JPS62124107A - Control of molecular weight - Google Patents

Control of molecular weight

Info

Publication number
JPS62124107A
JPS62124107A JP60262582A JP26258285A JPS62124107A JP S62124107 A JPS62124107 A JP S62124107A JP 60262582 A JP60262582 A JP 60262582A JP 26258285 A JP26258285 A JP 26258285A JP S62124107 A JPS62124107 A JP S62124107A
Authority
JP
Japan
Prior art keywords
hydrogen
molecular weight
propylene
polymerization
polypropylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60262582A
Other languages
Japanese (ja)
Inventor
Tadashi Asanuma
正 浅沼
Ichiro Fujikage
一郎 藤隠
Shinryu Uchikawa
進隆 内川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP60262582A priority Critical patent/JPS62124107A/en
Priority to IN814/CAL/86A priority patent/IN166637B/en
Priority to AU65057/86A priority patent/AU573461B2/en
Priority to GB8627113A priority patent/GB2183245B/en
Priority to DE19863639728 priority patent/DE3639728A1/en
Priority to FR868616324A priority patent/FR2590579B1/en
Priority to NL8602979A priority patent/NL8602979A/en
Priority to IT22436/86A priority patent/IT1199672B/en
Priority to FI864776A priority patent/FI864776A/en
Priority to KR1019860009951A priority patent/KR890004064B1/en
Priority to BE0/217455A priority patent/BE905813A/en
Priority to PT83807A priority patent/PT83807B/en
Priority to CN198686107933A priority patent/CN86107933A/en
Publication of JPS62124107A publication Critical patent/JPS62124107A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/02Polymerisation in bulk
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

PURPOSE:To enable the control of molecular weight of polypropylene in high efficiency suppressing the loss of material based on the fact that the hydrogen consumption per unit weight is constant at constant molecular weight in the polymerization of propylene in a reactor provided with a reflux condenser using hydrogen as a molecular weight controller. CONSTITUTION:Propylene is polymerized in a reactor provided with a reflux condenser by bulk-polymerization process using hydrogen as a molecular weight controller and propylene as a liquid medium at a constant temperature while removing at least a part of polymerization heat by condensing propylene vapor with the reflux condenser. In the above process, the molecular weight of the polymer is controlled by controlling the feeding rate of hydrogen according to the consumption of hydrogen per unit propylene in the reactor. The hydrogen consumption corresponds to the molecular weight of polypropylene and is calculated from the polymerization ratio calculated from heat generation and a preliminarily determined relationship between the molecular weight of polypropylene and the consumption of hydrogen.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はプロピレンの重合方法に関する。詳しくは、特
定の重合方法で水素を用いて得られるポリプロピレンの
分子量を制御してプロピレン自身合する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a process for the polymerization of propylene. Specifically, the present invention relates to a method of controlling the molecular weight of polypropylene obtained by using hydrogen in a specific polymerization method and polymerizing propylene itself.

従来の技術 チークラ−拳ナツタ触媒を用いてプロピレンを重合する
に際し得られるポリプロピレンの分子量を重合の際に加
える水素の債によって制御できることは良く知られてお
り(例えばJ、PolymerSci、、 C2109
(1974) )気相の水素濃度と得られるポリプロピ
レンの分子量が一定の関係にある(例えばJ、Poly
mer Sci、、Part Al vol 8271
7(1970) )ことから通常は気相の水素濃度を得
られるポリプロピレンの分子量が所望の値となるように
一定値に制御することでポリプロプレンを製造している
It is well known that the molecular weight of polypropylene obtained when propylene is polymerized using a Cheekler-Kenatsuta catalyst can be controlled by controlling the amount of hydrogen added during the polymerization (for example, J. Polymer Sci., C2109).
(1974)) There is a certain relationship between the hydrogen concentration in the gas phase and the molecular weight of the polypropylene obtained (for example, J, Poly
mer Sci, Part Al vol 8271
7 (1970)), polypropylene is usually produced by controlling the molecular weight of polypropylene, which provides the hydrogen concentration in the gas phase, to a constant value so that it becomes a desired value.

一方大型の反応機を用いてポリプロピレンを製造するに
際しては、単に反応機の壁を介して或は反応機内に熱交
換器を設けて除熱するだけでは重合熱を除去することが
困難なため液状媒体の潜熱を利用する還流冷却器を用い
る方法も公知である。
On the other hand, when producing polypropylene using a large reactor, it is difficult to remove the heat of polymerization simply through the walls of the reactor or by installing a heat exchanger inside the reactor, so it is difficult to remove the heat of polymerization in a liquid form. Methods using reflux condensers that utilize the latent heat of the medium are also known.

発明が解決しようとする問題点 しかしながら上記の還流冷却器を設けた反応機を用いて
プロピレンを重合する場合には、還流冷却器の負荷によ
って気相の水素濃度が大きく変化するため、気相の水素
濃度が一定となるように、水素を導入及び/又は排出す
る方法を行うと頻繁に水素の導入、排出をすることにな
るため、水素及び排出の際に同伴されるプロピレンの量
がぼう大となるという問題があった。
Problems to be Solved by the Invention However, when propylene is polymerized using a reactor equipped with the above-mentioned reflux condenser, the hydrogen concentration in the gas phase changes greatly depending on the load on the reflux condenser. If hydrogen is introduced and/or discharged so that the hydrogen concentration is constant, hydrogen will be introduced and discharged frequently, and the amount of hydrogen and propylene entrained during discharge will be large. There was a problem that.

本発明者らは上記問題を解決する方法について鋭意検討
し友結果特定の方法を行うことで制御性よく水素及び/
又はプロピレンの損失なくポリプロピレンの分子量を制
御できることを見い出し本発明を完成した。
The present inventors have diligently studied methods to solve the above problems, and by implementing a method for specifying results, hydrogen and/or
Alternatively, they discovered that the molecular weight of polypropylene can be controlled without loss of propylene, and completed the present invention.

本発明の目的は、原料の損失なく制御された分子量のポ
リプロピレンを製造する方法を提供することにある。
It is an object of the present invention to provide a method for producing polypropylene of controlled molecular weight without loss of raw materials.

問題点を解決するtめの手段 即ち本発明は還流冷却器t−備え友反応槽を用いて水素
を分子量調節剤とし、プロピレン自身を液状媒体とする
塊状重合法で重合熱の少くとも1部をプロピレン蒸気を
還流冷却器で凝縮することによって除去して一定温度で
プロピレンを重合する方法において、発熱量によって算
出された重合量と予め定められた得られるポリプロピレ
ンの分子量と水素の消費量の関係式より導かれた所望の
ポリプロピレンの分子量に対応する単位プロピレン当り
の水素の消費量とによって導かれる反応槽での水素の消
費量に応じ装入水素量を制御することを特徴とする分子
量の制御方法である。
A third means to solve the problem, that is, the present invention, is a bulk polymerization method using a reaction tank equipped with a reflux condenser, hydrogen as a molecular weight regulator, and propylene itself as a liquid medium, to absorb at least a part of the polymerization heat. In the method of polymerizing propylene at a constant temperature by removing propylene vapor by condensing it in a reflux condenser, the relationship between the amount of polymerization calculated from the calorific value, the predetermined molecular weight of the polypropylene obtained, and the consumption amount of hydrogen. Molecular weight control characterized by controlling the amount of hydrogen charged in accordance with the consumption amount of hydrogen in a reaction tank derived from the consumption amount of hydrogen per unit propylene corresponding to the desired molecular weight of polypropylene derived from the formula. It's a method.

本発明の方法は、還流冷却器を備えた反応槽を用いて、
水素を分子量調節剤としてプロピレンを重合する際に極
めて重要である。
The method of the present invention uses a reaction tank equipped with a reflux condenser,
It is extremely important when polymerizing propylene using hydrogen as a molecular weight regulator.

