WO2003002933A1 - Interferometersystem, verfahren zum aufnehmen eines interferogramms und verfahren zum bereitstellen und herstellen eines objekts mit einer soll-oberfläche - Google Patents

Interferometersystem, verfahren zum aufnehmen eines interferogramms und verfahren zum bereitstellen und herstellen eines objekts mit einer soll-oberfläche Download PDF

Info

Publication number
WO2003002933A1
WO2003002933A1 PCT/EP2002/007080 EP0207080W WO03002933A1 WO 2003002933 A1 WO2003002933 A1 WO 2003002933A1 EP 0207080 W EP0207080 W EP 0207080W WO 03002933 A1 WO03002933 A1 WO 03002933A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
interference
interferogram
frequency
detector
Prior art date
Application number
PCT/EP2002/007080
Other languages
English (en)
French (fr)
Inventor
Stefan Schulte
Bernd DÖRBAND
Henriette Müller
Wolfgang KÄHLER
Original Assignee
Carl Zeiss Smt Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss Smt Ag filed Critical Carl Zeiss Smt Ag
Priority to JP2003508872A priority Critical patent/JP2004530905A/ja
Priority to EP02735425A priority patent/EP1402228A1/de
Publication of WO2003002933A1 publication Critical patent/WO2003002933A1/de
Priority to US10/743,792 priority patent/US7002694B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02056Passive reduction of errors
    • G01B9/02057Passive reduction of errors by using common path configuration, i.e. reference and object path almost entirely overlapping
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2441Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02002Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies
    • G01B9/02004Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies using frequency scans
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02034Interferometers characterised by particularly shaped beams or wavefronts
    • G01B9/02038Shaping the wavefront, e.g. generating a spherical wavefront
    • G01B9/02039Shaping the wavefront, e.g. generating a spherical wavefront by matching the wavefront with a particular object surface shape
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02056Passive reduction of errors
    • G01B9/02059Reducing effect of parasitic reflections, e.g. cyclic errors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02062Active error reduction, i.e. varying with time
    • G01B9/02067Active error reduction, i.e. varying with time by electronic control systems, i.e. using feedback acting on optics or light
    • G01B9/02069Synchronization of light source or manipulator and detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/0207Error reduction by correction of the measurement signal based on independently determined error sources, e.g. using a reference interferometer
    • G01B9/02072Error reduction by correction of the measurement signal based on independently determined error sources, e.g. using a reference interferometer by calibration or testing of interferometer

