WO2003004411A1 - Method for preparing carbon nano-horn aggregate - Google Patents

Method for preparing carbon nano-horn aggregate Download PDF

Info

Publication number
WO2003004411A1
WO2003004411A1 PCT/JP2001/010449 JP0110449W WO03004411A1 WO 2003004411 A1 WO2003004411 A1 WO 2003004411A1 JP 0110449 W JP0110449 W JP 0110449W WO 03004411 A1 WO03004411 A1 WO 03004411A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
carbon nanohorn
inert gas
nanohorn aggregate
aggregate
Prior art date
Application number
PCT/JP2001/010449
Other languages
French (fr)
Japanese (ja)
Inventor
Daisuke Kasuya
Sumio Iijima
Fumio Kokai
Kunimitu Takahashi
Masako Yudasaka
Original Assignee
Japan Science And Technology Corporation
Institute Of Research And Innovation
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Corporation, Institute Of Research And Innovation, Nec Corporation filed Critical Japan Science And Technology Corporation
Publication of WO2003004411A1 publication Critical patent/WO2003004411A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/18Nanoonions; Nanoscrolls; Nanohorns; Nanocones; Nanowalls

Definitions

  • the invention of this application relates to a method for producing a carbon nanohorn aggregate. More specifically, the invention of this application relates to a method for producing a carbon nanohorn aggregate that can individually obtain bud-shaped and dary-shaped carbon nanohorn aggregates with a high purity of 80 to 90% or more. Concerns. Background art
  • carbon materials having a nanometer-scale fine structure have been attracting attention as single- or multi-walled carbon nanotubes, carbon nanohorns, fullerenes, nanocapsules, and the like.
  • a single carbon nanohorn has a single graphite sheet that is rounded into a cylindrical shape with a diameter of about 2 nm to 3 nm, and the tip has a tip angle of about 20.
  • a large number of such carbon nanohorns are assembled and connected to each other with the conical tip outside, forming a dahlia flower-like aggregate.
  • the dahlia (dah Iia—Iike) carbon nanohorn We call it an aggregate.
  • This Dary-like carbon nanohorn aggregate is superior in the amount of ethanol adsorbed on the market to activated carbon.In addition, it is possible to selectively adsorb various gases by partially burning it with oxygen or the like to form holes.
  • the bud-like shape (bu d—I ike)
  • the existence of carbon nanohorn aggregates is known.
  • the bud-shaped carbon nanohorn aggregate has a diameter of 0.3 n rr! It is a spherical body with a large number of almost tubular carbon nanohorns of about 3 nm to about 3 nm in length and about several nm to 50 nm in length.
  • no horn-like protrusions are seen on its surface, it has a fairly smooth surface, and is described as a bud-like shape for Dahlia flowers.
  • these carbon nanohorn aggregates which are expected to have better adsorption characteristics than conventional activated carbon, are used, for example, in an atmosphere of Ar760T0rr. in, Daria like carbon nanohorn aggregate by irradiating C 0 2 laser as a carbon source is known to be obtained.
  • the diameter of the obtained Darier-like carbon nanohorn aggregate is about 8 O nm, and the yield is about 75%.
  • this yield can be optimized to some extent by controlling the laser intensity, the practical limit was about 75%.
  • the bud-like carbon nanohorn aggregate is obtained as a mixture with the Darier-like carbon nanohorn aggregate and amorphous carbon, so the yield is even lower, and the combined yield of both is as low as 60%. It was hot. For this reason, it is difficult to produce a bunch of carbon nanohorn aggregates by themselves, and little research has been done on their properties and applications.
  • the bud-shaped and dary-shaped carbon nanohorn aggregates are individually and individually provided. It is an object of the present invention to provide a method for producing a carbon nanohorn aggregate that can be obtained in a high yield. Disclosure of the invention
  • the invention of this application is to evaporate the solid carbon simple substance in an atmosphere in which the pressure is controlled in accordance with the atomic weight or molecular weight of the inert gas and to convert the carbon vapor into the inert gas.
  • the present invention provides a method for producing a carbon nanohorn assembly, characterized in that the shape and size of the carbon nanohorn assembly are obtained by controlling the shape and the size of the carbon nanohorn by assembling the carbon nanohorn with the tip being an outer peripheral surface.
  • the size of the invention of this application is reduced by evaporating the solid carbon substance in an atmosphere in which the temperature of the inert gas is controlled and releasing carbon vapor into the inert gas.
  • the method for producing a carbon nanohorn aggregate is characterized by obtaining a controlled carbon nanohorn aggregate.Third, the carbon nanohorn aggregate is characterized in that the evaporation of the solid carbon simple substance is performed by laser irradiation.
  • a method for producing a body is provided.
  • the invention of this application is directed to any of the above-described production methods, wherein, fourth, by controlling the inert gas atmosphere at room temperature to Ar700 to 900 Torr, Darrie-like carbon is obtained.
  • a method for producing a carbon nanohorn aggregate characterized by obtaining a nanohorn aggregate is as follows. In an inert gas atmosphere at room temperature, He 300 nm or more, N 2 300 Tor or more Or A method for producing a carbon nanohorn aggregate, wherein a bud-like carbon nanohorn aggregate is obtained by controlling the temperature to Ar 150 to 700 Torr. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a view exemplifying an electron microscope image of a dary-like carbon nanohorn aggregate obtained in an example.
  • FIG. 2 is a view exemplifying an electron microscope image of the bud-like carbon nanohorn aggregate obtained in the example.
  • FIG. 3 is a diagram illustrating the relationship between the yield of the carbon nanohorn aggregate and the atmospheric gas pressure in the example, with respect to the gas type and the shape of the carbon nanohorn aggregate.
  • FIG. 4 is a diagram exemplifying the pressure of the atmospheric gas and the diameter of the obtained carbon nanohorn aggregate in each example for each type of the atmospheric gas and the shape of the carbon nanohorn aggregate.
  • the method of manufacturing a carbon nanohorn aggregate provided by the invention of this application is based on evaporating solid carbon simple substance in an atmosphere in which the pressure is controlled according to the atomic weight or molecular weight of an inert gas.
  • the force of carbon nanohorns gathered with the tip on the outer peripheral surface—bon nanohorn aggregates is obtained by controlling the shape and size.
  • a known method for producing a carbon nanohorn aggregate a method of controlling only the intensity of a laser for evaporating carbon in order to increase the yield.
  • the method of the invention of the present application provides a completely new method with a different purpose and means.
  • the carbon nanohorn aggregate is manufactured.
  • the expression “dahlia-like” in the invention of this application refers to a spherical body in which a large number of carbon nanohorns are gathered with the conical tip outside as in the aggregate of carbon nanohorns obtained by the conventional method. It expresses what looks like a dahlia flower.
  • the term “bud-shaped” refers to a bud before the formation of the Darya petal protrusions, which is smoother than the dahlia-shaped one without any angular protrusions on the surface of the aggregate. It is expressed in such a way because it can be taken.
  • the solid carbon simple substance for example, round rod-shaped sintered carbon, compression molded carbon, or the like can be used.
  • carbon vapor which is a source of carbon nanohorns, is released into the inert gas.
  • the solid carbon simple substance is heated to a high temperature of about 3,000 to 200,000 ° C by irradiating a laser beam, an arc, or the like. This is shown as an example.
  • the pulse width is 2 0 ⁇ 5 0 0 ms
  • a high-power laser such as C 0 2 gas laser beam it can.
  • it is a continuous wave laser.
  • it is of course effective to control the laser intensity as in a known method.
  • the laser intensity is higher than the optimum range, the purity of the obtained carbon nanohorn aggregate is low.
  • the temperature is lower than the optimum range, the amount of carbon evaporation decreases.
  • the laser beam is applied to the surface of the solid carbon substance at an appropriate angle.
  • the irradiation angle of one laser beam is 100 to 170 °, more preferably 120 to 170 °, as the angle between the surface of the solid carbon simple substance and the irradiation laser beam.
  • the spot diameter of the laser beam on the surface of the solid material during irradiation is, for example, about 0.5 to 5 mm.
  • the evaporation of the solid carbon simple substance is performed under a controlled inert gas atmosphere, which is characteristic of the method of the present invention.
  • the inert gas a rare gas typified by Ar (argon), He (helium) or the like, or a reaction inert gas such as N 2 (nitrogen) gas is used alone. Alternatively, it can be used as a mixture of two or more gases.
  • the pressure of the inert gas atmosphere cannot be unambiguously shown because it affects the shape of the carbon nanohorn aggregate in correlation with the type of the inert gas, but is approximately 150 Torr or more. Various adjustments can be made within the range.
  • These inert gas is preferably introduced after venting by reducing the pressure in the container, single The one vaporization of carbon is carried out once below 1 0- 2 P a.
  • the carbon nanohorn aggregate can be obtained as any one of a Darrie or bud. It is considered that such control of the shape of the carbon nanohorn aggregate is realized by controlling the two factors of the atmospheric gas, in particular, the atomic weight or molecular weight and the pressure in a correlated manner.
  • the size of the carbon nanohorn aggregate can be controlled by controlling the atomic weight or molecular weight of the inert gas and the pressure. More surprisingly, in the method of the invention of this application, The yield of the hollow carbon nanohorn aggregate can be increased to about 80 to 90% or more, which has not been seen before.
  • the Darrie-like carbon nanohorn aggregate can be used alone. And a yield of 90% or more.
  • Ar is used as the inert gas
  • the bud-shaped carbon nanohorn aggregate can be obtained alone by controlling the atmospheric pressure as low as about 150 to 700 Torr.
  • the atmospheric pressure in the range of about 400 to 600 Torr By controlling the atmospheric pressure in the range of about 400 to 600 Torr, a bud-like carbon nanohorn aggregate can be obtained alone with a yield of 80% or more.
  • the molecular weight (atomic weight) of the inert gas is too small, it tends to be difficult to obtain a Dary-like carbon nanohorn aggregate alone.
  • the atmospheric pressure is controlled to about 700 T 0 rr, and in the case of N 2 (molecular weight 28), the atmospheric pressure is controlled.
  • the bud-like carbon nanohorn aggregate can be obtained with a yield of 80% by setting the pressure to about 400 to 600 Torr.
  • the above pressure range by Li is low, A r 1 50 T 0 rr below, H e 300 T orr below, when N 2 1 50 T orr following pressure becomes Rukoto amorphous carbon obtained.
  • the size (diameter) of the carbon nanohorn aggregate is the same as the shape In addition, it changes depending on the molecular weight (atomic weight) and pressure of the inert gas, the diameter decreases when the pressure of the inert gas is reduced, and also when the molecular weight (atomic weight) of the inert gas is reduced. Decrease.
  • the size of the carbon nanohorn aggregate by controlling the temperature of the inert gas atmosphere.
  • the temperature of the inert gas atmosphere may be generally room temperature of about 15 to 35 ° C.
  • the temperature of the inert gas atmosphere is set lower. It is possible to increase the size of the carbon nanohorn aggregate by increasing the temperature. More preferably, by setting the temperature in the range of about 100 ° C. to about 200 ° C., a dary-shaped or bud-shaped carbon nanohorn aggregate having a diameter of about 2 to 3 times as compared with the case of room temperature is used. Can be obtained.
  • the shape and diameter of the carbon nanohorn aggregate can be controlled, and a sample having a required structure and size can be appropriately manufactured.
  • a wavelength 1 0. 6 ⁇ power density 20 k W / cm 2 was used
  • C_ ⁇ 2 laser pulse width 500 ms, 1 H z. He, N 2 , and Ar were used as the inert gas, and the flow rate was adjusted to about 30 I / min while maintaining a constant pressure in the range of 160 to 760 T 0 rr.
  • the aggregate of carbon nanohorns as a product was moved inside the transfer tube together with the atmospheric gas, and was captured by a single tube filter.
  • Fig. 1 shows an electron microscope image of the carbon nanohorn aggregate obtained when the ⁇ I> atmosphere gas was Ar760T0rr. It was confirmed that the Darier-like carbon nanohorn aggregate was obtained alone. The yield was 90%. The diameter of the Dary-like carbon naphhorn aggregate was about 100 nm on average.
  • FIG. 2 shows an electron microscope image of the carbon nanohorn aggregate obtained when the atmosphere gas was He 760 T 0 rr. It was confirmed that the bud-like carbon nanohorn aggregate was obtained alone.
  • FIG. 3 shows the relationship between the yield of the carbon nanohorn aggregate and the atmospheric gas pressure in this example, with respect to the gas type and the shape of the carbon nanohorn aggregate.
  • each bud-shaped carbon nanohorn aggregate can be obtained in high yield even when the pressure of the atmosphere gas is set to N 2 760 T 0 rr and Ar 400 to 600 Torr. Was confirmed.
  • FIG. 4 shows the pressure of the atmospheric gas and the diameter of the obtained carbon nanohorn aggregate in the example for each type of the atmospheric gas and the shape of the carbon nanohorn aggregate.
  • Bud-like carbon nanohorn aggregate The diameter of the inert gas changes depending on the type and pressure of the inert gas. The diameter decreases when the pressure of the inert gas decreases, and also decreases when the molecular weight (atomic weight) of the inert gas decreases. It has been shown.
  • the dahlia-like carbon nanohorn having a diameter of about 100 to 150 nm was obtained.
  • An aggregate and a bud-like carbon nanohorn aggregate having a diameter of about 100 to 130 nm were obtained.
  • bud-shaped and dary-shaped carbon nanohorn aggregates can be obtained independently at a high yield of about 90% or more, respectively.
  • a method of making a body is provided.

Abstract

A method for preparing a carbon nano-horn aggregate, which comprises vaporizing a solid carbon simple substance in an inert gas atmosphere under a controlled pressure corresponding to the atomic or molecular weight of the inert gas to release a carbon vapor into the inert gas, thereby forming a carbon nano-horn aggregate with tips of carbon nano-horns being positioned in the periphery thereof. The method allows each of bud-like and dahlia-like carbon nano-horn aggregates to be prepared individually in high yield.

Description

明 細 書 カーボンナノホーン集合体の製造方法 技術分野  Description Manufacturing method of carbon nanohorn aggregate Technical field
この出願の発明は、 カーボンナノホーン集合体の製造方法に関するも のである。 さらに詳しくは、 この出願の発明は、 つぼみ状とダリァ状の カーボンナノホーン集合体を、 それぞれを単独に、 8 0 ~ 9 0 %以上の 高純度で得ることができるカーボンナノホーン集合体の製造方法に関す るものである。 背景技術  The invention of this application relates to a method for producing a carbon nanohorn aggregate. More specifically, the invention of this application relates to a method for producing a carbon nanohorn aggregate that can individually obtain bud-shaped and dary-shaped carbon nanohorn aggregates with a high purity of 80 to 90% or more. Concerns. Background art
近年、 ナノメートルスケールの微細構造を有する炭素物質が、 単層も しくは多層のカーボンナノチューブやカーボンナノホーン、 フラーレン 、 ナノカプセル等として注目されている。  In recent years, carbon materials having a nanometer-scale fine structure have been attracting attention as single- or multi-walled carbon nanotubes, carbon nanohorns, fullerenes, nanocapsules, and the like.
これらのうちカーボンナノホーンは、 単一では一枚のグラフアイ卜シ 一卜が直径 2 n m〜3 n m程度の円筒状に丸まり、 その先端部が先端角 約 2 0。 の円錐状となった形状を有している。 このようなカーボンナノ ホーンが多数集合して円錐状の先端部を外側にして互いに結びつき、 ダ リアの花状の集合体を形成しているものをダリア状 (d a h I i a— I i k e ) カーボンナノホーン集合体と呼んでいる。 このダリァ状カーボ ンナノホーン集合体は、 ェタノール吸着量が市販の活性炭よりも優れて おり、 また、 酸素などで部分的に燃焼させて孔を開けると各種ガスを選 択的に吸着することが、 この出願の発明者らにより明らかにされている また、 ダリァ状カーボンナノホーン集合体以外にも、 つぼみ状 (b u d— I i k e ) カーボンナノホーン集合体の存在が知られている。 つぼ み状カーボンナノホーン集合体は、 直径 0 . 3 n rr!〜 3 n m程度、 長さ 数 n m ~ 5 0 n m程度のほぼチューブ状のカーボンナノホーンが多数集 合した球状体である。 ダリァ状カーボンナノホーン集合体とは違ってそ の表面に角状の突起は見られず、 かなり滑らかな表面を有し、 ダリアの 花に対してつぼみ状と表現されている。 そして、 ダリア状のものと同様 に、 従来の活性炭よりも優れた吸着特性を持つこと等が期待されている これらのカーボンナノホーン集合体は、 例えば、 A r 7 6 0 T 0 r r 程度の雰囲気下で、 C 0 2レーザーを炭素源に照射することでダリァ状 カーボンナノホーン集合体が得られることが知られている。 例えばこの 条件の場合、 得られるダリァ状カーボンナノホーン集合体の直径は約 8 O n m程度で、 収率は 7 5 %程度となる。 この収率は、 レーザー強度を 制御することによってある程度は最適化できるものの、 実際には 7 5 % 程度が限界であった。 またカーボンナノホーン集合体の直径 (大きさ) の制御は不可能であった。 Of these, a single carbon nanohorn has a single graphite sheet that is rounded into a cylindrical shape with a diameter of about 2 nm to 3 nm, and the tip has a tip angle of about 20. Has a conical shape. A large number of such carbon nanohorns are assembled and connected to each other with the conical tip outside, forming a dahlia flower-like aggregate. The dahlia (dah Iia—Iike) carbon nanohorn We call it an aggregate. This Dary-like carbon nanohorn aggregate is superior in the amount of ethanol adsorbed on the market to activated carbon.In addition, it is possible to selectively adsorb various gases by partially burning it with oxygen or the like to form holes. In addition to the Darrier-like carbon nanohorn aggregate, the bud-like shape (bu d—I ike) The existence of carbon nanohorn aggregates is known. The bud-shaped carbon nanohorn aggregate has a diameter of 0.3 n rr! It is a spherical body with a large number of almost tubular carbon nanohorns of about 3 nm to about 3 nm in length and about several nm to 50 nm in length. Unlike the Dahlia-like carbon nanohorn aggregate, no horn-like protrusions are seen on its surface, it has a fairly smooth surface, and is described as a bud-like shape for Dahlia flowers. And, like the dahlia-shaped one, these carbon nanohorn aggregates, which are expected to have better adsorption characteristics than conventional activated carbon, are used, for example, in an atmosphere of Ar760T0rr. in, Daria like carbon nanohorn aggregate by irradiating C 0 2 laser as a carbon source is known to be obtained. For example, under these conditions, the diameter of the obtained Darier-like carbon nanohorn aggregate is about 8 O nm, and the yield is about 75%. Although this yield can be optimized to some extent by controlling the laser intensity, the practical limit was about 75%. In addition, it was impossible to control the diameter (size) of the carbon nanohorn aggregate.
そしてつぼみ状カーボンナノホーン集合体については、 ダリァ状カー ボンナノホーン集合体やアモルファス炭素との混合物として得られるた めにさらに収率が低く、 両者の収率を併せても 6 0 %と低いものであつ た。 そのため、 つぼみ状カーボンナノホーン集合体については、 単独で まとまつた量を製造することが困難であリ、 その性質や応用に関する研 究は殆どなされていなかった。  The bud-like carbon nanohorn aggregate is obtained as a mixture with the Darier-like carbon nanohorn aggregate and amorphous carbon, so the yield is even lower, and the combined yield of both is as low as 60%. It was hot. For this reason, it is difficult to produce a bunch of carbon nanohorn aggregates by themselves, and little research has been done on their properties and applications.
このように、 カーボンナノホーン集合体については、 その特異なナノ スケール微細構造そのものについての検索とともに、 生成方法、 条件と 構造との関係についてのさらなる精力的な検討が求められている状況に ある。 そして、 これまで得られてきている知見を超え、 カーボンナノホ ーン集合体の技術的可能性とその展望を開くことが必要とされている。 そこで、 この出願の発明は、 以上の通りの事情に鑑みてなされたもの であり、 従来 ¾術の問題点を解消し、 つぼみ状とダリァ状のカーボンナ ノホーン集合体を、 それぞれを単独に、 高収率で得ることができる力一 ボンナノホーン集合体の製造方法を提供することを課題としている。 発明の開示 Thus, for carbon nanohorn aggregates, there is a need for a search for the unique nanoscale microstructure itself and a more vigorous study of the relationship between the formation method, conditions, and structure. And, beyond the knowledge that has been obtained so far, There is a need to open up the technical possibilities and prospects for the clusters of energy. Accordingly, the invention of this application has been made in view of the circumstances described above, and solves the problems of the conventional art. Thus, the bud-shaped and dary-shaped carbon nanohorn aggregates are individually and individually provided. It is an object of the present invention to provide a method for producing a carbon nanohorn aggregate that can be obtained in a high yield. Disclosure of the invention
そこで、 この出願の発明は、 上記の課題を解決するものとして、 以下 の通りの発明を提供する。  Thus, the invention of this application provides the following inventions to solve the above problems.
すなわち、 まず第 1 には、 この出願の発明は、 不活性ガスの原子量あ るいは分子量に応じて圧力を制御した雰囲気中で、 固体状炭素単体物質 を蒸発させて炭素蒸気を不活性ガス中に放出させることで、 カーボンナ ノホーンが先端を外周面にして集合したカーボンナノホーン集合体を、 形状および大きさを制御して得ることを特徴とするカーボンナノホーン 集合体の製造方法を提供する。  That is, first of all, the invention of this application is to evaporate the solid carbon simple substance in an atmosphere in which the pressure is controlled in accordance with the atomic weight or molecular weight of the inert gas and to convert the carbon vapor into the inert gas. The present invention provides a method for producing a carbon nanohorn assembly, characterized in that the shape and size of the carbon nanohorn assembly are obtained by controlling the shape and the size of the carbon nanohorn by assembling the carbon nanohorn with the tip being an outer peripheral surface.
