WO2003002457A1 - Thin sheet producing method, and solar cell - Google Patents

Thin sheet producing method, and solar cell

Info

Publication number
WO2003002457A1
WO2003002457A1 PCT/JP2002/006189 JP0206189W WO03002457A1 WO 2003002457 A1 WO2003002457 A1 WO 2003002457A1 JP 0206189 W JP0206189 W JP 0206189W WO 03002457 A1 WO03002457 A1 WO 03002457A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
melt
thin plate
growth surface
silicon
Prior art date
Application number
PCT/JP2002/006189
Other languages
French (fr)
Japanese (ja)
Inventor
Shuji Goma
Yoshihiro Tsukuda
Koji Yoshida
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2003002457A1 publication Critical patent/WO2003002457A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/06Reaction chambers; Boats for supporting the melt; Substrate holders
    • C30B19/064Rotating sliding boat system
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/06Reaction chambers; Boats for supporting the melt; Substrate holders
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to a thin plate manufacturing method that can be mainly used for solar cells and the like, and a solar cell using a thin plate obtained by the thin plate manufacturing method.
  • this dendrite web crystal growth apparatus As an apparatus for directly extracting a silicon thin plate from molten silicon, there is a silicon-dendritic web crystal growth apparatus disclosed in Japanese Patent No. 2575838.
  • the main part of this dendrite web crystal growth apparatus is composed of a susceptor for accommodating a crucible containing a silicon melt, a susceptor lid having a slot, and a heating element such as a Koinole induction heater. Using this apparatus, it is possible to pull out thin, thin plate-like dendrite webs grown continuously in the (111) crystal direction from the susceptor lid slot car.
  • the dendrite web is thin and thin, and requires little secondary processing such as slicing prior to device manufacturing. Therefore, conventional silicon wafers are obtained by slicing an ingot with a wire saw or the like to obtain a wafer. It is said that both process costs and raw material costs can be reduced compared to manufacturing methods.
  • silicon thin plate of 150 / zm it is possible to grow the silicon thin plate at a drawing speed of about 1.3 to 1.4 cm / min.
  • the main part of the silicon thin plate manufacturing apparatus is composed of a heating and melting section for silicon and a cooling section including a rotary cooling body.
  • a part of the cylindrical surface of the rotary cooling body 81 made of a heat-resistant material is immersed in molten silicon in a vertically movable crucible 84, and the rotary cooling body 81 is rotated. While pulling out the carbon net 8 8 Thus, the silicon thin plate 82 solidified and grown on the carbon net is continuously taken out.
  • both the process cost and the raw material cost can be reduced as compared with the conventional silicon wafer manufacturing method in which an ingot is sliced with a wire saw or the like to obtain a wafer.
  • the rotary cooling body cools, pulls out, and supports silicon, the pulling out speed can be greatly improved.
  • the drawing speed can be controlled depending on the size and the number of rotations of the rotary cooling body, but it is generally possible to pull out at 10 cm / min or more.
  • the growth rate is as low as about 1.3 cm / min. Therefore, it is difficult to improve productivity.
  • high-speed drawing of usually 10 cmZ or more is possible.
  • the rotating cooling body In order to increase the immersion depth of the rotating cooling body, in order to support and rotate the rotating cooling body while rotating, and to prevent the rotating shaft that guides and discharges the cooling medium from immersing in the silicon melt in the P direction. Requires larger equipment.
  • the angle between the growth surface and the melt surface is small, so that it is difficult to smooth the thin plate surface.
  • the crucible 84 is filled with the melt 83.
  • a carbon net 88 follows the rotary cooling body 81, and the silicon melt creeps up on the carbon net 88.
  • the crawled silicon melt 82a is cooled and then turns into a liquid pool 82b.
  • the silicon melt creeps up to a height of about 2 O mm from the melt surface due to surface tension, and as the rotation further advances, the silicon melt crawling up to the surface becomes 8 2 a.
  • the remaining silicon melt is solidified and grows in the melt, and remains on the thin plate.Since the remaining silicon melt has a large surface tension, the solution is not uniformly distributed but localized, and a liquid having a zero-like shape is formed. Dummy 8 2 b remains. As this gradually solidifies, the surface undulation of the silicon thin plate increases. Also, small protrusions are formed on the surface of the undulation.
  • a polygonal column type rotary cooling body having a flat or a plane processed surface (hereinafter referred to as a substantially flat surface) growth surface on the surface of the rotary cooling body 21 is used.
  • a substantially flat surface a polygonal column type rotary cooling body having a flat or a plane processed surface (hereinafter referred to as a substantially flat surface) growth surface on the surface of the rotary cooling body 21.
  • the liquid will remain on the thin plate, and since the surface tension of the silicon melt is large, the liquid will not be evenly distributed but will be localized. When this solidifies, the surface undulation of the silicon thin plate increases.
  • the method of immersing the rotating cooling body in the silicon melt and solidifying and growing a silicon thin plate on the surface can be performed at high speed, but the silicon melt crawls on the surface, and the surface smoothness and This causes the crystallinity to decrease.
  • the growth surface moves away from the melt in order to reduce the amount of melt crawling on the surface of the thin plate in order to continuously pull out a smooth thin plate at a high speed while preventing crawling and liquid pooling. At this time, the angle between the growth surface and the melt surface must be close to vertical.
  • the present invention has been made to solve the above-described problems, and suppresses the occurrence of small projections on the surface of a silicon thin plate, obtains a thin plate having a flat surface, and stably and continuously obtains the thin plate at low cost.
  • the purpose is to grow.
  • a substrate having a thin plate growth surface is brought into contact with a melt of a material containing at least one of a metal material and a semiconductor material, and the thin plate of the material is grown on the substrate.
  • a thin plate formed of the material A method for producing a thin plate, wherein the substrate and the Z or the melt move such that the melt moves toward the thin plate growth surface side of the substrate when viewed from the thin plate growth surface side of the substrate. .
  • Another manufacturing method of a thin plate according to the present invention includes: moving a moving body on which a substrate having a thin plate growth surface is disposed, thereby causing the thin plate growth surface of the substrate to be at least one of a metal material and a semiconductor material. Is contacted with a melt of a material containing, and thereafter, a thin plate of the material is grown on the substrate by a series of moving operations for separating a thin plate growth surface of the substrate from the melt, thereby forming the substrate.
  • the moving body on which the substrate having the thin plate growth surface is arranged may move the thin plate growth surface of the substrate to at least one of a metal material and a semiconductor material.
  • a crystal of the material is grown on the substrate by a series of moving operations of bringing the thin plate growth surface of the substrate away from the melt by contact with the melt of the material to be contained.
  • a trajectory when the substrate separates from the melt is a circular orbit, and a distance 1 ⁇ between a tip of the growth surface in the moving direction and the center of the rotation axis of the circular orbit is determined by the growth a thin plate manufacturing method characterized by the moving direction end face smaller than the distance R 2 between the rotation center of the circular path.
  • the angle between the thin-plate growth surface and the melt surface at the time when the tip of the thin-plate growth surface in the moving direction separates from the melt is 20 degrees to 60 degrees, and the end of the thin-plate growth surface in the moving direction. It is preferable that the angle formed by the thin plate growth surface and the melt surface at the time when the portion separates from the melt is 60 degrees to 100 degrees.
  • the semiconductor material is a silicon material.
  • a solar cell according to the present invention is a solar cell manufactured using a thin plate manufactured by the thin plate manufacturing method according to the present invention.
  • the manufacturing method according to the present invention is obtained by clarifying the relationship between the moving direction and the moving speed of the melt and the moving direction and the moving speed of the substrate when growing a thin plate on the substrate. It is intended to reduce the number of small protrusions on the surface of the thin plate and improve the flatness of the thin plate.
  • the present invention is characterized in that the substrate and the Z or the melt move such that the melt moves toward the thin plate growth surface side of the substrate when viewed from the thin plate growth surface side of the substrate. That is, it can be realized by defining the relative speed.
  • FIG. 1A to FIG. 1D and FIG. 2A to FIG. 2D illustrate the case where the moving direction and the moving speed of the substrate and the moving direction and the moving speed of the melt are changed.
  • substrates 200 and 210 are immersed in the melt to form melt surfaces 201 and 211.
  • the surface formed by the acute angle between the melt surface 201 and the substrate 200 is the growth surface of the thin plate.
  • the arrows in the figure show the direction and size of the movement of the substrate and the melt.
  • the arrows in the figure show only the horizontal components of the moving directions of the substrate and the melt. That is, the vertical component may be arbitrary.
  • Fig. 1A shows the case where the substrate movement direction A1 and the melt movement direction a1 are opposite
  • Fig. 1B shows the case where the substrate movement direction B1 and the melt movement direction b1 are the same
  • Fig. 1C If the substrate movement direction C1 is the same as the melt movement direction c1, but the direction is opposite to that in Figure IB, the figure ID shows that the substrate movement direction D1 is opposite to the melt movement direction d1. This is the case in the opposite direction from FIG. 1A.
  • FIG. 1A to FIG. 1D the case where there is an effect of suppressing small projections present on the obtained thin plate is when the state shown in FIG. 1A and FIG. 1B is reached.
  • FIGS. 2A to 2D show the case where the moving speed of the substrate shown in FIGS. 2A to 2D is lower than the moving speed of the melt (the moving speed of the substrate ⁇ the moving speed of the melt).
  • Figure 2A shows the case where the moving direction A2 of the substrate and the moving direction a2 of the melt are opposite.
  • Figure 2B shows the case where the moving direction B2 of the substrate and the moving direction b2 of the melt are the same.
  • FIG. 2D shows that the moving direction D 2 of the substrate and the moving direction d 2 of the melt are opposite.
  • this is the case in the opposite direction from that of Fig. 2A.
  • FIGS. 1A to 1D and FIGS. 2A to 2D when the states shown in FIGS. 1A, 1B, 2A, and 2B are respectively obtained, there is an effect of suppressing small protrusions.
  • This can be said to be a state in which the melt comes toward the thin-plate growth side of the substrate when viewed from the thin-plate growth side of the substrate.
  • the effect of suppressing the small protrusions is small because the melt moves away from the thin-plate growth side of the substrate when viewed from the thin-plate growth side of the substrate.
  • the present invention makes it possible to suppress small projections when the melt is continuously supplied to the substrate when the melt is grown on the substrate surface. This state is due to the shape of the meshes formed at the interface between the substrate and the melt surface.
  • FIGS. 3A and 3B show schematic diagrams of the mescus shape formed at the interface between the substrate and the melt.
  • FIG. 3A shows a state in which a convex meniscus 220 is formed at the interface between the substrate 22 1 and the melt surface 22 2
  • FIG. 3B shows a state at the interface between the substrate 22 1 and the melt surface 22 2.
  • This shows a state in which mescuses 223 are formed.
  • the surface on which the meniscus is formed is shown only on the growth surface of the thin plate (the right side of the substrate 221), and is not shown on the surface where the thin plate does not grow (the left side of the substrate 221).
  • FIGS. 3A and 3B when the melt solidifies on the substrate surface to form a thin plate, in FIG. 3A, the meniscus shape is always maintained due to the continuous supply of the melt. While the convex shape can be maintained, in FIG. 3B, the amount of the melt becomes insufficient and the meniscus shape becomes concave.
  • the moving speed of the substrate ⁇ the moving speed of the melt ⁇
  • the moving direction of the substrate and the moving direction of the melt will be described.
  • the moving direction of the substrate includes a linear trajectory, a circular trajectory, an elliptical trajectory, and the like. However, there is no particular problem as long as the trajectory can maintain the relationship with the moving direction of the melt described above.
  • the substrate may have a complex trajectory including a linear trajectory and a circular trajectory.
  • a substrate having a circular orbit when the substrate escapes.
  • the circular orbit not only facilitates the thin-plate recovery mechanism, but also facilitates the relationship between the moving direction and the moving speed of the substrate and the moving direction and the moving speed of the melt.
  • the trajectory when the substrate separates from the melt is a circular orbit, and the distance 1 ⁇ between the tip of the growth surface of the substrate in the moving direction and the center of the rotation axis of the circular orbit is equal to the end of the growth surface of the substrate in the moving direction.
  • This can be realized by making the distance from the center of the rotation axis of the circular orbit smaller than R 2 . This, means that R 2 two distances are the same, it means that depicts the circular path.
  • the substrate, the melt surface, and the trajectory of the movement of the substrate will be described based on the schematic cross-sectional view of the thin plate manufacturing apparatus in FIG.
  • the thin plate manufacturing equipment has a sloped substrate 230, a fixed base 2 '31 capable of mounting the substrate, a fixed base and a rotating shaft 2 32 mounted on the center of the rotating shaft, and a crucible 2 3 4 melt.
  • a trajectory 235 in which the leading end of the substrate in the moving direction moves and a trajectory 236 in which the end of the substrate in the moving direction moves are shown.
  • the moving body (assembly) combining the substrate 230, the fixed base 231, and the shaft 2332 is shown before entering the melt, during immersion in the melt, and immediately before exiting from the melt.
  • the rotation is counterclockwise.
  • the moving speed and moving direction of the melt are determined by the convection of the melt caused by heat.
  • the convection of the melt caused by heat flows from a high temperature part to a low temperature part, but the manner of convection of the melt differs depending on the crucible shape, heating method or heat removal method.
  • the force varies depending on the control temperature of the melt.Since the outermost surface of the melt is not heated, heat removal from the melt surface increases and the direction of melt movement becomes complicated. Tend to be. Therefore, it is preferable to keep the melt temperature higher than the melting point in consideration of the amount of heat removed from the melt surface.
  • the temperature of the substrate can be precisely controlled. That is, by passing a cooling medium such as a cooling gas or cooling water through the inside of the fixed base 231 or the rotating shaft 232, it is possible to control the temperature of the substrate 230 having the growth surface to a low temperature.
  • a cooling medium such as a cooling gas or cooling water
  • the moving speed of the substrate is preferably 1 cm / sec or more. If it is 1 cm / sec or more, the movement of the melt can be performed without much consideration because the substrate is inclined. On the other hand, if it is 1 cm / sec or less, it is necessary to strictly consider the moving speed and directionality of the melt. Considering the simplification of the apparatus, it is preferable to adopt a configuration that can be controlled only by the moving speed of the substrate.
  • the method for manufacturing a thin plate according to the present invention can also be implemented by moving only the melt when both the movement of the substrate and the movement of the melt move.
  • FIG. 5 is a partial schematic perspective view of the thin film manufacturing apparatus when the melt moves.
  • This apparatus is composed of a substrate 240 having a growth surface, a fixed substrate 2441 to which the substrate 240 can be attached and detached, a shaft 2442 that can move up and down, and an inclined table 24 that supplies the melt to the substrate. 3. Equipped with a crucible 2 4 4 for holding the melt.
  • FIG. 5 does not show a motor for vertical movement or a heater for holding the melt.
  • the melt held in the crucible 244 is supplied to the inclined table 243 in a molten state. .
  • the substrate 240 is brought into contact with the melt, and thereafter, the substrate 240 is moved upward, whereby the substrate 240 can be separated from the melt. In this way, a thin plate can be grown on the substrate 240.
  • the melt flows down the inclined table, the substrate 240 only moves up and down, and when viewed from the thin plate growth surface side of the substrate of the present invention, the melt moves toward the thin plate growth surface side of the substrate. It is possible to realize that it will come.
  • the moving speed of the melt can be adjusted by the inclination of the tilting table, it is possible to realize a state in which the melt comes toward the growth surface side of the substrate only by moving the substrate up and down. .
  • the structure of the board 240, the fixed board 241, and the movable shaft 242 can be moved not only up and down, but also along the inclination of the inclined base 243. It may be.
  • the fixed substrate 24 1 and the substrate 240 have a removable structure. This is because the production speed can be significantly improved by adopting a structure in which the thin plate obtained as the substrate 240 can be taken out of the system as it is. Further, it is preferable that the inclined table 243 is heated by a heater or the like so that the melt does not solidify on the inclined table. In addition, by connecting a plurality of moving bodies (assemblies) in series, the production speed can be further improved, and as a result, an inexpensive thin plate can be provided.
  • FIG. 6 shows a cross-sectional view of a thin plate manufacturing apparatus.
  • This manufacturing apparatus was housed in a substrate 250 having an inclination, a thin plate 25 1 formed on the substrate, a fixed base 25 2 on which the substrate can be detached, and a crucible 25 5 4 on a crucible base 255. Equipped with melt 2 5 3, heater 2 5 6 for heating the melt, elevating platform 2 57, elevating shaft 2 58, additional charging pipe 2 59, hermetically sealable chamber 2 60 and take-out mechanism 2 61 ing.
  • the moving body (assembly) including the substrate 250 and the fixed base 255 has a structure in which rotation can be controlled by a motor or the like provided outside the chamber.
  • the lifting shaft 258 also has a structure that can be controlled to move in the vertical direction by a motor or the like provided outside the chamber.
  • the substrate 250 and the obtained thin plate 25 1 are structured so that the substrate can be carried out of the chamber. When continuity is considered, productivity is further improved by separating the carry-in route and the carry-out route of the substrate 250.
  • the manufacturing equipment consists of a chamber with good airtightness.
  • Raw materials for the obtained sheet are prepared in a crucible, and high-purity silicon or lower-grade metal-grade silicon can be used as raw materials.
  • a raw material in which metal-grade silicon is purified and the amount of metal impurities is reduced is used.
  • the crucible can be made of graphite or silica. However, when silica is used, the crucible silica Since the oxygen component contained in the steel is transferred to the silicon thin plate to be manufactured, a graphite crucible is more preferable.
  • Ar gas which is an inert gas
  • Ar gas is more preferable.
  • Ar gas introduced into the chamber is preferably introduced from the upper part of the chamber and exhausted from the lower part. This is because the silicon oxide is quickly discharged out of the chamber due to the reaction of a small amount of oxygen component generated from the furnace material in the chamber with the silicon melt.
  • the temperature is increased while adjusting the pressure in the chamber.
  • silicon oxide is generated in a relatively large amount at the initial stage of the temperature rise and the initial stage of the dissolution of silicon.