なぜなら還流冷却器を用いない反応槽では、気相と液相
が気液平衡となっておりしかも気相部はほぼ均一な状態
となっているため気相部のガスを採取して水素濃度を測
定すれば正確に気相部の水素濃度を知ることができるた
め検知された水素濃度を比較手段で所望の水素濃度を比
較し不足分を水素の導入弁を操作することで反応槽に導
入することで得られるポリプロピレンの分子量全制御す
ることが可能であるからである。
This is because in a reaction tank that does not use a reflux condenser, the gas phase and liquid phase are in vapor-liquid equilibrium, and the gas phase is in a nearly uniform state, so the gas in the gas phase is sampled to determine the hydrogen concentration. If you measure it, you can accurately know the hydrogen concentration in the gas phase, so compare the detected hydrogen concentration with the desired hydrogen concentration using a comparison means, and introduce the insufficient hydrogen concentration into the reaction tank by operating the hydrogen introduction valve. This is because it is possible to completely control the molecular weight of the polypropylene obtained by this method.

本発明においてプロピレンの重合とはプロピレンの単独
重合のみならずプロピレンとエチレン、ブテン−1、ヘ
キセン−1などとの共重合をも含有する。
In the present invention, the polymerization of propylene includes not only homopolymerization of propylene but also copolymerization of propylene with ethylene, butene-1, hexene-1, and the like.

本発明において用いる重合触媒としては公知の遷移金属
触媒と有機金属化合物からなる触媒系(必要に応じ立体
規則性向上剤を併用)が用いられ、特に限定されず遷移
金属触媒としては、四塩化チタンをアルミニウム、有機
アルミニウム、有機マグネシウムなどの還元剤で還元し
て得た三塩化チタン或はさらに粉砕、含酸素有機化合物
処理、四塩化チタン処理等の活性化処理を行ったもの、
或は塩化マグネシウムなどの担体に三塩化チタン又は四
塩化チタンを担持したものが挙げられ、有機金属化合物
としては、トリアルキルアルミニウム、ジアルキルアル
ミニウムハライド、アルキルアルミニウムセスキハライ
ド、アルキルアルミニウムシバライドなどの有機アルミ
ニウム、ジアルキルマグネシウムなどの有機マグネシウ
ムなどが例示できる。
As the polymerization catalyst used in the present invention, a known catalyst system consisting of a transition metal catalyst and an organometallic compound (combined with a stereoregularity improver if necessary) is used, and the transition metal catalyst is not particularly limited. Titanium trichloride obtained by reducing with a reducing agent such as aluminum, organoaluminum, or organomagnesium, or titanium trichloride obtained by further pulverization, treatment with an oxygen-containing organic compound, titanium tetrachloride treatment, etc.
Alternatively, examples include those in which titanium trichloride or titanium tetrachloride is supported on a carrier such as magnesium chloride, and examples of organic metal compounds include organic aluminum compounds such as trialkylaluminium, dialkylaluminum halide, alkyl aluminum sesquihalide, and alkylaluminum cybaride. , organic magnesium such as dialkylmagnesium, and the like.

以下に本発明の態様を図面を用いて説明する。Embodiments of the present invention will be described below with reference to the drawings.

第1図に本発明の方法を実施するための装置の1例を示
す。1は攪拌器付きの反鏡槽であり、2は還流冷却器 
3はジャケット 4−1はガスの流量及び温度の検出器
 4−2は凝縮液の流量及び温度の検出器、4−3は水
素ガスの導入流!調節弁、4−4はジャケットの冷却(
又は加熱)水の排出液量及び温度の検出器、4−5はジ
ャケットの冷却(又は加熱)水の流入液量及び温度の検
出器 を示しライン5はスラリーの導入ライン(第1偵
目の場合は触媒スラリーの装入ラインとなる)ライン6
はスラリーの排出ライン、7はプロピレン及び触媒の装
入ラインを示す。上記4−1.4−2.4−4.4−5
で検出された信号それぞれaX b、c、dはデータ処
理器8に入力され、放熱量等を補正して発熱量より重合
tを算出する。一方予め水素の消費量と得られるポリプ
ロピレンの分子量(第2図では分子量の尺度として極限
粘度数を用いている)との関係を定めておき所望の分子
量に対応するポリプロピレン単位重量当りの水素の消費
tをもとめ、上記で求めた重合量との積に相当する水素
を導入することで一定分子量のポリプロピレンを製造す
ることができる。
FIG. 1 shows an example of an apparatus for carrying out the method of the present invention. 1 is a mirror tank with a stirrer, 2 is a reflux condenser
3 is a jacket, 4-1 is a gas flow rate and temperature detector, 4-2 is a condensate flow rate and temperature detector, and 4-3 is a hydrogen gas introduction flow! Control valve 4-4 is for jacket cooling (
4-5 is a detector for the amount and temperature of cooling (or heating) water flowing into the jacket, and line 5 is a slurry introduction line (first line). line 6 (which becomes the catalyst slurry charging line)
7 indicates the slurry discharge line, and 7 indicates the propylene and catalyst charging line. 4-1.4-2.4-4.4-5 above
The signals aX b, c, and d detected in are inputted to the data processor 8, and the amount of heat dissipated and the like are corrected to calculate the polymerization t from the amount of heat generated. On the other hand, by determining the relationship between the amount of hydrogen consumed and the molecular weight of the obtained polypropylene (in Figure 2, the intrinsic viscosity is used as a measure of molecular weight), the consumption of hydrogen per unit weight of polypropylene corresponding to the desired molecular weight is determined in advance. Polypropylene with a constant molecular weight can be produced by determining t and introducing hydrogen corresponding to the product of the amount of polymerization determined above.

連続重合を多槽を連結した重合機を用いしかも多槽で分
子量を変えて重合する場合には、スラリーとともに出入
する水素の量を補正することが必要なのは言うまでもな
い。
It goes without saying that when continuous polymerization is carried out using a polymerization machine with multiple tanks connected and polymerization is carried out while changing the molecular weight in the multiple tanks, it is necessary to correct the amount of hydrogen flowing in and out with the slurry.

重合のスタート時においては、単に消費量に見会う水素
全導入するだけでは所望の分子量のものは得られないの
でプロピレンに対する水素の溶解量、気相体積を考慮し
友必要水素量を一括して装入し得られるポリプロピレン
の分子量を測定して微修正した後所望の分子量になって
後先に述べた消費量見金いの水素を導入することで一定
の分子量のポリプロピレンを製造することが可能となる
At the start of polymerization, it is not possible to obtain the desired molecular weight by simply introducing all the hydrogen to meet the amount consumed. Therefore, the amount of hydrogen required is determined at once by considering the amount of hydrogen dissolved in propylene and the volume of the gas phase. After measuring the molecular weight of the charged polypropylene and making slight corrections, it is possible to produce polypropylene with a constant molecular weight by introducing hydrogen according to the amount of consumption mentioned above after reaching the desired molecular weight. becomes.

作用 本発明は一定の分子i1に与える時の水素の消費量は、
単位重量当り一定であること。気相の水素の濃度は、還
流冷却器の負荷により変動し見掛けの値は大きく変動す
るが、平均的にに気相と液相の平衡は保たれており、消
費見合の水素を導入することで一定の分子量に保つこと
ができたものと推定できる。
Effect: According to the present invention, the amount of hydrogen consumed when given to a certain molecule i1 is
Must be constant per unit weight. The concentration of hydrogen in the gas phase fluctuates depending on the load on the reflux condenser, and the apparent value fluctuates greatly, but on average, the equilibrium between the gas and liquid phases is maintained, and hydrogen can be introduced in proportion to consumption. It can be assumed that the molecular weight could be maintained at a constant value.

実施例 第1図に示す構造の内容積40W?の反応機を用い液状
プロピレンを媒体として用い三塩化チタンとジエチルア
ルミニウムクロライドからなる触媒を用い70℃で重合
した。重合開始の際に35N−の水素を一括し極限粘度
数がt7になるように水素の導入量を微修正した後発熱
量により算出され九重合量に応じて水素を導入するよう
に制御して重合し友。第3図に第1図のライン9より気
相のガスをサンプリングして気相水素濃度をモニターし
た値と得られたポリプロピレン(平均毎時2.4T)の
極限粘度数の関係を示す。気相の水素濃度は変動してい
るが極限粘度数は一定である。
Example: The internal volume of the structure shown in FIG. 1 is 40W? Polymerization was carried out at 70° C. using a reactor using liquid propylene as a medium and a catalyst consisting of titanium trichloride and diethylaluminium chloride. At the start of polymerization, 35N- hydrogen was added all at once, and the amount of hydrogen introduced was slightly adjusted so that the intrinsic viscosity number was t7, and then the hydrogen was controlled to be introduced according to the amount of polymerization calculated from the calorific value. My friend. FIG. 3 shows the relationship between the value obtained by monitoring the gas phase hydrogen concentration by sampling gas in the gas phase from line 9 in FIG. 1 and the intrinsic viscosity of the obtained polypropylene (average 2.4 T/hour). Although the hydrogen concentration in the gas phase fluctuates, the intrinsic viscosity remains constant.

発明の効果 本発明の方法を実施することにより効率的にしかも制御
性良く一定の分子量のポリプロピレンを与えることがで
き工業的に極めて意義がある。
Effects of the Invention By carrying out the method of the present invention, polypropylene of a constant molecular weight can be obtained efficiently and with good controllability, which is of great industrial significance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施するための装置の一例であ
り第2図は水素の消費量と極限粘度数の関係を示す一例
である(一定温度での重合例)第3図は実施例の時間経
過と気相水素濃度及び得られるポリプロピレンの極限粘
度数の関係を示す図面である。 特許出願人  三井東圧化学株式会社 gJ    面 :C 久bCd :e土か
Figure 1 shows an example of an apparatus for carrying out the method of the present invention, Figure 2 shows an example of the relationship between hydrogen consumption and intrinsic viscosity (example of polymerization at a constant temperature), and Figure 3 shows an example of an apparatus for carrying out the method of the present invention. It is a drawing showing the relationship between the passage of time, the gas phase hydrogen concentration, and the intrinsic viscosity of the obtained polypropylene in an example. Patent applicant: Mitsui Toatsu Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 還流冷却器を備えた反応槽を用いて水素を分子量調節剤
とし、プロピレン自身を液状媒体とする塊状重合法で重
合熱の少くとも1部をプロピレン蒸気を還流冷却器で凝
縮することによって除去して一定温度でプロピレンを重
合する方法において、発熱量によって算出された重合量
と予め定められた得られるポリプロピレンの分子量と水
素の消費量の関係式より導かれた所望のポリプロピレン
の分子量に対応する単位プロピレン当りの水素の消費量
とによって導かれる反応槽での水素の消費量に応じ装入
水素量を制御することを特徴とする分子量の制御方法。
A bulk polymerization method using hydrogen as a molecular weight regulator and propylene itself as a liquid medium using a reaction tank equipped with a reflux condenser, in which at least a part of the polymerization heat is removed by condensing propylene vapor with a reflux condenser. In the method of polymerizing propylene at a constant temperature, a unit corresponding to the desired molecular weight of polypropylene derived from the relational expression between the polymerization amount calculated from the calorific value, the predetermined molecular weight of the obtained polypropylene, and the consumption amount of hydrogen. 1. A method for controlling molecular weight, comprising controlling the amount of hydrogen charged in accordance with the amount of hydrogen consumed in a reaction tank, which is derived from the amount of hydrogen consumed per propylene.
JP60262582A 1985-11-25 1985-11-25 Control of molecular weight Pending JPS62124107A (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP60262582A JPS62124107A (en) 1985-11-25 1985-11-25 Control of molecular weight
IN814/CAL/86A IN166637B (en) 1985-11-25 1986-11-10
AU65057/86A AU573461B2 (en) 1985-11-25 1986-11-12 Polymerization of propylene
GB8627113A GB2183245B (en) 1985-11-25 1986-11-13 Process of preparing propylene homo-or co-polymers
DE19863639728 DE3639728A1 (en) 1985-11-25 1986-11-21 METHOD FOR PRODUCING PROPYLENE HOMO OR COPOLYMER
FR868616324A FR2590579B1 (en) 1985-11-25 1986-11-24 PROCESS FOR HOMO- OR COPOLYMERIZATION OF PROPYLENE
NL8602979A NL8602979A (en) 1985-11-25 1986-11-24 METHOD FOR PREPARING PROPENE HOMO OR CO-POLYMERS
IT22436/86A IT1199672B (en) 1985-11-25 1986-11-24 PREPARATION PROCEDURE OF A PROPYLENE HOMO-O CO-POLYMER
FI864776A FI864776A (en) 1985-11-25 1986-11-24 FOER FARING FRAMSTAELLNING AV PROPENHOMO-ELLER KOPOLYMER.
KR1019860009951A KR890004064B1 (en) 1985-11-25 1986-11-25 The making method of prophilen individual and uselessly union
BE0/217455A BE905813A (en) 1985-11-25 1986-11-25 PROCESS FOR HOMOPOLYMERIZATION OR COPOLYMERIZATION OF PROPYLENE.
PT83807A PT83807B (en) 1985-11-25 1986-11-25 PREPARATION PROCESS FOR A HOMO- OR PROPYLENE CO-POLYMER
CN198686107933A CN86107933A (en) 1985-11-25 1986-11-25 The manufacture method of alfon or multipolymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60262582A JPS62124107A (en) 1985-11-25 1985-11-25 Control of molecular weight

Publications (1)

Publication Number Publication Date
JPS62124107A true JPS62124107A (en) 1987-06-05

Family

ID=17377810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60262582A Pending JPS62124107A (en) 1985-11-25 1985-11-25 Control of molecular weight

Country Status (13)

Country Link
JP (1) JPS62124107A (en)
KR (1) KR890004064B1 (en)
CN (1) CN86107933A (en)
AU (1) AU573461B2 (en)
BE (1) BE905813A (en)
DE (1) DE3639728A1 (en)
FI (1) FI864776A (en)
FR (1) FR2590579B1 (en)
GB (1) GB2183245B (en)
IN (1) IN166637B (en)
IT (1) IT1199672B (en)
NL (1) NL8602979A (en)
PT (1) PT83807B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114432981A (en) * 2020-10-20 2022-05-06 中国石油化工股份有限公司 Method and system for adjusting temperature in polymerization kettle and application thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1069652C (en) * 1991-04-11 2001-08-15 国家医药管理局上海医药设计院 Propene polymerizing method and equipment
JPH09216913A (en) * 1995-12-04 1997-08-19 Mitsubishi Chem Corp Process for producing polyolefin
US5739220A (en) * 1997-02-06 1998-04-14 Fina Technology, Inc. Method of olefin polymerization utilizing hydrogen pulsing, products made therefrom, and method of hydrogenation
JP2009161590A (en) * 2007-12-28 2009-07-23 Prime Polymer Co Ltd Method for producing propylene-based polymer and propylene-based polymer
CN102050892B (en) * 2009-10-27 2013-03-27 中国石油化工股份有限公司 Method for controlling production of broad-distribution polyolefin
CN106749820A (en) * 2016-11-25 2017-05-31 联泓新材料有限公司 A kind of production method of atactic copolymerized polypropene

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1040669A (en) * 1963-08-07 1966-09-01 Rexall Drug & Chemical Company Improvements in and relating to the production of polyolefins
US3356667A (en) * 1963-10-22 1967-12-05 Phillips Petroleum Co Process control
NL6904266A (en) * 1969-03-20 1970-09-22
DE3015089A1 (en) * 1980-04-19 1981-10-22 Basf Ag, 6700 Ludwigshafen METHOD FOR PRODUCING HOMOPOLYMERISATEN OR COPOLYMERISATEN PROPYLENS
GB2069369B (en) * 1981-02-06 1984-04-18 Sumitomo Chemical Co Method and apparatus for removal of heat from an olefin polymerization reactor
DE3123115A1 (en) * 1981-06-11 1982-12-30 Basf Ag, 6700 Ludwigshafen METHOD FOR PRODUCING HOMOPOLYMERISATEN OR COPOLYMERISATEN PROPYLENS
EP0069806B1 (en) * 1981-07-13 1985-05-15 Dow Chemical (Nederland) B.V. Process for producing polyethylene having constant physical and chemical properties
JPS60217210A (en) * 1984-04-11 1985-10-30 Mitsui Toatsu Chem Inc Method of polymerization of propylene
JPS6181409A (en) * 1984-09-28 1986-04-25 Mitsui Toatsu Chem Inc Method of controlling molecular weight

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114432981A (en) * 2020-10-20 2022-05-06 中国石油化工股份有限公司 Method and system for adjusting temperature in polymerization kettle and application thereof
CN114432981B (en) * 2020-10-20 2024-05-28 中国石油化工股份有限公司 Method and system for adjusting temperature in polymerization kettle and application of method and system

Also Published As

Publication number Publication date
DE3639728A1 (en) 1987-05-27
GB8627113D0 (en) 1986-12-10
FR2590579B1 (en) 1991-01-11
AU6505786A (en) 1987-06-11
KR870005019A (en) 1987-06-04
IN166637B (en) 1990-06-30
FI864776A (en) 1987-05-26
NL8602979A (en) 1987-06-16
CN86107933A (en) 1987-06-03
IT1199672B (en) 1988-12-30
PT83807A (en) 1986-12-01
GB2183245A (en) 1987-06-03
PT83807B (en) 1988-08-17
GB2183245B (en) 1989-11-22
AU573461B2 (en) 1988-06-09
KR890004064B1 (en) 1989-10-18
IT8622436A0 (en) 1986-11-24
BE905813A (en) 1987-03-16
FR2590579A1 (en) 1987-05-29
DE3639728C2 (en) 1989-08-24
FI864776A0 (en) 1986-11-24
IT8622436A1 (en) 1988-05-24

Similar Documents

Publication Publication Date Title
EP1660231B1 (en) Method and apparatus for preparing and supplying catalyst slurry to a polymerisation reactor
JP2675919B2 (en) Polymerization of α-olephanes
EP0050013B1 (en) Olefin polymerization process
WO2000005271A1 (en) Process for producing olefin polymer
JPS62124107A (en) Control of molecular weight
CN103180350B (en) For the production of the elastomeric solution method of EP (D) M and the polymerization reactor for described method
EA017776B1 (en) Slurry phase polymerisation process and reactor system
CN1008739B (en) The control method of polymerization temperature
US2793199A (en) Acrylonitrile polymerization
US5098967A (en) Method of controlling the molecular weight of polypropylene
JPH0550527B2 (en)
EP0605002A1 (en) Method of vapor phase polymerization of olefins
JPH10182738A (en) Process and apparatus for homopolymerization or copolymerization of 2-8c-alk-1-ene
BR0001325B1 (en) process for the polymerization of c2-c8-alkyl-1-enes by means of a ziegler-natta catalyst system.
JPS6166705A (en) Method of continuous gaseous-phase polymerization for propylene
JP3189332B2 (en) Polymerization reaction operation support equipment for polyolefin production
CA1305281C (en) Control method of molecular weight of polypropylene
JP2009536672A (en) Method for metering process additives, especially antistatic agents, into polymerization reactors
JPH11209415A (en) Preparation of polyolefin
JPH0550528B2 (en)
Nele et al. Dynamic behavior of a continuous autothermal isobutylene polymerization reactor
JPH05140229A (en) Production of polyolefin
JPH0118081B2 (en)
JPS582307A (en) Production of ethylene polymer through solution polymerization process
JPH0519561B2 (en)