WO2003003486A1 - Separator for battery and method for producing the same - Google Patents

Separator for battery and method for producing the same Download PDF

Info

Publication number
WO2003003486A1
WO2003003486A1 PCT/JP2002/002657 JP0202657W WO03003486A1 WO 2003003486 A1 WO2003003486 A1 WO 2003003486A1 JP 0202657 W JP0202657 W JP 0202657W WO 03003486 A1 WO03003486 A1 WO 03003486A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
graft
battery separator
battery
fiber
Prior art date
Application number
PCT/JP2002/002657
Other languages
French (fr)
Japanese (ja)
Inventor
Yasunao Shimano
Junsho Kanenori
Original Assignee
Komatsu Seiren Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Seiren Co., Ltd. filed Critical Komatsu Seiren Co., Ltd.
Publication of WO2003003486A1 publication Critical patent/WO2003003486A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery separator and a method of manufacturing the same.
  • the present invention relates to a battery separator and a method for producing the same, and more particularly to a separator for an alkaline secondary battery using nickel hydroxide as a positive electrode active material.
  • a non-woven fabric or the like made of a polyolefin-based fiber having alkali resistance is used as a separator.
  • Japanese Patent Application Laid-Open No. 52-55054 discloses a method of grafting a vinyl monomer (such as acrylic acid) which reacts with an acid or a base to form a salt on a porous film, polyethylene, or polypropylene nonwoven fabric.
  • a polymerized battery separator is disclosed.
  • Japanese Patent Application Laid-Open No. 57-141,628 discloses a vinyl monomer (acrylic) that reacts with an acid or a base to form a salt on a nonwoven fabric having a polyethylene resin formed on the surface of a polypropylene-based fiber. An acid) is graft-polymerized.
  • Japanese Patent Application Laid-Open No. 5-234457 discloses that a nonwoven fabric obtained by graft-polymerizing a reactive monomer is used as a separator for a nickel-metal hydride battery.
  • the graft polymerization method includes (1) a chemical method in which the polyolefin-based fiber and the vinyl monomer are both heated in the presence of a polymerization initiator, and (2) a UV- or electron-emitting method in which the polyolefin-based fiber is brought into contact with the butyl monomer.
  • There are known methods such as a simultaneous irradiation method of irradiating a ray, and (3) a pre-irradiation method of contacting a monomer after irradiating a polyolefin-based fiber with an ultraviolet ray or an electron beam.
  • the grafting polymerization is used as the hydrophilic treatment for the polyolefin-based fiber.
  • a process of sulfonating polyolefin fibers using fuming sulfuric acid, concentrated sulfuric acid, sulfur trioxide or the like to introduce sulfonic acid groups, and a process of hydrophilizing using fluorine gas have been put to practical use.
  • one of the causes of self-discharge in sealed nickel-metal hydride batteries is ammonia generated in the batteries. It is described that most of the ammonia generated from nickel hydroxide is derived from nickel hydroxide, which is a positive electrode active material. It is also described that a separator obtained by graft polymerization of acrylic acid on polyolefin fibers has a function of trapping ammonia, and can suppress self-discharge of a battery as compared to a polyamide nonwoven fabric or the like having no ammonia trapping function. ing.
  • nickel hydroxide which is a positive electrode active material
  • a positive electrode active material comprising nickel hydroxide is used. It is considered that ammonium ions are supplied to the nickel to produce an ammonium complex salt, and nickel hydroxide is grown in this state, so that ammonium ions remain in the positive electrode active material.
  • the present invention provides a battery that can increase the capacity of capturing ammonia and, when used in an alkaline secondary battery using nickel hydroxide as a positive electrode active material, can further suppress self-discharge of the battery. It is a first object of the present invention to provide a separator and a method for manufacturing the same.
  • Japanese Patent Application Laid-Open No. H08-241704 discloses that, when comparing the amount of introduction required to make polyolefin-based fibers of the same degree of hydrophilicity, the sulfonic acid group is highly polar. The amount may be about 1/2 to 15 of the carboxy group.
  • the hydrophilic treatment can be performed while suppressing an unnecessary increase in the mass of the nonwoven fabric. It is described.
  • a sulfonic acid group is more resistant to chemical actions such as oxidation than a carboxy group and has excellent stability.
  • the olefin-based fiber is sulfonated using fuming sulfuric acid, concentrated sulfuric acid, sulfur trioxide, or the like, and the sulfonic acid group is introduced.
  • the polyolefin fiber of the main chain is deteriorated, and the tensile strength and the tear strength are reduced.
  • polyolefin-based fibers include a sulfonic acid derivative such as a metal salt of p_styresinolenoic acid or a metal salt of vinylsulfonic acid and a carboxylic acid derivative. Are graft-copolymerized to introduce both a sulfonic acid group and a carboxy group.
  • a sulfonic acid derivative such as a metal salt of p_styresinolenoic acid or a metal salt of vinylsulfonic acid and a carboxylic acid derivative.
  • a carboxylic acid derivative such as acrylic acid has a small molecular weight, swells the polyolefin-based fiber, diffuses into the fiber, and the graft polymerization proceeds.
  • the metal salt of P-styrenesulfonic acid has an extremely large molecular weight as compared with the carboxylic acid derivative, and has an extremely high polarity as compared with the carboxylic acid derivative, so that it does not diffuse into the fiber. It is extremely difficult to graft polymerize a metal salt of p-styrenesulfonic acid because polymerization proceeds only outside the fiber to produce a homopolymer.
  • the monomer having a beer group is less polymerizable than the monomer having an acryloyl group, and the polarity of the metal salt of vinyl sulfonic acid is extremely higher than that of the carboxylic acid derivative, so that the monomer is diffused into the fiber. Instead, the polymerization proceeds only outside the fiber to produce a homopolymer, so it is extremely difficult to graft-polymerize a metal salt of vinylsulfonic acid.
  • the present invention provides a means for easily introducing a sulfonic acid group without lowering the strength of the polyolefin-based fiber, whereby the weight and the chemical stability can be improved.
  • a second object is to provide a battery separator and a method for manufacturing the same.
  • a method for further performing a graft polymerization treatment in a state of being surrounded by a breathable film is disclosed.
  • this method there is no carboxy group on the surface, and when measured by an X-ray photoelectron spectrometer, the structure has a binding energy of 530.5 to 51.5 eV, that is, the surface has A battery separator having a structure in which an oxygen atom or an oxygen molecule is bonded to the battery separator can be obtained.
  • the obtained battery separator has excellent oxidation resistance. It is described that batteries equipped with a radiator have excellent capacity retention and a long cycle life of repeated charge and discharge.
  • the method described in Japanese Patent Application Laid-Open No. 2000-106612 has a problem that the production process is complicated because two-stage graft polymerization is required. I have. Accordingly, the present invention provides a battery separator which can be easily manufactured without going through a complicated manufacturing process, has excellent chemical stability such as oxidation resistance, and has excellent durability, and a method for manufacturing the same. Is the third purpose.
  • a method is known in which a monomer solution containing a monomer having a carboxy group, a polymerization initiator, a surfactant, and the like is prepared, and the prepared monomer solution is impregnated into polyolefin-based fibers, followed by irradiation with ultraviolet rays to perform graft polymerization. ing.
  • a fourth object of the present invention is to provide a method for producing a battery separator that allows the graft polymerization to proceed stably inside the fiber.
  • the inventor of the present invention has determined the theory based on the force-ream ion exchange capacity IEC (obs) force measured as a characteristic of a battery separator, and the mass fraction of the graft (the mass fraction of the components added by graft polymerization in the entire separator).
  • IEC force-ream ion exchange capacity
  • IEC (obs) measurement method and the IEC (ca 1) The details of the method of calculating the IEC (obs) will be described in the section of “Examples” .However, in the final product battery separator, the acidic groups at the places that come into contact with the electrolyte are neutralized. ), IEC (ca 1) is the measured value of the potassium ion exchange capacity when the battery separator is immersed in an aqueous solution of potassium hydroxide after the ion exchange group of the battery separator is completely acidified. Each means a theoretical value.
  • the term "acidic group” including the acid group that is finally neutralized is simply referred to as "acidic group”.
  • the fact that the measured potassium ion exchange capacity I EC (obs) is lower than the theoretical ion exchange capacity I EC (ca 1) means that all the acidic groups are neutralized when immersed in an aqueous solution of potassium hydroxide. Rather than being converted to a salt, it means that there is an acid and a functional group that remain without being neutralized.
  • the present inventor considered that acidic groups remaining without being neutralized capture ammonia, and as a result, the theoretical ion exchange capacity I EC (ca 1) and the actually measured potassium ion exchange capacity I EC (obs). There is a correlation between IEC (ca 1)-IEC (obs) and ammonia trapping capacity, and as IEC (ca 1)-IEC (obs) increases, ammonia trapping capacity increases. The amount was found to increase.
  • the present inventor has found that among the acidic groups of the polyolefin-based fibers, the groups that are neutralized by the aqueous potassium hydroxide solution and the groups that are not neutralized are related to the distribution of the acidic groups in the polyolefin-based fibers. I thought you were. In other words, the acidic groups present on the surface and near the surface of the fiber are neutralized by contact with the aqueous hydrating solution, while the acidic groups existing inside the surface and near the surface are neutralized by the aqueous hydrating solution. It was not summed up and thought to capture ammonia.
  • 2-acrylamide 2-methylpropanesulfonic acid which is a monomer having a sulfonic acid group, and a monomer having a carboxy group are graft-copolymerized on a substrate made of a polyolefin fiber.
  • Polymerized It is characterized by.
  • acrylic acid or methacrylic acid is preferable as the monomer having a carboxy group.
  • 2-acrylamide 2-methylpropanesulfonic acid and acrylic acid may be abbreviated as “AXQ” and “AA”, respectively.
  • the present inventor uses AXQ as a monomer having a sulfonic acid group, and graft copolymerizes AXQ with a monomer having a lipoxy group, thereby reducing the strength of the polyolefin-based fiber without lowering the strength of the polyolefin-based fiber. It has been found that a sulfonate group can be easily introduced into the sample, and that the capacity for trapping phanmoyure can be increased.
  • Examples of the vinyl monomer having a sulfonic acid group include, in addition to AXQ, sodium p-styrene sulfonate, sodium vinyl sulfonate, sodium arylsulfonate, sodium methallylsulfonate, 3-sulfopropyl acrylate (calidium) Salt), 3-sulfopropylmetharylate (potassium salt), etc., but the present inventor (1) has high polymerizability, and (2) diffuses into polyolefin-based fibers at least near the surface. (3) Stable in strong alkaline electrolyte, (4) AXQ is the best monomer to meet the requirements for stable monomer solution Was found.
  • the monomer having a sulfonic acid group is originally difficult to infiltrate because it has higher polarity and higher hydrophilicity than hydrophobic polyolefin.
  • the sulfonic acid group is originally difficult to infiltrate because it has higher polarity and higher hydrophilicity than hydrophobic polyolefin.
  • AXQ having a sulfonic acid group is a monomer having a sulfonic acid sodium group such as sodium p-styrenesulfonic acid and sodium vinylsulfonic acid.
  • sodium p-styrenesulfonic acid becomes p-styrenesulfonic acid in the presence of acrylic acid, and this p-styrenesulfonic acid has the property of spontaneously polymerizing.
  • the monomer solution becomes unstable.
  • sodium vinyl sulfonate shows the same behavior, so it can be used for copolymerization with monomers having acidic groups such as carboxy groups, as shown in Graph 1! / There is a problem with gender.
  • AXQ a sulfonic acid group can be easily introduced into the polyolefin-based fiber.
  • AXQ has a larger molecular weight than a monomer having a carboxyl group such as AA. Due to its high polarity, it cannot diffuse into the fiber as much as a monomer having a carboxyl group. Therefore, in the first battery separator of the present invention in which AXQ and a monomer having a carboxy group are graft-copolymerized on a substrate made of a polyolefin-based fiber, the surface and the vicinity of the surface of the polyolefin-based fiber are provided.
  • AXQ has a structure in which AXQ and a monomer having a carboxy group are graft-copolymerized, and only the monomer having a carboxy group is graft-polymerized from near the surface to the inside.
  • acidic groups It is considered that both the sulfonic acid group and the sulfonic acid group are introduced on the surface and near the surface of the polyolefin-based fiber, and that only the carboxy group is introduced inside from the vicinity of the surface. .
  • the swelling near the surface is caused by sulfonic acid groups introduced on the surface and near the surface of the fiber.
  • the diffusion of the potassium ions into the interior is suppressed, and neutralization of the acidic groups by the aqueous solution of potassium hydroxide does not proceed in the region into which only the carboxy group has been introduced. Therefore, according to the first battery separator of the present invention, a large number of acidic groups (carboxy groups) that are not neutralized by the aqueous potassium hydroxide solution can be formed in the fiber, and the capacity for capturing ammonia can be increased. You.
  • the mass fraction of the grafted product of AXQ and a monomer having a carboxy group IEC (ca 1)-IEC (obs), and ammonia trapping capacity It has been found that there is a correlation between the two, and that IEC (ca 1) -IEC (obs) and ammonia capture capacity are maximized when the mass fraction of the graft is about 10%. Therefore, the closer the mass fraction of the graft is to this value, the more dramatically the IEC (c a 1) —IEC (obs) and the capture capacity of the ammonia can be dramatically increased.
  • the IEC (ca 1) —IEC (obs) becomes 0.50 mmo 1 / g or more, and 3 Ommo 1g or more can be found.
  • the mass fraction of the grafted material is 5 to 15%.
  • IEC (ca 1) —IEC (obs) is 0.6 Ommo 1 Z g
  • the ammonia capturing capacity can be set to 0.5 Ommo 1 / g or more.
  • the mass fraction of the graft product is 7 to 13%, and by defining as such, the IEC (ca 1)-IEC (obs) is 0.80 mmol / g or more.
  • the ammonia capturing capacity can be 0.6 Ommo 1 / g or more.
  • the present inventor added acrylic acid to the conventionally used polyolefin-based fiber.
  • the former was about 0.40 mmo 1 / g
  • the latter was about 0.30 mmol Zg, and only the carboxy group was found.
  • Conventional separator manufacturing technology using only graft polymerization and sulfonation of ammonia cannot achieve an ammonia capture capacity of 0.5 Ommo 1 g or more.
  • the first battery separator of the present invention since AXQ and the monomer having a carboxy group are graft-copolymerized, the ammonia capturing capacity can be significantly increased. Therefore, the first battery separator of the present invention is particularly suitable for an alkaline secondary battery using nickel hydroxide as a positive electrode active material. Further, according to the first battery separator of the present invention, self-discharge of the battery can be suppressed more than before, and the capacity retention after charging can be improved.
  • the sulfonic acid group is easily introduced into the surface of the polyolefin-based fiber and near the surface thereof without lowering the strength of the polyolefin-based fiber.
  • the mass fraction of the graft necessary for hydrophilization can be reduced to the same extent as in the prior art, and the weight can be reduced.
  • the sulfonic acid group which has excellent chemical stability and is hardly oxidized, is introduced on the surface and near the surface of the fiber that comes into contact with the electrolyte, when the battery is attached to a battery, the cycle life of repeated charge and discharge It was found that the battery can be lengthened and the durability of the battery can be improved.
  • the present inventor has solved the third object by crosslinking an acidic group of at least one monomer graft-polymerized on at least the surface of the polyolefin-based fiber via a polyvalent metal. Having found that it is possible, they have invented the second battery separator of the present invention.
  • the second battery separator according to the present invention is characterized in that a base material composed of polyolefin fibers is provided with 2-acrylamide 2-methylpropane, a monomer having a sulfonic acid group. It is characterized in that sulfonic acid and a monomer having a carboxy group are graft-copolymerized, and at least the acidic group of at least one type of monomer graft-polymerized on the surface is crosslinked via a polyvalent metal. And
  • the polyvalent metal is at least one selected from calcium, magnesium, barium, aluminum, zinc, titanium, silica, and tin.
  • the second battery separator of the present invention is obtained by graft-copolymerizing AXQ and a monomer having a carboxy group onto a base material composed of polyolefin-based fibers, the second battery separator of the present invention According to this, the same effects as those of the first battery separator of the present invention can be obtained.
  • At least one acidic group graft-polymerized on the surface of the polyolefin-based fiber is crosslinked via a polyvalent metal to form an acidic group.
  • the present inventors can improve the chemical stability such as oxidation resistance and heat resistance by crosslinking the acidic group of at least one kind of monomer graft-polymerized on at least the surface of the polyolefin-based fiber. It has been found that a battery separator having excellent durability can be provided. In addition, it has been found that chemical stability can be significantly improved by crosslinking via an inorganic polyvalent metal, as compared with the case where an acidic group is crosslinked via an organic substance. As described above, since the second battery separator of the present invention is excellent in chemical stability, when the second battery separator of the present invention is mounted on a battery, repeated charging and discharging of the battery is performed. The cycle life can be extended, and the durability of the battery can be improved.
  • AXQ and the monomer having a carboxy group are graft-copolymerized on the surface of the polyolefin-based fiber.
  • ⁇ Crosslink the acidic group of at least one monomer polymerized on the surface '' means ⁇ monomer having at least AXQ and hydroxyl group polymerized on the surface. Of these, at least one of the monomers cross-links the acidic group.
  • the present inventors immerse the base material after the graft polymerization in a polyvalent metal salt solution (polyvalent metal salt solution) to reduce the acid groups of at least one type of monomer graft-polymerized on at least the surface. It has been found that crosslinking can be carried out via a polyvalent metal, and the second battery separator of the present invention can be easily produced without changing the graft polymerization process.
  • a polyvalent metal salt solution polyvalent metal salt solution
  • a battery separator which can be easily manufactured without going through a complicated manufacturing process, has excellent chemical stability such as oxidation resistance, and has excellent durability. it can.
  • the above-described first and second battery separators of the present invention can be manufactured by the method for manufacturing a battery separator of the present invention described below.
  • the method for producing a battery separator of the present invention is suitable as a method for producing the first and second battery separators of the present invention, and solves the fourth problem.
  • the method for producing a battery separator according to the present invention is the first and second method for producing a battery separator according to the present invention described above, wherein 2-acrylamide 2-methylpropanesulfone is provided on a substrate made of polyolefin fiber.
  • a monomer solution impregnating step of impregnating a monomer solution containing an acid and a monomer having a carboxy group; and holding the base material impregnated with the monomer solution between a holding material holding the base material and a polyester film.
  • a high energy beam irradiation step of irradiating the base material with high energy energy from the polyester film side in a state where the polyester film is in a closed state.
  • high energy rays examples include ultraviolet rays, ⁇ rays from Co 60, and electron beams. Of these, ultraviolet rays and electron beams that can be continuously processed are particularly preferable.
  • a hydrophilic fiber having an acidic group such as a carboxy group or a sulfonate group is impregnated into a hydrophobic fiber such as a polyolefin fiber, and then grafted with high-energy rays, graft polymerization is performed. It is known that the polarity is too large compared to the polyolefin-based fiber, so that it does not easily diffuse into the fiber, and the polymerization reaction progresses before diffusing into the fiber to generate a homopolymer, which makes it difficult for graft polymerization to occur. ing.
  • the present inventor has set the temperature of the monomer solution and the base material. As high as possible to promote the diffusion of monomers into the interior of the fiber, and reduce the irradiation energy per unit time of high-energy radiation to reduce the polymerization rate and extend the polymerization time as much as possible. I thought it would be effective.
  • the polyester film was sandwiched between the base material and the holding material such as stainless steel plate / glass plate and the polyester film.
  • the holding material such as stainless steel plate / glass plate and the polyester film.
  • the following advantages can be obtained by irradiating the base material impregnated with the monomer solution with high-energy rays while holding it between a holding material such as a stainless steel plate or a glass plate and a polyester film.
  • a holding material such as a stainless steel plate or a glass plate and a polyester film.
  • a pre-irradiation method or a simultaneous irradiation method is known as a graft polymerization method for irradiating high energy rays.
  • the pre-irradiation method high-energy rays are irradiated to form active sites for polymerization on the base material, and then the polymer is brought into contact with the monomer to perform polymerization, so that the diffusion of the monomer into the fiber and the polymerization reaction are reduced.
  • the irradiation of the high-energy beam and the contact of the monomer are performed simultaneously, so that the diffusion of the monomer into the fiber and the polymerization reaction proceed simultaneously.
  • the present inventor focused on the above points, and studied to increase the speed of the graft polymerization reaction.
  • the base material impregnated with the monomer solution before the high energy ray irradiation step was used. Is preheated at a temperature of 70 to 100 ° C. while holding the base material between the holding material for holding the base material and the polyester film, and a preheating step of diffusing the monomer into the fiber is added. was found to be preferable.
  • the monomer can be diffused inside the polyolefin fiber before the polymerization starts, and the graft polymerization reaction can be accelerated. It has been found that the formation of homopolymer outside the fiber can be suppressed, and the uniformity of the polymerization reaction can be improved.
  • the monomer in the high energy ray irradiation step is preferably used. It has also been found that the effect of further promoting the diffusion of the metal can be obtained.
  • FIG. 1 is a graph showing mass fractions of grafts, IEC (ca 1), IEC (obs), IEC (ca 1)-IEC (obs) and ammo air of the battery separator obtained in the example according to the present invention.
  • FIG. 3 is a diagram showing a relationship between a trapping capacity ATC. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
  • 2-acrylamide 2-methylpropanesulfonic acid which is a monomer having a sulfonate group, and a monomer having a carboxy group are graft-copolymerized on a substrate made of polyolefin fiber. It is characterized by being polymerized.
  • a non-woven fabric is suitable as the base material, and the case where the base material is made of a non-woven fabric will be described below as an example.
  • polyolefin fibers constituting the nonwoven fabric as the base material include homopolymers of ⁇ -olefin such as ethylene, propylene, butene-11,4-methylpentene_1, and copolymerization of two or more of these ⁇ -olefins.
  • ⁇ -olefin such as ethylene, propylene, butene-11,4-methylpentene_1
  • copolymerization of two or more of these ⁇ -olefins are examples of the polyolefin fibers constituting the nonwoven fabric as the base material.
  • composite fibers core-sheath composite fibers, parallel composite fibers, split fibers, etc. obtained by combining a plurality of the above-mentioned polymers can be used. .
  • Specific examples include a fiber composed of only polypropylene, a fiber composed of only polyethylene, a polypropylene / polyethylene core-sheath composite fiber having polypropylene as a core component, polyethylene as a sheath component, and a split fiber composed of polypropylene and polyethylene.
  • a fiber composed of only polypropylene a fiber composed of only polyethylene
  • a fiber composed of only polyethylene a fiber composed of only polyethylene
  • a polypropylene / polyethylene core-sheath composite fiber having polypropylene as a core component, polyethylene as a sheath component
  • a split fiber composed of polypropylene and polyethylene can be.
  • Nonwoven fabrics made of polyolefin fibers are manufactured by a known method such as a dry (card) method, a spunbond method, a melt blow method, a wet (papermaking) method, and are subjected to secondary processing by a water jet method or the like. good.
  • the present invention is obtained by graft copolymerizing AXQ and a monomer having a carboxyl group onto a nonwoven fabric made of the above-mentioned polyolefin-based fiber.
  • a monomer having a carboxy group acrylic acid ( ⁇ ) or methacrylic acid is preferable.
  • acrylic acid is particularly preferred because of its high solubility in water and excellent operability.
  • AXQ as a monomer having a sulfonic acid group
  • a sulfonic acid group can be easily introduced without lowering the strength of the polyolefin-based fiber, and the sulfur content can be reduced to 0.05 to 50%. 0.12%.
  • the mass fraction of ⁇ ⁇ ⁇ ⁇ graft is 9.65%, and It has been found that the mass fraction of the grafted product of Q can be 0.35% and the sulfur content can be 0.05%.
  • the mass fraction of the grafted product of AA is 9.20%
  • the mass fraction of the grafted product of AXQ is 0.80%
  • the sulfur content is Was found to be 0.12%.
  • the mass fraction of the grafted product of AXQ and the monomer having a carboxy group IEC (ca 1) —IEC (obs), and the ammonia trapping capacity
  • the IEC (ca1)-IEC (obs) is 0.50 mmo1 / g or more, and the capacity of capturing the gamma-ray is 0. It can be 3 Ommo 1 / g or more. Further, it is preferable that the mass fraction of the graft is 5 to 15%, and by defining as such, the IEC (ca 1) ⁇ IEC (obs) is 0.60 mm o 1 / g or more.
  • the trapping capacity can be set to 0.5 Ommo 1 Zg or more.
  • the mass fraction of the graft is 7 to 13%, and by defining as such, IEC (ca 1) -IEC (obs) is 0.8 Ommo 1 Zg or more, The ammonia capturing capacity can be 0.6 Ommo 1 / g or more.
  • the battery separator of the present invention since AXQ and the monomer having a carboxy group are graft-copolymerized, the ammonia capturing capacity can be increased. Therefore, the battery separator of the present invention is particularly suitable for an alkaline secondary battery using nickel hydroxide as the positive electrode active material. Further, according to the battery separator of the present invention, self-discharge of the battery can be suppressed more than before, and the capacity retention after charging can be improved. '
  • a sulfonic acid group is formed on the surface of the polyolefin-based fiber and in the vicinity of the surface without reducing the strength of the polyolefin-based fiber. Since it can be easily introduced, it is possible to reduce the mass of the graft material necessary to make it hydrophilic to the same extent as before, reduce the weight, and at the surface and near the surface of the fiber in contact with the electrolyte. Since the sulfonic acid group with excellent chemical stability is introduced into the battery, when it is installed in a battery, the cycle life of repeated charge / discharge of the battery can be extended, and the durability of the battery can be improved. it can.
  • the acidic group of at least one monomer graft-polymerized on at least the surface of the polyolefin-based fiber is crosslinked via a polyvalent metal.
  • the polyvalent metal is not particularly limited, but calcium, magnesium, barium, aluminum, zinc, titanium, zirconium, tin and the like are preferable.
  • the acidic group of at least one monomer graft-polymerized on at least the surface of the polyolefin-based fiber is cross-linked via a polyvalent metal, thereby obtaining the ⁇ means for solving the problems ''.
  • a battery separator that can be easily manufactured without going through a complicated manufacturing process, has excellent chemical stability such as oxidation resistance, and has excellent durability. Further, when the battery separator of the present invention is mounted on a battery, the cycle life of repeated charge / discharge of the battery can be extended, and the durability of the battery can be improved.
  • the following method for producing a battery separator of the present invention is a method suitable for producing the battery separator of the present invention, but the method for producing the battery separator of the present invention is described below. It is not limited to one.
  • AX Q and AA are used as monomers, and ultraviolet rays are used as high energy rays will be described as an example.
  • a non-woven fabric is prepared. Since the structure of the nonwoven fabric suitable for use in the battery separator of the present invention has been described above, the description is omitted.
  • a monomer solution containing A X Q and AA is prepared.
  • concentrations of AX Q and A A in the monomer solution are each preferably 5 to 30% by mass.
  • a hydrogen abstraction type polymerization initiator such as benzophenone for extracting hydrogen from the polyolefin-based fiber.
  • the polymerization initiator is added after being dissolved in a solvent such as AA or acetone.
  • a polymerization inhibitor such as a metal salt (specifically, a salt such as copper or iron) is added to the monomer solution. It is preferable to add 0.1 to 1.0% by mass.
  • a nonionic surfactant or an anionic surfactant may be added. If necessary, wettability can be improved by using acetone, isopropyl alcohol, methyl alcohol and the like in combination.
  • the nonwoven fabric made of polyolefin-based fibers is impregnated with the monomer solution prepared as described above.
  • the nonwoven fabric impregnated with the monomer solution is placed on a holding material for holding the nonwoven fabric, such as a stainless steel plate or a glass plate, and the opposite side of the nonwoven fabric holding material is coated with a polyester film. Preheat at a temperature of 70 to 100 ° C for 10 seconds to 10 minutes while covering and holding the holding material and the polyester film.
  • the non-woven fabric By preheating the non-woven fabric in this way, it is possible to start the diffusion of the monomer before the start of the graft polymerization, to speed up the polymerization reaction and to generate the homopolymer outside the fiber. Thus, the polymerization reaction can be made more uniform. In addition, since AA can be diffused into the fiber before the start of polymerization, the effect of increasing the amount of carboxy groups that trap ammonia can be obtained. In addition, by pre-heating the non-woven fabric sandwiched between the holding material and the polyester film, it is possible to irradiate high energy rays while maintaining the temperature in a subsequent high energy ray irradiation step. Therefore, the evaporation of the monomer solution can be suppressed, and the effect of further promoting the diffusion of the monomer in the high-energy line irradiation process can be obtained.
  • the preheating temperature is lower than 70 ° C, the effect of promoting the diffusion of the monomer is small, and if it exceeds 100 ° C, the temperature of the polyester film becomes too high in the subsequent high energy beam irradiation step.
  • the polyester film may be deformed, and the water and the like contained in the monomer solution evaporate to make the polymerization reaction nonuniform, which is not preferable.
  • a known heating method can be adopted.However, a method using far-infrared rays raises the temperature to a desired temperature of 70 ° C. or more in several 10 seconds to several minutes. It is preferable because it can be used. Further, a method of directly heating the holding material by means such as electric heating is also suitable.
  • the nonwoven fabric is irradiated with ultraviolet rays (high energy energy) from the polyester film side while being held between the holding material and the polyester film.
  • the high-energy ray irradiation step by irradiating ultraviolet rays from the polyester film placed on the nonwoven fabric to promote graft copolymerization, a part of the ultraviolet rays is blocked by the polyester film, and the ultraviolet intensity is reduced. Can be kept as low as 2 O mW / cm 2 or less. As a result, the polymerization rate is reduced, the generation of a homopolymer outside the fiber is suppressed, the monomer is uniformly diffused inside the fiber, and the graft copolymerization can proceed stably inside the fiber.
  • the polymerization reaction proceeds before the monomer diffuses inside the fiber, and a homopolymer is likely to be generated outside the fiber. The process becomes complicated, and the mass fraction of the graft may decrease.
  • the temperature of the nonwoven fabric rises to a maximum of about 100 ° C due to the heat of polymerization generated at the start of the polymerization and the infrared rays emitted from the ultraviolet lamp.
  • the temperature of the nonwoven fabric can be maintained, the diffusion of the monomer into the fiber can be promoted, and the loss of evaporation of the monomer solution due to heat Can be suppressed.
  • the holding material is heated at the same temperature as in the preheating step to maintain the heating temperature in the preheating step. It is more preferable to keep
  • the ultraviolet irradiation means include a high-pressure mercury lamp, a metal halide lamp, and a non-electrode type lamp induced at a high frequency.
  • a lamp of 12 O WZ cm in order to allow the graft copolymerization to proceed stably, a large number of 3 to 10 lamps are required at a transfer speed of 2 to 15 m / "min.
  • the nonwoven fabric is washed with hot water or hot water containing an alkali agent such as sodium hydroxide or sodium hydroxide to remove the homopolymer on the surface, and, if necessary, to dilute it with hydrochloric acid or acetic acid. Neutralize with solution.
  • an alkali agent such as sodium hydroxide or sodium hydroxide
  • the acidic group of at least one monomer graft-polymerized on at least the surface is reacted with a polyvalent metal, and the acidic group of at least one monomer graft-polymerized on at least the surface is cross-linked via the polyvalent metal. I do.
  • the battery separator of the present invention can be manufactured by drying using a heating means such as a cylinder roll filled with hot air, infrared rays, or steam.
  • the graft polymerization can proceed stably inside the fiber, and the battery separator of the present invention can be produced stably.
  • at least one surface graft-polymerized on at least In the case of crosslinking the acidic groups of various kinds of monomers via a polyvalent metal, it is only necessary to add a step of immersing the nonwoven fabric after graft polymerization in a solution of a polyvalent metal salt (polyvalent metal salt solution). Therefore, it can be easily manufactured without changing the graft polymerization process.
  • a nonwoven fabric is prepared and a monomer solution is prepared in the same manner as in the case where ultraviolet rays are used as high energy rays. In addition, it is preferable to remove dissolved oxygen by bubbling an inert gas such as nitrogen into the prepared monomer solution.
  • the nonwoven fabric is impregnated with a monomer solution, and the nonwoven fabric is sandwiched between a holding material and a polyester film, and preheating is performed.
  • an electron beam is irradiated from the polyester film side using an electron beam accelerator or the like.
  • the holding material is preferably heated by electric heating or the like in order to hold the nonwoven fabric at 70 ° C. or more.
  • the irradiation amount of the electron beam is adjusted so that the irradiation amount of the electron beam irradiated on the nonwoven fabric is 5 to 25 kGy per pass, and the number of passes is set to 2 to 10 times. It is preferable to perform the electron beam irradiation so that the total irradiation amount becomes 10 to 250 kGy. As described above, it is preferable that the irradiation amount of the electron beam irradiating the nonwoven fabric is kept low and the total irradiation time is set long.
  • the mixture may be further heated at 70 to 100 ° C. for 1 to 10 minutes using a far-infrared heating device or the like, so that the diffusion and polymerization of the monomer may proceed.
  • the operation after the completion of the graft polymerization is the same as the case where ultraviolet rays are used as the high-energy rays, and the description is omitted.
  • Stable battery separator of the present invention Can be manufactured. ⁇ Example ⁇
  • Examples 1 to 8 and Comparative Examples 1 to 5 the surface was not crosslinked with the acidic group of the monomer subjected to daraft polymerization, whereas Examples 9 to 14 and Comparative Examples 6 and 7 were grafted on the surface.
  • the acidic group of the polymerized monomer was crosslinked to prepare a battery separator.
  • ultraviolet rays were used as high energy rays
  • Examples 13, 14, and Comparative Example 7 a battery separator was formed using an electron beam as high energy rays. Produced.
  • the evaluation items and evaluation methods for the battery separator obtained in each example are as follows. In each comparative example, the evaluation of the separator was performed in the same manner. Mass fraction of product>
  • the mass fraction of the graft was measured as follows.
  • the mass W o of the nonwoven fabric before the graft polymerization was measured, and after the polymerization reaction was completed, the mass W s after drying at 120 ° C. for 3 minutes was measured. Based on the following formula (1), the graft product was obtained. Was calculated for the mass fraction G (%).
  • G (%) (Ws-Wo) / W s X 100 (1)
  • the mass fraction G of the graft product was the mass fraction G of the AXQ graft product, the sum of the mass fraction G M of the graft material.
  • Mass fraction G M (1 of Q graft of the as possible out be calculated from the sulfur content to be described later. Further, the mass fraction G M of the graft of the AA, the mass fraction of the graft of AXQ. From steel, it can be calculated based on the following equation (3).
  • the sulfur content was measured based on the Shiniga method.
  • the sample was wrapped with a filter paper with little ash during combustion, and stored in a platinum basket with electrodes.
  • the platinum basket containing the sample was inserted into a combustion flask containing the hydrogen peroxide solution without touching the hydrogen peroxide solution, and sealed.
  • a high current is applied to the platinum portion to completely burn the sample and the filter paper, and the resulting sulfur oxides are dissolved in hydrogen peroxide solution, and sulfuric acid is dissolved therein. Ion.
  • 96.1XMO In the formula (4), 32.1 is atomic weight of sulfur, 96.1 represents the molecular weight of the sulfate ion (S0 4) 2 ".
  • CAA mniol X 1000 / 72.1 (6)
  • .1 indicates the molecular weight of AA.
  • IEC (ca 1) C TM (mm o 1) + C M (mm o 1) (7)
  • the potassium ion exchange capacity I E C (obs) was measured as follows. Approximately 0.5 g of the separator sample was immersed in an aqueous solution of 0.1 mol Zl of hydrochloric acid to completely convert the ion-exchange groups into an acid form, rinsed with distilled water, and dried at 100 ° C. After weighing the dried mass W, put the dried sample in a 100 ml polyethylene bottle, and then add 10 ml of a 0.1 m 01/1 aqueous hydroxide water solution with a whole pipette. Was. In addition, a known amount of distilled water was added to completely immerse the sample. Let Am 1 be the sum of the aqueous potassium hydroxide solution and distilled water. On the other hand, a polyethylene bottle containing no sample was prepared by the same procedure for a blank test.
  • the polyethylene bottle containing the sample and the polyethylene bottle for the blank test After storing at 60 ° C for 2 hours, cool naturally to room temperature, take out the remaining aqueous solution of hydroxylated lime in each polyethylene bottle with an appropriate amount (Bm 1) hole pipe, and transfer each to a conical beaker for titration.
  • Bm 1 an appropriate amount
  • the amount of remaining potassium hydroxide was determined by neutralization titration with 0.1 mol / l hydrochloric acid aqueous solution using phenolphthalein as an indicator.
  • the potassium ion exchange capacity I EC (obs) was calculated by the following equation (8). Calculated based on
  • I EC (obs) (A / B) X 0.1 X f X (tb— ts) / W ⁇ .
  • 0.1 is the hydrochloric acid used for the neutralization titration.
  • concentration of the aqueous solution f is the factor of the hydrochloric acid aqueous solution used for the neutralization titration
  • tb is the titration value of the hydrochloric acid aqueous solution required in the blank test (ml)
  • ts is the titration value of the hydrochloric acid aqueous solution required when processing the sample ( ml). Your capture capacity>
  • the ammonia trapping capacity was measured as follows.
  • a 25 Om1 stoppered Erlenmeyer flask was charged with 125 ml of an aqueous 8 mo1 / 1 aqueous solution of ammonia containing 1.5 mmo1 of ammonia and about 2 g of a precisely weighed separator sample, and then stoppered. And sealed with parafilm. On the other hand, a blank tester with no separator was prepared.
  • f Na () H is the hydroxyl used in the titration.
  • the factor of sodium aqueous solution, V s is the amount of sodium hydroxide aqueous solution required when processing the sample.
  • the titration value (ml) and Vb indicate the titration value (ml) of the aqueous sodium hydroxide solution in the blank test.
  • Examples 1 to 7 Examples 9 to 14, and Comparative Examples 1 to 7, a method for producing a nickel-metal hydride battery using the obtained battery separator will be described.
  • a paste-type nickel positive electrode using a foamed nickel base material and a hydrogen storage alloy (mish metal alloy) negative electrode using a nickel-plated stainless steel punching metal base material were prepared. Then, the separator obtained was sandwiched and wound in a spiral to produce an AA-sized electrode.
  • This electrode was housed in an outer can, and a 7 N aqueous hydroxide solution and a 1 N aqueous lithium hydroxide solution were injected into the can as an electrolytic solution, and then sealed to produce a cylindrical nickel-metal hydride battery.
  • the obtained nickel-metal hydride battery was charged at 20 ° C. and 0.1 C at 150% (capacity ratio), and the initial capacity (A) at a discharge of 0.1 C and a cut-off voltage of 1.0 V was measured. Then, charge at 150 ° C (capacity ratio) at 20 ° C and 0.1 C, leave at 60 ° C for 3 days, discharge at 0.1 ° C at 20 ° C, and end voltage of 1.0V (B) was measured.
  • the capacity retention was calculated from the obtained data based on the following equation (10).
  • Capacity retention (%) (A / B) X 100 ⁇ ⁇ ⁇ (10)
  • the obtained nickel-metal hydride battery is repeatedly charged and discharged at 20 ° C, 1 C, and 120%, discharged at 1 C, and discharged at a final voltage of 1.0 V. The number of charge / discharge cycles up to 50% was measured. (Example 1)
  • a spunbond nonwoven fabric made of 100% polypropylene (PP) fiber having a fiber diameter of about 10 ⁇ m and having a basis weight of 50 g / m 2 was used.
  • the monomer solution having the composition shown in Table 1 were prepared, after the solution is impregnated in pairs 1 0 0 part by weight nonwoven 2 0 0 parts by weight, placed on the stainless steel plate, further a thickness of the nonwoven fabric of 5 0 polyester film.
  • the nonionic surfactant added to the monomer solution Emulgen 910 manufactured by Kao Corporation was used (the same applies to the following Examples and Comparative Examples).
  • the mixture was passed through an ultraviolet irradiation device in which five 160 W / cm mercury lamps were arranged to perform graft copolymerization.
  • the graft copolymerization was performed by irradiating ultraviolet rays from the polyester film side.
  • the nonwoven fabric was washed with a 1% aqueous sodium hydroxide solution at 80 ° C. for 3 minutes. Further, after washing with water for 1 minute, it was passed through a 0.1% hydrochloric acid aqueous solution for 1 minute, and then dried to obtain a battery separator of the present invention.
  • a battery separator of the present invention was obtained in the same manner as in Example 1, except that a monomer solution having the composition shown in Table 1 was prepared.
  • a separator used in a commercially available nickel-metal hydride battery was taken out and evaluated in the same manner as in Examples 1 to 3 and Comparative Example 1.
  • this separator was analyzed, it was found that a polypropylene nonwoven fabric with a basis weight of about 50 g / m 2 was graft-polymerized with only AA by 10.7%. It was also confirmed that the acid groups of the grafted AA were not crosslinked.
  • a battery separator was obtained in the same manner as in Example 1 except that sodium p-styrenesulfonate was used instead of AXQ, and a monomer solution shown in Table 1 was prepared.
  • a battery separator was obtained in the same manner as in Example 1, except that sodium vinyl sulfonate was used instead of AXQ, and a monomer solution shown in Table 1 was prepared.
  • the basis weight is 50 gZm 2 by the wet (papermaking) method.
  • a monomer solution having the composition shown in Table 2 were prepared, placed on the after solution was 200 parts by impregnation with respect to the nonwoven fabric 100 parts by mass of resulting, on the stainless steel plate having a thickness of 0. 6 M m
  • the nonwoven fabric is covered with a polyester film having a thickness of 50 ⁇ m, and then preheated to 80 ° C using a far-infrared ray drying device, and then passed under five 160 W / cm metal halide lamps to form a graft.
  • Polymerization was performed.
  • the graft copolymerization was performed by irradiating ultraviolet rays from the side of the polyester film having a thickness of 50 ⁇ m.
  • the nonwoven fabric after the completion of the polymerization reaction was washed and dried in the same manner as in Example 1 to obtain a battery separator of the present invention.
  • Example 5 Using the same nonwoven fabric as used in Example 4, a monomer solution having the composition shown in Table 2 was prepared. A battery separator of the present invention was obtained in the same manner as in Example 1 except for producing the battery separator. (Comparative Example 5).
  • a battery separator was obtained in the same manner as in Example 4, except that only AA was used as the monomer and the monomer solutions shown in Table 2 were prepared. Table 2
  • the base material used as the basis weight 50 g / m 2 spunbond nonwoven fiber diameter of 100% polyethylene (PE) fibers about 12 mu m, except that to prepare a monomer solution having the composition shown in Table 3 is performed In the same manner as in Example 1, a battery separator of the present invention was obtained.
  • PE polyethylene
  • a spunbond nonwoven fabric made of 100% polypropylene (PP) fiber having a fiber diameter of about 10 ⁇ m and having a basis weight of 50 gZm 2 was used as a substrate.
  • the mixture was passed through an ultraviolet irradiation device in which six 16 OWZcm mercury lamps were arranged to perform graft copolymerization.
  • the graft copolymerization was performed by irradiating ultraviolet rays from the polyester film side.
  • the nonwoven fabric is washed in hot water of 90 ° C for 3 minutes, and then the polyvalent metal It was immersed in an aqueous solution of calcium chloride (0.5% by mass) at 80 ° C. as a salt solution for 3 minutes to crosslink the acidic groups of the monomers graft-polymerized on the surface via calcium. Furthermore, after washing with water for 1 minute, it was dried with a steam cylinder at 120 ° C. to obtain a battery separator of the present invention.
  • a monomer solution having the composition shown in Table 4 was used, and a zinc acetate aqueous solution (0.5% by mass) was used as the polyvalent metal salt solution.
  • the acidic groups of the monomers graft-polymerized on the surface were crosslinked via zinc.
  • a battery separator of the present invention was obtained.
  • a monomer solution having the same composition as in Example 2 was used.
  • a battery separator was obtained in the same manner as in Example 9 except that only AA was used as the monomer and the monomer solutions shown in Table 4 were prepared. Table 4
  • the core component is polypropylene (PP) 50 Weight 0/0
  • the sheath component is polyethylene (PE) 50 wt. /.
  • PP polypropylene
  • PE polyethylene
  • a core-sheath composite fiber having a fiber diameter of 10 / zm a nonwoven fabric having a basis weight of 50 g / m 2 was obtained by a wet (papermaking) method.
  • a monomer solution having the composition shown in Table 5 was prepared, and this solution was impregnated with 200 parts by mass with respect to 100 parts by mass of the obtained nonwoven fabric, and then placed on a stainless steel plate having a thickness of 0.6 ⁇ . Further, the nonwoven fabric was covered with a 50 / zm-thick polyester film. As shown in Table 5, a monomer solution having the same composition as in Example 4 was used.
  • the mixture was passed under six 8 OW / cm metal halide lamps to perform graft copolymerization.
  • the graft copolymerization was performed by irradiating ultraviolet rays from the polyester film side.
  • Example 9 after washing the nonwoven fabric after the polymerization reaction, the acid groups of the monomers graft-polymerized on the surface are crosslinked via calcium and dried to obtain the battery for the battery of the present invention. A separator was obtained.
  • the same polypropylene nonwoven fabric as used in Example 9 was used. Also, a monomer solution having the composition shown in Table 6 was prepared, and this solution was impregnated with 200 parts by mass with respect to 100 parts by mass of the nonwoven fabric, and then placed on a stainless steel plate. The sample was covered with a polyester film, and in this state, preheating was performed by using a far-infrared heating device while maintaining the temperature at 80 ° C. or higher for 5 minutes.
  • the nonwoven fabric was irradiated with an electron beam from the polyester film side using an electron beam irradiation device (EC250-15-18OL, manufactured by Iwasaki Electric Co., Ltd.).
  • the stainless steel plate was heated electrically to keep the temperature of the nonwoven fabric at 80 ° C or higher.
  • the non-woven fabric was irradiated with an electron beam at an irradiation amount of 1 OkGy per pass, 5 passes, and a total irradiation amount of 50 kGy.
  • the temperature was kept at 80 ° C for 5 minutes using a far-infrared heating device to complete the graph polymerization.
  • the nonwoven fabric was washed with hot water at 95 ° C for 5 minutes, immersed in a magnesium chloride solution (0.5% by mass), which is a polyvalent metal salt solution, for 3 minutes, and further washed with water for 3 minutes. After drying at 100 ° C for 2 minutes, a battery separator of the present invention was obtained.
  • Example 1 to 3 in which AXQ and AA were graft-copolymerized no homopolymer was formed on the fiber surface after completion of the polymerization reaction, and the appearance was not different from that before polymerization.
  • the sulfur content of the obtained separator was 0.05% or more, and it was confirmed that sulfonic acid groups had been introduced.
  • the obtained separator has an IEC (ca 1)-IEC (obs) of at least 0.55 mmol / g and an ammonia trapping capacity of at least 0.3 lmmo 1 / g. Was found to have.
  • the separators obtained in Examples 1 and 2 had an IEC (ca 1)-IEC (obs) of 0.93 mmo 1 Zg or more, and an ammonia capture capacity of 0.6 Ommo 1 Zg or more. It was found to have a high ammonia trapping capacity.
  • the capacity retention of the battery equipped with the separator obtained in Examples 1 to 3 Is as high as 61% or more, the repetition cycle life of charge and discharge is as long as 100 cycles or more, self-discharge can be suppressed, a high capacity retention rate, and a battery with excellent durability can be obtained.
  • the batteries equipped with the separators obtained in Examples 1 and 2 have a very high capacity retention of 69% or more, and a repetitive charge / discharge cycle life of at least 125 cycles. Self-discharge was further suppressed, and a higher capacity retention ratio and a more durable battery were obtained.On the other hand, only AA was used as the monomer, and preheating was performed before UV irradiation.
  • Comparative Example 2 in which a commercial nickel-metal hydride battery was evaluated for a separator (a nonwoven polypropylene nonwoven fabric obtained by grafting only 10.7% of AA), Comparative Example 2 was compared with Examples 1 and 2.
  • the IEC (ca 1) -IEC (obs) of the separator and the ammonia trapping capacity were all small, and the capacity retention rate of the obtained battery was low, and the cycle life of charge and discharge was short.
  • Example 3 As compared with Example 3, it was found that although the ammonia trapping capacity was excellent, the cycle life of repeated charge / discharge was inferior. In Comparative Example 2, only AA was graft-polymerized, the chemical stability to the electrolyte was excellent, and the sulfonate group that was not easily oxidized was not introduced, resulting in poor battery durability. It seems to be.
  • Example 4 and 5 and Comparative Example 5 in which a nonwoven fabric composed of a core-sheath composite fiber having a core component of polypropylene (PP) and a sheath component of polyethylene (PE) was used as the nonwoven fabric, the obtained battery separator and battery were evaluated. Table 8 shows the results.
  • the capacity retention of the batteries equipped with the separators obtained in Examples 4 and 5 was as high as 70% or more, and the cycle life of charge and discharge was as long as 1150 cycles or more, and self-discharge was suppressed. As a result, a battery with high capacity retention and excellent durability was obtained.
  • Comparative Example 5 in which only AA was used as the monomer, a large amount of homopolymer was present on the fiber surface after the completion of the polymerization reaction, and it took a long time to wash and remove. Further, as compared with Examples 4 and 5, the separator has a small IEC (ca 1) -one IEC (obs) and a small ammonia trapping capacity, has a low capacity retention rate of the obtained battery, and has a repetitive charge / discharge cycle. It was found that the cycle life was short. Table 8
  • Example 9 Evaluation of battery separator and battery obtained in Example 6 using spunbonded nonwoven fabric consisting of 100% polyethylene (PE) fiber as nonwoven fabric and Example 7 using meltblown nonwoven fabric consisting of 100% polypropylene (PP) fiber Table 9 shows the results.
  • PE polyethylene
  • PP polypropylene
  • Example 6 and 7 in which AXQ and AA were graft-copolymerized no homopolymer was formed on the fiber surface after the completion of the polymerization reaction, and the appearance was not different from that before polymerization.
  • the obtained separator had a sulfur content of 0.09% or more, and it was confirmed that sulfonic acid groups had been introduced.
  • the obtained separator has an IEC (ca 1) -IEC (obs) of 0.84 mmo 1 / g or more, and a van Moyua capture capacity of 0.52 mmo 1 Zg or more. Capacity was found to have.
  • the batteries equipped with the separators obtained in Examples 6 and 7 have a high capacity retention of 68% or more, and have a long charge-discharge cycle life of at least 1190 cycles, and thus suppress self-discharge. A battery with high capacity retention and excellent durability was obtained.
  • IEC (c a1) and IEC (obs) increased as the mass fraction of the graft increased.
  • IEC (ca 1) IEC (obs) and ammonia trapping capacity ATC increase with increasing graft mass fraction up to about 10% graft mass fraction
  • IEC (obs) and ammonia trapping capacity ATC increase with increasing graft mass fraction up to about 10% graft mass fraction
  • the mass fraction of the graft is 4 to 16%, and by defining as such, IEC (ca 1) -IEC (obs) is 0.50 mmol / g or more, and the ammonia capture capacity ATC was found to be 0.30 mmol / g or more. Further, it is more preferable that the mass fraction of the graft product is 5 to 15%.
  • IEC (ca 1) IEC It was found that EC (obs) can be set to 0.60 mmo 1 / g or more, and ammonia capture capacity ATC can be set to 0.5 Ommo lZg or more.
  • the mass fraction of the graft is 7 to 13%, and thus, the IEC (ca 1)-IEC (obs) is 0.8 Ommo 1 g or more. It was found that the ammonia trapping capacity ATC can be 0.6 Ommo 1 / g or more.
  • the spunbond nonwoven fabric consisting of 100% polypropylene (PP) fiber was used as the nonwoven fabric, and the acidic groups of the monomers graft-polymerized on the surface were crosslinked via calcium or zinc in Examples 9, 10 and Comparative Example 6.
  • Table 10 shows the evaluation results of the battery separators and batteries that were used.
  • Example 9 where AXQ and AA were graft-copolymerized and the acid groups of the monomers graft-polymerized on the surface were crosslinked via calcium or zinc, a homopolymer was formed on the fiber surface after the polymerization reaction. There was no change and the appearance was the same as before polymerization.
  • the sulfur content of the obtained separator was 0.05% or more, and it was confirmed that sulfonic acid groups had been introduced.
  • the obtained separator has an IEC (ca 1) -IEC (obs) of 0.93 mmo 1 / g or more, and an ammonia capture capacity of 0.6 Ommo 1 / g or more, and has a high ammonia capture capacity. Was found to have.
  • the capacity retention of the batteries equipped with the separators obtained in Examples 9 and 10 is as high as 71% or more, and the cycle life of charge and discharge is as long as 1320 cycles or more, and self-discharge is suppressed. As a result, a battery with high capacity retention and excellent durability was obtained.
  • the IEC (ca 1) —IEC (obs), and the ammonia capturing capacity of the separator were all smaller than those of Examples 9 and 10. It was found that the battery obtained had a low capacity retention rate and a short cycle life of repeated charge and discharge.
  • Examples 9 and 10 the same monomer solutions were prepared as in Examples 1 and 2, respectively.
  • the graft copolymerization was carried out in the same manner as in Examples 1 and 2, and differs from Examples 1 and 2 in that the acidic group of the monomer graft-polymerized on the surface was crosslinked via calcium or zinc.
  • the acidic groups of the monomer polymerized in the surface on the surface were cross-linked through calcium or zinc, thereby improving the capacity retention and charge / discharge of the battery. It was found that the cycle life could be improved (see Tables 7 and 10).
  • Tables 11 and 12 show the evaluation results of the obtained battery separators and batteries.
  • the obtained separator has an IEC (ca 1)-IEC (obs) of 0.88 mmo lZg or more, and an ammonia trapping capacity of 0.55 mmo 1 Zg or more, indicating a high ammonia trapping capacity. did.
  • the capacity retention of the battery equipped with the separator obtained in Examples 11 and 12 was as high as 72% or more, and the cycle life of repeated charge and discharge was 1250 sa. As a result, a battery having a high capacity retention rate and excellent durability was obtained.
  • Example 11 the same monomer solution as in Example 4 was prepared, and graft copolymerization was performed in the same manner as in Example 4. The acid group of the monomer graft-polymerized on the surface was replaced with calcium.
  • Example 4 is different from Example 4 in that cross-linking was performed through the intermediary process.
  • Example 11 1 From the results of Example 4, it was found that the acid capacity of the monomer graft-polymerized on the surface was cross-linked through calcium to increase the battery capacity. It was found that the retention rate and the cycle life of charge / discharge cycles could be improved (see Table 8 and Table 11). Table 11
  • Table 12 shows the evaluation results of the batteries and batteries.
  • the obtained separator has an IEC (ca 1)-IEC (obs) of 0.73 mmo 1 / g or more, and a ammonia capture capacity of 0.54 mmo 1 / g or more, and a high ammonia capture capacity. was found to have.
  • the batteries equipped with the separators obtained in Examples 13 and 14 have a high capacity retention of 70% or more, and a long cycle life of charge and discharge of 1280 or more, which suppresses self-discharge. As a result, a battery having a high capacity retention rate and excellent durability was obtained.
  • a sulfone group can be introduced by graft copolymerization of AXQ and AA, and a high trapping capacity for ammonia can be obtained. It has been found that a battery separator having the following characteristics can be provided. In addition, it was found that by attaching the obtained separator, a battery having a high capacity retention rate, a long cycle life of repeated charge and discharge, and excellent performance can be provided.
  • AXQ and AA are graft-copolymerized, and the acidic group of the monomer graft-polymerized on the surface is cross-linked via a polyvalent metal, and by mounting the battery separator of the present invention having such a configuration. It was found that the capacity retention rate and the cycle life of repeated charge / discharge could be further improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Separators (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Nonwoven Fabrics (AREA)
  • Secondary Cells (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

A separator for battery in which capturing capacity of ammonia can be increased and self discharge of battery can be suppressed when the separator is employed in an alkaline secondary battery. The separator for battery is characterized in that a basic material comprising polyolefin based fibers is subjected to graft copolymerization with a monomer having a sulphonic acid group, i.e. 2-acrylamide 2-methylpropane sulphonic acid, and a monomer having a carboxyl group.

Description

電池用セパレータ及びその製造方法 技術分野  TECHNICAL FIELD The present invention relates to a battery separator and a method of manufacturing the same.
本発明は、 電池用セパレータ及ぴその製造方法に係り、 特に、 正極活物質とし て水酸化二ッケルを用いたアル力リ二次電池用セパレータに関するものである。 背景技術  The present invention relates to a battery separator and a method for producing the same, and more particularly to a separator for an alkaline secondary battery using nickel hydroxide as a positive electrode active material. Background art
従来、 ニッケルを正極とし、 カドミウム、 亜鉛、 水素吸蔵合金等を負極とした アル力リ二次電池において、 正極と負極とが短絡することを防止するとともに、 水酸化力リゥム等の電解液を保持するセパレータとして、 耐アルカリ性を有する ポリオレフィン系繊維からなる不織布等を親水化したものが用いられている。 例えば、 特開昭 5 2 - 5 0 5 5 4号公報には、 多孔性フィルムや、 ポリエチレ ン、 ポリプロピレン不織布に、 酸又は塩基と反応して塩を形成するビニルモノマ 一 (アクリル酸等) をグラフト重合した電池用セパレータが開示されている。 ま た、 特開昭 5 7— 1 4 1 8 6 2号公報には、 ポリプロピレン主体の繊維の表面に ポリエチレン樹脂を形成した不織布に、 酸又は塩基と反応して塩を形成するビニ ルモノマー (アクリル酸等) をグラフト重合した電池用セパレータが開示されて いる。 また、 特開平 5— 2 3 4 5 7 7号公報には、 反応性モノマーをグラフト重 合した不織布を、 ニッケル一金属水素化物電池用セパレータとして用いることが 開示されている。  Conventionally, in a lithium secondary battery using nickel as the positive electrode and cadmium, zinc, hydrogen storage alloy, etc. as the negative electrode, it prevents the positive electrode and the negative electrode from short-circuiting and retains the electrolytic solution such as a hydroxylic power rim. A non-woven fabric or the like made of a polyolefin-based fiber having alkali resistance is used as a separator. For example, Japanese Patent Application Laid-Open No. 52-55054 discloses a method of grafting a vinyl monomer (such as acrylic acid) which reacts with an acid or a base to form a salt on a porous film, polyethylene, or polypropylene nonwoven fabric. A polymerized battery separator is disclosed. Also, Japanese Patent Application Laid-Open No. 57-141,628 discloses a vinyl monomer (acrylic) that reacts with an acid or a base to form a salt on a nonwoven fabric having a polyethylene resin formed on the surface of a polypropylene-based fiber. An acid) is graft-polymerized. In addition, Japanese Patent Application Laid-Open No. 5-234457 discloses that a nonwoven fabric obtained by graft-polymerizing a reactive monomer is used as a separator for a nickel-metal hydride battery.
このように、 グラフト重合を用いてポリオレフイン系繊維を親水化することは 公知の技術となっている。 なお、 グラフト重合法としては、 (1 ) ポリオレフィ ン系繊維とビニルモノマーとを共に重合開始剤存在下で加熱する化学法、 (2 ) ビュルモノマーに接触させた状態でポリオレフイン系繊維に紫外線や電子線を照 射する同時照射法、 (3 ) ポリオレフイン系繊維に紫外線や電子線を照射した後 、 モノマーを接触させる前照射法などの方法が知られている。  Thus, hydrophilization of polyolefin-based fibers using graft polymerization is a known technique. The graft polymerization method includes (1) a chemical method in which the polyolefin-based fiber and the vinyl monomer are both heated in the presence of a polymerization initiator, and (2) a UV- or electron-emitting method in which the polyolefin-based fiber is brought into contact with the butyl monomer. There are known methods such as a simultaneous irradiation method of irradiating a ray, and (3) a pre-irradiation method of contacting a monomer after irradiating a polyolefin-based fiber with an ultraviolet ray or an electron beam.
また、 ポリオレフイン系繊維の親水化処理としては、 グラフト重合を用いる以 外に、 発煙硫酸、 濃硫酸、 三酸化硫黄等を用いてポリオレフイン系繊維をスルホ ンィ匕し、 スルホン酸基を導入する処理や、 フッ素ガスを用いて親水化する処理が 実用化されている。 In addition, the grafting polymerization is used as the hydrophilic treatment for the polyolefin-based fiber. In addition, a process of sulfonating polyolefin fibers using fuming sulfuric acid, concentrated sulfuric acid, sulfur trioxide or the like to introduce sulfonic acid groups, and a process of hydrophilizing using fluorine gas have been put to practical use.
ところで、 ニッケルを正極としたアルカリ二次電池においては、 充電後の容 量保持期間中に自己放電が発生し、 容量が低下することがあった。  By the way, in an alkaline secondary battery using nickel as a positive electrode, self-discharge may occur during the capacity retention period after charging, and the capacity may decrease.
Patric Leblanc, et al. , J. Electrochem. , 145 (3) 844- 847 (1998)には、 密閉 型ニッケル水素電池の自己放電の原因の一つが、 電池内に発生するアンモニアで あり、 電池内に発生するアンモニアの多くは正極活物質である水酸化ニッケルに 由来することが記載されている。 また、 ポリオレフイン系繊維にアクリル酸をグ ラフト重合したセパレータがアンモニアを捕捉する機能を有し、 アンモニア捕捉 機能を有しないポリアミド不織布等に比較して電池の自己放電を抑制することが できることが記載されている。  According to Patric Leblanc, et al., J. Electrochem., 145 (3) 844-847 (1998), one of the causes of self-discharge in sealed nickel-metal hydride batteries is ammonia generated in the batteries. It is described that most of the ammonia generated from nickel hydroxide is derived from nickel hydroxide, which is a positive electrode active material. It is also described that a separator obtained by graft polymerization of acrylic acid on polyolefin fibers has a function of trapping ammonia, and can suppress self-discharge of a battery as compared to a polyamide nonwoven fabric or the like having no ammonia trapping function. ing.
なお、 正極活物質である水酸化ニッケルからアンモニアが発生するのは、 特開 平 1 0— 1 2 2 3 6号公報等に開示されているように、 水酸ィ匕ニッケルからなる 正極活物質を製造するに際して、 二ッケルにアンモニゥムイオンを供給してアン モニゥム錯塩とし、 この状態で水酸化ニッケルを成長させるため、 正極活物質内 にアンモニゥムイオンが残留することによると思われる。  The generation of ammonia from nickel hydroxide, which is a positive electrode active material, is caused by the fact that, as disclosed in Japanese Patent Application Laid-Open No. H10-122336, a positive electrode active material comprising nickel hydroxide is used. It is considered that ammonium ions are supplied to the nickel to produce an ammonium complex salt, and nickel hydroxide is grown in this state, so that ammonium ions remain in the positive electrode active material.
しかしながら、 従来用いられているポリオレフイン系繊維にアクリル酸をダラ フト重合したセパレータゃ、 ポリオレフイン系繊維をスルホン化したセパレータ のアンモニア捕捉容量は十分とは言えず、 電池の自己放電を無視できない程度に まで抑制するには到つていないのが現状である。  However, the conventionally used separators in which acrylic acid is polymerized into acrylic polymer on polyolefin-based fibers and the separators in which polyolefin-based fibers are sulfonated have insufficient ammonia-trapping capacity, and the self-discharge of batteries cannot be ignored. At present, it has not reached the limit.
そこで、 本発明は、 アンモニアの捕捉容量を増大することができ、 水酸化ニッ ケルを正極活物質としたアルカリ二次電池に用いた場合に、 電池の自己放電をよ り抑制することができる電池用セパレータ及ぴその製造方法を提供することを第 一の目的とする。  Thus, the present invention provides a battery that can increase the capacity of capturing ammonia and, when used in an alkaline secondary battery using nickel hydroxide as a positive electrode active material, can further suppress self-discharge of the battery. It is a first object of the present invention to provide a separator and a method for manufacturing the same.
一方、 特開平 8— 2 4 1 7 0 4号公報には、 ポリオレフイン系繊維を同程度親 水化するのに必要な導入量を比較した場合、 スルホン酸基は極性が高いため、 そ の導入量はカルボキシ基の 1 / 2〜1 5程度で良く、 スルホン酸基を導入する ことにより、 不織布の無駄な質量増加を抑えつつ親水化処理を行うことができる ことが記載されている。 また、 スルホン酸基は、 カルボキシ基に比較して酸化な どの化学的作用に強く安定性に優れていることが記載されている。 On the other hand, Japanese Patent Application Laid-Open No. H08-241704 discloses that, when comparing the amount of introduction required to make polyolefin-based fibers of the same degree of hydrophilicity, the sulfonic acid group is highly polar. The amount may be about 1/2 to 15 of the carboxy group. By introducing a sulfonic acid group, the hydrophilic treatment can be performed while suppressing an unnecessary increase in the mass of the nonwoven fabric. It is described. In addition, it is described that a sulfonic acid group is more resistant to chemical actions such as oxidation than a carboxy group and has excellent stability.
このように、 親水化処理のためにスルホン酸基を導入することは好適であるが 、 発煙硫酸、 濃硫酸、 三酸化硫黄等を用いてポリオレフイン系繊維をスルホン化 し、 スルホン酸基を導入する場合には、 主鎖のポリオレフイン系繊維が劣化し、 引っ張り強度や引き裂き強度が低下するという問題点を有している。  As described above, it is preferable to introduce a sulfonic acid group for the hydrophilization treatment. However, the olefin-based fiber is sulfonated using fuming sulfuric acid, concentrated sulfuric acid, sulfur trioxide, or the like, and the sulfonic acid group is introduced. In such a case, there is a problem that the polyolefin fiber of the main chain is deteriorated, and the tensile strength and the tear strength are reduced.
そこで、 特開平 8— 2 4 1 7 0 4号公報には、 ポリオレフイン系繊維に、 p _ スチレシスノレホン酸の金属塩やビニルスルホン酸の金属塩等のスルホン酸塩誘導 体とカルボン酸誘導体とをグラフト共重合させ、 スルホン酸基とカルボキシ基の 双方を導入したセパレータが提案されている。  Therefore, Japanese Patent Application Laid-Open No. H08-241704 discloses that polyolefin-based fibers include a sulfonic acid derivative such as a metal salt of p_styresinolenoic acid or a metal salt of vinylsulfonic acid and a carboxylic acid derivative. Are graft-copolymerized to introduce both a sulfonic acid group and a carboxy group.
しかしながら、 特開平 8— 2 4 1 7 0 4母公報に記載されたようにグラフト共 重合を行っても、 実際には、 スルホン酸基とカルボキシ基の双方を導入すること は、 以下の理由により極めて困難である。  However, even if graft copolymerization is performed as described in Japanese Patent Application Laid-Open No. H08-241704, the fact that both a sulfonic acid group and a carboxy group are actually introduced is based on the following reasons. Extremely difficult.
すなわち、 アクリル酸等のカルボン酸誘導体は分子量が小さく、 ポリオレフィ ン系繊維を膨潤させ、 繊維内部に拡散してグラフト重合が進行する。 これに対し て、 P—スチレンスルホン酸の金属塩は、 カルボン酸誘導体に比較して分子量が 極めて大きいこと、 及びカルボン酸誘導体に比較して極性が極めて高いことから 、 繊維内部に拡散せず、 繊維外部でのみ重合が進行してホモポリマーを生成する ため、 p —スチレンスルホン酸の金属塩をグラフト重合することは極めて困難で ある。  That is, a carboxylic acid derivative such as acrylic acid has a small molecular weight, swells the polyolefin-based fiber, diffuses into the fiber, and the graft polymerization proceeds. On the other hand, the metal salt of P-styrenesulfonic acid has an extremely large molecular weight as compared with the carboxylic acid derivative, and has an extremely high polarity as compared with the carboxylic acid derivative, so that it does not diffuse into the fiber. It is extremely difficult to graft polymerize a metal salt of p-styrenesulfonic acid because polymerization proceeds only outside the fiber to produce a homopolymer.
また、 ビエル基を有するモノマーはァクリロイル基を有するモノマーに比較し て重合性が低いこと、 及ぴビニルスルホン酸の金属塩の極性がカルボン酸誘導体 に比較して極めて高いことから、 繊維内部に拡散せず、 繊維外部でのみ重合が進 行してホモポリマーを生成するため、 ビニルスルホン酸の金属塩をグラフト重合 することも極めて困難である。  In addition, the monomer having a beer group is less polymerizable than the monomer having an acryloyl group, and the polarity of the metal salt of vinyl sulfonic acid is extremely higher than that of the carboxylic acid derivative, so that the monomer is diffused into the fiber. Instead, the polymerization proceeds only outside the fiber to produce a homopolymer, so it is extremely difficult to graft-polymerize a metal salt of vinylsulfonic acid.
そして、 特開平 8— 2 4 1 7 0 4号公報に記載されたようにグラフト共重合を 行った場合、 繊維外部に、 除去が困難なホモポリマーが生成されるため、 重合反 応終了後の洗浄工程が複雑化する。 また、 ホモポリマーが付着した状態で、 セパ レータを電池に装着すると、 ホモポリマーが電解液に脱落して電池性能が低下す る恐れもある。 When the graft copolymerization is performed as described in JP-A-8-241704, a homopolymer that is difficult to remove is generated outside the fiber, so that after the completion of the polymerization reaction, The cleaning process is complicated. Also, if the separator is attached to the battery with the homopolymer attached, the homopolymer will fall into the electrolyte and the battery performance will decrease. There is also a risk.
なお、 スルホン酸基が導人されたか否かは、 シェニーガ法に基づいて硫黄の分 析を行うことにより明確となるが、 特開平 8— 2 4 1 7 0 4号公報には、 硫黄の 検出についての記載がなく、 実際にスルホン酸基が導入されたかどうかは定かで はない。  It should be noted that whether or not a sulfonic acid group has been introduced can be clarified by performing sulfur analysis based on the Scheniga method. However, Japanese Patent Application Laid-Open No. H08-241704 discloses a method for detecting sulfur. Is not described, and it is not clear whether a sulfonic acid group was actually introduced.
上述のように、 グラフト重合によりスルホン酸基を導入することは提案されて いるものの、 これまでグラフト重合によりスルホン酸基を導入したという確たる 実例は報告されていない。 そこで、 本発明は、 ポリオレフイン系繊維の強度を低 下させることなく、 スルホン酸基を簡易に導入する手段を提供し、 これによつて 、 軽量化と化学的安定性の向上を図ることができる電池用セパレータ及びその製 造方法を提供することを第二の目的とする。  As mentioned above, although the introduction of a sulfonic acid group by graft polymerization has been proposed, no concrete example of introducing a sulfonic acid group by graft polymerization has been reported so far. Therefore, the present invention provides a means for easily introducing a sulfonic acid group without lowering the strength of the polyolefin-based fiber, whereby the weight and the chemical stability can be improved. A second object is to provide a battery separator and a method for manufacturing the same.
また、 従来から、 酸性基を有するビュルモノマーをグラフト重合した電池用セ パレータを、 ニッケル一力ドミゥム電池やニッケル一水素電池等に使用した場合 には、 過充電時に生じる酸素により、 セパレータが劣化して短絡が発生するとい う恐れや、 酸素によるセパレータの劣化物が極板に影響を及ぼし、 電池の寿命が 短くなるという恐れがあることが報告されている。  In addition, conventionally, when a battery separator obtained by graft polymerization of an acidic group-containing monomer is used for a nickel-free nickel battery, a nickel-hydrogen battery, etc., the oxygen generated during overcharge deteriorates the separator. It is reported that a short circuit may occur, and that the separator may be deteriorated due to oxygen, which may affect the electrode plate and shorten the life of the battery.
例えば、 P. Alexander, M. Fox; J. polym. Sci. , 33, 493 (1958)には、 ポリメタクリ ル酸が、 3 7 °Cの低温でも自然酸化により分解することが報告されている。 この 報告から分かるように、 グラフト重合により導入されたポリアクリル酸などの力 ルポキシ基含有ポリマーは、 酸化等の化学的作用に対して安定でない場合がある かかる問題を解決するために、 特開 2 0 0 0— 1 0 6 1 6 2号公報には、 ポリ ォレフィン系繊維に、 カルボキシ基を有するビニルモノマーを接触させ、 酸素存 在下でグラフト重合処理を行った後、 ポリオレフイン系繊維の周囲を非通気性フ イルムで囲繞した状態で、 さらにグラフト重合処理を行う方法が開示されている 。 この方法によれば、 表面にカルボキシ基が存在せず、 X線光電子分光計で測定 した場合、 5 3 0 . 5〜5 3 1 . 5 e Vに結合エネルギーを有する構造、 すなわ ち、 表面に酸素原子又は酸素分子が結合した構造を有する電池用セパレータを得 ることができ、 得られた電池用セパレータは、 耐酸化性に優れ、 この電池用セパ レータを装着した電池は、 容量保持性に優れ、 充放電の繰り返しサイクル寿命が 長いことが記載されている。 For example, P. Alexander, M. Fox; J. polym. Sci., 33, 493 (1958) report that polymethacrylic acid is decomposed by natural oxidation even at a low temperature of 37 ° C. As can be seen from this report, a polymer containing a hydroxyl group, such as polyacrylic acid, introduced by graft polymerization may not be stable against chemical actions such as oxidation. Japanese Patent Application Publication No. 0-0161062 discloses that after a vinyl monomer having a carboxy group is brought into contact with a polyolefin-based fiber and a graft polymerization treatment is performed in the presence of oxygen, the periphery of the polyolefin-based fiber is non-woven. A method for further performing a graft polymerization treatment in a state of being surrounded by a breathable film is disclosed. According to this method, there is no carboxy group on the surface, and when measured by an X-ray photoelectron spectrometer, the structure has a binding energy of 530.5 to 51.5 eV, that is, the surface has A battery separator having a structure in which an oxygen atom or an oxygen molecule is bonded to the battery separator can be obtained. The obtained battery separator has excellent oxidation resistance. It is described that batteries equipped with a radiator have excellent capacity retention and a long cycle life of repeated charge and discharge.
しかしながら、 特開 2 0 0 0— 1 0 6 1 6 2号公報に記載された方法では、 2 段階のグラフト重合が必要になるため、 製造プ口セスが複雑であるという問題点 を有している。 そこで、 本発明は、 複雑な製造プロセスを経ることなく簡易に製 造することができ、 耐酸化性等の化学的安定性に優れ、 耐久性に優れた電池用セ パレータ及びその製造方法を提供することを第三の目的とする。  However, the method described in Japanese Patent Application Laid-Open No. 2000-106612 has a problem that the production process is complicated because two-stage graft polymerization is required. I have. Accordingly, the present invention provides a battery separator which can be easily manufactured without going through a complicated manufacturing process, has excellent chemical stability such as oxidation resistance, and has excellent durability, and a method for manufacturing the same. Is the third purpose.
また、 従来用いられているポリオレフイン系繊維にアクリル酸をグラフト重合 したセパレ一タの製造方法の一つとして、 特表平 6— 5 0 9 2 0 8号公報等に記 載されているように、 カルボキシ基を有するモノマー、 重合開始剤、 界面活性剤 等を含有するモノマー溶液を調製し、 調製したモノマー溶液をポリオレフイン系 繊維に含浸させた後、 紫外線照射してグラフト重合を行う方法が知られている。  As one of the conventional methods for producing separators obtained by graft-polymerizing acrylic acid onto polyolefin-based fibers, as disclosed in Japanese Patent Application Laid-Open No. 6-509208, etc. A method is known in which a monomer solution containing a monomer having a carboxy group, a polymerization initiator, a surfactant, and the like is prepared, and the prepared monomer solution is impregnated into polyolefin-based fibers, followed by irradiation with ultraviolet rays to perform graft polymerization. ing.
しかしながら、 この方法によりグラフト重合を行う場合、 カルボキシ基を有す るモノマーの重合が繊維外部で進行してホモポリマーが生成され、 洗浄工程が複 雑化するとともに、 グラフト物の質量分率が低下することがあった。  However, when graft polymerization is performed by this method, the polymerization of a monomer having a carboxy group proceeds outside the fiber to generate a homopolymer, complicating the washing step and reducing the mass fraction of the graft product. There was something to do.
そこで、 本発明は、 グラフト重合を繊維内部で安定して進行させることができ る電池用セパレータの製造方法を提供することを第四の目的とする。 発明の開示 本発明者は、 はじめに、 上記第一の課題を解決するべく検討を行った。  Therefore, a fourth object of the present invention is to provide a method for producing a battery separator that allows the graft polymerization to proceed stably inside the fiber. DISCLOSURE OF THE INVENTION First, the present inventors have studied to solve the first problem.
従来、 ポリオレフイン系繊維にァクリル酸をグラフト重合したセパレータゃ、 ポリオレフィン系繊維をスルホン化したセパレータにおけるアンモニアの捕捉箇 所の特定は行われていない。  Heretofore, there has been no identification of a trapping point of ammonia in a separator in which acrylic acid is graft-polymerized to polyolefin-based fibers or a separator in which polyolefin-based fibers are sulfonated.
本発明者は、 電池用セパレータの特性として実測した力リゥムイオン交換容量 I E C ( o b s ) 力 グラフト物の質量分率 (グラフト重合により付カ卩した成分 のセパレータ全体に占める質量分率) により求めた理論的イオン交換容量 I E C The inventor of the present invention has determined the theory based on the force-ream ion exchange capacity IEC (obs) force measured as a characteristic of a battery separator, and the mass fraction of the graft (the mass fraction of the components added by graft polymerization in the entire separator). Ion exchange capacity IEC
( c a 1 ) より、 低い値になることを見出した。 It was found that the value was lower than (c a 1).
なお、 本明細書における I E C ( o b s ) の測定方法、 及ぴ I E C ( c a 1 ) の算出方法については、 「実施例」 の項において詳述するが、 最終製品の電池用 セパレータにおいては、 電解液に接触する箇所の酸性基が中和されたものである ので、 I EC (o b s) 、 I EC (c a 1 ) は、 電池用セパレータのイオン交換 基を完全な酸型にした後、 該電池用セパレータを水酸ィヒカリウム水溶液に浸漬さ せた時のカリウムイオン交換容量の実測値、 理論値をそれぞれ意味している。 以 下、 説明を簡略化するため、 最終的には中和される酸性基も含めて単に 「酸性基 」 と称する。 The IEC (obs) measurement method and the IEC (ca 1) The details of the method of calculating the IEC (obs) will be described in the section of “Examples” .However, in the final product battery separator, the acidic groups at the places that come into contact with the electrolyte are neutralized. ), IEC (ca 1) is the measured value of the potassium ion exchange capacity when the battery separator is immersed in an aqueous solution of potassium hydroxide after the ion exchange group of the battery separator is completely acidified. Each means a theoretical value. Hereinafter, for simplicity of explanation, the term "acidic group" including the acid group that is finally neutralized is simply referred to as "acidic group".
実測したカリウムイオン交換容量 I EC (o b s) が理論的イオン交換容量 I EC (c a 1) より低い値になるということは、 水酸化カリウム水溶液に浸漬さ せた時に、 酸性基のすべてが中和されて塩になるのではなく、 中和されずに残る 酸,性基が存在することを意味する。 そして、 本発明者は、 中和されずに残る酸性 基がアンモニアを捕捉すると考えて検討を行つた結果、 理論的ィオン交換容量 I EC (c a 1 ) と実測したカリウムイオン交換容量 I EC (o b s) との差 I E C (c a 1 ) - I EC (o b s) と、 アンモニア捕捉容量との間には相関関係が あり、 I EC (c a 1 ) - I EC (o b s) が大きくなる程、 アンモニア捕捉容 量が増大することを見出した。  The fact that the measured potassium ion exchange capacity I EC (obs) is lower than the theoretical ion exchange capacity I EC (ca 1) means that all the acidic groups are neutralized when immersed in an aqueous solution of potassium hydroxide. Rather than being converted to a salt, it means that there is an acid and a functional group that remain without being neutralized. The present inventor considered that acidic groups remaining without being neutralized capture ammonia, and as a result, the theoretical ion exchange capacity I EC (ca 1) and the actually measured potassium ion exchange capacity I EC (obs There is a correlation between IEC (ca 1)-IEC (obs) and ammonia trapping capacity, and as IEC (ca 1)-IEC (obs) increases, ammonia trapping capacity increases. The amount was found to increase.
さらに、 本発明者は、 ポリオレフイン系繊維の酸性基のうち、 水酸化カリウム 水溶液により中和される基と中和されない基が存在するのは、 ポリオレフイン系 繊維内における酸性基の分布に関係していると考えた。 つまり、 繊維の表面及び 表面近傍に存在する酸性基は水酸化力リゥム水溶液に接触して中和されるのに対 し、 表面近傍よりも内部に存在する酸性基は水酸化力リゥム水溶液により中和さ れず、 アンモニアを捕捉すると考えた。 そして、 繊維内部に、 水酸化カリウム水 溶液により中和されない酸性基を多数形成することにより、 ァンモニァ捕捉容量 を増大することができることに思い到り、 以上の点に着目して検討を行った結果 、 上記第一の課題を解決するとともに、 上記第二の課題をも同時に解決すること が可能な本発明の第 1の電池用セパレータを発明するに到った。  Further, the present inventor has found that among the acidic groups of the polyolefin-based fibers, the groups that are neutralized by the aqueous potassium hydroxide solution and the groups that are not neutralized are related to the distribution of the acidic groups in the polyolefin-based fibers. I thought you were. In other words, the acidic groups present on the surface and near the surface of the fiber are neutralized by contact with the aqueous hydrating solution, while the acidic groups existing inside the surface and near the surface are neutralized by the aqueous hydrating solution. It was not summed up and thought to capture ammonia. We realized that the formation of a large number of acidic groups in the fiber that were not neutralized by aqueous potassium hydroxide solution could increase the capacity of trapping ammonia.As a result, we focused on the above points and conducted a study. Thus, the present inventors have invented a first battery separator of the present invention capable of solving the first problem and simultaneously solving the second problem.
本発明の第 1の電池用セパレータは、 ポリオレフィン系繊維からなる基材に、 スルホン酸基を有するモノマーである 2—ァクリルアミ ド 2—メチルプロパンス ルホン酸と、 カルボキシ基を有するモノマーとがグラフト共重合されていること を特徴とする。 ここで、 前記カルボキシ基を有するモノマーとしては、 アクリル 酸若しくはメタクリル酸が好適である。 以下、 2—アクリルアミ ド 2—メチルプ 口パンスルホン酸、 アクリル酸を、 それぞれ 「AXQ」 、 「AA」 と略すことが ある。 In the first battery separator of the present invention, 2-acrylamide 2-methylpropanesulfonic acid, which is a monomer having a sulfonic acid group, and a monomer having a carboxy group are graft-copolymerized on a substrate made of a polyolefin fiber. Polymerized It is characterized by. Here, acrylic acid or methacrylic acid is preferable as the monomer having a carboxy group. Hereinafter, 2-acrylamide 2-methylpropanesulfonic acid and acrylic acid may be abbreviated as “AXQ” and “AA”, respectively.
本発明者は、 スルホン酸基を有するモノマーとして AXQを用い、 AXQと力 ルポキシ基を有するモノマーとをグラフト共重合させることにより、 ポリオレフ ィン系繊維の強度を低下させることなく、 ポリオレフイン系繊維内部に簡易にス ルホン酸基を導入することができるとともに、 ァンモユア捕捉容量を増大するこ とができることを見出した。  The present inventor uses AXQ as a monomer having a sulfonic acid group, and graft copolymerizes AXQ with a monomer having a lipoxy group, thereby reducing the strength of the polyolefin-based fiber without lowering the strength of the polyolefin-based fiber. It has been found that a sulfonate group can be easily introduced into the sample, and that the capacity for trapping phanmoyure can be increased.
スルホン酸基を有するビュルモノマーとしては、 AXQの他に、 p—スチレン スルホン酸ナトリウム、 ビニルスルホン酸ナトリウム、 ァリルスルホン酸ナトリ ゥム、 メタリルスルホン酸ナトリウム、 3一スルホプロピルァクリ レート (カリ ゥム塩) 、 3—スルホプロピルメタタリレート (カリウム塩) 等があるが、 本発 明者は、 (1) 重合性が高いこと、 (2) ポリオレフイン系繊維の少なくとも表 面近傍の内部に拡散進入させるために、 極性が極端に高くないこと、 (3) 強ァ ルカリ性の電解液中で安定であること、 ( 4 ) モノマー溶液が安定であることを 満たすモノマーとして、 AXQが最適であることを見出した。  Examples of the vinyl monomer having a sulfonic acid group include, in addition to AXQ, sodium p-styrene sulfonate, sodium vinyl sulfonate, sodium arylsulfonate, sodium methallylsulfonate, 3-sulfopropyl acrylate (calidium) Salt), 3-sulfopropylmetharylate (potassium salt), etc., but the present inventor (1) has high polymerizability, and (2) diffuses into polyolefin-based fibers at least near the surface. (3) Stable in strong alkaline electrolyte, (4) AXQ is the best monomer to meet the requirements for stable monomer solution Was found.
(1) ビュルモノマーの重合性について考えた場合、 ビュル基 (CH2=CH2) ゃァリル基 (CH2 = CH— CH2) を有するモノマーの重合性は、 アタリロイル 基 (CH2=CH— CO) を有するモノマーに比較して低いため、 アタリロイル 基を有する AXQの重合性は、 スチレンスルホン酸ナトリゥムゃビニルスルホン 酸ナトリゥム、 ァリルスルホン酸の重合性に比較して高いことになる。 (1) When considering the polymerizable Bulle monomers, polymerizable monomers having an Bulle group (CH 2 = CH 2) Ya Ariru group (CH 2 = CH- CH 2), the Atariroiru group (CH 2 = CH- The polymerizability of AXQ having an atariloyl group is higher than that of sodium styrenesulfonate / sodium vinylsulfonate and arylsulfonate because it is lower than that of monomers having CO).
一方、 (2) ポリオレフイン系繊維の内部に対する拡散進入性を考えた場合、 スルホン酸基を有するモノマーは、 疎水性のポリオレフインより極性が大きく、 親水性が高いので、 もともと拡散進入し難い。 ここで、 スルホン酸基  On the other hand, (2) when considering the diffusion intrusion into the inside of the polyolefin fiber, the monomer having a sulfonic acid group is originally difficult to infiltrate because it has higher polarity and higher hydrophilicity than hydrophobic polyolefin. Where the sulfonic acid group
(一 S03H) とスルホン酸ナトリウム基 (-S03"Na+) とを比較すると、 後者の 方が、 極性と分子占有体積がいずれも大きく、 拡散進入には一層不利となってい る。 したがって、 スルホン酸基を有する AXQは、 p—スチレンスルホン酸ナト リゥムゃビニルスルホン酸ナトリゥム等のスルホン酸ナトリゥム基を有するモノ マーに比較して、 ポリオレフイン系繊維の内部に拡散進入しやすいことになる また、 (3 ) 電池中の強アルカリ電解液中での安定性を考えた場合、 3—スル ホプロピルアタリレート (カリウム塩) や 3—スルホプロピルメタタリレート ( カリウム塩) のようなエステル基を持つモノマーをグラフト重合したものは、 強 アルカリ電解液中で加水分解され、 スルホン酸基が脱落してしまうので好ましく ない。 Comparing the (one S0 3 H) and sodium sulfonate group (-S0 3 "Na +), the latter is greater both polar and molecular occupied volume, the diffusion penetration that has become increasingly disadvantageous. Therefore, AXQ having a sulfonic acid group is a monomer having a sulfonic acid sodium group such as sodium p-styrenesulfonic acid and sodium vinylsulfonic acid. (3) Considering stability in a strong alkaline electrolyte in a battery, 3-sulfopropyl atalylate (potassium) (Salt) and 3-sulfopropyl methacrylate (potassium salt) graft polymerized with a monomer having an ester group is not preferable because it is hydrolyzed in a strong alkaline electrolyte and the sulfonic acid group is dropped. .
さらに、 (4 ) モノマー溶液の安定性を考えた場合、 p—スチレンスルホン酸 ナトリゥムはァクリル酸存在下で p—スチレンスルホン酸となるが、 この p—ス チレンスルホン酸は自然重合する性質を有するため、 モノマー溶液が不安定にな る。 またビニルスルホン酸ナトリウムも同様の挙動を示すため、 カルボキシ基の ような酸性基を有するモノマーとグラフ 1、共重合する際の取り扱!/、性に問題があ る。  (4) Considering the stability of the monomer solution, sodium p-styrenesulfonic acid becomes p-styrenesulfonic acid in the presence of acrylic acid, and this p-styrenesulfonic acid has the property of spontaneously polymerizing. As a result, the monomer solution becomes unstable. In addition, sodium vinyl sulfonate shows the same behavior, so it can be used for copolymerization with monomers having acidic groups such as carboxy groups, as shown in Graph 1! / There is a problem with gender.
以上の理由から、 特開平 8— 2 4 1 7 0 4号公報に開示されている p—スチレ ンスルホン酸ゃビニルスルホン酸の金属塩を使用する場合にはスルホン酸基を持 つモノマーはグラフト重合できないが、 A X Qを使用する場合には、 上記の要件 を満たしており、 ポリオレフィン系繊維内部に簡易にスルホン酸基を導入するこ とができ、 硫黄含有率を 0 . 0 5 %以上とすることができることを見出した。 な お、 本明細謇における硫黄含有率の測定方法については、 「実施例」 の項におい て詳述する。  For the above reasons, when a metal salt of p-styrene sulfonic acid / vinyl sulfonic acid disclosed in JP-A-8-241704 is used, a monomer having a sulfonic acid group is graft-polymerized. However, when AXQ is used, the above requirements must be satisfied, sulfonic acid groups can be easily introduced into the polyolefin fiber, and the sulfur content must be 0.05% or more. I found that I can do it. The method for measuring the sulfur content in the present specification will be described in detail in the section of “Examples”.
以上説明したように、 A X Qを用いることにより、 ポリオレフイン系繊維内部 に簡易にスルホン酸基を導入することができるが、 A X Qは、 A A等のカルボキ シ基を有するモノマーに比較して分子量が大きく、 極性が大きいため、 カルボキ シ基を有するモノマー程は繊維内部に拡散することができない。 したがって、 ポ リオレフイン系繊維からなる基材に、 A X Qと、 カルボキシ基を有するモノマー とをグラフト共重合してなる本発明の第 1の電池用セパレータにおいては、 ポリ ォレフィン系繊維の表面及び表面近傍には、 A X Qと、 カルボキシ基を有するモ ノマーとがグラフト共重合され、 表面近傍より内部にはカルボキシ基を有するモ ノマーのみがグラフト重合された構造になっていると思われる。 つまり、 酸性基 に着目すれば、 ポリオレフイン系繊維の表面及び表面近傍にはスルホン酸基と力 ルポキシ基の双方が導入され、 表面近傍より内部にはカルボキシ基のみが導入さ れた構造になっていると思われる。 As described above, by using AXQ, a sulfonic acid group can be easily introduced into the polyolefin-based fiber.However, AXQ has a larger molecular weight than a monomer having a carboxyl group such as AA. Due to its high polarity, it cannot diffuse into the fiber as much as a monomer having a carboxyl group. Therefore, in the first battery separator of the present invention in which AXQ and a monomer having a carboxy group are graft-copolymerized on a substrate made of a polyolefin-based fiber, the surface and the vicinity of the surface of the polyolefin-based fiber are provided. It seems that AXQ has a structure in which AXQ and a monomer having a carboxy group are graft-copolymerized, and only the monomer having a carboxy group is graft-polymerized from near the surface to the inside. In other words, acidic groups It is considered that both the sulfonic acid group and the sulfonic acid group are introduced on the surface and near the surface of the polyolefin-based fiber, and that only the carboxy group is introduced inside from the vicinity of the surface. .
このような構造を有する本発明の第 1の電池用セパレータに水酸化力リゥム水 溶液を接触させた場合、 繊維の表面及び表面近傍に導入されたスルホン酸基によ り、 表面近傍の膨潤が大きくなり、 カリゥムイオンはそれより内部への拡散が抑 制され、 カルボキシ基のみが導入された領域については水酸化カリゥム水溶液に よる酸性基の中和が進行しない。 したがって、 本発明の第 1の電池用セパレータ によれば、 水酸化カリウム水溶液により中和されない酸性基 (カルボキシ基) を 繊維内に多数形成することができ、 アンモニアの捕捉容量を増大することができ る。  In the case of contacting the first separator for a battery of the present invention having such a structure with a hydrating aqueous solution, the swelling near the surface is caused by sulfonic acid groups introduced on the surface and near the surface of the fiber. As a result, the diffusion of the potassium ions into the interior is suppressed, and neutralization of the acidic groups by the aqueous solution of potassium hydroxide does not proceed in the region into which only the carboxy group has been introduced. Therefore, according to the first battery separator of the present invention, a large number of acidic groups (carboxy groups) that are not neutralized by the aqueous potassium hydroxide solution can be formed in the fiber, and the capacity for capturing ammonia can be increased. You.
また、 本発明の第 1の電池用セパレータにおいて、 AXQと、 カルボキシ基を 有するモノマーとを合わせたグラフト物の質量分率と、 I EC (c a 1 ) 一 I E C (o b s) と、 アンモニア捕捉容量との間には相関関係があること、 及び、 I EC (c a 1 ) 一 I EC (o b s) とアンモニア捕捉容量はグラフト物の質量分 率が約 10%の時に最大になることを見出した。 したがって、 グラフト物の質量 分率をこの値に近づける程、 I EC (c a 1 ) — I EC (o b s) 及ぴアンモニ ァの捕捉容量を飛躍的に増大することができる。  Further, in the first battery separator of the present invention, the mass fraction of the grafted product of AXQ and a monomer having a carboxy group, IEC (ca 1)-IEC (obs), and ammonia trapping capacity It has been found that there is a correlation between the two, and that IEC (ca 1) -IEC (obs) and ammonia capture capacity are maximized when the mass fraction of the graft is about 10%. Therefore, the closer the mass fraction of the graft is to this value, the more dramatically the IEC (c a 1) —IEC (obs) and the capture capacity of the ammonia can be dramatically increased.
具体的には、 グラフト物の質量分率を 4〜16%とすることにより、 I EC ( c a 1 ) — I EC (o b s) を 0. 50 mm o 1 /g以上、 了ンモユア捕捉容量 を 0. 3 Ommo 1 g以上とすることができることを見出した。 また、 グラフ ト物の質量分率を 5〜1 5%とすることが好ましく、 このように規定することに より、 I EC (c a 1 ) — I EC (o b s) を 0. 6 Ommo 1 Z g以上、 アン モニァ捕捉容量を 0. 5 Ommo 1 / g以上とすることができることを見出した 。 また、 グラフト物の質量分率を 7〜1 3%とすることがより好ましく、 このよ うに規定することにより、 I EC (c a 1 ) - I EC (o b s) を 0. 80 mm o l/g以上、 アンモニア捕捉容量を 0. 6 Ommo 1 /g以上とすることがで きることを見出した。  Specifically, by setting the mass fraction of the grafted product to 4 to 16%, the IEC (ca 1) —IEC (obs) becomes 0.50 mmo 1 / g or more, and 3 Ommo 1g or more can be found. In addition, it is preferable that the mass fraction of the grafted material is 5 to 15%. By defining as such, IEC (ca 1) —IEC (obs) is 0.6 Ommo 1 Z g As described above, it has been found that the ammonia capturing capacity can be set to 0.5 Ommo 1 / g or more. Further, it is more preferable that the mass fraction of the graft product is 7 to 13%, and by defining as such, the IEC (ca 1)-IEC (obs) is 0.80 mmol / g or more. However, they have found that the ammonia capturing capacity can be 0.6 Ommo 1 / g or more.
なお、 本発明者が、 従来用いられているポリオレフイン系繊維にアクリル酸を グラフト重合したセパレータ、 及ぴポリオレフイン系繊維をスルホン化したセパ レータのアンモニア捕捉容量を測定したところ、 前者は約 0. 40mmo 1/g 、 後者は約 0. 3 0mmo l Zgであり、 カルボキシ基のみのグラフト重合やス ルホン化のみを利用した従来のセパレータの製造技術では、 アンモニア捕捉容量 0. 5 Ommo 1 g以上は達成できないことになる。 また、 グラフト物の質量 分率と、 I EC (c a 1 ) - I EC (o b s) と、 アンモニア捕捉容量との間の 相関関係、 及び本明細書におけるアンモニア捕捉容量の測定方法については、 「 実施例」 の項において詳述する。 In addition, the present inventor added acrylic acid to the conventionally used polyolefin-based fiber. When the ammonia trapping capacity of the graft-polymerized separator and the separator in which the polyolefin-based fiber was sulfonated was measured, the former was about 0.40 mmo 1 / g, the latter was about 0.30 mmol Zg, and only the carboxy group was found. Conventional separator manufacturing technology using only graft polymerization and sulfonation of ammonia cannot achieve an ammonia capture capacity of 0.5 Ommo 1 g or more. For the correlation between the mass fraction of the graft, the IEC (ca 1)-IEC (obs), and the ammonia trapping capacity, and the method of measuring the ammonia trapping capacity in this specification, refer to Examples).
以上説明したように、 本発明の第 1の電池用セパレータによれば、 AXQと、 カルボキシ基を有するモノマーとがグラフト共重合されているので、 アンモニア 捕捉容量を飛躍的に増大することができる。 そのため、 本発明の第 1の電池用セ パレータは、 正極活物質として水酸化ニッケルを用いたアルカリ二次電池用とし て特に好適である。 また、 本発明の第 1の電池用セパレータによれば、 従来より も電池の自己放電を抑制することができ、 充電後の容量保持率の向上を図ること ができる。  As described above, according to the first battery separator of the present invention, since AXQ and the monomer having a carboxy group are graft-copolymerized, the ammonia capturing capacity can be significantly increased. Therefore, the first battery separator of the present invention is particularly suitable for an alkaline secondary battery using nickel hydroxide as a positive electrode active material. Further, according to the first battery separator of the present invention, self-discharge of the battery can be suppressed more than before, and the capacity retention after charging can be improved.
また、 上述したように、 本発明の第 1の電池用セパレータによれば、 ポリオレ フィン系繊維の強度を低下させることなく、 ポリオレフィン系繊維の表面及び表 面近傍にスルホン酸基を簡易に導入することができるので、 従来と同程度親水化 するのに必要なグラフト物の質量分率を低減することができ、 軽量化を図ること ができることを見出した。 また、 電解液に接する繊維の表面及び表面近傍には、 化学的安定性に優れ、 酸化されにくいスルホン酸基が導入されているため、 電池 に装着した場合に、 電池の充放電の繰り返しサイクル寿命を長くすることができ 、 電池の耐久性を向上することができることを見出した。  Further, as described above, according to the first battery separator of the present invention, the sulfonic acid group is easily introduced into the surface of the polyolefin-based fiber and near the surface thereof without lowering the strength of the polyolefin-based fiber. Thus, it has been found that the mass fraction of the graft necessary for hydrophilization can be reduced to the same extent as in the prior art, and the weight can be reduced. In addition, since the sulfonic acid group, which has excellent chemical stability and is hardly oxidized, is introduced on the surface and near the surface of the fiber that comes into contact with the electrolyte, when the battery is attached to a battery, the cycle life of repeated charge and discharge It was found that the battery can be lengthened and the durability of the battery can be improved.
さらに、 本発明者は、 ポリオレフイン系繊維の少なくとも表面にグラフト重合 された少なくとも 1種のモノマーの酸性基を、 多価金属を介して架橋することに より、 上記第三の課題を解決することができることを見出し、 本発明の第 2の電 池用セパレータを発明するに到った。  Further, the present inventor has solved the third object by crosslinking an acidic group of at least one monomer graft-polymerized on at least the surface of the polyolefin-based fiber via a polyvalent metal. Having found that it is possible, they have invented the second battery separator of the present invention.
本発明の第 2の電池用セパレータは、 ポリオレフイン系繊維からなる基材に、 スルホン酸基を有するモノマーである 2—ァクリルアミド 2—メチルプロパンス ルホン酸と、 カルボキシ基を有するモノマーとがグラフト共重合されていると共 に、 少なくとも表面にグラフト重合された少なくとも 1種のモノマーの酸性基が 多価金属を介して架橋されていることを特徴とする。 ここで、 前記多価金属とし ては、 カルシウム、 マグネシウム、 バリウム、 アルミニウム、 亜鉛、 チタン、 ジ ルコユウム、 錫から選ばれる少なくとも 1種であることが好ましい。 The second battery separator according to the present invention is characterized in that a base material composed of polyolefin fibers is provided with 2-acrylamide 2-methylpropane, a monomer having a sulfonic acid group. It is characterized in that sulfonic acid and a monomer having a carboxy group are graft-copolymerized, and at least the acidic group of at least one type of monomer graft-polymerized on the surface is crosslinked via a polyvalent metal. And Here, it is preferable that the polyvalent metal is at least one selected from calcium, magnesium, barium, aluminum, zinc, titanium, silica, and tin.
この本発明の第 2の電池用セパレータは、 ポリオレフイン系繊維からなる基材 に、 A X Qと、 カルボキシ基を有するモノマーとがグラフト共重合されたもので あるので、 本発明の第 2の電池用セパレータによれば、 本発明の第 1の電池用セ パレータと同様の効果を得ることができる。  Since the second battery separator of the present invention is obtained by graft-copolymerizing AXQ and a monomer having a carboxy group onto a base material composed of polyolefin-based fibers, the second battery separator of the present invention According to this, the same effects as those of the first battery separator of the present invention can be obtained.
また、 本発明の第 2の電池用セパレータによれば、 ポリオレフイン系繊維の少 なくとも表面にグラフト重合された少なくとも 1種のモノマーの酸性基を、 多価 金属を介して架橋する構成としているので、 さらなる効果を得ることが可能であ る。  Further, according to the second battery separator of the present invention, at least one acidic group graft-polymerized on the surface of the polyolefin-based fiber is crosslinked via a polyvalent metal to form an acidic group. However, further effects can be obtained.
本発明者は、 ポリオレフイン系繊維の少なくとも表面にグラフト重合された少 なくとも 1種のモノマーの酸性基を架橋することにより、 耐酸化性、 耐熱性等の 化学的安定性を向上することができ、 耐久性に優れた電池用セパレータを提供す ることができることを見出した。 また、 酸性基を、 有機物を介して架橋する場合 に比較して、 無機物である多価金属を介して架橋することにより、 化学的安定性 を著しく向上することができることを見出した。 このように、 本発明の第 2の電 池用セパレータは化学的安定性に優れたものであるので、 本発明の第 2の電池用 セパレータを電池に装着した場合に、 電池の充放電の繰り返しサイクル寿命を長 くすることができ、 電池の耐久性を向上することができる。  The present inventors can improve the chemical stability such as oxidation resistance and heat resistance by crosslinking the acidic group of at least one kind of monomer graft-polymerized on at least the surface of the polyolefin-based fiber. It has been found that a battery separator having excellent durability can be provided. In addition, it has been found that chemical stability can be significantly improved by crosslinking via an inorganic polyvalent metal, as compared with the case where an acidic group is crosslinked via an organic substance. As described above, since the second battery separator of the present invention is excellent in chemical stability, when the second battery separator of the present invention is mounted on a battery, repeated charging and discharging of the battery is performed. The cycle life can be extended, and the durability of the battery can be improved.
なお、 上述したように、 モノマーとして、 A X Qとカルボキシ基を有するモノ マーとを用いて得られる電池用セパレータでは、 ポリオレフイン系繊維の表面に は、 A X Qと、 カルボキシ基を有するモノマーとがグラフト共重合された構造に なっているので、 「少なくとも表面に重合された少なくとも 1種のモノマーの酸 性基を架橋する」 ということは、 「少なくとも表面に重合された、 A X Qと、 力 ルポキシ基を有するモノマーのうち、 少なくとも一方のモノマーの酸性基を架橋 する」 ことを意味している。 また、 本発明者は、 グラフト重合後の基材を多価金属塩の溶液 (多価金属塩溶 液) に浸漬することにより、 少なくとも表面にグラフト重合された少なくとも 1 種のモノマーの酸性基を、 多価金属を介して架橋することができ、 グラフト重合 のプロセスを変えることなく、 本発明の第 2の電池用セパレータを簡易に製造す ることができることを見出した。 As described above, in the battery separator obtained by using AXQ and a monomer having a carboxy group as the monomer, AXQ and the monomer having a carboxy group are graft-copolymerized on the surface of the polyolefin-based fiber. `` Crosslink the acidic group of at least one monomer polymerized on the surface '' means `` monomer having at least AXQ and hydroxyl group polymerized on the surface. Of these, at least one of the monomers cross-links the acidic group. " In addition, the present inventors immerse the base material after the graft polymerization in a polyvalent metal salt solution (polyvalent metal salt solution) to reduce the acid groups of at least one type of monomer graft-polymerized on at least the surface. It has been found that crosslinking can be carried out via a polyvalent metal, and the second battery separator of the present invention can be easily produced without changing the graft polymerization process.
したがって、 本発明によれば、 複雑な製造プロセスを経ることなく簡易に製造 することができ、 耐酸化性等の化学的安定性に優れ、 耐久性に優れた電池用セパ レータを提供することができる。  Therefore, according to the present invention, it is possible to provide a battery separator which can be easily manufactured without going through a complicated manufacturing process, has excellent chemical stability such as oxidation resistance, and has excellent durability. it can.
以上の本発明の第 1、 第 2の電池用セパレータは、 以下に説明する本発明の電 池用セパレータの製造方法により製造することができる。 なお、 本発明の電池用 セパレータの製造方法は、 本発明の第 1、 第 2の電池用セパレータを製造する方 法として好適であるとともに、 上記第四の課題を解決するものである。  The above-described first and second battery separators of the present invention can be manufactured by the method for manufacturing a battery separator of the present invention described below. The method for producing a battery separator of the present invention is suitable as a method for producing the first and second battery separators of the present invention, and solves the fourth problem.
本発明の電池用セパレータの製造方法は、 以上の本発明の第 1、 第 2の電池用 セパレータの製造方法であって、 ポリオレフイン系繊維からなる基材に、 2—ァ クリルアミド 2—メチルプロパンスルホン酸と、 カルボキシ基を有するモノマー とを含有するモノマー溶液を含浸させるモノマー溶液含浸工程と、 前記モノマー 溶液を含浸させた前記基材を、 該基材を保持する保持材とポリエステルフィルム とに挟持させた状態で、 前記ポリエステルフィルム側から前記基材に高工ネルギ 一線を照射する高エネルギー線照射工程とを有することを特徴とする。  The method for producing a battery separator according to the present invention is the first and second method for producing a battery separator according to the present invention described above, wherein 2-acrylamide 2-methylpropanesulfone is provided on a substrate made of polyolefin fiber. A monomer solution impregnating step of impregnating a monomer solution containing an acid and a monomer having a carboxy group; and holding the base material impregnated with the monomer solution between a holding material holding the base material and a polyester film. A high energy beam irradiation step of irradiating the base material with high energy energy from the polyester film side in a state where the polyester film is in a closed state.
なお、 高エネルギー線としては、 紫外線、 C o 6 0よりの γ線、 電子線 線) 等を例示することができる。 これらの中でも特に、 連続的な処理が可能な紫外線 や電子線が好適である。  Examples of high energy rays include ultraviolet rays, γ rays from Co 60, and electron beams. Of these, ultraviolet rays and electron beams that can be continuously processed are particularly preferable.
また、 一般に、 ポリオレフイン系繊維等の疎水性繊維に、 カルボキシ基ゃスル ホン酸基等の酸性基を有する親水性モノマーを含浸させた後、 高エネルギー線を 照射してグラフト重合させる場合、 モノマーの極性がポリオレフイン系繊維に比 ベて大きすぎるため、 繊維内部への拡散が起こりにくく、 繊維内部に拡散する前 に重合反応が進行してホモポリマーが生成し、 グラフト重合が起こりにくいこと が知られている。  In general, when a hydrophilic fiber having an acidic group such as a carboxy group or a sulfonate group is impregnated into a hydrophobic fiber such as a polyolefin fiber, and then grafted with high-energy rays, graft polymerization is performed. It is known that the polarity is too large compared to the polyolefin-based fiber, so that it does not easily diffuse into the fiber, and the polymerization reaction progresses before diffusing into the fiber to generate a homopolymer, which makes it difficult for graft polymerization to occur. ing.
本発明者は、 この問題を解決するためには、 モノマー溶液と基材の温度をでき るだけ高くして、 繊維内部へのモノマーの拡散を促進することが有効であること 、 及び、 高エネルギー線の単位時間当りの照射エネルギーを低くして、 重合速度 を抑え、 重合時間をできるだけ長くすることが有効であると考えた。 In order to solve this problem, the present inventor has set the temperature of the monomer solution and the base material. As high as possible to promote the diffusion of monomers into the interior of the fiber, and reduce the irradiation energy per unit time of high-energy radiation to reduce the polymerization rate and extend the polymerization time as much as possible. I thought it would be effective.
力かる点に着目して検討を行った結果、 高エネルギー線照射工程において、 ス テンレス板ゃガラス板などの保持材と、 ポリエステルフィルムとに挟持させた状 態で、 基材に対してポリエステルフィルム側から高エネルギー線を照射してダラ フト共重合を進行させることにより、 高エネルギー線の一部をポリエステルフィ ルムにより遮蔽し、 高エネルギー線強度を低く抑えることができることを見出し た。 また、 その結果、 重合速度を遅くして、 繊維外部でのホモポリマーの生成を 抑制し、 繊維内部にモノマーを均一に拡散させ、 グラフト共重合を繊維内部で安 定して進行させることができることを見出した。  As a result of studying focusing on the points of strength, in the high energy beam irradiation process, the polyester film was sandwiched between the base material and the holding material such as stainless steel plate / glass plate and the polyester film. By irradiating high-energy rays from the side to advance daraft copolymerization, it was found that part of the high-energy rays could be shielded by the polyester film, and the high-energy ray intensity could be kept low. In addition, as a result, the polymerization rate can be reduced to suppress the formation of homopolymer outside the fiber, the monomer can be uniformly diffused inside the fiber, and the graft copolymerization can proceed stably inside the fiber. Was found.
さらに、 ステンレス板ゃガラス板などの保持材とポリエステルフィルムとに挟 持させた状態で、 モノマー溶液を含浸させた基材に高エネルギー線を照射するこ とにより、 以下の利点も得られることを見出した。 すなわち、 重合開始と共に生 じる重合熱によって基材は最大 1 0 o °c程度まで昇温するが、 上述のようにして 重合反応を進行させることにより、 基材温度を保持し、 モノマーの繊維内部への 拡散を促進することができると共に、 熱によるモノマー溶液の蒸発損失を抑制す ることができることを見出した。  Furthermore, the following advantages can be obtained by irradiating the base material impregnated with the monomer solution with high-energy rays while holding it between a holding material such as a stainless steel plate or a glass plate and a polyester film. I found it. That is, the base material is heated to a maximum of about 10 ° C. by the heat of polymerization generated upon the initiation of polymerization, but the base material temperature is maintained by promoting the polymerization reaction as described above, and the monomer fiber is heated. It has been found that diffusion into the interior can be promoted and evaporation loss of the monomer solution due to heat can be suppressed.
また、 上述のように、 高エネルギー線照射により重合を開始させる場合におい ては、 モノマーが繊維内部に拡散しない限り、 グラフト重合が進行しないことに なる。  Further, as described above, in the case where polymerization is started by irradiation with high-energy radiation, graft polymerization does not proceed unless the monomer is diffused into the fiber.
高エネルギー線を照射するグラフト重合法としては、 「従来の技術」 の項にお いて述べたように、 前照射法や同時照射法が知られている。 前照射法においては 、 高エネルギー線を照射することにより、 基材に重合の活性点を形成した後、 モ ノマーに接触させて重合を行うため、 モノマーの繊維内部への拡散と重合反応と が同時に進行する。 また、 同時照射法においても、 高エネルギー線の照射とモノ マーの接触とを同時に行うため、 モノマーの繊維内部への拡散と重合反応とが同 時に進行する。 このように、 従来は、 モノマーの繊維内部への拡散と重合反応と を同時に進行させることが一般的である。 モノマーの拡散は、 温度が高く、 時間が長い程進行するが、 本発明者は、 電 池用セパレータを連続的に製造する場合、 基材に高エネルギー線を照射する時間 が 1〜1 0秒間程度と極めて短いため、 モノマーの繊維内部への拡散と重合反応 とを'同時に進行させると、 モノマーの拡散が十分に進行しないまま重合反応が終 了してしまうと考えた。 そして、 高エネルギー線照射前 (重合開始前) に、 モノ マーをあらかじめ繊維内部に拡散させておくことが好ましいと考えた。 なお、 こ れまで、 あらかじめモノマーを拡散させてから、 高エネルギー線を照射して重合 を行う方法については、 ほとんど報告されていない。 As described in the section of “Prior Art”, a pre-irradiation method or a simultaneous irradiation method is known as a graft polymerization method for irradiating high energy rays. In the pre-irradiation method, high-energy rays are irradiated to form active sites for polymerization on the base material, and then the polymer is brought into contact with the monomer to perform polymerization, so that the diffusion of the monomer into the fiber and the polymerization reaction are reduced. Progress at the same time. Also in the simultaneous irradiation method, the irradiation of the high-energy beam and the contact of the monomer are performed simultaneously, so that the diffusion of the monomer into the fiber and the polymerization reaction proceed simultaneously. As described above, conventionally, it is general that the diffusion of the monomer into the fiber and the polymerization reaction proceed simultaneously. The diffusion of the monomer proceeds as the temperature is higher and the time is longer.However, the present inventor has found that when continuously producing battery separators, the time for irradiating the substrate with high energy rays is 1 to 10 seconds. Because of the extremely short degree, it was thought that if the diffusion of the monomer into the fiber and the polymerization reaction proceeded simultaneously, the polymerization reaction would end without the monomer diffusion sufficiently proceeding. Then, before the high energy beam irradiation (before the start of polymerization), it was considered preferable to diffuse the monomer into the fiber in advance. Heretofore, there has been almost no report on a method of polymerizing a monomer by diffusing the monomer in advance and then irradiating with a high energy beam.
本発明者は、 以上のような点に着目し、 グラフト重合反応の高速化を図るべく 検討を行った結果、 前記高エネルギー線照射工程の前に、 前記モノマー溶液を含 浸させた前記基材を、 該基材を保持する保持材とポリエステルフィルムとに挟持 させた状態で、 7 0〜1 0 0 °Cの温度で予備加熱し、 モノマーを繊維内部に拡散 させる予備加熱工程を付加することが好ましいことを見出した。  The present inventor focused on the above points, and studied to increase the speed of the graft polymerization reaction. As a result, the base material impregnated with the monomer solution before the high energy ray irradiation step was used. Is preheated at a temperature of 70 to 100 ° C. while holding the base material between the holding material for holding the base material and the polyester film, and a preheating step of diffusing the monomer into the fiber is added. Was found to be preferable.
すなわち、 高エネルギー線照射工程の前に、 基材を予備加熱することにより、 重合開始前にポリオレフイン系繊維内部にモノマーを拡散させておくことができ 、 グラフト重合反応を高速化することができるとともに、 繊維外部でのホモポリ マーの生成を抑制することができ、 重合反応の均一性を高くすることができるこ とを見出した。  That is, by pre-heating the base material before the high energy beam irradiation step, the monomer can be diffused inside the polyolefin fiber before the polymerization starts, and the graft polymerization reaction can be accelerated. It has been found that the formation of homopolymer outside the fiber can be suppressed, and the uniformity of the polymerization reaction can be improved.
また、 前記高工ネルギ一線照射工程において、 前記予備加熱工程での加熱温 度を保持しながら、 高エネルギー線を照射することがより好ましく、 かかる構成 とすることにより、 高エネルギー線照射工程におけるモノマーの拡散をより進行 させやくする効果も得られることを見出した。 図面の簡単な説明  In the high energy line irradiation step, it is more preferable to irradiate the high energy ray while maintaining the heating temperature in the preheating step. With such a configuration, the monomer in the high energy ray irradiation step is preferably used. It has also been found that the effect of further promoting the diffusion of the metal can be obtained. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係る実施例において得られた電池用セパレータの、 グラフト 物の質量分率と、 I E C ( c a 1 ) 、 I E C ( o b s ) 、 I E C ( c a 1 ) - I E C ( o b s ) 、 アンモエア捕捉容量 AT Cとの間の関係を示す図である。 発明を実施するための最良の形態 以下、 本発明について詳述する。 FIG. 1 is a graph showing mass fractions of grafts, IEC (ca 1), IEC (obs), IEC (ca 1)-IEC (obs) and ammo air of the battery separator obtained in the example according to the present invention. FIG. 3 is a diagram showing a relationship between a trapping capacity ATC. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
本発明の電池用セパレータは、 ポリオレフイン系繊維からなる基材に、 スルホ ン酸基を有するモノマーである 2—ァクリルアミ ド 2—メチルプロパンスルホン 酸 (A X Q) と、 カルボキシ基を有するモノマーとがグラフト共重合されている ことを特徴とする。 ·  In the battery separator of the present invention, 2-acrylamide 2-methylpropanesulfonic acid (AXQ), which is a monomer having a sulfonate group, and a monomer having a carboxy group are graft-copolymerized on a substrate made of polyolefin fiber. It is characterized by being polymerized. ·
ここで、 基材としては不織布が好適であるので、 以下、 基材が不織布からなる 場合を例として説明する。  Here, a non-woven fabric is suitable as the base material, and the case where the base material is made of a non-woven fabric will be described below as an example.
基材である不織布を構成するポリオレフイン系繊維としては、 エチレン、 プロ ピレン、 ブテン一 1、 4—メチルペンテン _ 1等の α—ォレフインの単独重合体 や、 これら α—ォレフィンを 2種以上共重合した共重合体から選択される 1種類 の重合体により構成された繊維の他、 上述の重合体を複数組み合わせた複合繊維 (芯鞘複合繊維、 並列複合繊維、 分割繊維等) を用いることができる。 具体的に は、 ポリプロピレンのみからなる繊維、 ポリエチレンのみからなる繊維、 ポリプ 口ピレンを芯成分、 ポリエチレンを鞘成分とするポリプロピレン/ポリエチレン 芯鞘複合繊維、 ポリプロピレンとポリエチレンからなる分割繊維等を例示するこ とができる。  Examples of the polyolefin fibers constituting the nonwoven fabric as the base material include homopolymers of α-olefin such as ethylene, propylene, butene-11,4-methylpentene_1, and copolymerization of two or more of these α-olefins. In addition to fibers composed of one type of polymer selected from the above copolymers, composite fibers (core-sheath composite fibers, parallel composite fibers, split fibers, etc.) obtained by combining a plurality of the above-mentioned polymers can be used. . Specific examples include a fiber composed of only polypropylene, a fiber composed of only polyethylene, a polypropylene / polyethylene core-sheath composite fiber having polypropylene as a core component, polyethylene as a sheath component, and a split fiber composed of polypropylene and polyethylene. Can be.
ポリオレフイン系繊維からなる不織布は、 乾式 (カード) 法、 スパンボンド法 、 メルトブロー法、 湿式 (抄紙) 法等の公知の方法により製造され、 ウォーター ジヱット法等により 2次加工されたものであっても良い。  Nonwoven fabrics made of polyolefin fibers are manufactured by a known method such as a dry (card) method, a spunbond method, a melt blow method, a wet (papermaking) method, and are subjected to secondary processing by a water jet method or the like. good.
本発明は上述のポリオレフイン系繊維からなる不織布に、 A X Qと、 カルボキ シ基を有するモノマーとをグラフト共重合したものである。 ここで、 カルボキシ 基を有するモノマーとしては、 アクリル酸 (ΑΑ) 若しくはメタクリル酸が好適 である。 これらの中でも特に、 水に対する溶解性が高く、 操作性に優れているこ とからアクリル酸が特に好適である。  The present invention is obtained by graft copolymerizing AXQ and a monomer having a carboxyl group onto a nonwoven fabric made of the above-mentioned polyolefin-based fiber. Here, as the monomer having a carboxy group, acrylic acid (ΑΑ) or methacrylic acid is preferable. Among these, acrylic acid is particularly preferred because of its high solubility in water and excellent operability.
このように、 スルホン酸基を有するモノマーとして A X Qを用いることにより 、 ポリオレフイン系繊維の強度を低下させることなく、 簡易にスルホン酸基を導 入することができ、 硫黄含有率を 0 . 0 5〜0 . 1 2 %とすることができる。 具体的には、 ポリプロピレン不織布に A X Qと ΑΑとを合わせて約 1 0 %ダラ フト共重合した場合、 例えば、 ΑΑのグラフト物の質量分率を 9 . 6 5 %、 Α Χ Qのグラフト物の質量分率を 0. 35%、 硫黄含有率を 0. 05%とすることが できることを見出した。 また、 ポリプロピレン Zポリエチレン芯鞘複合繊維から なる不織布を用いた場合、 例えば、 AAのグラフト物の質量分率を 9. 20%、 AXQのグラフト物の質量分率を 0. 80%、 硫黄含有率を 0. 12%とするこ とができることを見出した。 As described above, by using AXQ as a monomer having a sulfonic acid group, a sulfonic acid group can be easily introduced without lowering the strength of the polyolefin-based fiber, and the sulfur content can be reduced to 0.05 to 50%. 0.12%. More specifically, when about 10% of AXQ and ΑΑ are copolymerized in a polypropylene nonwoven fabric, for example, the mass fraction of グ ラ フ ト graft is 9.65%, and It has been found that the mass fraction of the grafted product of Q can be 0.35% and the sulfur content can be 0.05%. When a nonwoven fabric made of polypropylene Z polyethylene core-sheath composite fiber is used, for example, the mass fraction of the grafted product of AA is 9.20%, the mass fraction of the grafted product of AXQ is 0.80%, and the sulfur content is Was found to be 0.12%.
また、 本発明の電池用セパレータにおいて、 AXQと、 カルボキシ基を有する モノマーとを合わせたグラフト物の質量分率と、 I EC (c a 1 ) — I EC (o b s) と、 アンモニア捕捉容量との間には相関関係があり、 I EC (c a 1 ) 一 I EC (o b s ) 及びアンモニア捕捉容量はグラフト物の質量分率が約 10%の 時に最大になる。 したがって、 グラフト物の質量分率をこの値に近づける程、 I EC (c a 1 ) 一 I EC (o b s) 及びアンモニアの捕捉容量を飛躍的に増大す ることができる。  Further, in the battery separator of the present invention, the mass fraction of the grafted product of AXQ and the monomer having a carboxy group, IEC (ca 1) —IEC (obs), and the ammonia trapping capacity There is a correlation between IEC (ca 1) and IEC (obs), and the ammonia trapping capacity is maximized when the mass fraction of the graft is about 10%. Therefore, the closer the mass fraction of the graft is to this value, the more the IEC (c a1) -one IEC (obs) and the capacity for capturing ammonia can be dramatically increased.
具体的には、 グラフト物の質量分率を 4〜16%とすることにより、 I EC ( c a 1 ) - I EC (o b s) を 0. 50 mm o 1 /g以上、 ァンモユア捕捉容量 を 0. 3 Ommo 1 /g以上とすることができる。 また、 グラフト物の質量分率 を 5〜1 5%とすることが好ましく、 このように規定することにより、 I EC ( c a 1 ) - I EC (o b s) を 0. 60 mm o 1 /g以上、 了ンモニァ捕捉容量 を 0. 5 Ommo 1 Zg以上とすることができる。 さらに、 グラフト物の質量分 率を 7〜1 3%とすることがより好ましく、 このように規定することにより、 I EC (c a 1 ) 一 I EC (o b s) を 0. 8 Ommo 1 Zg以上、 アンモニア捕 捉容量を 0. 6 Ommo 1 / g以上とすることができる。  Specifically, by setting the mass fraction of the grafted product to 4 to 16%, the IEC (ca1)-IEC (obs) is 0.50 mmo1 / g or more, and the capacity of capturing the gamma-ray is 0. It can be 3 Ommo 1 / g or more. Further, it is preferable that the mass fraction of the graft is 5 to 15%, and by defining as such, the IEC (ca 1) −IEC (obs) is 0.60 mm o 1 / g or more. The trapping capacity can be set to 0.5 Ommo 1 Zg or more. Further, it is more preferable that the mass fraction of the graft is 7 to 13%, and by defining as such, IEC (ca 1) -IEC (obs) is 0.8 Ommo 1 Zg or more, The ammonia capturing capacity can be 0.6 Ommo 1 / g or more.
このように、 本発明の電池用セパレータによれば、 AXQと、 カルボキシ基を 有するモノマーとがグラフト共重合されているので、 アンモニア捕捉容量を増大 することができる。 そのため、 本発明の電池用セパレータは、 正極活物質として 水酸化ニッケルを用いたアルカリ二次電池用として特に好適である。 また、 本発 明の電池用セパレータによれば、 従来よりも電池の自己放電を抑制することがで き、 充電後の容量保持率の向上を図ることができる。 '  As described above, according to the battery separator of the present invention, since AXQ and the monomer having a carboxy group are graft-copolymerized, the ammonia capturing capacity can be increased. Therefore, the battery separator of the present invention is particularly suitable for an alkaline secondary battery using nickel hydroxide as the positive electrode active material. Further, according to the battery separator of the present invention, self-discharge of the battery can be suppressed more than before, and the capacity retention after charging can be improved. '
また、 本発明の電池用セパレータによれば、 ポリオレフイン系繊維の強度を低 下させることなく、 ポリオレフイン系繊維の表面及び表面近傍にスルホン酸基を 簡易に導入することができるので、 従来と同程度親水化するのに必要なグラフト 物の質量を低減することができ、 軽量化を図ることができるとともに、 電解液に 接する繊維の表面及び表面近傍に化学的安定性に優れたスルホン酸基が導入され ているため、 電池に装着した場合に、 電池の充放電の繰り返しサイクル寿命を長 くすることができ、 電池の耐久性を向上することができる。 Further, according to the battery separator of the present invention, a sulfonic acid group is formed on the surface of the polyolefin-based fiber and in the vicinity of the surface without reducing the strength of the polyolefin-based fiber. Since it can be easily introduced, it is possible to reduce the mass of the graft material necessary to make it hydrophilic to the same extent as before, reduce the weight, and at the surface and near the surface of the fiber in contact with the electrolyte. Since the sulfonic acid group with excellent chemical stability is introduced into the battery, when it is installed in a battery, the cycle life of repeated charge / discharge of the battery can be extended, and the durability of the battery can be improved. it can.
なお、 A X Qを用いることにより簡易にスルホン酸基を導入することができる 理由、 及びアンモニア捕捉容量を増大することができる理由等については、 「課 題を解決するための手段」 の項において詳述したので、 説明は省略する。  The reason why the sulfonic acid group can be easily introduced by using AXQ and the reason that the ammonia trapping capacity can be increased are described in detail in the section "Means to solve the problem". The explanation is omitted.
また、 本発明の電池用セパレータの製造方法において、 ポリオレフイン系繊維 の少なくとも表面にグラフト重合された少なくとも 1種のモノマーの酸性基が多 価金属を介して架橋されていることが好ましい。 多価金属としては特に限定され るものではないが、 カルシウム、 マグネシウム、 バリウム、 アルミニウム、 亜鉛 、 チタン、 ジルコニウム、 錫等が好適である。  Further, in the method for producing a battery separator according to the present invention, it is preferable that the acidic group of at least one monomer graft-polymerized on at least the surface of the polyolefin-based fiber is crosslinked via a polyvalent metal. The polyvalent metal is not particularly limited, but calcium, magnesium, barium, aluminum, zinc, titanium, zirconium, tin and the like are preferable.
このように、 ポリオレフイン系繊維の少なくとも表面にグラフト重合された少 なくとも 1種のモノマーの酸性基を、 多価金属を介して架橋することにより、 「 課題を解決するための手段」 の項において述べたように、 複雑な製造プロセスを 経ることなく簡易に製造することができ、 耐酸化性等の化学的安定性に優れ、 耐 久性に優れた電池用セパレータを提供することができる。 また、 本発明の電池用 セパレータを電池に装着した場合に、 電池の充放電の繰り返しサイクル寿命を長 くすることができ、 電池の耐久性を向上することができる。  As described above, the acidic group of at least one monomer graft-polymerized on at least the surface of the polyolefin-based fiber is cross-linked via a polyvalent metal, thereby obtaining the `` means for solving the problems ''. As described above, it is possible to provide a battery separator that can be easily manufactured without going through a complicated manufacturing process, has excellent chemical stability such as oxidation resistance, and has excellent durability. Further, when the battery separator of the present invention is mounted on a battery, the cycle life of repeated charge / discharge of the battery can be extended, and the durability of the battery can be improved.
[電池用セパレータの製造方法] [Method of manufacturing battery separator]
次に、 本発明の電池用セパレータの製造方法の一例について詳述する。 なお、 以下の本発明の電池用セパレータの製造方法は、 本発明の電池用セパレータを製 造するのに好適な方法であるが、 本発明の電池用セパレータを製造する方法は以 下に記載のものに限定されるものではない。 また、 以下、 基材として不織布を用 レ、、 モノマーとして AX Qと AAを用い、 高エネルギー線として紫外線を用いる 場合を例として説明する。  Next, an example of the method for producing the battery separator of the present invention will be described in detail. The following method for producing a battery separator of the present invention is a method suitable for producing the battery separator of the present invention, but the method for producing the battery separator of the present invention is described below. It is not limited to one. Hereinafter, a case where nonwoven fabric is used as a base material, AX Q and AA are used as monomers, and ultraviolet rays are used as high energy rays will be described as an example.
はじめに、 本発明の電池用セパレータの基材であるポリオレフイン系繊維から なる不織布を用意する。 なお、 本発明の電池用セパレータに用いて好適な不織布 の構造については上述したので、 説明を省略する。 First, from the polyolefin-based fiber that is the base material of the battery separator of the present invention A non-woven fabric is prepared. Since the structure of the nonwoven fabric suitable for use in the battery separator of the present invention has been described above, the description is omitted.
次いで、 A X Qと AAとを含有するモノマー溶液を調製する。 モノマー溶液中 における AX Q及び A Aの濃度は、 いずれも 5〜3 0質量%が好ましい。 モノマ 一溶液には、 ポリオレフイン系繊維から水素を引き抜くための、 ベンゾフエノン 等の水素引き抜き型の重合開始剤を 0 . 0 1〜0 . 5質量%添加することが好ま しい。 なお、 重合開始剤は、 A A若しくはアセトン等の溶剤等に溶解して添加す る。 また、 繊維外部において重合反応が進行してホモポリマーが生成することを 防止するために、 金属塩 (具体的には、 銅や鉄等の塩) 等の重合禁止剤をモノマ —溶液中に、 0 . 1〜1 . 0質量%添加することが好ましい。 また、 モノマー溶 液のポリオレフィン系繊維に対する濡れ性を向上させるために、 非ィォン性界面 活性剤あるいはァニオン性界面活性剤を添カ卩しても良い。 また、 必要に応じて、 ァセトン、 イソプロピルアルコール、 メチルアルコール等を併用して、 濡れ性を 向上することもできる。  Next, a monomer solution containing A X Q and AA is prepared. The concentrations of AX Q and A A in the monomer solution are each preferably 5 to 30% by mass. To the monomer solution, it is preferable to add 0.01 to 0.5% by mass of a hydrogen abstraction type polymerization initiator such as benzophenone for extracting hydrogen from the polyolefin-based fiber. The polymerization initiator is added after being dissolved in a solvent such as AA or acetone. In order to prevent the polymerization reaction from proceeding outside the fiber to form a homopolymer, a polymerization inhibitor such as a metal salt (specifically, a salt such as copper or iron) is added to the monomer solution. It is preferable to add 0.1 to 1.0% by mass. Further, in order to improve the wettability of the monomer solution to the polyolefin-based fiber, a nonionic surfactant or an anionic surfactant may be added. If necessary, wettability can be improved by using acetone, isopropyl alcohol, methyl alcohol and the like in combination.
次に、 モノマー溶液含浸工程において、 以上のように調製したモノマー溶液を ポリオレフイン系繊維からなる不織布に含浸させる。 この工程において、 ポリオ レフイン系繊維 1 0 0質量部に対して、 2 0 0質量部程度以上のモノマー溶液を 含浸させることが好ましい。  Next, in the monomer solution impregnation step, the nonwoven fabric made of polyolefin-based fibers is impregnated with the monomer solution prepared as described above. In this step, it is preferable that about 200 parts by mass or more of the monomer solution is impregnated into 100 parts by mass of the polyolefin-based fiber.
次いで、 予備加熱工程において、 モノマー溶液を含浸させた不織布を、 ステン レス板、 ガラス板等の不織布を保持する保持材上に載置し、 さらに、 不織布の保 持材と反対側をポリエステルフィルムにより被覆し、 保持材とポリエステルフィ ルムとに挟持させた状態で、 7 0〜 1 0 0 °Cの温度で、 1 0秒〜 1 0分間予備加 熱する。  Next, in the preheating step, the nonwoven fabric impregnated with the monomer solution is placed on a holding material for holding the nonwoven fabric, such as a stainless steel plate or a glass plate, and the opposite side of the nonwoven fabric holding material is coated with a polyester film. Preheat at a temperature of 70 to 100 ° C for 10 seconds to 10 minutes while covering and holding the holding material and the polyester film.
このように不織布を予備加熱することにより、 グラフト重合開始前に、 モノ マーの拡散を開始させることができ、 重合反応を高速化することができるととも に、 繊維外部でのホモポリマーの生成を抑制することができ、 重合反応の均一性 を高くすることができる。 また、 重合開始前に、 繊維内部に AAを拡散させるこ とができるので、 アンモニアを捕捉するカルボキシ基量を増大させることができ るという効果も合わせて得られる。 また、 不織布を保持材とポリエステルフィルムとに挟持させた状態で、 予備加 熱することにより、 後の高エネルギー線照射工程において、 その温度を保持しな がら、 高エネルギー線を照射することができるので、 モノマー溶液の蒸発を抑制 することができるとともに、 高工ネルギ一線照射工程におけるモノマーの拡散を より進行させやくする効果も得られる。 By preheating the non-woven fabric in this way, it is possible to start the diffusion of the monomer before the start of the graft polymerization, to speed up the polymerization reaction and to generate the homopolymer outside the fiber. Thus, the polymerization reaction can be made more uniform. In addition, since AA can be diffused into the fiber before the start of polymerization, the effect of increasing the amount of carboxy groups that trap ammonia can be obtained. In addition, by pre-heating the non-woven fabric sandwiched between the holding material and the polyester film, it is possible to irradiate high energy rays while maintaining the temperature in a subsequent high energy ray irradiation step. Therefore, the evaporation of the monomer solution can be suppressed, and the effect of further promoting the diffusion of the monomer in the high-energy line irradiation process can be obtained.
なお、 予備加熱温度が 7 0 °C未満では、 モノマーの拡散促進効果が少なく、 1 0 0 °Cを超えた場合には、 後の高エネルギー線照射工程において、 ポリエステ ルフィルムの温度が高くなりすぎて、 ポリエステルフィルムが変形する恐れがあ るとともに、 モノマー溶液に含有される水等が蒸発して重合反応が不均一となる ため、 好ましくない。  If the preheating temperature is lower than 70 ° C, the effect of promoting the diffusion of the monomer is small, and if it exceeds 100 ° C, the temperature of the polyester film becomes too high in the subsequent high energy beam irradiation step. Thus, the polyester film may be deformed, and the water and the like contained in the monomer solution evaporate to make the polymerization reaction nonuniform, which is not preferable.
また、 不織布を予備加熱する方法としては公知の加熱方法を採用することがで きるが、 遠赤外線を用いた方法が、 数 1 0秒〜数分間で目的の 7 0 °C以上に昇温 させることができるので、 好適である。 また、 保持材を電熱などの手段により直 接加熱する方法も好適である。  As a method for preheating the nonwoven fabric, a known heating method can be adopted.However, a method using far-infrared rays raises the temperature to a desired temperature of 70 ° C. or more in several 10 seconds to several minutes. It is preferable because it can be used. Further, a method of directly heating the holding material by means such as electric heating is also suitable.
次に、 高エネルギー線照射工程において、 保持材とポリエステルフィルムとに 挟持させた状態のまま、 ポリエステルフィルム側から不織布に紫外線 (高工ネル ギ一線) を照射する。  Next, in the high energy beam irradiation step, the nonwoven fabric is irradiated with ultraviolet rays (high energy energy) from the polyester film side while being held between the holding material and the polyester film.
このように、 高エネルギー線照射工程において、 不織布上に載置したポリエス テルフィルム側から紫外線を照射してグラフト共重合を進行させることにより、 紫外線の一部をポリエステルフィルムにより遮蔽して、 紫外線強度を 2 O mW/ c m2以下に低く抑えることができる。 その結果、 重合速度を遅くして、 繊維外 部でのホモポリマーの生成を抑制し、 繊維内部にモノマーを均一に拡散させ、 グ ラフト共重合を繊維内部で安定して進行させることができる。 As described above, in the high-energy ray irradiation step, by irradiating ultraviolet rays from the polyester film placed on the nonwoven fabric to promote graft copolymerization, a part of the ultraviolet rays is blocked by the polyester film, and the ultraviolet intensity is reduced. Can be kept as low as 2 O mW / cm 2 or less. As a result, the polymerization rate is reduced, the generation of a homopolymer outside the fiber is suppressed, the monomer is uniformly diffused inside the fiber, and the graft copolymerization can proceed stably inside the fiber.
なお、 不織布に照射される紫外線強度が 2 O mW c m 2より高い場合には、 モノマーが繊維内部にまで拡散しないうちに重合反応が進行して、 繊維外部にホ モポリマーが生成されやすくなり、 洗浄工程が複雑化するとともに、 グラフト物 の質量分率が低下する恐れがある。 If the UV intensity applied to the nonwoven fabric is higher than 2 OmWcm2, the polymerization reaction proceeds before the monomer diffuses inside the fiber, and a homopolymer is likely to be generated outside the fiber. The process becomes complicated, and the mass fraction of the graft may decrease.
また、 重合開始と共に生じる重合熱や紫外線ランプから出る赤外線によって不 織布は最大 1 0 0 °C程度まで昇温するが、 モノマー溶液を含浸させた不織布を保 持材とポリエステルフィルムとに挟持させた状態で、 紫外線を照射することによ り、 不織布温度を保持し、 モノマーの繊維内部への拡散を促進することができる と共に、 熱によるモノマー溶液の蒸発損失を抑制することができる。 また、 高工 ネルギ一線照射工程において、 予備加熱工程での加熱温度を保持するために、 保 持材を予備加熱工程と同じ温度で加熱するなどして、 予備加熱工程での加熱温度 を積極的に保持することがより好ましい。 In addition, the temperature of the nonwoven fabric rises to a maximum of about 100 ° C due to the heat of polymerization generated at the start of the polymerization and the infrared rays emitted from the ultraviolet lamp. By irradiating ultraviolet rays while sandwiching between the holding material and the polyester film, the temperature of the nonwoven fabric can be maintained, the diffusion of the monomer into the fiber can be promoted, and the loss of evaporation of the monomer solution due to heat Can be suppressed. In addition, in the high energy line irradiation process, the holding material is heated at the same temperature as in the preheating step to maintain the heating temperature in the preheating step. It is more preferable to keep
また、 紫外線照射手段としては、 高圧水銀ランプ、 メタルハライドランプ、 高 周波で誘導される無電極タイプのランプ等を例示することができる。 例えば、 1 2 O WZ c mのランプを用いた場合、 グラフト共重合を安定して進行させるため には、 2〜 1 5 m /"分の移送速度で、 3〜 1 0個の多数のランプの下を通過させ ることが好適である。 このように、 不織布に照射する紫外線の強度を低く抑え、 照射時間を長く設定することにより、 グラフト共重合を効率良く進行させ、 ホモ ポリマーが生成される割合を低減し、 モノマーの利用率を高めることができるの で、 グラフト物の質量分率を大きくすることができるとともに、 反応の均一性を 向上することができ、 好適である。  Examples of the ultraviolet irradiation means include a high-pressure mercury lamp, a metal halide lamp, and a non-electrode type lamp induced at a high frequency. For example, when a lamp of 12 O WZ cm is used, in order to allow the graft copolymerization to proceed stably, a large number of 3 to 10 lamps are required at a transfer speed of 2 to 15 m / "min. In this way, it is preferable to reduce the intensity of the ultraviolet light irradiating the nonwoven fabric and set the irradiation time longer so that the graft copolymerization proceeds efficiently and a homopolymer is generated. Since the ratio can be reduced and the utilization rate of the monomer can be increased, the mass fraction of the graft can be increased, and the uniformity of the reaction can be improved.
重合反応終了後、 不織布を温湯若しくは水酸化ナトリゥムゃ水酸化力リウム等 のアルカリ剤を含む温湯で洗浄することにより、 表面のホモポリマーを除去し、 さらに、 必要に応じて塩酸や酢酸などの希薄溶液で中和する。  After the completion of the polymerization reaction, the nonwoven fabric is washed with hot water or hot water containing an alkali agent such as sodium hydroxide or sodium hydroxide to remove the homopolymer on the surface, and, if necessary, to dilute it with hydrochloric acid or acetic acid. Neutralize with solution.
次に、 少なくとも表面にグラフト重合された少なくとも 1種のモノマーの酸性 基を、 多価金属を介して架橋する場合には、 塩化カルシウム、 酢酸亜鉛、 塩化ァ ルミニゥム等の多価金属塩の希薄溶液 (多価金属塩溶液) に浸漬することにより Next, when the acidic groups of at least one monomer graft-polymerized on at least the surface are crosslinked via a polyvalent metal, a dilute solution of a polyvalent metal salt such as calcium chloride, zinc acetate, or aluminum chloride is used. (Polyvalent metal salt solution)
、 少なくとも表面にグラフト重合された少なくとも 1種のモノマーの酸性基と、 多価金属とを反応させ、 少なくとも表面にグラフト重合された少なくとも 1種の モノマーの酸性基を、 多価金属を介して架橋する。 The acidic group of at least one monomer graft-polymerized on at least the surface is reacted with a polyvalent metal, and the acidic group of at least one monomer graft-polymerized on at least the surface is cross-linked via the polyvalent metal. I do.
最後に、 熱風や赤外線、 蒸気を満たしたシリンダーロール等の加熱手段を用い て乾燥することにより、 本発明の電池用セパレータを製造することができる。  Finally, the battery separator of the present invention can be manufactured by drying using a heating means such as a cylinder roll filled with hot air, infrared rays, or steam.
以上の本発明の電池用セパレータの製造方法によれば、 グラフト重合を繊維 内部で安定して進行させることができ、 本発明の電池用セパレータを安定して製 造することができる。 また、 少なくとも表面にグラフト重合された少なくとも 1 種のモノマーの酸性基を、 多価金属を介して架橋する場合においても、 グラフト 重合後の不織布を多価金属塩の溶液 (多価金属塩溶液) に浸漬する工程を付加す るだけで良いので、 グラフト重合のプロセスを変えることなく、 簡易に製造する ことができる。 According to the method for producing a battery separator of the present invention described above, the graft polymerization can proceed stably inside the fiber, and the battery separator of the present invention can be produced stably. Also, at least one surface graft-polymerized on at least In the case of crosslinking the acidic groups of various kinds of monomers via a polyvalent metal, it is only necessary to add a step of immersing the nonwoven fabric after graft polymerization in a solution of a polyvalent metal salt (polyvalent metal salt solution). Therefore, it can be easily manufactured without changing the graft polymerization process.
以上、 高エネルギー線として紫外線を用いる場合についてのみ説明したが、 本 発明はこれに限定されるものではない。 以下、 本発明の電池用セパレータの製造 方法のその他の例として、 高エネルギー線として電子線を用いる場合を取り上げ て説明する。  Although only the case where ultraviolet rays are used as high energy rays has been described above, the present invention is not limited to this. Hereinafter, as another example of the method for producing a battery separator of the present invention, a case where an electron beam is used as a high energy beam will be described.
はじめに、 高エネルギー線として紫外線を用いる場合と同様に、 不織布を用意 し、 モノマー溶液を調製する。 なお、 調製したモノマー溶液に、 窒素等の不活性 気体をバブリングして、 溶存酸素を除去しておくことが好ましい。 次いで、 高工 ネルギ一線として紫外線を用いる場合と同様に、 不織布にモノマー溶液を含浸さ せた後、 該不織布を保持材とポリエステルフィルムとに挟持させて予備加熱を行 次に、 高エネルギー線照射工程において、 電子線加速機等を用いて、 ポリエス テルフィルム側から電子線を照射する。 この工程において、 不織布を 7 0 °C以上 に保持するために、 保持材を電熱等により加熱することが好ましい。 また、 この 工程において、 不織布に照射される電子線の照射量が 1パス当り 5〜 2 5 k G y となるように、 電子線の照射量を調節し、 パス回数を 2〜1 0回とし、 総照射量 が 1 0〜2 5 0 k G yとなるように、 電子線照射を行うことが好適である。 この ように、 不織布に照射する電子線の照射量を低く抑え、 総照射時間を長く設定す ることが好ましい。  First, a nonwoven fabric is prepared and a monomer solution is prepared in the same manner as in the case where ultraviolet rays are used as high energy rays. In addition, it is preferable to remove dissolved oxygen by bubbling an inert gas such as nitrogen into the prepared monomer solution. Next, as in the case of using ultraviolet light as a line of high energy, the nonwoven fabric is impregnated with a monomer solution, and the nonwoven fabric is sandwiched between a holding material and a polyester film, and preheating is performed. In the process, an electron beam is irradiated from the polyester film side using an electron beam accelerator or the like. In this step, the holding material is preferably heated by electric heating or the like in order to hold the nonwoven fabric at 70 ° C. or more. In this step, the irradiation amount of the electron beam is adjusted so that the irradiation amount of the electron beam irradiated on the nonwoven fabric is 5 to 25 kGy per pass, and the number of passes is set to 2 to 10 times. It is preferable to perform the electron beam irradiation so that the total irradiation amount becomes 10 to 250 kGy. As described above, it is preferable that the irradiation amount of the electron beam irradiating the nonwoven fabric is kept low and the total irradiation time is set long.
その後、 さらに遠赤外線加熱装置等を用いて 7 0〜 1 0 0 °Cで、 1〜 1 0分間 加熱し、 モノマーの拡散と重合を進行させても良い。 グラフト重合完了後の操作 は、 高エネルギー線として紫外線を用いる場合と同様であるので、 説明を省略す る。  Thereafter, the mixture may be further heated at 70 to 100 ° C. for 1 to 10 minutes using a far-infrared heating device or the like, so that the diffusion and polymerization of the monomer may proceed. The operation after the completion of the graft polymerization is the same as the case where ultraviolet rays are used as the high-energy rays, and the description is omitted.
このように、 高エネルギー線として電子線を用いる場合においても、 高工ネル ギ一線として紫外線を用いる場合と同様の効果を得ることができ、 グラフト重合 を繊維内部で安定して進行させることができ、 本発明の電池用セパレータを安定 して製造することができる。 【実施例】 Thus, even when an electron beam is used as the high energy beam, the same effect as when ultraviolet light is used as the high energy line can be obtained, and the graft polymerization can proceed stably inside the fiber. Stable battery separator of the present invention Can be manufactured. 【Example】
次に、 本発明に係る実施例及び比較例について説明する。  Next, examples and comparative examples according to the present invention will be described.
実施例 1〜7、 実施例 9〜1 4、 及ぴ比較例 1〜7において、 電池用セパレー タを作製し、 得られた電池用セパレータについて評価を行った。 また、 各実施例 、 比較例において、 得られた電池用セパレータを用いてエッケル水素電池を作製 し、 得られた電池の評価を行った。 また、 実施例 8において、 実施例 1〜3と同 様にして、 実施例 1〜 3の電池用セパレータを含む本発明の電池用セパレータを 1 6種類作製し、 得られた電池用セパレータについて評価を行った。  In Examples 1 to 7, Examples 9 to 14, and Comparative Examples 1 to 7, battery separators were manufactured, and the obtained battery separators were evaluated. In each of Examples and Comparative Examples, an Ecker hydrogen battery was manufactured using the obtained battery separator, and the obtained batteries were evaluated. In Example 8, 16 kinds of battery separators of the present invention including the battery separators of Examples 1 to 3 were produced in the same manner as Examples 1 to 3, and the obtained battery separators were evaluated. Was done.
なお、 実施例 1〜 8、 比較例 1〜 5では、 表面にダラフト重合したモノマー の酸性基を架橋しなかったのに対し、 実施例 9〜1 4、 比較例 6、 7では、 表面 にグラフト重合したモノマーの酸性基を架橋して電池用セパレータを作製した。 また、 実施例 1〜1 2、 比較例 1〜6では、 高エネルギー線として紫外線を用い 、 実施例 1 3、 1 4、 比較例 7では、 高エネルギー線として電子線を用いて電池 用セパレータを作製した。  In Examples 1 to 8 and Comparative Examples 1 to 5, the surface was not crosslinked with the acidic group of the monomer subjected to daraft polymerization, whereas Examples 9 to 14 and Comparative Examples 6 and 7 were grafted on the surface. The acidic group of the polymerized monomer was crosslinked to prepare a battery separator. In Examples 1 to 12 and Comparative Examples 1 to 6, ultraviolet rays were used as high energy rays, and in Examples 13, 14, and Comparative Example 7, a battery separator was formed using an electron beam as high energy rays. Produced.
(電池用セパレータの評価項目及び評価方法) (Evaluation items and evaluation methods for battery separators)
各実施例において得られた電池用セパレータの評価項目及び評価方法は以下の 通りである。 また、 各比較例においても同様にセパレータの評価を行った。 ト物の質量分率 >  The evaluation items and evaluation methods for the battery separator obtained in each example are as follows. In each comparative example, the evaluation of the separator was performed in the same manner. Mass fraction of product>
グラフト物の質量分率を以下のようにして測定した。  The mass fraction of the graft was measured as follows.
グラフト重合前の不織布の質量 W oを測定しておき、 重合反応終了後、 1 2 0 °Cで 3分間乾燥した後の質量 W sを測定し、 下記式 (1 ) に基づいて、 グラフト 物の質量分率 G (%) を算出した。 なお、 表面にグラフト重合したモノマーの酸 性基を架橋する場合には、 重合反応終了後、 温湯洗浄し、 多価金属塩溶液で処理 する前 (酸性基を架橋する前) の不織布を 1 2 0 °Cで 3分間乾燥し、 その質量を W sとした。 G (%) = (Ws - Wo) /W s X 100 · · · ( 1 ) The mass W o of the nonwoven fabric before the graft polymerization was measured, and after the polymerization reaction was completed, the mass W s after drying at 120 ° C. for 3 minutes was measured. Based on the following formula (1), the graft product was obtained. Was calculated for the mass fraction G (%). When cross-linking the acid group of the monomer graft-polymerized on the surface, after the polymerization reaction is completed, the nonwoven fabric is washed with hot water and treated with a polyvalent metal salt solution (before cross-linking the acid group). After drying at 0 ° C for 3 minutes, the mass was defined as Ws. G (%) = (Ws-Wo) / W s X 100 (1)
なお、 実施例においては、 AXQと AAとをグラフト共重合したため、 下記式 (2) に示すように、 グラフト物の質量分率 Gは、 AXQのグラフト物の質量分 率 G湖 と、 AAのグラフト物の質量分率 GM との合計となる。 ここで、 AXIn the examples, since AXQ and AA were graft-copolymerized, as shown in the following formula (2), the mass fraction G of the graft product was the mass fraction G of the AXQ graft product, the sum of the mass fraction G M of the graft material. Where AX
Qのグラフト物の質量分率 GM(1 は、 後述する硫黄含有率から算出することがで きる。 また、 AAのグラフト物の質量分率 GM は、 AXQのグラフト物の質量 分率。鋼 から、 下記式 (3) に基づいて、 算出することができる。 Mass fraction G M (1 of Q graft of the as possible out be calculated from the sulfur content to be described later. Further, the mass fraction G M of the graft of the AA, the mass fraction of the graft of AXQ. From steel, it can be calculated based on the following equation (3).
G = G職 +GM · · · (2) G = G job + G M
GM =G-GMg . . . (3) G M = GG Mg ... (3)
ぐ硫黄含有率 > Sulfur content>
硫黄含有率をシ ニーガ法に基づいて測定した。  The sulfur content was measured based on the Shiniga method.
約 2 Omgのセパレータサンプルの質量 Mo (mg) を秤量した後、 燃焼時の 灰分の少ない濾紙でサンプルを包み、 電極付き白金籠に収納した。 次いで、 過酸 化水素水を入れた燃焼用フラスコに、 サンプルの入つた白金籠を過酸化水素水に 触れないように揷入し、 密閉した。 次いで、 フラスコ内を酸素ガスにて十分に置 換した後、 白金部分に高電流を流してサンプルと濾紙とを完全燃焼させ、 生じた 硫黄の酸化物を過酸化水素水に溶解させて、 硫酸イオンとした。 次いで、 フラス コを氷水で冷却した後、 硫酸ィオンを含む過酸化水素水 50mlをメスフラスコ に移して定容し、 硫酸イオン濃度 C (mg/1 ) を高速液体クロマトグラフィー にて検量線法により測定し、 下記式 (4) に基づいて、 サンプル中の硫黄含有率 S (%) を算出した。 π. CX0.05X32,1 、 After weighing the mass Mo (mg) of the separator sample of about 2 Omg, the sample was wrapped with a filter paper with little ash during combustion, and stored in a platinum basket with electrodes. Next, the platinum basket containing the sample was inserted into a combustion flask containing the hydrogen peroxide solution without touching the hydrogen peroxide solution, and sealed. Then, after sufficiently replacing the inside of the flask with oxygen gas, a high current is applied to the platinum portion to completely burn the sample and the filter paper, and the resulting sulfur oxides are dissolved in hydrogen peroxide solution, and sulfuric acid is dissolved therein. Ion. Then, after cooling the flask with ice water, transfer 50 ml of hydrogen peroxide solution containing ionic sulfate to a volumetric flask and make the volume constant, and determine the sulfate ion concentration C (mg / 1) by high-performance liquid chromatography using a calibration curve method. The sulfur content S (%) in the sample was calculated based on the following equation (4). π / ή.CX0.05X32,1,
S I = ···' 4  S I =
96.1XMO 但し、 式 (4) 中、 32. 1は硫黄の原子量、 96. 1は硫酸イオン (S04 ) 2" の分子量を示す。 く理論的イオン交換容量 I E C ( c a 1 ) > 96.1XMO In the formula (4), 32.1 is atomic weight of sulfur, 96.1 represents the molecular weight of the sulfate ion (S0 4) 2 ". Theoretical ion exchange capacity IEC (ca1)>
理論的イオン交換容量 I E C ( c a 1 ) を以下にようにして算出した。  The theoretical ion exchange capacity I E C (c a 1) was calculated as follows.
グラフト共重合後の不織布サンプル 1 g中の AXQの mo 1数 C顯 (mm o  AXQ mo 1 number in 1 g of nonwoven fabric sample after graft copolymerization
1 ) を、 上述のように測定した硫黄含有率 S (%) 力 ら、 下記式 (5) に基づい て算出した。 また、 グラフト共重合後の不織布サンプル 1 g中の AAの mo 1数 CM (mmo 1 ) を、 上述のように算出した AAのグラフト物の質量分率 G から、 下記式 (6) に基づいて算出した
Figure imgf000026_0001
1) was calculated based on the following equation (5) from the sulfur content S (%) force measured as described above. Further, the mo 1 number C M of AA in the nonwoven sample 1 g after graft copolymerization (mmo 1), from the mass fraction G of the graft of AA calculated as described above, according to the following equation (6) Calculated
Figure imgf000026_0001
G AAG AA
CAA mniol)= X 1000/72.1 (6) CAA mniol) = X 1000 / 72.1 (6)
100 但し、 式 (5) 中、 3 2. は硫黄の原子量を示す。 また、 式 (6) 中、 7 2 100 In the formula (5), 3 2. indicates the atomic weight of sulfur. In equation (6), 7 2
. 1は AAの分子量を示す。 .1 indicates the molecular weight of AA.
そして、 理論的イオン交換容量 I E C ( c a 1 ) を、 CA](i (mm o 1 ) と C M (mm o 1 ) と力ゝら、 下記式 (7) に基づいて算出した。 Then, the theoretical ion exchange capacity IEC (ca 1) was calculated based on the following equation (7) using C A] (i (mm o 1), C M (mm o 1), and force data.
I E C ( c a 1 ) = C™ (mm o 1 ) +CM (mm o 1 ) ( 7) IEC (ca 1) = C ™ (mm o 1) + C M (mm o 1) (7)
<カリウムイオン交換容量 I E C (o b s ) > <Potassium ion exchange capacity I E C (obs)>
カリウムイオン交換容量 I E C (o b s ) を以下のようにして測定した。 セパレータサンプル約 0. 5 gを、 0. I m o l Z lの塩酸水溶液に浸漬させ てイオン交換基を完全な酸型にした後、 蒸留水ですすぎ、 1 0 0°Cで乾燥した。 乾燥後の質量 Wを秤量した後、 1 0 0 m 1のポリエチレン瓶に乾燥後のサンプル を入れ、 次いで、 0. 1 m 0 1 / 1の水酸化力リゥム水溶液 1 0m lをホールピ ペットで加えた。 さらに、 サンプルを完全に浸漬させるために既知量の蒸留水を 加えた。 水酸化カリウム水溶液と蒸留水の合計を Am 1とする。 一方、 ブランク テスト用にサンプルを入れないポリエチレン瓶を同じ手順で用意した。  The potassium ion exchange capacity I E C (obs) was measured as follows. Approximately 0.5 g of the separator sample was immersed in an aqueous solution of 0.1 mol Zl of hydrochloric acid to completely convert the ion-exchange groups into an acid form, rinsed with distilled water, and dried at 100 ° C. After weighing the dried mass W, put the dried sample in a 100 ml polyethylene bottle, and then add 10 ml of a 0.1 m 01/1 aqueous hydroxide water solution with a whole pipette. Was. In addition, a known amount of distilled water was added to completely immerse the sample. Let Am 1 be the sum of the aqueous potassium hydroxide solution and distilled water. On the other hand, a polyethylene bottle containing no sample was prepared by the same procedure for a blank test.
サンプルの入つたポリエチレン瓶とブランクテスト用のポリエチレン瓶とを、 60°Cで 2時間保管した後、 室温まで自然冷却し、 各ポリエチレン瓶に残ってい る水酸化力リゥム水溶液を適量 (Bm 1 ) ホールピぺットで取り出し、 それぞれ 滴定用のコニカルビーカーに移し、 残った水酸化カリウムの量を、 フエノールフ タレインを指示薬にして、 0. 1 mo 1ノ 1の塩酸水溶液で中和滴定して求め、 カリウムイオン交換容量 I EC (o b s) を下記式 (8) に基づいて算出した。 The polyethylene bottle containing the sample and the polyethylene bottle for the blank test After storing at 60 ° C for 2 hours, cool naturally to room temperature, take out the remaining aqueous solution of hydroxylated lime in each polyethylene bottle with an appropriate amount (Bm 1) hole pipe, and transfer each to a conical beaker for titration. The amount of remaining potassium hydroxide was determined by neutralization titration with 0.1 mol / l hydrochloric acid aqueous solution using phenolphthalein as an indicator. The potassium ion exchange capacity I EC (obs) was calculated by the following equation (8). Calculated based on
I EC (o b s) = (A/B) X 0. 1 X f X ( t b— t s ) /W · . (8) 但し、 式 (8) 中において、 0. 1は中和滴定に用いた塩酸水溶液の濃度、 f は中和滴定に用いた塩酸水溶液のファクター、 t bはブランクテストにおいて要 した塩酸水溶液の滴定値 (m l) 、 t sはサンプルを処理した際に要した塩酸水 溶液の滴定値 (m l) を示している。 ユア捕捉容量〉  I EC (obs) = (A / B) X 0.1 X f X (tb— ts) / W ·. (8) In formula (8), 0.1 is the hydrochloric acid used for the neutralization titration. The concentration of the aqueous solution, f is the factor of the hydrochloric acid aqueous solution used for the neutralization titration, tb is the titration value of the hydrochloric acid aqueous solution required in the blank test (ml), and ts is the titration value of the hydrochloric acid aqueous solution required when processing the sample ( ml). Your capture capacity>
アンモニア捕捉容量を以下のようにして測定した。  The ammonia trapping capacity was measured as follows.
25 Om 1共栓付三角フラスコに、 1. 5mmo 1のアンモニアを含む 8mo 1 / 1の水酸化力リゥム水溶液 1 25 m 1と、 精秤したセパレータサンプル約 2 gを入れた後、 栓をしてパラフィルムで密封した。 一方、 ブランクテス ト用にセ パレータを入れないものを用意した。  A 25 Om1 stoppered Erlenmeyer flask was charged with 125 ml of an aqueous 8 mo1 / 1 aqueous solution of ammonia containing 1.5 mmo1 of ammonia and about 2 g of a precisely weighed separator sample, and then stoppered. And sealed with parafilm. On the other hand, a blank tester with no separator was prepared.
セパレータサンプルを入れたフラスコ及びブランクテス ト用のフラスコ内の内 容物を攪拌した後、 40°Cで 2時間保管し、 次いで、 アンモニアが揮発しないよ うに氷水で内容物を冷却した。 次に、 フラスコ内の溶液 10 Om 1を採取し、 捕 捉されなかったアンモニアをケルダール法で定量した。 すなわち、 0. lmo 1 / 1の塩酸水溶液 2 Om l中にアンモニアを蒸留回収し、 中和されずに残った塩 酸水溶液を、 0. 1 w/v%のメチルレッ ドアルコール溶液を指示薬として、 0 . 05mo 1/1の水酸化ナトリゥム水溶液を用いて滴定し、 滴定値から、 アン モニァ捕捉容量 AT Cを下記式 (9) に基づいて、 算出した。  After stirring the contents in the flask containing the separator sample and the flask for the blank test, the contents were stored at 40 ° C. for 2 hours, and then the contents were cooled with ice water so that ammonia did not volatilize. Next, 10 Om 1 of the solution in the flask was sampled, and the amount of untrapped ammonia was quantified by the Kjeldahl method. That is, ammonia was distilled and recovered in 2 Oml of 0.1 lmo 1/1 hydrochloric acid aqueous solution, and the remaining hydrochloric acid aqueous solution that had not been neutralized was used as a 0.1 w / v% methyl red alcohol solution indicator. Titration was performed using a 0.05 mol 1/1 sodium hydroxide aqueous solution, and the ammonia capture capacity ATC was calculated from the titration value based on the following equation (9).
ATC (mm o 1 / g )  ATC (mm o 1 / g)
= (1 25/100) X 0. 05 X f隨 X (V s -Vb) /W · · · (9) 但し、 式 (9) 中において、 fNa()H は滴定に使用した水酸化ナトリウム水溶液 のファクター、 V sはサンプルを処理した際に要した水酸化ナトリゥム水溶液の 滴定値 (m l) 、 V bはブランクテストにおける水酸化ナトリゥム水溶液の滴定 値 (m l ) を示している。 = (1 25/100) X 0.05 X f X (V s -Vb) / W (9) where, in equation (9), f Na () H is the hydroxyl used in the titration. The factor of sodium aqueous solution, V s, is the amount of sodium hydroxide aqueous solution required when processing the sample. The titration value (ml) and Vb indicate the titration value (ml) of the aqueous sodium hydroxide solution in the blank test.
(ニッケル水素電池の作製) (Production of nickel-metal hydride battery)
実施例 1〜 7、 実施例 9〜 14、 及び比較例 1〜 7において、 得られた電池用 セパレータを用いてニッケル水素電池を作製した方法について説明する。  In Examples 1 to 7, Examples 9 to 14, and Comparative Examples 1 to 7, a method for producing a nickel-metal hydride battery using the obtained battery separator will be described.
電極の集電体として、 発泡ニッケル基材を用いたペースト式ニッケル正極と、 ニッケルメツキしたステンレス製パンチングメタル基材を用いた水素吸蔵合金 ( ミッシュメタル系合金) 負極とを作製し、 正極と負極との間に得られたセパレー タを挟み込み、 渦巻き状に捲回して、 A Aサイズの電極を作製した。 この電極を 外装缶に収納し、 電解液として 7 N—水酸化力リゥム水溶液及び 1 N—水酸化リ チウム水溶液を缶内に注液した後、 封缶して円筒型ニッケル水素電池を作製した  As a current collector of the electrode, a paste-type nickel positive electrode using a foamed nickel base material and a hydrogen storage alloy (mish metal alloy) negative electrode using a nickel-plated stainless steel punching metal base material were prepared. Then, the separator obtained was sandwiched and wound in a spiral to produce an AA-sized electrode. This electrode was housed in an outer can, and a 7 N aqueous hydroxide solution and a 1 N aqueous lithium hydroxide solution were injected into the can as an electrolytic solution, and then sealed to produce a cylindrical nickel-metal hydride battery.
(二ッケル水素電池の評価項目及び評価方法) (Evaluation items and evaluation methods for nickel hydrogen batteries)
実施例 1〜 7、 実施例 9〜 14、 及び比較例 1〜 7において得られたニッケル 水素電池の評価項目及び評価方法は以下の通りである。  The evaluation items and evaluation methods of the nickel-metal hydride batteries obtained in Examples 1 to 7, Examples 9 to 14, and Comparative Examples 1 to 7 are as follows.
<自己放電特性 (容量保持率) > <Self-discharge characteristics (capacity retention)>
得られたニッケル水素電池を、 20°C、 0. 1 Cで 150% (容量比) 充電し 、 0. 1 C放電、 終止電圧 1. 0Vでの初期容量 (A) を測定した。 次いで、 2 0°C、 0. 1 Cで 1 50% (容量比) 充電し、 60°Cで 3日間放置した後、 20 °Cで 0. 1 C放電、 終止電圧 1. 0Vでの容量 (B) を測定した。 得られたデー タから下記式 (10) に基づいて、 容量保持率を算出した。  The obtained nickel-metal hydride battery was charged at 20 ° C. and 0.1 C at 150% (capacity ratio), and the initial capacity (A) at a discharge of 0.1 C and a cut-off voltage of 1.0 V was measured. Then, charge at 150 ° C (capacity ratio) at 20 ° C and 0.1 C, leave at 60 ° C for 3 days, discharge at 0.1 ° C at 20 ° C, and end voltage of 1.0V (B) was measured. The capacity retention was calculated from the obtained data based on the following equation (10).
容量保持率 (%) = (A/B) X 100 · · · (10)  Capacity retention (%) = (A / B) X 100 · · · (10)
<充放電サイクル寿命〉 <Charge / discharge cycle life>
得られたニッケル水素電池を、 20°C、 1 C、 1 20%充電と、 1 C放電、 終 止電圧 1. 0Vの放電からなる充放電サイクルを繰り返し、 放電容量が初期容量 の 5 0 %となるまでの、 充放電サイクル数を測定した。 (実施例 1 ) The obtained nickel-metal hydride battery is repeatedly charged and discharged at 20 ° C, 1 C, and 120%, discharged at 1 C, and discharged at a final voltage of 1.0 V. The number of charge / discharge cycles up to 50% was measured. (Example 1)
基材として、 繊維直径が約 1 0 μ mのポリプロピレン (P P ) 繊維 1 0 0 %か らなるスパンボンド不織布で目付け 5 0 g /m 2 のものを用いた。 As the base material, a spunbond nonwoven fabric made of 100% polypropylene (PP) fiber having a fiber diameter of about 10 μm and having a basis weight of 50 g / m 2 was used.
表 1に示す組成のモノマー溶液を調製し、 この溶液を不織布 1 0 0質量部に対 して 2 0 0質量部含浸させた後、 ステンレス板の上に載置し、 さらに不織布を厚 さ 5 0 のポリエステルフィルムにより被覆した。 なお、 モノマー溶液に添加 した非イオン性界面活性剤としては、 花王 (株) 製のエマルゲン 9 1 0を用いた (以下の実施例、 比較例においても同様) 。 The monomer solution having the composition shown in Table 1 were prepared, after the solution is impregnated in pairs 1 0 0 part by weight nonwoven 2 0 0 parts by weight, placed on the stainless steel plate, further a thickness of the nonwoven fabric of 5 0 polyester film. As the nonionic surfactant added to the monomer solution, Emulgen 910 manufactured by Kao Corporation was used (the same applies to the following Examples and Comparative Examples).
次いで遠赤外線加熱装置を用いて 8 0 °Cに予備加熱した後、 1 6 0 W/ c mの 水銀ランプ 5個を並べた紫外線照射装置の中を通過させて、 グラフト共重合を 行った。 なお、 ポリエステルフィルム側から紫外線照射してグラフト共重合を行 つた。  Next, after preheating to 80 ° C. using a far-infrared heating device, the mixture was passed through an ultraviolet irradiation device in which five 160 W / cm mercury lamps were arranged to perform graft copolymerization. The graft copolymerization was performed by irradiating ultraviolet rays from the polyester film side.
重合反応終了後の不織布を 8 0 °Cの 1 %水酸化ナトリゥム水溶液で 3分間洗浄 した。 さらに、 水で 1分間洗浄した後、 0 . 1 %塩酸水溶液中を 1分間通過させ た後、 乾燥して本発明の電池用セパレータを得た。  After the completion of the polymerization reaction, the nonwoven fabric was washed with a 1% aqueous sodium hydroxide solution at 80 ° C. for 3 minutes. Further, after washing with water for 1 minute, it was passed through a 0.1% hydrochloric acid aqueous solution for 1 minute, and then dried to obtain a battery separator of the present invention.
(実施例 2 ) (Example 2)
表 1に示す組成のモノマー溶液を調製した以外は実施例 1と同様にして、 本発 明の電池用セパレータを得た。  A battery separator of the present invention was obtained in the same manner as in Example 1, except that a monomer solution having the composition shown in Table 1 was prepared.
(実施例 3 ) (Example 3)
1 6 O W/ c mの水銀ランプ 5個を並べた紫外線照射装置の中を通過させてグ ラフト共重合を行う代わりに、 8 0 W/ c mの水銀ランプ 5個を並べた紫外線照 射装置の中を通過させてグラフト共重合を行った以外は実施例 1と同様にして、 本発明の電池用セパレータを得た。  Instead of passing through a UV irradiator with five 6 OW / cm mercury lamps and performing graph copolymerization, instead of an ultraviolet irradiator with five 80 W / cm mercury lamps And the graft copolymerization was carried out in the same manner as in Example 1 to obtain a battery separator of the present invention.
(比較例 1 ) モノマーとして AAのみを用い、 表 1に示すモノマー溶液を調製し、 紫外線照 射前に予備加熱を行わなかった以外は実施例 1と同様にして、 電池用セパレータ を得た。 (Comparative Example 1) Using only AA as a monomer, a monomer solution shown in Table 1 was prepared, and a battery separator was obtained in the same manner as in Example 1 except that preheating was not performed before ultraviolet irradiation.
(比較例 2) (Comparative Example 2)
市販のニッケル水素電池に使用されているセパレータを取り出し、 実施例 1〜 3、 比較例 1と同様に評価した。 なお、 このセパレータを分析したところ、 目付 け 50 g/m2 程度のポリプロピレン不織布に A Aのみを 10. 7%グラフト重 合したものであることが判明した。 また、 グラフト重合された AAの酸性基は架 橋されていないことを確認した。 A separator used in a commercially available nickel-metal hydride battery was taken out and evaluated in the same manner as in Examples 1 to 3 and Comparative Example 1. When this separator was analyzed, it was found that a polypropylene nonwoven fabric with a basis weight of about 50 g / m 2 was graft-polymerized with only AA by 10.7%. It was also confirmed that the acid groups of the grafted AA were not crosslinked.
(比較例 3 ) (Comparative Example 3)
AXQの代わりに p—スチレンスルホン酸ナトリゥムを用い、 表 1に示すモノ マー溶液を調製した以外は実施例 1と同様にして、 電池用セパレータを寻た。  A battery separator was obtained in the same manner as in Example 1 except that sodium p-styrenesulfonate was used instead of AXQ, and a monomer solution shown in Table 1 was prepared.
(比較例 4) (Comparative Example 4)
AXQの代わりにビニルスルホン酸ナトリウムを用い、 表 1に示すモノマー溶 液を調製した以外は実施例 1と同様にして、 電池用セパレータを得た。 A battery separator was obtained in the same manner as in Example 1, except that sodium vinyl sulfonate was used instead of AXQ, and a monomer solution shown in Table 1 was prepared.
実施例 実施例 比較例 比較例 比較例 Example Example Comparative example Comparative example Comparative example
1 3 2 1 3 4 不織布 Ρ Ρ p p p p p p p p モノマー溶液の糸且成 (質量部)  1 3 2 1 3 4 Non-woven fabric Ρ Ρ p p p p p p p p p
AXQ 1 d 9Π  AXQ 1 d 9Π
n Ρ —スチレン ζスノレ ン醋十 K 1 lb  n Ρ — styrene dinosolen acetic acid K 1 lb
リ ウム  Lithium
ビニノレスノレホン酸ナトリウム 15 Sodium bininoles norephonate 15
ΑΑ 15 20 40 15 15 ベンゾフエノン 0.1 0.1 0.1 0.1 0.1 非イオン性界面活性剤 0.3 0.3 0.3 0.3 0.3 塩化第一鉄 0.2 0.2 0.2 0.2 0.2 水 69.4 59.4 59.4 69.4 69.4 ΑΑ 15 20 40 15 15 Benzophenone 0.1 0.1 0.1 0.1 0.1 Nonionic surfactant 0.3 0.3 0.3 0.3 0.3 Ferrous chloride 0.2 0.2 0.2 0.2 0.2 Water 69.4 59.4 59.4 69.4 69.4
(実施例 4) (Example 4)
芯成分がポリプロピレン (PP) 50質量%からなり、 鞘成分がポリエチレン (PE) 50質量%からなる、 繊維直径 10 μπιの芯鞘複合繊維を用いて、 湿式 (抄紙) 法により、 目付け 50 gZm2 の不織布を得た。 Using a core-sheath composite fiber with a fiber diameter of 10 μπι and a core component consisting of 50% by mass of polypropylene (PP) and a sheath component of 50% by mass of polyethylene (PE), the basis weight is 50 gZm 2 by the wet (papermaking) method. Was obtained.
次いで、 表 2に示す組成のモノマー溶液を調製し、 この溶液を得られた不織布 100質量部に対して 200質量部含浸させた後、 厚さ 0. 6 Mmのステンレス 板の上に載置し、 さらに不織布を厚さ 50 μ mのポリエステルフィルムにより被 次いで遠赤外線乾燥装置を用いて 80°Cに予備加熱した後、 160 W/ c mの メタルハライドランプ 5灯の下を通過させて、 グラフト共重合を行った。 なお 、 厚さ 50 umのポリエステルフィルム側から紫外線照射してグラフト共重合を 行った。 Then, a monomer solution having the composition shown in Table 2 were prepared, placed on the after solution was 200 parts by impregnation with respect to the nonwoven fabric 100 parts by mass of resulting, on the stainless steel plate having a thickness of 0. 6 M m Then, the nonwoven fabric is covered with a polyester film having a thickness of 50 μm, and then preheated to 80 ° C using a far-infrared ray drying device, and then passed under five 160 W / cm metal halide lamps to form a graft. Polymerization was performed. The graft copolymerization was performed by irradiating ultraviolet rays from the side of the polyester film having a thickness of 50 μm.
重合反応終了後の不織布を実施例 1と同様に洗浄し、 乾燥することにより、 本 発明の電池用セパレータを得た。  The nonwoven fabric after the completion of the polymerization reaction was washed and dried in the same manner as in Example 1 to obtain a battery separator of the present invention.
(実施例 5 ) (Example 5)
実施例 4で用いたのと同じ不織布を用い、 表 2に示す組成のモノマー溶液を調 製した以外は実施例 1と同様にして、 本発明の電池用セパレータを得た。 (比較例 5) . Using the same nonwoven fabric as used in Example 4, a monomer solution having the composition shown in Table 2 was prepared. A battery separator of the present invention was obtained in the same manner as in Example 1 except for producing the battery separator. (Comparative Example 5).
モノマーとして A Aのみを用い、 表 2に示すモノマー溶液を調製した以外は実 施例 4と同様にして、 電池用セパレータを得た。 表 2  A battery separator was obtained in the same manner as in Example 4, except that only AA was used as the monomer and the monomer solutions shown in Table 2 were prepared. Table 2
Figure imgf000032_0001
Figure imgf000032_0001
(実施例 6 ) (Example 6)
基材として、 繊維直径が約 12 μ mのポリエチレン (P E) 繊維 100 %から なるスパンボンド不織布で目付け 50 g/m2 のものを用い、 表 3に示す組成の モノマー溶液を調製した以外は実施例 1と同様にして、 本発明の電池用セパレー タを得た。 As the base material, used as the basis weight 50 g / m 2 spunbond nonwoven fiber diameter of 100% polyethylene (PE) fibers about 12 mu m, except that to prepare a monomer solution having the composition shown in Table 3 is performed In the same manner as in Example 1, a battery separator of the present invention was obtained.
(実施例 7) (Example 7)
基材として、 繊維直径が約 2 μπιのポリプロピレン (PP) 繊維 100%から なるメルトブロー不織布で目付け 40 gZm2のものを用い、 表 3に示す組成の モノマー溶液を調製した以外は実施例 1と同様にして、 本発明の電池用セパレー タを得た。 表 3 As the base material, used as the basis weight 40 gZm 2 in meltblown nonwoven fiber diameter of about 2 Myupaiiota polypropylene (PP) 100% fiber, except that to prepare a monomer solution having the composition shown in Table 3 as in Example 1 Thus, a battery separator of the present invention was obtained. Table 3
Figure imgf000033_0001
Figure imgf000033_0001
(実施例 8 ) (Example 8)
実施例 1〜3と同様にして、 実施例 1〜3の電池用セパレータを含む本発明の 電池用セパレータを 16種類作製した。 なお、 モノマー濃度を変更することによ り、 Qitk ザラフト物の質量分率を 3〜16%の範囲内で変化させて本 発明の電池用セパレータを作製した。  In the same manner as in Examples 1 to 3, 16 types of battery separators of the present invention including the battery separators of Examples 1 to 3 were produced. In addition, by changing the monomer concentration, the mass fraction of the Qitk zaraft product was changed within the range of 3 to 16% to produce the battery separator of the present invention.
(実施例 9 ) (Example 9)
基材として、 繊維直径が約 10 μ mのポリプロピレン (P P) 繊維 100 %か らなるスパンボンド不織布で目付け 50 gZm2 のものを用いた。 As a substrate, a spunbond nonwoven fabric made of 100% polypropylene (PP) fiber having a fiber diameter of about 10 μm and having a basis weight of 50 gZm 2 was used.
表 4に示す組成のモノマー溶液を調製し、 この溶液を不織布 100質量部に対 して 200質量部含浸させた後、 ステンレス板の上に載置し、 さらに不織布を厚 さ 50 μπιのポリエステルフィルムにより被覆した。 なお、 表 4に示すように、 モノマー溶液としては、 実施例 1と同じ組成のものを用いた。  Prepare a monomer solution having the composition shown in Table 4, impregnate this solution with 200 parts by mass of 100 parts by mass of the nonwoven fabric, place it on a stainless steel plate, and further place the nonwoven fabric on a polyester film with a thickness of 50 μπι. Coated. As shown in Table 4, a monomer solution having the same composition as in Example 1 was used.
次いで遠赤外線加熱装置を用いて 80°Cに予備加熱した後、 1 6 OWZcmの水 銀ランプ 6個を並べた紫外線照射装置の中を通過させて、 グラフト共重合を 行った。 なお、 ポリエステルフィルム側から紫外線照射してグラフト共重合を行 つた。'  Next, after preheating to 80 ° C. using a far-infrared heating device, the mixture was passed through an ultraviolet irradiation device in which six 16 OWZcm mercury lamps were arranged to perform graft copolymerization. The graft copolymerization was performed by irradiating ultraviolet rays from the polyester film side. '
重合反応終了後の不織布を 90°Cの温湯中で 3分間洗浄し、 次いで、 多価金属 塩溶液である 8 0 °Cの塩化カルシゥム水溶液 ( 0 . 5質量%) 中に 3分間浸漬し 、 表面にグラフト重合したモノマーの酸性基を、 カルシウムを介して架橋した。 さらに、 水で 1分間洗浄した後、 1 2 0 °Cの蒸気シリンダーで乾燥して、 本発明 の電池用セパレータを得た。 After the polymerization reaction, the nonwoven fabric is washed in hot water of 90 ° C for 3 minutes, and then the polyvalent metal It was immersed in an aqueous solution of calcium chloride (0.5% by mass) at 80 ° C. as a salt solution for 3 minutes to crosslink the acidic groups of the monomers graft-polymerized on the surface via calcium. Furthermore, after washing with water for 1 minute, it was dried with a steam cylinder at 120 ° C. to obtain a battery separator of the present invention.
(実施例 1 0 ) (Example 10)
表 4に示す組成のモノマー溶液を用い、 多価金属塩溶液として、 酢酸亜鉛水溶 液 (0 . 5質量%) を用い、 表面にグラフト重合したモノマーの酸性基を、 亜鉛 を介して架橋した以外は実施例 9と同様にして、 本発明の電池用セパレータを得 た。 なお、 表 4に示すように、 モノマー溶液としては、 実施例 2と同じ組成のも のを用いた。  A monomer solution having the composition shown in Table 4 was used, and a zinc acetate aqueous solution (0.5% by mass) was used as the polyvalent metal salt solution. The acidic groups of the monomers graft-polymerized on the surface were crosslinked via zinc. In the same manner as in Example 9, a battery separator of the present invention was obtained. As shown in Table 4, a monomer solution having the same composition as in Example 2 was used.
(比較例 6 ) (Comparative Example 6)
モノマーとして AAのみを用い、 表 4に示すモノマー溶液を調製した以外は実 施例 9と同様にして、 電池用セパレータを得た。 表 4  A battery separator was obtained in the same manner as in Example 9 except that only AA was used as the monomer and the monomer solutions shown in Table 4 were prepared. Table 4
Figure imgf000034_0001
Figure imgf000034_0001
(実施例 1 1 ) 芯成分がポリプロピレン (PP) 50質量0 /0からなり、 鞘成分がポリエチレン (PE) 50質量。/。からなる、 繊維直径 10 /zmの芯鞘複合繊維を用いて、 湿式 (抄紙) 法により、 目付け 50 g/m2の不織布を得た。 (Example 11) The core component is polypropylene (PP) 50 Weight 0/0, the sheath component is polyethylene (PE) 50 wt. /. Using a core-sheath composite fiber having a fiber diameter of 10 / zm, a nonwoven fabric having a basis weight of 50 g / m 2 was obtained by a wet (papermaking) method.
次いで、 表 5に示す組成のモノマー溶液を調製し、 この溶液を得られた不織布 100質量部に対して 200質量部含浸させた後、 厚さ 0. 6 μπιのステンレス 板の上に載置し、 さらに不織布を厚さ 50 /zmのポリエステルフィルムにより被 覆した。 なお、 表 5に示すように、 モノマー溶液としては、 実施例 4と同じ組成 のものを用いた。  Next, a monomer solution having the composition shown in Table 5 was prepared, and this solution was impregnated with 200 parts by mass with respect to 100 parts by mass of the obtained nonwoven fabric, and then placed on a stainless steel plate having a thickness of 0.6 μπι. Further, the nonwoven fabric was covered with a 50 / zm-thick polyester film. As shown in Table 5, a monomer solution having the same composition as in Example 4 was used.
次いで遠赤外線乾燥装置を用いて 80°Cに予備加熱した後、 8 OW/cmのメタ ルハライドランプ 6灯の下を通過させて、 グラフト共重合を行った。 なお、 ポリ エステルフィルム側から紫外線照射してグラフト共重合を行つた。  Next, after preheating to 80 ° C. using a far-infrared ray drying device, the mixture was passed under six 8 OW / cm metal halide lamps to perform graft copolymerization. The graft copolymerization was performed by irradiating ultraviolet rays from the polyester film side.
最後に、 実施例 9と同様に、 重合反応終了後の不織布を洗浄した後、 表面に グラフト重合したモノマーの酸性基を、 カルシウムを介して架橋し、 乾燥するこ とにより、 本発明の電池用セパレータを得た。  Finally, as in Example 9, after washing the nonwoven fabric after the polymerization reaction, the acid groups of the monomers graft-polymerized on the surface are crosslinked via calcium and dried to obtain the battery for the battery of the present invention. A separator was obtained.
(実施例 1 2) (Example 1 2)
実施例 1 1で用いたのと同じ不織布を用い、 表 5に示す組成のモノマー溶液を 用いた以外は、 実施例 9と同様にしてグラフト重合を行った。 最後に、 実施例 1 0と同様に、 重合反応終了後の不織布を洗浄した後、 表面にグラフト重合したモ ノマーの酸' I'生基を、 亜鉛を介して架橋し、 乾燥することにより、 本発明の電池用 セパレータを得た。 Graft polymerization was carried out in the same manner as in Example 9, except that the same nonwoven fabric as used in Example 11 was used, and a monomer solution having the composition shown in Table 5 was used. Finally, as in Example 10, after washing the nonwoven fabric after the completion of the polymerization reaction, the acid 'I' live groups of the monomer graft-polymerized on the surface are crosslinked via zinc and dried to form The battery separator of the present invention was obtained.
表 5 Table 5
Figure imgf000036_0001
Figure imgf000036_0001
(実施例 13、 14) (Examples 13 and 14)
基材として、 実施例 9で用いたのと同じポリプロピレン不織布を用いた。 また 、 表 6に示す組成のモノマー溶液を調製し、 この溶液を不織布 100質量部に対 して 200質量部含浸させた後、 ステンレス板の上に載置し、 さらに不織布を厚 さ 50 μπιのポリエステルフィルムにより被覆し、 この状態で遠赤外線加熱装置 を用いて、 80°C以上に 5分間保持して予備加熱を行った。  As the substrate, the same polypropylene nonwoven fabric as used in Example 9 was used. Also, a monomer solution having the composition shown in Table 6 was prepared, and this solution was impregnated with 200 parts by mass with respect to 100 parts by mass of the nonwoven fabric, and then placed on a stainless steel plate. The sample was covered with a polyester film, and in this state, preheating was performed by using a far-infrared heating device while maintaining the temperature at 80 ° C. or higher for 5 minutes.
次いで、 電子線照射装置 (岩崎電気 (株) 製、 EC250— 15— 18 OL) を 用い、 ポリエステルフィルム側から不織布に電子線を照射した。 この工程におい て、 ステンレス板を電気加熱し、 不織布の温度を 80°C以上に保持した。 また、 不織布に照射される電子線の 1パス当りの照射量を 1 O kGy、 パス回数を 5回 、 総照射量を 50 k G yとして電子線を照射した。  Next, the nonwoven fabric was irradiated with an electron beam from the polyester film side using an electron beam irradiation device (EC250-15-18OL, manufactured by Iwasaki Electric Co., Ltd.). In this process, the stainless steel plate was heated electrically to keep the temperature of the nonwoven fabric at 80 ° C or higher. The non-woven fabric was irradiated with an electron beam at an irradiation amount of 1 OkGy per pass, 5 passes, and a total irradiation amount of 50 kGy.
電子線照射終了後、 遠赤外線加熱装置を用いて、 80°Cで 5分間保持してグラ フト重合を完結させた。 重合反応終了後の不織布を、 95 °Cの温湯で 5分間洗浄 した後、 多価金属塩溶液である塩化マグネシウム溶液 (0. 5質量%) に 3分間 浸漬し、 さらに 3分間水洗した後、 100 °Cで 2分間乾燥して、 本発明の電池用 セパレータを得た。  After the electron beam irradiation was completed, the temperature was kept at 80 ° C for 5 minutes using a far-infrared heating device to complete the graph polymerization. After the completion of the polymerization reaction, the nonwoven fabric was washed with hot water at 95 ° C for 5 minutes, immersed in a magnesium chloride solution (0.5% by mass), which is a polyvalent metal salt solution, for 3 minutes, and further washed with water for 3 minutes. After drying at 100 ° C for 2 minutes, a battery separator of the present invention was obtained.
(比較例 7 ) (Comparative Example 7)
モノマーとして AAのみを用い、 表 6に示すモノマー溶液を調製した以外は実 施例 1 3、 14と同様にして、 電池用セパレータを得た c 表 6 Except for using only AA as the monomer and preparing the monomer solution shown in Table 6, In the same manner as施例1 3, 14, c table to obtain a battery separator 6
Figure imgf000037_0001
Figure imgf000037_0001
(実施例 1〜 3、 比較例 1〜 4の結果) (Results of Examples 1 to 3 and Comparative Examples 1 to 4)
不織布としてポリプロピレン (PP) 繊維 1 00%からなるスパンボンド不織 布を用いた実施例 1〜 3、 比較例 1、 3、 4において得られた電池用セパレータ 及び電池の評価結果、 及び市販のニッケル水素電池から取り出したセパレータの 評価を行った比較例 2において得られた結果を表 7に示す。  Evaluation results of the battery separators and batteries obtained in Examples 1 to 3 and Comparative Examples 1, 3, and 4 using a spunbond nonwoven fabric made of 100% polypropylene (PP) fiber as the nonwoven fabric, and a commercially available nickel Table 7 shows the results obtained in Comparative Example 2 in which the separator taken out of the hydrogen battery was evaluated.
AXQと AAとをグラフト共重合させた実施例 1〜3においては、 重合反応終 了後の繊維表面にホモポリマーの生成はなく、 外観上は重合前と何ら変わりなか つた。 表 7に示すように、 得られたセパレータの硫黄含有率は 0. 05%以上 であり、 スルホン酸基が導入されていることが確認、された。 また、 得られたセパ レータの I EC (c a 1 ) - I EC (o b s) は 0. 55mmo l /g以上、 ァ ンモニァ捕捉容量は 0. 3 lmmo 1/g以上であり、 高いアンモニア捕捉容量 を有することが判明した。 特に、 実施例 1、 2において得られたセパレータの I EC (c a 1 ) - I EC (o b s) は 0. 93mmo 1 Zg以上、 アンモニア捕 捉容量は 0. 6 Ommo 1 Zg以上であり、 非常に高いアンモニア捕捉容量を有 することが判明した。  In Examples 1 to 3 in which AXQ and AA were graft-copolymerized, no homopolymer was formed on the fiber surface after completion of the polymerization reaction, and the appearance was not different from that before polymerization. As shown in Table 7, the sulfur content of the obtained separator was 0.05% or more, and it was confirmed that sulfonic acid groups had been introduced. The obtained separator has an IEC (ca 1)-IEC (obs) of at least 0.55 mmol / g and an ammonia trapping capacity of at least 0.3 lmmo 1 / g. Was found to have. In particular, the separators obtained in Examples 1 and 2 had an IEC (ca 1)-IEC (obs) of 0.93 mmo 1 Zg or more, and an ammonia capture capacity of 0.6 Ommo 1 Zg or more. It was found to have a high ammonia trapping capacity.
また、 実施例 1〜3において得られたセパレータを装着した電池の容量保持率 は 6 1 %以上と高く、 かつ、 充放電の繰り返しサイクル寿命が 1 0 0 0サイクル 以上と長く、 自己放電を抑制することができ、 容量保持率が高く、 耐久性に優れ た電池を得ることができた。 特に、 実施例 1、 2において得られたセパレータを 装着した電池の容量保持率は 6 9 %以上と非常に高く、 かつ、 充放電の繰り返し サイクル寿命が 1 2 5 0サイクル以上と非常に長く、 自己放電をより抑制するこ とができ、 容量保持率がより高く、 より耐久性に優れた電池を得ることができた これに対して、 モノマーとして AAのみを用い、 紫外線照射前に予備加熱を行 わなかった比較例 1においては、 重合反応終了後に、 繊維表面に糊状に多量のホ モポリマーが生成され、 ホモポリマーを除去することができず、 セパレータ及ぴ 電池の評価を行うことができなかつた。 このように、 紫外線照射前に予備加熱を 行わない場合には、 分子量の小さい AAのみをグラフト重合させる場合において も、 繊維外部で重合反応が進行してホモポリマーが生成されることが判明した。 また、 市販のニッケル水素電池に使用されているセパレータ (ポリプロピレン 不織布に AAのみを 1 0 . 7 %グラフト重合したもの) の評価を行った比較例 2 では、 実施例 1、 2に比較して、 セパレータの I E C ( c a 1 ) - I E C ( o b s ) 、 アンモニア捕捉容量がいずれも小さく、 得られた電池の容量保持率が低く 、 充放電の繰り返しサイクル寿命が短いことが判明した。 Further, the capacity retention of the battery equipped with the separator obtained in Examples 1 to 3 Is as high as 61% or more, the repetition cycle life of charge and discharge is as long as 100 cycles or more, self-discharge can be suppressed, a high capacity retention rate, and a battery with excellent durability can be obtained. Was completed. In particular, the batteries equipped with the separators obtained in Examples 1 and 2 have a very high capacity retention of 69% or more, and a repetitive charge / discharge cycle life of at least 125 cycles. Self-discharge was further suppressed, and a higher capacity retention ratio and a more durable battery were obtained.On the other hand, only AA was used as the monomer, and preheating was performed before UV irradiation. In Comparative Example 1 where the polymerization was not performed, a large amount of a homopolymer was generated in the form of a paste on the fiber surface after the completion of the polymerization reaction, and the homopolymer could not be removed, so that the separator and the battery could be evaluated. Never As described above, it was found that when preheating was not performed before UV irradiation, even when only AA having a small molecular weight was graft-polymerized, a homopolymer was generated by the progress of the polymerization reaction outside the fiber. In Comparative Example 2 in which a commercial nickel-metal hydride battery was evaluated for a separator (a nonwoven polypropylene nonwoven fabric obtained by grafting only 10.7% of AA), Comparative Example 2 was compared with Examples 1 and 2. The IEC (ca 1) -IEC (obs) of the separator and the ammonia trapping capacity were all small, and the capacity retention rate of the obtained battery was low, and the cycle life of charge and discharge was short.
また、 実施例 3と比較すれば、 アンモニア捕捉容量では優れるものの、 充放電 の繰り返しサイクル寿命では劣ることが判明した。 比較例 2では、 A Aのみがグ ラフト重合されており、 電解液に対して化学的安定性に優れ、 酸化されにくいス ルホン酸基が導入されていないため、 電池の耐久性が劣る結果となっていると思 われる。  Further, as compared with Example 3, it was found that although the ammonia trapping capacity was excellent, the cycle life of repeated charge / discharge was inferior. In Comparative Example 2, only AA was graft-polymerized, the chemical stability to the electrolyte was excellent, and the sulfonate group that was not easily oxidized was not introduced, resulting in poor battery durability. It seems to be.
また、 A X Qの代わりに、 p—スチレンスルホン酸ナトリウムあるいはビュル スルホン酸ナトリウムを用いた比較例 3、 4においては、 重合反応終了後に、 繊 維表面にホモポリマーが多量に存在し、 洗浄しても完全に除去することはできな かった。 また、 得られたセパレータの硫黄含有率は 0 %であった。 このように、 スルホン酸基を有するモノマーとして、 p—スチレンスルホン酸ナトリゥムある いはビニルスルホン酸ナトリゥムを用いても、 繊維外部でのみ重合反応が進行し て、 スルホン酸基を導入することができないことが判明した。 In Comparative Examples 3 and 4 in which sodium p-styrenesulfonate or sodium butylsulfonate was used instead of AXQ, a large amount of a homopolymer was present on the fiber surface after the completion of the polymerization reaction. It could not be completely removed. The sulfur content of the obtained separator was 0%. Thus, even when sodium p-styrenesulfonate or sodium vinylsulfonate is used as the monomer having a sulfonic acid group, the polymerization reaction proceeds only outside the fiber. It was found that sulfonic acid groups could not be introduced.
また、 実施例 1、 2に比較して、 セパレータの I EC (c a 1 ) - I EC (o b s) 、 アンモニア捕捉容量がいずれも小さく、 得られた電池の容量保持率が低 く、 充放電の繰り返しサイクル寿命が短いことが判明した。 また、 実施例 3に比 較すれば、 アンモニア捕捉容量では優れるものの、 充放電の繰り返しサイクル寿 命では劣ることが判明した。 比較例 3、 4では、 電解液に対して化学的安定性に 優れ、 酸化されにくいスルホン酸基が導入されていないため、 電池の耐久性が劣 る結果となっていると思われる。 表 7  Further, as compared with Examples 1 and 2, both the IEC (ca 1)-IEC (obs) and the ammonia trapping capacity of the separator were small, and the capacity retention rate of the obtained battery was low. The cycle life was found to be short. Further, as compared with Example 3, it was found that although the ammonia trapping capacity was excellent, the cycle life of repeated charge and discharge was inferior. In Comparative Examples 3 and 4, it is considered that the durability of the battery was inferior because the electrolyte was excellent in chemical stability and a sulfonic acid group that was not easily oxidized was introduced. Table 7
Figure imgf000039_0001
Figure imgf000039_0001
(実施例 4、 5、 比較例 5の結果) (Results of Examples 4, 5 and Comparative Example 5)
不織布として、 芯成分がポリプロピレン (PP) 、 鞘成分がポリエチレン (P E) の芯鞘複合繊維からなる不織布を用いた実施例 4、 5、 比較例 5において、 得られた電池用セパレータ及び電池の評価結果を表 8に示す。  In Examples 4 and 5 and Comparative Example 5 in which a nonwoven fabric composed of a core-sheath composite fiber having a core component of polypropylene (PP) and a sheath component of polyethylene (PE) was used as the nonwoven fabric, the obtained battery separator and battery were evaluated. Table 8 shows the results.
AXQと AAとをグラフト共重合させた実施例 4、 5においては、 重合反応終 了後の繊維表面にホモポリマーの生成はなく、 外観上は重合前と何ら変わりなか つた。 表 8に示すように、 得られたセパレータの硫黄含有率は 0. 08%以上で あり、 スルホン酸基が導入されていることが確認された。 また、 得られたセパレ —タの I EC (c a 1 ) - I EC (o b s) は 0. 88 mm o lZg以上、 アン モニァ捕捉容量は 0. 55mnio lZg以上であり、 高いアンモニア捕捉容量を 有することが判明した。 In Examples 4 and 5 in which AXQ and AA were graft-copolymerized, no homopolymer was formed on the fiber surface after completion of the polymerization reaction, and the appearance was not different from that before polymerization. As shown in Table 8, the sulfur content of the obtained separator was 0.08% or more, and it was confirmed that sulfonic acid groups had been introduced. In addition, the obtained separator has an EC (ca 1)-IEC (obs) of 0.88 mm o lZg or more, and an ammonia trapping capacity of 0.55 mniol Zg or more. Was found to have.
また、 実施例 4、 5において得られたセパレータを装着した電池の容量保持 率は 70%以上と高く、 かつ、 充放電の繰り返しサイクル寿命が 1 1 50サイク ル以上と長く、 自己放電を抑制することができ、 容量保持率が高く、 耐久性に優 れた電池を得ることができた。  In addition, the capacity retention of the batteries equipped with the separators obtained in Examples 4 and 5 was as high as 70% or more, and the cycle life of charge and discharge was as long as 1150 cycles or more, and self-discharge was suppressed. As a result, a battery with high capacity retention and excellent durability was obtained.
これに対して、 モノマーとして AAのみを用いた比較例 5においては、 重合反 応終了後に、 繊維表面にホモポリマーが多量に存在し、 洗浄除去に長時間を要し た。 また、 実施例 4、 5に比較して、 セパレータの I EC (c a 1 ) 一 I EC ( o b s) 、 アンモニア捕捉容量がいずれも小さく、 得られた電池の容量保持率が 低く、 充放電の繰り返しサイクル寿命が短いことが'判明した。 表 8  In contrast, in Comparative Example 5, in which only AA was used as the monomer, a large amount of homopolymer was present on the fiber surface after the completion of the polymerization reaction, and it took a long time to wash and remove. Further, as compared with Examples 4 and 5, the separator has a small IEC (ca 1) -one IEC (obs) and a small ammonia trapping capacity, has a low capacity retention rate of the obtained battery, and has a repetitive charge / discharge cycle. It was found that the cycle life was short. Table 8
Figure imgf000040_0001
Figure imgf000040_0001
(実施例 6、 7の結果) (Results of Examples 6 and 7)
不織布としてポリエチレン (PE) 繊維 100%からなるスパンボンド不織布 を用いた実施例 6、 ポリプロピレン (PP) 繊維 100%からなるメルトブロー 不織布を用いた実施例 7において、 得られた電池用セパレータ及び電池の評価結 果を表 9に示す。  Evaluation of battery separator and battery obtained in Example 6 using spunbonded nonwoven fabric consisting of 100% polyethylene (PE) fiber as nonwoven fabric and Example 7 using meltblown nonwoven fabric consisting of 100% polypropylene (PP) fiber Table 9 shows the results.
AXQと AAとをグラフト共重合させた実施例 6、 7においては、 重合反応終 了後の繊維表面にホモポリマーの生成はなく、 外観上は重合前と何ら変わりなか つた。 表 9に示すように、 得られたセパレータの硫黄含有率は 0. 09%以上で あり、 スルホン酸基が導入されていることが確認された。 また、 得られたセパレ ータの I EC (c a 1 ) 一 I EC (o b s) は 0. 84 mm o 1 /g以上、 ァン モユア捕捉容量は 0. 52mmo 1 Zg以上であり、 高いアンモニア捕捉容量を 有することが判明した。 In Examples 6 and 7 in which AXQ and AA were graft-copolymerized, no homopolymer was formed on the fiber surface after the completion of the polymerization reaction, and the appearance was not different from that before polymerization. As shown in Table 9, the obtained separator had a sulfur content of 0.09% or more, and it was confirmed that sulfonic acid groups had been introduced. In addition, the obtained separator has an IEC (ca 1) -IEC (obs) of 0.84 mmo 1 / g or more, and a van Moyua capture capacity of 0.52 mmo 1 Zg or more. Capacity Was found to have.
また、 実施例 6、 7において得られたセパレータを装着した電池の容量保持率 は 68%以上と高く、 かつ、 充放電の繰り返しサイクル寿命が 1 1 90サイクル 以上と長く、 自己放電を抑制することができ、 容量保持率が高く、 耐久性に優れ た電池を得ることができた。  In addition, the batteries equipped with the separators obtained in Examples 6 and 7 have a high capacity retention of 68% or more, and have a long charge-discharge cycle life of at least 1190 cycles, and thus suppress self-discharge. A battery with high capacity retention and excellent durability was obtained.
表 9  Table 9
Figure imgf000041_0001
Figure imgf000041_0001
(実施例 8の結果) (Results of Example 8)
実施例 8において得られた 16種類の電池用セパレータの、 グラフト物の質量 分率、 I EC (c a 1 ) 、 I EC (o b s) 、 I EC (c a 1 ) — I EC (o b s) 、 アンモニア捕捉容量 AT Cを図 1にまとめて示す。  Graft fraction, IEC (ca 1), IEC (obs), IEC (ca 1) — IEC (obs), ammonia capture of the 16 types of battery separators obtained in Example 8 The capacity ATC is summarized in Figure 1.
図 1に示すように、 グラフト物の質量分率と、 I EC (c a 1 ) 、 I EC (o b s ) 、 I EC (c a 1 ) — I EC (o b s) 、 アンモニア捕捉容量 AT Cには 相関関係があることが判明した。  As shown in Fig. 1, there is a correlation between the mass fraction of the graft and IEC (ca 1), IEC (obs), IEC (ca 1) — IEC (obs), and ammonia trapping capacity ATC. It turned out that there is.
すなわち、 グラフト物の質量分率の増加に伴い、 I EC (c a l ) 、 I EC ( o b s) は増加することが判明した。 これに対して、 I EC (c a 1 ) — I EC (o b s) 、 及びアンモニア捕捉容量 AT Cは、 グラフト物の質量分率が約 10 %までグラフト物の質量分率の増加に伴って増加するが、 グラフト物の質量分率 が約 10%を超えるとグラフト物の質量分率の増加に伴って減少し、 両者は全く 同様の挙動を示すことが判明した。  That is, it was found that IEC (c a1) and IEC (obs) increased as the mass fraction of the graft increased. In contrast, IEC (ca 1) — IEC (obs) and ammonia trapping capacity ATC increase with increasing graft mass fraction up to about 10% graft mass fraction However, it was found that when the mass fraction of the graft product exceeded about 10%, it decreased with an increase in the mass fraction of the graft product, and both showed exactly the same behavior.
より詳細には、 グラフト物の質量分率を 4〜16%とすることが好ましく、 こ のように規定することにより、 I EC (c a 1 ) 一 I EC (o b s) を 0. 50 mmo l/g以上、 アンモニア捕捉容量 AT Cを 0. 30mmo l/g以上とす ることができることが判明した。 また、 グラフト物の質量分率を 5〜1 5%とす ることがより好ましく、 このように規定することにより、 I EC (c a 1 ) — I EC (o b s) を 0. 60mmo 1 / g以上、 アンモニア捕捉容量 A T Cを 0. 5 Ommo lZg以上とすることができることが判明した。 さらに、 グラフト物 の質量分率を 7〜13%とすることが特に好ましく、 このように規定することに より、 I EC (c a 1 ) - I EC (o b s) を 0. 8 Ommo 1 g以上、 アン モニァ捕捉容量 ATCを 0. 6 Ommo 1 / g以上とすることができることが判 明した。 More specifically, it is preferable that the mass fraction of the graft is 4 to 16%, and by defining as such, IEC (ca 1) -IEC (obs) is 0.50 mmol / g or more, and the ammonia capture capacity ATC was found to be 0.30 mmol / g or more. Further, it is more preferable that the mass fraction of the graft product is 5 to 15%. By defining as such, IEC (ca 1) —I It was found that EC (obs) can be set to 0.60 mmo 1 / g or more, and ammonia capture capacity ATC can be set to 0.5 Ommo lZg or more. Further, it is particularly preferable that the mass fraction of the graft is 7 to 13%, and thus, the IEC (ca 1)-IEC (obs) is 0.8 Ommo 1 g or more. It was found that the ammonia trapping capacity ATC can be 0.6 Ommo 1 / g or more.
(実施例 9、 1 0、 比較例 6の結果) (Results of Examples 9, 10 and Comparative Example 6)
不織布としてポリプロピレン (PP) 繊維 100%からなるスパンボンド不織 布を用い、 表面にグラフト重合したモノマーの酸性基を、 カルシウム若しくは亜 鉛を介して架橋した実施例 9、 10、 比較例 6において得られた電池用セパレー タ及ぴ電池の評価結果を表 10に示す。  The spunbond nonwoven fabric consisting of 100% polypropylene (PP) fiber was used as the nonwoven fabric, and the acidic groups of the monomers graft-polymerized on the surface were crosslinked via calcium or zinc in Examples 9, 10 and Comparative Example 6. Table 10 shows the evaluation results of the battery separators and batteries that were used.
AXQと AAとをグラフト共重合させ、 表面にグラフト重合したモノマーの酸 性基を、 カルシウム若しくは亜鉛を介して架橋した実施例 9、 10においては、 重合反応終了後の繊維表面にホモポリマーの生成はなく、 外観上は重合前と何ら 変わりなかった。 表 1 0に示すように、 得られたセパレータの硫黄含有率は 0. 05%以上であり、 スルホン酸基が導入されていることが確認された。 また、 得 られたセパレータの I EC ( c a 1 ) 一 I EC (o b s) は 0. 93 mm o 1 / g以上、 アンモニア捕捉容量は 0. 6 Ommo 1 /g以上であり、 高いアンモニ ァ捕捉容量を有することが判明した。  In Examples 9 and 10, where AXQ and AA were graft-copolymerized and the acid groups of the monomers graft-polymerized on the surface were crosslinked via calcium or zinc, a homopolymer was formed on the fiber surface after the polymerization reaction. There was no change and the appearance was the same as before polymerization. As shown in Table 10, the sulfur content of the obtained separator was 0.05% or more, and it was confirmed that sulfonic acid groups had been introduced. In addition, the obtained separator has an IEC (ca 1) -IEC (obs) of 0.93 mmo 1 / g or more, and an ammonia capture capacity of 0.6 Ommo 1 / g or more, and has a high ammonia capture capacity. Was found to have.
また、 実施例 9、 10において得られたセパレータを装着した電池の容量保持 率は 7 1%以上と高く、 かつ、 充放電の繰り返しサイクル寿命が 1 320サイク ル以上と長く、 自己放電を抑制することができ、 容量保持率が高く、 耐久性に優 れた電池を得ることができた。  The capacity retention of the batteries equipped with the separators obtained in Examples 9 and 10 is as high as 71% or more, and the cycle life of charge and discharge is as long as 1320 cycles or more, and self-discharge is suppressed. As a result, a battery with high capacity retention and excellent durability was obtained.
これに対して、 モノマーとして AAのみを用いた比較例 6において得られたセ パレータの I EC (c a 1 ) — I EC (o b s) 、 アンモニア捕捉容量がいずれ も実施例 9、 1 0に比較して小さく、 得られた電池の容量保持率が低く、 充放電 の繰り返しサイクル寿命が短いことが判明した。  On the other hand, in the separator obtained in Comparative Example 6 using only AA as the monomer, the IEC (ca 1) —IEC (obs), and the ammonia capturing capacity of the separator were all smaller than those of Examples 9 and 10. It was found that the battery obtained had a low capacity retention rate and a short cycle life of repeated charge and discharge.
また、 実施例 9、 10は、 各々実施例 1、 2と同じモノマー溶液を調製し、 実 施例 1、 2と同様にグラフト共重合を行ったものであり、 表面にグラフト重合し たモノマ一の酸性基を、 カルシウム若しくは亜鉛を介して架橋した点が実施例 1 、 2と異なっているが、 実施例 9、 10と実施例1、 2の結果から、 表面にダラ フト重合したモノマーの酸性基を、 カルシウム若しくは亜鉛を介して架橋するこ とにより、 電池の容量保持率と充放電の繰り返しサイクル寿命を向上することが できることが判明した (表 7、 表 10参照) 。 表 10 In Examples 9 and 10, the same monomer solutions were prepared as in Examples 1 and 2, respectively. The graft copolymerization was carried out in the same manner as in Examples 1 and 2, and differs from Examples 1 and 2 in that the acidic group of the monomer graft-polymerized on the surface was crosslinked via calcium or zinc. However, based on the results of Examples 9 and 10 and Examples 1 and 2, the acidic groups of the monomer polymerized in the surface on the surface were cross-linked through calcium or zinc, thereby improving the capacity retention and charge / discharge of the battery. It was found that the cycle life could be improved (see Tables 7 and 10). Table 10
Figure imgf000043_0001
Figure imgf000043_0001
(実施例 1 1、 1 2の結果) (Results of Examples 11 and 12)
不織布として、 芯成分がポリプロピレン (PP) 、 鞘成分がポリエチレン (P E) の芯鞘複合繊維からなる不織布を用い、 表面にグラフト重合したモノマーの 酸性基を、 カルシウム若しくは亜鉛を介して架橋した実施例 1 1、 1 2において 、 得られた電池用セパレータ及び電池の評価結果を表 1 1に示す。  Example in which a nonwoven fabric made of a core-sheath composite fiber with a core component of polypropylene (PP) and a sheath component of polyethylene (PE) was used as the nonwoven fabric, and the acidic group of the monomer graft-polymerized on the surface was crosslinked via calcium or zinc. Tables 11 and 12 show the evaluation results of the obtained battery separators and batteries.
AXQと AAとをグラフト共重合させ、 表面にグラフト重合したモノマーの酸 性基を、 カルシウム若しくは亜鉛を介して架橋した実施例 1 1、 12においては 、 重合反応終了後の繊維表面にホモポリマーの生成はほとんどなく、 外観上は重 合前と何ら変わりなかった。 表 1 1に示すように、 得られたセパレータの硫黄含 有率は 0. 08%以上であり、 スルホン酸基が導入されていることが確認された 。 また、 得られたセパレータの I EC (c a 1 ) - I EC (o b s) は 0. 88 mmo lZg以上、 アンモニア捕捉容量は 0. 55mmo 1 Zg以上であり、 高 いアンモニア捕捉容量を有することが判明した。  In Examples 11 and 12 in which AXQ and AA were graft-copolymerized, and the acid groups of the monomers graft-polymerized on the surface were cross-linked via calcium or zinc, the homopolymer was formed on the fiber surface after the polymerization reaction. There was almost no formation, and the appearance was no different from that before polymerization. As shown in Table 11, the obtained separator had a sulfur content of 0.08% or more, and it was confirmed that sulfonic acid groups had been introduced. In addition, the obtained separator has an IEC (ca 1)-IEC (obs) of 0.88 mmo lZg or more, and an ammonia trapping capacity of 0.55 mmo 1 Zg or more, indicating a high ammonia trapping capacity. did.
また、 実施例 1 1、 12において得られたセパレータを装着した電池の容量 保持率は 72 %以上と高く、 かつ、 充放電の繰り返しサイクル寿命が 1 250サ ィクル以上と長く、 自己放電を抑制することができ、 容量保持率が高く、 耐久性 に優れた電池を得ることができた。 In addition, the capacity retention of the battery equipped with the separator obtained in Examples 11 and 12 was as high as 72% or more, and the cycle life of repeated charge and discharge was 1250 sa. As a result, a battery having a high capacity retention rate and excellent durability was obtained.
また、 実施例 1 1は、 実施例 4と同じモノマー溶液を調製し、 実施例 4と同 様にグラフト共重合を行ったものであり、 表面にグラフト重合したモノマーの酸 性基を、 カルシウムを介して架橋した点が実施例 4と異なっているが、 実施例 1 1実施例 4の結果から、 表面にグラフト重合したモノマーの酸性基を、 カルシゥ ムを介して架橋することにより、 電池の容量保持率と充放電の繰り返しサイクル 寿命を向上することができることが判明した (表 8、 表 1 1参照) 。 表 1 1  In Example 11, the same monomer solution as in Example 4 was prepared, and graft copolymerization was performed in the same manner as in Example 4.The acid group of the monomer graft-polymerized on the surface was replaced with calcium. Example 4 is different from Example 4 in that cross-linking was performed through the intermediary process. Example 11 1 From the results of Example 4, it was found that the acid capacity of the monomer graft-polymerized on the surface was cross-linked through calcium to increase the battery capacity. It was found that the retention rate and the cycle life of charge / discharge cycles could be improved (see Table 8 and Table 11). Table 11
Figure imgf000044_0001
Figure imgf000044_0001
(実施例 1 3、 14の結果) (Results of Examples 13 and 14)
高エネルギー線として電子線を用いてグラフト共重合を行い、 表面にグラフト 重合したモノマーの酸性基を、 マグネシウムを介して架橋した実施例 1 3、 14 、 比較例 7において、 得られた電池用セパレータ及び電池の評価結果を表 1 2に 示す。  The battery separator obtained in Examples 13 and 14 and Comparative Example 7 in which graft copolymerization was performed using an electron beam as a high energy beam, and the acidic group of the monomer graft-polymerized on the surface was crosslinked via magnesium. Table 12 shows the evaluation results of the batteries and batteries.
高エネルギー線として電子線を用い、 表面にグラフト重合したモノマーの酸性 基を、 マグネシウムを介して架橋した場合においても、 高エネルギー線として紫 外線を用い、 表面にグラフト重合したモノマーの酸性基を、 カルシウム若しくは 亜鉛を介して架橋した実施例 9〜1 2と同様の結果が得られ、 重合反応終了後の 繊維表面にホモポリマーの生成はなく、 外観上は重合前と何ら変わりなかった。 また、 表 1 2に示すように、 得られたセパレータの硫黄含有率は 0. 05%以上 であり、 スルホン酸基が導入されていることが確認された。 また、 得られたセパ レータの I EC (c a 1 ) - I EC (o b s) は 0. 73 mm o 1 / g以上、 ァ ンモユア捕捉容量は 0. 54mmo 1 /g以上であり、 高いアンモニア捕捉容量 を有することが判明した。 Even when an electron group is used as a high-energy beam and the acidic group of the monomer graft-polymerized on the surface is cross-linked via magnesium, the acidic group of the monomer graft-polymerized on the surface using an ultraviolet ray as the high-energy ray The same results as in Examples 9 to 12 in which crosslinking was carried out via calcium or zinc were obtained. No homopolymer was formed on the fiber surface after the completion of the polymerization reaction, and the appearance was not different from that before polymerization. Further, as shown in Table 12, the sulfur content of the obtained separator was 0.05% or more, and it was confirmed that sulfonic acid groups had been introduced. In addition, the obtained separator has an IEC (ca 1)-IEC (obs) of 0.73 mmo 1 / g or more, and a ammonia capture capacity of 0.54 mmo 1 / g or more, and a high ammonia capture capacity. Was found to have.
また、 実施例 1 3、 14において得られたセパレータを装着した電池の容量 保持率は 70%以上と高く、 かつ、 充放電の繰り返しサイクル寿命が 1 280サ イタル以上と長く、 自己放電を抑制することができ、 容量保持率が高く、 耐久性 に優れた電池を得ることができた。  In addition, the batteries equipped with the separators obtained in Examples 13 and 14 have a high capacity retention of 70% or more, and a long cycle life of charge and discharge of 1280 or more, which suppresses self-discharge. As a result, a battery having a high capacity retention rate and excellent durability was obtained.
これに対して、 モノマーとして AAのみを用いた比較例 7において得られたセ パレータの I EC (c a 1 ) - I EC (o b s) 、 アンモユア捕捉容量がいずれ も実施例 1 3、 14に比較して小さく、 得られた電池の容量保持率が低く、 充放 電の繰り返しサイクル寿命が短いことが判明した。 表 12  On the other hand, the IEC (ca 1)-IEC (obs) and the capacity to capture ammonia in the separator obtained in Comparative Example 7 using only AA as the monomer were all compared to those in Examples 13 and 14. It was found that the capacity retention of the obtained battery was low, and the cycle life of charge and discharge was short. Table 12
Figure imgf000045_0001
以上の結果から、 本発明によれば、 用いる不織布や高エネルギー線の種類に関 係なく、 AXQと AAとをグラフト共重合することにより、 スルホン基を導入す ることができ、 高いァンモユア捕捉容量を有する電池用セパレータを提供するこ とができることが判明した。 また、 得られたセパレータを装着することにより、 容量保持率が高く、 充放電の繰り返しサイクル寿命の長い、 性能に優れた電池を 提供することができることが判明した。
Figure imgf000045_0001
From the above results, according to the present invention, irrespective of the type of nonwoven fabric or high-energy ray used, a sulfone group can be introduced by graft copolymerization of AXQ and AA, and a high trapping capacity for ammonia can be obtained. It has been found that a battery separator having the following characteristics can be provided. In addition, it was found that by attaching the obtained separator, a battery having a high capacity retention rate, a long cycle life of repeated charge and discharge, and excellent performance can be provided.
また、 AXQと AAとをグラフト共重合すると共に、 表面にグラフト重合した モノマーの酸性基を、 多価金属を介して架橋することが好ましく、 かかる構成の 本発明の電池用セパレータを装着することにより、 容量保持率と、 充放電の繰り 返しサイクル寿命を一層向上できることが判明した。  Further, it is preferable that AXQ and AA are graft-copolymerized, and the acidic group of the monomer graft-polymerized on the surface is cross-linked via a polyvalent metal, and by mounting the battery separator of the present invention having such a configuration. It was found that the capacity retention rate and the cycle life of repeated charge / discharge could be further improved.

Claims

請求の範囲 The scope of the claims
1. ポリオレフイン系繊維からなる基材に、 スルホン酸基を有するモノマーであ る 2—アクリルアミ ド 2—メチルプロパンスルホン酸と、 カルボキシ基を有する モノマーとがグラフト共重合されていることを特徴とする電池用セパレータ。 1. Graft copolymerization of 2-acrylamide 2-methylpropanesulfonic acid, a monomer having a sulfonic acid group, and a monomer having a carboxy group, on a substrate made of polyolefin fiber. Battery separator.
2. ポリオレフイン系繊維からなる基材に、 スルホン酸基を有するモノマーであ る 2—アクリルアミ ド 2—メチルプロパンスルホン酸と、 カルボキシ基を有する モノマーとがグラフト共重合されていると共に、 2. On a substrate made of polyolefin fiber, 2-acrylamide 2-methylpropanesulfonic acid, a monomer having a sulfonic acid group, and a monomer having a carboxy group are graft-copolymerized, and
少なくとも表面にグラフト重合された少なくとも 1種のモノマーの酸性基が多 価金属を介して架橋されていることを特徴とする電池用セパレータ。  A battery separator, wherein an acidic group of at least one kind of monomer graft-polymerized on at least the surface is crosslinked via a polyvalent metal.
3. 前記多価金属が、 カルシウム、 マグネシウム、 バリウム、 アルミニウム、 亜 鉛、 チタン、 ジルコニウム、 錫から選ばれる少なくとも 1種であることを特徴と する請求項 2に記載の電池用セパレータ。 3. The battery separator according to claim 2, wherein the polyvalent metal is at least one selected from calcium, magnesium, barium, aluminum, zinc, titanium, zirconium, and tin.
4. 前記カルボキシ基を有するモノマーが、 アクリル酸もしくはメタクリル酸で あることを特徴とする請求項 1項に記載の電池用セパレータ。 4. The battery separator according to claim 1, wherein the monomer having a carboxy group is acrylic acid or methacrylic acid.
5. 硫黄含有率が 0. 05%以上であることを特徴とする請求項 1項に記載の電 池用セパレータ。 5. The battery separator according to claim 1, wherein the sulfur content is 0.05% or more.
6. グラフト物の質量分率から求めた理論的イオン交換容量 I EC (c a 1 ) と 実測したカリウムイオン交換容量 I EC (o b s) との差が 0. 50mmo lZ g以上であることを特徴とする請求項 1項に記載の電池用セパレータ。 6. The difference between the theoretical ion exchange capacity I EC (ca 1) obtained from the mass fraction of the graft and the measured potassium ion exchange capacity I EC (obs) is 0.50 mmolZg or more. The battery separator according to claim 1, wherein
7. アンモニア捕捉容量が 0. 3 Ommo 1 /g以上であることを特徴とする請 求項 1項に記載の電池用セパレータ。 7. The battery separator according to claim 1, wherein the ammonia capturing capacity is 0.3 Ommo 1 / g or more.
8. グラフト物の質量分率が 4〜1 6%であることを特徴とする請求項 1項に記 載の電池用セパレータ。 8. The battery separator according to claim 1, wherein the graft has a mass fraction of 4 to 16%.
9. グラフト物の質量分率から求めた理論的イオン交換容量 I EC (c a 1) と 実測したカリウムイオン交換容量 I EC (o b s) との差が 0. 6 Ommo 1 / g以上であることを特徴とする請求項 1項に記載の電池用セパレータ。 9. Confirm that the difference between the theoretical ion exchange capacity I EC (ca 1) obtained from the mass fraction of the graft and the measured potassium ion exchange capacity I EC (obs) is 0.6 Ommo 1 / g or more. The battery separator according to claim 1, wherein the battery separator is a battery separator.
10. アンモニア捕捉容量が 0. 5 Ommo 1 /g以上であることを特徴とする 請求項 1項に記載の電池用セパレータ。 10. The battery separator according to claim 1, wherein the ammonia trapping capacity is 0.5 Ommo1 / g or more.
1 1. グラフト物の質量分率が 5〜1 5%であることを特徴とする請求項 1項に 記載の電池用セパレータ。 1 1. The battery separator according to claim 1, wherein the mass fraction of the graft product is 5 to 15%.
1 2. 正極活物質として水酸化ニッケルを用いたアルカリ二次電池用であること を特徴とする請求項 1項に記載の電池用セパレータ。 1 2. The battery separator according to claim 1, wherein the separator is for an alkaline secondary battery using nickel hydroxide as a positive electrode active material.
1 3. 請求項 1項に記載の電池用セパレータの製造方法であって、 1 3. A method for producing a battery separator according to claim 1, wherein
ポリオレフイン系繊維からなる基材に、 2—アクリルアミド 2 _メチルプロパ ンスルホン酸と、 カルボキシ基を有するモノマーとを含有するモノマー溶液を含 浸させるモノマー溶液含浸工程と、  A monomer solution impregnating step of impregnating a substrate made of polyolefin fiber with a monomer solution containing 2-acrylamide 2-methylpropanesulfonic acid and a monomer having a carboxy group;
前記モノマー溶液を含浸させた前記基材を、 該基材を保持する保持材とポリェ ステルフィルムとに挟持させた状態で、 前記ポリエステルフィルム側から前記基 材に高エネルギー線を照射する高エネルギー線照射工程とを有することを特徴と する電池用セパレータの製造方法。  A high-energy ray that irradiates the substrate with a high-energy ray from the polyester film side in a state in which the base material impregnated with the monomer solution is sandwiched between a holding material holding the base material and a polyester film. A method for producing a battery separator, comprising an irradiation step.
14. 前記高エネルギー線照射工程の前に、 前記モノマー溶液を含浸させた前記 基材を、該基材を保持する保持材とポリエステルフィルムとに挟持させた状態で、14. Before the high energy ray irradiation step, in a state where the base material impregnated with the monomer solution is sandwiched between a holding material holding the base material and a polyester film,
70〜100°Cの温度で予備加熱し、 モノマーを繊維内部に拡散させる予備加熱 工程をさらに有することを特徴とする請求項 1 3に記載の電池用セパレータの製 造方法。 14. The battery separator according to claim 13, further comprising a preheating step of preheating at a temperature of 70 to 100 ° C. and diffusing the monomer into the fiber. Construction method.
1 5 . 前記高エネルギー線照射工程において、 前記予備加熱工程での加熱温度を 保持しながら、 高エネルギー線を照射することを特徴とする請求項 1 4に記載の 電池用セパレータの製造方法。 15. The method for producing a battery separator according to claim 14, wherein in the high energy ray irradiation step, high energy rays are irradiated while maintaining a heating temperature in the preheating step.
PCT/JP2002/002657 2001-06-04 2002-03-20 Separator for battery and method for producing the same WO2003003486A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2001-168451 2001-06-04
JP2001168451 2001-06-04
JP2001266351 2001-09-03
JP2001-266351 2001-09-03
JP2002-024136 2002-01-31
JP2002024136A JP2003151523A (en) 2001-06-04 2002-01-31 Battery separator and its manufacturing method

Publications (1)

Publication Number Publication Date
WO2003003486A1 true WO2003003486A1 (en) 2003-01-09

Family

ID=27346875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/002657 WO2003003486A1 (en) 2001-06-04 2002-03-20 Separator for battery and method for producing the same

Country Status (2)

Country Link
JP (1) JP2003151523A (en)
WO (1) WO2003003486A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3275569A1 (en) * 2016-07-25 2018-01-31 Toyota Shatai Kabushiki Kaisha Molding material mixture and method for producing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4919584B2 (en) * 2004-02-26 2012-04-18 三洋電機株式会社 Nickel metal hydride storage battery
FR2911883B1 (en) * 2007-01-29 2009-05-01 Intissel Soc Par Actions Simpl IONIZING RADIATION GRAFTING PROCESS USING REACTIVE SURFACE MOLECULE, TEXTILE SUBSTRATE AND BATTERY SEPARATOR OBTAINED BY GRAFTING

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235155A (en) * 1988-03-15 1989-09-20 Sanyo Chem Ind Ltd Separator for storage battery
JPH07138391A (en) * 1993-11-15 1995-05-30 Tonen Chem Corp Modification of polyolefinic base material
JPH1167179A (en) * 1997-08-12 1999-03-09 Tounen Tapirusu Kk Separator for alkaline battery and manufacture thereof
JPH1167183A (en) * 1997-08-13 1999-03-09 Tounen Tapirusu Kk Separator for alkaline battery
JP2001110389A (en) * 1999-10-12 2001-04-20 Kuraray Co Ltd Separator for battery
JP2001110393A (en) * 1999-10-13 2001-04-20 Kuraray Co Ltd Separator for battery
JP2002134088A (en) * 2000-10-25 2002-05-10 Daiwabo Co Ltd Battery separator and alkaline storage battery using it

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01235155A (en) * 1988-03-15 1989-09-20 Sanyo Chem Ind Ltd Separator for storage battery
JPH07138391A (en) * 1993-11-15 1995-05-30 Tonen Chem Corp Modification of polyolefinic base material
JPH1167179A (en) * 1997-08-12 1999-03-09 Tounen Tapirusu Kk Separator for alkaline battery and manufacture thereof
JPH1167183A (en) * 1997-08-13 1999-03-09 Tounen Tapirusu Kk Separator for alkaline battery
JP2001110389A (en) * 1999-10-12 2001-04-20 Kuraray Co Ltd Separator for battery
JP2001110393A (en) * 1999-10-13 2001-04-20 Kuraray Co Ltd Separator for battery
JP2002134088A (en) * 2000-10-25 2002-05-10 Daiwabo Co Ltd Battery separator and alkaline storage battery using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3275569A1 (en) * 2016-07-25 2018-01-31 Toyota Shatai Kabushiki Kaisha Molding material mixture and method for producing the same

Also Published As

Publication number Publication date
JP2003151523A (en) 2003-05-23

Similar Documents

Publication Publication Date Title
JP4452738B2 (en) Electrochemical device and method for manufacturing electrode separator for electrochemical device
JP5927295B2 (en) Fiber using olefin resin, nonwoven fabric using the fiber, separator for alkaline storage battery
EP0991804A1 (en) Non-woven fabric laminate
US6042970A (en) Method of forming a separator for alkaline electrolyte secondary electric cell
WO2003003486A1 (en) Separator for battery and method for producing the same
US6348286B1 (en) Alkaline battery separator and process for producing the same
US20110229752A1 (en) Battery separator and secondary battery
JP2002203532A (en) Separator for battery and its manufacturing method as well as battery using the same
JP3784496B2 (en) Alkaline battery separator
JP3772018B2 (en) Alkaline battery separator
US7625955B2 (en) Porous polymeric article
JP3684558B2 (en) Nickel-hydrogen battery separator
JPH07138391A (en) Modification of polyolefinic base material
JPH1173938A (en) Separator for alkaline battery
WO2018207894A1 (en) Separator for alkaline storage batteries, and alkaline storage battery
JPWO2016208028A1 (en) Battery separator, secondary battery
JPH10208722A (en) Manufacture of battery separator
JP2015041458A (en) Battery separator
JP2019173227A (en) Hydrophilic nonwoven fabric and alkaline rechargeable battery
JPH11111257A (en) Separator for battery
JP2001348406A (en) Hydrophilized olefin composition and its production method
JPH1040897A (en) Separator for alkaline zinc storage battery, and alkaline zinc storage battery using it
JP2000353508A (en) Alkaline battery separator
JP2001283819A (en) Separator for alkaline battery and manufacturing method
JPH06187963A (en) Nonwoven fabric separator for alkaline battery and manufacture thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase