WO2003002931A1 - Device for inspecting grooves of spiral spacer for carrying optical fiber - Google Patents

Device for inspecting grooves of spiral spacer for carrying optical fiber Download PDF

Info

Publication number
WO2003002931A1
WO2003002931A1 PCT/JP2001/005586 JP0105586W WO03002931A1 WO 2003002931 A1 WO2003002931 A1 WO 2003002931A1 JP 0105586 W JP0105586 W JP 0105586W WO 03002931 A1 WO03002931 A1 WO 03002931A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
spiral
optical fiber
spacer
rotating body
Prior art date
Application number
PCT/JP2001/005586
Other languages
French (fr)
Japanese (ja)
Inventor
Hidenobu Nagaya
Original Assignee
Ube-Nittou Kasei Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube-Nittou Kasei Co., Ltd filed Critical Ube-Nittou Kasei Co., Ltd
Priority to JP2003508870A priority Critical patent/JPWO2003002931A1/en
Priority to KR1020037003008A priority patent/KR100814303B1/en
Priority to PCT/JP2001/005586 priority patent/WO2003002931A1/en
Priority to CN01814967A priority patent/CN1449486A/en
Priority to TW090116845A priority patent/TW508459B/en
Publication of WO2003002931A1 publication Critical patent/WO2003002931A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4479Manufacturing methods of optical cables
    • G02B6/4489Manufacturing methods of optical cables of central supporting members of lobe structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/14Measuring arrangements characterised by the use of mechanical techniques for measuring distance or clearance between spaced objects or spaced apertures
    • G01B5/16Measuring arrangements characterised by the use of mechanical techniques for measuring distance or clearance between spaced objects or spaced apertures between a succession of regularly spaced objects or regularly spaced apertures
    • G01B5/163Measuring arrangements characterised by the use of mechanical techniques for measuring distance or clearance between spaced objects or spaced apertures between a succession of regularly spaced objects or regularly spaced apertures of screw-threads

Definitions

  • the present invention relates to a groove inspection device for a spiral spacer for holding an optical fiber, and in particular, manufactures a spacer for holding an optical fiber having a plurality of spiral grooves running continuously while rotating in one direction.
  • the present invention relates to a groove inspection apparatus for continuously measuring and inspecting an inner surface abnormality of a spiral groove and a spiral pitch while continuously inspecting the spiral groove.
  • optical fibers have a low transmission loss and a very large transmission volume, and their practical use has been promoted over a wide range in the field of communications.
  • a spacer in which a spiral groove for supporting the optical fiber is formed on the outer periphery as a cable core wire, and inserts the optical fiber into the spiral groove to apply stresses such as tension, compression, and bending. Avoided. '
  • the helical groove provided in this type of spacer can stabilize the optical fiber in the groove when forming a cable if there are abnormal parts such as minute bumps on the inner peripheral surface. Even if troubles such as inability to accommodate the cable occur or the cable can be used, such abnormal parts will cause unnecessary side pressure to act on the optical fiber during use, causing transmission loss to increase, and causing the optical fiber to fail. Affects transmission characteristics.
  • the inside of the spiral groove is This has an adverse effect on the transmission characteristics of the optical fiber housed and carried in the optical fiber.
  • a rotating body that rotates with the movement of the optical fiber supporting spacer is mounted in the middle of the manufacturing process, and based on the difference in the rotating resistance of the rotating body.
  • an inner surface abnormality of the spiral groove was detected.
  • the present invention has been made in view of such a conventional problem, and in that case, an optical fiber capable of simultaneously detecting an abnormality in a groove shape and an abnormality in a helical pitch during a manufacturing process. It is an object of the present invention to provide an apparatus for inspecting a groove abnormality of a supporting spiral spacer. Disclosure of the invention
  • the present invention relates to a spiral groove inspection apparatus for an optical fiber carrying spacer in which a plurality of spiral grooves running continuously while rotating in one direction are provided on the outer periphery, A rotating body that rotates with the traveling spacer, a groove abnormality detecting unit that detects a groove abnormality of a spiral groove that is in sliding contact with the rotating resistance of the rotating body, a rotation angle of the rotating body and the optical fiber. And a groove pitch measuring unit for detecting the groove pitch of the spiral groove from the traveling speed of the spacer for supporting the fiber.
  • one of the rotating body of the groove abnormality detecting section and the rotating body of the groove pitch measuring section can be shared.
  • the groove abnormality detection unit includes: a guide rail extending linearly; a support member slidably provided on the guide rail; and the rotating body rotatably supported by the support member. And a load detector coupled via magnetic attraction means that separates when a force equal to or more than a predetermined value is applied to the support member.
  • the rotator may include a through-opening through which the optical fiber-carrying spacer passes, and a plurality of protrusions protruding from an inner peripheral surface of the through-opening and slidingly contacting the inside of the spiral groove. it can.
  • the rotating body has a through-opening through which the spacer for holding the optical fiber passes. And a pin gauge having a tip portion fitted into the spiral groove can be protrudingly arranged around the opening.
  • the load detector may be constituted by a load cell in a sealed state.
  • the groove pitch measuring unit of the present invention comprises: a speed pulse generator for generating a signal corresponding to the advance amount of the spacer; and an angle pulse generator for generating an electric signal corresponding to the rotation angle of the body. Receiving an electric signal transmitted every one rotation from the angle pulse generator, counting the number of pulses of the speed pulse generator, and calculating a groove pitch of the spiral groove. be able to.
  • FIG. 1 is an external view of a main part of a spiral spacer to be inspected by a groove inspection device of a spiral spacer for supporting an optical fiber according to the present invention.
  • FIG. 2 is a cross-sectional view of the spiral spacer shown in FIG.
  • FIG. 3 is an overall layout view of a groove inspection device of the spiral spacer for supporting an optical fiber according to the present invention.
  • FIG. 4 is a side view of a main part of FIG.
  • FIG. 5 is an enlarged view of a main part of FIG.
  • FIG. 6 is a block diagram of an electric system of the groove abnormality detecting unit shown in FIG.
  • FIG. 7 is a flowchart of the processing procedure of the arithmetic display unit shown in FIG.
  • FIG. 8 is a block diagram of an electric system of the groove pitch measuring section shown in FIG.
  • FIG. 9 is a flowchart of a processing procedure of the operation display unit shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the spiral spacer A shown in FIGS. 1 and 2 is to be detected.
  • the spiral spacer A shown in these figures has a tensile strength line A 1 disposed at the center and a synthetic resin main body A 2 formed on the outer periphery thereof.
  • the main body portion A 2 has a plurality of concave spiral grooves A 3 having a continuous cross section while continuously rotating while rotating in one direction along the longitudinal axis direction.
  • the spiral groove A3 is formed at a predetermined pitch P, and the inner surface abnormality of the spiral groove A3 and the groove pitch P are inspected.
  • the groove inspection device 10 was provided in the middle of the manufacturing process of the threaded spacer A traveling in the direction of the arrow in FIG. 3, as shown in the overall arrangement state in FIG. It is provided between a pair of take-off machines 12, 12, and is composed of a groove abnormality detecting section 16 installed on a support base 14 and a groove pitch measuring section 18.
  • each guide roller device 19 supports the spiral spacer A from below, and has a large-diameter roller 19a that rotates in the vertical direction, and both sides of the spiral spacer A.
  • the guide roller device 19 configured in this way is used to measure the vertical and horizontal vibrations when the spiral spacer A is pulled by the puller 12 by the groove abnormality detector 16 and the groove pitch detector 18. Care is taken not to appear as an error.
  • the groove abnormality detection unit 16 includes a first rotating body 20 which is arranged in front of the groove pitch measuring unit 18 and rotates as the optical fiber carrying spiral spacer A travels.
  • the basic configuration is to detect the groove abnormality of the spiral groove A3 slidingly contacting from the rotation resistance of 20.
  • the groove abnormality detecting section 16 of this embodiment is mounted on the support base 14. It is fixed and installed on a linearly extending guide rail 22. On this rail 22, a support member 24 of the first rotating body 20 is provided slidably along the longitudinal axis of the guide rail 22.
  • the support member 24 is fitted on the guide rail 22 and slidably provided on a slide base 26, and a vertical support plate supported on the slide base 26 and extending vertically upward. To 28.
  • a disc-shaped first rotating body 20 is supported via a bearing 30 so as to be rotatable about a horizontal axis.
  • the first rotating body 20 is provided with a spiral spacer A running between a pair of take-off machines 12 and 12 provided in the middle of the manufacturing process at the center of the disk-shaped main body 31.
  • a circular through-opening 32 through which is passed is formed.
  • a number of protrusions 34 corresponding to the number of the spiral grooves A 3 provided on the spiral spacer A are physically protrudingly arranged. Have been.
  • Each protruding portion 34 is formed so that its protruding shape corresponds to the shape of the spiral groove A.
  • the shape relationship between the spiral groove A 3 and the projection 34 is such that the wall forming the spiral groove A 3 of the spiral spacer A and the outer surface of the projection 34 are in a state in which the spiral groove A 3 and the outer surface of the projection 34 are in close contact with each other. It is set as follows.
  • a sealed load cell (load detector) 36 that is located near the support member 24 and converts the magnitude of the load into an electric signal and sends it out is shown. Are located.
  • a typical example of the load cell 36 is a strain gauge and a strain gauge type in which a strain-generating column connected to the strain gauge is enclosed in a case.
  • this strain gauge type is adopted.
  • the load cell 36 and the slide table 26 are connected by a connecting member 38.
  • the connecting member 38 includes a first connecting portion 38a fixed to the slide table 26 and a second connecting portion 38b fixed to the load cell 36 side.
  • a permanent magnet is built in the second
  • the connecting portion 38a is made of a metal material that can be attracted by the magnet, and in a steady state, the first connecting portion 38a is attracted and coupled to the second connecting portion 38b.
  • the groove abnormality detecting section 16 configured as described above, when the spiral spacer A runs, the first rotating body 20 is fitted into the spiral groove A3,
  • the first rotating body 20 is a load supporting the traveling of the spiral spacer A, and the slide supporting the first rotating body 20 with the traveling of the spacer A.
  • the pedestal 26 tries to move backward on the guide rail 22.
  • the horizontal acting force at this time is transmitted to the load cell 36 via the first and second connecting portions 38a and 38b, and as a result, the spiral spacer is applied to the load cell 36.
  • the load in the same direction as the traveling direction of A is transmitted.
  • the connecting member 38 transmitting to 36 is constituted by first and second connecting portions 38a and 38b attracted by a permanent magnet.
  • the attraction force of the permanent magnet is set so that the coupling between the first and second connecting portions 38a, 38b is released when a force greater than a predetermined value acts on the rotating body 20.
  • the groove abnormality occurs, it is possible to prevent the detection device 16 from being damaged.
  • the load cell 36 is electrically connected to the operation display 42 via the amplifier 40.
  • the operation display 42 is composed of an operation circuit (PLC) and a personal computer, and has an interface, a memory input keyboard, etc.
  • the operation display 42 has a display 41 and an alarm. 4 and 4 are connected.
  • the operation indicator 42 detects the groove abnormality of the spiral groove A 3 according to the procedure shown in FIG. 7 using the load detection value R sent from the load cell 36 as an input signal.
  • step 1 initialization is performed.
  • load cell 36 is detected.
  • a danger value Rmax for determining that the spiral groove A3 is abnormal is set.
  • This risk value R max is derived from past empirical values and the average of actual measured values.
  • the load detection value R of the load cell 36 is acquired in step 2 and the value is displayed on the display 41 as a measured value.
  • step 3 it is determined whether the load detection value R is greater than the danger value Rmax, and if the load detection value R is less than the danger value Rmax, the groove abnormality is determined in step 4. It is determined whether or not to finish the measurement, and if the measurement has not been completed, the flow returns to step 2 and the measurement of the groove abnormality is continued.
  • step 3 if it is determined in step 3 that the load detection value R is greater than the danger value Rmax, it means that an abnormality has occurred in the spiral groove A3. Is activated to warn of this, and receives the signal from the length measuring counter (no indication) to display the strip length at the abnormal point.
  • the spiral spacer A when the spiral spacer A is run in a state of passing through the through-opening 32 of the first rotating body 20, the spiral spacer A Due to the running resistance based on the sliding contact between the spiral groove A 3 and the projection 34 of the first rotating body 20 fitted into the spiral groove A 3, it is converted into the rotating force of the rotating body 20, and the slide table Along with 26, a horizontal force acts on the guide rail 22 to move it rearward.
  • This horizontal force is transmitted to the load cell 36 via the connecting member 38 which is attracted and connected by a magnet.
  • the load cell 36 detects a load corresponding to the horizontal force, converts the load as a load detection value R into an electric signal, and outputs the electric signal to the operation display 42.
  • the operation indicator 42 monitors the state of the spiral groove A of the threaded spacer A based on the output signal of the load cell 36, and, based on the magnitude of the detected load value R, the inner surface of the spiral groove A3. To detect abnormalities.
  • the groove pitch measuring section 18 detects the groove pitch P of the spiral groove A 3 from the rotation angle of the second rotating body 20 a and the traveling speed of the spiral spacer A for holding the optical fiber. And a speed pulse generator 46 for generating a signal V corresponding to the amount of travel of the spiral spacer A, and an electric signal corresponding to the rotation angle of the rotor 20a. Receiving the electric signal i sent out every one rotation from the angle pulse generator 48, the number of pulses of the speed pulse generator 46 is counted, and the spiral groove A3 is generated. And a calculation indicator 50 for calculating the groove pitch P of the above.
  • the second rotator 20a is substantially the same as the first rotator 20 that is fitted to the spiral spacer A and rotates as it travels.
  • the supporting member 24 is provided with a slide base 26, and is mounted on the guide rail 22 so as to be slidable. I have.
  • the slide table 26 is connected to the load cell 36 with the connecting member 38 interposed therebetween, and the connecting member 38 is connected to the first and second connecting portions 38 a, 3 separably connected by magnets. Has 7b.
  • a through-opening 32a through which the spiral spacer A is inserted is formed at the center of the disk-shaped main body 31a.
  • pin gauges 35 of the number corresponding to the number of the spiral grooves A 3 are provided on the inner peripheral side of the through-opening 3 2 a of the second rotating body 20, instead of the projections 34 of the first rotating body 20, pin gauges 35 of the number corresponding to the number of the spiral grooves A 3 are provided.
  • the pin gauge 35 is fixed with screws, and the tip side of each pin gauge 35 projects inward from the through-opening 32a.
  • Each pin gauge 35 has a projecting shape corresponding to the shape of the spiral groove A.
  • the calculation display 42 shown in FIG. 6 is connected to the load cell 36 attached to the second rotating body 20a, similarly to the first rotating body 20.
  • the speed pulse generator 46 is installed in the take-off machine 12 shown in FIG. 3, and is connected to the operation display 50 as shown in FIG. The signal V corresponding to the traveling speed is transmitted.
  • the angle pulse generator 48 is attached to a support 48 protruding from the outer peripheral surface of the main body 31 a of the second rotating body 20 a and a support member 24. And a proximity sensor 48b.
  • the angle pulse generator 48 of the present embodiment is, for example, a magnetically responsive non-contact sensor, and sends out an electric signal i every time the protrusion 48 a approaches the proximity sensor 48 b. You.
  • the angle pulse generator 48 is connected to a calculation display 50, and outputs a signal i every time the second rotating body 20a makes one rotation. To send to.
  • the operation display 50 is composed of an operation circuit (PLC) and a personal computer, and is equipped with an interface, a memory input keyboard, and the like.
  • the operation display 50 includes a pitch display 52 and an alarm. Is connected to the container 54.
  • the operation display unit 50 receives signals i and V sent from the speed pulse generator 46 and the angle pulse generator 48 as input signals, and performs a spiral operation according to the procedure shown in FIG. Calculate and display the groove pitch P of groove A3.
  • step 10 initial setting is performed in step 10.
  • the allowable value ⁇ for the helical pitch P is set.
  • step 11 the counting power counter of the speed signal V is set to zero. Waiting for the input of the signal i sent from the pulse generator 48, and when the input is confirmed, the counting of the speed signal V is started in step 13.
  • step 14 the control waits until the second signal i is input, and when the input is recognized, in step 15, the counter that counts the speed signal V is stopped, and the counter of the counting power counter is stopped. Calculate the groove pitch P from the numerical value.
  • the groove pitch P obtained in this way is sent to a pitch indicator 52 to indicate its value, and in the following step 16, the obtained groove pitch P falls within the range of the allowable value ⁇ . If the groove pitch P is not within the range of the allowable value ⁇ , it is determined in step 17 that the alarm 54 is actuated to notify the fact and the length measuring counter (not displayed). Display the length of the line at the abnormal point in response to the signal from
  • step 16 determines whether the groove pitch P is in the range ⁇ of the allowable value ⁇ . If not, the flow proceeds to step 11. Return, measurement of groove pitch P is continued.
  • the groove abnormality of the spiral groove A 3 slidingly contacting is detected from the rotational resistance of the first rotating body 20.
  • a groove pitch measuring unit that detects the groove pitch P of the spiral groove A 3 from the groove abnormality detecting unit 16 and the rotation angle of the second rotating body 20 a and the traveling speed of the optical fiber carrying spacer A. Because of the provision of (1) and (8), an abnormality in the groove shape and an abnormality in the helical pitch P can be simultaneously detected during the manufacturing process.
  • a load cell 36 is attached to each of the first and second rotating bodies 20 and 20a to detect a groove abnormality of the spiral groove A3 in two steps.
  • any one of the rotating bodies may have the groove abnormality detecting function.
  • the pin gauge 35 does not necessarily need to correspond to all the spiral grooves A3, for example, at 180 ° intervals. They may be arranged intermittently at intervals of 120 ° or 120 °.
  • the shape of the pin gauge 35 is the cross-sectional shape of the spiral groove A3. It is not necessary to make the shape close to the shape.
  • operation indicators 42, 50 shown in the above embodiment may be provided in an independent form, respectively, or one may be used for both, and the control procedure shown in FIG.
  • the control procedure shown in FIG. 9 may be of an independent type, or the control procedure shown in FIG. 9 may be connected to the control procedure shown in FIG.
  • the non-contact type magnetically responsive type is exemplified as the angle pulse generator 48.
  • the embodiment of the present invention is not necessarily limited to this. Using a rotary encoder gear-coupled to 20a, it is also possible to obtain the angle signal sent from this encoder every rotation.
  • the inspection apparatus of the spiral spacer for holding an optical fiber of the present invention is installed in the course of the manufacturing process of the spiral spacer, so that the irregularity of the groove shape and the groove can be achieved over the entire length of the spiral spacer to be manufactured. Since the pitch can be measured, it is effective in maintaining the transmission performance of an optical cable in which optical fibers are densely assembled.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

A device for inspecting the grooves of a spiral spacer for carrying optical fiber having spiral grooves formed in the outer peripheral surface thereof, comprising a groove defect detection part having rotating bodies rotated according to the running of the spacer for carrying optical fiber and detecting the groove defect of the spiral grooves for slidable contact from the rotating resistance of the first rotating body and a groove pitch measuring part detecting the groove pitch of the spiral grooves from the rotating angle of the second rotating body and the running speed of the spacer for carrying optical fiber, the groove defect detection part further comprising a linearly extending guide rail, a supporting member slidably installed on the guide rail, the first rotating body rotatably supported on the supporting member, and a load detector connected to the supporting member through a magnetic attracting means moved separately from and closely to the supporting member when a force more than a specified value is applied to the supporting member.

Description

明細書 光ファイバ担持用螺旋スぺーサの溝検查装置 技術分野 Description Groove inspection device for spiral spacer for supporting optical fiber
本発明は、光ファイバ担持用螺旋スぺーサの溝検査装置に係り、特に、 一方向に回転しながら連続的に走行する複数の螺旋溝を有する光ファィ パ担持用スぺーサを、 製造しながら連続的に螺旋溝の内面異常と螺旋ピ ツチとを測定検査する溝検査装置に関するものである。 背景技術  The present invention relates to a groove inspection device for a spiral spacer for holding an optical fiber, and in particular, manufactures a spacer for holding an optical fiber having a plurality of spiral grooves running continuously while rotating in one direction. The present invention relates to a groove inspection apparatus for continuously measuring and inspecting an inner surface abnormality of a spiral groove and a spiral pitch while continuously inspecting the spiral groove. Background art
周知のように、 光ファイバは、 低伝送損失でしかも伝送量が極めて大 きいので通信の分野で広範囲に亘つて実用化が促進されており、 複数本 の光ファイバをケーブル化して敷設する際には、 外周に光ファイバを担 持するための螺旋溝が形成されたスぺーサをケーブル芯線と して用い、 この螺旋溝に光ファイバを揷入して、 引張, 圧縮, 曲げ等の応力を回避 している。 '  As is well known, optical fibers have a low transmission loss and a very large transmission volume, and their practical use has been promoted over a wide range in the field of communications.When installing multiple optical fibers into a cable, Uses a spacer in which a spiral groove for supporting the optical fiber is formed on the outer periphery as a cable core wire, and inserts the optical fiber into the spiral groove to apply stresses such as tension, compression, and bending. Avoided. '
ところで、 この種のスぺーサに設けられる螺旋溝は、 内周面に微小な こぶゃ凸部などの異常部分がある場合には、 ケーブル化する際に光ファ ィバを溝内に安定して収容できないなどのトラブルが発生したり、 ケー ブル化ができても、 このような異常個所によって、 使用時に、 光フアイ バに不要な側圧が作用して伝送損失が増加して、 光フアイバの伝送特性 などに悪影響を及ぼす。  By the way, the helical groove provided in this type of spacer can stabilize the optical fiber in the groove when forming a cable if there are abnormal parts such as minute bumps on the inner peripheral surface. Even if troubles such as inability to accommodate the cable occur or the cable can be used, such abnormal parts will cause unnecessary side pressure to act on the optical fiber during use, causing transmission loss to increase, and causing the optical fiber to fail. Affects transmission characteristics.
また、 螺旋溝は、 溝の変形などにより、 スぺーサの長手軸方向に沿つ て所定のピツチに正確に形成されていないと、 前述した溝形状の異常の 場合と同様に、 螺旋溝内に収納担持する光ファイバの伝送特性に悪影響 を及ぼす。  In addition, if the spiral groove is not accurately formed at a predetermined pitch along the longitudinal direction of the spacer due to deformation of the groove or the like, as in the case of the abnormal groove shape described above, the inside of the spiral groove is This has an adverse effect on the transmission characteristics of the optical fiber housed and carried in the optical fiber.
そこで、 従来は、 光ファイバ担持用スぺーサの走行に伴って回転する の回転体を製造工程の途中に装着し、 回転体の回転抵抗の相違に基づい て、 螺旋溝の内面異常を検知していた。 Therefore, conventionally, a rotating body that rotates with the movement of the optical fiber supporting spacer is mounted in the middle of the manufacturing process, and based on the difference in the rotating resistance of the rotating body. Thus, an inner surface abnormality of the spiral groove was detected.
しかしながら、 このような従来の螺旋溝の溝異常検査装置では、 螺旋 溝の内周面に微小なこぶゃ凸部などの異常部分がある場合には、 その異 常の検出はできるが、 螺旋ピッチが正確に形成されているか否かは、 検 出することができないという問題があった。  However, in such a conventional spiral groove groove abnormality inspection apparatus, when there is an abnormal portion such as a minute bump or a convex portion on the inner peripheral surface of the spiral groove, the abnormality can be detected. It was not possible to detect whether or not was accurately formed.
本発明は、 このような従来の問題点に鑑みてなされたものであって、 そのところは、 溝形状の異常と螺旋ピッチの異常とを、 製造工程の途中 で同時に検知することができる光フアイバ担持用螺旋スぺーサの溝異常 検査装置を提供することにある。 発明の開示  The present invention has been made in view of such a conventional problem, and in that case, an optical fiber capable of simultaneously detecting an abnormality in a groove shape and an abnormality in a helical pitch during a manufacturing process. It is an object of the present invention to provide an apparatus for inspecting a groove abnormality of a supporting spiral spacer. Disclosure of the invention
上記目的を達成するため、 本発明は、 一方向に回転しながら連続的に 走行する複数の螺旋溝が外周に設けられた光ファィパ担持用スぺーサの 螺旋溝検査装置において、 前記光ファィパ担持用スぺーサの走行に伴つ て回転する回転体を備え、 前記回転体の回転抵抗から摺接する螺旋溝の 溝異常を検出する溝異常検出部と、 前記回転体の回転角度と前記光ファ ィバ担持用スぺーサの走行速度とから前記螺旋溝の溝ピッチを検出する 溝ピッチ測定部とを設けた。  In order to achieve the above object, the present invention relates to a spiral groove inspection apparatus for an optical fiber carrying spacer in which a plurality of spiral grooves running continuously while rotating in one direction are provided on the outer periphery, A rotating body that rotates with the traveling spacer, a groove abnormality detecting unit that detects a groove abnormality of a spiral groove that is in sliding contact with the rotating resistance of the rotating body, a rotation angle of the rotating body and the optical fiber. And a groove pitch measuring unit for detecting the groove pitch of the spiral groove from the traveling speed of the spacer for supporting the fiber.
本発明では、 前記溝異常検出部の前記回転体と前記溝ピッチ測定部の 前記回転体とを 1つで兼用することができる。  In the present invention, one of the rotating body of the groove abnormality detecting section and the rotating body of the groove pitch measuring section can be shared.
また、 本発明では、 溝異常検出部は、 直線状に延びる案内レールと、 前記案内レール上に摺動可能に設けられた支持部材と、 この支持部材に 回転可能に支持された前記回転体と、 前記支持部材に所定値以上の力が 加わったときに離間する磁力吸着手段を介して結合された荷重検出器と を設けることができる。  Further, in the present invention, the groove abnormality detection unit includes: a guide rail extending linearly; a support member slidably provided on the guide rail; and the rotating body rotatably supported by the support member. And a load detector coupled via magnetic attraction means that separates when a force equal to or more than a predetermined value is applied to the support member.
前記回転体は、 前記光ファイバ担持用スぺーサが揷通される貫通開口 と、 前記貫通開口の内周面から突出して、 前記螺旋溝内に摺接する複数 の突起部とで構成することができる。  The rotator may include a through-opening through which the optical fiber-carrying spacer passes, and a plurality of protrusions protruding from an inner peripheral surface of the through-opening and slidingly contacting the inside of the spiral groove. it can.
前記回転体は、 前記光ファィパ担持用スぺーサが揷通される貫通開口 を備え、 前記開口の周囲に、 前記螺旋溝に嵌合する先端部を備えたピン ゲージを突設配置することができる。 The rotating body has a through-opening through which the spacer for holding the optical fiber passes. And a pin gauge having a tip portion fitted into the spiral groove can be protrudingly arranged around the opening.
前記荷重検出器は、 密封状態のロードセルで構成することができる。 さらに、 本発明の溝ピッチ測定部は、 前記スぺーサの進行量に対応し た信号を発生させる速度パルス発生器と、 体の回転角度前記回転に対応 した電気信号を発生させる角度パルス発生器と、 前記角度パルス発生器 から 1回転毎に送出される電気信号を受けて、 前記速度パルス発生器の パルス数を計数して、 前記螺旋溝の溝ピツチを演算する演算表示器とで 構成することができる。 図面の簡単な説明  The load detector may be constituted by a load cell in a sealed state. Further, the groove pitch measuring unit of the present invention comprises: a speed pulse generator for generating a signal corresponding to the advance amount of the spacer; and an angle pulse generator for generating an electric signal corresponding to the rotation angle of the body. Receiving an electric signal transmitted every one rotation from the angle pulse generator, counting the number of pulses of the speed pulse generator, and calculating a groove pitch of the spiral groove. be able to. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明にかかる光ファイバ担持用螺旋スぺーサの溝検査装 置の検査対象である螺旋スぺーサの要部外観図である。  FIG. 1 is an external view of a main part of a spiral spacer to be inspected by a groove inspection device of a spiral spacer for supporting an optical fiber according to the present invention.
第 2図は、 図 1に示した螺旋スぺーサの断面図である。  FIG. 2 is a cross-sectional view of the spiral spacer shown in FIG.
第 3図は、 本発明にかかる光フアイバ担持用螺旋スぺーサの溝検査装 置の全体配置図である。  FIG. 3 is an overall layout view of a groove inspection device of the spiral spacer for supporting an optical fiber according to the present invention.
第 4図は、 第 3図の要部側面図である。  FIG. 4 is a side view of a main part of FIG.
第 5図は、 第 3図の要部拡大図である。  FIG. 5 is an enlarged view of a main part of FIG.
第 6図は、 第 5図に示した溝異常検出部の電気系統のプロック図であ る。  FIG. 6 is a block diagram of an electric system of the groove abnormality detecting unit shown in FIG.
第 7図は、 第 6図に示した演算表示器の処理手順のフローチヤ一ト図 である。  FIG. 7 is a flowchart of the processing procedure of the arithmetic display unit shown in FIG.
第 8図は、 第 5図に示した溝ピツチ測定部の電気系統のプロック図で ある。  FIG. 8 is a block diagram of an electric system of the groove pitch measuring section shown in FIG.
第 9図は、 第 8図に示した演算表示器の処理手順のフローチヤ一ト図 である。 発明を実施するための最良の形態  FIG. 9 is a flowchart of a processing procedure of the operation display unit shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明の実施の形態について実施例に基づいて詳細に説明す る。 本発明にかかる光ファイバ担持用螺旋スぺーサの溝検查装置 1 0で は、 第 1 , 2図に示した螺旋スぺーサ Aがその検查対象となっている。 Hereinafter, embodiments of the present invention will be described in detail based on examples. You. In the groove detector 10 for a spiral spacer for holding an optical fiber according to the present invention, the spiral spacer A shown in FIGS. 1 and 2 is to be detected.
これらの図に示した螺旋スぺーサ Aは、 中央に配置された抗張力線 A 1 と、 その外周に被覆形成された合成樹脂製の本体部 A 2 とを備えてい る。  The spiral spacer A shown in these figures has a tensile strength line A 1 disposed at the center and a synthetic resin main body A 2 formed on the outer periphery thereof.
本体部 A 2には、 その長手軸方向に沿って一方向に回転しながら、 連 続的に走行する断面が、 凹形の複数条の螺旋溝 A 3を有し、 各螺旋溝 A は、 所定のピッチ Pで形成されており、 この螺旋溝 A 3の内面異常と、 その溝ピッチ Pとが検査される。  The main body portion A 2 has a plurality of concave spiral grooves A 3 having a continuous cross section while continuously rotating while rotating in one direction along the longitudinal axis direction. The spiral groove A3 is formed at a predetermined pitch P, and the inner surface abnormality of the spiral groove A3 and the groove pitch P are inspected.
本実施例の場合、 溝検査装置 1 0は、 第 3図にその全体配置状態を示 すように、 同図の矢印方向に走行する螺族スぺーサ Aの製造工程の途中 に設けられた一対の引取機 1 2, 1 2間にあって、 支持台 1 4上に設置 されている溝異常検出部 1 6 と、 溝ピッチ測定部 1 8 とから構成されて いる。  In the case of the present embodiment, the groove inspection device 10 was provided in the middle of the manufacturing process of the threaded spacer A traveling in the direction of the arrow in FIG. 3, as shown in the overall arrangement state in FIG. It is provided between a pair of take-off machines 12, 12, and is composed of a groove abnormality detecting section 16 installed on a support base 14 and a groove pitch measuring section 18.
支持台 1 4上には、 溝異常検出部 1 6 と溝ピッチ測定部 1 8 とを挟む ようにして、 同一構成の一対の案内口ーラ装置 1 9が設置されている。 各案内ローラ装置 1 9は、 第 4図にその詳細を示すように、 螺旋スぺー サ Aを下方から支持し、 垂直方向に回転する大径ローラ 1 9 a と、 螺旋 スぺーサ Aの両側面からこれに当接し、 且つ水平方向に回転する一対の 小径ローラ 1 9 b と、 各ローラ 1 9 a , 1 9 bを回転可能に軸支する略 コ字形形状の支持ボス ト 1 9 c とから構成されている。  A pair of guide port roller devices 19 having the same configuration are provided on the support base 14 so as to sandwich the groove abnormality detection unit 16 and the groove pitch measurement unit 18. As shown in detail in FIG. 4, each guide roller device 19 supports the spiral spacer A from below, and has a large-diameter roller 19a that rotates in the vertical direction, and both sides of the spiral spacer A. A pair of small-diameter rollers 19b that abut against the surface and rotate in the horizontal direction, and a substantially U-shaped support boss 19c that rotatably supports the rollers 19a and 19b. It is composed of
このよ うに構成した案内ローラ装置 1 9は、 螺旋スぺーサ Aを引取機 1 2で引取る際の上下, 左右の振動が、 溝異常検出部 1 6や溝ピッチ測 定部 1 8の測定誤差と して現われないよ うに配慮している。  The guide roller device 19 configured in this way is used to measure the vertical and horizontal vibrations when the spiral spacer A is pulled by the puller 12 by the groove abnormality detector 16 and the groove pitch detector 18. Care is taken not to appear as an error.
溝異常検出部 1 6は、 溝ピッチ測定部 1 8の前段側に配置され、 光フ アイバ担持用螺旋スぺーサ Aの走行に伴って回転する第 1回転体 2 0を 備え、 この回転体 2 0の回転抵抗から摺接する螺旋溝 A 3の溝異常を検 出することが基本構成となっている。  The groove abnormality detection unit 16 includes a first rotating body 20 which is arranged in front of the groove pitch measuring unit 18 and rotates as the optical fiber carrying spiral spacer A travels. The basic configuration is to detect the groove abnormality of the spiral groove A3 slidingly contacting from the rotation resistance of 20.
本実施例の溝異常検出部 1 6は、 第 5図に示すように、 支持台 1 4に 固定され、 直線状に延びる案内レール 2 2上に設置されている。 この案 内レール 2 2上には、 第 1回転体 2 0 の支持部材 2 4が、 案内レール 2 2 の長手軸方向に沿ってスライ ド移動自在に設けられている。 As shown in FIG. 5, the groove abnormality detecting section 16 of this embodiment is mounted on the support base 14. It is fixed and installed on a linearly extending guide rail 22. On this rail 22, a support member 24 of the first rotating body 20 is provided slidably along the longitudinal axis of the guide rail 22.
この支持部材 2 4は、 案内レール 2 2に嵌合されて、 摺動自在に設け られたスライ ド台 2 6、 および、 このスライ ド台 2 6に支持され、 垂直 方向上方に延びる垂直支持プレー ト 2 8を有している。  The support member 24 is fitted on the guide rail 22 and slidably provided on a slide base 26, and a vertical support plate supported on the slide base 26 and extending vertically upward. To 28.
垂直支持プレー ト 2 8の上部には、 円盤状の第 1回転体 2 0が、 ベア リング 3 0を介して水平軸を中心として回転可能に支持されている。 こ の第 1回転体 2 0は、 円板状の本体 3 1の中心部に、 製造工程の途中に 設けられた一対の引取機 1 2, 1 2間を走行する螺旋スぺーサ Aが揷通 される円形の貫通開口 3 2が形成されている。  On the upper part of the vertical support plate 28, a disc-shaped first rotating body 20 is supported via a bearing 30 so as to be rotatable about a horizontal axis. The first rotating body 20 is provided with a spiral spacer A running between a pair of take-off machines 12 and 12 provided in the middle of the manufacturing process at the center of the disk-shaped main body 31. A circular through-opening 32 through which is passed is formed.
第 1回転体 2 0 の貫通開口 3 2 の内周には、 螺旋スぺーサ Aに設けら れている螺旋溝 A 3の数に対応した数の突起部 3 4がー体的に突出配置 されている。 各突起部 3 4は、 その突出形状が、 螺旋溝 Aの形状に対応 した形に形成されている。  On the inner periphery of the through-opening 32 of the first rotating body 20, a number of protrusions 34 corresponding to the number of the spiral grooves A 3 provided on the spiral spacer A are physically protrudingly arranged. Have been. Each protruding portion 34 is formed so that its protruding shape corresponds to the shape of the spiral groove A.
これらの螺旋溝 A 3 と突起部 3 4との形状関係は、 螺旋スぺーサ Aの 螺旋溝 A 3を形成する壁と突起部 3 4 の外面とが、 限りなく密着状態に 近い状態となるように設定されている。  The shape relationship between the spiral groove A 3 and the projection 34 is such that the wall forming the spiral groove A 3 of the spiral spacer A and the outer surface of the projection 34 are in a state in which the spiral groove A 3 and the outer surface of the projection 34 are in close contact with each other. It is set as follows.
一方、 案内レール 2 2 の側方には、 支持部材 2 4の近傍に位置して、 荷重の大きさを電気信号に変換して送出する密封状態のロー ドセル (荷 重検出器) 3 6が配置されている。  On the other hand, beside the guide rail 22, a sealed load cell (load detector) 36 that is located near the support member 24 and converts the magnitude of the load into an electric signal and sends it out is shown. Are located.
ロードセル 3 6 と して代表的なものは、 周知のように、 歪ゲージ、 お よび、 これに連結された起歪柱がケースに封入された歪ゲージ式のもの であり、 本実施例では、 例えば、 この歪ゲージ式のものが採用される。  As is well known, a typical example of the load cell 36 is a strain gauge and a strain gauge type in which a strain-generating column connected to the strain gauge is enclosed in a case. For example, this strain gauge type is adopted.
このロードセル 3 6 とスライ ド台 2 6 とは、 連結部材 3 8によつて連 結されている。 この連結部材 3 8は、 スライ ド台 2 6に固定された第 1 連結部 3 8 a と、 ロードセル 3 6側に固定された第 2連結部 3 8 b とで 構成されている。  The load cell 36 and the slide table 26 are connected by a connecting member 38. The connecting member 38 includes a first connecting portion 38a fixed to the slide table 26 and a second connecting portion 38b fixed to the load cell 36 side.
本実施例の場合には、 第 2連結部 3 8 bに永久磁石が内蔵され、 第 1 連結部 3 8 aは、 この磁石で吸着可能な金属材料から構成され、 定常状 態では、 第 1連結部 3 8 aが第 2連結部 3 8 bに吸着結合されている。 以上のように構成された溝異常検出部 1 6では、 螺旋スぺーサ Aが走 行すると、 螺旋溝 A 3に第 1回転体 2 0が嵌合されているので、 回転体In the case of the present embodiment, a permanent magnet is built in the second The connecting portion 38a is made of a metal material that can be attracted by the magnet, and in a steady state, the first connecting portion 38a is attracted and coupled to the second connecting portion 38b. In the groove abnormality detecting section 16 configured as described above, when the spiral spacer A runs, the first rotating body 20 is fitted into the spiral groove A3,
2 0は、 螺旋スぺーサ Aの走行に伴って、 螺旋溝 A 3の回転方向と同方 向に回転する。 20 is rotated in the same direction as the rotation direction of the spiral groove A3 as the spiral spacer A travels.
この際に、 第 1回転体 2 0は、 螺旋スぺーサ Aの走行に対して、 負荷 となリ、 スぺーサ Aの走行に伴い、 第 1回転体 2 0を支持しているスラ イ ド台 2 6は、 案内レール 2 2上を後方側へ摺勤移動しょう とする。  At this time, the first rotating body 20 is a load supporting the traveling of the spiral spacer A, and the slide supporting the first rotating body 20 with the traveling of the spacer A. The pedestal 26 tries to move backward on the guide rail 22.
この時の水平方向の作用力は、 第 1および第 2連結部 3 8 a , 3 8 b を介して、 ロー ドセル 3 6に伝達され、その結果、 ロー ドセル 3 6 には、 螺旋スぺーサ Aの走行方向と同じ方向の荷重が伝達される。  The horizontal acting force at this time is transmitted to the load cell 36 via the first and second connecting portions 38a and 38b, and as a result, the spiral spacer is applied to the load cell 36. The load in the same direction as the traveling direction of A is transmitted.
ここで、 スライ ド台 2 6が摺動移動しょう とする作用力をロー ドセル At this point, the load on the slide table 26 to move it
3 6に伝達する連結部材 3 8は、 永久磁石によつて吸着された第 1およ ぴ第 2連結部 3 8 a , 3 8 bで構成されている。 The connecting member 38 transmitting to 36 is constituted by first and second connecting portions 38a and 38b attracted by a permanent magnet.
このため、 永久磁石の吸着力を、 回転体 2 0に所定値以上の力が作用 したときに、 第 1および第 2連結部 3 8 a, 3 8 bの結合が離脱するよ うにしておく と、 溝異常が発生した際に、 検出装置 1 6の破損を防止す ることができる。  For this reason, the attraction force of the permanent magnet is set so that the coupling between the first and second connecting portions 38a, 38b is released when a force greater than a predetermined value acts on the rotating body 20. When the groove abnormality occurs, it is possible to prevent the detection device 16 from being damaged.
一方、 ロードセル 3 6は、 第 6図に示すように、 増幅器 4 0を介して 演算表示器 4 2に電気的に接続されている。 演算表示器 4 2は、 演算回 路 (P L C ) とパソコンから構成され、 インタフェイスやメモリおょぴ 入力キーボー ドなどを備えていて、 この演算表示器 4 2には、 表示器 4 1 と警報器 4 4 とが接続されている。  On the other hand, as shown in FIG. 6, the load cell 36 is electrically connected to the operation display 42 via the amplifier 40. The operation display 42 is composed of an operation circuit (PLC) and a personal computer, and has an interface, a memory input keyboard, etc. The operation display 42 has a display 41 and an alarm. 4 and 4 are connected.
本実施例の場合、 演算表示器 4 2は、 ロードセル 3 6から送出される 荷重検出値 Rを入力信号と して、 第 7図に示す手順に従い、 螺旋溝 A 3 の溝異常を検出する。  In the case of the present embodiment, the operation indicator 42 detects the groove abnormality of the spiral groove A 3 according to the procedure shown in FIG. 7 using the load detection value R sent from the load cell 36 as an input signal.
第 7図に示した手順では、 まず、 手順がスタートすると、 ステップ 1 で、 初期設定が行われる。 この初期設定では、 ロー ドセル 3 6の検出す る荷重検出値 Rに対して、 螺旋溝 A 3が溝異常であると判断する危険値 R m a xが設定される。 In the procedure shown in Fig. 7, first, when the procedure starts, in step 1, initialization is performed. In this initial setting, load cell 36 is detected. For the detected load value R, a danger value Rmax for determining that the spiral groove A3 is abnormal is set.
この危険値 R m a Xは、 過去の経験値や実測値の平均などから導き出 される。 危険値 R m a Xの設定が終了すると、 ステップ 2で、 ロードセ ル 3 6の荷重検出値 Rが取込まれ、 その値が、 測定値と して表示器 4 1 に表示される。  This risk value R max is derived from past empirical values and the average of actual measured values. When the setting of the dangerous value R max is completed, the load detection value R of the load cell 36 is acquired in step 2 and the value is displayed on the display 41 as a measured value.
次に、 ステップ 3で、 荷重検出値 Rが危険値 R m a Xより も大きいか 否かが判断され、荷重検出値 Rが危険値 R m a Xより も小さい場合には、 ステップ 4で、 溝異常の測定を終了するか否かを判断して、 測定が終了 していなければ、 ステップ 2に戻り溝異常の測定を継続する。  Next, in step 3, it is determined whether the load detection value R is greater than the danger value Rmax, and if the load detection value R is less than the danger value Rmax, the groove abnormality is determined in step 4. It is determined whether or not to finish the measurement, and if the measurement has not been completed, the flow returns to step 2 and the measurement of the groove abnormality is continued.
一方、 ステップ 3で、 荷重検出値 Rが危険値 R m a xより も大きいと 判断された場合には、螺旋溝 A 3に異常が発生していることになるので、 ステップ 5で、 警報器 4 4を作動させて、 その旨を警告すると ともに、 測長カウンタ (表示なし) からの信号を受けて、 異常点での条長を表示 させる。  On the other hand, if it is determined in step 3 that the load detection value R is greater than the danger value Rmax, it means that an abnormality has occurred in the spiral groove A3. Is activated to warn of this, and receives the signal from the length measuring counter (no indication) to display the strip length at the abnormal point.
以上のよ うに構成した溝異常検出部 1 6においては、 螺旋スぺーサ A を、 第 1回転体 2 0の貫通開口 3 2に揷通した状態で走行させると、 螺 旋スぺーサ Aの螺旋溝 A 3 と、 この螺旋溝 A 3に嵌合する第 1回転体 2 0の突起部 3 4 との摺接に基づく走行抵抗により、 回転体 2 0の回転力 に転換され、 スライ ド台 2 6 とともにこれを案内レール 2 2上を後方側 に移動させよ う とする水平方向の力が作用する。  In the groove abnormality detecting unit 16 configured as described above, when the spiral spacer A is run in a state of passing through the through-opening 32 of the first rotating body 20, the spiral spacer A Due to the running resistance based on the sliding contact between the spiral groove A 3 and the projection 34 of the first rotating body 20 fitted into the spiral groove A 3, it is converted into the rotating force of the rotating body 20, and the slide table Along with 26, a horizontal force acts on the guide rail 22 to move it rearward.
この水平力は、 磁石で吸着結合された連結部材 3 8を介して、 ロード セル 3 6に伝達される。 ロードセル 3 6は、 この水平力に対応した荷重 を検出し、 これを荷重検出値 Rと してそれを電気信号に変換して演算表 示器 4 2に出力する。  This horizontal force is transmitted to the load cell 36 via the connecting member 38 which is attracted and connected by a magnet. The load cell 36 detects a load corresponding to the horizontal force, converts the load as a load detection value R into an electric signal, and outputs the electric signal to the operation display 42.
演算表示器 4 2は、 ロードセル 3 6の出力信号に基づき、 螺施スぺー サ Aの螺旋溝 Aの状態を監視し、 荷重検出値 Rの大きさに基づいて、 螺 旋溝 A 3の内面の異常を検出する。  The operation indicator 42 monitors the state of the spiral groove A of the threaded spacer A based on the output signal of the load cell 36, and, based on the magnitude of the detected load value R, the inner surface of the spiral groove A3. To detect abnormalities.
この場合、 螺旋溝 A 3の溝異常が、 極端 ίこ大きい場合には、 回転体 2 0の走行抵抗が極めて大きくなるが、 その際には、 その走行抗力が永久 磁石の吸着力を超え、 その結果、 連結部材 3 8の第 1および第 2連結部 3 8 a , 3 8 b間の結合がなくなり 、 スライ ド台 2 6の後方移動が許容 されて、 支持部材 3 8, 回転体 2 0等の部品やロードセル 3 6が破損す るようなことがなくなる。 In this case, when the groove abnormality of the spiral groove A 3 is extremely large, the rotating body 2 In this case, the running resistance exceeds the attraction force of the permanent magnet, and as a result, the first and second connecting portions 38 a and 38 b of the connecting member 38 are connected. Therefore, the slide table 26 is allowed to move backward, so that the components such as the support member 38 and the rotating body 20 and the load cell 36 are not damaged.
なお、 この際のスライ ド台 2 6の後方移動は、 スライ ド台 2 6が近接 スィ ッチ 4 5に当接すると、 引取機 1 2 の駆動を停止して、 安全性を確 保するようになつている。  In this case, when the slide table 26 moves rearward when the slide table 26 contacts the proximity switch 45, the drive of the take-off machine 12 is stopped to ensure safety. It has become.
一方、 溝ピッチ測定部 1 8は、 第 2回転体 2 0 aの回転角度と光ファ ィバ担持用螺旋スぺーサ Aの走行速度とから、 螺旋溝 A 3 の溝ピッチ P を検出するものであって、 第 2回転体 2 0 a と、 螺旋スぺーサ Aの進行 量に対応する信号 Vを発生させる速度パルス発生器 4 6 と、 回転体 2 0 a の回転角度に対応した電気信号を発生させる角度パルス発生器 4 8 と . 角度パルス発生器 4 8から 1回転毎に送出される電気信号 i を受けて、 速度パルス発生器 4 6 のパルス数を計数して、 螺旋溝 A 3 の溝ピッチ P を演算する演算表示器 5 0 とを備えている。  On the other hand, the groove pitch measuring section 18 detects the groove pitch P of the spiral groove A 3 from the rotation angle of the second rotating body 20 a and the traveling speed of the spiral spacer A for holding the optical fiber. And a speed pulse generator 46 for generating a signal V corresponding to the amount of travel of the spiral spacer A, and an electric signal corresponding to the rotation angle of the rotor 20a. Receiving the electric signal i sent out every one rotation from the angle pulse generator 48, the number of pulses of the speed pulse generator 46 is counted, and the spiral groove A3 is generated. And a calculation indicator 50 for calculating the groove pitch P of the above.
第 2回転体 2 0 aは、 第 5図に示すように、 螺旋スぺーサ Aに嵌合さ れて、 その走行に伴って回転する上記第 1回転体 2 0 と実質的に同様な ものであって、 本実施例の場合には、 第 1回転体 2 0 と同様に、 支持部 材 2 4ゃスライ ド台 2 6を備え、 案内レール 2 2上にスライ ド移動自在 に設置されている。  As shown in FIG. 5, the second rotator 20a is substantially the same as the first rotator 20 that is fitted to the spiral spacer A and rotates as it travels. However, in the case of the present embodiment, like the first rotating body 20, the supporting member 24 is provided with a slide base 26, and is mounted on the guide rail 22 so as to be slidable. I have.
スライ ド台 2 6は、 ロードセル 3 6 と連結部材 3 8を介在させて結合 され、 連結部材 3 8は、 磁石によ り分離可能に結合された第 1および第 2連結部 3 8 a, 3 7 bを有している。  The slide table 26 is connected to the load cell 36 with the connecting member 38 interposed therebetween, and the connecting member 38 is connected to the first and second connecting portions 38 a, 3 separably connected by magnets. Has 7b.
第 2回転体 2 0 aは、 円板状の本体 3 1 aの中心部に螺旋スぺーサ A が挿通される貫通開口 3 2 aが形成されている。 第 2回転体 2 0 の貫通 開口 3 2 aの内周側には、 第 1回転体 2 0の突起部 3 4に替えて、 螺旋 溝 A 3の数に対応した本数のピンゲージ 3 5が、 ねじで固定され、 各ピ ンゲージ 3 5の先端側が、 貫通開口 3 2 aの内方に突出している。 各ピンゲージ 3 5は、 その突出形状が、 螺旋溝 Aの形状に対応した形 に形成されている。 第 2回転体 2 0 aに付設されているロードセル 3 6 には、 第 1回転体 2 0 と同様に、 第 6図に示した演算表示器 4 2が接続 され、 この演算表示器 4 2で、 第 7図に示すよ うな制御手順を実行させ ることにより、 上述した溝異常検出部 1 6 と実質的に同様な機能が得ら れ、 螺旋溝 A 3の溝異常を 2段階で検出するよ うにしている。 In the second rotating body 20a, a through-opening 32a through which the spiral spacer A is inserted is formed at the center of the disk-shaped main body 31a. On the inner peripheral side of the through-opening 3 2 a of the second rotating body 20, instead of the projections 34 of the first rotating body 20, pin gauges 35 of the number corresponding to the number of the spiral grooves A 3 are provided. The pin gauge 35 is fixed with screws, and the tip side of each pin gauge 35 projects inward from the through-opening 32a. Each pin gauge 35 has a projecting shape corresponding to the shape of the spiral groove A. The calculation display 42 shown in FIG. 6 is connected to the load cell 36 attached to the second rotating body 20a, similarly to the first rotating body 20. By executing the control procedure as shown in FIG. 7, a function substantially similar to that of the above-described groove abnormality detection unit 16 is obtained, and the groove abnormality of the spiral groove A 3 is detected in two stages. I am doing it.
速度パルス発生器 4 6は、 第 3図に示す引取機 1 2内に設置されてい て、 第 8図に示すように、 演算表示器 5 0に接続されていて、 螺旋スぺ ーサ Aの走行速度に対応した信号 Vを送出する。  The speed pulse generator 46 is installed in the take-off machine 12 shown in FIG. 3, and is connected to the operation display 50 as shown in FIG. The signal V corresponding to the traveling speed is transmitted.
角度パルス発生器 4 8は、 第 5図に示すように、 第 2回転体 2 0 a の 本体 3 1 aの外周面に突設された凸部 4 8 a と、 支持部材 2 4に取り付 けられた近接センサ 4 8 b とを備えている。  As shown in FIG. 5, the angle pulse generator 48 is attached to a support 48 protruding from the outer peripheral surface of the main body 31 a of the second rotating body 20 a and a support member 24. And a proximity sensor 48b.
本実施例の角度パルス発生器 4 8は、 例えば、 磁気感応型の非接触セ ンサであって、 凸部 4 8 aが近接センサ 4 8 bに近接する度毎に、 電気 信号 i が送出される。  The angle pulse generator 48 of the present embodiment is, for example, a magnetically responsive non-contact sensor, and sends out an electric signal i every time the protrusion 48 a approaches the proximity sensor 48 b. You.
この角度パルス発生器 4 8は、 第 8図に示すように、 演算表示器 5 0 に接続されていて、 第 2回転体 2 0 aが 1回転する度に信号 i を演算表 示器 5 0に送出する。  As shown in FIG. 8, the angle pulse generator 48 is connected to a calculation display 50, and outputs a signal i every time the second rotating body 20a makes one rotation. To send to.
演算表示器 5 0は、 演算回路 (P L C ) とパソコンから構成され、 ィ ンタフヱイスやメモリおょぴ入力キーボードなどを備えていて、 この演 算表示器 5 0には、ピッチ表示器 5 2 と警報器 5 4 とが接続されている。 本実施例の場合、 演算表示器 5 0は、 速度パルス発生器 4 6 と角度パ ルス発生器 4 8 とから送出される信号 i, Vを入力信号として、 第 9図 に示す手順に従い、 螺旋溝 A 3の溝ピツチ Pを演算表示させる。  The operation display 50 is composed of an operation circuit (PLC) and a personal computer, and is equipped with an interface, a memory input keyboard, and the like. The operation display 50 includes a pitch display 52 and an alarm. Is connected to the container 54. In the case of the present embodiment, the operation display unit 50 receives signals i and V sent from the speed pulse generator 46 and the angle pulse generator 48 as input signals, and performs a spiral operation according to the procedure shown in FIG. Calculate and display the groove pitch P of groove A3.
第 9図に示した手順では、 まず、 手順がスタートすると、 ステップ 1 0で、 初期設定が行われ、 この初期設定では、 螺旋ピッチ Pに対する許 容値 Δが設定される。  In the procedure shown in FIG. 9, first, when the procedure starts, initial setting is performed in step 10. In this initial setting, the allowable value Δ for the helical pitch P is set.
続くステップ 1 1では、 速度信号 Vの計数力ゥンタがゼロにセッ トさ れ、 次いで、 ステップ 1 2で、 第 2回転体 2 0 aが 1回転する度に角度 パルス発生器 4 8から送出される信号 i の入力を待って、 その入力が確 認されると、 ステップ 1 3で、 速度信号 Vの計数を開始させる。 In the following step 11, the counting power counter of the speed signal V is set to zero. Waiting for the input of the signal i sent from the pulse generator 48, and when the input is confirmed, the counting of the speed signal V is started in step 13.
次いで、 ステップ 1 4で、 2度目の信号 i が入力するまで待機して、 その入力が認められると、 ステップ 1 5で、 速度信号 Vを計数するカウ ンタを停止させ、この計数力ゥンタの係数値から溝ピツチ Pを演算する。 このよ うにして求められた溝ピッチ Pは、 ピッチ表示器 5 2に送出さ れてその値が示され、 続くステップ 1 6で、 求められた溝ピッチ Pが許 容値 Δの範囲内にあるか否かが判断され、 溝ピッチ Pが許容値 Δの範囲 内にないと、 ステップ 1 7で、 警報器 5 4を作動させて、 その旨を報知 するとともに、 測長カウンタ (表示なし) からの信号を受けて、 異常点 での条長を表示させる。  Next, in step 14, the control waits until the second signal i is input, and when the input is recognized, in step 15, the counter that counts the speed signal V is stopped, and the counter of the counting power counter is stopped. Calculate the groove pitch P from the numerical value. The groove pitch P obtained in this way is sent to a pitch indicator 52 to indicate its value, and in the following step 16, the obtained groove pitch P falls within the range of the allowable value Δ. If the groove pitch P is not within the range of the allowable value Δ, it is determined in step 17 that the alarm 54 is actuated to notify the fact and the length measuring counter (not displayed). Display the length of the line at the abnormal point in response to the signal from
一方、 ステップ 1 6で、 溝ピッチ Pが許容値 Δの範囲內にあると判断 された場合には、 ステップ 1 8で測定の終了を判断して、 測定の終了で なければ、 ステップ 1 1に戻り、 溝ピッチ Pの測定が継続される。  On the other hand, if it is determined in step 16 that the groove pitch P is in the range Δ of the allowable value Δ, the end of the measurement is determined in step 18. If not, the flow proceeds to step 11. Return, measurement of groove pitch P is continued.
さて、 以上のように構成した光ファィパ担持用螺旋スぺーサ Aの溝検 查装置 1 0によれば、 第 1回転体 2 0の回転抵抗から摺接する螺旋溝 A 3の溝異常を検出する溝異常検出部 1 6 と、 第 2回転体 2 0 a の回転角 度おょぴ光ファィパ担持用スぺーサ Aの走行速度とから螺旋溝 A 3の溝 ピッチ Pを検出する溝ピッチ測定部 1 8 とを備えているので、 溝形状の 異常と螺旋ピッチ Pの異常とを、 製造工程の途中で同時に検知すること ができる。  According to the groove detecting device 10 of the optical spacer supporting spiral spacer A configured as described above, the groove abnormality of the spiral groove A 3 slidingly contacting is detected from the rotational resistance of the first rotating body 20. A groove pitch measuring unit that detects the groove pitch P of the spiral groove A 3 from the groove abnormality detecting unit 16 and the rotation angle of the second rotating body 20 a and the traveling speed of the optical fiber carrying spacer A. Because of the provision of (1) and (8), an abnormality in the groove shape and an abnormality in the helical pitch P can be simultaneously detected during the manufacturing process.
なお、 上記実施例では、 第 1およぴ第 2回転体 2 0, 2 0 a のそれぞ れにロー ドセル 3 6を付設して、 2段状で螺旋溝 A 3の溝異常を検出す るようにしているが、 溝異常の検出機能は、 いずれか一方の回転体に持 たせてもよい。  In the above embodiment, a load cell 36 is attached to each of the first and second rotating bodies 20 and 20a to detect a groove abnormality of the spiral groove A3 in two steps. However, any one of the rotating bodies may have the groove abnormality detecting function.
ここで、第 2回転体 2 0 aに溝異常の検出機能を持たせない場合には、 ピンゲージ 3 5は、必ずしも全部の螺旋溝 A 3に対応させる必要はなく、 例えば、 1 8 0 ° 間隔や 1 2 0 ° 間隔で、 間欠的に配置してもよい。  Here, if the second rotating body 20a is not provided with a groove abnormality detection function, the pin gauge 35 does not necessarily need to correspond to all the spiral grooves A3, for example, at 180 ° intervals. They may be arranged intermittently at intervals of 120 ° or 120 °.
また、 この場合には、 ピンゲージ 3 5の形状は、 螺旋溝 A 3の断面形 状と密着させる形状にする必要もない。 In this case, the shape of the pin gauge 35 is the cross-sectional shape of the spiral groove A3. It is not necessary to make the shape close to the shape.
さらに、 上記実施例で示した演算表示器 4 2, 5 0は、 それぞれ独立 形式に設けてもよいし、 1個で両者を兼用させてもよいし、 また、 第 7 図に示した制御手順と、 第 9図に示した制御手順は、 それぞれ独立形式 にしてもよいし、 第 9図に示した制御手順を第 7図示した制御手順に連 続させるようにしてもよい。  Further, the operation indicators 42, 50 shown in the above embodiment may be provided in an independent form, respectively, or one may be used for both, and the control procedure shown in FIG. The control procedure shown in FIG. 9 may be of an independent type, or the control procedure shown in FIG. 9 may be connected to the control procedure shown in FIG.
また、 実施例では、 角度パルス発生器 4 8 と して、 非接触式の磁気感 応型を例示したが、 本発明の実施は、 必ずしもこれに限定されることは なく、 例えば、 第 2回転体 2 0 a とギア連結されたロータリエンコーダ を用い、 このエンコーダから 1回転毎に送出される角度信号をこともで きる。  Further, in the embodiment, the non-contact type magnetically responsive type is exemplified as the angle pulse generator 48. However, the embodiment of the present invention is not necessarily limited to this. Using a rotary encoder gear-coupled to 20a, it is also possible to obtain the angle signal sent from this encoder every rotation.
この場合、 第 2回転体 2 0 aを溝異常検出部と兼用しない場合には、 比較的問題はないが、 ロータ リエンコーダを用いる方式では、 回転負荷 が実施例で示した場合より も大きく なるので、 溝異常検出部の回転体と 溝ピッチ測定部の回転体とを 1つで兼用する場合には、 回転負荷が小さ くなる実施例で示した非接触式の磁気感応型の角度パルス発生器 4 8の 方がの望ましい。 産業上の利用可能性  In this case, there is relatively no problem when the second rotating body 20a is not used also as the groove abnormality detection unit, but the method using a rotary encoder has a larger rotating load than that shown in the embodiment. Therefore, when the rotating body of the groove abnormality detecting unit and the rotating body of the groove pitch measuring unit are shared by one, the rotation load is reduced. Container 48 is more desirable. Industrial applicability
本発明の光ファイバ担持用螺旋スぺーサの検查装置は、 螺旋スぺーサ の製造工程の途中に設置することで、 製造する螺旋スぺーサの全長に亘 つて、 溝形状の異常と溝ピッチの測定とが行えるので、 光ファイバを高 密度に集合させた光ケーブルの伝送性能を維持する上で効果的になる。  The inspection apparatus of the spiral spacer for holding an optical fiber of the present invention is installed in the course of the manufacturing process of the spiral spacer, so that the irregularity of the groove shape and the groove can be achieved over the entire length of the spiral spacer to be manufactured. Since the pitch can be measured, it is effective in maintaining the transmission performance of an optical cable in which optical fibers are densely assembled.

Claims

請求の範囲 The scope of the claims
1. 一方向に回転しながら連続的に走行する複数の螺旋溝が外周に設 けられた光フアイバ担持用螺旋スぺーサの溝検查装置において、  1. In a groove detecting device of a spiral spacer for carrying an optical fiber in which a plurality of spiral grooves running continuously while rotating in one direction are provided on the outer periphery,
前記光ファィパ担持用スぺーサの走行に伴って回転する回転体を備え 前記回転体の回転抵抗から摺接する螺旋溝の溝異常を検出する溝異常 検出部と、  A groove abnormality detecting unit that includes a rotating body that rotates with the travel of the optical fiber carrying spacer and detects a groove abnormality of a spiral groove that slides from the rotational resistance of the rotating body;
前記回転体の回転角度と前記光ファィバ担持用スぺーサの走行速度と から前記螺旋溝の溝ピッチを検出する溝ピッチ測定部とを設けたことを 特徴とする光フアイパ担持用螺旋スぺーサの溝検査装置。  A helical spacer for supporting an optical fiber, comprising: a groove pitch measuring section for detecting a groove pitch of the helical groove based on a rotation angle of the rotating body and a traveling speed of the optical fiber supporting spacer. Groove inspection equipment.
2 . 前記溝異常検出部の前記回転体と前記溝ピツチ測定部の前記回転 体とを 1つで兼用することを特徴とする特許請求の範囲第 1項記載の光 フアイパ担持用螺旋スぺーサの溝検査装置。  2. The spiral spacer for supporting an optical fiber according to claim 1, wherein one of the rotating body of the groove abnormality detecting section and the rotating body of the groove pitch measuring section is shared by one. Groove inspection equipment.
3 . 溝異常検出部は、 直線状に延びる案内レールと、  3. The groove abnormality detection part is a guide rail that extends linearly,
前記案内レール上に摺動可能に設けられた支持部材と、  A support member slidably provided on the guide rail,
前記支持部材に回転可能に支持された前記回転体と、  The rotating body rotatably supported by the support member,
前記支持部材に所定値以上の力が加わったときに離間する磁力吸着手 段を介して結合された荷重検出器とを備えたことを特徴とする特許請求 の範囲第 1項記載の光ファイバ担持用螺旋スぺーサの溝検査装置。  The optical fiber carrier according to claim 1, further comprising: a load detector coupled via a magnetic attraction means that separates when a force equal to or more than a predetermined value is applied to the support member. Inspection equipment for spiral spacers.
4 . 前記回転体は、 前記光ファイバ担持用スぺーサが揷通される貫通 開口と、  4. The rotating body has a through-opening through which the spacer for supporting an optical fiber is passed,
前記貫通開口の内周面から突出して、 前記螺旋溝内に摺接する複数の 突起部とで構成したことを特徴とする特許請求の範囲第 1項ないしは第 3項記載の光ファィパ担持用螺旋スぺーサの溝検査装置。  4. The optical fiber holding spiral spiral according to claim 1, wherein the spiral spiral has a plurality of protrusions projecting from an inner peripheral surface of the through-opening and slidingly contacting the spiral groove. Pisa groove inspection device.
5 . 前記回転体は、 前記光ファイバ担持用スぺーサが揷通される貫通 開口を備え、 前記開口の周囲に、 前記螺旋溝に嵌合する先端部を備えた ピンゲージを突設配置したことを特徴とする特許請求の範囲第 1項ない しは第 3項記載の光ファィパ担持用螺旋スぺーサの溝検査装置。  5. The rotator includes a through-opening through which the spacer for supporting the optical fiber is passed, and a pin gauge having a tip portion fitted into the spiral groove is provided around the opening. 4. The groove inspection device for a spiral spacer for holding an optical fiber according to claim 1 or 3, wherein:
6 . 前記荷重検出器は、 密封状態のロードセルで構成したこ とを特徴 とする特許請求の範囲第 1項ないしは第 5項記載の光ファィバ担持用螺 旋スぺーサの溝検查装置。 6. The screw for holding an optical fiber according to claim 1, wherein the load detector is constituted by a load cell in a sealed state. Groove inspection device for rotating spacers.
7 . 前記溝ピッチ測定部は、 前記スぺーサの進行量に対応した信号を 発生させる速度パルス発生器と、  7. The groove pitch measuring unit includes: a speed pulse generator that generates a signal corresponding to an amount of advance of the spacer;
前記回転体の回転角度に対応した電気信号を発生させる角度パルス発 生器と、  An angle pulse generator that generates an electric signal corresponding to a rotation angle of the rotating body;
前記角度パルス発生器から.1回転毎に送出される電気信号を受けて、 前記速度パルス発生器のパルス数を計数して、 前記螺旋溝の溝ピツチを 演算する演算表示器とで構成したことを特徴とする特許請求の範囲第 1 項記載の光ファィパ担持用螺旋スぺーサの溝検査装置。  An electric signal transmitted every one rotation from the angle pulse generator, counting the number of pulses of the speed pulse generator, and calculating a groove pitch of the spiral groove. The groove inspection device for a spiral spacer for holding an optical fiber according to claim 1, characterized in that:
PCT/JP2001/005586 2001-06-28 2001-06-28 Device for inspecting grooves of spiral spacer for carrying optical fiber WO2003002931A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2003508870A JPWO2003002931A1 (en) 2001-06-28 2001-06-28 Inspection device for helical spacer for supporting optical fiber
KR1020037003008A KR100814303B1 (en) 2001-06-28 2001-06-28 Device for inspecting grooves of spiral spacer for carrying optical fiber
PCT/JP2001/005586 WO2003002931A1 (en) 2001-06-28 2001-06-28 Device for inspecting grooves of spiral spacer for carrying optical fiber
CN01814967A CN1449486A (en) 2001-06-28 2001-06-28 Ditch testing apparatus of screw-casing pipes for optical fibre load-supporting
TW090116845A TW508459B (en) 2001-06-28 2001-07-10 Slot inspection device for optical fiber carrying spiral spacer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/005586 WO2003002931A1 (en) 2001-06-28 2001-06-28 Device for inspecting grooves of spiral spacer for carrying optical fiber

Publications (1)

Publication Number Publication Date
WO2003002931A1 true WO2003002931A1 (en) 2003-01-09

Family

ID=11737493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/005586 WO2003002931A1 (en) 2001-06-28 2001-06-28 Device for inspecting grooves of spiral spacer for carrying optical fiber

Country Status (5)

Country Link
JP (1) JPWO2003002931A1 (en)
KR (1) KR100814303B1 (en)
CN (1) CN1449486A (en)
TW (1) TW508459B (en)
WO (1) WO2003002931A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011128106A (en) * 2009-12-21 2011-06-30 Sony Chemical & Information Device Corp Reel member inspection device, and flange interval inspection method using the same
JP2021047066A (en) * 2019-09-18 2021-03-25 住友電気工業株式会社 Slot rod inspection device, optical fiber cable manufacturing method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105424596A (en) * 2015-11-11 2016-03-23 江苏新思维光电有限公司 Cylindrical lamp post defect detection system with spiral guide rail
CN106643569B (en) * 2016-12-27 2019-02-22 中国航发湖南南方宇航工业有限公司 A kind of angle measurement method of output shaft helicla flute
CN108755616B (en) * 2018-08-22 2024-02-20 江苏省水利勘测设计研究院有限公司 Optical fiber sensor buries protective device
CN112361930A (en) * 2020-11-11 2021-02-12 於少林 Quality detection device and detection process for equal-ratio transmission stranded wire

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223615A (en) * 1990-01-30 1991-10-02 Fujikura Ltd Cable-body inspecting apparatus
JPH0672970B2 (en) * 1986-04-28 1994-09-14 宇部日東化成株式会社 Abnormality detection device for resin molding of spiral groove
JPH08114730A (en) * 1994-10-14 1996-05-07 Ube Nitto Kasei Co Ltd Pitch abnormality detector for spiral spacer for carrying optical fiber

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62245108A (en) * 1986-04-17 1987-10-26 Sumitomo Electric Ind Ltd Method and detector for detecting abnormality of groove shape of grooved spacer type optical cable
JPS6468602A (en) * 1987-09-09 1989-03-14 Sumitomo Electric Industries Groove inspecting device for grooved spacer
JP2542668B2 (en) * 1988-03-28 1996-10-09 宇部日東化成株式会社 Groove abnormality detection device for long resin molding having spiral groove
JPH083411B2 (en) * 1988-06-07 1996-01-17 宇部日東化成株式会社 Spiral pitch measuring device for spacer for optical fiber
JP2521801B2 (en) * 1988-12-08 1996-08-07 宇部日東化成株式会社 Optical fiber carrying spacer reversal angle measuring method and apparatus
JPH04348214A (en) * 1991-02-08 1992-12-03 Toyo Chem Co Ltd Sharp abnormality detecting method for optical fiber supporting spacer and apparatus therefor
JP3417302B2 (en) * 1998-07-09 2003-06-16 日立電線株式会社 Spiral grooved wire shape inspection device
JP4367799B2 (en) * 1998-08-26 2009-11-18 宇部日東化成株式会社 Apparatus for measuring groove pitch and groove inversion angle of spacer for supporting optical fiber

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0672970B2 (en) * 1986-04-28 1994-09-14 宇部日東化成株式会社 Abnormality detection device for resin molding of spiral groove
JPH03223615A (en) * 1990-01-30 1991-10-02 Fujikura Ltd Cable-body inspecting apparatus
JPH08114730A (en) * 1994-10-14 1996-05-07 Ube Nitto Kasei Co Ltd Pitch abnormality detector for spiral spacer for carrying optical fiber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011128106A (en) * 2009-12-21 2011-06-30 Sony Chemical & Information Device Corp Reel member inspection device, and flange interval inspection method using the same
JP2021047066A (en) * 2019-09-18 2021-03-25 住友電気工業株式会社 Slot rod inspection device, optical fiber cable manufacturing method
JP7279589B2 (en) 2019-09-18 2023-05-23 住友電気工業株式会社 SLOT ROD INSPECTION DEVICE, OPTICAL FIBER CABLE PRODUCTION METHOD

Also Published As

Publication number Publication date
KR20030040428A (en) 2003-05-22
CN1449486A (en) 2003-10-15
TW508459B (en) 2002-11-01
JPWO2003002931A1 (en) 2004-10-21
KR100814303B1 (en) 2008-03-18

Similar Documents

Publication Publication Date Title
CN206891346U (en) A kind of screw thread qualification rate detection means of nut
US9964394B2 (en) Alignment apparatus and method
WO2003002931A1 (en) Device for inspecting grooves of spiral spacer for carrying optical fiber
CN108918027A (en) A kind of pressure sensor calibrating apparatus
CN103335620A (en) Circuit breaker stroke detection system and mounting method thereof
CN105674848A (en) Thickness detector
CN109974609A (en) A kind of brill ream quality on-line detecting device and method
EP0334923B1 (en) Wide range apparatus for checking linear dimensions of parts
CN210578150U (en) Motor for monitoring dynamic torque of motor in motor operation
CN112066903A (en) Strain calibration device and method of optical fiber sensor
JP2610605B2 (en) Shaft sealing device for penetration gap between casing wall and shaft
CN111288940A (en) Automatic vibrating wire strain sensor calibration device
CN111579362A (en) Reactive powder concrete deflection detection device and use method
JPH11262932A (en) Driving force transmitting apparatus for injection molding machine
CN211292426U (en) Real-time online detection device for friction and wear of sliding friction pair
CN107831329A (en) Velocity measuring device and measuring method
WO2003042742A1 (en) Equipment for inspecting groove of spiral spacer for bearing optical fiber
CN221543757U (en) Brake shoe gap protection detection test device
CN204479036U (en) Thread contour scanister
CN206990141U (en) A kind of oil seal radical force test device
CN214276828U (en) Measuring device and production system of nuclear fuel assembly
CN220398454U (en) Switch notch detection scale
JPH10500772A (en) Yarn measuring device and yarn guiding device in textile machine for this yarn measuring device
CN208751674U (en) A kind of water meter movement failure sensing device
CN218730742U (en) Sensor for monitoring pressure of breaker spring on line

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR

WWE Wipo information: entry into national phase

Ref document number: 018149677

Country of ref document: CN

Ref document number: 1020037003008

Country of ref document: KR

Ref document number: 2003508870

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 1020037003008

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2004113556

Country of ref document: RU

Kind code of ref document: A