Definitions

  • Interferometer system method for recording an interferogram and method for providing and producing an object with a target surface
  • the present invention relates to an interferometer system and a method for recording an interferogram.
  • the interferometer system and the method are preferably used to determine topological properties of an object surface from the interferogram by evaluating the recorded interferogram.
  • the invention further relates to a method for providing and producing an object with a target surface, deviations between the target surface and an actual surface of the object being determined from an interferogram and the object being made available or reworked depending on these deviations.
  • Interferometer systems are traditionally used, among other things, to determine the topological properties of an object surface.
  • a known reference surface and an object surface to be measured are illuminated with coherent radiation, and an object wave field reflected by the object surface and a reference wave field reflected by the reference surface are, for example, superimposed on a screen, so that an interference pattern arises there.
  • a difference in the optical path from reference surface to screen and object surface to screen can be determined from the interference pattern, from which topological differences between the object surface and the reference surface can then be determined.
  • Two techniques are used to determine such path differences with an interferometer system:
  • FPI fringe pattern interferometry
  • R.A. Jones and P.L. Kadakia "An Automated Interferogram Technique", Applied Optics, Vol. 7, pp. 1477-1482 (1968); Zanoni, U.S. Patent No. 4,159,522. June 26, 1979, and Zanoni, U.S. Patent No. 4,169,980, published October 2, 1979.
  • phase measuring interferometry where the phase difference between the two wavefronts for each pixel of a detector is calculated from several interference patterns, the multiple interference patterns being recorded by generating different phase differences in them.
  • PMI phase measuring interferometry
  • B (0) to B (3) are the intensities of the individual images at the corresponding pixel.
  • This known method for determining path differences is less suitable if there is a further surface in the interferometer system which also reflects a wave field which interferes with the wave fields reflected by the reference surface and the object surface.
  • the resulting interference pattern is then of a particularly complex nature. This case occurs, for example, when a surface of a transparent plate with two essentially plane-parallel surfaces is to be measured.
  • the invention is based on an interferometer system which comprises a reference surface, an object surface, a radiation source for illuminating the reference surface and the object surface with radiation of an adjustable frequency and a spatially resolving radiation detector.
  • the radiation source, the reference surface, the object surface and the detector are arranged in such a way that a reference wave field reflected by the reference surface overlaps with an object wave field reflected by the object surface to form an interference pattern with location-dependent intensity distribution, which is imaged on the detector.
  • the interference pattern formed by superimposing the reference wave field and the object wave field is disturbed by an interference wave field also superimposed with these wave fields, which is reflected by an interference interference area which is illuminated by the radiation source together with the reference area or the object area.
  • the invention is characterized by an integrator in order to average a plurality of interference patterns, which are recorded at different frequencies of the radiation emitted by the radiation source.
  • the generated interferogram is created in such a way that for each location of the interferogram an average is formed from the intensities of the individual interference patterns at this location.
  • the averaging is preferably a weighted averaging.
  • Values of the weights for the weighted averaging and / or values of the different radiation frequencies are preferably set as a function of the distance of the interference interference surface from the object surface or from the reference surface. These values are preferably set in such a way that an influence of the interference wave front on the interferogram is largely averaged out. It then has the middle
  • the interferogram formed from a plurality of interference patterns has a shape or intensity distribution which roughly corresponds to how the wave fronts of the wave fronts reflected by the object surface and the reference surface would produce alone if the interference interference surface were not present in the interferometer system.
  • the plurality of frequencies for generating the plurality of interference patterns are set in succession over a period of time that corresponds to an exposure time interval of a camera that records the interference patterns. This results in a particularly simple design of the integrator, since it is formed by the camera itself.
  • FIG. 1 shows an embodiment of an interferometer system according to the invention
  • FIG. 2 shows a diagram for explaining different frequencies of radiation emitted by a radiation source in FIG. 1 to generate interference patterns
  • FIG. 3 shows a time dependency of the radiation emitted by the radiation source in FIG. 1, 4 shows a diagram which gives an interferogram intensity as a function of an optical path difference for an interference pattern generated by the interferometer system of FIG. 1 when the frequencies are set according to FIGS. 2 and 3,
  • FIG. 5 shows an interferogram modulation as a function of an optical path difference in the interferometer system of FIG. 1, as results from a further time-dependent setting of the frequencies of the radiation source,
  • FIG. 6 shows a frequency distribution corresponding to FIG. 2 of the radiation emitted by the radiation source
  • FIG. 7 shows a representation of the interferogram intensity corresponding to FIG. 4 as a function of the optical path length difference when using the frequency distribution shown in FIG. 6,
  • FIG. 8 shows a partial view of a further embodiment of the interferometer system according to the invention.
  • FIG. 9 shows a partial view of yet another embodiment of the interferometer system according to the invention.
  • FIG. 1 shows a Fizeau interferometer system 1 for measuring a surface 5 of a plane-parallel plate 3.
  • the plate 3 is held in a holder 4, which can be displaced relative to a reference surface 23 via a motor drive 6.
  • the interferometer system 1 comprises a light source 9 which emits a beam 11 of coherent light with adjustable wave length or frequency emitted.
  • the light source 9 is a so-called ECDL source, a diode laser with an adjustable external cavity ("External Cavity Diode Laser").
  • Such an ECDL radiation source is described, for example, in the article "Widely Tunable External Cavity Diode Lasers” by Tim Day, Michael Brownell and I-Fan Wu. Corresponding sources can be obtained from New Focus, Inc., 1275 Reamwood Avenue, Sunnyvale, CA 94089, USA.
  • the beam 11 emitted by the source 9 is focused by a lens 13 onto a rotating screen or diffuser 15 to suppress spatial coherence of the radiation.
  • the lens 15 rotates about an axis of rotation, not shown in Figure 1.
  • the beam 11 'extending through it passes through a semitransparent mirror 17 and is then parallelized after sufficient processing by a collimator 19, which can comprise one or more lenses.
  • the then parallelized beam 11 "passes through a glass plate 21, the surface 23 facing away from the collimator 19 forms the reference surface for measuring the surface 5 of the plane-parallel plate 3.
  • the reference surface 23 is made as flat as possible.
  • a surface 25 of the collimator 19 Plate 21 extends at an angle to the reference surface 23 so that radiation reflected by this surface 25 is not reflected back into itself and contributes to interference.
  • Radiation reflected back from the reference surface 23 is collimated again by the collimator 19, strikes the semitransparent mirror 17 and is imaged by this after passing through an aperture 27 and an eyepiece 29 onto a radiation-sensitive layer 31 of a CCD camera 33.
  • One passing through the reference surface 23 Part of the beam 11 strikes the surface 5 of the plane-parallel plate 3 to be measured.
  • the surface 5 to be measured is oriented as orthogonally as possible to the direction of the parallel beam 11 ′′.
  • a part of the radiation striking the surface 5 to be measured is in turn reflected back, passes through the plate 21 again, is likewise focused by the collimator 19 and is imaged on the radiation-sensitive surface 31.
  • the radiation-sensitive layer 31 of the camera 33 thus forms a screen on which the radiation reflected by the reference surface 23 and the surface 5 to be measured are measured reflected radiation interferes.
  • One purpose of the interferometer arrangement 1 is to detect the interference pattern generated by the interfering superposition of the radiation reflected by the reference surface 23 and the radiation reflected by the surface 5 to be measured.
  • the plate 3 is, however, a plane-parallel plate, that is to say the surface 5 of the plate 3 to be measured and one other rear surface 7 of the plate 3 opposite it extend essentially parallel to one another.
  • part of the radiation 11, which passes through the area 5 to be measured, is likewise thrown back into itself by the rear surface 7 of the plate 3 and is imaged on the radiation-sensitive layer 31.
  • the radiation reflected by the reference surface 23 interferes with the radiation reflected by the surface 5 to be measured, whereby there is an optical path length difference 2-C Q between them
  • the radiation interferes with the radiation-sensitive layer 31 radiation reflected from the reference surface 23 with the radiation from the back surface.
  • 7 of the plane-parallel plate 3 reflects radiation, with an optical path length difference 2-C2 therebetween, and there further interferes with the radiation reflected from the surface 5 of the plate 3 to be measured with the radiation reflected from its rear surface 7, with an optical path length difference in between of 2-C ] _.
  • the interference pattern which arises on the radiation-sensitive layer 31 is thus very complicated and difficult to evaluate.
  • the camera 33 supplies the data, which represent a radiation intensity distribution on the radiation-sensitive surface 31, to a computer 37 via a data line 35.
  • the computer 37 in turn generates a representation of the interference pattern on the radiation-sensitive layer 31 on a display device 39, in which FIG 1, an interference pattern with a plurality of symbolic strips 40 is only indicated schematically.
  • the computer 37 also stores the data and also carries out an evaluation of the interference pattern in order to determine from this level differences between the reference surface 23 and the surface 5 to be measured or the topology of the surface 5 to be measured.
  • the interferometer system 1 further comprises a controller 41, which is supplied and released by the computer 37 with a control line 43 with frequency data and which then, on the one hand, sets the frequency of the radiation 11 to be emitted by the source 9 as a function of time Trigger signal 48 received by the camera 33, which is also fed to the computer 37 via a line 47.
  • a controller 41 which is supplied and released by the computer 37 with a control line 43 with frequency data and which then, on the one hand, sets the frequency of the radiation 11 to be emitted by the source 9 as a function of time Trigger signal 48 received by the camera 33, which is also fed to the computer 37 via a line 47.
  • a method for operating the interferometer system 1 is described below, with a thickness of 74 mm being assumed for the plate 3, so that taking into account the refractive index of the glass of the plate 3 gives an optical path difference 2- ⁇ _ of 214.39mm.
  • the controller 41 first sets the frequency of the radiation source 9 to a first frequency with a value f- ⁇ f via line 45 and starts the integration of the CCD camera 33 via line 47, so that the interference pattern, which is caused by the three Surfaces 23, 5 and 7 of reflected wave fronts are generated when illuminated with radiation of frequency f- ⁇ f, onto which radiation-sensitive surface 31 of camera 33 falls and the corresponding radiation intensity is integrated there.
  • the controller 41 sets the source 9 to a second higher frequency f, so that the interference pattern generated at this frequency falls on the radiation-sensitive layer 31 and the corresponding radiation intensities as a second interference pattern during the integration time of the camera 33 there to be integrated to the intensities of the first interference pattern.
  • the controller 41 sets the frequency of the radiation source 9 to an even higher third
  • Frequency with the value f + ⁇ f so that the interference pattern generated at this third frequency also falls on the light collecting surface 31 within the integration time of the camera and the intensities of the third interference pattern are added to the intensities of the first and second interference patterns.
  • the illumination with the third frequency f + ⁇ f lasts 3.75 seconds, ' and then the controller 41, via line 47, causes the integration time of the camera 33 to end, and the data which has fallen on the light collecting surface 31 during the integration time Represent light intensity depending on the location, are read out via line 35 to computer 37.
  • the integration time of the I5msec camera described above was selected in the exemplary embodiment in order to obtain a good quality image at the given laser power. Depending on the available laser energy and other boundary conditions, other integration times can also be set.
  • FIG. 2 shows the spectral power density in arbitrary units as a function of the wave number k of the radiation from the source 9. It can be seen that the three different frequencies are illuminated with the relative weights 0.5, 1 and 0.5.
  • This spectral power density distribution can be represented as a formula as follows:
  • ⁇ o 632.8nm was chosen.
  • the radiation source 9 can be set to this value of the wavelength, and this setting has the advantage that, apart from the radiation source, a structure and components can be selected for the interferometer system as are known from interferometers operated with conventional He-Ne lasers.
  • the interferogram is the Fourier transform of the spectral power density
  • the interferometer system 1 can be operated advantageously if the reflecting surfaces 23, 5, 7 are arranged relative to one another in such a way that the optical path difference 2-C] _ generated by the distance between the surface 5 to be measured and the rear surface 7 approximately coincides with the first minimum of the modulation, which is due to the distance between the reference surface 23 and the rear surface 7 of the Plate 3 generated path length difference 2-C2 coincides approximately with the second minimum of the modulation and the path length difference C Q generated by the distance between reference surface 23 and surface 5 to be measured coincides approximately with the second maximum of the modulation.
  • the frequency change ⁇ f or wavenumber change ⁇ k is first determined as follows:
  • the back surface 7 of the reference surface 23 then automatically results in the optical path length difference 2-C Q SO that it coincides approximately with the second maximum of the modulation according to FIG. 4.
  • the interference caused by the rear surface 7 of the plate 3 is thus effectively averaged out by the weighted averaging carried out during the integration time of the camera 33, so that the interferogram obtained by averaging, apart from a constant light component, has only a stripe pattern, as is the case with the interference only the wavefront reflected by the reference surface 23 would arise with the wavefront reflected by the surface 5 to be measured.
  • This comparatively simple and undisturbed interference pattern is then subjected to a known evaluation method for stripe patterns, to determine the topology of the area 5 to be measured.
  • the operation of the interferometer system 1 is not limited to driving the frequency of the radiation source 9 with the time scheme shown in FIG. 3. As a variant, the possibility is discussed below of changing the frequency of the radiation source 9 with a sinusoidal time dependency.
  • the interferogram intensity I let us first assume:
  • k is the wave number of the radiation, which can be assumed to be approximately constant in this formula, x the optical path length difference, ⁇ Q an interferogram phase and V an interference contrast
  • the interferogram phase then results from the sinusoidal change in frequency
  • I (x, t) J 0 ⁇ 1 + V • cos ⁇ k • x - ⁇ Q -A • sin cot)
  • the modulation period for the frequency change of the radiation is now set such that an integral multiple thereof corresponds to the integration time of the camera 33.
  • the time-averaged interferogram is thus calculated
  • J Q (A) is the 0 th order function of the phase modulation amplitude A. This function is shown in Figure 5.
  • phase modulation amplitudes A for which interference between the wave fronts reflected by the surface 5 to be measured and the rear surface 7 of the plate 3 disappear.
  • the ratio of the optical path differences is thus given by the first two zeros of the Bessel function J 0 (A):
  • Equation (10) This contrast is sufficient to determine the position of the strips 40 and to be able to infer the topology of the area 5 to be measured from the evaluation of the strip pattern.
  • the setting of the radiation frequency according to the scheme shown in FIG. 3 leads to a higher effective contrast.
  • the case in which the radiation source 9 is controlled such that it has a Gaussian spectral power density shown in FIG. 6 will now be explained by way of example
  • the interferogram intensity depends on the path length difference, as shown in FIG. 7. It can be seen from this that high interference contrasts can be achieved at short distances from the reference surface 23, while the contrast drops sharply at larger distances from the reference surface 23. This drop in contrast is so great that when the plate 3 is arranged close to the reference surface 23, interferences caused by the rear side 7 are averaged out and only interferences caused by the surface 5 to be measured contribute to the stripe pattern of the averaged interferogram.
  • FIGS. 1 to 7 show a partial view of an interferometer system la, which is constructed similarly to the interferometer system shown in Figure 1. However, the interferometer system la is not used to measure a plane-parallel plate but a concentric meniscus lens 3a.
  • an aplanar collimator 51 with a plurality of lenses 52 to 56 is provided, which focuses the parallel radiation 11 "a at a point 57, which at the same time is the center of curvature of surfaces 5a and 7a of the concentric ones Meniscus lens 3a.
  • the interferometer system 1a otherwise corresponds to the interferometer system shown in FIG. 1 and is operated according to a method as was explained in connection with the interferometer system of FIG. 1.
  • This means that the frequency of the radiation source is controlled as a function of time in such a way that interference which is caused by a surface that has not been measured, in particular the surface 7a, the concentric meniscus lens 3a or by other optically active components in the beam path, largely averages out over time.
  • the areas 5a and 7a of the meniscus lens 3a can also be measured by reversing the lens, that is to say with its convex.
  • Surface 7a facing collimator 51 and positioned in front of focus point 57 in the beam path.
  • FIG. 9 shows a variant of the interferometer system shown in FIG. 8.
  • a reference surface 23a is not provided on a separate reference plate but on a precisely manufactured surface of the lens 56b of an aplanar collimator 51 facing the test object.
  • the interferometer system lb is also used to measure a concentric meniscus lens.
  • other time dependencies can also be selected which have proven to be favorable. It is important here that interference effects, which are caused by surfaces that are not to be measured, are at least partially averaged out over time.
  • the interferometer system has been previously described as a Fizeau interferometer. However, it is also possible to use alternative types of interferometers, such as a Michelson interferometer set-up or a Twyman Green interferometer set-up.
  • the CCD camera was used as an integrator for weighted averaging of the interference patterns generated at different lighting frequencies.
  • other camera types which have an integration time to which the sequence of the lighting frequencies set one after the other is coordinated.
  • a pixel is understood to mean a resolution unit of the digitized interference image, which is given, among other things, by the camera system.
  • the averaging in the computer can in this case also for group-pen of pixels, that is, with a resolution, 'the less be carried out as the camera resolution.
  • a method for recording the interferogram is advantageously used in a method for providing of an object or in a method for producing an object with a predetermined target surface.
  • the plane-parallel plate explained in connection with FIG. 1 is to be manufactured with high precision, it is placed in the beam path of the interferometer system and an interferogram is recorded using the method described above. From the interferogram, deviations of surface 5 from the planned target shape are determined. Postprocessing is planned from these deviations. In particular, these deviations are used to determine locations on the surface 5 where postprocessing, in particular by further material removal, is to take place. After the post-processing has been carried out, an interferogram may be recorded again and further post-processing may be carried out. If it emerges from the recorded interferogram that deviations between the shape of the surface 5 and the plan desired shape are less than a predetermined dimension, the plate is provided or delivered.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Instruments For Measurement Of Length By Optical Means (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

Es wird ein Interferometersystem vorgeschlagen umfassend eine Referenzfläche, eine Halterung für ein eine Objektfläche bereitstellendes Objekt, eine Strahlungsquelle zur Emission von Strahlung einer einstellbaren Frequenz auf die Referenzfläche und die Objektfläche, und einen ortsauflösenden Strahlungsdetektor sowie ferner eine Steuerung zum Einstellen einer Mehrzahl verschiedener Frequenzen der von der Strahlungsquelle emittierten Strahlung, und einen Integrator, um die bei verschiedenen Frequenzen auf dem Strahlungsdetektor überlagerten Interferenzmuster ortsabhängig zu mitteln. Weiters wird vorgeschlagen, ein Verfahren zum Aufnehmen eines Interferogramms, ein Verfahren zum Bereitstellen eines Objekts mit einer Soll-Oberfläche sowie ein Verfahren zum Herstellen eines Objekts mit einer Soll-Oberfläche.

Description

Interferometersystem, Verfahren zum Aufnehmen eines Interferogramms und Verfahren zum Bereitstellen und Herstellen eines Objekts mit einer Soll-Oberfläche
Die vorliegende Erfindung betrifft ein Interferometersystem und ein Verfahren zur Aufnahme eines Interferogramms . Das Interferometersystem und das Verfahren werden vorzugsweise dazu eingesetzt, aus dem Interferogramm topologische Eigenschaften einer Objektfläche durch Auswerten des aufgenommenen Interferogramms zu ermitteln.
Die Erfindung betrifft ferner ein Verfahren zum Bereitstellen und Herstellen eines Objekts mit einer Soll-Oberläche, wobei Abweichungen zwischen der Soll-Oberfläche und einer tatsächlichen Oberfläche des Objekts aus einem Interferogramm bestimmt werden und das Objekt in Abhängigkeit von diesen Abweichungen bereitgestellt bzw. nachbearbeitet wird.
Interferometersysteme werden herkömmlicherweise unter anderem zur Bestimmung von topologischen Eigenschaften einer Objekt- fläche eingesetzt. Es wird hierzu beispielsweise eine bekannte Referenzfläche und eine zu vermessende Objektfläche mit kohärenter Strahlung beleuchtet, und ein von der Objektfläche zurückgeworfenes Objektwellenfeld und ein von der Referenzfläche zurückgeworfenes Referenzwellenfeld werden beispielsweise auf einem Schirm zur Überlagerung gebracht, so daß dort ein Interferenzmuster entsteht. Aus dem Interfe- renzmuster kann ortsabhängig ein Unterschied des optischen Wegs von Referenzfläche zu Schirm und Objektfläche zu Schirm bestimmt werden, woraus dann topologische Unterschiede zwischen der Objektfläche und der Referenzfläche bestimmbar sind. Es sind zwei Techniken gebräuchlich, um solche Wegdifferenzen mit einem Interferometersystem zu bestimmen:
Ein erster Ansatz ist die sogenannte Streifenmusterinter- ferometrie ("FPI", fringe pattern interferometry) , bei der ein optischer Wegunterschied zwischen zwei Wellenfronten aus Positionen von Streifenzentren eines Interferenzmusters bestimmt wird. Es kann hier beispielsweise Bezug genommen werden auf R.A. Jones und P.L. Kadakia, "An Automated Inter- ferogram Technique", Applied Optics, Vol. 7, pp . 1477-1482 (1968); Zanoni, U.S. Patent Nr. 4,159,522 veröff . 26. Juni 1979, und Zanoni, U.S. Patent Nr. 4,169,980, veröff. 2. Oktober 1979.
Der andere Ansatz ist die sogenannte Phasenmeßinterferometrie ("PMI", phase measuring interferometry) , wo die Phasendifferenz zwischen den beiden Wellenfronten für jedes Pixel eines Detektors aus mehreren Interferenzmustern errechnet wird, wobei die mehreren Interferenzmuster aufgenommen werden, indem in diesen verschiedene Phasendifferenzen erzeugt werden. Es kann hierzu beispielsweise Bezug genommen werden auf J.H. Brunning et al . , "Digital Wavefront Measuring Interferometer for Testing Optical Surfaces and Lenses" , Applied Optics, Vol. 13, pp . 2693-2703 (1974); Gallagher et al., U.S. Patent Nr. 3,694,088 veröff. 26. September 1972, N. Balasubramanian, U.S. Patent Nr. 4,225,240 veröff . 30. September 1980; M. Schaham, Proceedings SPIE, Vol. 306, pp . 183- 191 (1981) ; und H.Z. Hu, "Polarization heterodyne inter- ferometry using a simple rotating analyzer. 1: Theory and error analysis", Applied Optics, Vol. 22, pp . 2052-2056 (1983) .
Aus US 4,594,003 ist ein Interferometersystem bekannt, bei dem die Frequenz der Strahlungsquelle änderbar ist, so daß sich die Streifen des Interferenzmusters verlagern lassen, ohne daß eine optische Komponente des Interferometersystems , wie etwa eine Referenzfläche oder eine Objektfläche, mechanisch verschoben werden muß. Hierbei ist eine Änderung über einen solchen Bereich vorgesehen, daß die Streifen des Interferenzmusters über eine volle Streifenbreite verlagerbar sind. Es werden vier Interferenzmuster aufgenommen, und zwar bei vier jeweils verschiedenen in diesem Bereich verteilten Frequenzen der Strahlungsquelle. Für jeden Pixel des Detektors wird dann eine Phase φ der optischen Wegdifferenz nach folgender Formel berechnet :
B(0) - B(2) φ(x,y) = arctan B(l) -B(3)
wobei B(0) bis B(3) die Intensitäten der einzelnen Aufnahmen an dem entsprechenden Pixel sind.
Dieses bekannte Verfahren zum Bestimmen von Wegdifferenzen ist dann weniger geeignet, wenn in dem Interferometersystem eine weitere Fläche vorhanden ist, welche ebenfalls ein Wellenfeld zurückwirft, das mit den von der Referenzfläche und der Objektfläche zurückgeworfenen Wellenfeldern interferiert. Das entstehende Interferenzmuster ist dann von besonders komplexer Natur . Dieser Fall tritt beispielsweise auf , wenn eine Oberfläche einer transparenten Platte mit zwei im wesentlichen planparallelen Oberflächen vermessen werden soll.
Es ist eine Aufgabe der vorliegenden Erfindung, ein Interferometersystem und ein Verfahren zum Aufnehmen eines Interferogramms vorzuschlagen, welches weniger empfindlich auf Störreflexionen ist.
Ferner ist es eine Aufgabe der Erfindung ein Verfahren zum Bereitstellen und Herstellen eines Objekts mit einer Soll- Oberfläche anzugeben. Die Erfindung geht hierbei von einem Interferometersystem aus, welches eine Referenzfläche, eine Objektfläche, eine Strahlungsquelle zum Beleuchten der Referenzfläche und der Objektfläche mit Strahlung einer einstellbaren Frequenz und einen ortsauflösenden Strahlungsdetektor umfaßt . Die Strahlungsquelle, die Referenzfläche, die Objektfläche und der Detektor sind derart angeordnet, daß sich ein von der Referenzfläche reflektiertes Referenzwellenfeld mit einem von der Objektfläche reflektierten Objektwellenfeld zu einem Interfe- renzmuster mit ortsabhängiger Intensitätsverteilung überlagert , welches auf den Detektor abgebildet ist . Hierbei ist das durch Überlagerung des Referenzwellenfelds und des Objektwellenfelds gebildete Interferenzmuster gestört durch ein mit diesen Wellenfeldern ebenfalls überlagertes Störwellen- feld, welches von einer Störinterferenz-Fläche zurückgeworfen wird, die gemeinsam mit der Referenzfläche bzw. der Objektfläche von der Strahlungsquelle beleuchtet ist.
Die Erfindung zeichnet sich hierbei durch einen Integrator aus, um mehrere Interferenzmuster ortsabhängig zu mitteln, welche bei jeweils verschiedenen Frequenzen der von der Strahlungsquelle emittierten Strahlung aufgenommen sind.
Das erzeugte Interferogramm ensteht also derart , daß für jeden Ort des Interferogramms ein Mittel gebildet wird aus den Intensitäten der einzelnen Interferenzmuster an diesem Ort . Die Mittelung ist hierbei vorzugsweise eine gewichtete Mittelung.
Werte der Gewichte für das gewichtete Mitteln oder/und Werte der verschiedenen Strahlungsfrequenzen werden vorzugsweise in Abhängigkeit von dem Abstand der Störinterferenz-Fläche von der Objektfläche bzw. von der Referenzfläche eingestellt. Diese Werte werden hierbei vorzugsweise derart eingestellt, daß sich ein Einfluß der Störwellenfront auf das Interferogramm weitgehend herausmittelt . Es hat dann das durch Mitte- lung aus mehreren Interferenzmustern gebildete Interferogramm eine Gestalt bzw. Intensitätsverteilung, die in etwa der entspricht, wie sie die Wellenfronten der von der Objektfläche und der Referenzfläche zurückgeworfenen Wellenfronten alleine erzeugen würden, wenn die Störinterferenz-Fläche in dem Interferometersystem nicht vorhanden wäre.
Hierbei ist es weiterhin vorteilhaft, die optische Wegdifferenz zwischen Referenzfläche und Objektfläche einstellbar zu gestalten, da durch geeignete Wahl diese Abstände relativ zueinander ein Einfluß der Störwellenfront auf das Interferogramm weiter reduzierbar ist .
Vorteilhafterweise werden die mehreren Frequenzen zur Erzeu- gung der mehreren Interferenzmuster zeitlich nacheinander während einer Zeitdauer eingestellt, die einem Belichtungszeitintervall einer Kamera entspricht, die die Interferenzmuster aufnimmt . Dies hat eine besonders einfache Ausbildung des Integrators zur Folge, da dieser durch die Kamera selbst gebildet ist.
Ausführungsformen der Erfindung werden nachfolgend anhand von Zeichnungen näher erläutert . Hierbei zeigt :
Figur 1 eine Ausführungsform eines erfindungsgemäßen Interferometersystems ,
Figur 2 ein Diagramm zur Erläuterung von verschiedenen Frequenzen von von einer Strahlungsquelle der Fi- gur 1 abgegebenen Strahlung zur Erzeugung von Interferenzmustern,
Figur 3 eine zeitliche Abhängigkeit der von der Strahlungsquelle der Figur 1 emittierten Strahlung, Figur 4 ein Diagramm, welches eine Interferogramm-Intensität in Abhängigkeit von einer optischen Wegdifferenz für ein durch das Interferometersystem der Figur 1 erzeugtes Interferenzmuster bei Einstel- lung der Frequenzen gemäß den Figuren 2 und 3 ergibt,
Figur 5 eine Interferogramm-Modulation in Abhängigkeit von einer optischen Wegdifferenz in dem Interferome- tersystem der Figur 1, wie sie sich bei einer weiteren zeitabhängigen Einstellung der Frequenzen der Strahlungsquelle ergibt,
Figur 6 eine der Figur 2 entsprechende Frequenzverteilung der von der Strahlungsquelle emittierten Strahlung,
Figur 7 eine der Figur 4 entsprechende Darstellung der Interferogramm-Intensität in Abhängigkeit der op- tischen Weglängendifferenz bei Einsatz der in Figur 6 gezeigten Frequenzverteilung,
Figur 8 eine Teilansicht einer weiteren Ausführungsform des erfindungsgemäßen Interferometersystems und
Figur 9 eine Teilansicht noch einer weiteren Ausführungs- form des erfindungsgemäßen Interferometersystems .
Figur 1 zeigt ein Fizeau- Interferometersystem 1 zur Vermes- sung einer Oberfläche 5 einer planparallelen Platte 3. Die Platte 3 ist in einer Halterung 4 gehaltert, welche über einen motorischen Antrieb 6 relativ zu einer Referenzfläche 23 verlagerbar ist .
Das Interferometersystem 1 umfaßt eine Lichtquelle 9, die einen Strahl 11 kohärenten Lichts mit einstellbarer Wellen- länge bzw. Frequenz emittiert. Die Lichtquelle 9 ist eine sogenannte ECDL-Quelle, ein Diodenlaser mit einstellbarer externer Kavität ("External Cavity Diode Laser") .
Eine solche ECDL-Strahlungsquelle ist beispielsweise in dem Artikel "Widely Tunable External Cavity Diode Lasers" von Tim Day, Michael Brownell and I-Fan Wu beschrieben. Entsprechende Quellen können von der Firma New Focus, Inc., 1275 Reamwood Avenue, Sunnyvale, CA 94089, USA bezogen werden.
Der von der Quelle 9 emittierte Strahl 11 wird von einer Linse 13 auf eine rotierende Mattscheibe bzw. Streuscheibe 15 zur Unterdrückung räumlicher Kohärenz der Strahlung fokus- siert. Die Streuscheibe 15 rotiert um eine in Figur 1 nicht dargestellte Drehachse.
Nach Durchlaufen des Fokus im Bereich der Streuscheibe 15 durchsetzt der sich auf eitende Strahl 11 ' einen halbdurchlässigen Spiegel 17 und wird sodann nach ausreichender Auf- eitung durch einen Kollimator 19, der ein oder mehrere Linsen umfassen kann, parallelisiert . Der daraufhin paralleli- sierte Strahl 11" durchläuft eine Glasplatte 21, deren von dem Kollimator 19 wegweisende Fläche 23 die Referenzfläche zur Vermessung der Oberfläche 5 der planparallelen Platte 3 bildet. Die Referenzfläche 23 ist möglichst plan gefertigt. Eine dem Kollimator 19 zuweisende Fläche 25 der Platte 21 erstreckt sich unter einem Winkel zur Referenzfläche 23, so daß von dieser Fläche 25 reflektierte Strahlung nicht in sich zurückgeworfen wird und zu Störinterferenzen beiträgt .
Von der Referenzfläche 23 in sich zurückreflektierte Strahlung wird durch den Kollimator 19 wieder kollimiert , trifft auf den halbdurchlässigen Spiegel 17 und wird von diesem nach Durchlaufen einer Blende 27 und eines Okulars 29 auf eine strahlungsempfindliche Schicht 31 einer CCD-Kamera 33 abgebildet . Ein durch die Referenzfläche 23 hindurchtretender Teil des Strahls 11 trifft auf die zu vermessende Fläche 5 der planparallelen Platte 3. Die zu vermessende Fläche 5 ist möglichst orthogonal zur Richtung des parallelen Strahls 11" ausgerichtet . Ein Teil der auf die zu vermessende Fläche 5 treffenden Strahlung wird wiederum in sich zurückreflektiert, durchläuft die Platte 21 erneut, wird ebenfalls von dem Kollimator 19 fokussiert und auf die strahlungsempfindliche Fläche 31 abgebildet. Die Strahlungsempflindliche Schicht 31 der Kamera 33 bildet somit einen Schirm, auf dem die von der Referenzfläche 23 zurückgeworfene Strahlung mit der von der zu vermessenden Fläche 5 zurückgeworfenen Strahlung interferiert .
Ein Zweck der Interferometeranordnung 1 ist es, das durch die interferierende Überlagerung der von der Referenzfläche 23 zurückgeworfenen Strahlung und der von der zu vermessenden Fläche 5 zurückgeworfenen Strahlung erzeugte Interferenzmuster zu erfassen.
Wie vorangehend bereits angedeutet, ist die Platte 3 allerdings eine planparallele Platte, das heißt die zu vermessende Oberfläche 5 der Platte 3 und eine dieser gegenüberliegende andere Rückfläche 7 der Platte 3 erstrecken sich im wesentlichen parallel zueinander. Dies führt dazu, daß ein Teil der Strahlung 11, welcher die zu vermessende Fläche 5 durchsetzt, von der Rückfläche 7 der Platte 3 ebenfalls in sich selbst zurückgeworfen und auf die strahlungsempfindliche Schicht 31 abgebildet wird.
Somit interferiert auf der strahlungsempfindlichen Schicht 31 zum einen die von der Referenzfläche 23 zurückgeworfene Strahlung mit der von der zu vermessenden Fläche 5 zurückgeworfenen Strahlung, wobei ierzwischen eine optische Weglängendifferenz 2-CQ besteht, es interferiert auf der strah- lungsempfindlichen Schicht 31 zum anderen die von der Referenzfläche 23 reflektierte Strahlung mit der von der Rückflä- ehe 7 der planparallelen Platte 3 reflektierten Strahlung, wobei hierzwischen eine optische Weglängendifferenz 2-C2 besteht, und es interferiert dort weiter die von der zu vermessenden Fläche 5 der Platte 3 reflektierte Strahlung mit der von deren Rückfläche 7 reflektierten Strahlung, wobei hierzwischen eine optische Weglängendifferenz von 2-C]_ besteht . Das auf der strahlungsempfindlichen Schicht 31 entstehende Interferenzmuster ist somit sehr kompliziert und schwer auszuwerten.
Die Kamera 33 liefert die Daten, die eine Strahlungsintensi- tätsverteilung auf der strahlungsempfindlichen Fläche 31 repräsentieren, über eine Datenleitung 35 an einen Rechner 37. Der Rechner 37 wiederum erzeugt eine Darstellung des Interferenzmusters auf der strahlungsempfindlichen Schicht 31 auf einem Sichtgerät 39, wobei in Figur 1 lediglich schematisch ein Interferenzmuster mit mehreren symbolischen Streifen 40 angedeutet ist. Der Rechner 37 speichert die Daten ferner und führt weiterhin eine Auswertung der Interferenzmu- ster durch, um hieraus Niveauunterschiede zwischen der Referenzfläche 23 und der zu vermessenden Fläche 5 bzw. die Topo- logie der zu vermessenden Fläche 5 zu bestimmen.
Das Interferometersystem 1 umfaßt ferner eine Steuerung 41, die von dem Rechner 37 über eine Steuerleitung 43 mit Frequenzdaten versorgt und freigegeben wird und die sodann zum einen über eine Leitung 45 die Frequenz der von der Quelle 9 auszugebenden Strahlung 11 zeitabhängig einstellt und zwar in Abhängigkeit eines von der Kamera 33 erzugten Triggersignals 48, das über eine Leitung 47 auch dem Rechner 37 zugeführt wird.
Nachfolgend wird ein Verfahren zum Betrieb des Interferometersystems 1 beschrieben, wobei für die Platte 3 eine Dicke von 74mm angenommen ist, so daß sich unter Berücksichtigung des Brechungsindexes des Glases der Platte 3 eine optische Wegdifferenz 2- ^_ von 214,39mm ergibt.
Die Steuerung 41 stellt zunächst über die Leitung 45 die Frequenz der Strahlungsquelle 9 auf eine erste Frequenz mit einem Wert f-Δf ein und startet über die Leitung 47 die Integration der CCD-Kamera 33, so daß das Interferenzmuster, welches durch die von den drei Flächen 23, 5 und 7 reflektierten Wellenfronten bei Beleuchtung mit Strahlung der Fre- quenz f-Δf erzeugt wird, auf die strahlungsempfindliche Fläche 31 der Kamera 33 fällt und die entsprechende Strahlungsintensität dort integriert wird. Nach 3,75msec stellt die Steuerung 41 die Quelle 9 auf eine zweite höhere Frequenz f ein, so daß das bei dieser Frequenz erzeugte Interferenzmu- ster als zweites Interferenzmuster während der Integrations- zeit der Kamera 33 auf die strahlungsempfindliche Schicht 31 fällt und die entsprechenden Strahlungsintensitäten dort zu den Intensitäten des ersten Interferenzmusters integriert werden. Nach weiteren 7 , 5msec stellt die Steuerung 41 die Frequenz der Strahlungsquelle 9 auf eine noch höhere dritte
Frequenz mit dem Wert f+Δf ein, so daß auch das bei dieser dritten Frequenz erzeugte Interferenzmuster ebenfalls innerhalb der Integrationszeit der Kamera auf deren Lichtsammeifläche 31 fällt und die Intensitäten des dritten Interferenz- musters zu den Intensitäten des ersten und zweiten Interferenzmusters addiert werden. Die Beleuchtung mit der dritten Frequenz f+Δf dauert 3,75sec,' und daraufhin veranlaßt die Steuerung 41 über die Leitung 47 ein Beenden der Integrationszeit der Kamera 33, und die Daten, die die gesamte wäh- rend der Integrationszeit auf die Lichtsammeifläche 31 gefallene Lichtintensität ortsabhängig repräsentieren, werden über die Leitung 35 an den Rechner 37 ausgelesen.
Die vorangehend beschriebene Integrationszeit der Kamera von I5msec wurde in dem Ausführungsbeispiel gewählt, um bei der gegebenen Laserleistung ein Bild guter Qualität zu erhalten. Je nach zur Verfügung stehender Laserenergie und anderen Randbedingungen können auch andere Integrationszeiten eingestellt werden.
Diese Daten repräsentieren damit die Summe aus drei verschiedenen Interferenzmustern, wobei das erste Interferenzmuster mit Strahlung der Frequenz f-Δf aufgenommen wurde, das zweite Interferenzmuster mit der Frequenz f aufgenommen wurde und das dritte Interferenzmuster mit der Frequenz f+Δf aufgenom- en wurde. Bei der Integration der drei Interferenzmuster wird das mit der mittleren Frequenz f aufgenommene Interferenzmuster im Vergleich zu den bei den beiden anderen Frequenzen f-Δf, f+Δf aufgenommenen Interferenzmustern mit doppeltem Gewicht berücksichtigt.
Diese gewichtete Beleuchtung mit drei verschiedenen Frequenzen ist nochmals in den Figuren 2 und 3 erläuternd dargestellt. In Figur 2 ist die spektrale Leistungsdichte in willkürlichen Einheiten in Abhängigkeit von der Wellenzahl k der Strahlung der Quelle 9 dargestellt. Es ist ersichtlich, daß die Beleuchtung mit den drei verschiedenen Frequenzen mit den relativen Gewichten 0,5, 1 und 0,5 erfolgt. Diese spektrale Leistungsdichteverteilung kann als Formel wie folgt dargestellt werden:
F(k) = A - -δ(k -{k0-Ak)) + δ(k -k0) + -δ(k -(k0+Mc))
Gleichung (1)
Hierbei ist
δ die Dirac ' sche Deltafunktion,
2π k die Wellenzahl — , λ
2π o die Ausgangswellenzahl — und λ0 Δk die der Frequenzänderung Δf entsprechende Wellenzahlän- derung .
Im vorliegenden Fall wurde λo=632,8nm gewählt. Auf diesen Wert der Wellenlänge ist die Strahlungsquelle 9 einstellbar, und diese Einstellung hat den Vorteil, daß für das Interferometersystem abgesehen von der Strahlungsquelle ein Aufbau und Komponenten gewählt werden können, wie sie von mit herkömmlichen He-Ne-Lasern betriebenen Interferometern her bekannt sind.
Es ergibt sich das Interferogramm als Fouriertransformierte der spektralen Leistungsdichte zu
I(x) - F(k) ■ coskx - dx = A -—|COS(Ä:0-ΔÄ) • x + cos{k0+Ak) ■ xj + A ■ cos(k0x) o 2
= A -COS&0JC-(1 + COSΔ£X)
Gl ei chung (2 )
Es ergibt sich somit für das Interferogramm eine Schwebungs- wellenzahl von Δk. Ein Verlauf der Funktion I (x) ist für einen beliebigen Punkt in dem Interferogramm in Figur 4 schematisch dargestellt. Eine Einhüllende der gezeigten Kurven wird auch als Interferenzkontrast bzw. Modulation bezeichnet. Es ergibt sich somit, daß die Modulation in Abhängigkeit von der Entfernung von der Referenzfläche periodisch zu- und abnimmt, wobei für bestimmte Entfernungen die Modulation auf Null zurückgeht .
Ein vorteilhafter Betrieb des Interferometersystems 1 ist dann gegeben, wenn die reflektierenden Flächen 23, 5, 7 rela- tiv zueinander so angeordnet werden, daß die durch den Abstand zwischen der zu vermessenden Fläche 5 und der Rückfläche 7 erzeugte optische Wegdifferenz 2-C]_ in etwa mit dem ersten Minimum der Modulation zusammenfällt, die durch den Abstand zwischen Referenzfläche 23 und der Rückfläche 7 der Platte 3 erzeugte Weglängendifferenz 2-C2 in etwa mit dem zweiten Minimum der Modulation zusammenfällt und die durch den Abstand zwischen Referenzfläche 23 und zu vermessender Fläche 5 erzeugte Weglängendifferenz CQ in etwa mit dem zwei- ten Maximum der Modulation zusammenfällt. Hierzu wird zunächst die Frequenzänderung Δf bzw. Wellenzahländerung Δk wie folgt ermittelt:
Es wird zunächst l+cosΔk-C;]_=0 gesetzt, woraus sich Δk-C^=π ergibt. Da im vorliegenden Beispiel der Plattendicke C]_=214 , 139mm angenommen ist, ergibt sich Δk=14,67m_1. Sodann wird der Abstand der Platte 3 von der Referenzfläche 23 über den Antrieb 6 so eingestellt, daß sich Δk-C2=3π ergibt. Hierbei ist anzumerken, daß die zuletzt genannte Bedingung mit lediglich vergleichsweise geringer Genauigkeit einzuhalten ist, da die Modulation gemäß Figur 4 quadratische Minima aufweist und diese somit vergleichsweise unempfindlich gegenüber Änderungen der optischen Wegdifferenz sind.
Bei der beschriebenen Einstellung von Δk und dem Abstand der
Rückfläche 7 von der Referenzfläche 23 ergibt sich dann automatisch die optische Weglängendifferenz 2-CQ SO, daß sie in etwa mit dem zweiten Maximum der Modulation gemäß Figur 4 zusammenfällt .
Es werden somit die durch die Rückfläche 7 der Platte 3 hervorgerufenen Störinterferenzen durch die während der Integrationszeit der Kamera 33 durchgeführte gewichtete Mittelung wirksam herausgemittelt , so daß das durch Mittelung gewonnene Interferogramm, abgesehen von einem Gleichlichtanteil, lediglich ein Streifenmuster aufweist, wie es aus der Interferenz alleine der von der Referenzfläche 23 zurückgeworfenen Wellenfront mit der von der zu vermessenden Fläche 5 zurückgeworfenen Wellenfront entstehen würde. Dieses vergleichswei- se einfache und ungestörte Interferenzmuster wird dann einem bekannten Auswerteverfahren für Streifenmuster unterworfen, um daraus die Topologie der zu vermessenden Fläche 5 zu bestimmen.
Der Betrieb des Interferometersystems 1 ist nicht darauf beschränkt, die Frequenz der Strahlungsquelle 9 mit dem in Figur 3 gezeigten Zeitschema anzusteuern. Als Variante ist nachfolgend die Möglichkeit diskutiert, die Frequenz der Strahlungsquelle 9 mit einer sinusförmigen Zeitabhängigkeit zu ändern. Es sei hier zunächst für die Interferogramminten- sität I angenommen:
I(x) =/0-[l+ V ■ cos{k x-Φ0)] ,
Gleichung (3)
wobei
k die Wellenzahl der Strahlung ist, die in dieser Formel näherungsweise als konstant angenommen werden kann, x die optische Weglängendifferenz, ΦQ eine Interferogrammphase und V ein Interferenzkontrast
ist .
Aufgrund der sinusförmigen Änderung der Frequenz ergibt sich die Interferogrammphase dann zu
Φ00(t) =Φ0+A • sinωt ,
Gleichung (4)
wobei
ΦQ ' ein mittlerer Phasenwert, ω die Winkelgeschwindigkeit der Phasenmodulation und A eine Phasenmodulationsamplitude ist. Eingesetzt in Gleichung (3) ergibt sich somit
I(x,t) =J0{1 + V • cos{k • x -ΦQ-A •sin cot)
Gleichung (5)
Die Modulationsperiode für die Frequenzänderung der Strahlung wird nun derart eingestellt, daß ein ganzzahliges Vielfaches hiervon der Integrationszeit der Kamera 33 entspricht. Das zeitlich gemittelte Interferogramm berechnet sich somit zu
1 r«
I(x)~ — I 10- 1 + V -cos(k-x-φQ '-A-smωt) -d(ωt)
9 TΓ J-π L J
~I0+IQ-V -cosyk-x-Φύ) | cos(^4-sinω t)-dr(ωt)
Figure imgf000017_0001
+10-V • sm(k ■ x -Φ I sin( i-sinωt)- (ωt)
J-π
I(x) + V cos(/c • x -ΦQ) -J0(A)
Gleichung (6)
wobei JQ(A) die Besseifunktion 0-ter Ordnung der Phasenmodulationsamplitude A ist. Diese Funktion ist in Figur 5 dargestellt.
Es lassen sich nun Phasenmodulationsamplituden A finden, für die Interferenzen zwischen den von der zu vermessenden Fläche 5 und der Rückfläche 7 der Platte 3 zurückgeworfenen Wellenfronten verschwinden. Es muß die Frequenzmodulationsamplitude der Strahlungsquelle 9 somit so eingestellt werden, daß die Phasenmodulation für die optische Weglängendifferenz 2-Cj_ der ersten Nullstelle der Besselfunktion aus Gleichung (6) entspricht. Dies ist der Fall für A]_=0 , 76547-π. Durch Ändern des Abstands zwischen der Referenzfläche 23 und der Platte 3 wird dann weiter erreicht, daß die optische Weglängendifferenz 2-C2 dem zweiten Minimum der Besselfunktion der Gleichung (6) entspricht, was für A2=l,7571-π der Fall ist. Das Verhältnis der optischen Wegdifferenzen ist somit gegeben durch die beiden ersten Nullstellen der Besselfunktion J0 (A) :
-^ = ^ = 2,2955. C, A Gleichung (7)
Andererseits gilt CQ=C2-C-J_, und für die zu vermessende Weglängendifferenz CQ ergibt sich die Amplitude
A0 = ^ , = ^^ , = ,99l6- π .
0 C, C, '
Gleichung (8)
An dieser Stelle hat die Besselfunktion JQ (A) den Wert
>( ) = -0,297 «-0,3.
Gleichung (9)
In dieser Anordnung interferieren drei Teilstrahlen mit in etwa gleicher Grundintensität, wobei jedoch in dem gewichtet gemittelten bwz . integrierten Interferogramm nur die Streifenmuster von zwei interferierenden Teilstrahlen sichtbar sind. Die übrigen Interferenzen mitteln sich heraus, bilden allerdings einen den Kontrast reduzierenden Gleichlichtanteil. Der effektive Kontrast rechnet sich zu
Figure imgf000018_0001
Gleichung (10) Dieser Kontrast ist ausreichend um die Lage der Streifen 40 zu bestimmen und aus der Auswertung des Streifenmusters auf die Topologie der zu vermessenden Fläche 5 schließen zu können. Es sei jedoch angemerkt, daß die Einstellung der Strah- lungsfrequenz nach dem in Figur 3 gezeigten Schema zu einem höheren effektiven Kontrast führt.
Es sei nun noch als weiteres Ausführungsbeispiel beispielhaft der Fall erläutert, daß die Strahlungsquelle 9 derart ange- steuert wird, daß sie eine in Figur 6 gezeigte gaußförmige spektrale Leistungsdichte
Figure imgf000019_0001
Gleichung (11)
emittiert, wobei
2π k die Wellenzahl — , λ
2π kO die Schwerpunktwellenzahl — und λ0 σ die Breite der Gaußfunktion
ist .
Für diese spektrale Verteilung ist nun eine zeitabhängige Ansteuerfunktion für die Strahlungsfrequenz zu bestimmen. Hierbei ist der Zusammenhang
dk(t) dt A[k(t)]
Gleichung (12)
zu beachten. Diese Gleichung kann durch den Rechner 37 numerisch gelöst werden, um schließlich ein der Figur 3 entspre- chendes Zeitschema für die Ansteuerung der Strahlungsfrequenz zu erhalten.
Bei der spektralen Leistungsdichte gemäß Figur 6 ergibt sich dann eine Abhängigkeit der Interferogrammintensität von der Weglängendifferenz, wie sie in Figur 7 dargestellt ist. Hieraus ist ersichtlich, daß bei geringen Abständen von der Referenzfläche 23 hohe Interferenzkontraste erreichbar sind, während der Kontrast bei größeren Abständen der Referenz- fläche 23 stark abfällt. Dieser Kontrastabfall ist so stark, daß bei Anordnung der Platte 3 dicht neben der Referenzfläche 23 durch die Rückseite 7 hervorgerufene Interferenzen sich weigehend herausmitteln und lediglich durch die zu vermessende Fläche 5 hervorgerufene Interferenzen zu dem Streifenmuster des gemittelten Interferogramms beitragen.
Dies entspricht einem Interferogramm mit einer Strahlung zeitlich konstanter Frequenz und einer reduzierten Kohärenz- länge, die kürzer ist als die optische Dicke C^_ der Platte 3. Die zeitabhängige Frequenzänderung einer Strahlungsquelle großer Kohärenzlänge hat somit eine Wirkung, die einer Reduzierung der -zeitlichen Kohärenz für bestimmte Längen entspricht. Unter Bezugnahme auf Figur 4 bedeutet dies, daß die zeitabhängige Frequenzänderung dazu geführt hat, daß in den Bereichen der Modulationsminima die Kohärenz der Strahlung zerstört wurde .
Nachfolgend werden weitere Varianten der in den Figuren 1 bis 7 erläuterten Ausführungsformen dargestellt. Hinsichtlich ihres Aufbaus und ihrer Funktion einander entsprechende Komponenten sind mit den Bezugszahlen aus den Figuren 1 bis 7 bezeichnet, zur Unterscheidung jedoch mit einem zusätzlichen Buchstaben versehen. Zur Erläuterung wird auf die gesamte vorangehende Beschreibung jeweils Bezug genommen. Figur 8 zeigt eine Teilansicht eines Interferometersystems la, welches ähnlich aufgebaut ist wie das in Figur 1 gezeigte Interferometersystem. Allerdings dient das Interferometersystem la nicht zur Vermessung einer planparallelen Platte sondern einer konzentrischen Meniskuslinse 3a. Im Strahlengang nach einer Referenzplatte 21a mit einer Referenzfläche 23a ist ein Aplanar-Kollimator 51 mit einer Mehrzahl Linsen 52 bis 56 vorgesehen, welcher die parallele Strahlung ll"a in einem Punkt 57 fokussiert, der gleichzeitig Krümmungsmittel- punkt von Oberflächen 5a und 7a der konzentrischen Meniskuslinse 3a ist.
Das Interferometersystem la entspricht ansonsten dem in Figur 1 gezeigten Interferometersystem und wird nach einem Verfah- ren betrieben, wie es im Zusammenhang mit dem Interferometersystem der Figur 1 erläutert wurde. Dies heißt, es wird die Frequenz der Strahlungsquelle zeitabhängig so angesteuert, daß Stδrinterferenzen, die durch eine gerade nicht vermessene Oberfläche, insbesondere die Fläche 7a, der konzentrischen Meniskuslinse 3a oder aber durch andere optisch wirksame Komponenten im Strahlengang hervorgerufen werden, sich zeitlich weitgehend herausmitteln.
Es können die Flächen 5a und 7a der Meniskuslinse 3a auch vermessen werden, indem die Linse umgekehrt, das heißt mit ihrer konvexen. Fläche 7a zu dem Kollimator 51 hinweisend, und vor dem Fokuspunkt 57 im Strahlengang positioniert wird.
Figur 9 zeigt eine Variante des in Figur 8 gezeigten Inter- ferometersystems . Im Unterschied hierzu ist bei dem Interferometersystem lb gemäß Figur 9 eine Referenzfläche 23a jedoch nicht an einer separaten Referenzplatte sondern an einer präzise gefertigten, dem Prüfling zugewandten Fläche der Linse 56b eines Aplanar-Kollimators 51 vorgesehen. Auch das Interferometersystem lb dient zur Vermessung einer konzentrischen Meniskuslinse. Neben den vorangehend beschriebenen Zeitabhängigkeiten der Frequenz der Strahlungsquelle zur Erzeugung des Interferogramms können auch andere Zeitabhängigkeiten gewählt werden, welche sich als günstig erweisen. Wesentlich ist hierbei, daß sich Interferenzeffekte, die von Oberflächen hervorgerufen werden, die nicht vermessen werden sollen, sich zeitlich wenigstens teilweise herausmitteln.
Das Interferometersystem wurde vorangehend als ein Fizeau- Interferometer beschrieben. Es ist jedoch auch möglich, alternative Interferometertypen einzusetzen, etwa einen Michel- son- Interferometeraufbau oder einen Twyman-Green-Interferometeraufbau .
In den vorangehend beschriebenen Ausführungsbeispielen wurde als Integrator zur gewichteten Mittelung der bei verschiedenen Beleuchtungsfrequenzen erzeugten Interferenzmuster die CCD-Kamera eingesetzt. Es ist jedoch auch möglich, andere Kameratypen einzusetzen, welche eine Integrationszeit aufweisen, auf die die Sequenz der zeitlich nacheinander eingestellten Beleuchtungsfrequenzen abgestimmt ist. Ferner ist es möglich, für mehrere Beleuchtungsfrequenzen separate Kamerabilder zu erzeugen, diese dem Rechner zuzuführen und die Integration bzw. gewichtete Mittelung im Rechner Pixel für Pixel durchzuführen. Als Pixel sei im Rahmen dieser Anmeldung eine Auflösungseinheit des digitalisierten Interferenzbildes verstanden, welche unter anderem durch das Kamerasystem gegeben ist. Die Mittelung im Rechner kann hierbei auch für Grup- pen von Pixeln, das heißt mit einer Auflösung, ' die geringer ist als die Kameraauflösung, durchgeführt werden.
Das vorangehend beschriebene Interferometersystem und das
Verfahren zum Aufnehmen des Interferogramms wird vorteil- hafterweise eingesetzt in einem Verfahren zur Bereitstellung eines Objekts bzw. in einem Verfahren zum Herstellen eines Objekts mit einer vorbestimmten Soll-Oberflache .
Soll beispielsweise die im Zusammenhang mit Figur 1 erläu- terte planparallele Platte hochpräzise gefertigt werden, so wird diese im Strahlengang des Interferometersystems plaziert und ein Interferogramm nach dem vorangehend beschriebenen Verfahren aufgenommen. Aus dem Interferogramm werden Abweichungen der Fläche 5 von der planen Soll-Gestalt ermittelt. Aus diesen Abweichungen wird eine Nachbearbeitung geplant. Insbesondere werden aus diesen Abweichungen Orte auf der Oberfläche 5 bestimmt, an denen eine Nachbearbeitung, insbesondere durch weiteren Materialabtrag, erfolgen soll. Nach Vornahme der Nachbearbeitung wird gegebenenfalls erneut ein Interferogramm aufgenommen und gegebenenfalls werden weitere Nachbearbeitungen vorgenommen. Ergibt sich aus dem aufgenommenen Interferogramm, daß Abweichungen zwischen der Gestalt der Oberfläche 5 und der planen Soll-Gestalt geringer als ein vorbestimmtes Maß sind, so wird die Platte bereitge- stellt bzw. ausgeliefert.
Dieses Bereitstellungs- bzw. Herstellungsverfahren kann auf jegliches anderes Objekt angewendet werden, welches eine vorbestimmte Oberfläche aufweisen soll . Vorangehend wurde bereits die Anwendung auf eine konzentrische Meniskuslinse erläutert. Es sind jedoch auch Anwendungen auf jegliche andere Objekte denkbar.

Claims

Patentansprüche
1. Interferometersystem, umfassend: eine Referenzfläche (23 ) , - eine Halterung für ein eine Objekt fläche (5) bereitstellendes Objekt (7) , eine Strahlungsquelle (9) zur Emission von Strahlung einer einstellbaren Frequenz auf die Referenzfläche (23) und die Obj ektfläche (5) , und - einen ortsauflösenden Strahlungsdetektor (31) ,
wobei die Strahlungsquelle ( 9 ) , die Referenzfläche (23 ) , die Halterung und der Strahlungsdetektor (31) derart angeordnet sind, daß sich ein von der Referenzfläche (23 ) reflektiertes Referenzwellenfeld mit einem von Obj ekt- , fläche ( 5) reflektierten Obj ektwellenfeld zu einem auf den Strahlungsdetektor (31) abgebildeten Interferenzmuster mit ortsabhängiger Intensitätsverteilung überlagern,
wobei eine Störinterferenz-Fläche (7) vorgesehen ist, die gemeinsam mit der Referenzfläche (23) oder/und der Objektfläche (5) von der Strahlungsquelle (9) bestrahlt ist, und
wobei das Interferometersystem ferner eine Steuerung (37, 41) zum Einstellen einer Mehrzahl verschiedener Frequenzen (f, f+Δf, f-Δf) der von der Strahlungsquelle (9) emittierten Strahlung umfaßt, gekennzeichnet durch einen Integrator (33) , um die bei verschiedenen Frequenzen auf dem Strahlungsdetektor (31) überlagerten Interferenzmuster ortsabhängig zu mitteln.
2. Interferometersystem nach Anspruch 1, wobei der Strah- lungsdetektor (31) durch eine CCD-Kamera (33) bereitgestellt ist.
3. Interferometersystem nach Anspruch 1 oder 2 , wobei der Integrator durch den Strahlungsdetektor (31) gebildet is .
4. Interferometersystem nach Anspruch 3, wobei die Steuerung (41, 37) mehrere, insbesondere sämtliche, der verschiedenen Frequenzen zeitlich nacheinander während einer Zeitdauer einstellt, die einer Integrationszeit des Detektors (33) entspricht.
5. Verfahren zum Aufnehmen eines Interferogramms, umfassend:
Beleuchten einer Referenzfläche (23) und einer Objektfläche (5) mit kohärenter Strahlung vorbestimmter Frequenz ,
Überlagern eines von der Referenzfläche (23) reflektier- ten Referenzwellenfeldes und eines von der Objektfläche (5) reflektierten Objektwellenfeldes derart, daß auf einem Schirm (31) ein Interferenzmuster mit ortsabhängiger Strahlungsintensitätsverteilung entsteht ,
wobei das Beleuchten nacheinander mit einer Mehrzahl verschiedener Strahlungsfrequenzen (f, f+Δf, f-Δf) erfolgt, so daß auf dem Schirm nacheinander den verschiedenen Strahlungsfrequenzen jeweils zugeordnete Interferenzmuster entstehen, und.
wobei das Interferogramm dadurch gebildet wird, daß für einen jeden Ort des Interferogramms Intensitäten der
Mehrzahl Interferenzmuster an dem entsprechenden Ort ge- wichtet gemittelt werden.
6. Verfahren nach Anspruch 5 , wobei die Gewichte für das gewichtete. Mitteln durch Einstellen von Zeitdauern der Beleuchtungen mit den jeweils verschiedenen Strahlungs- frequenzen eingestellt werden.
7. Verfahren nach Anspruch 5 oder 6 , wobei mit Abstand von der Objektfläche (5) oder/und mit Abstand (C2) von der Referenzfläche (23) eine Störinterferenz-Fläche (7) angeordnet ist, die gemeinsam mit der Objektfläche (5) bzw. der Referenzfläche (23) beleuchtet wird, und wobei Werte der verschiedenen Strahlungsfrequenzen oder/und Werte der Gewichte für das gewichtete Mitteln in Abhängigkeit von dem Abstand eingestellt werden.
8. Verfahren nach einem der Ansprüche 5 bis 7, wobei zwischen einem optischen Weg von der Referenzfläche (23) zu dem Detektor (31) und einem optischen Weg von der Objektoberfläche (5) zu dem Detektor (31) eine erste Weglängendifferenz (CQ) besteht, wobei zwischen einem optischen Weg von der Referenzfläche (23) zu dem Detektor (31) und einem optischen Weg von der Störinterferenz-Fläche (7) zu dem Detektor (31) eine zweite Weglängendifferenz (C ) besteht, wobei eine dritte Differenz (Cl) zwischen der ersten und der zweiten Weglängendifferenz besteht, wobei das Beleuchten mit drei verschiedenen Strahlungs- frequenzen erfolgt, . nämlich einer mittleren Frequenz (f) , einer höheren Frequenz (f+Δf) und einer niedrigeren Frequenz (f-Δf) , wobei die drei Frequenzen paarweise voneinander einen Frequenzabstand (Δf) aufweisen, wobei der Frequenzabstand (Δf) derart eingestellt wird, daß die Gleichung
Δk-C!=π erfüllt ist, wobei Δk die dem Frequenzabstand (Δf) ent- sprechende Wellenzahländerung ist, wobei der Abstand zwischen der Störinterferenz-Fläche und dem Detektor derart eingestellt wird, daß die Gleichung
Δk-C2=3π erfüllt ist, und wobei bei der Wichtung das der niedrigen Frequenz zugeordnete Interferenzmuster und das der höheren Frequenz zugeordnete Interferenzmuster einem jeweils einfachen Gewicht und das der mittleren Frequenz zugeordnete Interferenzmuster mit einem doppelten Ge- wicht berücksichtigt werden.
9. Verfahren zum Bereitstellen eines Objekts (3) mit einer Soll-Oberfläche, umfassend die Schritte:
Aufnehmen eines Interferogramms mit dem Verfahren nach einem der Ansprüche 5 bis 8, wobei das Objekt
(3) die Objektfläche (5) bereitstellt,
Auswerten des Interferogramms und Bestimmen von Abweichungen zwischen der Objektfläche und der Soll- Oberfläche in Abhängigkeit von dem Interferogramm, - Bereitstellen des Objekts, wenn die Abweichungen kleiner sind als ein vorbestimmter Schwellenwert und Nicht-Bereitstellen des Objekts, wenn die Abweichungen größer sind, als der vorbestimmte Schwellenwert.
10. Verfahren zum Herstellen eines Objekts mit einer Soll- Oberfläche, umfassend die Schritte:
Aufnehmen eines Interferogramms mit dem Verfahren nach einem der Ansprüche 5 bis 8, wobei das Objekt die Objektfläche bereitstellt, - Auswerten des Interferogramms und Bestimmen von Abweichungen zwischen der Objektfläche und der Soll- Oberfläche in Abhängigkeit von dem Interferogramm, Abtragen von Oberflächenbereichen des Objekts an Orten, welche in Abhängigkeit von den Abweichungen zwischen Objektoberfläche und Soll-Oberfläche be- stimmt werden, um die Objektoberfläche des Körpers der Soll-Oberfläche anzupassen.
11. Verfahren nach Anspruch 9 oder 10, wobei der herzustellende Körper eine transparente planparallele Platte oder eine konzentrische Meniskuslinse ist.
PCT/EP2002/007080 2001-06-27 2002-06-26 Interferometersystem, verfahren zum aufnehmen eines interferogramms und verfahren zum bereitstellen und herstellen eines objekts mit einer soll-oberfläche WO2003002933A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003508872A JP2004530905A (ja) 2001-06-27 2002-06-26 干渉計システム、インタフェログラムの記録方法、ならびに目的表面を有する物体の提供および製造方法
EP02735425A EP1402228A1 (de) 2001-06-27 2002-06-26 Interferometersystem, verfahren zum aufnehmen eines interferogramms und verfahren zum bereitstellen und herstellen eines objekts mit einer soll-oberfläche
US10/743,792 US7002694B2 (en) 2001-06-27 2003-12-24 Interferometer system and method for recording an interferogram using weighted averaging over multiple frequencies, and method for providing and manufacturing an object having a target surface

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10130902.3 2001-06-27
DE10130902A DE10130902A1 (de) 2001-06-27 2001-06-27 Interferometersystem, Verfahren zum Aufnehmen eines Interferogramms und Verfahren zum Bereitstellen und Herstellen eines Objekts mit einer Soll-Oberfläche

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/743,792 Continuation US7002694B2 (en) 2001-06-27 2003-12-24 Interferometer system and method for recording an interferogram using weighted averaging over multiple frequencies, and method for providing and manufacturing an object having a target surface

Publications (1)

Publication Number Publication Date
WO2003002933A1 true WO2003002933A1 (de) 2003-01-09

Family

ID=7689576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/007080 WO2003002933A1 (de) 2001-06-27 2002-06-26 Interferometersystem, verfahren zum aufnehmen eines interferogramms und verfahren zum bereitstellen und herstellen eines objekts mit einer soll-oberfläche

Country Status (5)

Country Link
US (1) US7002694B2 (de)
EP (1) EP1402228A1 (de)
JP (1) JP2004530905A (de)
DE (1) DE10130902A1 (de)
WO (1) WO2003002933A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7050175B1 (en) 2003-08-08 2006-05-23 Carl Zeiss Smt Ag Method for calibrating an interferometer apparatus, for qualifying an optical surface, and for manufacturing a substrate having an optical surface
US7123365B1 (en) 2004-03-05 2006-10-17 Carl Zeiss Smt Ag Method of calibrating an interferometer optics and method of processing an optical element having an aspherical surface
US7436520B1 (en) 2005-01-18 2008-10-14 Carl Zeiss Smt Ag Method of calibrating an interferometer optics and of processing an optical element having an optical surface

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7057738B2 (en) * 2003-08-28 2006-06-06 A D Technology Corporation Simultaneous phase-shifting Fizeau interferometer
CN100552375C (zh) * 2005-01-27 2009-10-21 4D技术公司 同时相移的斐索干涉仪
EP1864079A1 (de) * 2005-03-30 2007-12-12 Carl Zeiss SMT AG Verfahren zur herstellung eines optischen elements
JP5149486B2 (ja) * 2005-05-18 2013-02-20 株式会社ミツトヨ 干渉計、形状測定方法
US7388675B2 (en) * 2006-04-03 2008-06-17 Valley Design Corporation Interferometers for the measurement of large diameter thin wafers
US7531774B2 (en) * 2006-06-05 2009-05-12 General Dynamics Advanced Information Systems, Inc. Measurement-diverse imaging and wavefront sensing with amplitude and phase estimation
DE102008063225A1 (de) 2008-12-23 2010-07-01 Carl Zeiss Meditec Ag Vorrichtung zur Swept Source Optical Coherence Domain Reflectometry
FR2978827B1 (fr) * 2011-08-05 2013-08-30 Commissariat Energie Atomique Procede de mesure absolue de la planeite des surfaces d'elements optiques
US9494485B2 (en) 2014-03-07 2016-11-15 Google Inc. Measuring parallelism in lightguide surfaces
US9696211B2 (en) * 2014-08-28 2017-07-04 Artur Olszak Time-multiplexed spectrally controlled interferometry
US9581428B2 (en) * 2014-08-28 2017-02-28 Artur Olszak Time-multiplexed spectrally controlled interferometry
US9618320B2 (en) * 2014-08-29 2017-04-11 Artur Olszak Heterodyne spectrally controlled interferometry
EP3338052B1 (de) * 2015-08-21 2020-01-01 APRE Instruments, Inc. Zeitmultiplexierte spektral gesteuerte interferometrie
US10422700B1 (en) * 2017-04-24 2019-09-24 Apre Instruments, Inc. Optical alignment based on spectrally-controlled interferometry
US11262191B1 (en) * 2018-07-12 2022-03-01 Onto Innovation Inc. On-axis dynamic interferometer and optical imaging systems employing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594003A (en) * 1983-07-20 1986-06-10 Zygo Corporation Interferometric wavefront measurement
US5452088A (en) * 1994-03-18 1995-09-19 Wyko Corporation Multimode-laser interferometric apparatus for eliminating background interference fringes from thin-plate measurements
US5488477A (en) * 1993-11-15 1996-01-30 Zygo Corporation Methods and apparatus for profiling surfaces of transparent objects
US5598265A (en) * 1995-04-06 1997-01-28 Zygo Corporation Method for profiling an object surface using a large equivalent wavelength and system therefor

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3694088A (en) * 1971-01-25 1972-09-26 Bell Telephone Labor Inc Wavefront measurement
US4169980A (en) * 1977-04-19 1979-10-02 Zygo Corporation Method and apparatus for interference fringe center sensing
US4159522A (en) * 1977-05-12 1979-06-26 Zanoni Carl A Apparatus and method for measuring interference patterns and interferograms
US4225240A (en) * 1978-06-05 1980-09-30 Balasubramanian N Method and system for determining interferometric optical path length difference
US4340306A (en) * 1980-02-04 1982-07-20 Balasubramanian N Optical system for surface topography measurement
US4652744A (en) 1982-04-14 1987-03-24 The Board Of Trustees Of The Leland Stanford Junior University Fiber optic sensor for detecting very small displacements of a surface
US4682025A (en) 1984-04-13 1987-07-21 Trw Inc. Active mirror wavefront sensor
US4732483A (en) * 1987-03-19 1988-03-22 Zygo Corporation Interferometric surface profiler
US4909629A (en) 1987-07-07 1990-03-20 Kabushiki Kaisha Topcon Light interferometer
DE4007502A1 (de) 1990-03-09 1991-09-12 Zeiss Carl Fa Verfahren und vorrichtung zur beruehrungslosen vermessung von objektoberflaechen
DE4007500A1 (de) 1990-03-09 1991-09-12 Zeiss Carl Fa Verfahren und vorrichtung zur beruehrungslosen vermessung von objektoberflaechen
US5343294A (en) 1990-03-09 1994-08-30 Carl-Zeiss-Stiftung Method for analyzing periodic brightness patterns
DE4119744B4 (de) 1991-06-15 2004-11-18 Carl Zeiss Verfahren zur Auswertung periodischer Helligkeitsmuster
DE4124223C2 (de) 1991-07-22 2001-07-26 Zeiss Carl Verfahren zur Auswertung von Interferogrammen und Interferometer
US5390023A (en) * 1992-06-03 1995-02-14 Zygo Corporation Interferometric method and apparatus to measure surface topography
US5414552A (en) 1992-08-19 1995-05-09 The Board Of Trustees Of The Leland Stanford, Jr. University Partially loaded microwave waveguide resonant standing wave electro-optic modulator
US5398113A (en) 1993-02-08 1995-03-14 Zygo Corporation Method and apparatus for surface topography measurement by spatial-frequency analysis of interferograms
JP3517903B2 (ja) * 1993-06-21 2004-04-12 株式会社ニコン 干渉計
US5473434A (en) * 1994-05-16 1995-12-05 Zygo Corporation Phase shifting interferometer and method for surface topography measurement
US5493394A (en) 1994-05-25 1996-02-20 The Boeing Company Method and apparatus for use in measuring frequency difference between light signals
US5671050A (en) 1994-11-07 1997-09-23 Zygo Corporation Method and apparatus for profiling surfaces using diffracative optics
US5600441A (en) 1995-01-31 1997-02-04 Zygo Corporation Interferometer and method for measuring the distance of an object surface with respect to the surface of a rotating disk
US5649849A (en) * 1995-03-24 1997-07-22 Eastman Kodak Company Method and apparatus for realtime monitoring and feedback control of the shape of a continuous planetary polishing surface
US5589938A (en) * 1995-07-10 1996-12-31 Zygo Corporation Method and apparatus for optical interferometric measurements with reduced sensitivity to vibration
US5953125A (en) 1995-09-01 1999-09-14 Zygo Corporation Optical gap measuring apparatus and method
ATE258675T1 (de) 1996-05-31 2004-02-15 Tropel Corp Interferometer zur dickevariationsmessung von halbleitersubstraten
US5838485A (en) 1996-08-20 1998-11-17 Zygo Corporation Superheterodyne interferometer and method for compensating the refractive index of air using electronic frequency multiplication
US5889591A (en) 1996-10-17 1999-03-30 Tropel Corporation Interferometric measurement of toric surfaces at grazing incidence
US5948468A (en) 1997-05-01 1999-09-07 Sandia Corporation Method for correcting imperfections on a surface
US6359692B1 (en) * 1999-07-09 2002-03-19 Zygo Corporation Method and system for profiling objects having multiple reflective surfaces using wavelength-tuning phase-shifting interferometry
US6163379A (en) 1999-08-27 2000-12-19 Zygo Corporation Interferometer with tilted waveplates for reducing ghost reflections

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594003A (en) * 1983-07-20 1986-06-10 Zygo Corporation Interferometric wavefront measurement
US5488477A (en) * 1993-11-15 1996-01-30 Zygo Corporation Methods and apparatus for profiling surfaces of transparent objects
US5452088A (en) * 1994-03-18 1995-09-19 Wyko Corporation Multimode-laser interferometric apparatus for eliminating background interference fringes from thin-plate measurements
US5598265A (en) * 1995-04-06 1997-01-28 Zygo Corporation Method for profiling an object surface using a large equivalent wavelength and system therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7050175B1 (en) 2003-08-08 2006-05-23 Carl Zeiss Smt Ag Method for calibrating an interferometer apparatus, for qualifying an optical surface, and for manufacturing a substrate having an optical surface
US7123365B1 (en) 2004-03-05 2006-10-17 Carl Zeiss Smt Ag Method of calibrating an interferometer optics and method of processing an optical element having an aspherical surface
US7436520B1 (en) 2005-01-18 2008-10-14 Carl Zeiss Smt Ag Method of calibrating an interferometer optics and of processing an optical element having an optical surface

Also Published As

Publication number Publication date
DE10130902A1 (de) 2003-01-16
JP2004530905A (ja) 2004-10-07
US20040190002A1 (en) 2004-09-30
US7002694B2 (en) 2006-02-21
EP1402228A1 (de) 2004-03-31

Similar Documents

Publication Publication Date Title
WO2003002933A1 (de) Interferometersystem, verfahren zum aufnehmen eines interferogramms und verfahren zum bereitstellen und herstellen eines objekts mit einer soll-oberfläche
DE69530757T2 (de) Gitter-gitter interferometrisches ausrichtsystem
EP1735587B1 (de) Interferometrische messvorrichtung mit einer adaptionsvorrichtung zur lichtintensitätsanpassung
EP0126475B1 (de) Verfahren und Vorrichtung zum berührungsfreien Messen der Ist-Position und/oder des Profils rauher Oberflächen
DE19721843C1 (de) Interferometrische Meßvorrichtung
CH693968A5 (de) Verfahren und Vorrichtung fuer die Topographiepruefung von Oberflaechen.
DE102004037137A1 (de) Verfahren und Vorrichtung zur Entfernungsmessung
WO2008012091A2 (de) Verfahren und vorrichtung zum bestimmen einer abweichung einer tatsächlichen form von einer sollform einer optischen oberfläche
DE10041041A1 (de) Interferometeranordnung und Interferometrisches Verfahren
EP2347215A1 (de) Verfahren und vorrichtung zur interferometrie
WO1990010191A1 (de) Polarisationsinterferometer
DE102020203847A1 (de) Interferometrische Messvorrichtung für Oberflächen
WO2005116578A2 (de) Messverfahren zur formmessung
DE102019210910A1 (de) Messvorrichtung zur interferometrischen Bestimmung einer Oberflächenform
DE102006031822B3 (de) Verfahren zur Abtastung optischer Interferenzmuster mit Zeilensensoren
DE2701858A1 (de) Messverfahren und -vorrichtung fuer abstandsaenderungen
DE102014108136A1 (de) Laser Triangulationssensor und Messverfahren mit Laser Triangulationssensor
EP1314953A2 (de) Interferometer und interferometrisches Messverfahren
DE4413758C2 (de) Vorrichtung und Verfahren zur Prüfung der Gestalt einer Oberfläche eines zu vermessenden Objektes
DE60304222T2 (de) VERFAHREN ZUR MESSUNG VON KONTURVERuNDERUNGEN
DE2447889A1 (de) Interferometer fuer die messung von wellenfrontabschnitten von allgemeinen abbildungssystemen, insbesondere des menschlichen auges
DE19545369C1 (de) Verfahren und Vorrichtung zur Abstands- und Profilmessung
EP3581879B1 (de) Vorrichtung und verfahren zur interferometrischen vermessung einer oberfläche eines bewegten prüflings
DE102022127020B3 (de) Interferometer-System und Messverfahren
DE102018130162A1 (de) Verfahren, Interferometer und Signalverarbeitungsvorrichtung, jeweils zur Bestimmung einer Eingangsphase und/oder einer Eingangsamplitude eines Eingangslichtfelds

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10743792

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002735425

Country of ref document: EP

Ref document number: 2003508872

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2002735425

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2004113418

Country of ref document: RU

Kind code of ref document: A