JP4919584B2 - Nickel metal hydride storage battery - Google Patents

Nickel metal hydride storage battery Download PDF

Info

Publication number
JP4919584B2
JP4919584B2 JP2004052358A JP2004052358A JP4919584B2 JP 4919584 B2 JP4919584 B2 JP 4919584B2 JP 2004052358 A JP2004052358 A JP 2004052358A JP 2004052358 A JP2004052358 A JP 2004052358A JP 4919584 B2 JP4919584 B2 JP 4919584B2
Authority
JP
Japan
Prior art keywords
separator
storage battery
metal hydride
nickel
hydride storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004052358A
Other languages
Japanese (ja)
Other versions
JP2005243462A (en
Inventor
育幸 原田
裕政 杉井
誠 越智
正夫 武江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2004052358A priority Critical patent/JP4919584B2/en
Publication of JP2005243462A publication Critical patent/JP2005243462A/en
Application granted granted Critical
Publication of JP4919584B2 publication Critical patent/JP4919584B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Description

本発明は、ニッケル水素蓄電池に関し、特にスルホン化処理ポリオレフィンセパレータを使用したニッケル水素蓄電池に関する。 The present invention relates to a nickel hydrogen storage battery, to a nickel hydrogen storage battery particularly using sulfonated polyolefin cell Pared data.

二次電池の用途は、パーソナルコンピュータ(PC)、携帯電話、自動車、電気自動車(EV)、ハイブリッド車(HEV)、電動アシスト自転車、電動工具等広範囲に亘り、より一層の特性向上のため、自己放電抑制、長寿命化などの様々な改良が行われている。   Secondary batteries are used for personal computers (PCs), mobile phones, automobiles, electric vehicles (EV), hybrid vehicles (HEV), electric assist bicycles, electric tools, etc. Various improvements such as discharge suppression and longer life have been made.

ニッケル水素蓄電池、ニッケルカドミウム蓄電池等のアルカリ蓄電池においては、電池系内の硝酸根がシャトルイオンとなって自己放電を引き起こすことが知られている(下記特許文献1及び2参照)。なお、ニッケル水素蓄電池に関する前記自己放電に関与する反応機構は以下の(1)式〜(5)式のとおりである。
陰極
NO +MH → MHX−2+ NO +HO (1)
NO +MH → MHX−6+ NHOH + OH (2)
又は、
NO +MH → MHX−6 + NH+ HO + OH (2')
電解液
NHOH ←→ NH+ HO (3)
陽極
NH+6NiOOH+HO+OH→6Ni(OH)+ NO (4)
NO +2NiOOH+HO →2Ni(OH)+ NO (5)
In alkaline storage batteries such as nickel metal hydride storage batteries and nickel cadmium storage batteries, it is known that nitrate radicals in the battery system become shuttle ions and cause self-discharge (see Patent Documents 1 and 2 below). In addition, the reaction mechanism in connection with the said self-discharge regarding a nickel hydride storage battery is as the following (1) Formula-(5) Formula.
Cathode NO 3 + MH X → MH X−2 + NO 2 + H 2 O (1)
NO 2 + MH X → MH X−6 + NH 4 OH + OH (2)
Or
NO 2 + MH X → MH X−6 + NH 3 + H 2 O + OH (2 ′)
Electrolyte NH 4 OH ← → NH 3 + H 2 O (3)
Anode NH 3 + 6NiOOH + H 2 O + OH → 6Ni (OH) 2 + NO 2 (4)
NO 2 + 2NiOOH + H 2 O → 2Ni (OH) 2 + NO 3 (5)

そのため、ニッケル水素蓄電池においては、自己放電抑制のために、スルホン化処理ポリオレフィンセパレータやポリアクリル酸の共重合体を含むセパレータが用いられているが、これは自己放電の原因となる窒素系シャトルイオンの中で、アンモニアを捕捉するからである。すなわち、窒素系シャトルイオンはセパレータ中の窒素含有成分の分解によって生じる他に電解液中に不純物として含まれたり、また、電極の製造工程においても混入されやすいので、電池内への窒素系シャトルイオン源の混入を防ぐことはきわめて困難である。しかしながら、電池内の窒素系シャトルイオンを除去できれば、自己放電を抑制することが可能となるわけである。   Therefore, in nickel metal hydride storage batteries, sulfonated polyolefin separators and separators containing polyacrylic acid copolymers are used to suppress self-discharge, which is a nitrogen-based shuttle ion that causes self-discharge. It is because ammonia is trapped in the inside. That is, nitrogen-based shuttle ions are generated as a result of decomposition of the nitrogen-containing component in the separator and are also included as impurities in the electrolyte, and are also easily mixed in the electrode manufacturing process. It is extremely difficult to prevent source contamination. However, if the nitrogen-based shuttle ions in the battery can be removed, self-discharge can be suppressed.

このような観点から、下記特許文献1に開示されている発明では、アンモニア捕捉能力の指標としてアルカリ電解液に浸漬後に中和されていない酸性基量が1×10−3mol/m以上のスルホン化処理ポリオレフィンセパレータを使用したものが、また、下記特許文献2に開示されている発明では、ポリアクリル酸の共重合体からなる粒子状のポリマーを付着させたセパレータにおいて、アンモニア結合能がポリマー粉末1g当たり少なくとも0.2mol(NH/g)のものを使用したものが、それぞれ開示されている。
特開2001−283819号公報(特許請求の範囲、段落[0011]、[0018]〜[0026]) 特開2004−006354号公報(特許請求の範囲、段落[0004]〜[0008])
From such a viewpoint, in the invention disclosed in Patent Document 1 below, the amount of acidic groups that are not neutralized after being immersed in an alkaline electrolyte is 1 × 10 −3 mol / m 2 or more as an index of the ammonia capturing ability. In the invention using a sulfonated polyolefin separator, and in the invention disclosed in the following Patent Document 2, the separator to which a particulate polymer made of a copolymer of polyacrylic acid is adhered is a polymer having an ammonia binding ability. Each of those using at least 0.2 mol (NH 3 / g) per gram of powder is disclosed.
JP 2001-283819 A (claims, paragraphs [0011], [0018] to [0026]) JP 2004006354 A (claims, paragraphs [0004] to [0008])

上述のように、従来のニッケル水素蓄電池においては、自己放電を低下させる目的でスルホン化処理ポリオレフィンセパレータやポリアクリル酸の共重合体を含むセパレータを使用してアンモニアを捕捉し、延いては電解液中の硝酸イオン、亜硝酸イオン等の硝酸根濃度の低減を図っていた。しかし、スルホン化処理ポリオレフィンセパレータは、初期の電解液浸透速度が十分ではないため、初期状態ではセパレータの保液が十分ではない。これは、ポリオレフィンは親水性基を持たず、またスルホン化処理によってポリオレフィン繊維に親水性基であるスルホン基が導入されると一応繊維表面のみならず繊維内部にまでスルホン基の導入反応が進行するが、有効に働くスルホン基はポリオレフィンの表面の一部のみであることに起因する。   As described above, in the conventional nickel-metal hydride storage battery, ammonia is captured using a sulfonated polyolefin separator or a separator containing a copolymer of polyacrylic acid for the purpose of reducing self-discharge, and thus an electrolyte solution. The concentration of nitrate radicals such as nitrate ions and nitrite ions was reduced. However, since the sulfonated polyolefin separator does not have a sufficient initial electrolyte permeation rate, the separator is not sufficiently retained in the initial state. This is because polyolefin does not have a hydrophilic group, and when a sulfone group, which is a hydrophilic group, is introduced into a polyolefin fiber by sulfonation, the introduction reaction of the sulfone group proceeds not only to the fiber surface but also to the inside of the fiber. However, the effective sulfone group is due to only a part of the surface of the polyolefin.

セパレータの保液が十分でないと、セパレータの繊維表面での濡れ性が低くなるし、電解液がセパレータの孔を閉塞し、セパレータ内のガス透過性が低下し、アルカリ蓄電池組み立て後の充放電による活性化の際に内圧上昇を引き起こす。また、セパレータの保液が充分でないと、セパレータに含まれる電解液分布が不均一となり、結果として電極表面における充放電反応が不均一となって、電池特性に悪影響を与える。   If the separator has insufficient liquid retention, the wettability of the separator on the fiber surface will be low, the electrolyte will block the pores of the separator, the gas permeability in the separator will be reduced, and charging / discharging after assembling the alkaline storage battery Causes an increase in internal pressure during activation. Moreover, when the liquid retention of the separator is not sufficient, the distribution of the electrolyte contained in the separator becomes non-uniform, resulting in non-uniform charge / discharge reaction on the electrode surface, which adversely affects battery characteristics.

このような問題点の解決のため、セパレータの繊維表面のスルホン基の数を増やすためにスルホン化処理をより進行させると、繊維強度が低下し、電池作製時に必要な強度が得られず、ショート率が上昇する問題が新たに生じる。また、親水性向上のために電解液中に界面活性剤を添加すると、界面活性剤の化学的安定性が充分でないため、酸化、分解等の化学変化を引き起こし、電池寿命を低下させる問題が生じる。   In order to solve such problems, if the sulfonation treatment is further advanced in order to increase the number of sulfone groups on the fiber surface of the separator, the fiber strength is lowered, and the strength required at the time of battery production cannot be obtained. A new problem of increasing rates arises. In addition, if a surfactant is added to the electrolyte to improve hydrophilicity, the chemical stability of the surfactant is not sufficient, causing chemical changes such as oxidation and decomposition, resulting in a problem of reducing battery life. .

また、ニッケル水素蓄電池の長寿命化に関しては、電池設計への取り組みもなされている。これは負極が充電条件によっては先に満充電に達することも一因となっている。つまり、充電時に正極の不可逆反応成分の反応(例えば水酸化コバルトの還元反応)や正極からの酸素ガス発生による他部材の酸化、合金溶出等が起こること等により、一見、負極のみが充電される反応が生じる場合がある。このような充電反応が継続すると負極への水素蓄積が起こるが、この状態で負極が満充電に達した場合には、負極から水素ガスが発生し、電池系外に水素ガスが放出され、電解液が枯渇して電池内部抵抗の上昇や、充放電反応ができなくなるという現象が生じる。   In addition, efforts have been made to design batteries for extending the life of nickel-metal hydride storage batteries. This is also due to the fact that the negative electrode reaches full charge first depending on the charging conditions. In other words, only the negative electrode is charged at first glance due to the reaction of the irreversible reaction component of the positive electrode (for example, the reduction reaction of cobalt hydroxide), oxidation of other members due to the generation of oxygen gas from the positive electrode, alloy elution, etc. A reaction may occur. When such a charging reaction continues, hydrogen accumulation in the negative electrode occurs. However, when the negative electrode reaches full charge in this state, hydrogen gas is generated from the negative electrode, and hydrogen gas is released outside the battery system. A phenomenon occurs in which the battery is depleted and the internal resistance of the battery increases and the charge / discharge reaction cannot be performed.

この状態を解決するためには、正極容量に比べて負極容量を多くした設計とする必要があるが、負極容量を大きくするためには他の部材の占める容量を低減させる必要があり、その結果として他の電池性能の低下を招くことになるので、同一設計で寿命をより向上させることは困難であった。   In order to solve this situation, it is necessary to design the negative electrode capacity to be larger than the positive electrode capacity, but in order to increase the negative electrode capacity, it is necessary to reduce the capacity occupied by other members, and as a result Therefore, it is difficult to further improve the service life with the same design.

本発明者等は、上述の従来技術の有する問題点を解決すべく種々実験を重ねた結果、予めスルホン化処理セパレータにアンモニアを反応させ、これを用いてニッケル水素蓄電池を構成することで、スルホン化処理ポリオレフィンセパレータの初期含液性を向上させることができるようになることを知見し、更に、この現象を調査していく中で、硝酸塩や亜硝酸塩を電池系内に添加したところ、自己放電によって硝酸イオンや亜硝酸イオンが還元されてアンモニアとなり、これがスルホン化処理ポリオレフィンセパレータに捕捉されることから、セパレータへの親水性基導入と負極蓄積水素の低減を同時になし得ることを見出し、本発明を完成するに至ったのである。   As a result of repeating various experiments to solve the above-described problems of the prior art, the present inventors made ammonia react with a sulfonated separator in advance, and constituted a nickel-metal hydride storage battery by using this. In the process of investigating this phenomenon, it was found that nitrate and nitrite were added to the battery system and self-discharge occurred. Nitrate ions and nitrite ions are reduced to ammonia by this, and this is trapped in the sulfonated polyolefin separator, so that it is possible to simultaneously introduce hydrophilic groups into the separator and reduce negative electrode accumulated hydrogen, and the present invention Has been completed.

すなわち、本発明の目的は、スルホン化処理ポリオレフィンセパレータを使用したニッケル水素蓄電池において、セパレータへの親水性基導入と負極蓄積水素の低減を同時に行うことができ、電池の正負極容量比設計を従来と同等としたまま寿命特性に優れたニッケル水素蓄電池を提供することを目的とする。 That is, purpose of the present invention, the nickel-metal hydride battery using the sulfonated polyolefin separator, reduction of the hydrophilic groups introduced and the negative accumulation hydrogen to the separator can be carried out simultaneously, the negative electrode capacity ratio design of the battery An object of the present invention is to provide a nickel-metal hydride storage battery having excellent life characteristics while being equivalent to the conventional one.

本発明の上記目的は以下の構成を備えることにより達成し得る。すなわち、本発明のニッケル水素蓄電池は、スルホン化処理ポリオレフィンセパレータを使用したニッケル水素蓄電池において、前記セパレータにアンモニアが結合しており、かつ、前記セパレータ中のアンモニア含有量がセパレータ1g当たり窒素量換算で600μg以上2500μg以下であることを特徴とする。

The above object of the present invention can be achieved by providing the following configuration. That is, the nickel metal hydride storage battery of the present invention is a nickel metal hydride storage battery using a sulfonated polyolefin separator, wherein ammonia is bound to the separator, and the ammonia content in the separator is converted to a nitrogen amount per gram of separator. 600 μg or more and 2500 μg or less .

この場合、スルホン化処理ポリオレフィンは、アンモニアと反応することによりその部位が極性基となり、その親水性を向上させているものと考えられる。前記セパレータ中のアンモニア含有量はセパレータ1g当たり窒素量換算で600μg以上が必要である。セパレータ中のアンモニア含有量の上限値は、本来は多ければ多いほどアンモニア結合量が多くなって親水性が向上するために好ましいが、あまり多すぎてもセパレータ中のスルホン基数が多くなりすぎてセパレータの強度が低下するので好ましくはない。実用上、セパレータ1g当たり窒素量換算で2500μg以下がよい。   In this case, it is considered that the sulfonated polyolefin reacts with ammonia so that the site becomes a polar group and the hydrophilicity is improved. The ammonia content in the separator needs to be 600 μg or more in terms of nitrogen amount per 1 g of the separator. The upper limit of the ammonia content in the separator is preferably as the larger the amount, the more the ammonia bond amount increases and the hydrophilicity is improved. However, if the amount is too large, the number of sulfone groups in the separator becomes too large. This is not preferable because the strength of the resin decreases. Practically, 2500 μg or less is preferable in terms of nitrogen amount per 1 g separator.

また、本発明に係るニッケル水素蓄電池において、電解液中に硝酸化合物又は亜硝酸化合物を含有させことが好ましいIn the nickel hydride storage battery according to the present invention, it is preferable that Ru is contained nitrate compound or nitrous acid compound in the electrolyte.

電解液中に硝酸化合物又は亜硝酸化合物を含有させて、充電活性化工程後に放置しておくと、ニッケル水素蓄電池内で生じる前記(1)式〜(5)式に示したような自己放電反応により、硝酸イオン及び亜硝酸イオンは負極で還元されてアンモニア(アンモニウムイオン)となるので、スルホン化処理ポリオレフィンセパレータに捕捉される。これは、前記自己放電が正負極で、
硝酸イオン ←→ 亜硝酸イオン ←→ アンモニア
と酸化還元反応を繰り返すために起こる、いわゆるシャトル効果を利用するものである。
When a nitric acid compound or a nitrous acid compound is contained in the electrolytic solution and left after the charge activation step, the self-discharge reaction as shown in the above formulas (1) to (5) occurs in the nickel metal hydride storage battery. Thus, nitrate ions and nitrite ions are reduced at the negative electrode to become ammonia (ammonium ions), and are thus captured by the sulfonated polyolefin separator. This is because the self-discharge is positive and negative.
Nitrate ion ← → Nitrite ion ← → This uses the so-called shuttle effect that occurs to repeat the redox reaction with ammonia.

硝酸化合物、亜硝酸化合物からなる添加物は、電解液中でイオンとなって負極で反応する必要があるため、電解液に可溶性である必要がある。また、添加場所については、正極、負極に添加した場合であれば、極板の電子伝導性を阻害や溶出した部分が空洞化することによる極板強度の低下、これらの塩の添加量によりスラリー性状が変化することにより極板作製条件を変更する必要があるため、電解液に添加するのが簡便で望ましい。なお、極板表面への添加は反応性の低下が懸念されるので避けるべきである。   An additive composed of a nitric acid compound and a nitrous acid compound needs to be soluble in the electrolytic solution because it needs to be reacted as an ion in the electrolytic solution at the negative electrode. Moreover, about the addition place, if it is a case where it adds to a positive electrode and a negative electrode, it will be a slurry by the fall of the electrode plate strength by inhibiting the electronic conductivity of an electrode plate, or the part which eluted is hollowed out, and the addition amount of these salts. Since it is necessary to change the electrode plate preparation conditions by changing the properties, it is simple and desirable to add it to the electrolytic solution. In addition, addition to the electrode plate surface should be avoided because there is concern about a decrease in reactivity.

なお、従来の正極活物質である水酸化ニッケルには僅かながら残留硝酸塩が含まれているが、この原因としては正極活物質作製時の原料に硝酸ニッケル等の硝酸塩を使用してアルカリ処理を行うことで水酸化物化しており、その際に一部が残留するものである。この硝酸塩は、本来正極活物質となるべき塩であるため、正極中の硝酸塩の残留は正極利用率を低下させ、電池容量の低下を引き起こす。したがって、従来は、正極利用率が低下すること及び自己放電の原因物質と考えられていることから、正極中の残留硝酸塩量は低減されてきているため、ニッケル水素蓄電池系内の硝酸量及び亜硝酸量は僅かであり、水素蓄積に対する低減効果はほとんどみられない。   Note that nickel hydroxide, which is a conventional positive electrode active material, contains a slight amount of residual nitrate. The cause of this is that alkali treatment is performed using a nitrate such as nickel nitrate as a raw material when the positive electrode active material is produced. In this case, it is converted into a hydroxide, and a part thereof remains at that time. Since this nitrate is originally a salt that should become a positive electrode active material, residual nitrate in the positive electrode reduces the positive electrode utilization factor and causes a decrease in battery capacity. Therefore, the amount of nitrate remaining in the positive electrode has been reduced because it has been conventionally considered that the utilization rate of the positive electrode decreases and the cause of self-discharge. The amount of nitric acid is small, and there is almost no reduction effect on hydrogen accumulation.

また、本発明に係るニッケル水素蓄電池においては、 前記ニッケル水素蓄電池の負極が前記硝酸化合物又は亜硝酸化合物を還元することによって生成するアンモニア化合物の量(セパレータ1g当たりの窒素量換算)がMA(μg)であり、前記セパレータが捕捉し得るアンモニア化合物の量(セパレータ1g当たりの窒素量換算)の上限値がMB(μg)であるとき、
MA及びMBが、
600μg≦MA<MB
を満足することが好ましい。

Further, in the nickel metal hydride storage battery according to the present invention, the amount of ammonia compound produced by the negative electrode of the nickel metal hydride battery reducing the nitrate compound or nitrite compound (converted to the amount of nitrogen per 1 g separator) is MA (μg). And the upper limit of the amount of ammonia compound that can be captured by the separator (in terms of nitrogen amount per 1 g of separator) is MB (μg),
MA and MB are
600μg ≦ MA <MB
Is preferably satisfied .

この場合、MAが600μg未満であると、所定の効果が得られず、また、MAがMBを超えると、捕捉されたアンモニア分の水素蓄積は低減されることになるものの、捕捉されなかったアンモニアに基づく自己放電が大きくなって保存特性が劣化する。   In this case, if the MA is less than 600 μg, the predetermined effect cannot be obtained, and if the MA exceeds MB, the hydrogen accumulation of the trapped ammonia is reduced, but the trapped ammonia As a result, self-discharge based on the resistance increases and the storage characteristics deteriorate.

また、本発明に係るニッケル水素蓄電池において、前記硝酸化合物又は亜硝酸化合物は、Li、K、Naの少なくとも1種の塩であることが好ましいIn the nickel hydride storage battery according to the present invention, the nitric acid compound, or nitrite compounds, Li, K, is preferably at least one salt of Na.

硝酸化合物又は亜硝酸化合物としては、アルカリ電解液に溶解するものであればよく、カチオンはアンモニウムイオン(NH )以外であれば特に限定されないが、元素によっては反応阻害や短絡する恐れもあるため、電解液に用いられるLi、K、Naの硝酸化合物ないしは亜硝酸化合物が好ましい。硝酸アンモニアを添加しても、アンモニア(NH)、アンモニウムイオン(NH )はスルホン化処理ポリオレフィンセパレータと反応して捕捉されるが、負極で生じた水素を消費することがないために所定の効果が得られない。また、硝酸化合物と亜硝酸化合物については、硝酸イオンの方が酸素原子の数が多く、負極水素低減量が多いので、硝酸化合物を用いることが望ましい。 The nitric acid compound or nitrous acid compound is not particularly limited as long as it is soluble in an alkaline electrolyte, and the cation is not ammonium ion (NH 4 + ). However, depending on the element, there is a risk of reaction inhibition or short-circuiting. Therefore, a nitric acid compound or a nitrous acid compound of Li, K, or Na used for the electrolytic solution is preferable. Even if ammonia nitrate is added, ammonia (NH 3 ) and ammonium ions (NH 4 + ) react with the sulfonated polyolefin separator and are captured, but the hydrogen produced in the negative electrode is not consumed, so that The effect of can not be obtained. As for nitric acid compounds and nitrous acid compounds, it is desirable to use nitric acid compounds because nitrate ions have a larger number of oxygen atoms and a greater amount of negative electrode hydrogen reduction.

本発明は、上記構成を備えることにより以下に述べるような優れた効果を奏する。すなわち、本発明のニッケル水素蓄電池によれば、以下の実施例及び比較例で詳細に対比して説明するように、初期水素蓄積を少なくし、電池の正負極容量比設計を従来と同等としたまま寿命特性に優れたニッケル水素蓄電池が得られる。 By providing the above configuration, the present invention has the following excellent effects. That is, according to the nickel metal hydride storage battery of the present invention , as will be described in detail in the following examples and comparative examples, the initial hydrogen accumulation is reduced, and the positive / negative electrode capacity ratio design of the battery is made equivalent to the conventional one. A nickel-metal hydride storage battery having excellent life characteristics can be obtained.

また、請求項2に記載のニッケル水素蓄電池によれば、単に電解液中に硝酸化合物又は亜硝酸化合物を添加するだけで、水素蓄積の低減を行わせることができるので、電池の正負極容量比設計を従来と同等としたまま寿命特性に優れたニッケル水素蓄電池が得られる。 Further, according to the nickel metal hydride storage battery of claim 2 , since the hydrogen accumulation can be reduced simply by adding a nitric acid compound or a nitrous acid compound to the electrolyte, A nickel-metal hydride storage battery with excellent life characteristics can be obtained while keeping the design equivalent to the conventional one.

また、請求項3に記載のニッケル水素蓄電池では、前記電解液中に含有させた硝酸化合物又は亜硝酸化合物含有量が、負極で生じたスルホン化処理ポリオレフィンセパレータのアンモニアの捕捉範囲内で添加されているため、有効に前記請求項2に記載の発明の効果を奏することができるニッケル水素蓄電池が得られる。 In the nickel metal hydride storage battery according to claim 3 , the content of nitric acid compound or nitrous acid compound contained in the electrolyte is added within the ammonia trapping range of the sulfonated polyolefin separator produced in the negative electrode. Therefore, a nickel-metal hydride storage battery that can effectively achieve the effects of the invention according to claim 2 is obtained.

また、請求項4に記載のニッケル水素蓄電池によれば、電解液への可溶性も良好であり、析出物も生じないので、有効に前記請求項又はに記載の発明の効果を奏することができるニッケル水素蓄電池が得られる。 Moreover, according to the nickel hydride storage battery of Claim 4 , since the solubility to electrolyte solution is also favorable and a deposit is not produced, there can exist the effect of the invention of the said Claim 2 or 3 effectively. A nickel-metal hydride storage battery is obtained.

以下、本発明を実施例に基づいて詳細に説明するが、以下に示す実施例は、本発明の技術思想を具体化するためのニッケル水素蓄電池用スルホン化処理ポリオレフィンセパレータ及び該セパレータを使用したニッケル水素蓄電池を例示するものであって、本発明をこのニッケル水素蓄電池用スルホン化処理ポリオレフィンセパレータ及びニッケル水素蓄電池に特定することを意図するものではなく、特許請求の範囲に含まれるその他の実施形態のものも等しく適用し得るものである。   Hereinafter, the present invention will be described in detail based on examples, but the examples shown below are sulfonated polyolefin separators for nickel metal hydride batteries for embodying the technical idea of the present invention, and nickel using the separators. It is intended to illustrate a hydrogen storage battery, and is not intended to limit the present invention to this sulfonated polyolefin separator for nickel metal hydride battery and nickel metal hydride storage battery, and other embodiments included in the scope of claims. Things are equally applicable.

まず、実施例及び比較例に共通するニッケル水素蓄電池の製造工程について説明する。
<ニッケル水素蓄電池の製造工程>
正極としては硝酸コバルトと硝酸亜鉛とを加えた硝酸ニッケル水溶液を、多孔度85%のニッケル焼結基板に化学含浸法により含浸させて作製した焼結式ニッケル極を使用した。また、組成式MmNi3.2Co1.0Al0.2Mn0.6(Mm:ミッシュメタル)で表される平均粒径50μmになった水素吸蔵合金粉末100質量部に対して、結着剤としてポリエチレンオキシドを1.0質量部加えると共に、これらを混合してペーストを調製し、このペーストをニッケルメッキしたパンチングメタルの両面に均一に塗布し、これを乾燥させた後、圧延して水素吸蔵合金電極を作製し、負極とした。
First, the manufacturing process of the nickel hydride storage battery common to an Example and a comparative example is demonstrated.
<Manufacturing process of nickel metal hydride storage battery>
As the positive electrode, a sintered nickel electrode prepared by impregnating an aqueous nickel nitrate solution containing cobalt nitrate and zinc nitrate into a nickel sintered substrate having a porosity of 85% by a chemical impregnation method was used. Moreover, it binds with respect to 100 parts by mass of the hydrogen storage alloy powder having an average particle size of 50 μm represented by the composition formula MmNi 3.2 Co 1.0 Al 0.2 Mn 0.6 (Mm: Misch metal). Add 1.0 parts by mass of polyethylene oxide as an agent, mix these to prepare a paste, apply the paste uniformly on both sides of the nickel-plated punching metal, dry it, and then roll it to hydrogen. An occlusion alloy electrode was prepared and used as the negative electrode.

このように作製した正極、負極を使用し、スルホン化処理したPP(ポリプロピレン)/PE(ポリエチレン)セパレータ(70g/m、5.3g)を巻回して渦巻電極体を作製した。この渦巻電極体を電池缶内に挿入し、30質量%水酸化カリウム水溶液15mlを電池缶内に注液し、封口して公称電池容量6Ahの円筒密閉型のニッケル水素蓄電池を組み立てた。 Using the positive electrode and negative electrode thus prepared, a sulfonated PP (polypropylene) / PE (polyethylene) separator (70 g / m 2 , 5.3 g) was wound to prepare a spiral electrode body. This spiral electrode body was inserted into a battery can, 15 ml of a 30% by mass aqueous potassium hydroxide solution was poured into the battery can, and sealed to assemble a cylindrical sealed nickel-metal hydride storage battery having a nominal battery capacity of 6 Ah.

<実施例1〜実施例4、比較例1〜2>
上記のようにして作製したニッケル水素蓄電池を、25℃にて600mAで16時間充電した後、60℃にて24時間放置し、25℃にて600mAで1.0Vまで放電する充放電活性化工程を2サイクル行った電池を比較例1の電池とした。また、上記サイクルを5サイクル行った電池を比較例2の電池とした。
<Examples 1 to 4 and Comparative Examples 1 and 2>
The nickel hydride storage battery produced as described above is charged at 600 mA at 25 ° C. for 16 hours, then left at 60 ° C. for 24 hours, and discharged at 25 ° C. to 600 V at 600 mA to 1.0 V. A battery that was subjected to two cycles was used as a battery of Comparative Example 1. Further, a battery obtained by performing the above cycle for 5 cycles was used as a battery of Comparative Example 2.

更に、セパレータとして前記スルホン化処理したPP/PEセパレータに反応時間を変えて直接アンモニアガスを反応させたものを使用し、比較例1と同様の充放電活性化工程を2サイクル行って、実施例1〜4の4種類の電池を作製した。   Further, the sulfonated PP / PE separator used as the separator was prepared by reacting ammonia gas directly by changing the reaction time, and performing the same charge / discharge activation process as in Comparative Example 1 for 2 cycles. Four types of batteries 1 to 4 were produced.

セパレータ中の窒素量は、電池解体後に、温水洗浄し、全窒素分析(燃焼法−減圧発光分析法)により測定した。また、上記サイクル後に電池を解体し、セパレータを取り出し、湿セパレータ質量及び水洗乾燥後のセパレータ質量からセパレータの含液量を測定し、比較例2の電池の測定値を100%として相対値で求めた。結果をまとめて表1に示す。   The amount of nitrogen in the separator was measured by washing with warm water after disassembling the battery and analyzing the total nitrogen (combustion method-vacuum emission analysis method). Further, after the cycle, the battery was disassembled, the separator was taken out, the liquid content of the separator was measured from the wet separator mass and the separator mass after washing and drying, and the relative value was obtained with the measured value of the battery of Comparative Example 2 being 100%. It was. The results are summarized in Table 1.

Figure 0004919584
Figure 0004919584

表1に示した結果によれば、セパレータ中の窒素含有量をセパレータ1g当たり600μg以上とすることにより、わずか2サイクルの充放電活性化工程を経るのみで従来は5サイクルの充放電活性化工程で達していたセパレータの液量に到達することができ、充分な保液性を付与できることが確認できた。なお、比較例1及び2におけるセパレータ中の窒素量としてセパレータ1g当たり200μgという数値が得られているが、これは正極活物質由来の窒素量と考えられる。しかしながら、この程度の窒素含有量ではセパレータに十分な保液性を与えることはできない。   According to the results shown in Table 1, by setting the nitrogen content in the separator to 600 μg or more per 1 g of the separator, the charge / discharge activation process of 5 cycles is conventionally performed only by passing through the charge / discharge activation process of only 2 cycles. It was confirmed that the liquid amount of the separator that had been reached in (1) could be reached, and sufficient liquid retention could be imparted. In addition, although the numerical value of 200 microgram per 1g separator is obtained as the amount of nitrogen in the separator in Comparative Examples 1 and 2, this is considered to be the amount of nitrogen derived from the positive electrode active material. However, this level of nitrogen content cannot provide sufficient liquid retention to the separator.

<実施例5〜10>
次に、組立時に水酸化カリウム電解液中に硝酸カリウムを10mg(実施例5)、20mg(実施例6)、30mg(実施例7)、50mg(実施例8)、70mg(実施例9)及び90mg(実施例10)添加した以外は比較例1と同様にしてニッケル水素蓄電池を作製した。この実施例5〜10のニッケル水素蓄電池について、前記実施例1〜実施例4及び比較例1〜2の場合と同様にしてセパレータ中の窒素量及び含液量を調べ、含液量については比較例2の電池の場合を100%として相対値を求めた。
<Examples 5 to 10>
Next, 10 mg (Example 5), 20 mg (Example 6), 30 mg (Example 7), 50 mg (Example 8), 70 mg (Example 9) and 90 mg of potassium nitrate in the potassium hydroxide electrolyte at the time of assembly. (Example 10) A nickel-metal hydride storage battery was produced in the same manner as in Comparative Example 1 except that it was added. About the nickel metal hydride storage batteries of Examples 5 to 10, the nitrogen amount and the liquid content in the separator were examined in the same manner as in Examples 1 to 4 and Comparative Examples 1 and 2, and the liquid content was compared. The relative value was determined with the battery of Example 2 as 100%.

また、負極の蓄積水素量を調査するため、比較例1及び2の電池についても、電池電圧を1.0Vまで放電後、負極のみをHg/HgO参照電極に対して0.5Vとなるまで放電し、その放電容量を測定し、比較例1の電池の測定値を100%として相対値で求めた。結果をまとめて表2に示す。   Further, in order to investigate the amount of hydrogen stored in the negative electrode, the batteries of Comparative Examples 1 and 2 were discharged until the battery voltage was discharged to 1.0 V, and then only the negative electrode was discharged to 0.5 V with respect to the Hg / HgO reference electrode. Then, the discharge capacity was measured, and the measured value of the battery of Comparative Example 1 was determined as a relative value with 100%. The results are summarized in Table 2.

Figure 0004919584
Figure 0004919584

表2に示した結果によれば、30質量%の水酸化カリウム15ml中に添加した硝酸カリウム量が10mg以上であれば、充放電活性化工程後のセパレータ1g中の窒素量が600μg以上となり、わずか2サイクルの充放電活性化工程を経るのみで従来は5サイクルの充放電活性化工程で達していたセパレータの液量に到達することができ、充分な保液性を付与できることが確認できた。   According to the results shown in Table 2, if the amount of potassium nitrate added to 15 ml of 30% by weight potassium hydroxide is 10 mg or more, the amount of nitrogen in 1 g of the separator after the charge / discharge activation step is 600 μg or more, It was confirmed that the liquid amount of the separator that had been reached in the conventional 5-cycle charge / discharge activation process can be reached only by passing through the 2-cycle charge / discharge activation process, and sufficient liquid retention can be imparted.

また、硝酸カリウム添加量が50mg以上で充放電活性化工程後のセパレータ1g中の窒素量(MA)は1600μgで飽和しているが、これは本実施例で使用した前記スルホン化処理したPP/PEセパレータ1g当たりの最大アンモニア捕捉量(MB)が窒素量換算で1600μgであることを示している。このMが1600μgに達した後は、蓄積負極容量は比較例1の90%の値で飽和しており、蓄積負極容量の低減効果の増強は見られない。
Further, the potassium nitrate addition amount is 50 mg or more, and the nitrogen amount (MA) in 1 g of the separator after the charge / discharge activation step is saturated at 1600 μg, which is the sulfonated PP / PE used in this example. It shows that the maximum ammonia trapping amount (MB) per 1 g of the separator is 1600 μg in terms of nitrogen amount. After the M A reaches 1600μg, the storage capacity of the negative electrode is saturated at 90% of the value of Comparative Example 1, the enhancement of the effect of reducing the storage capacity of the negative electrode is not observed.

従って、硝酸カリウムの添加量が50mgを超えると、セパレータに捕捉されない過剰の窒素(アンモニア)が生じることになり、この過剰のアンモニアは自己放電源として働くため、本実施例で使用したニッケル水素蓄電池の電解液中に添加する硝酸カリウム量は50mg以下とすることが望ましいことになる。また、表2に示した結果からしても、従来の正極由来の窒素量だけでは十分な効果が発揮されないことから硝酸カリウム等の添加必要となることが分かる。特に非焼結式においては、焼結式に比べて硝酸量が少ないために、硝酸カリウム等を添加することが必要である。   Therefore, if the amount of potassium nitrate exceeds 50 mg, excess nitrogen (ammonia) that is not captured by the separator is generated, and this excess ammonia serves as a self-discharge power source. It is desirable that the amount of potassium nitrate added to the electrolyte is 50 mg or less. Also, from the results shown in Table 2, it can be seen that potassium nitrate or the like must be added because a sufficient amount of nitrogen from the conventional positive electrode does not provide a sufficient effect. In particular, in the non-sintered type, since the amount of nitric acid is smaller than that in the sintered type, it is necessary to add potassium nitrate or the like.

Claims (4)

スルホン化処理ポリオレフィンセパレータを使用したニッケル水素蓄電池において、前記セパレータにアンモニアが結合しており、かつ、前記セパレータ中のアンモニア含有量がセパレータ1g当たり窒素量換算で600μg以上2500μg以下であることを特徴とするスルホン化セパレータを用いたニッケル水素蓄電池。 In a nickel metal hydride storage battery using a sulfonated polyolefin separator, ammonia is bound to the separator, and the ammonia content in the separator is 600 μg or more and 2500 μg or less in terms of nitrogen amount per gram of separator. Nickel metal hydride storage battery using sulfonated separator. 電解液中に硝酸化合物又は亜硝酸化合物を含有させたことを特徴とする請求項に記載のニッケル水素蓄電池。 The nickel metal hydride storage battery according to claim 1 , wherein a nitric acid compound or a nitrous acid compound is contained in the electrolytic solution. 前記ニッケル水素蓄電池の負極が前記硝酸化合物又は亜硝酸化合物を還元することによって生成するアンモニア化合物の量(セパレータ1g当たりの窒素量換算)がMA(μg)であり、前記セパレータが捕捉し得るアンモニア化合物の量(セパレータ1g当たりの窒素量換算)の上限値がMB(μg)であるとき、
MA及びMBが、
600μg≦MA<MB
を満足することを特徴とする請求項2に記載のニッケル水素蓄電池。

The amount of ammonia compound produced by reducing the nitric acid compound or nitrous acid compound by the negative electrode of the nickel metal hydride storage battery (converted to the amount of nitrogen per gram of separator) is MA (μg), and the ammonia compound that can be captured by the separator When the upper limit of the amount of nitrogen (in terms of nitrogen amount per 1 g of separator) is MB (μg),
MA and MB are
600μg ≦ MA <MB
Nickel-metal hydride storage battery according to claim 2, characterized by satisfying the.

前記硝酸化合物又は亜硝酸化合物は、Li、K、Naの少なくとも1種の塩であることを特徴とする請求項又はに記載のニッケル水素蓄電池。 The nitrate compound or nitrite compounds, Li, K, nickel-metal hydride storage battery according to claim 2 or 3, characterized in that at least one salt of Na.
JP2004052358A 2004-02-26 2004-02-26 Nickel metal hydride storage battery Expired - Lifetime JP4919584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004052358A JP4919584B2 (en) 2004-02-26 2004-02-26 Nickel metal hydride storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004052358A JP4919584B2 (en) 2004-02-26 2004-02-26 Nickel metal hydride storage battery

Publications (2)

Publication Number Publication Date
JP2005243462A JP2005243462A (en) 2005-09-08
JP4919584B2 true JP4919584B2 (en) 2012-04-18

Family

ID=35024967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004052358A Expired - Lifetime JP4919584B2 (en) 2004-02-26 2004-02-26 Nickel metal hydride storage battery

Country Status (1)

Country Link
JP (1) JP4919584B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000123814A (en) * 1998-10-09 2000-04-28 Toyobo Co Ltd Separator for alkaline battery and manufacture thereof
JP3430455B2 (en) * 1999-04-02 2003-07-28 東洋紡績株式会社 Alkaline battery separator
JP2002260721A (en) * 2001-03-06 2002-09-13 Toshiba Battery Co Ltd Nickel hydrogen secondary battery
JP2003151523A (en) * 2001-06-04 2003-05-23 Komatsu Seiren Co Ltd Battery separator and its manufacturing method
JP3782716B2 (en) * 2001-11-12 2006-06-07 積水化学工業株式会社 Separator for alkaline electrolyte type secondary battery, method for producing the same, and alkaline electrolyte type secondary battery using the same

Also Published As

Publication number Publication date
JP2005243462A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
US6632568B1 (en) Non-sintered nickel electrode with excellent over-discharge characteristics, an alkaline storage cell having the non-sintered nickel electrode, and a manufacturing method of the non-sintered nickel electrode
EP2045856B1 (en) Alkaline storage battery system
KR100416428B1 (en) A hydrogen occlusion electrode, a nickel electrode, and an alkaline storage battery
JP2013519968A (en) Rechargeable electrochemical battery cell
JP4496704B2 (en) Manufacturing method of nickel metal hydride battery
US20060166099A1 (en) Closed nickel-hydrogen storage battery and its production method
EP3163668B1 (en) Nickel hydrogen secondary battery
WO2003050898A1 (en) Nickel-hydrogen cell
JP2001076730A (en) Nickel-hydrogen secondary battery
US6852448B2 (en) Nickel electrode for alkaline secondary battery and alkaline secondary battery
JP4919584B2 (en) Nickel metal hydride storage battery
CN1176508C (en) Akaline accumulator and positive pole for akaline accumulator
JP6535950B2 (en) Alkaline storage battery
WO2014049966A1 (en) Cathode active material for alkaline storage battery, alkaline storage battery and alkaline storage battery cathode containing same, and nickel-hydrogen storage battery
US9972875B2 (en) Alkaline storage battery
JP4432285B2 (en) Nickel electrode active material for alkaline storage battery, nickel electrode for alkaline storage battery and alkaline storage battery
US6926998B2 (en) Nickel-metal hydride storage battery
JP4385522B2 (en) Negative electrode active material for nickel-hydrogen storage battery, negative electrode for nickel-hydrogen storage battery, and nickel-hydrogen storage battery
US6924062B2 (en) Nickel-metal hydride storage battery
CN1332481A (en) Nickel positive active material and nickel-hydrogen accumulator
JP4370746B2 (en) Method for producing nickel electrode active material and method for producing active material paste for nickel electrode
WO2024070232A1 (en) Negative electrode for alkaline secondary batteries, alkaline secondary battery, and method for producing negative electrode for alkaline secondary batteries
JP2007258176A (en) Plasticized electrode of alkaline storage battery
JP2003249214A (en) Alkaline storage battery and nickel electrode for alkaline storage battery, and active material powder for nickel electrode
US20180375161A1 (en) Method of manufacturing positive electrode for alkaline secondary battery and method of manufacturing alkaline secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120131

R151 Written notification of patent or utility model registration

Ref document number: 4919584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150210

Year of fee payment: 3

EXPY Cancellation because of completion of term