そして、 この出願の発明は、 第 2には、 不活性ガスの温度を制御した 雰囲気中で、 固体状炭素単体物質を蒸発させて炭素蒸気を不活性ガス中 に放出させることで、 大きさが制御されたカーボンナノホーン集合体を 得ることを特徴とするカーボンナノホーン集合体の製造方法を、 第 3に は、 固体状炭素単体物質の蒸発はレーザー照射によるものであることを 特徴とするカーボンナノホーン集合体の製造方法を提供する。  Secondly, the size of the invention of this application is reduced by evaporating the solid carbon substance in an atmosphere in which the temperature of the inert gas is controlled and releasing carbon vapor into the inert gas. The method for producing a carbon nanohorn aggregate is characterized by obtaining a controlled carbon nanohorn aggregate.Third, the carbon nanohorn aggregate is characterized in that the evaporation of the solid carbon simple substance is performed by laser irradiation. A method for producing a body is provided.
また、 この出願の発明は、 上記いずれかの製造方法において、 第 4に は、 不活性ガス雰囲気を室温で、 A r 7 0 0〜9 0 0 T o r rに制御す ることで、 ダリァ状カーボンナノホーン集合体を得ることを特徴とする カーボンナノホーン集合体の製造方法を、 第 5には、 不活性ガス雰囲気 を室温で、 H e 3 0 0丁 0 r r以上、 N 2 3 0 0 T o r r以上あるいは A r 1 5 0〜7 0 0 T o r rに制御することで、 つぼみ状カーボンナノ ホーン集合体を得ることを特徴とするカーボンナノホーン集合体の製造 方法を提供する。 図面の簡単な説明 Fourth, the invention of this application is directed to any of the above-described production methods, wherein, fourth, by controlling the inert gas atmosphere at room temperature to Ar700 to 900 Torr, Darrie-like carbon is obtained. Fifth, a method for producing a carbon nanohorn aggregate characterized by obtaining a nanohorn aggregate is as follows. In an inert gas atmosphere at room temperature, He 300 nm or more, N 2 300 Tor or more Or A method for producing a carbon nanohorn aggregate, wherein a bud-like carbon nanohorn aggregate is obtained by controlling the temperature to Ar 150 to 700 Torr. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 実施例において得られたダリァ状カーボンナノホーン集合体 の電子顕微鏡像を例示した図である。  FIG. 1 is a view exemplifying an electron microscope image of a dary-like carbon nanohorn aggregate obtained in an example.
図 2は、 実施例において得られたつぼみ状カーボンナノホーン集合体 の電子顕微鏡像を例示した図である。  FIG. 2 is a view exemplifying an electron microscope image of the bud-like carbon nanohorn aggregate obtained in the example.
図 3は、 実施例におけるカーボンナノホーン集合体の収率と雰囲気ガ ス圧の関係を、 ガス種およびカーボンナノホーン集合体の形状について 例示した図である。  FIG. 3 is a diagram illustrating the relationship between the yield of the carbon nanohorn aggregate and the atmospheric gas pressure in the example, with respect to the gas type and the shape of the carbon nanohorn aggregate.
図 4は、 実施例における雰囲気ガスの圧力と得られたカーボンナノホ ーン集合体の直径を、 雰囲気ガスの種類およびカーボンナノホーン集合 体の形状ごとに例示した図である。 発明を実施するための最良の形態  FIG. 4 is a diagram exemplifying the pressure of the atmospheric gas and the diameter of the obtained carbon nanohorn aggregate in each example for each type of the atmospheric gas and the shape of the carbon nanohorn aggregate. BEST MODE FOR CARRYING OUT THE INVENTION
この出願の発明は、 上記の通りの特徴を持つものであるが、 以下にそ の実施の形態について説明する。  The invention of this application has the features described above, and the embodiment will be described below.
まず、 この出願の発明が提供する力一ボンナノホーン集合体の製造方 法は、 不活性ガスの原子量あるいは分子量に応じて圧力を制御した雰囲 気中で、 固体状炭素単体物質を蒸発させて炭素蒸気を不活性ガス中に放 出させることで、 カーボンナノホーンが先端を外周面にして集合した力 —ボンナノホーン集合体を、 形状および大きさを制御して得るようにし ている。 公知の力一ボンナノホーン集合体の製造方法として、 収率を高 めるために炭素を蒸発させるためのレーザーの強度のみを制御する方法 が知られているが、 この出願の発明の方法は、 その目的および手段を異 にした、 全く新しい方法を提供するものである。 すなわち、 カーボンナ ノホーン集合体を製造する不活性ガス雰囲気の条件を、 不活性ガスの原 子量あるいは分子量 (つまり不活性ガスの種類) と、 圧力および温度に ついて制御することで、 カーボンナノホーン集合体を、 ダリァ状あるい はつぼみ状の任意の形状および大きさのものとして得ることができるの である。 なお、 この出願の発明における "ダリア状" との表現は、 従来 法で得られるカーボンナノホーン集合体のように、 多数のカーボンナノ ホーンが円錐状の先端部を外側にして集合した球状体が、 まるでダリア の花のように見えることを表現しているものである。 また、 "つぼみ状 " とは、 ダリア状と比較して、 集合体の表面に角状の突起は見られず滑 らかであって、 まるでダリァの花びらの突起が形成される前のつぼみと もとれることからそのように表現しているものである。 First, the method of manufacturing a carbon nanohorn aggregate provided by the invention of this application is based on evaporating solid carbon simple substance in an atmosphere in which the pressure is controlled according to the atomic weight or molecular weight of an inert gas. By discharging carbon vapor into the inert gas, the force of carbon nanohorns gathered with the tip on the outer peripheral surface—bon nanohorn aggregates is obtained by controlling the shape and size. As a known method for producing a carbon nanohorn aggregate, a method of controlling only the intensity of a laser for evaporating carbon in order to increase the yield. However, the method of the invention of the present application provides a completely new method with a different purpose and means. That is, by controlling the conditions of the inert gas atmosphere for producing the carbon nanohorn aggregate with respect to the atomic weight or molecular weight of the inert gas (that is, the type of the inert gas), and the pressure and temperature, the carbon nanohorn aggregate is manufactured. Can be obtained in any shape and size in the shape of a dahlia or bud. The expression “dahlia-like” in the invention of this application refers to a spherical body in which a large number of carbon nanohorns are gathered with the conical tip outside as in the aggregate of carbon nanohorns obtained by the conventional method. It expresses what looks like a dahlia flower. In addition, the term “bud-shaped” refers to a bud before the formation of the Darya petal protrusions, which is smoother than the dahlia-shaped one without any angular protrusions on the surface of the aggregate. It is expressed in such a way because it can be taken.
この出願の発明の方法において、 固体状炭素単体物質としては、 たと えば丸棒状焼結炭素や圧縮成形炭素等を用いることができる。 この固体 状炭素単体物質を蒸発させて、 カーボンナノホーンの形成源となる炭素 蒸気を不活性ガス中に放出させる。 固体状炭素単体物質の蒸発の手段と しては、 たとえばレーザー光やアーク等を照射して固体状炭素単体物質 を 3 , 0 0 0〜 2 0 , 0 0 0 °C程度の高温に加熱することなどが例示さ れる。  In the method of the invention of this application, as the solid carbon simple substance, for example, round rod-shaped sintered carbon, compression molded carbon, or the like can be used. By evaporating the solid carbon substance, carbon vapor, which is a source of carbon nanohorns, is released into the inert gas. As a means for evaporating the solid carbon simple substance, for example, the solid carbon simple substance is heated to a high temperature of about 3,000 to 200,000 ° C by irradiating a laser beam, an arc, or the like. This is shown as an example.
炭素の蒸発にレーザー光を使用する場合には、 出力が 2 0 W以上で、 パルス幅が 2 0〜 5 0 0 m sの、 たとえば C 0 2ガスレーザー光などの 高出力レーザーを利用することができる。 好ましくは連続発振のレーザ 一である。 この出願の発明においても、 公知の方法のごとくレーザーの 強度を制御することはもちろん有効である。 ただし、 レーザー強度を最 適範囲より大きくすると得られるカーボンナノホーン集合体の純度が低 下してしまい、 また逆に最適範囲より弱くすると炭素の蒸発量が減少し てしまうので注意する必要がある。 レーザー光は、 固体状炭素単体物質 の表面に対して適当な角度で照射する。 具体的には、 たとえば、 レーザ 一光の照射角度は、 前記の固体状炭素単体物質表面と照射レーザー光と の角度として 1 0 0 ~ 1 7 0 ° 、 より好ましくは 1 2 0〜 "! 4 0。 の範 囲である。 照射時のレーザー光の固体物質表面へのスポット径は、 0 . 5〜 5 m m程度とすることが例示される。 When laser light is used in the evaporation of carbon, in the output 2 0 W or more, the pulse width is 2 0~ 5 0 0 ms, for example it is used a high-power laser, such as C 0 2 gas laser beam it can. Preferably, it is a continuous wave laser. In the invention of this application, it is of course effective to control the laser intensity as in a known method. However, if the laser intensity is higher than the optimum range, the purity of the obtained carbon nanohorn aggregate is low. It should be noted that if the temperature is lower than the optimum range, the amount of carbon evaporation decreases. The laser beam is applied to the surface of the solid carbon substance at an appropriate angle. Specifically, for example, the irradiation angle of one laser beam is 100 to 170 °, more preferably 120 to 170 °, as the angle between the surface of the solid carbon simple substance and the irradiation laser beam. The spot diameter of the laser beam on the surface of the solid material during irradiation is, for example, about 0.5 to 5 mm.
上記の固体状炭素単体物質の蒸発は、 この出願の発明の方法において 特徴的な、 制御された不活性ガス雰囲気下で行われる。  The evaporation of the solid carbon simple substance is performed under a controlled inert gas atmosphere, which is characteristic of the method of the present invention.
この出願の発明において、 不活性ガスとしては、 A r (アルゴン)、 H e (ヘリウム) 等に代表される希ガスや N 2 (窒素) ガス等をはじめ とする反応不活性なガスを、 単体または 2種以上の混合気体として用い ることができる。 また、 不活性ガス雰囲気の圧力は、 前記の不活性ガス の種類と相互に関連してカーボンナノホーン集合体の形状に影響を与え るため一概に示すことはできないが、 およそ 1 5 0 T o r r以上の範囲 でさまざまに調整することができる。 これらの不活性ガスは、 炭素のレ 一ザ一蒸発が行われる容器内を一旦 1 0— 2 P a以下に減圧して排気し た後に導入することが好ましい。 In the invention of this application, as the inert gas, a rare gas typified by Ar (argon), He (helium) or the like, or a reaction inert gas such as N 2 (nitrogen) gas is used alone. Alternatively, it can be used as a mixture of two or more gases. In addition, the pressure of the inert gas atmosphere cannot be unambiguously shown because it affects the shape of the carbon nanohorn aggregate in correlation with the type of the inert gas, but is approximately 150 Torr or more. Various adjustments can be made within the range. These inert gas is preferably introduced after venting by reducing the pressure in the container, single The one vaporization of carbon is carried out once below 1 0- 2 P a.
上記の範囲で不活性ガスの種類および圧力を制御することで、 カーボ ンナノホーン集合体を、 ダリァ状あるいはつぼみ状の任意の一方のもの として得ることができる。 このようなカーボンナノホーン集合体の形状 の制御は、 雰囲気ガスの種類、 特に原子量あるいは分子量と、 圧力との 2つの因子を相関的に制御することで実現されていると考えられる。 ま た、 不活性ガスの原子量あるいは分子量、 および圧力を制御することで 、 カーボンナノホーン集合体の大きさを制御することができる。 さらに 驚くべきことに、 この出願の発明の方法において、 ダリァ状あるいはつ ぼみ状カーボンナノホーン集合体の収率は、 80~90%程度、 あるい はそれ以上と、 従来に見られないほど高めることが可能となる。 By controlling the type and pressure of the inert gas within the above range, the carbon nanohorn aggregate can be obtained as any one of a Darrie or bud. It is considered that such control of the shape of the carbon nanohorn aggregate is realized by controlling the two factors of the atmospheric gas, in particular, the atomic weight or molecular weight and the pressure in a correlated manner. The size of the carbon nanohorn aggregate can be controlled by controlling the atomic weight or molecular weight of the inert gas and the pressure. More surprisingly, in the method of the invention of this application, The yield of the hollow carbon nanohorn aggregate can be increased to about 80 to 90% or more, which has not been seen before.
より具体的には、 たとえば、 不活性ガスとして A rを用い、 雰囲気圧 を 700以上、 より好適には 700~900 T o r r程度の範囲に制御 することで、 ダリァ状カーボンナノホーン集合体を単独で、 収率 90 % 以上で得られることが例示される。 また、 不活性ガスとして A rを用い た場合でも、 雰囲気圧を約 1 50〜700 T o r rと低く制御すること で、 つぼみ状カーボンナノホーン集合体を単独で得ることができ、 より 限定的には、 雰囲気圧を約 400〜600 T o r rの範囲で制御するこ とで、 つぼみ状カーボンナノホーン集合体を単独で収率 80%以上で得 られることなどが例示される。  More specifically, for example, by using Ar as an inert gas and controlling the atmospheric pressure to 700 or more, more preferably in the range of about 700 to 900 Torr, the Darrie-like carbon nanohorn aggregate can be used alone. And a yield of 90% or more. Even when Ar is used as the inert gas, the bud-shaped carbon nanohorn aggregate can be obtained alone by controlling the atmospheric pressure as low as about 150 to 700 Torr. By controlling the atmospheric pressure in the range of about 400 to 600 Torr, a bud-like carbon nanohorn aggregate can be obtained alone with a yield of 80% or more.
また不活性ガスの分子量 (原子量) が小さすぎる場合には、 ダリァ状 カーボンナノホーン集合体は単独で得られにくい傾向がある。 たとえば 、 A r (原子量 40) 以外の、 H e (原子量 4 ) の場合には、 雰囲気圧 を約 700 T 0 r rに制御することで、 また N 2 (分子量 28) の場合 には、 雰囲気圧を 400〜600 T o r r程度とすることで、 つぼみ状 カーボンナノホーン集合体を収率 80 %で得ることができる。 上記の圧 力範囲よリも低く、 A r 1 50 T 0 r r以下、 H e 300 T o r r以下 、 N 21 50 T o r r以下の圧力とすると、 アモルファス炭素が得られ ることになる。 Also, if the molecular weight (atomic weight) of the inert gas is too small, it tends to be difficult to obtain a Dary-like carbon nanohorn aggregate alone. For example, in the case of He (atomic weight 4) other than Ar (atomic weight 40), the atmospheric pressure is controlled to about 700 T 0 rr, and in the case of N 2 (molecular weight 28), the atmospheric pressure is controlled. The bud-like carbon nanohorn aggregate can be obtained with a yield of 80% by setting the pressure to about 400 to 600 Torr. The above pressure range by Li is low, A r 1 50 T 0 rr below, H e 300 T orr below, when N 2 1 50 T orr following pressure becomes Rukoto amorphous carbon obtained.
したがって、 分子量 (原子量) が小さい不活性ガスであっても、 雰囲 気圧を十分高めに制御することでダリァ状カーボンナノホーン集合体が 得られることが、 また、 分子量 (原子量) がより大きな不活性ガスであ れば、 雰囲気圧を低く制御してもダリァ状カーボンナノホーン集合体が 得られることが予想される。  Therefore, even in the case of an inert gas having a small molecular weight (atomic weight), it is possible to obtain a Dary-like carbon nanohorn aggregate by controlling the atmospheric pressure sufficiently high. In addition, an inert gas having a larger molecular weight (atomic weight) is obtained. If it is a gas, it is expected that a Dary-like carbon nanohorn aggregate can be obtained even if the atmospheric pressure is controlled to be low.
カーボンナノホーン集合体の大きさ (直径) についても、 形状と同様 に不活性ガスの分子量 (原子量) および圧力によって変化し、 不活性ガ スの圧力を低下させると直径が減少し、 また、 不活性ガスの分子量 (原 子量) を低下させることによつても減少する。 The size (diameter) of the carbon nanohorn aggregate is the same as the shape In addition, it changes depending on the molecular weight (atomic weight) and pressure of the inert gas, the diameter decreases when the pressure of the inert gas is reduced, and also when the molecular weight (atomic weight) of the inert gas is reduced. Decrease.
またこの出願の発明においては、 不活性ガス雰囲気の温度を制御する ことでも、 カーボンナノホーン集合体の大きさを制御することが可能と される。 カーボンナノホーン集合体の製造において、 不活性ガス雰囲気 の温度は、 一般的には 1 5〜3 5 °C程度の室温でよいが、 この出願の発 明においては、 不活性ガス雰囲気の温度をより高温にすることで、 カー ボンナノホーン集合体の大きさを大きくすることも可能とされる。 より 好適には、 1 0 0 °C〜 2 0 0 0 °C程度の範囲とすることで、 室温の場合 に比べて 2〜 3倍程度の直径のダリァ状またはつぼみ状のカーボンナノ ホーン集合体を得ることができる。  Also, in the invention of this application, it is possible to control the size of the carbon nanohorn aggregate by controlling the temperature of the inert gas atmosphere. In the production of the carbon nanohorn aggregate, the temperature of the inert gas atmosphere may be generally room temperature of about 15 to 35 ° C. However, in the invention of this application, the temperature of the inert gas atmosphere is set lower. It is possible to increase the size of the carbon nanohorn aggregate by increasing the temperature. More preferably, by setting the temperature in the range of about 100 ° C. to about 200 ° C., a dary-shaped or bud-shaped carbon nanohorn aggregate having a diameter of about 2 to 3 times as compared with the case of room temperature is used. Can be obtained.
以上のようなこの出願の発明によると、 カーボンナノホーン集合体の 形状および直径の制御が可能となり、 必要な構造や大きさの試料を適宜 製造することができる。  According to the invention of the present application as described above, the shape and diameter of the carbon nanohorn aggregate can be controlled, and a sample having a required structure and size can be appropriately manufactured.
従来より報告されているカーボンナノホーン集合体は、 ダリァ状カー ボンナノホーン集合体については直径 1 2 O n m以下、 代表的には 1 0 O n m程度で、 つぼみ状カーボンナノホーン集合体については直径 1 0 O n m以下、 代表的には 7 0 n mであり、 それらが混在したものとして 得られていたが、 この出願の発明によって、 目的とする構造および大き ざの試料を確実に得ることができ、 カーボンナノホーン集合体の各種の 応用研究等においても極めて有用である。  Conventionally reported carbon nanohorn aggregates have a diameter of 12 O nm or less, typically about 10 O nm, for the Darrie-like carbon nanohorn aggregate, and a diameter of 10 O nm for the bud-like carbon nanohorn aggregate. O nm or less, typically 70 nm, and they were obtained as a mixture of them.However, the invention of this application makes it possible to reliably obtain a sample of the desired structure and size, and It is extremely useful in various applied research on nanohorn assemblies.
以下、 添付した図面に沿って実施例を示し、 この発明の実施の形態に ついてさらに詳しく説明する。 実施例 室温下、 不活性ガス雰囲気の 30 X 30 X 25 c m 3のアクリルチヤ ンバー内で、 グラフアイ卜原料をレーザー蒸発させた。 レーザーとして は、 波長 1 0. 6 μιτκ パワー密度 20 k W/c m2, パルス幅 500 m s、 1 H zの C〇 2レーザーを用いた。 不活性ガスには H e, N 2, A rをそれぞれで用い、 1 60 ~ 7 60 T 0 r rの範囲で一定圧を保ち ながら、 流量を約 30 I /m i nに調整した。 Hereinafter, embodiments will be described with reference to the accompanying drawings, and embodiments of the present invention will be described in further detail. Example At room temperature, the graphite raw material was laser-evaporated in a 30 × 30 × 25 cm 3 acrylic chamber in an inert gas atmosphere. As the laser, a wavelength 1 0. 6 μιτκ power density 20 k W / cm 2, was used C_〇 2 laser pulse width 500 ms, 1 H z. He, N 2 , and Ar were used as the inert gas, and the flow rate was adjusted to about 30 I / min while maintaining a constant pressure in the range of 160 to 760 T 0 rr.
生成物としてのカーボンナノホーン集合体は、 雰囲気ガスとともに卜 ランスファーチューブ内を移動させ、 チューブ単のフィルターで捕獲し た。  The aggregate of carbon nanohorns as a product was moved inside the transfer tube together with the atmospheric gas, and was captured by a single tube filter.
< I > 雰囲気ガスを A r 7 60 T 0 r rとした場合に得られたカーボ ンナノホーン集合体の電子顕微鏡像を図 1 に示した。 ダリァ状カーボン ナノホーン集合体が単独で得られたことが確認された。 収率は 90%で あった。 このダリァ状カーボンナフホーン集合体の直径は、 平均約 1 0 0 n mであつた。 Fig. 1 shows an electron microscope image of the carbon nanohorn aggregate obtained when the <I> atmosphere gas was Ar760T0rr. It was confirmed that the Darier-like carbon nanohorn aggregate was obtained alone. The yield was 90%. The diameter of the Dary-like carbon naphhorn aggregate was about 100 nm on average.
一方、 雰囲気ガスを H e 760 T 0 r rとした場合に得られたカーボ ンナノホーン集合体の電子顕微鏡像を図 2に示した。 つぼみ状カーボン ナノホーン集合体が単独で得られたことが確認された。  On the other hand, FIG. 2 shows an electron microscope image of the carbon nanohorn aggregate obtained when the atmosphere gas was He 760 T 0 rr. It was confirmed that the bud-like carbon nanohorn aggregate was obtained alone.
<11> また、 図 3に、 この実施例におけるカーボンナノホーン集合 体の収率と雰囲気ガス圧の関係を、 ガス種およびカーボンナノホーン集 合体の形状について示した。 図 3に示したように、 雰囲気ガスの圧力を N 2 7 60 T 0 r r , A r 400~600 T o r rとした場合にも、 各 々つぼみ状カーボンナノホーン集合体が高収率で得られることが確認さ れた。 <11> FIG. 3 shows the relationship between the yield of the carbon nanohorn aggregate and the atmospheric gas pressure in this example, with respect to the gas type and the shape of the carbon nanohorn aggregate. As shown in Fig. 3, each bud-shaped carbon nanohorn aggregate can be obtained in high yield even when the pressure of the atmosphere gas is set to N 2 760 T 0 rr and Ar 400 to 600 Torr. Was confirmed.
<III> 図 4に、 実施例における雰囲気ガスの圧力と得られたカーボ ンナノホーン集合体の直径を、 雰囲気ガスの種類およびカーボンナノホ ーン集合体の形状ごとに例示した。 つぼみ状カーボンナノホーン集合体 の直径は、 不活性ガスの種類および圧力によって変化し、 不活性ガスの 圧力を低下させると直径が減少し、 また、 不活性ガスの分子量 (原子量 ) を低下させることによつても減少することが示された。 <III> FIG. 4 shows the pressure of the atmospheric gas and the diameter of the obtained carbon nanohorn aggregate in the example for each type of the atmospheric gas and the shape of the carbon nanohorn aggregate. Bud-like carbon nanohorn aggregate The diameter of the inert gas changes depending on the type and pressure of the inert gas. The diameter decreases when the pressure of the inert gas decreases, and also decreases when the molecular weight (atomic weight) of the inert gas decreases. It has been shown.
また、 A r 7 6 0 T 0 r rおよび A r 6 0 0 T o r rの条件において 雰囲気の温度を 1 2 0 CTCに高めた場合に、 直径約 1 0 0〜 1 5 0 n m のダリア状カーボンナノホーン集合体および直径約 1 0 0〜 1 3 0 n m のつぼみ状カーボンナノホーン集合体がそれぞれ得られた。  Also, when the temperature of the atmosphere was increased to 120 CTC under the conditions of Ar760T0rr and Ar600Torr, the dahlia-like carbon nanohorn having a diameter of about 100 to 150 nm was obtained. An aggregate and a bud-like carbon nanohorn aggregate having a diameter of about 100 to 130 nm were obtained.
もちろん、 この発明は以上の例に限定されるものではなく、 細部につ いては様々な態様が可能であることは言うまでもない。 産業上の利用分野  Of course, the present invention is not limited to the above-described example, and it goes without saying that various aspects are possible in detail. Industrial applications
以上詳しく説明した通り、 この発明によって、 つぼみ状とダリァ状の カーボンナノホーン集合体を、 それぞれ単独に、 9 0 %程度あるはそれ 以上の高収率で得ることができるすることのできるカーボンナノホーン 集合体の製造方法が提供される。  As described in detail above, according to the present invention, bud-shaped and dary-shaped carbon nanohorn aggregates can be obtained independently at a high yield of about 90% or more, respectively. A method of making a body is provided.

Claims

請求の範囲 The scope of the claims
1 . 不活性ガスの原子量あるいは分子量に応じて圧力を制御した雰囲 気中で、 固体状炭素単体物質を蒸発させて炭素蒸気を不活性ガス中に放 出させることで、 カーボンナノホーンが先端を外周面にして集合した力 —ボンナノホーン集合体を、 形状および大きさを制御して得ることを特 徴とするカーボンナノホーン集合体の製造方法。 1. In a gas atmosphere in which the pressure is controlled in accordance with the atomic or molecular weight of the inert gas, the carbon nanohorn is used to evaporate the solid carbon substance and release carbon vapor into the inert gas. Force gathered on the outer peripheral surface—A method for producing a carbon nanohorn assembly, characterized in that a bon nanohorn assembly is obtained by controlling its shape and size.
2. 不活性ガスの温度を制御した雰囲気中で、 固体状炭素単体物質を 蒸発させて炭素蒸気を不活性ガス中に放出させることで、 大きさが制御 されたカーボンナノホーン集合体を得ることを特徴とする請求項 1記載 のカーボンナノホーン集合体の製造方法。  2. It is possible to obtain a carbon nanohorn aggregate with a controlled size by evaporating solid carbon simple substance in an atmosphere where the temperature of the inert gas is controlled and releasing carbon vapor into the inert gas. The method for producing a carbon nanohorn aggregate according to claim 1, wherein
3. 固体状炭素単体物質の蒸発はレーザー照射によるものであること を特徴とする請求項 1 または 2記載のカーボンナノホーン集合体の製造 方法。  3. The method for producing a carbon nanohorn aggregate according to claim 1, wherein the evaporation of the solid carbon simple substance is performed by laser irradiation.
4. 請求項 1ないし 3いずれかの製造方法において、 不活性ガス雰囲 気を室温で、 A r 7 00〜9 00 T o r rに制御することで、 ダリァ状 カーボンナノホーン集合体を得ることを特徴とするカーボンナノホーン 集合体の製造方法。 4. The method according to any one of claims 1 to 3, wherein the inert gas atmosphere is controlled to Ar 700 to 900 Torr at room temperature to obtain a Darier-like carbon nanohorn aggregate. A method for producing a carbon nanohorn aggregate.
5. 請求項 1ないし 3いずれかの製造方法において、 不活性ガス雰囲 気を室温、 H e 3 0 0 T 0 r r以上、 N 23 0 0 T o r r以上、 あるい は A r l 5 0〜7 00 T o r rに制御することで、 つぼみ状カーボンナ ノホーン集合体を得ることを特徴とするカーボンナノホーン集合体の製 造方法。 5. In claims 1 to 3 or of the production process, the inert gas Kiri囲air at room temperature, H e 3 0 0 T 0 rr above, N 2 3 0 0 T orr above, there have the A rl 5 0 to A method for producing a carbon nanohorn aggregate, wherein a bud-like carbon nanohorn aggregate is obtained by controlling the carbon nanohorn aggregate at 700 Torr.
PCT/JP2001/010449 2001-07-03 2001-11-29 Method for preparing carbon nano-horn aggregate WO2003004411A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-202347 2001-07-03
JP2001202347A JP2003020215A (en) 2001-07-03 2001-07-03 Method for manufacturing aggregate of carbon nano- horn

Publications (1)

Publication Number Publication Date
WO2003004411A1 true WO2003004411A1 (en) 2003-01-16

Family

ID=19039165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010449 WO2003004411A1 (en) 2001-07-03 2001-11-29 Method for preparing carbon nano-horn aggregate

Country Status (2)

Country Link
JP (1) JP2003020215A (en)
WO (1) WO2003004411A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060210464A1 (en) * 2003-05-20 2006-09-21 Nec Corporation Carbon nanohorn assembly producing method
WO2004103902A1 (en) * 2003-05-20 2004-12-02 Nec Corporation Carbon nanohorn producing device and carbon nanohorn producing method
WO2004113225A1 (en) * 2003-06-24 2004-12-29 Nec Corporation Nanocarbon-producing device
US8882970B2 (en) 2006-04-24 2014-11-11 Nec Corporation Apparatus and method for manufacturing carbon nanohorns
JP5436348B2 (en) * 2009-08-07 2014-03-05 ニコライ ククサーノフ Method and apparatus for producing carbon nanostructure
CN102791628B (en) * 2010-02-19 2016-05-25 创业发展联盟技术有限公司 Material with carbon element and manufacture method thereof
JP5585936B2 (en) * 2010-07-28 2014-09-10 日本電気株式会社 Carbon nanohorn aggregate and method for producing the same
JP5523290B2 (en) * 2010-11-30 2014-06-18 洋 清水 Carbon nanohorn manufacturing method and manufacturing apparatus
CN109971231B (en) * 2019-02-27 2020-04-17 上海利物盛企业集团有限公司 Preparation method of super-hydrophobic anticorrosion self-assembled three-dimensional nano material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10273308A (en) * 1997-03-27 1998-10-13 Mitsubishi Chem Corp Production of atomic monolayer carbon nanotube
JP2001064004A (en) * 1998-07-25 2001-03-13 Japan Science & Technology Corp Single layer carbon nano-horn structure and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10273308A (en) * 1997-03-27 1998-10-13 Mitsubishi Chem Corp Production of atomic monolayer carbon nanotube
JP2001064004A (en) * 1998-07-25 2001-03-13 Japan Science & Technology Corp Single layer carbon nano-horn structure and its production

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
FOKAI F. ET AL.: "Growth dynamics of nanotubes, nanohorn aggregates and C60 by CO2 laser vaporization at room temperature", 22 January 2001 (2001-01-22), pages 46, XP002909061 *
IIJIMA S. ET AL.: "Nano-aggregates of single-walled graphitic carbon nano-horns", CHEMICAL PHYSICS LETTERS, vol. 309, no. 3-4, 1999, pages 165 - 170, XP002909062 *
IIJIMA S. ET AL.: "Structures of carbon soot prerared by laser ablation", J. PHYS. CHEM., vol. 100, 1996, pages 5839 - 5843, XP000609997 *
MUNOZ E. ET AL.: "Gas and pressure effects on the production of single-walled carbon nanotubes by laser ablation", CARBON, vol. 38, 2000, pages 1445 - 1451, XP004205702 *
YAHACHI SAITO ET AL.: "Carbon nanocapsules and single-layered nanotubes produced with platinum-group metals(Ru,Rh,Pd,Os,Ir,Pt) by arc discharge", J. APPL. PHYS., vol. 80, no. 5, 1996, pages 3062 - 3067, XP002909063 *

Also Published As

Publication number Publication date
JP2003020215A (en) 2003-01-24

Similar Documents

Publication Publication Date Title
JP3850380B2 (en) Carbon nanotube matrix growth method
JP3877302B2 (en) Method for forming carbon nanotube
JP3355442B2 (en) Amorphous nanoscale carbon tube and method for producing the same
JP3363759B2 (en) Carbon nanotube device and method of manufacturing the same
US20100227058A1 (en) Method for fabricating carbon nanotube array
JP2006007213A (en) Production method of catalyst for producing carbon nanotube
KR20030077425A (en) Aligned carbon nanotube films and a process for producing them
WO2003004411A1 (en) Method for preparing carbon nano-horn aggregate
JP2010527320A (en) Boron nitride nanotube
WO2011046157A1 (en) Nanotube-nanohorn composite body and method for producing same
Cheong et al. Large area patterned arrays of aligned carbon nanotubes via laser trimming
JP2003201108A (en) Carbon material
WO2012057229A1 (en) Process for production of carbon nanotubes
US20050189860A1 (en) Composition for formatting an electron emission source for use in an electron emission device and an electron emission source fabricated using the same
JP2001220674A (en) Carbon nanotube, producing method therefor and electron emitting source
JP3913583B2 (en) Method for producing carbon nanotube
WO2017159350A1 (en) Adsorbent material
KR102450747B1 (en) Method for preparing carbonnanotube
JP4693463B2 (en) Catalyst for producing double-walled carbon nanotubes and method for producing double-walled carbon nanotubes using the same
WO2004103902A1 (en) Carbon nanohorn producing device and carbon nanohorn producing method
JP3981568B2 (en) Carbon fiber for field electron emitter and method for producing field electron emitter
KR100891466B1 (en) Density controlled carbon nanotube field emission source, preparation method thereof, and density control method of carbon nanotube
WO2018155627A1 (en) Method for producing carbon nanohorn aggregates
US7132126B2 (en) Room temperature synthesis of multiwalled carbon nanostructures
JP3445059B2 (en) Method for producing giant fullerene and giant fullerene structure in film form

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN IN KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase