the polymerization reaction tank;
  • the calculated value of the polymerization conversion rate of the polymerization reaction liquid is transmitted to at least one step selected from the raw material supply step, the polymerization step, and the polymerization termination step, and the polymerization reaction factor in each step is changed.
  • a method for producing a polymer having a factor changing step is provided.
  • the method for producing each polymer according to the present invention can be realized by, for example, the following apparatus.
  • the apparatus for producing a polymer according to the present invention includes:
  • a vibratory densitometer mounted inside the polymerization reaction tank and measuring the density of the polymerization reaction solution in the polymerization reaction tank;
  • a polymerization conversion rate calculating means for calculating a value of a polymerization conversion rate of the polymerization reaction solution from a value of the density measured by the densitometer;
  • a factor changing means for changing a polymerization reaction factor in accordance with the value of the polymerization conversion rate of the polymerization reaction solution calculated by the polymerization conversion rate calculating means.
  • a polymer having a desired quality can be produced industrially advantageously without losing the end time of the reaction.
  • a method for producing a polymer comprising: a polymerization step of polymerizing a monomer in the polymerization reaction tank to obtain a polymerization reaction solution; and a polymerization termination step of terminating polymerization at a predetermined polymerization conversion rate.
  • a method for producing a polymer having the same is provided.
  • the method for producing each polymer according to the present invention can be realized by, for example, the following apparatus.
  • the apparatus for producing a polymer according to the present invention includes:
  • a vibratory densitometer mounted inside the polymerization reaction tank and measuring the density of the polymerization reaction solution in the polymerization reaction tank;
  • a factor changing means for changing a polymerization reaction factor in accordance with the value of the density measured by the densitometer.
  • the present inventors have found that there is a predetermined correlation between the density of the polymerization reaction solution and the polymerization conversion rate of the polymerization reaction solution. Even if the polymerization conversion rate is not calculated from the density of the reaction solution, the same effect can be obtained by controlling the density of the polymerization reaction solution. That is, even with these methods, a polymer having the desired quality can be industrially advantageously produced without losing the end time of the reaction.
  • the following polymerization reaction tank can be used.
  • the polymerization reaction tank according to the present invention has a vibration type densitometer installed so that the measurement terminal is immersed in the polymerization reaction solution to be obtained inside.
  • a tuning fork type vibratory densitometer it is preferable to use a tuning fork type vibratory densitometer to measure the density of the polymerization reaction solution with higher measurement accuracy and in a shorter time.
  • an emulsion polymerization reaction liquid as the polymerization reaction liquid.
  • an emulsion polymerization reaction solution of a copolymer composed of an unsaturated ether or aromatic vinyl and a conjugated diene it is preferable to use an emulsion polymerization reaction solution of a copolymer composed of an unsaturated ether or aromatic vinyl and a conjugated diene.
  • the polymerization reaction factor is at least one selected from a raw material supply element, a polymerization element, and a polymerization termination element
  • the raw material supply element is a monomer, a polymerization initiator, and other polymerization auxiliary materials.
  • the polymerization terminating element is at least one selected from charging of a polymerization terminator, cooling in the polymerization reaction tank, and depressurization in the polymerization reaction tank. It is preferred that
  • the calculated value of the polymerization conversion rate of the polymerization reaction solution is transmitted to the raw material supply step, and at least one selected from the presence or absence of additional input of each raw material, the timing of additional input, and the additional input amount.
  • the measured density value is transmitted to the raw material supply step, and at least one selected from the presence / absence of additional input of each raw material, the time of additional input, and the additional input amount is changed. it can.
  • the monomer and / or the polymerization initiator can be additionally charged into the polymerization reaction tank at least once between the start of the polymerization and the termination of the polymerization.
  • the calculated value of the polymerization conversion rate of the polymerization reaction solution is transmitted to the polymerization termination step, and the value is selected from the addition of a polymerization terminator, the cooling in the polymerization reaction vessel, and the reduced pressure in the polymerization reaction vessel.
  • the polymerization reaction is stopped by at least one of the methods described above.
  • the value of the measured density is transmitted to the polymerization stopping step, and at least one selected from charging of a polymerization stopping agent, cooling in the polymerization reaction tank and depressurization in the polymerization reaction tank is selected. It is preferable to stop the polymerization reaction by a method.
  • FIG. 1 is a block diagram showing an example of an apparatus for realizing a method for producing a polymer by patch-type emulsion polymerization according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the relationship between the density of the polymerization reaction solution and the polymerization conversion rate of the polymerization reaction solution in Example 1 (however, the straight line in the diagram shows the relationship obtained by regression analysis).
  • FIG. 3 is a cross-sectional view showing an example of a polymerization reaction tank used in the apparatus of FIG.
  • FIG. 4 is a conceptual diagram showing a vibratory densitometer attached to the polymerization reactor of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the polymerization reaction liquid applicable to the present invention is not particularly limited as long as the density of the polymerization reaction liquid changes depending on the polymerization conversion rate and the change in density can be measured with a vibrating densitometer. It may be obtained by solution polymerization or may be obtained by other than solution polymerization. As an example of the latter, the method of the present invention can be applied to a polymerization reaction solution in which the polymer particles are an emulsion in which the polymer particles are uniformly dispersed in the emulsion.
  • polymer emulsion examples include, but are not limited to, homopolymers or copolymers composed of only conjugated gens such as butadiene polymer, isoprene polymer, and butadiene-isoprene copolymer; acryloetrile-butadiene copolymer Unsaturated nitriles such as acrylonitrile-butadiene-isoprene copolymer, acrylonitrile-co-isoprene copolymer, acrylonitrile-styrene-butadiene copolymer, and acrylonitrile-styrene-styrene-isoprene copolymer Copolymers composed of styrene and conjugated diene; aromatic vinyls such as styrene-butadiene copolymer and styrene-isoprene copolymer other than copolymers composed of unsaturated nitrile
  • a copolymer composed of unsaturated nitrile and a conjugated diene, and a polymerization reaction solution of a homopolymer composed solely of acrylate or a copolymer are preferable.
  • a polymerization reaction solution of a copolymer composed of an unsaturated-tolyl and a conjugated diene is more preferable, and a polymerization reaction solution of an atarilonitrile-butadiene copolymer is particularly preferable.
  • Polymer emulsion for example, emulsion polymerization, seeding? Although it can be obtained by Lich polymerization, fine suspension polymerization, or seeded fine suspension polymerization, in the present invention, it is preferable to use an emulsion polymerization reaction solution obtained by emulsion polymerization.
  • the emulsion polymerization reaction liquid often contains an emulsifier, an unreacted monomer, and a polymerization initiator or a residue of a polymerization initiator, in addition to the above polymer and water.
  • it may contain a molecular weight regulator, a cocatalyst, a pH regulator, and the like.
  • the emulsion polymerization reaction liquid may be in the course of polymerization or after the polymerization.
  • the content of each component of the polymerization reaction solution is not particularly limited as long as the density can be made uniform by stirring.
  • a vibration type densitometer is used for measuring the density of the polymerization reaction solution.
  • the vibratory densitometer vibrates a vibrator (also called a sensitive plate) at a constant frequency and amplitude in a reaction solution sample, and determines the driving force or vibration attenuation required to drive the vibrator, and the density of the reaction solution sample.
  • This is a device that measures the density of the reaction solution sample by the correlation between By using this vibratory densitometer, measurement accuracy can be improved.
  • vibratory densitometers There are various types of vibratory densitometers. For example, it is one of the “single vibration type” that vibrates one vibrator like a pendulum, and the “ultrasonic vibration type” that vibrates one vibrator like a pendulum by ultrasonic waves. There are “torsional vibration type”, in which one vibrator is torsionally vibrated, and “tuning fork vibration type”, in which two vibrators resonate.
  • the tuning fork type vibrator is based on the fact that the amount of current required to maintain the vibrator at a constant frequency and a constant amplitude increases and decreases with the density of the sample. It measures the amount of current and converts it to a density value.
  • each of the above types can be appropriately selected and used.
  • a tuning fork type vibratory density meter vibrates in opposite directions when the two vibrators as the measurement terminals resonate, so that external effects such as reflected vibration from the container are more likely to be canceled out, and compared to other types. Measurement error is small and the response is excellent.
  • the mounting position of the tuning fork type vibratory density meter is not particularly limited as long as the two vibrators are mounted so as to be immersed in the polymerization reaction solution in the polymerization reaction tank. Since these two vibrators are projections on the inner surface of the polymerization reaction tank, the polymer easily adheres to them.However, compared with projections such as measurement terminals of a density meter installed in the circulation pipeline, the polymer is attached. It is difficult to attach and can be easily removed even if attached. Also, if the two vibrators are always vibrating during polymerization, the polymer will not easily adhere and accurate measurement will be difficult.
  • Measurement range of the density of the vibration type density meter in order to reduce the measurement error is preferably 6 0 0 ⁇ 1 2 0 0 kg / m 3, more preferably 7 0 0 ⁇ : L l OO kg / m 3 , particularly preferably 8 0 0 ⁇ 1 0 5 0 kg / m 3.
  • the value of the polymerization conversion rate of the polymerization reaction solution is calculated from the measured value (measured value) of the density of the polymerization reaction solution based on a predetermined conversion formula.
  • the value of the polymerization conversion may be calculated manually, but the calculation time can be easily reduced by using an information processing device such as a computer.
  • the method of calculating the value of the polymerization conversion rate from the measured value of the density of the polymerization reaction solution is as follows.
  • the relationship between the density of the polymerization reaction solution and the polymerization conversion rate is obtained in advance in the form of a conversion formula under the same polymerization conditions. What is necessary is just to calculate and obtain based on the conversion formula.
  • the polymerization conversion rate used for obtaining the relational expression is determined by collecting the polymerization reaction solution, measuring the amount of unreacted monomer contained therein, and quenching by the polymerization reaction among the monomers subjected to polymerization. Determined as the ratio of the amount consumed, or based on the amount of polymer contained in the polymerization reaction liquid relative to the amount of monomer subjected to polymerization.
  • the amount of unreacted monomer in the polymerization reaction solution can be determined by, for example, chromatographic analysis. Further, the amount of the polymer in the polymerization reaction solution may be determined by separating the polymer from the polymerization reaction solution, washing and drying.
  • the conversion formula to the polymerization conversion value can usually be determined by regression analysis.
  • an initial conversion formula may be obtained, and this may be optimized over time.
  • the initial conversion formula f (1) (p) is obtained by, for example, preparing several types of polymerization reaction solutions having different polymerization conversion rates, measuring the density of each polymerization reaction solution, and obtaining the least squares method of the density and the polymerization conversion rate. be able to.
  • M (2) is measured, and an optimized equation f (2) (p) is obtained based on the new data of p (2, and M (2 ).
  • This ⁇ ⁇ (2 > ( ⁇ For example, there are autoregression, moving average, and autoregression moving average.
  • the correlation coefficient of the calibration curve is 0.9 or more, preferably 0.95 or more, more preferably 0.9% or less. That is all.
  • the range of the polymerization conversion that can be measured by the method for measuring the polymerization conversion according to the present invention is not particularly limited as long as the change in the density of the polymerization reaction solution can be measured.
  • the calculated value of the polymerization conversion rate calculated by the method for measuring the polymerization conversion rate according to the present invention, and the amount or weight of the unreacted monomer actually calculated according to an ordinary method It is possible to reduce the error (absolute value of the difference between the measured value and the measured value by the method of the present invention) from the measured value of the polymerization conversion obtained by measuring the amount of coalescence.
  • the difference between the calculated value and the actually measured value can be suppressed to an absolute value, preferably 2% or less, more preferably 1.5% or less, and particularly preferably 1% or less.
  • the method for measuring the polymerization conversion rate of the present invention it is not necessary to collect the polymerization reaction solution and the like, and the density of the polymerization reaction solution is constantly measured. Since it is output as, it is input to a computer or the like, processed and output, so that the polymerization conversion can be obtained at the same time as the measurement.
  • the polymerization reaction factor is changed according to the value of the polymerization conversion rate in the emulsion polymerization reaction solution calculated as described above.
  • the polymerization reaction factors include the presence or absence of additional introduction of monomer, polymerization initiator and other polymerization auxiliary materials as raw material supply elements, the timing and amount of additional addition; the reaction temperature as an emulsion polymerization element Controlling the flow rate of the refrigerant or heat medium, reaction pressure, polymerization reaction
  • the stirring speed of the tank and the method of stirring the polymerization reaction tank; and the addition of a polymerization terminator as a polymerization termination element, cooling in the polymerization reaction tank, and depressurization in the polymerization reaction tank are exemplified.
  • the deviation from the target quality can be adjusted by changing the reaction conditions.
  • at least one additional addition of monomer and / or polymerization initiator to the polymerization system can adjust the polymerization conversion rate. It is effective for
  • the method of determining the amount that changes the polymerization reaction factor is not particularly controlled.
  • proportional control, proportional integral control, proportional integral derivative control, fuzzy control, adaptive control, etc. can be applied as the control algorithm.
  • the polymerization conversion of the polymerization reaction solution after the polymerization is measured in a short time, and the polymerization is performed as it is depending on whether it is within the target polymerization conversion.
  • the present invention is not limited to batch polymerization, but may be applied to continuous polymerization.
  • the polymerization conversion rate of the polymerization reaction solution is not directly measured, and the density of the polymerization reaction solution, which is a substitute property thereof, is measured using a vibrating densitometer.
  • the value of the polymerization conversion rate of the polymerization reaction liquid is calculated from the above. Since the density of the polymerization reaction solution is measured by using a vibration densitometer, the density of the polymerization reaction solution can be obtained with a simple operation with high measurement accuracy and in a short time.
  • the vibratory densitometer is installed inside the polymerization reaction tank, the density of the polymerization reaction liquid can be measured inside the polymerization reaction tank without taking it out of the polymerization reaction tank. As a result, a polymer of the desired quality can be produced industrially advantageously without losing the end of the reaction.
  • the "target quality" is not limited to the molecular viscosity, molecular weight, molecular weight distribution and the like of the polymer, but also refers to the production efficiency such as the yield of the polymer relative to the amount of the monomer used. Used in the sense of including. For example, the efficiency of utilization of production equipment when producing a polymer by multiple patch-type polymerizations, such as the time during which a polymerization reaction does not proceed in a polymerization reactor in a patch-type polymerization, is also included.
  • a polymer production apparatus 300 having a configuration shown in FIG. 1 can be used.
  • the following description exemplifies the case of emulsion polymerization.
  • the production apparatus 300 has a polymerization reaction tank 1 for obtaining an emulsion polymerization reaction solution by an emulsion polymerization reaction.
  • the polymerization reaction tank 1 has a line 200 to which deionized water 20 is supplied, a line 210 to which monomer 21 is supplied, and? A line 220 to which the W danger 22 is supplied, a line 230 to which the polymerization initiator 23 is supplied, a line 240 to which the cocatalyst 24 is supplied, and a molecular weight regulator 25
  • the supplied line 250 is connected.
  • Lines 200, 210, 220, 230, 240, 250 are equipped with automatic control valves 2009, 219, 229, 239, 249, 2 5 9 are arranged.
  • the automatic control valves 209 to 255 are provided to the polymerization reaction tank 1 based on the data sent from the flowmeters 208, 218, 228, 238, 248, 258.
  • the degree of opening is adjusted to change the input amounts of deionized water 20, monomer 21, emulsifier 22, polymerization initiator 23, cocatalyst 24 and molecular weight regulator 25.
  • the polymerization reaction tank 1 may be connected to another line (not shown) for supplying other polymerization auxiliary materials.
  • a temperature control member 29 is mounted around the polymerization reaction tank 1.
  • the temperature control member 29 is connected to a line 260 to which a refrigerant or a heat medium 26 is supplied.
  • an automatic regulating valve 269 is arranged in line 260.
  • the automatic regulating valve 269 is used to control the temperature of the polymerization reaction tank 1 based on the data sent from the thermometer 2667 based on the data from the thermometer 10 based on the data from the thermometer 10. In order to change the flow rate of the heating medium 26 and, as a result, to change the temperature in the polymerization reaction tank 1, the opening thereof is adjusted.
  • a pressure reduction degree adjustment line 280 is connected to the upper part of the polymerization reaction tank 1.
  • Line 2 At 80, an automatic regulating valve 289 and a compressor 286 as pressure reducing means are arranged. The opening of the automatic regulating valve 289 is adjusted based on the data sent from the regulator 287 in order to change the degree of pressure reduction in the polymerization reactor 1.
  • a transfer tank 2 is connected to the polymerization reaction tank 1 through a line 70.
  • the transfer tank 2 is connected to a line 270 to which a polymerization terminator 27 is supplied.
  • an automatic regulating valve 279 is arranged on line 270. The opening of the automatic adjusting valve 279 is adjusted based on data sent from the flow meter 278 in order to change the amount of the polymerization terminator 27 to be transferred to the transfer tank 2.
  • the configuration is such that the polymerization terminator 27 is charged into the transfer tank 2, but the present invention is not limited to this.
  • the line 270 may be connected to the polymerization reaction tank 1, and the polymerization terminator 27 may be added to the emulsion polymerization reaction liquid in the polymerization reaction tank 1.
  • a polymerization terminator 27 is injected into the line 70 connecting the polymerization reaction tank 1 and the transfer tank 2, that is, while the emulsion polymerization reaction solution is being transferred from the polymerization reaction tank 1 to the transfer tank 2. It can be configured as
  • the polymerization reaction tank 1 has a stirring means 11 for stirring the inside, and the emulsion polymerization reaction solution 21 in the reaction tank is used by the stirring means 11 from the start to the end of the polymerization. Stirring is possible so that the density of 1 is substantially uniform.
  • a vibrating density meter 42 is mounted inside the polymerization reaction tank 1.
  • the vibrating densitometer 42 is installed so that the vibrator 426 as a measuring terminal is immersed in the emulsion polymerization reaction liquid 211 to be obtained inside the polymerization reaction tank 1.
  • a tuning fork type vibratory density meter is used as the vibratory density meter 42.
  • the vibratory densitometer 42 used in the present embodiment is suspended and supported by a device main body (not shown) via a holding section 42.
  • a pair of support members 424 are attached to the holding portion 422.
  • a vibrator 426 as a measuring terminal is attached to the tip of each support member 424.
  • Each support member 4 24 is provided with an electromagnetic drive unit (not shown) for vibrating the vibrator 4 26. The electromagnetic force generated in this electromagnetic drive unit (not shown) and the support member Due to the elasticity of 4 24, the vibrator 4 26 vibrates in the emulsion polymerization reaction liquid 2 11 (see FIG. 3).
  • the vibrator 4 2 when immersed in the emulsion polymerization reaction solution 2 1 1 6, emulsion polymerization viscous resistance between the reaction liquid 21 1, oscillator 4 capable of detecting the displacement sensor 427 as a change in amplitude value of 26 is attached.
  • a liquid level sensor (water level sensor) 425 for controlling the positional relationship between the density meter 42 and the liquid level of the emulsion polymerization reaction liquid 211 is attached to the holding portion 422 between the pair of support members 4 24, 424. There is.
  • the liquid level sensor 425 is not particularly limited, and any type such as a light refractive index sensor type can be used.
  • the value of the polymerization conversion of the emulsion polymerization reaction liquid 211 is calculated from the value of the density of the emulsion polymerization reaction liquid 211.
  • the estimation calculation device 5 a computer device is usually used.
  • a control operation device 6 as a factor changing means is connected to the estimation operation device 5, and the calculated value of the polymerization conversion calculated by the estimation operation device 5 is a predetermined output signal. Is input to the control arithmetic unit 6 as a factor changing means.
  • the control arithmetic unit 6 controls the flow meters 208, 218, 228, 238, 248, 258, 278 based on the output signal from the estimating arithmetic unit 5 and, by extension, automatically adjusts the valves 209, 219, 229, 239, 249, 259, 269, 279, 289.
  • unsaturated nitriles As unsaturated nitriles, atarilonitrile; ⁇ -chloroatarylonitrile, alpha - Puromoakuriro - A halogenoalkyl acrylonitrile such as tolyl; methacrylonitrile nitrile, ethacrylonitrile one alpha such Arukiruakuriro - tolyl and the like. Among them, acryloetrile is preferred. These unsaturated nitriles may be used alone or in combination of two or more.
  • aromatic butyl examples include styrene, -methylstyrene, o-methylstyrene, P-methylstyrene, pt-butylstyrene, 1,3-dimethylstyrene, biernaphthalene, and buranthracene. Of these, styrene is preferred. These aromatic butyls may be used alone or in combination of two or more.
  • conjugated diene examples include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, and 2,4-hexadiene. Of these, 1,3-butadiene and isoprene are preferred, and 1,3-butadiene is particularly preferred.
  • conjugated gens may be used alone or in combination of two or more.
  • the flow rate of the refrigerant or heat medium 26 is adjusted by the automatic adjustment valve 26 9 controlled by the controller 26 7 based on the data from the thermometer 10.
  • the temperature inside is adjusted (emulsion polymerization step).
  • stirring is performed by the stirring means 11 of the polymerization reaction tank 1 so that the density of the emulsion polymerization reaction liquid 211 in the reaction tank becomes substantially uniform.
  • the vibrating densitometer 4 2 provided so that the vibrator 4 26 as a measuring terminal is immersed in the emulsion polymerization reaction liquid 2 1 1. Measure the density. Specifically, by operating an electromagnetic drive unit (not shown), the vibrators 426 are oscillated in opposite phases and at the same cycle. At this time, the viscous resistance generated between the vibrator 4 26 arranged in the emulsion polymerization reaction liquid 2 11 and the emulsion polymerization reaction liquid 2 11 The density of the emulsion polymerization reaction liquid 211 is measured by detecting the change in the amplitude value of the liquid.
  • the change in the amplitude value is measured to measure the density of the emulsion polymerization reaction solution 2 11. Can be.
  • the value of the density of the emulsion polymerization reaction liquid 211 measured by the vibration type densitometer 42 is introduced as a predetermined output signal into the estimating arithmetic unit 5, and the value of the polymerization conversion is calculated.
  • the calculated value of the polymerization conversion is sent to the control arithmetic unit 6 as a predetermined output signal.
  • the control arithmetic unit 6 first compares the input value of the polymerization conversion with a preset target value of the polymerization conversion.
  • the addition of the monomer 21, the polymerization initiator 23, and other polymer auxiliary materials was added. Whether or not to add, timing and amount of additional charge (raw material supply element); flow rate of refrigerant or heating medium 26 that controls reaction temperature, reaction pressure, stirring speed of polymerization reactor 1 and stirring method of polymerization reactor 1 (emulsion polymerization elements); and polymerization terminator 2 7-on of the cooling and polymerization under reduced pressure in the reaction vessel 1 in the polymerization reaction vessel 1 (polymerization termination element); even without least selected from a control signal for changing one Generate Finally, the generated control signal is sent to the adjusters 207, 217, 227, 237, 247, 257, 267, 27
  • the opening degree is adjusted to be appropriate so that the determined additional components and the determined amount are additionally charged into the polymerization reaction tank 1.
  • the regulator 267 adjusts the automatic opening of the automatic adjustment valve 269 to an appropriate degree so that the cooling medium or the heating medium 26 flows at an appropriate flow rate. Thereby, the temperature in the polymerization reaction tank 1 is adjusted.
  • the emulsion polymerization reaction liquid is transferred to the transfer tank 2 based on the data from the control arithmetic unit 6.
  • the regulator 277 that has received the signal issues an instruction to adjust the flow rate by the flow meter 278, and sends an instruction to the automatic regulating valve 279. Transfer a certain amount of polymerization terminator 27 Adjust the opening to a proper value so that it can be inserted in 2. When a polymerization terminator 27 is charged into the transfer tank 2, the polymerization reaction is stopped (polymerization termination step).
  • the processing device 6 determines that shortstop, in addition to the polymerization terminator 2 7 of the closing, the control signal generated by the control calculation unit 6, the degree of reduced pressure adjustment line 2 8 0 to disposed the automatic regulating valve 2
  • the automatic control valve 289 receives this signal, opens the valve fully, activates the compressor 286, and draws the pressure inside the polymerization reaction tank 1 through the line 280 under reduced pressure. (Polymerization stopping step).
  • the degree of pressure reduction at this time may be set so that the pressure (gauge pressure) in the polymerization reaction tank 1 is, for example, about 180 kPa or less.
  • the polymerization reaction stops. If the opening degree of the automatic control valve 26 is adjusted and the amount of the refrigerant 26 flowing in the temperature control member 29 is increased, the inside of the polymerization reaction tank 1 will be cooled (polymerization stop step). Can also stop the polymerization reaction.
  • the polymerization reaction tank 1 in which the polymerization has been stopped is washed and prepared so that the next polymerization can be performed.
  • the polymerization terminator 27 is charged in the transfer tank 2.However, for example, when the transfer from the polymerization reaction tank 1 to the transfer tank 2 takes time, , A polymerization terminator 27 may be added.
  • the value of the polymerization conversion rate of the polymerization reaction solution is calculated from the value of the density of the polymerization reaction solution measured using the vibration type densitometer, and the calculated value of the polymerization conversion rate is calculated.
  • the polymerization reaction factor is changed accordingly.
  • the present invention is not limited to this method, and the polymerization reaction factor may be changed according to the measured value of the density of the polymerization reaction solution. Because there is a predetermined correlation between the density of the polymerization reaction solution and the polymerization conversion rate of the polymerization reaction solution, the polymerization reaction factor is changed according to the value of the density of the polymerization reaction solution.
  • the estimator 5 (see FIG. 1 or 3) and The step of calculating the polymerization conversion rate by the apparatus 5 can be omitted.
  • the density data output from the vibrating density meter 42 is introduced into the control operation device 6 (see FIG. 1) of the device 300, and is used for subsequent control.
  • the actually measured polymerization conversion rate is a value obtained by drying the polymerization reaction solution and calculating the remaining solid content.
  • Deionized water 285 parts, acrylonitrile 50 parts, butadiene 50 parts, sodium dodecyl sulfate 3 parts, dodecyl mercaptan 0.35 parts, iron sulfate 0.1 parts Department and Cumenhai Dropbox 0.01 parts.
  • the reaction was maintained at 10 ° C. with sufficient stirring so that the whole became uniform. Thereafter, the density of the polymerization reaction solution was measured at 10 points in accordance with the progress of the polymerization. Simultaneously with the measurement of the density, 0.01 parts of the polymerization reaction solution was sampled, and the measured polymerization conversion was measured.
  • the calibration curve (regression line) is shown in FIG.
  • the black circles in FIG. 2 represent the data used to create the calibration curve.
  • Example 1 After the calibration curve was prepared in Example 1, all the polymerization reaction liquid was taken out of the polymerization reaction tank, and after sufficiently washing the polymerization reaction tank, the polymerization reaction was performed in the same manner as in Example 1. Measures the density and automatically calculates the density based on the calibration curve of Example 1 The polymerization conversion was calculated. The polymerization conversion was checked every 20 minutes, and at the same time, 0.01 part of the polymerization reaction solution was sampled and analyzed to measure the actual polymerization conversion. Table 1 shows the density, the calculated polymerization conversion, the measured polymerization conversion, and the measurement error every 60 minutes and 560 minutes after the start of the polymerization.
  • the density of the polymerization reaction liquid reached a value (951 kg Zm 3 ) corresponding to the desired polymerization conversion rate of 75%, so that 0.1 part of hydroxylamine sulfate was used. And 0.1 part of sodium hydroxide were added to stop the reaction.
  • the measured polymerization conversion rate after the termination of the polymerization was 74%.
  • the polymerization reaction was carried out in the same manner as in Example 1. Every 20 minutes, 0.01 part of the polymerization reaction solution was sampled and analyzed, and the measured polymerization conversion was measured. The measurement took 20 minutes. Table 1 shows the measured polymerization conversion rate every 60 minutes and at 560 minutes after the start of polymerization. From the measured polymerization conversion rates (66%, 69%, 71%, respectively) of 540 minutes, 560 minutes and 580 minutes after the start of polymerization, the polymerization conversion rate was approximately 1%. It was assumed that it would take 8 minutes to ascend, and it was estimated that the target polymerization conversion rate of 75% was reached after 580 minutes and 32 minutes, that is, 612 minutes after the start of the polymerization.
  • a polymerization reaction was performed in the same manner as in Example 1 using the above correlation as a calibration curve.
  • the polymerization conversion was automatically calculated based on the calibration curve from the output of the densitometer.
  • the polymerization conversion was checked every 20 minutes, and at the same time, 0.01 part was sampled and analyzed to measure the polymerization conversion.
  • the polymerization conversion rate calculated from the densities measured at 60 and 580 minutes after the start of polymerization and at 60 and 580 minutes after the start of polymerization, the polymerization conversion rate obtained by analyzing the collected polymerization reaction solution, and the error between them are shown in the table. Shown in 1.
  • Comparative Example 1 it takes time to determine the polymerization conversion rate by analyzing the polymerization reaction solution, and it is difficult to stop the polymerization at the desired polymerization conversion rate.
  • Example 2 according to the measurement method of the present invention, the density of the polymerization reaction solution in the polymerization reaction tank was measured using a tuning fork vibrating densitometer attached inside the polymerization reaction.
  • the polymerization conversion rate is calculated by using a calibration curve created based on the density of the polymerization reaction solution previously measured by the method and the polymerization conversion rate actually measured. For this reason, the polymerization conversion can be measured immediately with high accuracy, and the error with the target polymerization conversion can be reduced, and the polymerization can be stopped. This effect is maintained even after repeated polymerization.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

A method for determining a polymerization conversion which comprises measuring a density of a polymerization reaction mixture by mans of a vibrating densimeter, and calculating the value of polymerization conversion of the polymerization reaction mixture from the resultant value of density. The method, which determines a polymerization conversion by using a density of a polymerization reaction mixture measured by a vibrating densimeter, allows the determination of a polymerization conversion with simple and easy operations, with high accuracy of measurement, and in a short time, and further, allows the determination of a conversion to be carried out through the measurement by a densimeter attached to the inside of a polymerization reactor, without taking a polymerization mixture out of the reactor.

Description

明糸田書 重合転化率の測定方法、 重合体の製造方法及び装置、 並びに重合反応槽 発明の属する技術分野  Akira Itoda method for measuring polymerization conversion, method and apparatus for producing polymer, and polymerization reactor
本発明は、 重合反応液の重合転化率を測定する方法、 該方法を用いた重合体の 製造方法及び装置、 並びにこれらに用いられる重合反応槽に関する。 背景技術  The present invention relates to a method for measuring a polymerization conversion rate of a polymerization reaction solution, a method and an apparatus for producing a polymer using the method, and a polymerization reaction tank used for these. Background art
重合転化率は、 重合の進行状況を示す指標の一つとして広く用いられている。 しかし、 重合転化率を直接測定するには、 重合反応液を採取して、 そこに含有さ れる未反応の単量体量を測定するか、 重合体量を測定するかのいずれかの方法に よらなければならない。 いずれの方法を用いても重合転化率を直接測定するには、 長時間を要し、 このような方法により得られた重合転化率に基づいて重合終了時 期を判断しょうとする場合、 測定結果が得られた時には既に目標の重合転化率を 越えているという事態が生じうる。 この問題を避けるために、 早い段階の重合転 化率を基に終了時期を決めると、 目標とする重合転化率との差が大きくなるので 問題がある。 そのため、 重合転化率と相関があると考えられる特性から、 重合転 化率を求める方法が検討されている。  The polymerization conversion is widely used as one of the indicators of the progress of polymerization. However, in order to directly measure the polymerization conversion, a polymerization reaction solution is sampled and the amount of unreacted monomer contained therein is measured or the amount of polymer is measured. I have to call. It takes a long time to directly measure the polymerization conversion rate using either method, and if it is intended to determine the end time of polymerization based on the polymerization conversion rate obtained by such a method, the measurement results When this is obtained, a situation may occur in which the polymerization conversion rate has already exceeded the target. If the termination time is determined based on the polymerization conversion at an early stage to avoid this problem, there is a problem because the difference from the target polymerization conversion becomes large. For this reason, a method for obtaining the polymerization conversion rate from properties that are considered to be correlated with the polymerization conversion rate is being studied.
乳化重合において、 単量体と重合体との密度の違いに注目し、 重合反応液の密 度変化から、 重合転化率を算出する方法が提案されている (S. PONNUSW AMYら, "ON— L I NE MON I TOR I NG OF P OLYMER I Z AT I ON REACTOR" , J o u r n a l o f Ap p l i e d P o 1 yme r S c i e n c e, v o l . 3 2, 3 23 9— 3 253 (1 98 6) 、 S. CANEGALLOら, "D e n s i me t r y f o r On— L i n e C o n v e r s i o n Mo n i t o r i n g i n Emu 1 s i o n Homo— a d C o p o l yme r i z a t i o n" , J o u r n a 1 o f Ap p l i e d P o l yme r S c i e n c e, v o l . 4 7, 9 6 1 - 9 7 9 (1 9 9 3) ) 。 これらの方法において、 密度の測定方法として 用いられているのは、 (1 ) 与えた振動に対する反響の大きさから測定する方法、In emulsion polymerization, attention has been paid to the difference in density between the monomer and the polymer, and a method for calculating the polymerization conversion rate from the change in the density of the polymerization reaction solution has been proposed (S. PONNUSW AMY et al., “ON- LI NE MON I TOR I NG OF P OLYMER IZ AT I ON REACTOR ", Journalof Applied P o 1 ymer Science, vol. 3 2, 3 23 9—3 253 (1 986), S. CANEGALLO et al. , "Densi me tryfor On—Line C onversion Monitoringin Emu 1sion Homo—ad Cop ol y mer rization", Journa 1 of Applied P ol ymer S cience, vol. 47, 9 6 1-9 7 9 (1 9 9 3)). In these methods, as a method of measuring the density The methods used are (1) a method of measuring from the magnitude of the reverberation to the applied vibration,
( 2 ) 質量式流量計のデータを解析して測定する方法、 (3 ) 色差計などによる 濃度測定結果から測定する方法などである。 (2) A method of analyzing and measuring data from a mass flow meter, and (3) A method of measuring from the results of concentration measurement using a color difference meter.
しかしながら、 (1 ) の反響の大きさを用いる場合、 一定の内径の管内に測定 対象があることが必要であり、 (2 ) の質量式流量計を用いる方法では、 一定の 管内の流れが必要である。 また、 (3 ) の色差計から密度を測定する方法におい ては、 透明な測定セルに重合反応液を入れて光を当てて吸光度を測定する。 この ため、 (1 ) 乃至 (3 ) のいずれの方法においても、 重合反応槽の内部での測定 は困難である。 そのため、 これらの方法では、 重合反応槽の内部から重合反応槽 の外部へ重合反応液を取り出し、 密度を測定し、 重合反応液を重合反応液に戻す 必要があり、 循環パイプラインを設置する必要がある。  However, when using the magnitude of the reverberation in (1), it is necessary that the measurement target be in a pipe with a fixed inner diameter, and in the method using a mass flow meter in (2), a certain flow in the pipe is required. It is. In the method of measuring density using a color difference meter in (3), the polymerization reaction solution is placed in a transparent measurement cell, and the sample is irradiated with light to measure the absorbance. For this reason, in any of the methods (1) to (3), measurement inside the polymerization reaction tank is difficult. Therefore, in these methods, it is necessary to take out the polymerization reaction liquid from inside the polymerization reaction tank to the outside of the polymerization reaction tank, measure the density, return the polymerization reaction liquid to the polymerization reaction liquid, and install a circulation pipeline. There is.
しかしながら、 循環パイプラインを設置した場合、 パイプ内部が詰まりやすく、 重合反応槽の洗浄不要な状態でも、 パイプ内部の洗浄が必要であった。 パイプ内 部の洗浄は、 非常に煩雑であり、 特にパイプを取り外して洗浄する場合は、 時間 がかかり、 また装置の安全性の観点から頻繁に取り外すことは好ましくない。 発明の開示  However, when a circulation pipeline was installed, the inside of the pipe was easily clogged, and the inside of the pipe was required to be cleaned even when the polymerization reactor did not need to be cleaned. Cleaning the inside of a pipe is very complicated, and it takes time, especially when removing and cleaning the pipe, and frequent removal is not preferable from the viewpoint of the safety of the equipment. Disclosure of the invention
本発明の目的は、 重合反応液の重合転化率を、 短時間で、 正確に、 しかも該重 合反応液を重合反応槽の外部へ取り出すことなく測定することができる重合転化 率の測定方法を提供することである。 また、 本発明は、 反応終了時期を逸するこ となく、 目的とする品質の重合体を、 工業的に有利に製造することができる重合 体の製造方法及び装置、 並びにこれらに用いられる重合反応槽を提供することも 目的とする。  An object of the present invention is to provide a method for measuring the polymerization conversion rate which can accurately and quickly measure the polymerization conversion rate of a polymerization reaction liquid without taking the polymerization reaction liquid out of the polymerization reaction tank. To provide. Further, the present invention provides a method and an apparatus for producing a polymer capable of industrially producing a polymer having a desired quality without delaying the completion of the reaction, and a polymerization reaction used in these. The purpose is to provide a tank.
本発明者らは、 重合途中及び Z又は重合終了後の重合反応液の重合転化率を直 接測定するのではなく、 比較的短時間で測定が行え、 かつ重合転化率と相関関係 があり、 その代用となり うる物性を探求した。 その結果、 重合反応液の密度と、 該重合反応液の重合転化率との間に、 所定の相関関係があるとの知見を得た。 ま た、 振動式密度計を用いることにより、 重合反応液の密度を、 高い測定精度で短 時間に測定することができるとの知見を得た。 さらに、 この振動式密度計を重合 反応槽の内部に取り付けることにより、 重合反応液を重合反応槽の外部へ取り出 すことなく、 重合反応液の密度を測定することができるとの知見も得た。 これら の知見に基づいて、 本発明を完成させるに至った。 The present inventors do not directly measure the polymerization conversion rate of the polymerization reaction solution during and after the polymerization or after the completion of the polymerization, but can perform the measurement in a relatively short time, and have a correlation with the polymerization conversion rate. We explored physical properties that could be used instead. As a result, it was found that there was a predetermined correlation between the density of the polymerization reaction solution and the polymerization conversion rate of the polymerization reaction solution. We also found that the use of a vibratory densitometer enables the density of a polymerization reaction solution to be measured in a short time with high measurement accuracy. Furthermore, this vibratory density meter is superposed It was also learned that the density of the polymerization reaction solution can be measured without taking the polymerization reaction solution out of the polymerization reaction tank by installing it inside the reaction tank. Based on these findings, the present invention has been completed.
すなわち、 本発明によれば、  That is, according to the present invention,
重合反応槽の内部に取り付けられた振動式密度計を用いて重合反応液の密度を 測定する工程と、  Measuring the density of the polymerization reaction solution using a vibration type densitometer attached inside the polymerization reaction tank;
前記測定された密度の値から、 前記重合反応液の重合転化率の値を算出するェ 程とを、 有する重合転化率の測定方法が提供される。  Calculating the value of the polymerization conversion rate of the polymerization reaction solution from the measured value of the density.
この発明によると、 重合反応液の重合転化率を直接的には測定せず、 その代用 物性である、 重合反応液の密度を、 振動式密度計を用いて測定し、 この密度の測 定値から重合反応液の重合転化率の値を算出する。 重合反応液の密度を、 振動式 密度計を用いて測定するので、 簡単な操作によって、 高い測定精度で、 かつ短時 間に、 前記重合反応液の密度を得ることができる。 また、 振動式密度計を重合反 応槽の内部に取り付けてあるので、 重合反応槽の外部へ重合反応液を取り出すこ となく、 その密度を重合反応槽の内部で測定することができる。  According to the present invention, the polymerization conversion rate of the polymerization reaction solution is not directly measured, and the density of the polymerization reaction solution, which is a substitute property thereof, is measured using a vibrating densitometer, and the density is measured. The value of the polymerization conversion rate of the polymerization reaction solution is calculated. Since the density of the polymerization reaction solution is measured using a vibrating densitometer, the density of the polymerization reaction solution can be obtained with a simple operation with high measurement accuracy and in a short time. In addition, since the vibrating densitometer is installed inside the polymerization reaction tank, the density can be measured inside the polymerization reaction tank without taking out the polymerization reaction solution outside the polymerization reaction tank.
また、 本発明によれば、  According to the present invention,
重合反応によって重合反応液を得る工程と、  A step of obtaining a polymerization reaction solution by a polymerization reaction,
重合反応槽の内部に取り付けられた振動式密度計を用いて前記重合反応液の密 度を測定する工程と、  Measuring the density of the polymerization reaction solution using a vibration type densitometer attached inside the polymerization reaction tank,
前記測定された密度の値から、 前記重合反応液の重合転化率の値を算出するェ 程と、  Calculating a value of a polymerization conversion rate of the polymerization reaction solution from the value of the measured density;
前記算出された重合体反応液の重合転化率の値に応じて、 重合反応因子を変化 させる工程とを、 有する重合体の製造方法が提供される。  Changing the polymerization reaction factor in accordance with the calculated value of the polymerization conversion rate of the polymer reaction solution.
また、 本発明によれば、  According to the present invention,
単量体、 重合開始剤及ぴその他の重合副資材からなる原料を、 重合反応槽に供 給する原料供給工程と、  A raw material supply step of supplying a raw material comprising a monomer, a polymerization initiator and other polymerization auxiliary materials to a polymerization reaction tank;
前記重合反応槽内で単量体を重合させ、 重合反応液を得る重合工程と、 所定の重合転化率で重合を停止させる重合停止工程とを、 有する重合体の製造 方法であって、 重合反応槽の内部に取り付けられた振動式密度計を用いて前記重合反応槽内の 重合反応液の密度を測定する工程と、 A method for producing a polymer, comprising: a polymerization step of polymerizing a monomer in the polymerization reaction tank to obtain a polymerization reaction solution; and a polymerization termination step of terminating polymerization at a predetermined polymerization conversion rate. Measuring the density of the polymerization reaction solution in the polymerization reaction tank using a vibration type densitometer attached inside the polymerization reaction tank;
前記測定された密度の値から、 前記重合反応液の重合転化率の値を算出するェ 程と、  Calculating a value of a polymerization conversion rate of the polymerization reaction solution from the value of the measured density;
前記算出された重合反応液の重合転化率の値を、 前記原料供給工程、 前記重合 工程及ぴ前記重合停止工程から選ばれる少なくとも一つの工程に伝達し、 各工程 での重合反応因子を変化させる因子変化工程とを、 有する重合体の製造方法が提 供される。  The calculated value of the polymerization conversion rate of the polymerization reaction liquid is transmitted to at least one step selected from the raw material supply step, the polymerization step, and the polymerization termination step, and the polymerization reaction factor in each step is changed. A method for producing a polymer having a factor changing step is provided.
本発明に係る前記各重合体の製造方法は、 例えば次に示す装置により実現する ことができる。  The method for producing each polymer according to the present invention can be realized by, for example, the following apparatus.
本発明に係る重合体の製造装置は、  The apparatus for producing a polymer according to the present invention includes:
重合反応によって重合反応液を得る重合反応槽と、  A polymerization reaction tank for obtaining a polymerization reaction solution by a polymerization reaction,
該重合反応槽の内部に取り付けられ、 該重合反応槽内の重合反応液の密度を測 定する振動式密度計と、  A vibratory densitometer mounted inside the polymerization reaction tank and measuring the density of the polymerization reaction solution in the polymerization reaction tank;
該密度計により測定された密度の値から、 前記重合反応液の重合転化率の値を 算出する重合転化率算出手段と、  A polymerization conversion rate calculating means for calculating a value of a polymerization conversion rate of the polymerization reaction solution from a value of the density measured by the densitometer;
該重合転化率算出手段により算出された重合反応液の重合転化率の値に応じて、 重合反応因子を変化させる因子変化手段とを、 有する。  A factor changing means for changing a polymerization reaction factor in accordance with the value of the polymerization conversion rate of the polymerization reaction solution calculated by the polymerization conversion rate calculating means.
これらの発明によると、 反応終了時期を逸することなく、 目的とする品質の重 合体を、 工業的に有利に製造することができる。  According to these inventions, a polymer having a desired quality can be produced industrially advantageously without losing the end time of the reaction.
また、 本発明によれば、  According to the present invention,
重合反応によって重合反応液を得る工程と、  A step of obtaining a polymerization reaction solution by a polymerization reaction,
重合反応槽の内部に取り付けられた振動式密度計を用いて前記重合反応液の密 度を測定する工程と、  Measuring the density of the polymerization reaction solution using a vibration type densitometer attached inside the polymerization reaction tank,
前記測定された密度の値に応じて、 重合反応因子を変化させる工程とを、 有す る重合体の製造方法が提供される。  Changing the polymerization reaction factor in accordance with the measured value of the density.
また、 本発明によれば、  According to the present invention,
単量体、 重合開始剤及ぴその他の重合副資材からなる原料を、 重合反応槽に供 給する原料供給工程と、 前記重合反応槽内で単量体を重合させ、 重合反応液を得る重合工程と、 所定の重合転^ ί匕率で重合を停止させる重合停止工程とを、 有する重合体の製造 方法であって、 A raw material supply step of supplying a raw material comprising a monomer, a polymerization initiator and other polymerization auxiliary materials to a polymerization reaction tank; A method for producing a polymer, comprising: a polymerization step of polymerizing a monomer in the polymerization reaction tank to obtain a polymerization reaction solution; and a polymerization termination step of terminating polymerization at a predetermined polymerization conversion rate. ,
重合反応槽の内部に取り付けられた振動式密度計を用いて前記重合反応槽内の 重合反応液の密度を測定する工程と、  Measuring the density of the polymerization reaction solution in the polymerization reaction tank using a vibration type densitometer attached inside the polymerization reaction tank;
前記測定された密度の値を、 前記原料供給工程、 前記重合工程及び前記重合停 止工程から選ばれる少なくとも一つの工程に伝達し、 各工程での重合反応因子を 変化させる因子変化工程とを、 有する重合体の製造方法が提供される。  Transmitting the value of the measured density to at least one step selected from the raw material supply step, the polymerization step and the polymerization stop step, and a factor changing step of changing a polymerization reaction factor in each step; A method for producing a polymer having the same is provided.
本発明に係る前記各重合体の製造方法は、 例えば次に示す装置により実現する ことができる。  The method for producing each polymer according to the present invention can be realized by, for example, the following apparatus.
本発明に係る重合体の製造装置は、  The apparatus for producing a polymer according to the present invention includes:
重合反応によつて重合反応液を得る重合反応槽と、  A polymerization reaction tank for obtaining a polymerization reaction solution by a polymerization reaction,
該重合反応槽の内部に取り付けられ、 該重合反応槽内の重合反応液の密度を測 定する振動式密度計と、  A vibratory densitometer mounted inside the polymerization reaction tank and measuring the density of the polymerization reaction solution in the polymerization reaction tank;
該密度計により測定された密度の値に応じて、 重合反応因子を変化させる因子 変化手段とを、 有する。  And a factor changing means for changing a polymerization reaction factor in accordance with the value of the density measured by the densitometer.
上述したように、 本発明者らは、 重合反応液の密度と、 該重合反応液の重合転 化率との間に、 所定の相関関係があるとの知見を得たことから、 わざわざ重合反 応液の密度から重合転化率を算出せずとも、 前記重合反応液の密度を制御するこ とにより、 同様の作用効果を奏することができる。 すなわち、 これらの 明によ つても、 反応終了時期を逸することなく、 目的とする品質の重合体を、 工業的に 有利に製造することができる。  As described above, the present inventors have found that there is a predetermined correlation between the density of the polymerization reaction solution and the polymerization conversion rate of the polymerization reaction solution. Even if the polymerization conversion rate is not calculated from the density of the reaction solution, the same effect can be obtained by controlling the density of the polymerization reaction solution. That is, even with these methods, a polymer having the desired quality can be industrially advantageously produced without losing the end time of the reaction.
本発明に係る前記各重合体の製造方法及び装置には、 例えば次に示す重合反応 槽を用いることができる。  In the method and apparatus for producing each polymer according to the present invention, for example, the following polymerization reaction tank can be used.
本発明に係る重合反応槽は、 内部で得られるべき重合反応液に測定端子が浸漬 するように設置された振動式密度計を有する。  The polymerization reaction tank according to the present invention has a vibration type densitometer installed so that the measurement terminal is immersed in the polymerization reaction solution to be obtained inside.
本発明では、 より一層、 高い ¾|定精度で、 短時間に、 重合反応液の密度を測定 するには、 音叉型の振動式密度計を用いることが好ましい。  In the present invention, it is preferable to use a tuning fork type vibratory densitometer to measure the density of the polymerization reaction solution with higher measurement accuracy and in a shorter time.
本発明では、 乳化重合反応液を前記重合反応液として用いることが好ましい。 本発明では、 不飽和ェトリル又は芳香族ビニルと、 共役ジェンで構成される共 重合体の乳化重合反応液を用いることが好ましい。 In the present invention, it is preferable to use an emulsion polymerization reaction liquid as the polymerization reaction liquid. In the present invention, it is preferable to use an emulsion polymerization reaction solution of a copolymer composed of an unsaturated ether or aromatic vinyl and a conjugated diene.
本発明では、 重合反応因子が、 原料供給要素、 重合要素及ぴ重合停止要素から 選ばれる少なくとも一つであり、 前記原料供給要素が、 単量体、 重合開始剤及び その他の重合副資材の、 追加投入の有無、 追加投入の時期及ぴ追加投入量から選 ばれる少なくとも一つであり、 前記重合要素が、 反応温度を制御する冷媒又は熱 媒体の流量、 反応圧力、 重合反応槽の攪拌速度及び重合反応槽の攪拌方法から選 ばれる少なくとも一つであり、 前記重合停止要素が、 重合停止剤の投入、 重合反 応槽内の冷却及ぴ重合反応槽内の減圧から選ばれる少なくとも一つである、 こと が好ましい。  In the present invention, the polymerization reaction factor is at least one selected from a raw material supply element, a polymerization element, and a polymerization termination element, and the raw material supply element is a monomer, a polymerization initiator, and other polymerization auxiliary materials. At least one selected from the presence or absence of additional charge, the timing of additional charge, and the amount of additional charge, wherein the polymerization element controls the flow rate of a cooling medium or a heat medium that controls the reaction temperature, the reaction pressure, the stirring speed of the polymerization reaction tank, and the like. It is at least one selected from a method of stirring the polymerization reaction tank, and the polymerization terminating element is at least one selected from charging of a polymerization terminator, cooling in the polymerization reaction tank, and depressurization in the polymerization reaction tank. It is preferred that
本発明では、 前記算出された重合反応液の重合転化率の値を、 前記原料供給ェ 程に伝達し、 各原料の追加投入の有無、 追加投入の時期及ぴ追加投入量から選ば れる少なくとも一つを変化させることができる。 本発明では、 前記測定された密 度の値を、 前記原料供給工程に伝達し、 各原料の追加投入の有無、 追加投入の時 期及び追加投入量から選ばれる少なくとも一つを変化させることができる。 本発 明では、 重合開始から重合停止までの間に、 単量体及び/又は重合開始剤を少な くとも 1回、 重合反応槽に追加投入することができる。  In the present invention, the calculated value of the polymerization conversion rate of the polymerization reaction solution is transmitted to the raw material supply step, and at least one selected from the presence or absence of additional input of each raw material, the timing of additional input, and the additional input amount. One can change. In the present invention, the measured density value is transmitted to the raw material supply step, and at least one selected from the presence / absence of additional input of each raw material, the time of additional input, and the additional input amount is changed. it can. In the present invention, the monomer and / or the polymerization initiator can be additionally charged into the polymerization reaction tank at least once between the start of the polymerization and the termination of the polymerization.
本発明では、 前記算出された重合反応液の重合転化率の値を、 前記重合停止ェ 程に伝達し、 重合停止剤の投入、 重合反応槽内の冷却及び重合反応槽内の減圧か ら選ばれる少なくとも一つの方法によつて重合反応を停止させることが好ましい。 本発明では、 前記測定された密度の値を、 前記重合停止工程に伝達し、 重合停 止剤の投入、 重合反応槽内の冷却及ぴ重合反応槽内の減圧から選ばれる少なくと も一つの方法によって重合反応を停止させることが好ましい。  In the present invention, the calculated value of the polymerization conversion rate of the polymerization reaction solution is transmitted to the polymerization termination step, and the value is selected from the addition of a polymerization terminator, the cooling in the polymerization reaction vessel, and the reduced pressure in the polymerization reaction vessel. Preferably, the polymerization reaction is stopped by at least one of the methods described above. In the present invention, the value of the measured density is transmitted to the polymerization stopping step, and at least one selected from charging of a polymerization stopping agent, cooling in the polymerization reaction tank and depressurization in the polymerization reaction tank is selected. It is preferable to stop the polymerization reaction by a method.
本発明では、 不飽和二トリル又は芳香族ビニルと、 共役ジェンとを単量体とし て用いることが好ましい。 図面の簡単な説明  In the present invention, it is preferable to use unsaturated nitrile or aromatic vinyl and a conjugated diene as monomers. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の一実施形態に係るパッチ式の乳化重合による重合体の製造方法 を実現する装置の一例を示すプロック図、 図 2は実施例 1での重合反応液の密度と重合反応液の重合転ィヒ率との関係を示 した図 (ただし、 図中の直線は回帰分析により得られた関係を示す。 ) 、 図 3は図 1の装置に用いる重合反応槽の一例を示す断面図、 FIG. 1 is a block diagram showing an example of an apparatus for realizing a method for producing a polymer by patch-type emulsion polymerization according to an embodiment of the present invention. FIG. 2 is a diagram showing the relationship between the density of the polymerization reaction solution and the polymerization conversion rate of the polymerization reaction solution in Example 1 (however, the straight line in the diagram shows the relationship obtained by regression analysis). FIG. 3 is a cross-sectional view showing an example of a polymerization reaction tank used in the apparatus of FIG.
図 4は図 3の重合反応槽に取り付けられた振動式密度計を示す概念図である。 発明を実施するための最良の形態  FIG. 4 is a conceptual diagram showing a vibratory densitometer attached to the polymerization reactor of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下に示す説明では、 本発明に係る重合転化率の測定方法、 該方法を用いた重 合体の製造方法、 及ぴ該製造方法を実現する一例としての製造装置、 該製造装置 に用いる重合反応槽、 の順で説明する。  In the following description, a method for measuring the polymerization conversion rate according to the present invention, a method for producing a polymer using the method, a production apparatus as an example for realizing the production method, and a polymerization reaction tank used for the production apparatus , And will be described in this order.
本発明に適用可能な重合反応液としては、 重合転化率によって重合反応液の密 度が変化し、 その密度の変化が振動式密度計で測定可能なものであれば、 特に限 定されず、 溶液重合により得られたものであってもよいし、 溶液重合以外により 得られたものであってもよい。 後者の例としては、 重合体粒子がェマルジヨン中 に均一に分散しているェマルジョンである重合反応液であれば、 本発明の方法を 適用できる。  The polymerization reaction liquid applicable to the present invention is not particularly limited as long as the density of the polymerization reaction liquid changes depending on the polymerization conversion rate and the change in density can be measured with a vibrating densitometer. It may be obtained by solution polymerization or may be obtained by other than solution polymerization. As an example of the latter, the method of the present invention can be applied to a polymerization reaction solution in which the polymer particles are an emulsion in which the polymer particles are uniformly dispersed in the emulsion.
本発明に適用可能な重合体のェマルジヨンとしては、 例えば、 ブタジエン重合 体、 イソプレン重合体、 ブタジエン一イソプレン共重合体などの共役ジェンのみ で構成される単独又は共重合体;ァクリロェトリル一ブタジエン共重合体、 ァク リロ二トリル—ブタジエン—ィソプレン共重合体、 アタリロニトリノレーィソプレ ン共重合体、 アクリロニトリル一スチレン一ブタジエン共重合体、 アタリロニト リル一スチレン—ィソプレン共重合体などの不飽和二トリルと共役ジェンで構成 される共重合体;不飽和二トリルと共役ジェンで構成される共重合体以外の、 ス チレン一ブタジエン共重合体、 スチレンーィソプレン共重合体などの芳香族ビニ ルと共役ジェンで構成される共重合体;ェチルァクリレート重合体、 ェチルァク リレートー η—ブチルァクリレート共重合体、 ェチノレアクリレートー 一ブチル アタリレート一 2—メ トキシェチルァクリレート共重合体などのァクリレートの みで構成される単独又は共重合体;などの各種重合体のェマルジョンである重合 反応液が挙げられる。 中でも、 不飽和二トリルと共役ジェンで構成される共重合 体、 ァクリレートのみで構成される単独又は共重合体の重合反応液が好ましく、 不飽和-トリルと共役ジェンで構成される共重合体の重合反応液がより好ましく、 特に好ましくはアタリロニトリル一ブタジエン共重合体の重合反応液である。 重合体のェマルジヨンは、 例えば乳化重合、 播種? Lィヒ重合、 微細懸濁重合又は 播種微細懸濁重合などで得ることができるが、 本発明では、 乳化重合で得られる 乳化重合反応液を用いることが好ましい。 Examples of the polymer emulsion applicable to the present invention include, but are not limited to, homopolymers or copolymers composed of only conjugated gens such as butadiene polymer, isoprene polymer, and butadiene-isoprene copolymer; acryloetrile-butadiene copolymer Unsaturated nitriles such as acrylonitrile-butadiene-isoprene copolymer, acrylonitrile-co-isoprene copolymer, acrylonitrile-styrene-butadiene copolymer, and acrylonitrile-styrene-styrene-isoprene copolymer Copolymers composed of styrene and conjugated diene; aromatic vinyls such as styrene-butadiene copolymer and styrene-isoprene copolymer other than copolymers composed of unsaturated nitrile and conjugated diene And conjugated gen; Ethyl acrylate polymer, Ethyl acryle Homo- or copolymers composed solely of acrylates such as toe η-butyl acrylate copolymer, ethynoleacrylate-monobutyl acrylate and 2-methoxyl acrylate copolymer; Examples of the polymerization reaction liquid are emulsions of various polymers. Among them, a copolymer composed of unsaturated nitrile and a conjugated diene, and a polymerization reaction solution of a homopolymer composed solely of acrylate or a copolymer are preferable. A polymerization reaction solution of a copolymer composed of an unsaturated-tolyl and a conjugated diene is more preferable, and a polymerization reaction solution of an atarilonitrile-butadiene copolymer is particularly preferable. Polymer emulsion, for example, emulsion polymerization, seeding? Although it can be obtained by Lich polymerization, fine suspension polymerization, or seeded fine suspension polymerization, in the present invention, it is preferable to use an emulsion polymerization reaction solution obtained by emulsion polymerization.
乳化重合反応液は、 上記の重合体、 及ぴ水の他に、 乳化剤、 未反応単量体及び 重合開始剤又は重合開始剤の残さを含有することが多い。 さらにその他に、 分子 量調整剤、 助触媒、 p H調整剤などを含有していてもよい。 また、 乳化重合反応 液は、 重合途中のものであってもよく、 重合終了後のものであってもよい。  The emulsion polymerization reaction liquid often contains an emulsifier, an unreacted monomer, and a polymerization initiator or a residue of a polymerization initiator, in addition to the above polymer and water. In addition, it may contain a molecular weight regulator, a cocatalyst, a pH regulator, and the like. Further, the emulsion polymerization reaction liquid may be in the course of polymerization or after the polymerization.
重合反応液の各成分の含有量は、 攪拌により密度を均一にできる限りにおいて、 特に限定されない。  The content of each component of the polymerization reaction solution is not particularly limited as long as the density can be made uniform by stirring.
本発明では、 重合反応液の密度の測定に振動式密度計を用いる。 振動式密度計 は、 反応液試料中で振動子 (感応板ともいう) を一定の周波数と振幅で振動させ、 その駆動に必要な駆動力又は振動の減衰の大きさと、 反応液試料の密度との間の 相関関係により、 反応液試料の密度を測定する装置である。 この振動式密度計を 用いることにより、 測定精度が高められる。  In the present invention, a vibration type densitometer is used for measuring the density of the polymerization reaction solution. The vibratory densitometer vibrates a vibrator (also called a sensitive plate) at a constant frequency and amplitude in a reaction solution sample, and determines the driving force or vibration attenuation required to drive the vibrator, and the density of the reaction solution sample. This is a device that measures the density of the reaction solution sample by the correlation between By using this vibratory densitometer, measurement accuracy can be improved.
振動式密度計としては、 各種の型式のものが挙げられる。 それは、 例えば、 1 つの振動子を振り子状に振動させる 「単振動式」 、 単振動式の 1つであって、 超 音波により 1つの振動子を振り子状に振動させる 「超音波振動式」 、 1つの振動 子をねじれ振動させる 「ねじれ振動式」 、 2つの振動子を共振させる 「音叉型振 動式」 などである。  There are various types of vibratory densitometers. For example, it is one of the “single vibration type” that vibrates one vibrator like a pendulum, and the “ultrasonic vibration type” that vibrates one vibrator like a pendulum by ultrasonic waves. There are “torsional vibration type”, in which one vibrator is torsionally vibrated, and “tuning fork vibration type”, in which two vibrators resonate.
単振動式には、 密度により振幅が減衰するのを測定するものと、 一定振幅を維 持させてそれに必要な電流値を測定するものとがある。 なお、 単振動のため、 容 器からの反射振動などの外的影響が比較的大きいデメリットはある。 ねじれ振動 式は、 検出端子を一定の周波数で共振状態になるように回転方向に振動させ、 該 検出端子の先端 (検出端) を液中に浸し、 その液体密度の大小により振動の振幅 が変化することを角加速度の変化として捉え、 電子信号に変換して測定するもの である。 音叉型振動式は、 試料の密度の大小に伴って、 振動子を一定の周波数 . 一定の振幅で振幅維持するのに必要な電流量が大小することを利用したものであ り、 電流量を測定し、 これを密度値に換算するものである。 There are two types of simple vibration type: one to measure the attenuation of the amplitude due to the density, and the other to measure the current value required for maintaining a constant amplitude. There is a disadvantage that since it is a simple vibration, external influences such as reflected vibration from the container are relatively large. In the torsional vibration method, the detection terminal vibrates in the rotational direction so as to resonate at a certain frequency, the tip (detection end) of the detection terminal is immersed in a liquid, and the amplitude of the vibration changes depending on the density of the liquid. This is interpreted as a change in angular acceleration and converted to an electronic signal for measurement. The tuning fork type vibrator is based on the fact that the amount of current required to maintain the vibrator at a constant frequency and a constant amplitude increases and decreases with the density of the sample. It measures the amount of current and converts it to a density value.
本発明では、 上述した各型式のものを、 適宜選択して用いることができる。 ただし、 より一層の測定精度と、 短時間での測定を望む場合には、 音叉型振動 式密度計を用いることが好ましい。 音叉型振動式密度計は、 測定端子としての 2 つの振動子が共振する際に相反する方向に振動するため、 容器からの反射振動な どの外的影響が相殺されやすく、 他の型式と比較して測定誤差が小さいことや、 応答性にも優れるなどの理由による。  In the present invention, each of the above types can be appropriately selected and used. However, if a higher measurement accuracy and a shorter measurement time are desired, it is preferable to use a tuning fork type vibratory density meter. The tuning fork type vibratory density meter vibrates in opposite directions when the two vibrators as the measurement terminals resonate, so that external effects such as reflected vibration from the container are more likely to be canceled out, and compared to other types. Measurement error is small and the response is excellent.
音叉型振動式密度計は、 2つの振動子が重合反応槽中で重合反応液に浸漬され るように取り付けられる限り、 取り付ける位置は特に限定されない。 この 2つの 振動子は、 重合反応槽内面の突起となるため、 重合体が付着しやすいが、 循環パ ィプライン中に設置された密度計の測定端子などの突起に比べると、 重合体が付 着しにくく、 付着しても容易に除去できる。 また、 重合中は、 2つの振動子が常 に振動しているようにすると重合体が付着しにくく、 正確な測定がしゃすい。 振動式密度計の密度の測定範囲は、 測定誤差を小さくするためには、 好ましく は 6 0 0〜 1 2 0 0 k g /m3 、 より好ましくは 7 0 0〜: L l O O k g /m 3 、 特に好ましくは 8 0 0〜 1 0 5 0 k g /m 3 である。 The mounting position of the tuning fork type vibratory density meter is not particularly limited as long as the two vibrators are mounted so as to be immersed in the polymerization reaction solution in the polymerization reaction tank. Since these two vibrators are projections on the inner surface of the polymerization reaction tank, the polymer easily adheres to them.However, compared with projections such as measurement terminals of a density meter installed in the circulation pipeline, the polymer is attached. It is difficult to attach and can be easily removed even if attached. Also, if the two vibrators are always vibrating during polymerization, the polymer will not easily adhere and accurate measurement will be difficult. Measurement range of the density of the vibration type density meter, in order to reduce the measurement error is preferably 6 0 0~ 1 2 0 0 kg / m 3, more preferably 7 0 0~: L l OO kg / m 3 , particularly preferably 8 0 0~ 1 0 5 0 kg / m 3.
本発明では、 測定された重合反応液の密度の値 (測定値) から、 所定の換算式 に基づいて、 前記重合反応液の重合転化率の値を算出する。 重合転化率の値の算 出は人手によっても良いが、 コンピュータなどの情報処理装置を用いて行えば、 算出時間の短縮化を図り易い。  In the present invention, the value of the polymerization conversion rate of the polymerization reaction solution is calculated from the measured value (measured value) of the density of the polymerization reaction solution based on a predetermined conversion formula. The value of the polymerization conversion may be calculated manually, but the calculation time can be easily reduced by using an information processing device such as a computer.
測定された重合反応液の密度の値から重合転化率の値を算出する方法は、 予め 同じ重合条件で重合反応液の密度と重合転化率との関係を換算式の形で求めてお き、 その換算式に基づいて計算して求めればよい。  The method of calculating the value of the polymerization conversion rate from the measured value of the density of the polymerization reaction solution is as follows.The relationship between the density of the polymerization reaction solution and the polymerization conversion rate is obtained in advance in the form of a conversion formula under the same polymerization conditions. What is necessary is just to calculate and obtain based on the conversion formula.
関係式を求めるのに用いる重合転化率は、 重合反応液を採取して、 そこに含有 される未反応の単量体量を測定して重合に供した単量体の内、 重合反応により消 費された量の割合として求めるか、 又は、 重合に供した単量体量に対する重合反 応液に含有される重合体量に基づいて求める。 重合反応液中の未反応の単量体量 は、 例えばクロマトグラフィ分析によって求めることができる。 また重合反応液 中の重合体量は、 重合反応液から重合体を分離し、 洗浄、 乾燥して求めればよい。 重合転化率の値への換算式は、 通常、 回帰分析によって求めることができる。 また、 ー且、 初期換算式を求めておき、 これを経時的に最適化していくようにし てもよい。 初期換算式 f (1) (p) は、 例えば異なる重合転化率の重合反応液を 数種準備し、 それぞれの重合反応液の密度を測定し、 密度と重合転化率との最小 自乗法で求めることができる。 次に、 重合途中あるいは重合後の重合反応液の密 度 P (2) を測定し、 M(1) = f (i) (p (2) ) で M(1> を計算するとともに、 最 後の M(2) を実測し、 p (2, と M(2) の新しいデータに基づいて最適化された換 算式 f (2) ( p ) を得ることができる。 この ί (2> ( β ) を作るときの方法として、 例えば自己回帰、 移動平均、 己回帰移動平均などが挙げられる。 The polymerization conversion rate used for obtaining the relational expression is determined by collecting the polymerization reaction solution, measuring the amount of unreacted monomer contained therein, and quenching by the polymerization reaction among the monomers subjected to polymerization. Determined as the ratio of the amount consumed, or based on the amount of polymer contained in the polymerization reaction liquid relative to the amount of monomer subjected to polymerization. The amount of unreacted monomer in the polymerization reaction solution can be determined by, for example, chromatographic analysis. Further, the amount of the polymer in the polymerization reaction solution may be determined by separating the polymer from the polymerization reaction solution, washing and drying. The conversion formula to the polymerization conversion value can usually be determined by regression analysis. Alternatively, an initial conversion formula may be obtained, and this may be optimized over time. The initial conversion formula f (1) (p) is obtained by, for example, preparing several types of polymerization reaction solutions having different polymerization conversion rates, measuring the density of each polymerization reaction solution, and obtaining the least squares method of the density and the polymerization conversion rate. be able to. Next, the density P ( 2) of the polymerization reaction solution during or after polymerization is measured, and M (1> ) is calculated using M (1 ) = f (i) (p (2)). M (2) is measured, and an optimized equation f (2) (p) is obtained based on the new data of p (2, and M (2 ). This こ の(2 > (β For example, there are autoregression, moving average, and autoregression moving average.
本発明における重合反応液の密度と、 重合反応液の重合転化率との分析を行う と、 検量線の相関係数は、 0. 9以上、 好ましくは 0. 95以上、 より好ましく は 0 , 97以上である。  When the density of the polymerization reaction solution and the polymerization conversion rate of the polymerization reaction solution in the present invention are analyzed, the correlation coefficient of the calibration curve is 0.9 or more, preferably 0.95 or more, more preferably 0.9% or less. That is all.
本発明に係る重合転化率の測定方法によつて測定可能な重合転化率の範囲は、 重合反応液の密度の変化が測定できる範囲であれば、 特に限定されない。  The range of the polymerization conversion that can be measured by the method for measuring the polymerization conversion according to the present invention is not particularly limited as long as the change in the density of the polymerization reaction solution can be measured.
本発明に係る重合転化率の測定方法では、 該本発明に係る重合転化率の測定方 法によって算出された重合転化率の算出値と、 実際に、 常法に従って未反応単量 体量又は重合体量を測定して求めた重合転化率の実測値との誤差 (実測値と本発 明の方法による測定値との差の絶対値) を小さくすることができる。 具体的には、 算出値と実測値との差を、 絶対値で、 好ましくは 2%以下、 より好ましくは 1. 5%以下、 特に好ましくは 1%以下に抑えることができる。  In the method for measuring the polymerization conversion rate according to the present invention, the calculated value of the polymerization conversion rate calculated by the method for measuring the polymerization conversion rate according to the present invention, and the amount or weight of the unreacted monomer actually calculated according to an ordinary method. It is possible to reduce the error (absolute value of the difference between the measured value and the measured value by the method of the present invention) from the measured value of the polymerization conversion obtained by measuring the amount of coalescence. Specifically, the difference between the calculated value and the actually measured value can be suppressed to an absolute value, preferably 2% or less, more preferably 1.5% or less, and particularly preferably 1% or less.
また、 本発明の重合転化率の測定方法によれば、 重合反応液の採取などの手間 は不要であり、 常時、 重合反応液の密度を測定し、 測定結果を振動式密度計が電 気信号として出力するので、 それをコンピュータなどに入力し、 処理して出力す ることにより、 事実上測定と同時に重合転化率を求めることができる。  In addition, according to the method for measuring the polymerization conversion rate of the present invention, it is not necessary to collect the polymerization reaction solution and the like, and the density of the polymerization reaction solution is constantly measured. Since it is output as, it is input to a computer or the like, processed and output, so that the polymerization conversion can be obtained at the same time as the measurement.
本発明に係る重合体の製造方法においては、 上述のようにして算出された乳化 重合反応液中の重合転化率の値に応じて、 重合反応因子を変化させる。  In the method for producing a polymer according to the present invention, the polymerization reaction factor is changed according to the value of the polymerization conversion rate in the emulsion polymerization reaction solution calculated as described above.
重合反応因子としては、 原料供給要素としての、 単量体、 重合開始剤及びその 他の重合副資材の、 追加投入の有無、 追加投入の時期及び追加投入量;乳化重合 要素としての、 反応温度を制御する冷媒又は熱媒体の流量、 反応圧力、 重合反応 槽の攪拌速度及び重合反応槽の攪拌方法;並びに、 重合停止要素としての、 重合 停止剤の投入、 重合反応槽内の冷却及び重合反応槽内の減圧;などが挙げられる。 本発明では、 これらの各重合反応因子から選ばれる少なくとも一つを適宜選択し て変化させることが好ましい。 以上のような各種重合反応因子を変化させること により、 反応条件を変えて目的とする品質とのずれを調整することができる。 特 に、 重合開始から重合停止までの間に、 単量体及び/又は重合開始剤を少なくと も 1回、 重合系 (重合反応槽) に対して追加投入することが、 重合転化率の調整 に有効である。 The polymerization reaction factors include the presence or absence of additional introduction of monomer, polymerization initiator and other polymerization auxiliary materials as raw material supply elements, the timing and amount of additional addition; the reaction temperature as an emulsion polymerization element Controlling the flow rate of the refrigerant or heat medium, reaction pressure, polymerization reaction The stirring speed of the tank and the method of stirring the polymerization reaction tank; and the addition of a polymerization terminator as a polymerization termination element, cooling in the polymerization reaction tank, and depressurization in the polymerization reaction tank are exemplified. In the present invention, it is preferable that at least one selected from these polymerization reaction factors is appropriately selected and changed. By changing the various polymerization reaction factors as described above, the deviation from the target quality can be adjusted by changing the reaction conditions. In particular, during the period from the start of polymerization to the end of polymerization, at least one additional addition of monomer and / or polymerization initiator to the polymerization system (polymerization reaction tank) can adjust the polymerization conversion rate. It is effective for
重合反応因子を変化させる量の決定方法は、 特に制御されない。 例えば、 制御 アルゴリズムとして、 比例制御、 比例積分制御、 比例積分微分制御、 ファジー制 御、 適応制御などが適用できる。  The method of determining the amount that changes the polymerization reaction factor is not particularly controlled. For example, proportional control, proportional integral control, proportional integral derivative control, fuzzy control, adaptive control, etc. can be applied as the control algorithm.
また、 バッチ式 (回分式) の重合において、 重合終了後の重合反応液の重合転 化率を短時間で測定し、 目的重合転化率の範囲のものであるかどうかによって、 そのままの状態で重合反応を継続させるか、 あるいは単量体及び Z又は重合開始 剤を追加投入した後に重合反応を継続させる力 \ 重合反応液を重合体の分離回収 工程へ送るか、 廃棄工程へ送るかといつた後処理を選択して実行することも好ま しい。 このように実行することにより、 必要量の目的重合体が得られるまで重合 を繰り返す場合に、 重合反応器の内部で重合反応が行われていない時間を短縮し、 製造効率を上げることができる。  In a batch (batch) type polymerization, the polymerization conversion of the polymerization reaction solution after the polymerization is measured in a short time, and the polymerization is performed as it is depending on whether it is within the target polymerization conversion. Ability to continue the reaction, or to continue the polymerization reaction after adding monomer and Z or polymerization initiator. \ After sending the polymerization reaction solution to the polymer separation / recovery process or to the waste process. It is also preferable to select and execute processing. By carrying out in this manner, when the polymerization is repeated until the required amount of the target polymer is obtained, the time during which the polymerization reaction is not performed inside the polymerization reactor can be shortened, and the production efficiency can be increased.
なお、 本発明では、 バッチ式の重合に限らず、 連続式の重合に適用してもよレ、。 本実施形態では、 重合反応液の重合転化率を直接的には測定せず、 その代用物 性である、 重合反応液の密度を、 振動式密度計を用いて測定し、 この密度の測定 値から重合反応液の重合転化率の値を算出する。 重合反応液の密度を、 振動式密 度計を用いて測定するので、 簡単な操作によって、 高い測定精度で、 かつ短時間 に、 前記重合反応液の密度を得ることができる。 また、 振動式密度計を重合反応 槽の内部に取り付けてあるので、 重合反応槽の外部へ取り出すことなく、 重合反 応液の密度を重合反応槽の内部で測定することができる。 その結果、 反応終了時 期を逸することなく、 目的とする品質の重合体を、 工業的に有利に製造すること ができる。 本発明において 「目的とする品質」 とは、 重合体のム一ユー粘度、 分子量、 分 子量分布などに限定されず、 用いた単量体量に対する重合体の収量のような製造 効率をも含む意味で用いる。 例えば、 パッチ式の重合における重合反応槽内で重 合反応が進行していない時間のような、 複数回のパッチ式の重合によって重合体 を製造する場合の製造設備の活用効率も含まれる。 In the present invention, the present invention is not limited to batch polymerization, but may be applied to continuous polymerization. In the present embodiment, the polymerization conversion rate of the polymerization reaction solution is not directly measured, and the density of the polymerization reaction solution, which is a substitute property thereof, is measured using a vibrating densitometer. The value of the polymerization conversion rate of the polymerization reaction liquid is calculated from the above. Since the density of the polymerization reaction solution is measured by using a vibration densitometer, the density of the polymerization reaction solution can be obtained with a simple operation with high measurement accuracy and in a short time. In addition, since the vibratory densitometer is installed inside the polymerization reaction tank, the density of the polymerization reaction liquid can be measured inside the polymerization reaction tank without taking it out of the polymerization reaction tank. As a result, a polymer of the desired quality can be produced industrially advantageously without losing the end of the reaction. In the present invention, the "target quality" is not limited to the molecular viscosity, molecular weight, molecular weight distribution and the like of the polymer, but also refers to the production efficiency such as the yield of the polymer relative to the amount of the monomer used. Used in the sense of including. For example, the efficiency of utilization of production equipment when producing a polymer by multiple patch-type polymerizations, such as the time during which a polymerization reaction does not proceed in a polymerization reactor in a patch-type polymerization, is also included.
上述した本発明に係る重合体の製造方法を実現するためには、 例えば図 1に示 す構成の重合体の製造装置 3 0 0を用いることができる。 以下の説明では、 乳化 重合である場合を例示する。  In order to realize the above-described method for producing a polymer according to the present invention, for example, a polymer production apparatus 300 having a configuration shown in FIG. 1 can be used. The following description exemplifies the case of emulsion polymerization.
図 1に示すように、 製造装置 3 0 0は、 乳化重合反応によって乳化重合反応液 を得る重合反応槽 1を有する。 重合反応槽 1には、 脱イオン水 2 0が供給される ライン 2 0 0と、 単量体 2 1が供給されるライン 2 1 0と、 ? W匕剤 2 2が供給さ れるライン 2 2 0と、 重合開始剤 2 3が供給されるライン 2 3 0と、 助触媒 2 4 が供給されるライン 2 4 0と、 分子量調整剤 2 5が供給されるライン 2 5 0とが 接続してある。 ライン 2 0 0 , 2 1 0 , 2 2 0 , 2 3 0, 2 4 0 , 2 5 0には、 自動調整弁 2 0 9 , 2 1 9 , 2 2 9 , 2 3 9 , 2 4 9 , 2 5 9が配置してある。 自動調整弁 2 0 9〜 2 5 9は、 流量計 2 0 8 , 2 1 8 , 2 2 8 , 2 3 8 , 2 4 8 , 2 5 8から送出されるデータに基づき、 重合反応槽 1に対する脱イオン水 2 0、 単量体 2 1、 乳化剤 2 2、 重合開始剤 2 3、 助触媒 2 4及び分子量調整剤 2 5の 投入量を変化させるために、 その開度が調整される。 なお、 重合反応槽 1には、 その他の重合副資材が供給されるその他のライン (図示省略) が接続してあって もよい。  As shown in FIG. 1, the production apparatus 300 has a polymerization reaction tank 1 for obtaining an emulsion polymerization reaction solution by an emulsion polymerization reaction. The polymerization reaction tank 1 has a line 200 to which deionized water 20 is supplied, a line 210 to which monomer 21 is supplied, and? A line 220 to which the W danger 22 is supplied, a line 230 to which the polymerization initiator 23 is supplied, a line 240 to which the cocatalyst 24 is supplied, and a molecular weight regulator 25 The supplied line 250 is connected. Lines 200, 210, 220, 230, 240, 250 are equipped with automatic control valves 2009, 219, 229, 239, 249, 2 5 9 are arranged. The automatic control valves 209 to 255 are provided to the polymerization reaction tank 1 based on the data sent from the flowmeters 208, 218, 228, 238, 248, 258. The degree of opening is adjusted to change the input amounts of deionized water 20, monomer 21, emulsifier 22, polymerization initiator 23, cocatalyst 24 and molecular weight regulator 25. The polymerization reaction tank 1 may be connected to another line (not shown) for supplying other polymerization auxiliary materials.
重合反応槽 1の周りには、 温度調整部材 2 9が装着してある。 温度調整部材 2 9には、 冷媒又は熱媒体 2 6が供給されるライン 2 6 0が接続してある。 ライン 2 6 0には、 自動調整弁 2 6 9が配置してある。 自動調整弁 2 6 9は、 重合反応 槽 1内の温度を測定する温度計 1 0からのデータを基に調整計 2 6 7から送出さ れるデータに基づいて、 温度調整部材 2 9に対する冷媒又は熱媒体 2 6の流量を 変化させ、 その結果、 重合反応槽 1内の温度を変化させるために、 その開度が調 整される。  A temperature control member 29 is mounted around the polymerization reaction tank 1. The temperature control member 29 is connected to a line 260 to which a refrigerant or a heat medium 26 is supplied. In line 260, an automatic regulating valve 269 is arranged. The automatic regulating valve 269 is used to control the temperature of the polymerization reaction tank 1 based on the data sent from the thermometer 2667 based on the data from the thermometer 10 based on the data from the thermometer 10. In order to change the flow rate of the heating medium 26 and, as a result, to change the temperature in the polymerization reaction tank 1, the opening thereof is adjusted.
重合反応槽 1の上部には、 減圧度調整ライン 2 8 0が接続してある。 ライン 2 8 0には、 自動調整弁 2 8 9と、 減圧手段としての圧縮機 2 8 6が配置してある。 自動調整弁 2 8 9は、 調整計 2 8 7から送出されるデータに基づき、 重合反応槽 1内の減圧度を変化させるために、 その開度が調整される。 A pressure reduction degree adjustment line 280 is connected to the upper part of the polymerization reaction tank 1. Line 2 At 80, an automatic regulating valve 289 and a compressor 286 as pressure reducing means are arranged. The opening of the automatic regulating valve 289 is adjusted based on the data sent from the regulator 287 in order to change the degree of pressure reduction in the polymerization reactor 1.
重合反応槽 1には、 ライン 7 0を通じて移送タンク 2が接続してある。 移送タ ンク 2には、 重合停止剤 2 7が供給されるライン 2 7 0が接続してある。 ライン 2 7 0には、 自動調整弁 2 7 9が配置してある。 自動調整弁 2 7 9は、 流量計 2 7 8から送出されるデータに基づき、 移送タンク 2に対する重合停止剤 2 7の投 入量を変化させるために、 その開度が調整される。  A transfer tank 2 is connected to the polymerization reaction tank 1 through a line 70. The transfer tank 2 is connected to a line 270 to which a polymerization terminator 27 is supplied. On line 270, an automatic regulating valve 279 is arranged. The opening of the automatic adjusting valve 279 is adjusted based on data sent from the flow meter 278 in order to change the amount of the polymerization terminator 27 to be transferred to the transfer tank 2.
本実施形態では、 移送タンク 2に対して重合停止剤 2 7を投入するような構成 としてあるが、 これに限定されない。 ライン 2 7 0を重合反応槽 1に接続させ、 重合停止剤 2 7を重合反応槽 1内の乳化重合反応液に投入してもよい。 また、 重 合反応槽 1と移送タンク 2とを接続するライン 7 0に対して、 すなわち乳化重合 反応液を重合反応槽 1から移送タンク 2に移送する途中で、 重合停止剤 2 7を投 入するような構成としてもよレ、。  In the present embodiment, the configuration is such that the polymerization terminator 27 is charged into the transfer tank 2, but the present invention is not limited to this. The line 270 may be connected to the polymerization reaction tank 1, and the polymerization terminator 27 may be added to the emulsion polymerization reaction liquid in the polymerization reaction tank 1. Also, a polymerization terminator 27 is injected into the line 70 connecting the polymerization reaction tank 1 and the transfer tank 2, that is, while the emulsion polymerization reaction solution is being transferred from the polymerization reaction tank 1 to the transfer tank 2. It can be configured as
図 3に示すように、 重合反応槽 1は、 内部を撹拌する撹拌手段 1 1を有し、 こ の撹拌手段 1 1により重合開始時から終了時まで、 反応槽内の乳化重合反応液 2 1 1の密度が実質的に均一になるように攪拌自在としてある。  As shown in FIG. 3, the polymerization reaction tank 1 has a stirring means 11 for stirring the inside, and the emulsion polymerization reaction solution 21 in the reaction tank is used by the stirring means 11 from the start to the end of the polymerization. Stirring is possible so that the density of 1 is substantially uniform.
また、 重合反応槽 1の内部には、 振動式密度計 4 2が取り付けてある。 振動式 密度計 4 2は、 重合反応槽 1の内部で得られるべき乳化重合反応液 2 1 1に、 そ の測定端子としての振動子 4 2 6が浸漬するよう設置されている。  Further, a vibrating density meter 42 is mounted inside the polymerization reaction tank 1. The vibrating densitometer 42 is installed so that the vibrator 426 as a measuring terminal is immersed in the emulsion polymerization reaction liquid 211 to be obtained inside the polymerization reaction tank 1.
本実施形態では、 振動式密度計 4 2として音叉型の振動式密度計を用いている。 図 4に示すように、 本実施形態で用いる振動式密度計 4 2は、 保持部 4 2 2を介 して装置本体 (図示省略) により吊り下げ支持されている。 保持部 4 2 2には、 一対の支持部材 4 2 4が取り付けられている。 各支持部材 4 2 4の先端には、 そ れぞれ測定端子としての振動子 4 2 6が取り付けてある。 各支持部材 4 2 4には、 振動子 4 2 6を振動させるための電磁駆動部 (図示省略) が設けられており、 こ の電磁駆動部 (図示省略) に発生する電磁力と、 支持部材 4 2 4の弾性とにより、 振動子 4 2 6は、 乳化重合反応液 2 1 1 (図 3参照) 中で振動するようになって いる。 保持部 4 2 2には、 乳化重合反応液 2 1 1に浸漬されたときの振動子 4 2 6と、 乳化重合反応液 21 1との間に生じる粘性抵抗を、 振動子426の振幅値 の変化として検出可能な変位センサ 427が取り付けてある。 一対の支持部材 4 24, 424の間の保持部 422には、 密度計 42と乳化重合反応液 21 1の液 面との位置関係を制御するための液面センサー (水位センサー) 425が取り付 けてある。 液面センサー 425としては、 特に限定されず、 光屈折率センサー式 のものなど種類を選ばず使用可能である。 In the present embodiment, a tuning fork type vibratory density meter is used as the vibratory density meter 42. As shown in FIG. 4, the vibratory densitometer 42 used in the present embodiment is suspended and supported by a device main body (not shown) via a holding section 42. A pair of support members 424 are attached to the holding portion 422. A vibrator 426 as a measuring terminal is attached to the tip of each support member 424. Each support member 4 24 is provided with an electromagnetic drive unit (not shown) for vibrating the vibrator 4 26. The electromagnetic force generated in this electromagnetic drive unit (not shown) and the support member Due to the elasticity of 4 24, the vibrator 4 26 vibrates in the emulsion polymerization reaction liquid 2 11 (see FIG. 3). The vibrator 4 2 when immersed in the emulsion polymerization reaction solution 2 1 1 6, emulsion polymerization viscous resistance between the reaction liquid 21 1, oscillator 4 capable of detecting the displacement sensor 427 as a change in amplitude value of 26 is attached. A liquid level sensor (water level sensor) 425 for controlling the positional relationship between the density meter 42 and the liquid level of the emulsion polymerization reaction liquid 211 is attached to the holding portion 422 between the pair of support members 4 24, 424. There is. The liquid level sensor 425 is not particularly limited, and any type such as a light refractive index sensor type can be used.
図 1およぴ図 3に示すように、 振動式密度計 42には、 重合転化率算出手段と しての推定演算装置 5が接続してあり、 ここでは前記密度計42により測定され た乳化重合反応液 21 1の密度の値から、 該乳化重合反応液 21 1の重合転化率 の値を算出するようになっている。 推定演算装置 5としては、 通常コンピュータ 装置が用いられる。 As shown in FIG. 1 Oyopi Figure 3, the vibratory density meter 42, estimating arithmetic unit 5 as a polymerization conversion rate calculation unit Yes connected, here measured by the density meter 4 2 The value of the polymerization conversion of the emulsion polymerization reaction liquid 211 is calculated from the value of the density of the emulsion polymerization reaction liquid 211. As the estimation calculation device 5, a computer device is usually used.
図 1に示すように、 推定演算装置 5には、 因子変化手段としての制御演算装置 6が接続してあり、 推定演算装置 5により算出された重合転化率の算出値は、 所 定の出力信号として因子変化手段としての制御演算装置 6へ入力されるようにな つている。  As shown in FIG. 1, a control operation device 6 as a factor changing means is connected to the estimation operation device 5, and the calculated value of the polymerization conversion calculated by the estimation operation device 5 is a predetermined output signal. Is input to the control arithmetic unit 6 as a factor changing means.
制御演算装置 6は、 推定演算装置 5からの出力信号に基づき、 流量計 208, 218, 228, 238, 248, 258, 278を制御し、 引いては自動調整 弁 209, 219, 229, 239, 249, 259, 269, 279, 289 を制御するようになっている。  The control arithmetic unit 6 controls the flow meters 208, 218, 228, 238, 248, 258, 278 based on the output signal from the estimating arithmetic unit 5 and, by extension, automatically adjusts the valves 209, 219, 229, 239, 249, 259, 269, 279, 289.
次に、 図 1、 図 3及び図 4に基づき、 本実施形態に係る製造装置 300の作用 を説明する。  Next, an operation of the manufacturing apparatus 300 according to the present embodiment will be described with reference to FIGS.
まず、 脱イオン水 20、 単量体 21、 ? L化剤 22、 重合開始剤 23、 助触媒 2 4及び分子量調整剤 25が、 それぞれ流量計 208、 218、 228、 238、 248及ぴ 258からのデータに制御された自動調整弁 209、 21 9、 229、 239、 249及ぴ 259のいずれかを通って、 一定量、 重合反応槽 1に投入さ れて (原料供給工程) 、 乳化重合が開始される。  First, deionized water 20, monomer 21,? Automatic regulator valves 209, 21 9 controlled by the data from flow meters 208, 218, 228, 238, 248 and 258, respectively, of the L-agent 22, the polymerization initiator 23, the co-catalyst 24 and the molecular weight regulator 25. , 229, 239, 249, and 259, a certain amount is charged into the polymerization reaction tank 1 (raw material supply step), and emulsion polymerization is started.
単量体 21としては、 本実施形態では、 不飽和二トリル又は芳香族ビエルと、 共役ジェンを用いる。  In the present embodiment, as the monomer 21, unsaturated nitrile or aromatic biel and a conjugated diene are used.
不飽和二トリノレとしては、 アタリロニトリノレ; α—クロロアタリロニトリノレ、 α—プロモアクリロ-トリルなどの 一ハロゲノアクリロニトリル; メタクリロ 二トリル、 エタクリロニトリルなどの α一アルキルァクリロ-トリルなどが挙げ られる。 中でも、 ァクリロエトリルが好ましい。 これらの不飽和二トリルは、 そ れぞれ単独で、 あるいは 2種以上を組み合わせてもよい。 As unsaturated nitriles, atarilonitrile; α-chloroatarylonitrile, alpha - Puromoakuriro - A halogenoalkyl acrylonitrile such as tolyl; methacrylonitrile nitrile, ethacrylonitrile one alpha such Arukiruakuriro - tolyl and the like. Among them, acryloetrile is preferred. These unsaturated nitriles may be used alone or in combination of two or more.
芳香族ビュルとしては、 スチレン、 ーメチルスチレン、 o—メチルスチレン、 P—メチルスチレン、 p— t—プチルスチレン、 1 , 3—ジメチルスチレン、 ビ エルナフタレン、 ビュルアントラセンなどが挙げられる。 中でもスチレンが好ま しい。 これらの芳香族ビュルは、 それぞれ単独で、 あるいは 2種以上を組み合わ せてもよい。  Examples of the aromatic butyl include styrene, -methylstyrene, o-methylstyrene, P-methylstyrene, pt-butylstyrene, 1,3-dimethylstyrene, biernaphthalene, and buranthracene. Of these, styrene is preferred. These aromatic butyls may be used alone or in combination of two or more.
共役ジェンとしては、 1 , 3—ブタジエン、 イソプレン、 2 , 3—ジメチルー 1 , 3—ブタジエン、 1 , 3—ペンタジェン、 1 , 3 —へキサジェン、 2 , 4— へキサジェンなどが挙げられる。 中でも 1 , 3—ブタジエン、 イソプレンが好ま しく、 1 , 3—ブタジエンが特に好ましい。 これらの共役ジェンは、 それぞれ単 独で、 あるいは 2種以上を組み合わせてもよい。  Examples of the conjugated diene include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, and 2,4-hexadiene. Of these, 1,3-butadiene and isoprene are preferred, and 1,3-butadiene is particularly preferred. These conjugated gens may be used alone or in combination of two or more.
重合開始時から終了時まで、 温度計 1 0からのデータにより、 調整計 2 6 7に 制御された自動調整弁 2 6 9によって、 冷媒又は熱媒体 2 6の流量が調整され、 重合反応槽 1内の温度が調整される (乳化重合工程) 。 なお、 重合開始時から終 了時まで、 重合反応槽 1の撹拌手段 1 1によって、 反応槽内の乳化重合反応液 2 1 1の密度が実質的に均一になるように攪拌される。  From the start of polymerization to the end of polymerization, the flow rate of the refrigerant or heat medium 26 is adjusted by the automatic adjustment valve 26 9 controlled by the controller 26 7 based on the data from the thermometer 10. The temperature inside is adjusted (emulsion polymerization step). From the start to the end of the polymerization, stirring is performed by the stirring means 11 of the polymerization reaction tank 1 so that the density of the emulsion polymerization reaction liquid 211 in the reaction tank becomes substantially uniform.
重合の進行に従って、 重合開始から所定時間経過後、 測定端子としての振動子 4 2 6が乳化重合反応液 2 1 1中に浸漬するように設置された振動式密度計 4 2 によって重合反応液の密度を測定する。 具体的には、 電磁駆動部 (図示省略) を 作動させることにより、 該振動子 4 2 6をそれぞれ逆位相かつ同一周期で振動さ せる。 この際、 乳化重合反応液 2 1 1中に配置されている振動子 4 2 6と、 乳化 重合反応液 2 1 1との間に生じる粘性抵抗を、 変位センサ 4 2 7において振動子 4 2 6の振幅値の変化として検出することにより、 乳化重合反応液 2 1 1の密度 が測定される。 振動子 4 2 6の振幅値と粘性抵抗との間には、 所定の関係が成立 するため、 この振幅値の変化を計測することにより、 乳化重合反応液 2 1 1の密 度を測定することができる。 次に、 振動式密度計 42により測定された乳化重合反応液 21 1の密度の値を、 所定の出力信号として、 推定演算装置 5に導入し、 重合転化率の値を算出する。 算出された重合転化率の値は、 所定の出力信号として、 制御演算装置 6に送出 される。 制御演算装置 6では、 まず、 入力された重合転化率の値を、 予め設定し ておいた重合転化率の目標値と比較する。 According to the progress of the polymerization, after a lapse of a predetermined time from the start of the polymerization, the vibrating densitometer 4 2 provided so that the vibrator 4 26 as a measuring terminal is immersed in the emulsion polymerization reaction liquid 2 1 1. Measure the density. Specifically, by operating an electromagnetic drive unit (not shown), the vibrators 426 are oscillated in opposite phases and at the same cycle. At this time, the viscous resistance generated between the vibrator 4 26 arranged in the emulsion polymerization reaction liquid 2 11 and the emulsion polymerization reaction liquid 2 11 The density of the emulsion polymerization reaction liquid 211 is measured by detecting the change in the amplitude value of the liquid. Since a predetermined relationship is established between the amplitude value of the vibrator 4 26 and the viscous resistance, the change in the amplitude value is measured to measure the density of the emulsion polymerization reaction solution 2 11. Can be. Next, the value of the density of the emulsion polymerization reaction liquid 211 measured by the vibration type densitometer 42 is introduced as a predetermined output signal into the estimating arithmetic unit 5, and the value of the polymerization conversion is calculated. The calculated value of the polymerization conversion is sent to the control arithmetic unit 6 as a predetermined output signal. The control arithmetic unit 6 first compares the input value of the polymerization conversion with a preset target value of the polymerization conversion.
次に、 この比較結果に基づいて、 単量体 21、 重合開始剤 23及びその他の重 合副資材 (脱イオン水 20、 乳ィ匕剤 22、 助触媒 24及び分子量調整剤 25) の、 追加投入の有無、 追加投入の時期及び追加投入量 (原料供給要素) ;反応温度を 制御する冷媒又は熱媒体 26の流量、 反応圧力、 重合反応槽 1の攪拌速度及び重 合反応槽 1の攪拌方法 (乳化重合要素) ;並びに、 重合停止剤 27の投入、 重合 反応槽 1内の冷却及び重合反応槽 1内の減圧 (重合停止要素) ;から選ばれる少 なくとも一つを変化させる制御信号を生成する。 最後に、 この生成された制御信 号を、 調整計 207、 21 7、 227、 237、 247、 257、 267、 27Next, based on the comparison results, the addition of the monomer 21, the polymerization initiator 23, and other polymer auxiliary materials (deionized water 20, lactic acid 22, co-catalyst 24, and molecular weight regulator 25) was added. Whether or not to add, timing and amount of additional charge (raw material supply element); flow rate of refrigerant or heating medium 26 that controls reaction temperature, reaction pressure, stirring speed of polymerization reactor 1 and stirring method of polymerization reactor 1 (emulsion polymerization elements); and polymerization terminator 2 7-on of the cooling and polymerization under reduced pressure in the reaction vessel 1 in the polymerization reaction vessel 1 (polymerization termination element); even without least selected from a control signal for changing one Generate Finally, the generated control signal is sent to the adjusters 207, 217, 227, 237, 247, 257, 267, 27
7及ぴ 287から選ばれる少なくとも 1つに対して送出する。 Transmit to at least one selected from 7 and 287.
信号を受けた調整計 207〜257では、 流量計 208、 218、 228、 2 The flowmeters 208, 218, 228, 2
38、 248及ぴ 258に流量調整を行うような指示を出すと共に、 自動調整弁Instruct 38, 248 and 258 to adjust the flow rate and automatically adjust the valve.
209、 21 9、 229、 239、 249及び 259に対しては、 決定された追 加成分及び決定された量だけ、 重合反応槽 1に追加投入するように、 適正な開度 に調整する。 このとき、 単量体 21及ぴノ又は重合開始剤 23を少なくとも 1回、 重合反応槽 1に対して追加投入するようにすると、 重合転ィ匕率の制御に有効であ るため、 好ましい。 For 209, 219, 229, 239, 249, and 259, the opening degree is adjusted to be appropriate so that the determined additional components and the determined amount are additionally charged into the polymerization reaction tank 1. At this time, it is preferable to additionally add the monomer 21 and the polymerization initiator 23 at least once to the polymerization reaction tank 1 because it is effective in controlling the polymerization conversion ratio.
信号を受けた調整計 267では、 自動調整弁 269に対して、 適正な流量の冷 媒又は熱媒体 26を流すように、 適正な開度に調整する。 これにより重合反応槽 1内の温度が調整される。  Upon receiving the signal, the regulator 267 adjusts the automatic opening of the automatic adjustment valve 269 to an appropriate degree so that the cooling medium or the heating medium 26 flows at an appropriate flow rate. Thereby, the temperature in the polymerization reaction tank 1 is adjusted.
所定の重合転化率に達した場合、 制御演算装置 6からのデータに基づき、 乳化 重合反応液は移送タンク 2に移される。  When the predetermined polymerization conversion rate is reached, the emulsion polymerization reaction liquid is transferred to the transfer tank 2 based on the data from the control arithmetic unit 6.
また、 制御演算装置 6により生成された制御信号が、 調整計 277に送出され ると、 信号を受けた調整計 277では、 流量計 278により流量調整を行う指示 を出し、 自動調整弁 279に対しては、 一定量の重合停止剤 27を、 移送タンク 2に投入するように、 適正な開度に調整する。 移送タンク 2内に、 重合停止剤 2 7が投入されると、 重合反応が停止する (重合停止工程) 。 Further, when the control signal generated by the control arithmetic unit 6 is sent to the regulator 277, the regulator 277 that has received the signal issues an instruction to adjust the flow rate by the flow meter 278, and sends an instruction to the automatic regulating valve 279. Transfer a certain amount of polymerization terminator 27 Adjust the opening to a proper value so that it can be inserted in 2. When a polymerization terminator 27 is charged into the transfer tank 2, the polymerization reaction is stopped (polymerization termination step).
制御演算装置 6が重合停止と判断した場合、 重合停止剤 2 7の投入の他に、 該 制御演算装置 6により生成した制御信号を、 減圧度調整ライン2 8 0に配置され た自動調整弁 2 8 9に送出し、 この信号を受けた自動調整弁 2 8 9ではその開度 を全開とし、 圧縮機 2 8 6を作動させて、 ライン 2 8 0を通じて重合反応槽 1内 を減圧吸引するようにしてもよい (重合停止工程) 。 このときの減圧度は、 重合 反応槽 1内の圧力 (ゲージ圧) 1 例えば一 8 0 k P a以下程度になるように設 定すればよい。 重合反応槽 1内を減圧してモノマーを除去すると、 重合反応は停 止する。 自動調整弁 2 6の開度を調整し、 温度調整部材 2 9内を流れる冷媒 2 6 の量を多くすれば、 重合反応槽 1内は冷却されることになり (重合停止工程) 、 この方法によっても重合反応を停止させることができる。 If the processing device 6 determines that shortstop, in addition to the polymerization terminator 2 7 of the closing, the control signal generated by the control calculation unit 6, the degree of reduced pressure adjustment line 2 8 0 to disposed the automatic regulating valve 2 The automatic control valve 289 receives this signal, opens the valve fully, activates the compressor 286, and draws the pressure inside the polymerization reaction tank 1 through the line 280 under reduced pressure. (Polymerization stopping step). The degree of pressure reduction at this time may be set so that the pressure (gauge pressure) in the polymerization reaction tank 1 is, for example, about 180 kPa or less. When the pressure in the polymerization reactor 1 is reduced to remove the monomers, the polymerization reaction stops. If the opening degree of the automatic control valve 26 is adjusted and the amount of the refrigerant 26 flowing in the temperature control member 29 is increased, the inside of the polymerization reaction tank 1 will be cooled (polymerization stop step). Can also stop the polymerization reaction.
その後、 重合が停止された重合反応槽 1は洗浄され、 次の重合が可能となるよ うに準備される。  Thereafter, the polymerization reaction tank 1 in which the polymerization has been stopped is washed and prepared so that the next polymerization can be performed.
本実施形態では、 移送タンク 2において重合停止剤 2 7を投入する例を挙げて 説明したが、 例えば、 重合反応槽 1から移送タンク 2への移送に時間がかかる場 合など、 重合反応槽 1において重合停止剤 2 7を投入してもよい。  In the present embodiment, an example has been described in which the polymerization terminator 27 is charged in the transfer tank 2.However, for example, when the transfer from the polymerization reaction tank 1 to the transfer tank 2 takes time, , A polymerization terminator 27 may be added.
以上、 本発明の実施形態について説明してきたが、 本発明はこうした実施形態 に何等限定されるものではなく、 本発明の要旨を逸脱しない範囲内において種々 なる態様で実施し得ることは勿論である。  The embodiments of the present invention have been described above. However, the present invention is not limited to these embodiments at all, and it is needless to say that the present invention can be implemented in various modes without departing from the gist of the present invention. .
たとえば、 上述した実施形態では、 振動式密度計を用いて測定された重合反応 液の密度の値から、 重合反応液の重合転化率の値を算出し、 この算出された重合 転化率の値に応じて重合反応因子を変化させることとしている。 しかしながら、 本発明ではこの方法に限定されず、 前記測定された重合反応液の密度の値に応じ て、 重合反応因子を変化させてもよい。 なぜなら、 重合反応液の密度と、 該重合 反応液の重合転ィヒ率との間に所定の相関関係があるので、 該重合反応液の密度の 値に応じて、 重合反応因子を変化させても、 同様の作用効果、 すなわち、 反応終 了時期を逸することなく、 目的とする品質の重合体を、 工業的に有利に製造する ことができるからである。 この場合、 推定演算装置 5 (図 1または 3参照) 及び 該装置 5による重合転化率を算出するステップを省略することができる。 この場 合、 振動式密度計 42から出力される密度のデータは、 装置 300の制御演算装 置 6 (図 1参照) に導入され、 その後の制御に供される。 実施例 For example, in the above-described embodiment, the value of the polymerization conversion rate of the polymerization reaction solution is calculated from the value of the density of the polymerization reaction solution measured using the vibration type densitometer, and the calculated value of the polymerization conversion rate is calculated. The polymerization reaction factor is changed accordingly. However, the present invention is not limited to this method, and the polymerization reaction factor may be changed according to the measured value of the density of the polymerization reaction solution. Because there is a predetermined correlation between the density of the polymerization reaction solution and the polymerization conversion rate of the polymerization reaction solution, the polymerization reaction factor is changed according to the value of the density of the polymerization reaction solution. This is because the same effect can be obtained, that is, a polymer having a desired quality can be industrially advantageously produced without losing the end of the reaction. In this case, the estimator 5 (see FIG. 1 or 3) and The step of calculating the polymerization conversion rate by the apparatus 5 can be omitted. In this case, the density data output from the vibrating density meter 42 is introduced into the control operation device 6 (see FIG. 1) of the device 300, and is used for subsequent control. Example
以下に、 実施例及ぴ比較例を挙げて、 本発明を具体的に説明する。 なお、 特に 記載しない限り、 部及ぴ%は、 重量基準のものである。  Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples. Parts and percentages are by weight unless otherwise specified.
なお、 実測重合転化率は、 重合反応液を乾燥させ、 残存した固形分量から求め た値である。  The actually measured polymerization conversion rate is a value obtained by drying the polymerization reaction solution and calculating the remaining solid content.
実施例 1  Example 1
重合反応液に測定端子としての振動子が浸漬するように設置された音叉型の振 動式密度計を有する重合反応槽  A polymerization reactor with a tuning fork-type vibratory density meter installed so that a vibrator as a measuring terminal is immersed in the polymerization reaction solution
に、 脱イオン水 285部、 アクリロニトリル 50部、 ブタジエン 50部、 ドデシ ル硫酸ナトリウム 3部、 ドデシルメルカプタン 0. 35部、 硫酸鉄 0. 1部、 ソ ディウムホノレムァ デヒ ドス ホキシレート 0. 1部及びクメンハイ ドロパ一ォ キサイド 0. 01部を入れた。 そして、 全体が均一になるように十分に攪拌しな がら、 10°Cで維持して反応させた。 その後、 重合の進行に合わせて 10点で、 重合反応液の密度を測定した。 この密度の測定と同時に、 重合反応液 0. 01部 を採取し、 実測重合転化率を測定した。 Deionized water 285 parts, acrylonitrile 50 parts, butadiene 50 parts, sodium dodecyl sulfate 3 parts, dodecyl mercaptan 0.35 parts, iron sulfate 0.1 parts Department and Cumenhai Dropbox 0.01 parts. The reaction was maintained at 10 ° C. with sufficient stirring so that the whole became uniform. Thereafter, the density of the polymerization reaction solution was measured at 10 points in accordance with the progress of the polymerization. Simultaneously with the measurement of the density, 0.01 parts of the polymerization reaction solution was sampled, and the measured polymerization conversion was measured.
測定した実測重合転化率を y (%) 、 重合反応液の密度を X (k g/m3) とす ると、 Xと yとの間に下記のような相関関係があることがわかった。 この検量線 (回帰直線) を図 2に示す。 なお、 図 2中の黒丸は、 検量線の作成に用いたデー タを表している。 Assuming that the measured polymerization conversion rate is y (%) and the density of the polymerization reaction solution is X (kg / m 3 ), the following correlation was found between X and y. The calibration curve (regression line) is shown in FIG. The black circles in FIG. 2 represent the data used to create the calibration curve.
y = 0. 894 x-775. 1 y = 0.894 x-775. 1
(相関係数 0. 998)  (Correlation coefficient 0.998)
実施例 2  Example 2
実施例 1で検量線を作成した後、 重合反応液を全て重合反応槽から取り出して、 重合反応槽を十分に洗浄した後、 実施例 1と同様に重合反応を行い、 重合中は、 常時、 密度を測定し、 振動式密度計の出力から実施例 1の検量線に基づいて自動 的に重合転化率を計算するようにした。 2 0分毎に重合転化率をチェックし、 そ れと同時に、 重合反応液 0 . 0 1部を採取して分析して実測重合転ィヒ率を測定し た。 6 0分毎及び重合開始後 5 6 0分ならぴに 5 8 0分の密度、 算出重合転化率、 実測重合転化率、 測定誤差を表 1に示す。 重合開始後 6 0 5分で重合反応液の密 度が目的とした重合転化率 7 5 %に対応する値 (9 5 1 k g Zm 3 ) となったの で、 硫酸ヒドロキシルァミン 0 . 1部と水酸化ナトリウム 0 . 1部とを加えて反 応を停止させた。 重合停止後の実測重合転化率は 7 4 %であった。 After the calibration curve was prepared in Example 1, all the polymerization reaction liquid was taken out of the polymerization reaction tank, and after sufficiently washing the polymerization reaction tank, the polymerization reaction was performed in the same manner as in Example 1. Measures the density and automatically calculates the density based on the calibration curve of Example 1 The polymerization conversion was calculated. The polymerization conversion was checked every 20 minutes, and at the same time, 0.01 part of the polymerization reaction solution was sampled and analyzed to measure the actual polymerization conversion. Table 1 shows the density, the calculated polymerization conversion, the measured polymerization conversion, and the measurement error every 60 minutes and 560 minutes after the start of the polymerization. Six hundred and fifty minutes after the start of the polymerization, the density of the polymerization reaction liquid reached a value (951 kg Zm 3 ) corresponding to the desired polymerization conversion rate of 75%, so that 0.1 part of hydroxylamine sulfate was used. And 0.1 part of sodium hydroxide were added to stop the reaction. The measured polymerization conversion rate after the termination of the polymerization was 74%.
同じ重合反応槽から重合反応液を全て取り出した後、 洗浄することなく、 また、 密度を測定し、 算出重合転化率を求めるのみとして重合を繰り返した。 5回目の 重合では、 重合開始後 6 0 5分で重合反応液の密度が目的とした重合転化率 7 5 %に対応する値となったので、 1回目と同様に重合反応を停止した。 重合転化率 は 7 5 %であり、 誤差は 0であった。 なお、 密度計の支持部材 4 2 4 (図 4参 照) を観察したところ、 1回目の重合開始前に比べて、 5回目の重合後には、 密 度計が突出した部分の根元に重合体の付着が認められたが、 簡単な洗浄で容易に 除去できた。 また、 測定端子である振動子 4 2 6 (図 4参照) 部分には重合体の 付着は特に認められなかった。  After all of the polymerization reaction liquid was taken out from the same polymerization reaction tank, polymerization was repeated without washing, the density was measured, and only the calculated polymerization conversion was obtained. In the fifth polymerization, the density of the polymerization reaction solution reached a value corresponding to the desired polymerization conversion rate of 75% in 60 minutes after the start of the polymerization. Therefore, the polymerization reaction was stopped in the same manner as in the first polymerization. The polymerization conversion was 75% and the error was 0. Observation of the support member 4 2 4 (see Fig. 4) of the densitometer showed that after the fifth polymerization, the polymer was located at the base of the protruding part of the densitometer compared to before the first polymerization. Was observed, but could be easily removed by simple washing. In addition, no adhesion of polymer was observed on the vibrator 42 6 (see FIG. 4), which is the measurement terminal.
比較例 1  Comparative Example 1
実施例 1と同様に重合反応を行い、 2 0分毎に、 重合反応液 0 . 0 1部を採取 して分析し、 実測重合転化率を測定した。 測定には 2 0分かかった。 6 0分毎及 ぴ重合開始後 5 6 0分ならぴに 5 8 0分の実測重合転化率を表 1に示す。 重合開 始後 5 4 0分、 5 6 0分及ぴ 5 8 0分の実測重合転ィ匕率 (それぞれ、 6 6 %、 6 9 %、 7 1 % ) から、 概ね重合転化率が 1 %上昇するのに 8分かかると想定され、 目的とする重合転ィヒ率 7 5 %に達するのは、 5 8 0分から 3 2分後、 すなわち重 合開始後 6 1 2分と推測した。 なお、 重合開始後 6 0 0分の実測重合転化率測定 用試料の採取直後に、 上記の推測が得られ、 試料から実測重合転化率が求まるの は 6 2 0分目となるので、 測定を中止した。 重合開始後 6 1 2分で重合を停止し た。 重合停止後の実測重合転化率は 7 7 %であつた。  The polymerization reaction was carried out in the same manner as in Example 1. Every 20 minutes, 0.01 part of the polymerization reaction solution was sampled and analyzed, and the measured polymerization conversion was measured. The measurement took 20 minutes. Table 1 shows the measured polymerization conversion rate every 60 minutes and at 560 minutes after the start of polymerization. From the measured polymerization conversion rates (66%, 69%, 71%, respectively) of 540 minutes, 560 minutes and 580 minutes after the start of polymerization, the polymerization conversion rate was approximately 1%. It was assumed that it would take 8 minutes to ascend, and it was estimated that the target polymerization conversion rate of 75% was reached after 580 minutes and 32 minutes, that is, 612 minutes after the start of the polymerization. Immediately after collecting the sample for measuring the actual polymerization conversion for 600 minutes after the start of the polymerization, the above estimation is obtained, and the actual polymerization conversion is determined from the sample at the 600th minute. Canceled. The polymerization was stopped 61 minutes after the start of the polymerization. The measured polymerization conversion rate after the termination of the polymerization was 77%.
比較例 2  Comparative Example 2
重合反応槽に取り付けられた内径 2ィンチの循環パイプラインに、 音叉型振動 式密度計を取り付け、 重合反応液が重合反応槽からパイプ内に流出し、 密度を測 定した後、 重合反応槽へ再度流入するようにして、 循環パイプラインに取り付け られた音叉型振動式密度計で密度を測定する以外は、 実施例 1と同様に処理した。 実測重合転化率を y (%) 、 重合反応液の密度を X ( k g /m3) とすると、 Xと yの間にそれぞれ、 下記のような相関関係があることがわかった。 Tuning fork-type vibrations in a 2-inch inner diameter circulation pipeline attached to the polymerization reactor A density meter is attached, the polymerization reaction liquid flows out of the polymerization reaction tank into the pipe, and after measuring the density, it flows back into the polymerization reaction tank. The same treatment as in Example 1 was conducted except that the density was measured with a meter. Assuming that the measured polymerization conversion rate is y (%) and the density of the polymerization reaction solution is X (kg / m 3 ), the following correlations were found between X and y, respectively.
y = 0. 8 9 2 x- 7 7 6. 4 y = 0.89 2 x- 7 7 6.4
(相関係数 0. 998)  (Correlation coefficient 0.998)
重合反応液を全て重合反応槽から取り出して、 重合反応槽を十分に洗浄した後、 上記相関関係を検量線として、 実施例 1と同様に重合反応を行い、 重合中は、 常 時、 密度を測定し、 密度計の出力から検量線に基づいて自動的に重合転化率を計 算するようにした。 20分毎に重合転化率をチェックし、 それと同時に 0. 0 1 部を採取して分析し、 重合転化率を測定した。 6 0分毎及ぴ重合開始後 5 60分 ならびに 58 0分に測定した密度から計算された重合転ィヒ率、 採取した重合反応 液を分析して求めた重合転化率、 その間の誤差を表 1に示す。  After taking out all the polymerization reaction liquid from the polymerization reaction tank and sufficiently washing the polymerization reaction tank, a polymerization reaction was performed in the same manner as in Example 1 using the above correlation as a calibration curve. The polymerization conversion was automatically calculated based on the calibration curve from the output of the densitometer. The polymerization conversion was checked every 20 minutes, and at the same time, 0.01 part was sampled and analyzed to measure the polymerization conversion. The polymerization conversion rate calculated from the densities measured at 60 and 580 minutes after the start of polymerization and at 60 and 580 minutes after the start of polymerization, the polymerization conversion rate obtained by analyzing the collected polymerization reaction solution, and the error between them are shown in the table. Shown in 1.
また、 重合開始後 60 5分で重合反応液の密度が目的とした重合転化率 75% に対応する値 (954 k g/m3) となったので、 硫酸ヒドロキシルァミン 0. 1 部と水酸ィヒナトリウム 0. 1部とを加えて反応を停止させた。 重合停止後の実測 重合転化率は 75 %であった。 In addition, since the density of the polymerization reaction solution reached a value (954 kg / m 3 ) corresponding to the desired polymerization conversion rate of 75% in 605 minutes after the start of polymerization, 0.1 parts of hydroxylamine sulfate and hydroxyl were added. The reaction was stopped by adding 0.1 part of dig sodium. The measured polymerization conversion after the termination of the polymerization was 75%.
同じ重合反応槽から重合反応液を全て取り出した後、 洗浄することなく、 また、 密度と算出重合転ィヒ率を求めるのみとして重合を繰り返した。 重合を繰り返す毎 に測定した密度が目的とする重合転化率に対応する値となるまでの時間が長くな り、 重合停止後の実測重合転化率は目標値に比べて徐々に大きくなつた。 5回目 の重合では、 重合開始後 650分で重合反応液の密度が目的とした重合転化率 7 5%に対応する値となり、 重合を停止した。 重合停止後の実測重合転化率は 8 1 %であった。 5回目の重合後に循環パイプラインを取り外して、 重合体の付着具 合を観察したところ、 直線部分にはほとんど重合体の付着は認められなかつたが、 曲線部分と密度計の突出した部分の根元にかなりの付着が認められた。 密度計を 取り外して観察したところ、 測定端子としての振動子 42 6 (図 4参照) 部分に は、 重合体の付着は認められなかった。 1 After all of the polymerization reaction solution was taken out from the same polymerization reaction tank, polymerization was repeated without washing, and only the density and the calculated polymerization conversion rate were determined. Each time the polymerization was repeated, the time required for the measured density to reach a value corresponding to the target polymerization conversion rate was prolonged, and the measured polymerization conversion rate after termination of the polymerization gradually increased from the target value. In the fifth polymerization, 650 minutes after the start of the polymerization, the density of the polymerization reaction solution reached a value corresponding to the desired polymerization conversion rate of 75%, and the polymerization was stopped. The measured polymerization conversion rate after the termination of the polymerization was 81%. After the fifth polymerization, the circulation pipeline was removed, and the degree of adhesion of the polymer was observed.As a result, almost no adhesion of the polymer was observed on the linear portion, but the curved portion and the root of the protruding portion of the density meter were observed. Considerable adhesion was observed. When the densitometer was removed and observed, no polymer adhered to the vibrator 426 (see Fig. 4) as the measuring terminal. 1
Figure imgf000023_0001
Figure imgf000023_0001
比較例 1に示したように、 重合反応液を分析して重合転化率を求めると時間が かかり、 目的の重合転化率で重合を停止するのが困難である。 As shown in Comparative Example 1, it takes time to determine the polymerization conversion rate by analyzing the polymerization reaction solution, and it is difficult to stop the polymerization at the desired polymerization conversion rate.
また、 比較例 2に示したように、 循環パイプラインに密度計を取り付けた場合 は、 十分に洗浄を繰り返さなければ、 パイプの目詰まりなどにより、 重合反応槽 中の密度がパイプライン内に即座に反映されにくくなり、 正確な密度が測定でき なくなる。 そのため、 重合転化率の測定精度が落ち、 目的の重合転化率で重合を 停止するのが困難である。 パイプラインを外して、 毎回洗浄すると、 かなり手早 く洗浄しても、 取り外し、 組み立て、 安全性のチェックなどに時間がかかるため、 連続して重合を行う場合、 生産性が落ちる。  Also, as shown in Comparative Example 2, when a density meter was installed in the circulating pipeline, if the washing was not repeated sufficiently, the density in the polymerization reaction tank would be instantaneously increased in the pipeline due to clogging of the pipe. And it is difficult to measure the density accurately. For this reason, the measurement accuracy of the polymerization conversion rate decreases, and it is difficult to stop the polymerization at the target polymerization conversion rate. If the pipeline is removed and washed every time, even if the washing is performed fairly quickly, it takes time to remove, assemble, check the safety, and so on. If continuous polymerization is performed, productivity will decrease.
それに対し、 実施例 2に示したように、 本発明の測定方法によれば、 重合反応 の内部に取り付けた音叉型振動式密度計を用いて重合反応槽中の重合反応液の密 度を測定した後、 実施例 1のように予め該方法で測定した重合反応液の密度と実 際に測定した重合転ィ匕率に基づいて作成した検量線を用いて、 重合転化率を算出 する。 このため、 即時に高い精度で重合転化率を測定することができ、 目的とす る重合転化率との誤差を小さく、 重合を停止できる。 また、 この効果は、 重合を 繰り返しても、 維持される。  In contrast, as shown in Example 2, according to the measurement method of the present invention, the density of the polymerization reaction solution in the polymerization reaction tank was measured using a tuning fork vibrating densitometer attached inside the polymerization reaction. After that, as in Example 1, the polymerization conversion rate is calculated by using a calibration curve created based on the density of the polymerization reaction solution previously measured by the method and the polymerization conversion rate actually measured. For this reason, the polymerization conversion can be measured immediately with high accuracy, and the error with the target polymerization conversion can be reduced, and the polymerization can be stopped. This effect is maintained even after repeated polymerization.

Claims

請求の範囲 1 . 重合反応槽の内部に取り付けられた振動式密度計を用いて重合反 応液の密度を測定する工程と、 Claims 1. A step of measuring the density of the polymerization reaction liquid using a vibration type densitometer mounted inside the polymerization reaction tank;
前記測定された密度の値から、 前記重合反応液の重合転化率の値を算出するェ 程とを、 有する重合転化率の測定方法。  Calculating the value of the polymerization conversion rate of the polymerization reaction solution from the measured density value.
2 . 音叉型の振動式密度計を用いる請求項 1に記載の重合転化率の測 定方法。 2. The method for measuring polymerization conversion rate according to claim 1, wherein a tuning fork type vibratory density meter is used.
3 . 乳化重合反応液を前記重合反応液として用いる請求項 1に記載の 重合転化率の測定方法。 3. The method according to claim 1, wherein an emulsion polymerization reaction liquid is used as the polymerization reaction liquid.
4 . 不飽和二トリル又は芳香族ビュルと、 共役ジェンで構成される共 重合体の乳化重合反応液を用いる請求項 3に記載の重合転化率の測定方法。 4. The method for measuring the polymerization conversion rate according to claim 3, wherein an emulsion polymerization reaction solution of a copolymer composed of unsaturated nitrile or aromatic butyl and a conjugated diene is used.
5 . 重合反応によって重合反応液を得る工程と、 5. a step of obtaining a polymerization reaction solution by a polymerization reaction;
重合反応槽の内部に取り付けられた振動式密度計を用いて前記重合反応液の密 度を測定する工程と、  Measuring the density of the polymerization reaction solution using a vibration type densitometer attached inside the polymerization reaction tank,
前記測定された密度の値から、 前記重合反応液の重合転化率の値を算出するェ 程と、  Calculating a value of a polymerization conversion rate of the polymerization reaction solution from the value of the measured density;
前記算出された重合体反応液の重合転化率の値に応じて、 重合反応因子を変化 させる工程とを、 有する重合体の製造方法。  Changing the polymerization reaction factor in accordance with the calculated value of the polymerization conversion rate of the polymer reaction solution.
6 . 重合反応によって重合反応液を得る工程と、 6. a step of obtaining a polymerization reaction solution by a polymerization reaction;
重合反応槽の内部に取り付けられた振動式密度計を用いて前記重合反応液の密 度を測定する工程と、  Measuring the density of the polymerization reaction solution using a vibration type densitometer attached inside the polymerization reaction tank,
前記測定された密度の値に応じて、 重合反応因子を変化させる工程とを、 有す る重合体の製造方法。 Changing the polymerization reaction factor in accordance with the measured value of the density.
7 . 音叉型の振動式密度計を用いる請求項 5又は 6に記載の重合体の 製造方法。 7. The method for producing a polymer according to claim 5, wherein a tuning fork type vibratory density meter is used.
8 . 重合反応因子が、 原料供給要素、 重合要素及び重合停止要素から 選ばれる少なくとも一つであり、 8. The polymerization reaction factor is at least one selected from a raw material supply element, a polymerization element and a polymerization termination element,
前記原料供給要素が、 単量体、 重合開始剤及ぴその他の重合副資材の、 追加投 入の有無、 追加投入の時期及ぴ追加投入量から選ばれる少なくとも一つであり、 前記重合要素が、 反応温度を制御する冷媒又は熱媒体の流量、 反応圧力、 重合 反応槽の攪拌速度及び重合反応槽の攪拌方法から選ばれる少なくとも一つであり、 前記重合停止要素が、 重合停止剤の投入、 重合反応槽内の冷却及び重合反応槽 内の減圧から選ばれる少なくとも一つである、 請求項 5又は 6に記載の重合体の 製造方法。  The raw material supply element is at least one selected from a monomer, a polymerization initiator, and other polymerization auxiliary materials, whether or not additional addition is performed, a timing of additional addition, and an additional input amount. A flow rate of a cooling medium or a heat medium for controlling a reaction temperature, a reaction pressure, a stirring speed of a polymerization reaction tank and a stirring method of a polymerization reaction tank, wherein the polymerization termination element is a polymerization termination agent, 7. The method for producing a polymer according to claim 5, wherein the method is at least one selected from cooling in a polymerization reaction tank and reduced pressure in the polymerization reaction tank.
9 . 単量体、 重合開始剤及びその他の重合副資材からなる原料を、 重 合反応槽に供給する原料供給工程と、 9. A raw material supply step of supplying a raw material comprising a monomer, a polymerization initiator, and other polymerization auxiliary materials to a polymerization reactor;
前記重合反応槽内で単量体を重合させ、 重合反応液を得る重合工程と、 所定の重合転化率で重合を停止させる重合停止工程とを、 有する重合体の製造 方法であって、  A method for producing a polymer, comprising: a polymerization step of polymerizing a monomer in the polymerization reaction tank to obtain a polymerization reaction solution; and a polymerization termination step of terminating polymerization at a predetermined polymerization conversion rate.
重合反応槽の内部に取り付けられた振動式密度計を用いて前記重合反応槽内の 重合反応液の密度を測定する工程と、  Measuring the density of the polymerization reaction solution in the polymerization reaction tank using a vibration type densitometer attached inside the polymerization reaction tank;
前記測定された密度の値から、 前記重合反応液の重合転化率の値を算出するェ 程と、  Calculating a value of a polymerization conversion rate of the polymerization reaction solution from the value of the measured density;
前記算出された重合反応液の重合転化率の値を、 前記原料供給工程、 前記重合 工程及ぴ前記重合停止工程から選ばれる少なくとも一つの工程に伝達し、 各工程 での重合反応因子を変化させる因子変化工程とを、 有する重合体の製造方法。  The calculated value of the polymerization conversion rate of the polymerization reaction solution is transmitted to at least one step selected from the raw material supply step, the polymerization step, and the polymerization termination step, and the polymerization reaction factor in each step is changed. And a factor changing step.
1 0 . 単量体、 重合開始剤及ぴその他の重合副資材からなる原料を、 重合反応槽に供給する原料供給工程と、 前記重合反応槽内で単量体を重合させ、 重合反応液を得る重合工程と、 所定の重合転化率で重合を停止させる重合停止工程とを、 有する重合体の製造 方法であって、 10. A raw material supply step of supplying a raw material comprising a monomer, a polymerization initiator and other polymerization auxiliary materials to a polymerization reaction tank; A method for producing a polymer, comprising: a polymerization step of polymerizing a monomer in the polymerization reaction tank to obtain a polymerization reaction solution; and a polymerization termination step of terminating polymerization at a predetermined polymerization conversion rate.
重合反応槽の内部に取り付けられた振動式密度計を用いて前記重合反応槽内の 重合反応液の密度を測定する工程と、  Measuring the density of the polymerization reaction solution in the polymerization reaction tank using a vibration type densitometer attached inside the polymerization reaction tank;
前記測定された密度の値を、 前記原料供給工程、 前記重合工程及び前記重合停 止工程から選ばれる少なくとも一つの工程に伝達し、 各工程での重合反応因子を 変化させる因子変化工程とを、 有する重合体の製造方法。  Transmitting the measured density value to at least one step selected from the raw material supply step, the polymerization step, and the polymerization stop step, and changing a polymerization reaction factor in each step; A method for producing a polymer having
1 1 . 前記算出された重合反応液の重合転化率の値を、 前記原料供給 工程に伝達し、 各原料の追加投入の有無、 追加投入の時期及び追加投入量から選 ばれる少なく とも一つを変化させる請求項 9に記載の重合体の製造方法。 11. The calculated value of the polymerization conversion rate of the polymerization reaction solution is transmitted to the raw material supply step, and at least one selected from the presence / absence of additional input of each raw material, the timing of additional input, and the additional input amount. 10. The method for producing a polymer according to claim 9, which is varied.
1 2 . 前記測定された密度の値を、 前記原料供給工程に伝達し、 各原 料の追加投入の有無、 追加投入の時期及び追加投入量から選ばれる少なくとも一 つを変化させる請求項 1 0に記載の重合体の製造方法。 12. The measured density value is transmitted to the raw material supply step, and at least one selected from the presence / absence of additional input of each raw material, the timing of additional input, and the additional input amount is changed. The method for producing a polymer according to the above.
1 3 . 重合開始から重合停止までの間に、 単量体及び/又は重合開始 剤を少なくとも 1回、 重合反応槽に追加投入する請求項 1 1又は 1 2に記載の重 合体の製造方法。 13. The method for producing a polymer according to claim 11 or 12, wherein the monomer and / or the polymerization initiator are additionally added at least once to the polymerization reaction tank between the start of the polymerization and the termination of the polymerization.
1 4 . 前記算出された重合反応液の重合転化率の値を、 前記重合停止 工程に伝達し、 重合停止剤の投入、 重合反応槽内の冷却及び重合反応槽内の減圧 から選ばれる少なくとも一つの方法によつて重合反応を停止させる請求項 9に記 載の重合体の製造方法。 14. The calculated value of the polymerization conversion rate of the polymerization reaction solution is transmitted to the polymerization termination step, and at least one selected from the addition of a polymerization terminator, the cooling in the polymerization reaction vessel, and the reduced pressure in the polymerization reaction vessel. 10. The method for producing a polymer according to claim 9, wherein the polymerization reaction is stopped by one of two methods.
1 5 . 前記測定された密度の値を、 前記重合停止工程に伝達し、 重合 停止剤の投入、 重合反応槽内の冷却及ぴ重合反応槽内の減圧から選ばれる少なく とも一つの方法によつて重合反応を停止させる請求項 1 0に記載の重合体の製造 方法。 15. The measured density value is transmitted to the polymerization stopping step, and the polymerization is stopped by at least one method selected from charging of a polymerization terminator, cooling in the polymerization reaction tank, and depressurization in the polymerization reaction tank. Production of the polymer according to claim 10, wherein the polymerization reaction is stopped. Method.
1 6 . 不飽和二トリル又は芳香族ビニルと、 共役ジェンとを単量体と して用いる請求項 9又は 1 0に記載の重合体の製造方法。 16. The method for producing a polymer according to claim 9 or 10, wherein unsaturated nitrile or aromatic vinyl and a conjugated diene are used as monomers.
1 7 . 重合反応によって重合反応液を得る重合反応槽と、 17. A polymerization reaction tank for obtaining a polymerization reaction solution by a polymerization reaction,
該重合反応槽の内部に取り付けられ、 該重合反応槽内の重合反応液の密度を測 定する振動式密度計と、  A vibratory densitometer mounted inside the polymerization reaction tank and measuring the density of the polymerization reaction solution in the polymerization reaction tank;
該密度計により測定された密度の値から、 前記重合反応液の重合転化率の値を 算出する重合転化率算出手段と、  A polymerization conversion rate calculating means for calculating a value of a polymerization conversion rate of the polymerization reaction solution from a value of the density measured by the densitometer;
該重合転化率算出手段により算出された重合反応液の重合転化率の値に応じて、 重合反応因子を変化させる因子変化手段とを、 有する重合体の製造装置。  A factor changing means for changing a polymerization reaction factor according to the value of the polymerization conversion rate of the polymerization reaction solution calculated by the polymerization conversion rate calculating means.
1 8 . 内部で得られるべき重合反応液に測定端子が浸漬するように設 置された振動式密度計を有する重合反応槽。 18. A polymerization reactor having a vibratory densitometer installed so that the measurement terminal is immersed in the polymerization reaction solution to be obtained inside.
PCT/JP2002/007721 2001-07-31 2002-07-30 Method for determining polymerization conversion, method and apparatus for producing polymer and polymerization reactor WO2003012399A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003517543A JPWO2003012399A1 (en) 2001-07-31 2002-07-30 Method for measuring polymerization conversion, method and apparatus for producing polymer, and polymerization reaction tank

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-232251 2001-07-31
JP2001232251 2001-07-31

Publications (1)

Publication Number Publication Date
WO2003012399A1 true WO2003012399A1 (en) 2003-02-13

Family

ID=19064198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/007721 WO2003012399A1 (en) 2001-07-31 2002-07-30 Method for determining polymerization conversion, method and apparatus for producing polymer and polymerization reactor

Country Status (2)

Country Link
JP (1) JPWO2003012399A1 (en)
WO (1) WO2003012399A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11945888B2 (en) * 2019-05-15 2024-04-02 Exxonmobil Chemical Patents Inc. Solution polymerization process and product control using effluent density

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947213A (en) * 1982-09-13 1984-03-16 Japan Synthetic Rubber Co Ltd Production of rubber-like polymer
JPH08247917A (en) * 1995-03-13 1996-09-27 Yamaichi Electron Co Ltd Vibration type device for inspecting liquid
JPH11173968A (en) * 1997-12-12 1999-07-02 Riken Corp Method and apparatus for measuring property of liquid

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947213A (en) * 1982-09-13 1984-03-16 Japan Synthetic Rubber Co Ltd Production of rubber-like polymer
JPH08247917A (en) * 1995-03-13 1996-09-27 Yamaichi Electron Co Ltd Vibration type device for inspecting liquid
JPH11173968A (en) * 1997-12-12 1999-07-02 Riken Corp Method and apparatus for measuring property of liquid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PONNUSWAMY S., SHAH S.L., KIPARISSIDES C.: "On-line monitoring of polymer quality in a batch polymerization reactor", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 32, no. 1, 1986, pages 3239 - 3253, XP002958951 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11945888B2 (en) * 2019-05-15 2024-04-02 Exxonmobil Chemical Patents Inc. Solution polymerization process and product control using effluent density

Also Published As

Publication number Publication date
JPWO2003012399A1 (en) 2004-11-18

Similar Documents

Publication Publication Date Title
EP1321836A1 (en) Controller, temperature controller and heat processor using same
JP2002542900A5 (en)
WO2003006955A1 (en) Method and instrument for measuring mooney viscosity, and method and apparatus for producing polymer
WO2003012399A1 (en) Method for determining polymerization conversion, method and apparatus for producing polymer and polymerization reactor
RU2006101579A (en) METHOD OF POLYMERIZATION INCLUDING DOSAGE OF INITIATORS
Liang et al. Growth rate dispersion effects on lactose crystal size distributions from a continuous cooling crystallizer
CA2115299A1 (en) Polymerization apparatus effective in preventing polymer scale deposition and process of producing polymer using the same
JPS62124107A (en) Control of molecular weight
Fram et al. Emulsion Polymerization by Continuous Feed of Reactants
JPS5811442B2 (en) Hannoyoukihenopolymer
CN212492907U (en) Reaction device for preparing 2, 5-disubstituted benzonitrile
JPH07171307A (en) Flocculation test of suspension and determination of injection amount of flocculant
JP2016055245A (en) Neutralization treatment method, and neutralization apparatus
CN218350054U (en) Narcissus polysaccharide solution viscosity automatic regulating apparatus
JP3813011B2 (en) Method and apparatus for collecting polymer solids
JP2003048916A (en) Method for recovering unreacted monomer and device for recovering the monomer
JP2005281659A (en) Producing method of vinyl chloride-based polymer
CA2547697C (en) Coriolis mass-flow measuring device
JPH10204106A (en) Method and apparatus for polymerization
JP2000239315A (en) Production of polymer
JP3192445B2 (en) Method for producing polymer particles
JP2003313204A (en) Method for controlling polymerization temperature
JP2003040910A (en) Method for controlling polymerization
Platkowski et al. Short stopping of runaway methyl methacrylate polymerizations
SU1007380A1 (en) Method of controlling obtainins cis-1,4-polyisoprene

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003517543

Country of ref document: JP

122 Ep: pct application non-entry in european phase