  • the melting point of silicon is about 140 ° C, but it is raised to about 150 ° C above the melting point until complete dissolution, and after confirming complete dissolution, the substrate is immersed Cool down to the temperature at which At this time, the melt temperature at the time of immersion is preferably near the melting point, but if it is too close to the melting point, the solidification of the molten metal surface may start immediately after the immersion of the substrate, so that it is slightly higher than the melting point in consideration of productivity. More preferably, the temperature is set.
  • the shaft is rotated 120 ° and the next substrate is loaded.
  • the first substrate is located just above the melt, that is, just before immersion.
  • a mechanism for adjusting the temperature of the substrate is preferably present. That is, the substrate temperature is a factor that affects the characteristics of the obtained silicon thin plate.
  • the temperature of the substrate immediately before being immersed in the melt is preferably 200 ° C. or more and 130 ° C. or less. This is because it is difficult to adjust the temperature below 200 ° C. That is, considering serial production, In order to keep the incoming substrates one after another at 200 ° C, it is necessary to further cool the fixed base.
  • the substrate is inclined, the effects of the present invention can be obtained, and a silicon thin plate having excellent surface smoothness can be obtained.
  • the immersed substrate and the silicon thin plate adhered to the substrate are removed from the rotating shaft having a rotating mechanism at the upper part of the chamber, and are carried out of the system. Through this series of operations, it is possible to obtain a silicon thin plate.
  • the orbit when the substrate separates from the melt is a circular orbit
  • the distance between the tip of the growth surface in the moving direction and the center of the circular orbit is the growth surface. to be smaller than the distance R 2 between the moving direction end and the circular orbit center, provided by inclining the growth surface, when the silicon thin plate grown on the growth surface and the growth surface is away from the melt, the melt surface By making the angle closer to vertical, the silicon melt is removed.
  • a completely smooth plane and a plane whose surface is processed to have a specific shape in order to control the state of fine growth are collectively referred to as a substantially plane.
  • a description will be given assuming that the plane including the above is simply smooth.
  • the solid state growth from the melt causes the crystal state to be a single crystal or polycrystal, amorphous, or a thin plate of a mixture of crystalline and amorphous depending on conditions such as temperature. Sometimes it becomes.
  • the melt contains semiconductor materials such as silicon, germanium, gallium, arsenic, indium, phosphorus, boron, antimony, zinc, and tin. Or aluminum, two A melt containing a metallic material such as nickel or iron can be used. As an example, a case where a polycrystalline silicon thin plate is manufactured from a silicon melt will be described.
  • the substrate constituting the growth surface has excellent heat resistance and does not contaminate the silicon thin plate 2, and is preferably made of carbon, SiC, a high melting point metal, or the like, and a material obtained by coating these materials with another substance.
  • a substantially planar substrate is immersed in a melt of a substance containing at least one of a metal material and a semiconductor material, and then separated from the melt, whereby substantially flat growth is achieved.
  • the angle between the growth surface and the melt surface depends on the shape and size of the rotary cooling body and the substrate, and on the growth surface. Determined from three factors: size and immersion depth.
  • Fig. 22 showing the conventional manufacturing method
  • the growth surface and the melt when the curved surface separates from the melt surface The angle a with the surface is constant.
  • FIG. 7 when the growth surface on the substrate placed on the polygonal rotary cooling body 1 is rotated, each part of the growth surface moves from the center of the rotation axis. Since the distance (rotation diameter) of the growth surface differs from the silicon melt, the angle between the growth surface and the melt surface when the growth surface separates from the silicon melt differs depending on each part of the growth surface.
  • FIG. 8 showing a side view of the thin plate manufacturing apparatus, a substrate 50 having a uniform thickness is placed on a polygonal column-shaped rotary cooling body 21 so as to be parallel to each surface of the polygonal column.
  • a silicon thin plate is grown on 25a will be described.
  • the height of the rotary cooling body including the rotary cooling body 21 and the substrate 50 is The height (the distance between the opposing surfaces is the same as the diameter of rotation at the center of each growth surface) is about 74 O mm.
  • the angle] 32 between the growth surface and the melt surface increases.
  • the angle j32 between the growth surface and the melt surface when the end portion 25 e in the moving direction (the part that separates from the melt last in the growth surface) separates from the melt is about 40 degrees.
  • the distance between the tip 5 d in the moving direction of the growth surface 5 a and the center of the rotation axis (the tip 5 d in the moving direction) The thickness of the substrate is increased toward the terminal end so that the rotational radius is smaller than the distance between the terminal end 5 e of the growth surface in the moving direction and the center of the rotation axis (the turning radius of the terminal end 5 e in the moving direction).
  • a substrate with an inclined growth surface tiltted growth surface substrate 5 5) is installed. Therefore, a case where the silicon thin plate 2 is grown on the growth surface 5a of the inclined growth surface substrate 5 will be described.
  • the growth surface was inclined so that the growth surface area was constant. That is, in FIG. 12, in the moving direction front end 5 d and the virtual moving direction end 5 f (that is, the end in the moving direction when the angle-tilt angle between the surface of the polygonal rotary cooling body and the growth surface is 0 °). ) Is 20 O mm, and this surface is inclined at an arbitrary inclination angle 5 a with respect to the straight line 5 d-5 f. That is, the distance between the tip 5d in the moving direction and the end 5f in the moving direction is also 20 mm.
  • the shape is such that an isosceles triangle having three points 5d, 5e, and 5f as vertices is placed on a substrate with a tilt angle of 0 °.
  • the size of the growth surface 5a does not change.
  • the inclined growth surface substrate set at various inclination angles is designed into the shape shown in FIG. In FIG. 13, as an example, five inclination angles of 0 degree, 30 degrees, 45 degrees, and 60 degrees are shown.
  • the inclination angle 5 ⁇ ; is 0 degrees, the entire substrate surface is covered with the growth surface 5 a.
  • the non-growth surface (the surface that does not grow) 5g increases.
  • the inclined growth angle is 60 degrees, the isosceles triangle becomes a regular triangle, so that the growth surface 5a and the non-growth surface 5g have the same size.
  • the inclination angle 5 ⁇ exceeds 60 degrees, the non-growth surface becomes larger than the growth surface.
  • the inclination angle 5 alpha is inclined in the range of ⁇ degree to 7 5 °, when the moving direction tip 5 d and the moving direction ends 5 e is separated from the silicon melt, the growth surface and the melt surface As shown in Fig. 16, it can be seen that the tapping angle, which is the angle made, increases both.
  • the angle formed between the growth surface and the melt surface] is 31.
  • the angle 90 ° is completely perpendicular, and when it exceeds 90 °, the growth surface 5a is in the opposite direction to the silicon melt 3 (melt). (Upward as viewed from above) and away from the melt.
  • the angle 131 between the growth surface and the melt surface can be controlled, but the difference in the rotation diameter between the tip 5d in the moving direction of the growth surface and the end 5e in the moving direction 5e of the growth surface. Therefore, as shown in Fig. 17, there is a difference in the immersion depth.
  • the difference in immersion depth at an inclination angle of 40 degrees at which the angle between the growth surface and the melt surface at the end 5 e in the moving direction reaches about 90 degrees is about 12 Omm. If the difference in immersion depth is large, not only can the size of the crucible holding the silicon melt not be reduced, but also the thickness of the silicon thin plate becomes uneven due to the influence of the melt temperature distribution and the difference in immersion time.
  • the tilt angle 5a needs to be optimized while taking into account the effect of the immersion depth.
  • the method described above reduces the amount of melt creeping over the uniform columnar crystal, thereby smoothing the silicon thin plate and eliminating the need for secondary processing such as polishing, thus providing a low-cost wafer. It is possible to In addition, since the liquid pool region having a smaller grain size than the columnar crystal and having more crystal grain boundaries in the thickness direction of the thin plate is reduced, for example, when used as a solar cell, defects that cause recombination of the carrier are reduced. However, it is possible to improve the characteristics of the solar cell.
  • FIG. 10A and FIG. 10B show a front view and a side view of the fixed base 1 and the oblique growth substrate 5 around the same time, respectively.
  • the tilted growth surface substrate 5 is screwed to the screw hole 5b and the screw hole 5c of the fixing base 1 Attach the inclined growth substrate 5 to the fixed base 1 with the corresponding screws. Structure. Thereby, it is possible to manufacture the silicon thin plate 2 and compare the evaluation with the case where the inclination angle is changed variously.
  • FIGS. 11A and 1IB show a front view and a side view, respectively, of a state in which the inclined growth substrate 5 is mounted on the fixed base 1.
  • FIG. 9 shows a state in which the inclined growth surface substrate 5 is attached to a dodecahedral-type rotating cooling body via a fixed base.
  • the rotating shaft 8 By rotating the rotating shaft 8 at a constant speed, the growth surface of the substrate can be immersed in the melt.
  • FIG. 1A to 1D are schematic views illustrating the principle of the thin plate manufacturing method according to the present invention.
  • 2A to 2D are schematic views illustrating the principle of the thin plate manufacturing method according to the present invention.
  • 3A and 3B are schematic diagrams illustrating the principle of the thin plate manufacturing method according to the present invention.
  • FIG. 4 is a schematic sectional view of a manufacturing apparatus used in the thin plate manufacturing method of the present invention.
  • FIG. 5 is a schematic perspective view of a manufacturing apparatus used in the thin plate manufacturing method of the present invention.
  • FIG. 6 is a sectional view of a manufacturing apparatus used in the thin plate manufacturing method of the present invention.
  • FIG. 7 is a schematic view of an apparatus used in the method for producing a thin plate according to the present invention.
  • FIG. 8 is a side view of the thin plate manufacturing apparatus in which the substrates are set so as to be parallel to each surface of the polygonal prism.
  • FIG. 9 is a schematic view of a polygonal column type rotary cooling body.
  • FIG. 10A and FIG. 1OB are a front view and a side view of the oblique growth surface substrate and the fixing table.
  • FIG. 11A and FIG. 11B are a front view and a side view in a state where the inclined growth surface substrate is mounted on a fixed base.
  • FIG. 12 is a schematic view of an inclined growth surface substrate.
  • FIG. 13 is a schematic view showing a state in which the inclined growth surface substrate is arranged with a different inclination angle.
  • FIG. 14 is a schematic view of a manufacturing apparatus used in the thin plate manufacturing method of the present invention.
  • FIG. 15 is a schematic view of a manufacturing apparatus used in the thin plate manufacturing method of the present invention.
  • Figure 16 is a diagram showing the relationship between the oblique angle and the tapping angle.
  • FIG. 17 is a diagram showing the relationship between the inclination angle and the maximum difference in the immersion depth of the inclined growth surface.
  • FIG. 18 is a diagram showing the relationship between the inclination angle and the maximum undulation of the silicon thin plate.
  • FIG. 19 is a diagram showing the relationship between the tilt angle and the maximum undulation of the silicon thin plate.
  • FIG. 20 is a diagram showing the relationship between the inclination angle and the maximum undulation of the silicon thin plate.
  • FIG. 21 is a schematic side view of a manufacturing apparatus used in the thin plate manufacturing method of the present invention.
  • FIG. 22 is a schematic view of a manufacturing apparatus used in a conventional thin plate manufacturing method.
  • a polycrystalline silicon thin plate was manufactured by solidifying a silicon melt.
  • the material of the substrate, rotating shaft and rotating cooling body was graphite.
  • the substrate surface (growth surface) was a smooth plane.
  • the material was graphite and the surface was coated with silicon carbide.
  • Embodiment 1 is directed to a case where a silicon thin plate is grown on a growth surface of a substrate by immersing in a melt while moving in a circular motion along a circular orbit, and subsequently moving away from the melt. Is a method in which the growth surface is inclined.
  • FIG. 7 shows a silicon thin plate manufacturing apparatus according to the first embodiment.
  • the silicon thin plate manufacturing equipment consists of a rectangular crucible 4, a heating heater that melts the silicon 3 supplied to the crucible 4, a rotating shaft that supports the rotating cooling body 1, a 1-sided prismatic rotating cooling body 1,
  • the dodecahedron prism-shaped rotary cooling body 1 is composed of a substrate 5 that can be attached to each surface. These are housed in a rectangular parallelepiped outer wall and heat insulation. The inside of the device is surrounded by heat insulating material and sealed so that the inside can be held under an argon gas atmosphere.
  • an inclined growth surface substrate 5 having an inclination angle 5 ⁇ of 0 ° to 75 ° was prepared, and the silicon thin plate 2 was manufactured using these.
  • the rotary cooling body 1 is rotated to make the inclined growth surface substrate 5 circularly move, and then the crucible 4 is raised, and the growth surface 5a is melted by silicon.
  • the silicon thin plate 2 grows on the growth surface.
  • the growth surface is immersed in the silicon melt 3 for 2 O mm with reference to the position where the center of the growth surface when the substrate with a tilt angle of 0 ° is mounted is located at the lowest position.
  • Silicon thin plate 2 was grown on the surface. Thereafter, the silicon thin plate 2 was taken out of the apparatus, and its surface undulation and plate thickness were evaluated. The surface undulation was evaluated using the maximum undulation defined by JISBO 61-1994.
  • the maximum undulation (W CM ) was about 400 ⁇ at a tilt angle of 5 ⁇ of 0 ° as shown in Fig. 18, but the tilt angle of 5 It is less than 200 in the range of 15 to 50 degrees, which indicates that the smoothness can be greatly improved in this range.
  • a silicon substrate is placed on the growth surface of the rotary cooling body in which the inclined growth surface substrate 5 is installed on each surface of the polygonal rotary cooling body 1.
  • the depth of immersion in the silicon melt differs depending on each part of the growth surface as compared with the case where a cylindrical rotary cooling body is used.
  • the difference in the immersion depth may cause unevenness in the thickness of the silicon thin plate due to the influence of the melting temperature distribution at night and the difference in the immersion time. Therefore, the thicknesses of various parts of the removed silicon thin plate were measured.
  • the plate thickness tended to be thinnest at the center and thickest at the tip 5d in the moving direction and the end 5e in the moving direction.
  • the thickness of the portion closer to the end 5e in the movement direction became larger.
  • the tilt angle is 0 degree
  • the distance between the center of the growth surface and the center of the rotation axis immersion volatilization at the center of the growth surface
  • the tilt angle increases, the end in the moving direction and the center of the rotation axis This is because the distance (the immersion depth at the end in the moving direction) increases, and the plate thickness increases as the immersion time increases as the immersion depth increases.
  • the difference between the maximum and minimum values of the thickness of each part of the silicon thin plate affects the process of manufacturing devices such as solar cells using silicon thin plates. Distribution is small).
  • the thickness difference is less than 150 / zm, but when it exceeds 50 degrees, the thickness difference increases, It turned out to be more than / zm.
  • the plate thickness difference exceeds 150 m, unevenness will occur in the electrode printing and anti-reflection film formation on the silicon thin plate, so the plate thickness difference must be less than 15 O / xm.
  • the inclination angle is set to 15 to 50 degrees in the configuration of the present apparatus.
  • the inclination angle 5 ⁇ of 15 ° to 50 ° means, as can be converted from the graph of FIG. 16, that the growth surface moves with the growth surface when the front end moves away from the melt.
  • the angle between the liquid surface is 20 degrees to 60 degrees
  • the angle between the growth surface and the melt surface when the end is away from the melt is 60 degrees to 100 degrees. Equivalent to.
  • the angle formed between the growth surface and the melt surface was controlled only by simply tilting the growth surface, but for example, changing the size of the rotating cooling body ', changing the area of the growth surface
  • the tip of the growth surface in the direction of movement away from the melt by a method including at least one of the following steps: changing the immersion depth, and / or tilting the growth surface.
  • the angle between the surface and the growth surface should be controlled within the range of 2.0 to 60 degrees, and the angle between the growth surface and the melt surface when the end is separated from the melt should be within the range of 60 to 100 degrees. Thus, it is possible to obtain a low-cost crystal sheet having a flat surface.
  • the case where a rotating cooling body is used has been described.However, when a substrate having a substantially flat growth surface is movable, and when the growth surface moves by an operation that does not rotate, the growth surface is melted. It is possible to take a method of growing a crystal thin plate on the growth surface by immersing in a melt and then separating from the melt. In this case as well, the angle between the growth surface and the melt surface when the tip part moves away from the melt in the direction of movement of the growth surface is 20 to 60 degrees, and the growth surface when the end part moves away from the melt. By controlling the angle between the liquid surface and the liquid surface in the range of 60 degrees to 100 degrees, it is possible to obtain a low-cost crystal thin plate having a flat surface.
  • the silicon thin plate surface is smoothed in contrast to a case where the substrate makes a circular motion along the circular orbit at least from the infiltration into the melt until it leaves the melt. This is a method for improving the crystallinity of a silicon thin plate.
  • FIG. 14 shows a silicon thin plate manufacturing apparatus according to the second embodiment.
  • the silicon thin plate manufacturing equipment consists of a rectangular crucible 34, a heating heater that melts the silicon supplied to the crucible 34, a rotating shaft that supports the rotating cooling body 31, a 1-sided prismatic rotating cooling body 31.
  • Each of the substrates is composed of inclined growth surface substrates 35 connected at regular intervals. These are housed in a rectangular parallelepiped outer wall and heat insulator.
  • the inside of the device is surrounded by a heat insulating material and sealed so that the inside can be held under an argon gas atmosphere.
  • a substrate 50 as shown in FIG. 8 was used.
  • an inclined substrate in which the growth surface was inclined at an arbitrary angle with respect to the case where the substrate was not inclined was used.
  • Each board is continuously connected by the coupler 9, and the boards are connected continuously from outside the system. It is possible to discharge the substrate together with the grown silicon thin plate 32 outside the system.
  • a board introduction port and a discharge port are provided on the outer wall of the equipment where the connector is introduced from the outside of the equipment and the outer wall of the equipment where it is discharged. I'm preventing. Atmospheric gases exhausted from the system are immediately sent to the exhaust gas treatment facility by the exhaust ducts located close to the substrate inlet and outlet.
  • This method makes it possible to continuously produce and remove silicon thin plates.
  • the process of peeling and collecting the silicon thin plate from the substrate, cleaning and adjusting the substrate (especially the growth surface), and replacing the substrate can be performed while the continuous operation is in progress.
  • the substrate can be pressed against the rotary cooling body 31 at an arbitrary pressure.
  • the substrate is integrated with the rotary cooling body.
  • the silicon thin plate performs a circular motion until it is immersed in the melt and separates from the melt, so that it is possible to grow a silicon thin plate as in the first embodiment.
  • the growth surface of the substrate on the dihedral prismatic rotary cooling body that is not tilted is a square of 20 O mm square
  • the height of the rotating cooling body including the rotating cooling body and the substrate is about 74 O mm.
  • an inclined growth surface substrate 35 having an inclination angle 5 ⁇ of 0 ° to 75 ° was prepared, and a silicon thin plate 32 was manufactured using these substrates.
  • the rotating cooling body 31 is rotated to continuously introduce and discharge the inclined growth surface substrate 35, and then the crucible 34 is raised to grow.
  • the surface 35a is immersed in the silicon melt 33, and then separated from the silicon melt 33, so that the silicon thin plate 32 grows on the growth surface.
  • the grown silicon thin plate 32 is discharged outside the system while being integrated with the substrate.
  • the growth surface is immersed in the silicon melt 33 at 2 O mm with reference to the position where the center of the growth surface when the substrate having the inclination angle of 0 ° is mounted is located at the lowest position.
  • a silicon thin plate 32 was grown on the growth surface. Thereafter, the silicon thin plate 32 was taken out of the apparatus, and the surface undulation and the plate thickness were evaluated.
  • the maximum undulation (WCM) was about 400 ⁇ at a tilt angle of 0 ° as shown in Fig. 19, but the tilt angle was 15 It is less than 200 ⁇ m at degrees to 55 degrees, and it was found that the smoothness can be greatly improved in this range. This is the same result as in the first embodiment.
  • Growth surface 35a (and substrate) Force S Even if there is no circular motion, if the growth surface circularly moves from at least when it enters the melt to when it separates from the melt, the same as in the first embodiment. A similar effect can be obtained.
  • the thickness of the removed silicon thin plate at various sites was measured. As in Embodiment 1, as shown in Fig. 19, when the inclination angle 5 ⁇ is within 50 degrees, the thickness difference is less than 150 m, but 50 degrees. It was found that the difference in plate thickness increased when the ratio exceeded 15 O / i Hi or more. It is desirable to set the inclination angle to 5 or 55 degrees or less so that the sheet thickness difference is less than 15 O / zm.
  • the inclination angle of 15 degrees to 50 degrees means, as can be converted in the graph of FIG. 16, the inclination angle between the growth surface and the growth surface when the tip of the growth surface moves away from the melt.
  • the angle between the melt surface is 20 degrees to 60 degrees
  • the angle between the growth surface and the melt surface when the end is separated from the melt is 60 degrees to 100 degrees.
  • the angle between the growth surface and the melt surface when the tip of the growth surface moves away from the melt is 20 degrees to 60 degrees, and the growth surface and the melt surface when the ends are away from the melt.
  • the substrate does not move in a circular orbit while the substrate is immersed in the melt, at least at a point away from the melt, the substrate makes a circular motion along the circular orbit.
  • This is a method for smoothing silicon and improving the crystallinity of a silicon thin plate.
  • FIG. 15 shows a silicon thin plate manufacturing apparatus according to the third embodiment.
  • the silicon thin plate manufacturing equipment consists of a square crucible 44 and a heating unit that melts the silicon supplied to the crucible 44. Heaters, two 12-hedral prismatic rotary cooling bodies 12 and 13 having the same size and arranged in parallel to the silicon melt 4 3 and a rotating shaft supporting them are connected at regular intervals. It consists of a substrate. These are housed in a rectangular parallelepiped device outer wall and heat insulating material. The inside of the device is surrounded by heat insulating material, and the inside of the device is sealed so that it can be held under an argon gas atmosphere.
  • a substrate 50 as shown in FIG. 8 was used.
  • the growth surface of the substrate was tilted, as shown in Fig. 15, an inclined substrate whose growth surface was tilted at an arbitrary angle with respect to the case where the substrate was not tilted was used.
  • the substrates 45 are continuously connected by a coupler 19, and the substrates are continuously introduced from outside the system, pressed against the first rotary cooling body 12 and immersed in the silicon melt 43. Pickled. Subsequently, the rotary cooling body 12 is separated from the silicon melt and moves toward the second rotary cooling body 13 while being immersed in the silicon melt.
  • the substrate 45 pressed against the rotating cooling body 13 is separated from the silicon melt while being fixed to the rotating cooling body 13, the movement of the substrate when the growth surface is separated from the silicon melt is a rotation cooling. As in the case of reject 13, the orbit is circular. After the substrate is separated from the silicon melt 43, it is also separated from the rotary cooling body 13 and the substrate together with the grown silicon thin plate 42 can be discharged out of the system.
  • a substrate introduction port and a discharge port are provided on the outer wall of the apparatus, and the atmospheric pressure in the apparatus system is set to be equal to or higher than the atmospheric pressure, thereby preventing entry into the atmosphere.
  • Atmospheric gas discharged from the system is sent to an exhaust gas treatment facility by an exhaust duct.
  • This method makes it possible to continuously produce and remove silicon thin plates.
  • the time for immersion in the melt (the distance that the growth surface moves in the melt) is long, when the rotation speed of the rotary cooling body (the moving speed of the substrate) is increased, the immersion time is insufficient. It is possible to eliminate the shortage of growth on the growing surface, and as a result, it is possible to shorten the manufacturing time of silicon thin plates and reduce costs.
  • the process of peeling and collecting the silicon thin plate from the substrate, collecting and cleaning the substrate (especially the growth surface), replacing the substrate, etc. can be performed while the system is running outside the system. is there.
  • the connected substrate controls the tension outside the system By doing so, it becomes possible to press the substrate against the rotary cooling bodies 12 and 13 at an arbitrary pressure.
  • a non-tilted substrate or an inclined substrate similar to that of the second embodiment is used.
  • An inclined growth surface substrate 45 having an inclination angle 5 ⁇ of 0 ° to 75 ° was prepared, and a silicon thin plate 42 was manufactured using these substrates.
  • the rotating cooling bodies 12 and 13 are rotated to continuously introduce and discharge the inclined growth surface substrate 45, and then raise the crucible 44.
  • the growth surface 45a is immersed in the silicon melt 43, and then separated from the silicon melt 43, whereby the silicon thin plate 42 grows on the growth surface.
  • the grown silicon thin plate 42 is discharged outside the system while being integrated with the substrate.
  • the growth surface is immersed in the silicon melt 43 by 20 mm with reference to the position where the center of the growth surface when the substrate having the inclination angle of 0 ° is attached is located at the lowest position.
  • a silicon thin plate 42 was grown on the growth surface. Thereafter, the silicon thin plate 42 was taken out of the apparatus, and the surface undulation and the thickness were evaluated.
  • the maximum undulation (WCM) was about 400 ⁇ at an inclination angle of ⁇ degrees as shown in Fig. 20, but the inclination angle was 15 It is less than 15 ⁇ at degrees to 50 degrees, and it was found that the smoothness can be greatly improved in this range. This is the same result as in the first and second embodiments.
  • the sheet thickness difference is less than 15 when the inclination angle is less than 50 degrees, as in the first and second embodiments. If it exceeds, the thickness difference increases and becomes 150 / xm or more. Inclination angle 5 or 50 degrees or less so that the thickness difference is less than 15 O / xm It is desirable to set below.
  • the inclination angle of 15 degrees to 50 degrees means that, as can be converted from the graph of FIG. 16, the growth surface moves in the direction of movement away from the melt.
  • the angle between the liquid surface is 20 to 60 degrees
  • the angle between the growth surface and the melt surface when the end is separated from the melt is 60 to 100 degrees. Equivalent to.
  • the angle between the growth surface and the melt surface when the tip of the growth surface moves away from the melt is 20 degrees to 60 degrees, and the growth surface and the melt surface when the ends are away from the melt.
  • Comparative Example 1 is an example of simulating a conventional method using a cylindrical rotary cooling body without tilting the growth surface.
  • FIG. 22 shows a silicon thin plate manufacturing apparatus according to Comparative Example 1.
  • a cylindrical rotary cooling body 81 having a diameter of 74 O mm is used instead of the dodecahedral polygonal column type rotary cooling body 1 and the inclined growth surface substrate 5 in the first embodiment.
  • the crucible 84 is raised, and the rotating cooling body 81 around which the carbon net 88 is wound is immersed in the silicon melt 83 for 2 mm, and the rotating cooling body 81 is rotated while the carbon net 88 is rotated.
  • the silicon thin plate 82 grown on the surface of the T-rotating cooling body was pulled out. Since a cylindrical rotary cooling body is used, the immersion depth and the angle between the growth surface and the melt surface when moving away from the melt are constant at each part of the growth surface. In the present comparative example, the angle formed by the growth surface and the melt surface when leaving the melt is about 20 degrees.
  • the silicon melt 82a crawled up on the surface was localized and remained on the surface of the silicon thin plate, and a liquid pool 82b was locally generated on the surface. At the position where the rotation further advanced, a large swell was formed on the surface of the silicon thin plate due to the liquid pool 82 b gradually solidifying.
  • the maximum waviness (W CM) was about 4 5 0 ⁇ ⁇ .
  • silicon with a flat surface The force that can satisfy the angle between the growth surface and the melt surface when the tip of the growth surface separates from the melt, which is the condition for obtaining a thin plate, is between 20 and 60 degrees. Since the angle between the growth surface and the melt surface at the time of separation cannot satisfy the range of 60 degrees to 100 degrees, as in the case of the planar growth surface, the growth surface is The maximum waviness increased compared to the case where a flat growth surface was used, because the melt rising on the silicon thin plate was not reduced by increasing the angle formed with the melt surface.
  • the difference between the maximum value and the minimum value (thickness difference) at each part of the silicon thin plate was small, because there was no difference in the immersion depth at each part, and was about 45 / im.
  • a solar cell was manufactured using the silicon thin plates manufactured according to Embodiments 1 to 3 and Comparative Example 1.
  • An example of a manufacturing procedure is a sequence of cleaning, texture etching, formation of a diffusion layer, removal of an oxide film, formation of an antireflection film, back etching, formation of a back surface electrode, and formation of a light receiving surface electrode, which are general methods. Delivery between each process was basically performed by an automatic transport mechanism.
  • the silicon thin plates according to the first and second embodiments all the silicon thin plates using the inclined growth surface substrate having an inclination angle of 15 to 50 degrees could be automatically transported, but for the other silicon thin plates, In some cases, the automatic transport mechanism could not be used due to unevenness due to liquid pools. With respect to the silicon thin plate according to Comparative Example 1, the automatic transfer mechanism could not be used because of the remaining curvature and the convexity due to the liquid pool.
  • a silicon raw material whose boron concentration was adjusted so that the specific resistance of the obtained plate-like silicon was 2 ⁇ mcm was put into a high-purity graphite crucible, and the crucible was set in the apparatus shown in FIG. Next, the inside of the chamber is evacuated and the pressure is once reduced to 5 Pa or less. Thereafter, Ar gas is introduced into the chamber, and while maintaining 700 hPa, the Ar gas always flows from the upper part of the chamber at SL / min.
  • the temperature of the silicon melting heater is set at 148 ° C., and the silicon is completely melted. At this time, the liquid level is lowered by dissolving the silicon raw material. Therefore, by adding new silicon raw material, the molten metal surface position is adjusted to a predetermined position. After that, set the temperature of the silicon melt to 142 ° C and hold it for 30 minutes. Stabilize the liquid temperature. At this time, it was confirmed that there was no solidification of the molten metal surface.
  • the substrate whose temperature is controlled using both the cooling mechanism and the heating mechanism is immersed in the silicon melt.
  • the control temperature of the substrate was three conditions of 300 ° C., 600 ° C., and 900 ° C.
  • the crucible was gradually raised, and the base was immersed in the silicon melt when the inclined substrate was raised to a position where it could be completely immersed.
  • the tilt angle of the tilted substrate was 10 °.
  • the moving speed of the substrate was 300 cm / min.
  • the obtained plate-like silicon could be easily peeled off from the substrate, and its size was 75 mm ⁇ 75 mm. 100 sheets of such square thin plate silicon were produced, and the plate thickness was converted from the weight. Table 2 shows the average values of the obtained sheet thicknesses.
  • a solar cell was manufactured using the obtained plate-like silicon.
  • the obtained plate-like silicon was etched and washed with a mixed solution of nitric acid and hydrofluoric acid, and then alkali-etched with sodium hydroxide. Thereafter, an n layer was formed on p-type substrate by POC 1 3 diffusion. After removing the PSG film formed on the plate-like silicon surface with hydrofluoric acid, a silicon nitride film was formed using plasma CVD on the n-layer on the light-receiving surface side of the solar cell.
  • the n-layer formed on the back side of the solar cell is etched away with a mixed solution of nitric acid and hydrofluoric acid, exposing the p-substrate, and simultaneously forming the back electrode and p + layer on it. did.
  • the electrode on the light receiving surface side was formed using a screen printing method. Thereafter, solder coating was performed to produce a solar cell.
  • the cell characteristics of the manufactured solar cell were measured under irradiation of AM I.5, 10 OmW / cm 2 .
  • Table 2 shows the average values of the obtained characteristics.
  • Substrate temperature Weight equivalent plate thickness Short-circuit current Open-circuit voltage Fill factor Conversion efficiency
  • the manufacturing equipment consists of a substrate 26 2, a fixed base 26 3, a variable-length shaft 26 4 connected to the rotating shaft, a melt 26 5, a heater 26 6, and a crucible 26 2 7. It has a crucible elevating shaft 2 6 8.
  • the variable length shaft 264 is structured so that the distance from the substrate to the center of the rotating shaft can be increased when the substrate escapes from the melt.
  • the inside of the chamber is evacuated, and the pressure is reduced to 10 Pa or less. After that, Ar gas is introduced into the chamber, and Ar gas is always kept flowing from the upper part of the chamber at 10 LZmin while maintaining 700 hPa.
  • the temperature of the heater for melting silicon is set to 1500 ° C., and silicon is completely melted. At this time, the liquid level is lowered by dissolving the silicon raw material, so that the silicon surface is adjusted to a predetermined position by newly adding the silicon raw material. Thereafter, the temperature of the silicon melt is set at 140 ° C., and the temperature is maintained for 30 minutes to stabilize the melt temperature. At this time, it was confirmed that there was no solidification of the molten metal surface.
  • the substrate whose temperature is controlled using both the cooling mechanism and the heating mechanism is immersed in the silicon melt.
  • the control temperature of the substrate at this time was 400 ° C.
  • the crucible was gradually raised, and when the substrate was raised to a position where the substrate could be completely immersed, the substrate was immersed in a silicon melt. At this time, the moving speed of the substrate was 400 cm / min.
  • the obtained plate-like silicon could be easily peeled from the substrate, and its size was 10 Omm X 10 Omm.
  • Ten such square silicon thin plates were prepared, and the thickness was converted from the weight.
  • Table 3 shows the average values of the obtained plate thicknesses.
  • Table 3 shows the number of small protrusions on the surface per silicon thin plate.
  • a silicon thin plate was manufactured in exactly the same manner as in Embodiment 6 except that the distance from the center of the substrate and the rotation axis was kept constant without using a variable length axis.
  • the plate thickness was converted.
  • Table 3 shows the average values of the obtained plate thicknesses.
  • Table 3 shows the number of small protrusions on the surface per silicon thin plate.
  • a substrate having a growth surface is brought into contact with a melt of a material containing at least one of a metal material and a semiconductor material, and the material is grown on the substrate.
  • the melt is directed toward (approached to) the thin plate growth surface of the substrate when viewed from the thin plate growth surface of the substrate, By controlling the meniscus shape of the melt, it was possible to stably and continuously grow a thin plate having a flat surface with few small protrusions at low cost.
  • the method includes the steps of:
  • the distance between the tip of the growth surface in the movement direction and the center of the circular orbital rotation axis is smaller than the distance between the end of the growth surface in the movement direction and the center of the circular orbital rotation shaft.
  • tilt the growth surface change the size of the rotating cooling body, and increase the area of the growth surface.
  • the angle between the growth surface and the melt surface when the tip of the growth surface in the moving direction moves away from the melt is from 20 degrees to 60 degrees.
  • the angle between the growth surface and the melt surface when the end in the moving direction of the melt separates from the melt in the range of 60 ° to 100 °, the amount of the melt crawling on the growth surface and It was possible to optimize the thickness of the crystal thin plate, and to obtain a smooth and thin crystal thin plate.
  • a silicon material as the material, a low-cost silicon wafer serving as a material of a semiconductor device, particularly, a solar cell could be obtained.
  • the thin plate obtained by the thin plate manufacturing method according to the present invention it is possible to reduce the cost of the material, to reduce the fine particle size region due to the rise of the melt, and to reduce the crystallinity.
  • a solar cell with improved conversion efficiency was obtained using a general solar cell manufacturing method.
  • the growth surface when the growth surface separates from the melt by inclining the growth surface, changing the size of the rotating cooling body, changing the area of the growth surface, changing the immersion depth, etc. Increases the angle between the silicon melt and the melt surface, thereby reducing the crawling of the silicon melt and the accumulation of liquid, making the surface of the silicon thin plate smooth and forming a silicon wafer regardless of the polishing and slicing processes. did it.
  • the rotary cooling body is replaced with a cylindrical type, and a substrate or a structure having a planar growth surface such as a polyhedron can be applied, so that a flat and smooth silicon wafer can be formed. It is.
  • the fine grain size region is reduced and the crystallinity is improved, the conversion efficiency can be improved by using a general solar cell manufacturing method. As a result, a silicon wafer can be provided at lower cost. be able to.

Abstract

A shin sheet producing method for obtaining a thin sheet of metallic material or semiconductor material in that a substrate having a growth surface is contacted with a melt of the above-mentioned material to grow crystals of the material on the substrate, wherein as seen from the thin sheet growth surface side of the substrate, the substrate and/or the melt is moved so that the melt moves toward the thin sheet growth surface side of the substrate. For example, by moving a movable body of substrate having a growth surface (5a), the growth surface (5a) is brought into contact with a melt (3), and then the growth surface (5a) is separated from the melt (3), such series of moving operations causing crystals of the material to grow on the growth surface (5a); in such thin sheet producing method, the orbit of the substrate leaving the melt (3) is circular, and the distance between the front end of the growth surface (5a) as seen in the movement direction and the center of rotation along the circular orbit is set at a value smaller than the distance between the terminal end of the growth surface (5a) as seen in the movement direction and the center of rotation along the circular orbit.

Description

薄板製造方法および太陽電池 技術分野  Thin plate manufacturing method and solar cell
本発明は、 主として太陽電池などに用いることができる薄板製造方法およびそ の薄板製造方法によって得られた薄板を用いた太陽電池に関するものである。 背景技術  The present invention relates to a thin plate manufacturing method that can be mainly used for solar cells and the like, and a solar cell using a thin plate obtained by the thin plate manufacturing method. Background art
溶融シリコンから直接シリコン薄板を引き出す装置としては、 特許第 2 5 7 5 8 3 8号公報に開示されたシリコン■デンドライトウエブ結晶成長装置がある。 このデンドライトウエブ結晶成長装置の主要部分としては、 シリコン融液が入つ たるつぼを収容するサセプタとスロットを有したサセプタ蓋、 コィノレ誘導力熱器 などの加熱要素から構成されている。 この装置を用いると、 サセプタ蓋のスロッ トカ ら、 連続して (1 1 1 ) の結晶方向で成長した薄い薄板状のデンドライトウ エブを引き出すことが可能である。  As an apparatus for directly extracting a silicon thin plate from molten silicon, there is a silicon-dendritic web crystal growth apparatus disclosed in Japanese Patent No. 2575838. The main part of this dendrite web crystal growth apparatus is composed of a susceptor for accommodating a crucible containing a silicon melt, a susceptor lid having a slot, and a heating element such as a Koinole induction heater. Using this apparatus, it is possible to pull out thin, thin plate-like dendrite webs grown continuously in the (111) crystal direction from the susceptor lid slot car.
この方法によると、 デンドライトウエブは薄い薄板状であり、 デバイス製造に 先立ってスライスなどの二次加工がほとんど必要無いため、 インゴットをワイヤ ーソ一などによりスライスしてウェハを得る従来のシリコンウェハの製造法より も、 プロセスコストおよび原料費の双方を低減することができるとされている。 なお、 一般的には、 1 5 0 /z mのシリコン薄板を得るためには、 引き出し速度は 約 1 . 3〜1 . 4 c m/分の速度で成長させることができる。  According to this method, the dendrite web is thin and thin, and requires little secondary processing such as slicing prior to device manufacturing. Therefore, conventional silicon wafers are obtained by slicing an ingot with a wire saw or the like to obtain a wafer. It is said that both process costs and raw material costs can be reduced compared to manufacturing methods. In addition, generally, in order to obtain a silicon thin plate of 150 / zm, it is possible to grow the silicon thin plate at a drawing speed of about 1.3 to 1.4 cm / min.
一方、 回転冷却体を溶融シリコン中に浸漬して、 冷却体表面に固化成录する低 コストなシリコン薄板を得ようとする方法としては、 特開平 1 0— 2 9 8 9 5号 公報などに開示されたシリコン薄板の製造装置がある。  On the other hand, a method for immersing a rotary cooling body in molten silicon to obtain a low-cost silicon thin plate which solidifies on the cooling body surface is disclosed in Japanese Patent Application Laid-Open No. 10-28995. There is a disclosed apparatus for manufacturing a silicon thin plate.
このシリコン薄板の製造装置の主要部分としては、 シリコンの加熱溶解部と回 転冷却体を含む冷却部とで構成されている。 図 2 2に示すように、 耐熱材で構成 された回転冷却体 8 1の円筒面の一部を、 上下可動るつぼ 8 4内の溶融シリコン 中に浸漬し、 該回転冷却体 8 1を回転させながらカーボンネット 8 8を引き出す ことによって、 カーボンネット上に固化成長したシリコン薄板 8 2を連続的に取 出す。 The main part of the silicon thin plate manufacturing apparatus is composed of a heating and melting section for silicon and a cooling section including a rotary cooling body. As shown in FIG. 22, a part of the cylindrical surface of the rotary cooling body 81 made of a heat-resistant material is immersed in molten silicon in a vertically movable crucible 84, and the rotary cooling body 81 is rotated. While pulling out the carbon net 8 8 Thus, the silicon thin plate 82 solidified and grown on the carbon net is continuously taken out.
この方法によると、 インゴットをワイヤーソーなどによりスライスしてウェハ を得る従来のシリコンウェハの製造法よりも、 プロセスコストおよび原料費の双 方を低減することができるとされている。 また、 回転冷却体がシリコンを強 j冷 却かつ引き出し、 支持を行なうため、 引き出し速度を大幅に向上することが可能 である。 なお、 回転冷却体の大きさ、 回転数によって、 引き出し速度は制御可能 であるが、 一般的に 1 0 c m/分以上で引き出すことが可能である。  According to this method, both the process cost and the raw material cost can be reduced as compared with the conventional silicon wafer manufacturing method in which an ingot is sliced with a wire saw or the like to obtain a wafer. In addition, since the rotary cooling body cools, pulls out, and supports silicon, the pulling out speed can be greatly improved. The drawing speed can be controlled depending on the size and the number of rotations of the rotary cooling body, but it is generally possible to pull out at 10 cm / min or more.
シリコン .デンドライトウエブ結晶成長装置においては、 成長速度が約 1 . 3 c m/分と遅い。 そのため、 生産性を向上させることが困難である。 一方、 前記. 特開平 1 0— 2 9 8 9 5号公報に開示されたシリコン薄板の製造方法においては、 通常 1 0 c mZ分以上の高速引き出しが可能である。 し力 しながら、 回転冷却体 を支持、 回転し、 また冷却媒体を導排出させる回転軸のシリコン融液への浸漬を P方止するために、 回転冷却体の浸漬深さを大きくするためには装置の大型化が必 要となる。 この方法では融液から固化成長したシリコン薄板が融液から離れると きの、 成長面と融液面とのなす角度が小さいために、 薄板表面を平滑化すること が困難になっている。  In a silicon dendrite web crystal growth apparatus, the growth rate is as low as about 1.3 cm / min. Therefore, it is difficult to improve productivity. On the other hand, in the method of manufacturing a silicon thin plate disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 10-28995, high-speed drawing of usually 10 cmZ or more is possible. In order to increase the immersion depth of the rotating cooling body, in order to support and rotate the rotating cooling body while rotating, and to prevent the rotating shaft that guides and discharges the cooling medium from immersing in the silicon melt in the P direction. Requires larger equipment. In this method, when the silicon thin plate solidified and grown from the melt is separated from the melt, the angle between the growth surface and the melt surface is small, so that it is difficult to smooth the thin plate surface.
ここで、 従来のシリコン薄板製造方法について詳細に説明する。 図 2 2におい て、 るつぼ 8 4内には融液 8 3が満たされている。 回転冷却体 8 1にはカーボン ネット 8 8が追随するようになっており、 このカーボンネット 8 8に、 シリコン 融液が這い上がる。 這い上がったシリコン融液 8 2 aは、 冷却されたのち、 液だ まり 8 2 bとなる。 この方法によると、 融液面から 2 O mm程度の高さまで、 シ リコン融液が表面張力によって這い上がっていることによって、 さらに回転が進 むと、 表面に這い上がったシリコン融液 8 2 aが融液内で固化成長している平滑 薄板上に残ることになり、 この残ったシリコン融液は表面張力が大きいために液 が均一に分布せずに局在し、 零のような形状の液だまり 8 2 bが残る。 これが 徐々に固まることによってシリコン薄板の表面うねりが大きくなる。 また、 その うねりの表面にも小さ 、突起が生じる。  Here, a conventional method for manufacturing a silicon thin plate will be described in detail. In FIG. 22, the crucible 84 is filled with the melt 83. A carbon net 88 follows the rotary cooling body 81, and the silicon melt creeps up on the carbon net 88. The crawled silicon melt 82a is cooled and then turns into a liquid pool 82b. According to this method, the silicon melt creeps up to a height of about 2 O mm from the melt surface due to surface tension, and as the rotation further advances, the silicon melt crawling up to the surface becomes 8 2 a. The remaining silicon melt is solidified and grows in the melt, and remains on the thin plate.Since the remaining silicon melt has a large surface tension, the solution is not uniformly distributed but localized, and a liquid having a zero-like shape is formed. Dummy 8 2 b remains. As this gradually solidifies, the surface undulation of the silicon thin plate increases. Also, small protrusions are formed on the surface of the undulation.
また、 取出したシリコン薄板の断面を確認したところ、 シリコン融液 8 3内で 成長した均一厚の柱状結晶の上に、 厚さ 5 0〜5 0 0 /x m、 粒径 5 0〜: L 0 0 μ m程度のランダム配向領域が確認された。 これは、 均一柱状結晶の上に這い上つ た液だまりが固化したものであり、 柱状結晶に比べて粒径が小さく、 シリコン薄 板の厚み方向の結晶粒界も多いため、 たとえば太陽電池として使用した場合、 こ の部分の粒界がキャリアを再結合させる要因となる欠陥になることがわかる。 同様に、 図 8のように、 回転冷却体 2 1の表面に、 平面もしくは平面に加工を 施した面 (以下、 略平面と称する) の成長面を持つ多角柱型回転冷却体を用いた 場合も、 成長面が融液から離れるときの、 成長面と融液面とのなす角度を大きく することは困難であり、 表面に這い上がったシリコン融液が融液内で固化成長し ている平滑薄板上に残ることになり、 シリコン融液の表面張力が大きいために液 が均一に分布せずに局在し、 ,のような形状の液だまりが残る。 これが固まるこ とによってシリコン薄板の表面うねりが大きくなる。 Also, when the cross section of the removed silicon thin plate was checked, On the grown columnar crystal having a uniform thickness, a random orientation region having a thickness of 50 to 500 / xm and a particle size of 50 to: L00 μm was confirmed. This is due to the solidification of the liquid pool crawling on the uniform columnar crystal, which is smaller in particle size than the columnar crystal and has more grain boundaries in the thickness direction of the silicon thin plate. When used, it can be seen that the grain boundaries in this area become defects that cause the carriers to recombine. Similarly, as shown in FIG. 8, a case where a polygonal column type rotary cooling body having a flat or a plane processed surface (hereinafter referred to as a substantially flat surface) growth surface on the surface of the rotary cooling body 21 is used. However, it is difficult to increase the angle between the growth surface and the melt surface when the growth surface separates from the melt, and the silicon melt crawling on the surface solidifies and grows in the melt. The liquid will remain on the thin plate, and since the surface tension of the silicon melt is large, the liquid will not be evenly distributed but will be localized. When this solidifies, the surface undulation of the silicon thin plate increases.
このように、 回転冷却体をシリコン融液に浸潰して、 その表面にシリコン薄板 を固化成長させる方法は、 高速引き出しが可能であるが、 表面にシリコン融液が 這い上がり、 表面の平滑性、 結晶性を低下させる原因となっている。 この、 這い 上がり、 液だまりを防止しつつ、 高速で、 平滑な薄板を連続して引き出すために は、 薄板表面に這い上がる融液の量を低減させるために、 成長面が融液から離れ るときの、 成長面と融液面とのなす角度を垂直に近づける必要がある。  In this way, the method of immersing the rotating cooling body in the silicon melt and solidifying and growing a silicon thin plate on the surface can be performed at high speed, but the silicon melt crawls on the surface, and the surface smoothness and This causes the crystallinity to decrease. The growth surface moves away from the melt in order to reduce the amount of melt crawling on the surface of the thin plate in order to continuously pull out a smooth thin plate at a high speed while preventing crawling and liquid pooling. At this time, the angle between the growth surface and the melt surface must be close to vertical.
このようなシリコン薄板を用いて太陽電池を作製しようとすれば、 新たに機械 的な研磨などの平滑化が必要となり、 低コスト化を阻害する要因となっている。 すなわち、 かかる状況においては、 勿論安定した連続成長も困難である。 発明の開示  If solar cells are manufactured using such thin silicon plates, smoothing such as mechanical polishing must be newly performed, which is a factor that hinders cost reduction. That is, in such a situation, of course, stable continuous growth is also difficult. Disclosure of the invention
本発明は、 上述の問題を解決するものであり、 シリコン薄板の表面に生じる小 さい突起の発生を抑制し、 平坦表面を持つ薄板を得るとともに、 その薄板を低コ ストで安定して連続的に成長させることを目的とする。  The present invention has been made to solve the above-described problems, and suppresses the occurrence of small projections on the surface of a silicon thin plate, obtains a thin plate having a flat surface, and stably and continuously obtains the thin plate at low cost. The purpose is to grow.
本発明に係る薄板の製造方法は、 薄板成長面を有する基板を、 金属材料もしく は半導体材料のうち少なくともいずれか一方を含有する材料の融液に接触させ、 前記材料の薄板を基板に成長させることで、 前記材料で形成された薄板を得る薄 板製造方法において、 基板の薄板成長面側から見たときに、 融液が基板の薄板成 長面側に向かうように基板および Zまたは融液が移動することを特徴とする薄板 製造方法である。 In the method for producing a thin plate according to the present invention, a substrate having a thin plate growth surface is brought into contact with a melt of a material containing at least one of a metal material and a semiconductor material, and the thin plate of the material is grown on the substrate. To obtain a thin plate formed of the material. A method for producing a thin plate, wherein the substrate and the Z or the melt move such that the melt moves toward the thin plate growth surface side of the substrate when viewed from the thin plate growth surface side of the substrate. .
本発明に係る薄板の他の製造方法は、 薄板成長面を有する基板を配置された移 動体を移動させることにより、 前記基板の薄板成長表面を金属材料もしくは半導 体材料のうち少なくともいずれか一方を含有する材料の融液に接触させ、 その後、 前記基板の薄板成長面を前記融液から離す一連の移動動作によって、 前記材料の 薄板を前記基板に成長させることで、 前記材料で形成された薄板を得る薄板製造 方法において、 基板の薄板成長面側から見たときに、 融液が基板の薄板成長面側 に向か向かうように基板および Zまたは融液が移動することを特徴とするシート 製造方法である。  Another manufacturing method of a thin plate according to the present invention includes: moving a moving body on which a substrate having a thin plate growth surface is disposed, thereby causing the thin plate growth surface of the substrate to be at least one of a metal material and a semiconductor material. Is contacted with a melt of a material containing, and thereafter, a thin plate of the material is grown on the substrate by a series of moving operations for separating a thin plate growth surface of the substrate from the melt, thereby forming the substrate. A sheet manufacturing method for obtaining a thin sheet, wherein the substrate and the Z or the melt are moved such that the melt moves toward the thin plate growth side of the substrate when viewed from the thin plate growth side of the substrate. It is a manufacturing method.
さらに本発明に係る薄板の製造方法は、 薄板成長面を有する基板を配置された 移動体を移動させることにより、 前記基板の薄板成長面を、 金属材料もしくは半 導体材料のうち少なくともいずれか一方を含有する材料の融液に接触させ、 その 後、 前記基板の薄板成長面を前記融液から離す一連の移動動作によって、 前記材 料の結晶を前記基板に成長させることで、 前記材料で形成された薄板を得る薄板 製造方法において、 前記基板が融液から離れるときの軌道が円軌道であり、 前記 成長面の移動方向先端部と前記円軌道の回転軸中心との距離 1^が、 前記成長面 の移動方向末端部と前記円軌道の回転軸中心との距離 R2より小さいことを特徴 とする薄板製造方法である。 Further, in the method of manufacturing a thin plate according to the present invention, the moving body on which the substrate having the thin plate growth surface is arranged may move the thin plate growth surface of the substrate to at least one of a metal material and a semiconductor material. A crystal of the material is grown on the substrate by a series of moving operations of bringing the thin plate growth surface of the substrate away from the melt by contact with the melt of the material to be contained. A trajectory when the substrate separates from the melt is a circular orbit, and a distance 1 ^ between a tip of the growth surface in the moving direction and the center of the rotation axis of the circular orbit is determined by the growth a thin plate manufacturing method characterized by the moving direction end face smaller than the distance R 2 between the rotation center of the circular path.
また、 薄板成長面の移動方向先端部が融液から離れる時点における、 前記薄板 成長面と融液面とのなす角度が 2 0度〜 6 0度であるとともに、 前記薄板成長面 の移動方向末端部が融液から離れる時点における、 前記薄板成長面と融液面との なす角度が 6 0度〜 1 0 0度とすることが好ましい。 また、 前記半導体材料はシ リコン材料とすることが好ましい。  Further, the angle between the thin-plate growth surface and the melt surface at the time when the tip of the thin-plate growth surface in the moving direction separates from the melt is 20 degrees to 60 degrees, and the end of the thin-plate growth surface in the moving direction. It is preferable that the angle formed by the thin plate growth surface and the melt surface at the time when the portion separates from the melt is 60 degrees to 100 degrees. Preferably, the semiconductor material is a silicon material.
また、 本発明に係る太陽電池は、 本発明に係る薄板製造方法によって製造され た薄板を用いて製造された太陽電池である。  Further, a solar cell according to the present invention is a solar cell manufactured using a thin plate manufactured by the thin plate manufacturing method according to the present invention.
本発明に係る製造方法では、 基板上に薄板を成長させる場合の、 融液の移動方 向と移動速度、 基板の移動方向と移動速度の関係を明確にすることで、 得られる 薄板表面の小さい突起の減少と薄板の平坦性を向上させるものである。 The manufacturing method according to the present invention is obtained by clarifying the relationship between the moving direction and the moving speed of the melt and the moving direction and the moving speed of the substrate when growing a thin plate on the substrate. It is intended to reduce the number of small protrusions on the surface of the thin plate and improve the flatness of the thin plate.
基板上に薄板を成長させる場合には、 基板側が移動する場合と融液側が移動す る場合の 2通りがある。 本発明では、 基板の薄板成長面側から見たときに、 融液 が基板の薄板成長面側に向かうように基板および Zまたは融液が移動することを 特徴とする。 すなわち、 相対速度で定義することで実現可能となる。  When a thin plate is grown on a substrate, there are two cases, in which the substrate moves and the melt moves. The present invention is characterized in that the substrate and the Z or the melt move such that the melt moves toward the thin plate growth surface side of the substrate when viewed from the thin plate growth surface side of the substrate. That is, it can be realized by defining the relative speed.
図 1 A〜図 1 Dおよぴ図 2 A〜図 2 Dに、 基板の移動方向と移動速度、 および 融液の移動方向と移動速度を変化させた場合を詳細に説明する。 図において基板 2 0 0、 2 1 0は、.融液に浸潰され融液面 2 0 1 , 2 1 1を形成している。 この 図において、 例えば融液面 2 0 1と基板 2 0 0とのなす角が鋭角になっている面 が薄板の成長面である。 図では簡略化した基板と融液面だけを示しており、 図中 の矢印は、 基板及び融液の移動の方向とその大きさを示している。 そして図の矢 印は、 基板および融液の移動方向の水平方向成分のみを示している。 すなわち、 垂直方向成分については任意で構わない。  FIG. 1A to FIG. 1D and FIG. 2A to FIG. 2D illustrate the case where the moving direction and the moving speed of the substrate and the moving direction and the moving speed of the melt are changed. In the figure, substrates 200 and 210 are immersed in the melt to form melt surfaces 201 and 211. In this figure, for example, the surface formed by the acute angle between the melt surface 201 and the substrate 200 is the growth surface of the thin plate. In the figure, only the simplified substrate and the melt surface are shown, and the arrows in the figure show the direction and size of the movement of the substrate and the melt. The arrows in the figure show only the horizontal components of the moving directions of the substrate and the melt. That is, the vertical component may be arbitrary.
本発明では、 基板の移動速度の大小と、 融液の移動速度の大小に分けて説明す る。 まず、 図: L A〜図 1 Dにおいて基板の移動速度が融液の移動速度よりも速い 場合 (基板の移動速度 >融液の移動速度) について説明する。 図 1 Aは基板の移 動方向 A 1と融液の移動方向 a 1が逆の場合、 図 1 Bは基板の移動方向 B 1と融 液の移動方向 b 1が同じ場合、 図 1 Cは基板の移動方向 C 1と融液の移動方向 c 1が同じであるが、 図 I Bとは逆方向の場合、 図 I Dは基板の移動方向 D 1と融 液の移動方向 d 1が逆であり図 1 Aとは逆方向の場合である。 この図 1 A〜図 1 Dにおいて、 得られる薄板に存在する小さい突起を抑制する効果のある場合は、 図 1 Aおよぴ図 1 Bの状態になるときである。  In the present invention, the magnitude of the moving speed of the substrate and the magnitude of the moving speed of the melt will be described separately. First, the case where the moving speed of the substrate is faster than the moving speed of the melt in Fig. L A to Fig. 1D (moving speed of the substrate> moving speed of the melt) will be described. Fig. 1A shows the case where the substrate movement direction A1 and the melt movement direction a1 are opposite, Fig. 1B shows the case where the substrate movement direction B1 and the melt movement direction b1 are the same, and Fig. 1C If the substrate movement direction C1 is the same as the melt movement direction c1, but the direction is opposite to that in Figure IB, the figure ID shows that the substrate movement direction D1 is opposite to the melt movement direction d1. This is the case in the opposite direction from FIG. 1A. In FIG. 1A to FIG. 1D, the case where there is an effect of suppressing small projections present on the obtained thin plate is when the state shown in FIG. 1A and FIG. 1B is reached.
次に、 図 2 A〜図 2 Dの基板の移動速度が融液の移動速度よりも遅い場合 (基 板の移動速度 <融液の移動速度) について説明する。 図 2 Aは基板の移動方向 A 2と融液の移動方向 a 2が逆の場合、 図 2 Bは基板の移動方向 B 2と融液の移動 方向 b 2が同じ場合、 図 2 Cは基板の移動方向 C 2と融液の移動方向 c 2が同じ であるが図 2 Bとは逆方向の場合、 図 2 Dは基板の移動方向 D 2と融液の移動方 向 d 2が逆であるが、 図 2 Aとは逆方向の場合である。 これらの図において、 得 られる薄板に存在する小さい突起を抑制する効果のある場合は、 図 2 Aおよび図 2 Bの状態になるときである。 Next, the case where the moving speed of the substrate shown in FIGS. 2A to 2D is lower than the moving speed of the melt (the moving speed of the substrate <the moving speed of the melt) will be described. Figure 2A shows the case where the moving direction A2 of the substrate and the moving direction a2 of the melt are opposite.Figure 2B shows the case where the moving direction B2 of the substrate and the moving direction b2 of the melt are the same. In the case where the moving direction C 2 of the substrate and the moving direction c 2 of the melt are the same but opposite to the direction of FIG. 2B, FIG. 2D shows that the moving direction D 2 of the substrate and the moving direction d 2 of the melt are opposite. However, this is the case in the opposite direction from that of Fig. 2A. In these figures, if there is an effect of suppressing the small protrusions present on the obtained thin plate, see Fig. 2A and Fig. It is time to come to state 2B.
図 1 A〜図 I Dおよび図 2 A〜図 2 Dにおいて、 それぞれ図 1 A、 図 I Bおよ び図 2 A、 図 2 Bの状態になるときに、 小さい突起の抑制に効果がある。 これは、 基板の薄板成長面側から見たときに、 融液が基板の薄板成長面側に向かって来る 状態といえる。 逆に、 小さい突起の抑制に効果が少ないのは、 基板の薄板成長面 側から見たときに、 融液が基板の薄板成長面側から離れていくことになる。  In FIGS. 1A to 1D and FIGS. 2A to 2D, when the states shown in FIGS. 1A, 1B, 2A, and 2B are respectively obtained, there is an effect of suppressing small protrusions. This can be said to be a state in which the melt comes toward the thin-plate growth side of the substrate when viewed from the thin-plate growth side of the substrate. Conversely, the effect of suppressing the small protrusions is small because the melt moves away from the thin-plate growth side of the substrate when viewed from the thin-plate growth side of the substrate.
本発明は、 言い換えれば、 基板表面に融液状態の材料が成長するときに、 常に 基板側に融液が供給され続ける状態のときが小さな突起を抑制することが可能と なる。 この状態は、 基板と融液面との界面にできるメエスカスの形状に起因して いる。  In other words, the present invention makes it possible to suppress small projections when the melt is continuously supplied to the substrate when the melt is grown on the substrate surface. This state is due to the shape of the meshes formed at the interface between the substrate and the melt surface.
図 3 A、 図 3 Bに、 基板と融液との界面にできるメュスカス形状の模式図を示 す。 図 3 Aは基板 2 2 1と融液面 2 2 2の界面に凸状のメニスカス 2 2 0を形成 した状態を、 図 3 Bは基板 2 2 1と融液面 2 2 2の界面に囬状のメュスカス 2 2 3を形成した状態を示している。 この図において、 メニスカスができる面を薄板 の成長面 (基板 2 2 1の右側) にのみ図示しており、 薄板の成長しない面 (基板 2 2 1の左側) には図示していない。 図 3 A、 図 3 Bにおいて、 基板表面上で融 液が固化して薄板が形成されるとき、 図 3 Aでは、 融液量が十分に供給され続け られているために、 常にメニスカス形状が凸形状を保持できるのに対して、 図 3 Bでは、 融液量が不十分となり、 メニスカス形状が凹形状になる。  Figures 3A and 3B show schematic diagrams of the mescus shape formed at the interface between the substrate and the melt. FIG. 3A shows a state in which a convex meniscus 220 is formed at the interface between the substrate 22 1 and the melt surface 22 2, and FIG. 3B shows a state at the interface between the substrate 22 1 and the melt surface 22 2. This shows a state in which mescuses 223 are formed. In this figure, the surface on which the meniscus is formed is shown only on the growth surface of the thin plate (the right side of the substrate 221), and is not shown on the surface where the thin plate does not grow (the left side of the substrate 221). In FIGS. 3A and 3B, when the melt solidifies on the substrate surface to form a thin plate, in FIG. 3A, the meniscus shape is always maintained due to the continuous supply of the melt. While the convex shape can be maintained, in FIG. 3B, the amount of the melt becomes insufficient and the meniscus shape becomes concave.
小さな突起が抑制できる場合、 すなわち図 1 A及び図 1 B、 図 2 A及び図 2 B の場合、 メニスカス形状が凸の形状を維持できる状態が長く続くことが可能にな る。 一方、 図 1 Cおよび図 1 D、 図 2 Cおよぴ図 2 Dの場合は、 メュスカス形状 が凹の形状になる確率が高くなるため突起を完全に抑制するのが困難になり、 薄 板の均一性を損なう。 これは、 メニスカス形状が凸から凹になるときに、 ー且メ ニスカスが切れる現象によるものである。 基板の移動速度ゃ融液の移動速度ゃ融 液材料の表面張力にもよるが、 メニスカスが切れることで生じる融液表面の波打 ちなどによつて、 得られる薄板の表面に小さな突起や薄板のうねりをもたらす。 本発明では、 特に、 基板と融液の移動における水平方向の相対的な速度成分を定 義することで、 小さな突起の抑制と平坦†生の向上の両立を図るものである。 次に、 基板の移動方向と融液の移動方向について説明する。 基板の移動方向は、 直線軌道、 円軌道、 楕円軌道などが挙げられるが、 上述した融液の移動方向との 関係を維持できる軌道であれば特に問題はない。 すなわち、 直線軌道や円軌道な どを含んだ複合的な軌道を有するものであっても良い。 特に好ましいのは、 基板 の脱出時に円軌道を有するものが好ましい。 円軌道にすることによって、 薄板回 収機構が容易になるだけでなく、 基板の移動方向と移動速度、 融液の移動方向と 移動速度の関係を容易に実現可能であるためである。 つまり基板が融液から離れ るときの軌道が円軌道であり、 基板の成長面の移動方向先端部と円軌道の回転軸 中心との距離 1^が、 基板の成長面の移動方向末端部と円軌道の回転軸中心との 距離 R2より小さいことにより、 実現することが可能となる。 この 、 R2二つ の距離が同じであるということは、 円軌道を描いていることを意味する。 In the case where small projections can be suppressed, that is, in the case of FIGS. 1A and 1B, FIGS. 2A and 2B, the state in which the meniscus shape can maintain a convex shape can be maintained for a long time. On the other hand, in the case of FIG. 1C and FIG. 1D, FIG. 2C and FIG. 2D, the probability that the mescus shape becomes concave becomes high, and it becomes difficult to completely suppress the protrusion, and the thin plate Loss of uniformity. This is due to the phenomenon that the meniscus breaks when the meniscus shape changes from convex to concave. The moving speed of the substrate ゃ the moving speed of the melt ゃ Depending on the surface tension of the melt material, small protrusions and thin plates on the surface of the obtained thin plate due to waving of the melt surface caused by the breakage of the meniscus Bring swell. In the present invention, in particular, by defining a relative velocity component in the horizontal direction in the movement of the melt with respect to the substrate, it is possible to achieve both suppression of small protrusions and improvement of flatness. Next, the moving direction of the substrate and the moving direction of the melt will be described. The moving direction of the substrate includes a linear trajectory, a circular trajectory, an elliptical trajectory, and the like. However, there is no particular problem as long as the trajectory can maintain the relationship with the moving direction of the melt described above. That is, it may have a complex trajectory including a linear trajectory and a circular trajectory. Particularly preferred is a substrate having a circular orbit when the substrate escapes. The circular orbit not only facilitates the thin-plate recovery mechanism, but also facilitates the relationship between the moving direction and the moving speed of the substrate and the moving direction and the moving speed of the melt. In other words, the trajectory when the substrate separates from the melt is a circular orbit, and the distance 1 ^ between the tip of the growth surface of the substrate in the moving direction and the center of the rotation axis of the circular orbit is equal to the end of the growth surface of the substrate in the moving direction. This can be realized by making the distance from the center of the rotation axis of the circular orbit smaller than R 2 . This, means that R 2 two distances are the same, it means that depicts the circular path.
図 4の薄板製造装置の概略断面図に基づき基板、 融液面、 および基板の移動す る軌跡を説明する。 薄板製造装置は傾斜のついた基板 2 3 0、 基板取付け可能な 固定台 2' 3 1、 固定台と回転軸中心に取付けられた回転軸 2 3 2を有し、 るつぼ 2 3 4の融液 2 3 3に基板 2 3 0が浸漬される際の、 基板の移動方向先端部が移 動する軌跡 2 3 5、 基板の移動方向末端部が移動する軌跡 2 3 6が示されている。 また、 基板 2 3 0、 固定台 2 3 1、 軸 2 3 2を合わせた移動体 (アセンブリ) が、 融液への進入前と融液に浸漬中と融液からの脱出直前で示しており、 この図 では反時計回りで回転を行なっている。 このような製造装置にすると基板 2 3 0 の移動速度、 言い換えれば回転速度を制御するだけで、 本発明に規定する条件を 容易に実現することが可能になる。 また基板の移動速度や移動方向は、 回転速度 と回転軸の方向によつて制御できることになる。  The substrate, the melt surface, and the trajectory of the movement of the substrate will be described based on the schematic cross-sectional view of the thin plate manufacturing apparatus in FIG. The thin plate manufacturing equipment has a sloped substrate 230, a fixed base 2 '31 capable of mounting the substrate, a fixed base and a rotating shaft 2 32 mounted on the center of the rotating shaft, and a crucible 2 3 4 melt. When the substrate 230 is immersed in the substrate 233, a trajectory 235 in which the leading end of the substrate in the moving direction moves and a trajectory 236 in which the end of the substrate in the moving direction moves are shown. Also, the moving body (assembly) combining the substrate 230, the fixed base 231, and the shaft 2332 is shown before entering the melt, during immersion in the melt, and immediately before exiting from the melt. In this figure, the rotation is counterclockwise. With such a manufacturing apparatus, it is possible to easily realize the conditions specified in the present invention only by controlling the moving speed of the substrate 230, in other words, the rotational speed. The moving speed and moving direction of the substrate can be controlled by the rotating speed and the direction of the rotating shaft.
一方、 融液の移動速度や移動方向は、 熱によって生じる融液の対流の仕方によ つて決まる。 一般的に、 熱によって生じる融液の対流は、 温度の高い部分から低 い部分に流れるが、 るつぼ形状、 加熱方法あるいは抜熱方法によって融液の対流 の仕方は異なる。 図 4に示した構造であると、 融液の制御温度によっても異なる 力 融液最表面は加熱されない状態であるため、 融液面からの抜熱が大きくなり、 融液の移動方向も複雑になる傾向がある。 そのために、 融液表面からの抜熱量も 考慮し、 融液温度は融点以上の高めに保持しておくことが好ましい。 均一性が高く、 小さい突起の少ない薄板を得るためには、 基板の温度制御を精 密に行なえる構成にすることが好ましい。 すなわち、 固定台 2 3 1や回転軸 2 3 2の内部に冷却ガスや冷却水などの冷却媒体を通すことで、 成長面を有する基板 2 3 0の低温化制御が可能になる。 しかしながら、 得られる薄板の品質を制御す るためには、 基板を加熱できる構造にすることも可能である。 その場合、 浸漬前 にヒータによつて温度制御することが好ましい。 より安定した薄板を得るのであ れば、 冷却機構と加熱機構の両機構を備える方がより好ましい。 On the other hand, the moving speed and moving direction of the melt are determined by the convection of the melt caused by heat. Generally, the convection of the melt caused by heat flows from a high temperature part to a low temperature part, but the manner of convection of the melt differs depending on the crucible shape, heating method or heat removal method. With the structure shown in Fig. 4, the force varies depending on the control temperature of the melt.Since the outermost surface of the melt is not heated, heat removal from the melt surface increases and the direction of melt movement becomes complicated. Tend to be. Therefore, it is preferable to keep the melt temperature higher than the melting point in consideration of the amount of heat removed from the melt surface. In order to obtain a thin plate having high uniformity and few small protrusions, it is preferable to adopt a configuration in which the temperature of the substrate can be precisely controlled. That is, by passing a cooling medium such as a cooling gas or cooling water through the inside of the fixed base 231 or the rotating shaft 232, it is possible to control the temperature of the substrate 230 having the growth surface to a low temperature. However, in order to control the quality of the obtained thin plate, it is possible to adopt a structure that can heat the substrate. In this case, it is preferable to control the temperature with a heater before immersion. In order to obtain a more stable thin plate, it is more preferable to provide both a cooling mechanism and a heating mechanism.
本発明において、 基板の移動速度は、 1 c m/ s e c以上が好ましい。 1 c m / s e c以上であると、 基板が傾斜しているために、 融液の移動速度をあまり考 慮せずに行なうことができるためである。 一方、 1 c m/ s e c以下であると、 融液の移動速度と方向性を厳密に考慮する必要がでてくるためである。 装置の簡 素化から考えると、 基板の移動速度のみで制御できる構成にするのが好ましい。 本発明の薄板の製造方法では、 基板の移動と融液の移動の両方が移動する場合 の、 融液のみの移動によっても実施可能である。  In the present invention, the moving speed of the substrate is preferably 1 cm / sec or more. If it is 1 cm / sec or more, the movement of the melt can be performed without much consideration because the substrate is inclined. On the other hand, if it is 1 cm / sec or less, it is necessary to strictly consider the moving speed and directionality of the melt. Considering the simplification of the apparatus, it is preferable to adopt a configuration that can be controlled only by the moving speed of the substrate. The method for manufacturing a thin plate according to the present invention can also be implemented by moving only the melt when both the movement of the substrate and the movement of the melt move.
図 5は、 融液が移動する際における薄膜製造装置の部分概略斜視図である。 .こ の装置は成長面を有する基板 2 4 0、 該基板 2 4 0を取付け脱着可能な固定基板 2 4 1、 上下動可能な軸 2 4 2、 融液を基板へ供給する傾斜台 2 4 3、 融液を保 持しておくためのるつぼ 2 4 4を備えている。 図 5では、 簡略化のために、 上下 動を行なうためのモータや、 融液を保持するためヒータなどは示していない。 る つぼ 2 4 4内で保持された融液は、 傾斜台 2 4 3に融液状態で供給される。.  FIG. 5 is a partial schematic perspective view of the thin film manufacturing apparatus when the melt moves. This apparatus is composed of a substrate 240 having a growth surface, a fixed substrate 2441 to which the substrate 240 can be attached and detached, a shaft 2442 that can move up and down, and an inclined table 24 that supplies the melt to the substrate. 3. Equipped with a crucible 2 4 4 for holding the melt. For simplicity, FIG. 5 does not show a motor for vertical movement or a heater for holding the melt. The melt held in the crucible 244 is supplied to the inclined table 243 in a molten state. .
次に、 この状態で基板 2 4 0を融液に接触させ、 その後、 基板 2 4 0を上に移 動させることで、 融液から切り離すことができる。 このようにして、 基板 2 4 0 上に薄板を成長させることができる。 このとき、 融液が傾斜台を流れ落ちるため、 基板 2 4 0は上下動するだけで、 本発明の基板の薄板成長面側から見たときに、 融液が基板の薄板成長面側に向かって来ることを実現することが可能となる。 このとき、 融液の移動速度は、 傾斜台の傾きによって調節可能であるために、 基板を上下動させるだけで、 基板の成長面側から見ると、 融液が向かって来る状 態を実現できる。 また、 このとき、 基板 2 4 0、 固定基板 2 4 1、 可動軸 2 4 2 のアセンブリが上下動だけでなく、 傾斜台 2 4 3の傾きに沿って移動できる構造 であってもよい。 Next, in this state, the substrate 240 is brought into contact with the melt, and thereafter, the substrate 240 is moved upward, whereby the substrate 240 can be separated from the melt. In this way, a thin plate can be grown on the substrate 240. At this time, since the melt flows down the inclined table, the substrate 240 only moves up and down, and when viewed from the thin plate growth surface side of the substrate of the present invention, the melt moves toward the thin plate growth surface side of the substrate. It is possible to realize that it will come. At this time, since the moving speed of the melt can be adjusted by the inclination of the tilting table, it is possible to realize a state in which the melt comes toward the growth surface side of the substrate only by moving the substrate up and down. . At this time, the structure of the board 240, the fixed board 241, and the movable shaft 242 can be moved not only up and down, but also along the inclination of the inclined base 243. It may be.
上述の構造にすることで、 融液の落下方向に対して、 移動体 (アセンブリ) の 移動速度を制御することが可能となり、 薄板の小さい突起や表面のうねりを抑制 することが可能となる。 この図において、 固定基板 2 4 1と基板 2 4 0は脱着可 能な構造であることが好ましい。 これは、 基板 2 4 0と得られる薄板を、 そのま ま系外へ取出せる構造にすることで、 生産速度を大幅に向上させることができる ためである。 また、 傾斜台 2 4 3は、 傾斜台上で融液が固化しないようにヒータ など加熱しておくことが好ましい。 また、 移動体 (アセンブリ) を複数個連続し て接続することで、 さらに生産速度を向上させることができ、 結果として安価な 薄板を提供することが可能となる。  With the above structure, it is possible to control the moving speed of the moving body (assembly) in the direction in which the melt falls, and it is possible to suppress small projections on the thin plate and undulation on the surface. In this figure, it is preferable that the fixed substrate 24 1 and the substrate 240 have a removable structure. This is because the production speed can be significantly improved by adopting a structure in which the thin plate obtained as the substrate 240 can be taken out of the system as it is. Further, it is preferable that the inclined table 243 is heated by a heater or the like so that the melt does not solidify on the inclined table. In addition, by connecting a plurality of moving bodies (assemblies) in series, the production speed can be further improved, and as a result, an inexpensive thin plate can be provided.
次に、 薄板の製造装置の断面図を示す図 6を用いて薄板の作製方法について説 明する。 この製造装置は、 傾斜を有する基板 2 5 0、 基板上の形成された薄板 2 5 1、 基板を着脱可能な固定台 2 5 2、 るつぼ台 2 5 5上のるつぼ 2 5 4に収納 された融液 2 5 3、 融液を加熱するヒータ 2 5 6、 昇降台 2 5 7、 昇降軸 2 5 8、 追加投入管 2 5 9、 密閉可能なチャンバ 2 6 0および取出し機構 2 6 1を備えて いる。 この図において、 基板 2 5 0と固定台 2 5 2を含めた移動体 (ァセンプ リ) は、 チャンバ外に設けられているモータなどによって回転制御が可能な構造 になっている。  Next, a method of manufacturing a thin plate will be described with reference to FIG. 6 which shows a cross-sectional view of a thin plate manufacturing apparatus. This manufacturing apparatus was housed in a substrate 250 having an inclination, a thin plate 25 1 formed on the substrate, a fixed base 25 2 on which the substrate can be detached, and a crucible 25 5 4 on a crucible base 255. Equipped with melt 2 5 3, heater 2 5 6 for heating the melt, elevating platform 2 57, elevating shaft 2 58, additional charging pipe 2 59, hermetically sealable chamber 2 60 and take-out mechanism 2 61 ing. In this figure, the moving body (assembly) including the substrate 250 and the fixed base 255 has a structure in which rotation can be controlled by a motor or the like provided outside the chamber.
また、 昇降軸 2 5 8もチャンバ外に設けられたモータなどによって上下方向に 移動制御が可能な構造になっている。 さらに、 基板 2 5 0と得られた薄板 2 5 1 は、 基板毎チャンバ外へ搬出可能な構造になっている。 連続性を考えた場合には、 基板 2 5 0の搬入経路と搬出経路を別にすることによって、 より生産性が向上す る。  In addition, the lifting shaft 258 also has a structure that can be controlled to move in the vertical direction by a motor or the like provided outside the chamber. Further, the substrate 250 and the obtained thin plate 25 1 are structured so that the substrate can be carried out of the chamber. When continuity is considered, productivity is further improved by separating the carry-in route and the carry-out route of the substrate 250.
次に、 図 6においてシリコン薄板を製造する方法について説明する。 製造装置 は、 密閉性の良好なチャンバで構成されている。 得られる薄板の原材料をるつぼ 内に準備し、 仕込まれる原料は、 高純度シリコンやそれよりも純度の低い金属級 のシリコンも使用できる。 好ましくは、 金属級シリコンを精製し、 金属不純物量 が低下した原料を用いる。 るつぼには、 黒鉛製やシリカ製のものなどが使用でき る。 しかしシリカ製のものを使用した場合、 高温で保持されるとるつぼのシリカ に含有されている酸素成分が、 製造されるシリコン薄板に移動することになるの で、 黒鉛製のるつぼがより好ましい。 Next, a method for manufacturing a silicon thin plate will be described with reference to FIG. The manufacturing equipment consists of a chamber with good airtightness. Raw materials for the obtained sheet are prepared in a crucible, and high-purity silicon or lower-grade metal-grade silicon can be used as raw materials. Preferably, a raw material in which metal-grade silicon is purified and the amount of metal impurities is reduced is used. The crucible can be made of graphite or silica. However, when silica is used, the crucible silica Since the oxygen component contained in the steel is transferred to the silicon thin plate to be manufactured, a graphite crucible is more preferable.
次に、 装置内の真空引きを行ない、 チャンパ内を減圧する。 減圧後不活性ガス である A rガスをチャンバ内に導入する。 A rガスの他に、 H eガス、 N2ガス なども考えられるが、 A rガスがより好ましい。 さらにチャンバ内に導入される A rガ は、 チャンバの上部から導入し、 下部から排気されることが好ましい。 これは、 チャンバ内の炉材から発生する微量の酸素成分とシリコン融液とが反応 することで生じる酸ィ匕ケィ素を速やかにチャンバ外へ排出するためである。 Next, the inside of the apparatus is evacuated to reduce the pressure inside the champer. After the pressure reduction, Ar gas, which is an inert gas, is introduced into the chamber. In addition to Ar gas, He gas, N 2 gas, and the like can be considered, but Ar gas is more preferable. Further, Ar gas introduced into the chamber is preferably introduced from the upper part of the chamber and exhausted from the lower part. This is because the silicon oxide is quickly discharged out of the chamber due to the reaction of a small amount of oxygen component generated from the furnace material in the chamber with the silicon melt.
次に、 チャンバ内の圧力を調節しながら、 昇温する。 特に、 昇温初期とシリコ ンの溶解初期には、 酸化ケィ素が比較的多く発生することから、 このときには、 真空度を上げておく方が好ましい。 シリコンの融点は、 1 4 1 0 °C位であるが、 完全に溶解するまでは融点以上の 1 5 0 0 °Cくらいまで上げておき、 完全に溶解 したのを確認したのち、 基板を浸漬させる温度まで降温する。 このとき、 浸漬時 の融液温度は、 融点近傍が好ましいが、 融点に近すぎると基板の浸漬直後に湯面 凝固が始まる恐れがあるために、 生産性を考慮して、 融点よりは若干高い温度に することがより好ましい。  Next, the temperature is increased while adjusting the pressure in the chamber. In particular, silicon oxide is generated in a relatively large amount at the initial stage of the temperature rise and the initial stage of the dissolution of silicon. The melting point of silicon is about 140 ° C, but it is raised to about 150 ° C above the melting point until complete dissolution, and after confirming complete dissolution, the substrate is immersed Cool down to the temperature at which At this time, the melt temperature at the time of immersion is preferably near the melting point, but if it is too close to the melting point, the solidification of the molten metal surface may start immediately after the immersion of the substrate, so that it is slightly higher than the melting point in consideration of productivity. More preferably, the temperature is set.
また、 シリコンは、 液体よりも固体の体積が大きいために、 完全に溶解すると、 融液の嵩が減る。 そのために、 湯面の高さが低くなるために、 シリコンの塊、 も しくは、 シリコンの融液状態での追加が必要になる。 連続生産性を考慮した場合、 湯面調整のための追加投入は、 融液状態で行なうのが好ましい。 これは、 固体の ままで、 投入すると湯面が揺れたり、 基板の移動を止めて完全に溶解するのを待 つ必要があるためである。 湯面が所望の位置に調整できたのち、 るつぼを所定の 位置まで上昇させる。 次に、 最初の基板をチャンパ内に搬入する。  Also, since silicon has a larger solid volume than a liquid, its complete dissolution reduces the bulk of the melt. Because of this, the height of the molten metal surface becomes low, and it is necessary to add silicon chunks or silicon in a molten state. In consideration of continuous productivity, it is preferable to perform additional charging for adjusting the molten metal level in a molten state. This is because the molten metal shakes when it is put in a solid state, and it is necessary to stop the movement of the substrate and wait for it to completely dissolve. After the molten metal surface has been adjusted to the desired position, raise the crucible to a predetermined position. Next, the first substrate is loaded into the champer.
その後、 軸を 1 2 0 ° 回転し、 次の基板を搬入する。 この状態では、 最初に入 れた基板が融液直上の位置、 すなわち浸漬直前の位置にある。 この位置で、 基板 の温度を調整する機構が存在することが好ましい。 すなわち、 基板温度は、 得ら れるシリコン薄板の特性を左右する因子であるためである。 融液に浸漬される直 前の基板温度は、 2 0 0 °C以上 1 3 0 0 °C以下が好ましい。 これは、 2 0 0 °C以 下に調整することは、 困難であるためである。 すなわち、 連続生産を考えると、 次々に搬入されてくる基板を 2 0 0 °Cに保っためには、 固定台の方をさらに冷却 する必要がある。 After that, the shaft is rotated 120 ° and the next substrate is loaded. In this state, the first substrate is located just above the melt, that is, just before immersion. At this position, a mechanism for adjusting the temperature of the substrate is preferably present. That is, the substrate temperature is a factor that affects the characteristics of the obtained silicon thin plate. The temperature of the substrate immediately before being immersed in the melt is preferably 200 ° C. or more and 130 ° C. or less. This is because it is difficult to adjust the temperature below 200 ° C. That is, considering serial production, In order to keep the incoming substrates one after another at 200 ° C, it is necessary to further cool the fixed base.
そのためには、 冷却ガスや冷却水を大量に流すことになり'、 チャンバ内の温度 を常に一定に保持することが困難になるだけでなく、 熱効率が悪くなり、 結果と して低コストの基板を提供するのが困難になる。 一方、 1 3 0 0 °C以上に基板温 度を保つことも困難となる。 なぜなら、 浸漬直前の位置で基板を 1 3 0 0 °C以上 に保持するには、 かなりの時間を罴することになり、 生産性が劣るためである。 基板温度を調節するためには、 冷却機構と加熱機構を併用して温度制御.する方 が好ましい。 これは、 基板温度を常に一定温度で浸漬するためには必要である。 本装置においては、 所定温度に制御された基板は、 円軌道で浸漬されることにな る。 しかしながら、 基板が傾斜されているために、 本発明の効果をもたらすこと が可能となり、 表面平滑性にすぐれたシリコン薄板を得ることが可能になる。 浸 漬された基板と、 その基板上に付着したシリコン薄板は、 チャンバ上部で回転機 構を有する回転軸から取外されて、 系外へ搬出される。 この一連の操作によって、 シリコン薄板を得ることが可能となる。  For this purpose, a large amount of cooling gas and cooling water must flow, which makes it difficult not only to keep the temperature inside the chamber constant at all times, but also lowers the thermal efficiency, resulting in low-cost substrates. Will be difficult to provide. On the other hand, it is also difficult to maintain the substrate temperature at more than 130 ° C. This is because maintaining the substrate at a temperature of more than 1300 ° C. immediately before immersion requires a considerable amount of time, resulting in poor productivity. In order to adjust the substrate temperature, it is preferable to control the temperature by using a cooling mechanism and a heating mechanism together. This is necessary in order to always immerse the substrate at a constant temperature. In this apparatus, the substrate controlled to a predetermined temperature is immersed in a circular orbit. However, since the substrate is inclined, the effects of the present invention can be obtained, and a silicon thin plate having excellent surface smoothness can be obtained. The immersed substrate and the silicon thin plate adhered to the substrate are removed from the rotating shaft having a rotating mechanism at the upper part of the chamber, and are carried out of the system. Through this series of operations, it is possible to obtain a silicon thin plate.
本発明に係る他の薄板製造方法では、 図 4に示す如く基板が融液から離れると きの軌道を円軌道とし、 該成長面の移動方向先端部と円軌道中心との距離 が、 成長面の移動方向末端部と円軌道中心との距離 R2より小さくなるように、 成長 面を傾斜させて設け、 成長面および成長面に成長したシリコン薄板が融液から離 れるときの、 融液面との角度を垂直に近づけることで、 シリコン融液を除去する のである。 In another thin plate manufacturing method according to the present invention, as shown in FIG. 4, the orbit when the substrate separates from the melt is a circular orbit, and the distance between the tip of the growth surface in the moving direction and the center of the circular orbit is the growth surface. to be smaller than the distance R 2 between the moving direction end and the circular orbit center, provided by inclining the growth surface, when the silicon thin plate grown on the growth surface and the growth surface is away from the melt, the melt surface By making the angle closer to vertical, the silicon melt is removed.
なお、 本発明では、 完全に平滑な平面と、 微細成長状態を制御するため、 表面 に特定の形状が加工された平面と、 をあわせて略平面と呼ぶものとする。 ここで は、 これらを含めて該平面が単に平滑な状態として説明する。  In the present invention, a completely smooth plane and a plane whose surface is processed to have a specific shape in order to control the state of fine growth are collectively referred to as a substantially plane. Here, a description will be given assuming that the plane including the above is simply smooth.
また、 本発明での、 融液からの固化成長により、 その結晶状態としては、 温度 などの条件によって、 単結晶もしくは多結晶、 非晶質、 結晶質と非晶質が混在し た物質の薄板となることもある。  Further, in the present invention, the solid state growth from the melt causes the crystal state to be a single crystal or polycrystal, amorphous, or a thin plate of a mixture of crystalline and amorphous depending on conditions such as temperature. Sometimes it becomes.
融液には、 シリコン、 ゲルマニウム、 ガリウム、 ひ素、 インジウム、 リン、 硼 素、 アンチモン、 亜鉛、 すずなどの半導体材料を含む。 またはアルミエゥム、 二 ッケル、 鉄など金属材料を含む融液を使用することができる。 例としてシリコン 融液からシリコン多結晶薄板を製造する場合について説明する。 The melt contains semiconductor materials such as silicon, germanium, gallium, arsenic, indium, phosphorus, boron, antimony, zinc, and tin. Or aluminum, two A melt containing a metallic material such as nickel or iron can be used. As an example, a case where a polycrystalline silicon thin plate is manufactured from a silicon melt will be described.
成長面を構成する基板は、 耐熱性に優れ、 かつシリコン薄板 2を汚染しないも のとして、 カーボンや S i C、 高融点金属など、 およびこれらの材質を他物質で 被覆したものが望まれる。  It is desired that the substrate constituting the growth surface has excellent heat resistance and does not contaminate the silicon thin plate 2, and is preferably made of carbon, SiC, a high melting point metal, or the like, and a material obtained by coating these materials with another substance.
本発明は、 略平面を有する基板を、 金属材料もしくは半導体材料のうち少なく とも 1、ずれか一つを含有する物質の融液に浸漬し、 続いて融液から離すことで、 略平面の成長面に融液を固化成長させて薄板を製造する方法において、 該基板が 融液から離れるときの軌道が円軌道である場合を包含する。 そこで図 7を用いて、 多角柱型回転冷却体を用い、 回転冷却体に取付けられた基板が、 回転軸によって 円運動する場合について以下に説明する。  According to the present invention, a substantially planar substrate is immersed in a melt of a substance containing at least one of a metal material and a semiconductor material, and then separated from the melt, whereby substantially flat growth is achieved. A method for producing a thin plate by solidifying and growing a melt on a surface, wherein the orbit when the substrate is separated from the melt is a circular orbit. Therefore, a case where a substrate mounted on the rotary cooling body makes a circular motion with the rotation axis using a polygonal-column type rotary cooling body will be described below with reference to FIG.
薄板製造装置において、 回転冷却体上の基板の成長面がシリコン融液から離れ るときの、 成長面と融液面とのなす角度は、 回転冷体および基板の形状と大きさ、 成長面の大きさ、 浸漬深さの 3要素から決定される。 従来の製造方法を示す図 2 2のように、 円筒型の回転冷却体 8 1表面のように回転弧に沿った成長面の場合、 曲面が融液面から離れるときの、 成長面と融液面とのなす角度 aは一定である。 し力 し、 図 7に示す本発明の製造装置では、 多角柱型の回転冷却体 1上に設置さ れた基板上の成長面を回転させた場合、 成長面の各部分によって回転軸中心から の距離 (回転径) が異なるため、 成長面がシリコン融液から離れるときの、 成長 面と融液面とのなす角度 は、 成長面の各部によって異なる。  In the thin plate manufacturing equipment, when the growth surface of the substrate on the rotary cooling body is separated from the silicon melt, the angle between the growth surface and the melt surface depends on the shape and size of the rotary cooling body and the substrate, and on the growth surface. Determined from three factors: size and immersion depth. As shown in Fig. 22 showing the conventional manufacturing method, in the case of a growth surface along a rotating arc such as a cylindrical rotating cooling body 81, the growth surface and the melt when the curved surface separates from the melt surface The angle a with the surface is constant. In the manufacturing apparatus of the present invention shown in FIG. 7, when the growth surface on the substrate placed on the polygonal rotary cooling body 1 is rotated, each part of the growth surface moves from the center of the rotation axis. Since the distance (rotation diameter) of the growth surface differs from the silicon melt, the angle between the growth surface and the melt surface when the growth surface separates from the silicon melt differs depending on each part of the growth surface.
薄板製造装置の側面図を示す図 8において、 多角柱型の回転冷却体 2 1上に、 多角柱の各面と並行になるように均一厚みの基板 5 0を設置し、 基板表面 (成長 面) 2 5 aにシリコン薄板を成長させる場合について説明する。  In FIG. 8 showing a side view of the thin plate manufacturing apparatus, a substrate 50 having a uniform thickness is placed on a polygonal column-shaped rotary cooling body 21 so as to be parallel to each surface of the polygonal column. The case where a silicon thin plate is grown on 25a will be described.
多角柱型の回転冷却体 2 1上に形成された基板 5 0の成長面 2 5 aを 2 0 O m m角の正方形とすると、 回転冷却体 2 1と基板 5 0を含む回転冷却体の高さ (対 向する面と面の距離は各成長面の中心部の回転直径と同じくなる) は約 7 4 O m mとなる。 基板 5 0の各成長面 2 5 a中心部が最も下に位置した場所を基準とし、 基板をシリコン融液 2 3に 2 0 mm浸漬して、 成長面にシリコン薄板 2 2を成長 させる場合、 各面の移動方向先端部 2 5 d (成長面内で、 最初に融液から離れる 部分) が融液から離れるときの、 成長面と融液面とのなす角度 ]3 2は約 9度であ り、 ほとんど水平である。 Assuming that the growth surface 25 a of the substrate 50 formed on the polygonal rotary cooling body 21 is a square of 20 O mm square, the height of the rotary cooling body including the rotary cooling body 21 and the substrate 50 is The height (the distance between the opposing surfaces is the same as the diameter of rotation at the center of each growth surface) is about 74 O mm. When the substrate is immersed in the silicon melt 23 by 20 mm on the basis of the position where the center of each growth surface 25a of the substrate 50 is located at the lowest position to grow the silicon thin plate 22 on the growth surface, 25 d in the moving direction of each surface (first move away from the melt within the growth surface The angle between the growth surface and the melt surface when the part moves away from the melt is about 9 degrees, which is almost horizontal.
回転が進むにつれて、 成長面と融液面のなす角度 ]3 2は増加する。 移動方向末 端部 2 5 e (成長面内で、 最後に融液から離れる部分) が融液から離れるときの、 成長面と融液面とのなす角度 j3 2は約 4 0度である。  As the rotation progresses, the angle] 32 between the growth surface and the melt surface increases. The angle j32 between the growth surface and the melt surface when the end portion 25 e in the moving direction (the part that separates from the melt last in the growth surface) separates from the melt is about 40 degrees.
—方、 図 7の製造装置では、 この多面体型の回転冷却体 1の各面上に、 成長面 5 aの移動方向先端部 5 dと回転軸中心との距離 (移動方向先端部 5 dの回転半 径) が該成長面の移動方向末端部 5 eと回転軸中心との距離 (移動方向末端部 5 eの回転半径) より小さくなるように、 末端部に向かうにつれて基板厚みを厚く することで成長面を傾斜させた基板 (傾斜成長面基板 5 ) を設置している。 そこ で傾斜成長面基板 5の成長面 5 aにシリコン薄板 2を成長させる場合について説 明する。  On the other hand, in the manufacturing apparatus shown in FIG. 7, the distance between the tip 5 d in the moving direction of the growth surface 5 a and the center of the rotation axis (the tip 5 d in the moving direction) The thickness of the substrate is increased toward the terminal end so that the rotational radius is smaller than the distance between the terminal end 5 e of the growth surface in the moving direction and the center of the rotation axis (the turning radius of the terminal end 5 e in the moving direction). A substrate with an inclined growth surface (tilted growth surface substrate 5) is installed. Therefore, a case where the silicon thin plate 2 is grown on the growth surface 5a of the inclined growth surface substrate 5 will be described.
まず、 傾斜成長面基板の設計方法について、 図 1 2を用いて説明する。 本発明 では、 系統的に結果を評価するために、 成長面面積を一定になるように成長面を 傾斜させた。 すなわち、 図 1 2において、 移動方向先端部 5 dと仮想移動方向末 端部 5 f (すなわち、 多角柱型回転冷却体表面と成長面とがなす角度-傾斜角度 が 0度における移動方向末端部) の距離は 2 0 O mmであり、 この面を、 直線 5 d— 5 f に対して任意の傾斜角度 5 aだけ傾ける。 すなわち、 移動方向先端部 5 dと移動方向末端部 5 f との距離も 2 0 O mmとなる。 つまり、 傾斜角度 0度の 基板上に、 5 d、 5 e、 5 f の 3点を頂点とした二等辺三角形を設置した形状と なる。 これにより、 成長面 5 aの大きさは変わらない。  First, a method of designing an inclined growth surface substrate will be described with reference to FIGS. In the present invention, in order to systematically evaluate the results, the growth surface was inclined so that the growth surface area was constant. That is, in FIG. 12, in the moving direction front end 5 d and the virtual moving direction end 5 f (that is, the end in the moving direction when the angle-tilt angle between the surface of the polygonal rotary cooling body and the growth surface is 0 °). ) Is 20 O mm, and this surface is inclined at an arbitrary inclination angle 5 a with respect to the straight line 5 d-5 f. That is, the distance between the tip 5d in the moving direction and the end 5f in the moving direction is also 20 mm. In other words, the shape is such that an isosceles triangle having three points 5d, 5e, and 5f as vertices is placed on a substrate with a tilt angle of 0 °. As a result, the size of the growth surface 5a does not change.
上記の方法で設計した場合、 様々な傾斜角度に設定した傾斜成長面基板は、 図 1 3に示す形状に設計される。 図 1 3では、 例として、 傾斜角度 5ひが 0度、 3 0度、 4 5度、 6 0度について示す。 傾斜角度 5 ο;が 0度の場合、 基板表面全面 が成長面 5 aで覆われる。 傾斜角度 5 aを大きくするにしたがい、 非成長面 (成 長させない面) 5 gが大きくなる。 傾斜成長角度が 6 0度の場合、 前記二等辺三 角形が正三角形となるため、 成長面 5 aと非成長面 5 gとは等しい大きさとなる。 傾斜角度 5 αが 6 0度を超えると、 非成長面の方が成長面より大きくなる。 When designed by the above method, the inclined growth surface substrate set at various inclination angles is designed into the shape shown in FIG. In FIG. 13, as an example, five inclination angles of 0 degree, 30 degrees, 45 degrees, and 60 degrees are shown. When the inclination angle 5 ο; is 0 degrees, the entire substrate surface is covered with the growth surface 5 a. As the inclination angle 5a increases, the non-growth surface (the surface that does not grow) 5g increases. When the inclined growth angle is 60 degrees, the isosceles triangle becomes a regular triangle, so that the growth surface 5a and the non-growth surface 5g have the same size. When the inclination angle 5α exceeds 60 degrees, the non-growth surface becomes larger than the growth surface.
非成長面 5 gに薄板が成長してしまった場合、 非成長面が融液から離れるとき の非成長面と融液面とのなす角度は極端に小さいため、 非常に平滑性が悪い薄板 となる。 そのため、 この部分に成長した薄板は材料ロスとなるため、 非成長面に 薄板が成長しないように、 非成長面を融液との濡れ性がよくない窒化珪素ゃ硼化 珪素で覆うこと、 もしくは、 融液の張力を超えるピッチの溝をつけることなどの、 成長防止構造をとることが望ましい。 When a thin plate grows on 5 g of the non-growth surface, when the non-growth surface separates from the melt Since the angle between the non-growth surface and the melt surface is extremely small, a thin plate with extremely poor smoothness is obtained. Therefore, the thin plate grown in this area causes material loss, so that the non-grown surface is covered with silicon nitride / silicon boride, which has poor wettability with the melt, so that the thin plate does not grow on the non-growth surface, or It is desirable to adopt a growth prevention structure such as forming a groove with a pitch exceeding the tension of the melt.
傾斜角度 5 αを◦度〜 7 5度の範囲で傾斜させて設けた場合、 移動方向先端部 5 dおよび移動方向末端部 5 eがシリコン融液から離れるときの、 成長面と融液 面とのなす角度 である出湯角度は、 図 1 6に示すように、 ともに増加するこ とがわかる。 ここで、 成長面と融液面とのなす角度] 3 1は、 角度 9 0度が完全に 垂直であり、 9 0度を超えると成長面 5 aはシリコン融液 3と反対方向 (融液か ら見て上方) を向きつつ融液から離れることになる。 If provided the inclination angle 5 alpha is inclined in the range of ◦ degree to 7 5 °, when the moving direction tip 5 d and the moving direction ends 5 e is separated from the silicon melt, the growth surface and the melt surface As shown in Fig. 16, it can be seen that the tapping angle, which is the angle made, increases both. Here, the angle formed between the growth surface and the melt surface] is 31. The angle 90 ° is completely perpendicular, and when it exceeds 90 °, the growth surface 5a is in the opposite direction to the silicon melt 3 (melt). (Upward as viewed from above) and away from the melt.
成長面 5 aを傾斜することで、 成長面と融液面とのなす角度 13 1は制御可能で あるが、 成長面の移動方向先端部 5 dと移動方向末端部 5 eの回転径の差が増大 するため、 図 1 7に示すように、 浸漬深さに違いが生じる。 移動方向末端部 5 e の成長面と融液面とのなす角度が約 9 0度に達する傾斜角度 4 0度における浸漬 深さの差は約 1 2 O mmである。 浸漬深さの差が大きい場合、 シリコン融液を保 持するるつぼの大きさを低減できないだけでなく、 融液温度分布の影響や、 浸漬 時間の違いなどによるシリコン薄板の板厚むらが生じる。 傾斜角度 5 aは、 ·浸漬 深さによる影響を考慮しつつ最適化する必要がある。  By tilting the growth surface 5a, the angle 131 between the growth surface and the melt surface can be controlled, but the difference in the rotation diameter between the tip 5d in the moving direction of the growth surface and the end 5e in the moving direction 5e of the growth surface. Therefore, as shown in Fig. 17, there is a difference in the immersion depth. The difference in immersion depth at an inclination angle of 40 degrees at which the angle between the growth surface and the melt surface at the end 5 e in the moving direction reaches about 90 degrees is about 12 Omm. If the difference in immersion depth is large, not only can the size of the crucible holding the silicon melt not be reduced, but also the thickness of the silicon thin plate becomes uneven due to the influence of the melt temperature distribution and the difference in immersion time. The tilt angle 5a needs to be optimized while taking into account the effect of the immersion depth.
以上に示した方法によって、 均一柱状結晶の上に這い上がる融液量を低減する ことによって、 シリコン薄板が平滑になるため、 研磨などの二次加工が必要無く なるため、 低コストのウェハを提供することが可能である。 また、 柱状結晶に比 ベて粒径が小さく薄板の厚み方向の結晶粒界も多い液だまり領域が低減するため、 たとえば太陽電池として使用した場合、 キヤリァを再結合させる要因となる欠陥 が減少し、 太陽電池の特性を向上することが可能である。  The method described above reduces the amount of melt creeping over the uniform columnar crystal, thereby smoothing the silicon thin plate and eliminating the need for secondary processing such as polishing, thus providing a low-cost wafer. It is possible to In addition, since the liquid pool region having a smaller grain size than the columnar crystal and having more crystal grain boundaries in the thickness direction of the thin plate is reduced, for example, when used as a solar cell, defects that cause recombination of the carrier are reduced. However, it is possible to improve the characteristics of the solar cell.
図 1 0 A、 図 1 0 Bに、 固定台 1及ぴ ί頃斜成長基板 5のそれぞれの正面図、 側 面図を示す。 図において基板の成長面を傾斜させる場合 (傾斜角度 > 0度) は、 傾斜角度 5 aを様々に変更するため、 傾斜成長面基板 5をネジ穴 5 bと固定台 1 のねじ穴 5 cそれに対応するネジによって、 傾斜成長基板 5を固定台 1に装着す る構造とする。 これにより、 傾斜角度 5 ひを様々に変化させた場合で、 シリコン 薄板 2を製造し、 評価比較することが可能である。 図 1 1 A、 図 1 I Bに、 固定 台 1に傾斜成長基板 5を装着した状態のそれぞれの正面図、 側面図を示す。 FIG. 10A and FIG. 10B show a front view and a side view of the fixed base 1 and the oblique growth substrate 5 around the same time, respectively. In the figure, when the growth surface of the substrate is tilted (tilt angle> 0 degree), in order to change the tilt angle 5a in various ways, the tilted growth surface substrate 5 is screwed to the screw hole 5b and the screw hole 5c of the fixing base 1 Attach the inclined growth substrate 5 to the fixed base 1 with the corresponding screws. Structure. Thereby, it is possible to manufacture the silicon thin plate 2 and compare the evaluation with the case where the inclination angle is changed variously. FIGS. 11A and 1IB show a front view and a side view, respectively, of a state in which the inclined growth substrate 5 is mounted on the fixed base 1.
次に、 図 9に傾斜成長面基板 5が、 固定台を介して 1 2面体型の回転冷却体に 取りつけられた状態を示す。 回転軸 8を一定速度で回転することで、 基板の成長 面を融液に浸漬することができる。 図面の簡単な説明  Next, FIG. 9 shows a state in which the inclined growth surface substrate 5 is attached to a dodecahedral-type rotating cooling body via a fixed base. By rotating the rotating shaft 8 at a constant speed, the growth surface of the substrate can be immersed in the melt. BRIEF DESCRIPTION OF THE FIGURES
図 1 A〜図 1 Dは本発明に係る薄板製造方法の原理を説明する概略図である。 図 2 A〜図 2 Dは本発明に係る薄板製造方法の原理を説明する概略図である。 図 3 A、 図 3 Bは本発明に係る薄板製造方法の原理を説明する概略図である。 図 4は本発明の薄板製造方法に使用される製造装置の概略断面図である。  1A to 1D are schematic views illustrating the principle of the thin plate manufacturing method according to the present invention. 2A to 2D are schematic views illustrating the principle of the thin plate manufacturing method according to the present invention. 3A and 3B are schematic diagrams illustrating the principle of the thin plate manufacturing method according to the present invention. FIG. 4 is a schematic sectional view of a manufacturing apparatus used in the thin plate manufacturing method of the present invention.
図 5は本発明の薄板製造方法に使用される製造装置の概略斜視図である。  FIG. 5 is a schematic perspective view of a manufacturing apparatus used in the thin plate manufacturing method of the present invention.
図 6は本発明の薄板製造方法に使用される製造装置の断面図である。  FIG. 6 is a sectional view of a manufacturing apparatus used in the thin plate manufacturing method of the present invention.
図 7は本発明の薄板製造方法に使用される装置の概略図である。  FIG. 7 is a schematic view of an apparatus used in the method for producing a thin plate according to the present invention.
図 8は多角柱の各面と並行になるように基板を設置した薄板製造装置の側面図 である。  FIG. 8 is a side view of the thin plate manufacturing apparatus in which the substrates are set so as to be parallel to each surface of the polygonal prism.
図 9は多角柱型の回転冷却体の概略図である。  FIG. 9 is a schematic view of a polygonal column type rotary cooling body.
図 1 0 A、 図 1 O Bはィ頃斜成長面基板及ぴ固定台の正面図、 側面図である。 図 1 1 A、 図 1 1 Bは傾斜成長面基板を固定台に装着した状態の正面図、 側面 図である。  FIG. 10A and FIG. 1OB are a front view and a side view of the oblique growth surface substrate and the fixing table. FIG. 11A and FIG. 11B are a front view and a side view in a state where the inclined growth surface substrate is mounted on a fixed base.
図 1 2は傾斜成長面基板の概略図である。  FIG. 12 is a schematic view of an inclined growth surface substrate.
図 1 3は傾斜成長面基板の傾斜角度をかえて配置した状態を示す概略図である。 図 1 4は本発明の薄板製造方法に使用される製造装置の概略図である。  FIG. 13 is a schematic view showing a state in which the inclined growth surface substrate is arranged with a different inclination angle. FIG. 14 is a schematic view of a manufacturing apparatus used in the thin plate manufacturing method of the present invention.
図 1 5は本発明の薄板製造方法に使用される製造装置の概略図である。  FIG. 15 is a schematic view of a manufacturing apparatus used in the thin plate manufacturing method of the present invention.
図 1 6は ί頃斜角度と出湯角度の関係を示す図である。  Figure 16 is a diagram showing the relationship between the oblique angle and the tapping angle.
図 1 7は傾斜角度と傾斜成長面の浸漬深さの最大差との関係を示す図である。 図 1 8は傾斜角度とシリコン薄板の最大うねりとの関係を示す図である。  FIG. 17 is a diagram showing the relationship between the inclination angle and the maximum difference in the immersion depth of the inclined growth surface. FIG. 18 is a diagram showing the relationship between the inclination angle and the maximum undulation of the silicon thin plate.
図 1 9は傾斜角度とシリコン薄板の最大うねりとの関係を示す図である。 図 2 0は傾斜角度とシリコン薄板の最大うねりとの関係を示す図である。 図 2 1は本発明の薄板製造方法に使用される製造装置の概略側面図である。 図 2 2は従来の薄板製造方法に使用される製造装置の概略図である。 発明を実施するための最良の形態 FIG. 19 is a diagram showing the relationship between the tilt angle and the maximum undulation of the silicon thin plate. FIG. 20 is a diagram showing the relationship between the inclination angle and the maximum undulation of the silicon thin plate. FIG. 21 is a schematic side view of a manufacturing apparatus used in the thin plate manufacturing method of the present invention. FIG. 22 is a schematic view of a manufacturing apparatus used in a conventional thin plate manufacturing method. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を実施の形態に基づいて説明する。  Hereinafter, the present invention will be described based on embodiments.
本実施の形態では、 シリコン融液を固化することでシリコン多結晶薄板の製造 を行なった。 基板や回転軸、 回転冷却体の材質は黒鉛とした。 基板表面 (成長 面) は平滑な平面とした。 基板と基板を接続する基板連結機構を用いる場合、 そ の材質は黒鉛とし、 表面を炭化珪素で被覆した。  In the present embodiment, a polycrystalline silicon thin plate was manufactured by solidifying a silicon melt. The material of the substrate, rotating shaft and rotating cooling body was graphite. The substrate surface (growth surface) was a smooth plane. In the case of using a substrate connecting mechanism for connecting the substrates, the material was graphite and the surface was coated with silicon carbide.
(実施の形態 1 )  (Embodiment 1)
実施の形態 1は、 基板が円軌道に沿って、 円運動しながら融液に浸漬し、 続い て融液から離れることによつて基板の成長面にシリコン薄板を成長させる場合に おいて、 基板の成長面を斜めにした方法である。  Embodiment 1 is directed to a case where a silicon thin plate is grown on a growth surface of a substrate by immersing in a melt while moving in a circular motion along a circular orbit, and subsequently moving away from the melt. Is a method in which the growth surface is inclined.
図 7は実施の形態 1に沿ったシリコン薄板製造装置である。 シリコン薄板製造 装置は、 角型のるつぼ 4と、 るつぼ 4に供給されたシリコン 3を溶融する加熱ヒ ータ、 回転冷却体 1を支持する回転軸、 1 2面体角柱型の回転冷却体 1、 該 1 2 面体角柱型の回転冷却体 1各面に取付け可能な基板 5で構成される。 これらは直 方体の装置外壁および断熱材の中に収納されている。 装置内部は、 断熱材に囲ま れて、 内部をアルゴンガス雰囲気下に保持可能にシールされている。  FIG. 7 shows a silicon thin plate manufacturing apparatus according to the first embodiment. The silicon thin plate manufacturing equipment consists of a rectangular crucible 4, a heating heater that melts the silicon 3 supplied to the crucible 4, a rotating shaft that supports the rotating cooling body 1, a 1-sided prismatic rotating cooling body 1, The dodecahedron prism-shaped rotary cooling body 1 is composed of a substrate 5 that can be attached to each surface. These are housed in a rectangular parallelepiped outer wall and heat insulation. The inside of the device is surrounded by heat insulating material and sealed so that the inside can be held under an argon gas atmosphere.
なお、 基板 5の成長面を傾斜させない場合 (傾斜角度 = 0度) は、 図 8に示す ように、 基板の成長面 2 5 aが 1 2角柱を形成する構造とする。 これら 1 2個の 基板 5 0は、 ネジ 2 6に.よって装着できる構造とした。 1 2面体角柱型の.回転冷 却体 2 1上の基板成長面 2 5 aを 2 0 O mm角の正方形とすると、 回転冷却体 2 1と基板を含む複合回転冷却体の高さ (対向する面と面の距離 =各成長面の中心 部の回転直径) は約 7 4 O mmとなる。  When the growth surface of the substrate 5 is not tilted (tilt angle = 0 degree), the growth surface 25a of the substrate has a structure in which 12 prisms are formed as shown in FIG. These 12 substrates 50 were configured to be attachable with screws 26. 1 Assuming that the substrate growth surface 25 a on the rotary cooling body 2 1 of a dihedral prismatic type 2 1 is a square of 20 O mm square, the height of the rotary cooling body 2 1 The surface-to-surface distance = the rotation diameter at the center of each growth surface) is about 74 O mm.
1 2個の傾斜成長面基板 5は、 傾斜角度を変更する場合、 1 2個の傾斜成長面 基板をすベて取替えた。 傾斜成長面基板 5を、 図 1 1 A、 図 1 I Bのように、 回 転冷却体 1の各面に押し当て、 傾斜成長面基板 5の両端耳部のネジ孔 5 bと、 該 ネジ孔 5 bに対応する回転冷却体 1のネジ孔に、 ネジ 6を締め付けることで、 傾 斜成長面基板 5を回転冷却体 1に固定した。 ' When changing the inclination angle of the 12 inclined growth surface substrates 5, all the 12 inclined growth surface substrates were replaced. The inclined growth surface substrate 5 is pressed against each surface of the rotary cooling body 1 as shown in FIG. 11A and FIG. 1IB, and screw holes 5 b at both ends of the inclined growth surface substrate 5 are formed. The inclined growth surface substrate 5 was fixed to the rotary cooling body 1 by tightening the screw 6 into the screw hole of the rotary cooling body 1 corresponding to the screw hole 5 b. '
本実施の形態では、 傾斜角度 5 αが 0度〜 7 5度の傾斜成長面基板 5を用意し、 これらを用いてシリコン薄板 2の製造を行なった。 それぞれの傾斜成長面基板 5 に対して、 まず、 回転冷却体 1を回転することで、 傾斜成長面基板 5を円運動さ せ、 次にるつぼ 4を上昇し、 成長面 5 aをシリコン融液 3に浸漬し、 続いてシリ コン融液 3から離れることで、 成長面表面にシリコン薄板 2が成長する。 本実施 の形態では、 傾斜角度 0度の基板を取付けたときの成長面の中心部が最も下に位 置した場所を基準とし、 成長面をシリコン融液 3に 2 O mm浸漬して、 成長面に シリコン薄板 2を成長させた。 その後、 該シリコン薄板 2を装置から取出し、 表 . 面うねり、 板厚の評価を行なった。 なお、 表面うねりに関しては、 J I S B O 6 0 1 - 1 9 9 4によって定義される最大うねりを用いて評価した。  In the present embodiment, an inclined growth surface substrate 5 having an inclination angle 5α of 0 ° to 75 ° was prepared, and the silicon thin plate 2 was manufactured using these. For each inclined growth surface substrate 5, first, the rotary cooling body 1 is rotated to make the inclined growth surface substrate 5 circularly move, and then the crucible 4 is raised, and the growth surface 5a is melted by silicon. By immersing in the silicon melt 3 and then separating from the silicon melt 3, the silicon thin plate 2 grows on the growth surface. In this embodiment, the growth surface is immersed in the silicon melt 3 for 2 O mm with reference to the position where the center of the growth surface when the substrate with a tilt angle of 0 ° is mounted is located at the lowest position. Silicon thin plate 2 was grown on the surface. Thereafter, the silicon thin plate 2 was taken out of the apparatus, and its surface undulation and plate thickness were evaluated. The surface undulation was evaluated using the maximum undulation defined by JISBO 61-1994.
取出したシリコン薄板 2の表面うねりを測定したところ、 最大うねり (WCM) は、 図 1 8に示すように、 傾斜角度 5 αが 0度において約 4 0 0 μ πιであるが、 傾斜角度 5ひが 1 5度〜 5 0度では 2 0 0 以下であり、 この範囲で非常に平 滑性を向上できることがわかった。 When the surface undulation of the removed silicon thin plate 2 was measured, the maximum undulation (W CM ) was about 400 μππ at a tilt angle of 5α of 0 ° as shown in Fig. 18, but the tilt angle of 5 It is less than 200 in the range of 15 to 50 degrees, which indicates that the smoothness can be greatly improved in this range.
これは、 成長面が融液から離れるときの成長面と融液面とのなす角度 β 1が増 加するに従い、 シリコン薄板に表面に這い上がるシリコン融液の量が減少するた めである。 ィ頃斜角度 4 0度以上では、 最大うねりは再び増加しはじめた。  This is because the amount of the silicon melt crawling on the surface of the silicon thin plate decreases as the angle β1 formed between the growth surface and the melt surface when the growth surface moves away from the melt increases. Above 40 °, the maximum swell began to increase again.
先端部およぴ末端部が融液を離れるときの成長面と融液面とのなす角度の平均 値が 9 0度における這い上がりシリコン融液量が最も少なくなると考えたが、 実 際には傾斜角度 4 0度を超えると、 移動方向末端部 5 e側の成長面は重力に抗し て上方を向きながら融液から離れるため、 下方を向いて融液から離れるときより も融液がシリコン薄板上に残留しやすいため、 傾斜角度 6 0度 (成長面と融液面 とのなす角度が約 9 0度) よりも低傾斜角度側で這い上がりシリコン融液量が最 低となり、 シリコン薄板の最大うねりも傾斜角度 1 5度〜 5 0度において小さく なることがわかった。  It was thought that the average value of the angle formed by the growth surface and the melt surface when the tip and the end portions left the melt climbed at 90 degrees, and the amount of silicon melt was minimized. When the inclination angle exceeds 40 degrees, the growth surface on the end 5 e side in the moving direction moves away from the melt while facing upward against the gravity, so that the melt becomes more silicon than when moving downward and away from the melt. Since it easily remains on the thin plate, it crawls on the lower tilt angle side than the tilt angle of 60 degrees (the angle between the growth surface and the melt surface is about 90 degrees), and the amount of silicon melt becomes the minimum, and the silicon thin plate It was also found that the maximum swell of the sample became smaller at an inclination angle of 15 to 50 degrees.
本実施の形態においては、 平面状のシリコン薄板を得るために、 多角柱型の回 転冷却体 1の各面上に傾斜成長面基板 5を設置した回転冷却体の成長面にシリコ ン薄板を成長させたが、 この方法を用いると、 円筒型回転冷却体を用いた場合に 比べて、 成長面の各部位によってシリコン融液に浸漬する深さが異なる。 浸漬深 さの差は、 融 ί夜温度分布の影響や、 浸漬時間の違いなどによるシリコン薄板の板 厚むらを生じさせる原因となる可能性がある。 そこで、 取出したシリコン薄板の 様々な部位での板厚を測定した。 In the present embodiment, in order to obtain a planar silicon thin plate, a silicon substrate is placed on the growth surface of the rotary cooling body in which the inclined growth surface substrate 5 is installed on each surface of the polygonal rotary cooling body 1. When this method is used, the depth of immersion in the silicon melt differs depending on each part of the growth surface as compared with the case where a cylindrical rotary cooling body is used. The difference in the immersion depth may cause unevenness in the thickness of the silicon thin plate due to the influence of the melting temperature distribution at night and the difference in the immersion time. Therefore, the thicknesses of various parts of the removed silicon thin plate were measured.
板厚は、 傾斜角度 5 αが 0度に近い場合は、 中心部で最も薄く、 移動方向先端 部 5 dおよび移動方向末端部 5 eで最も厚い傾向が得られた。 また、 傾斜角度 5 αを増加させていくにつれて、 移動方向末端部 5 eに近い部位の方が板厚は増加 するようになった。 つまり、 傾斜角度 0度の場合、 成長面中央部と回転軸中心と の距離 (成長面中央部の浸漬揮さ) が最も小さく、 傾斜角度が増加すると、 移動 方向末端部側と回転軸中心との距離 (移動方向末端部側の浸漬深さ) が大きくな るためであり、 浸漬深さが大きい部位ほど、 浸漬時間増加によって板厚が大きく なった。  When the inclination angle 5α was close to 0 degrees, the plate thickness tended to be thinnest at the center and thickest at the tip 5d in the moving direction and the end 5e in the moving direction. In addition, as the inclination angle 5α was increased, the thickness of the portion closer to the end 5e in the movement direction became larger. In other words, when the tilt angle is 0 degree, the distance between the center of the growth surface and the center of the rotation axis (immersion volatilization at the center of the growth surface) is the smallest, and when the tilt angle increases, the end in the moving direction and the center of the rotation axis This is because the distance (the immersion depth at the end in the moving direction) increases, and the plate thickness increases as the immersion time increases as the immersion depth increases.
シリコン薄板各部位における板厚の最大値と最小値との差 (板厚差) は、 シリ コン薄板を用いて太陽電池などのデバイスを作製するプロセスに影響を与えるた め、 小さい (板厚の分布が少ない) 方が望まれる。  The difference between the maximum and minimum values of the thickness of each part of the silicon thin plate (thickness difference) affects the process of manufacturing devices such as solar cells using silicon thin plates. Distribution is small).
図 1 8に示すように、 傾斜角度 5 ひが 5 0度以内では、 板厚差は 1 5 0 /z m以 下であるが、 5 0度を超えると板厚差が増加し、 1 5 0 /z m以上になることがわ かった。 太陽電池作製プロセスにおいては、 板厚差が 1 5 0 m以上になると、 シリコン薄板の電極印刷や反射防止膜形成 どにむらが生じるため、 板厚差が 1 5 O /x m未満となるように、 傾斜角度 5 aは 5 0度以下に設定することが望まし い。  As shown in Fig. 18, when the inclination angle is less than 50 degrees, the thickness difference is less than 150 / zm, but when it exceeds 50 degrees, the thickness difference increases, It turned out to be more than / zm. In the solar cell fabrication process, if the plate thickness difference exceeds 150 m, unevenness will occur in the electrode printing and anti-reflection film formation on the silicon thin plate, so the plate thickness difference must be less than 15 O / xm. However, it is desirable to set the inclination angle 5a to 50 degrees or less.
特にシリコン薄板の平滑化を実現し、 かつ、 板厚差の影響を大きく受けないこ とから、 本装置構成においては、 傾斜角度は 1 5度〜 5 0度にすることが望まし い。  In particular, in order to realize smoothness of the silicon thin plate and not to be greatly affected by the difference in the plate thickness, it is desirable that the inclination angle is set to 15 to 50 degrees in the configuration of the present apparatus.
本実施の形態における、 傾斜角度 5 αが 1 5度〜 5 0度とは、 図 1 6のグラフ から換算できるように、 成長面の移動方向先端部が融液から離れるときの成長面 と融液面のなす角度が 2 0度〜 6 0度であり、 かつ、 末端部が融液から離れると きの成長面と融液面のなす角度が 6 0度〜 1 0 0度であることに相当する。 本実施の形態では、 単純に成長面を傾斜させることのみで成長面と融液面との なす角度を制御したが、 たとえば回転冷却体の大きさを変更すること'、 成長面の 面積を変更すること、 浸漬深さを変更することおよび成長面を傾斜させることの 少なくともいずれか 1つを含む方法で、 成長面の移動方向先端部が融液から離れ ると.きの成長面と融液面とのなす角度を 2 .0度〜 6 0度、 末端部が融液から離れ るときの成長面と融液面とのなす角度を 6 0 ^〜1 0 0度の範囲に制御すること によって、 平坦表面を持つ低コストの結晶薄板を得ることが可能である。 In the present embodiment, the inclination angle 5α of 15 ° to 50 ° means, as can be converted from the graph of FIG. 16, that the growth surface moves with the growth surface when the front end moves away from the melt. The angle between the liquid surface is 20 degrees to 60 degrees, and the angle between the growth surface and the melt surface when the end is away from the melt is 60 degrees to 100 degrees. Equivalent to. In the present embodiment, the angle formed between the growth surface and the melt surface was controlled only by simply tilting the growth surface, but for example, changing the size of the rotating cooling body ', changing the area of the growth surface The tip of the growth surface in the direction of movement away from the melt by a method including at least one of the following steps: changing the immersion depth, and / or tilting the growth surface. The angle between the surface and the growth surface should be controlled within the range of 2.0 to 60 degrees, and the angle between the growth surface and the melt surface when the end is separated from the melt should be within the range of 60 to 100 degrees. Thus, it is possible to obtain a low-cost crystal sheet having a flat surface.
また、 特に回転冷却体を用いた場合について説明したが、 略平面の成長面を持 つ基板を可動とする場合、 回転運動でない動作によって成長面が運動する場合に ついても、 成長面が融液に浸漬し、 続いて融液から離れることによって成長面に 結晶薄板を成長させる方法をとることが可能である。 この場合も、 成長面の移動 方向先端部が融液から離れるときの成長面と融液面とのなす角度を 2 0度〜 6 0 度、 末端部が融液から離れるときの成長面と融液面とのなす角度を 6 0度〜 1 0 0度の範囲に制御することによって、 平坦表面を持つ低コストな結晶薄板を得る ことが可能である。  In particular, the case where a rotating cooling body is used has been described.However, when a substrate having a substantially flat growth surface is movable, and when the growth surface moves by an operation that does not rotate, the growth surface is melted. It is possible to take a method of growing a crystal thin plate on the growth surface by immersing in a melt and then separating from the melt. In this case as well, the angle between the growth surface and the melt surface when the tip part moves away from the melt in the direction of movement of the growth surface is 20 to 60 degrees, and the growth surface when the end part moves away from the melt. By controlling the angle between the liquid surface and the liquid surface in the range of 60 degrees to 100 degrees, it is possible to obtain a low-cost crystal thin plate having a flat surface.
(実施の形態 2 )  (Embodiment 2)
実施の形態 2は、 基板が円軌道ではない運動をするが、 少なくとも融液への浸 入から融液を離れるまでは円軌道に沿った円運動をする場合に対して、 シリコン 薄板表面を平滑にし、 また、 シリコン薄板の結晶性を改善する方法である。  In the second embodiment, although the substrate makes a non-circular orbital motion, the silicon thin plate surface is smoothed in contrast to a case where the substrate makes a circular motion along the circular orbit at least from the infiltration into the melt until it leaves the melt. This is a method for improving the crystallinity of a silicon thin plate.
図 1 4は実施の形態 2に沿ったシリコン薄板製造装置である。 シリコン薄板製 造装置は、 角型のるつぼ 3 4と、 るつぼ 3 4に供給されたシリコンを溶融する加 熱ヒータ、 回転冷却体 3 1を支持する回転軸、 1 2面体角柱型の回転冷却体 3 1、 各々が一定間隔で連結された傾斜成長面基板 3 5で構成される。 これらは直方体 の装置外壁および断熱材の中に収納されている。 装置内部は、 断熱材に囲まれて、 内部をアルゴンガス雰囲気下に保持可能にシールされている。  FIG. 14 shows a silicon thin plate manufacturing apparatus according to the second embodiment. The silicon thin plate manufacturing equipment consists of a rectangular crucible 34, a heating heater that melts the silicon supplied to the crucible 34, a rotating shaft that supports the rotating cooling body 31, a 1-sided prismatic rotating cooling body 31. Each of the substrates is composed of inclined growth surface substrates 35 connected at regular intervals. These are housed in a rectangular parallelepiped outer wall and heat insulator. The inside of the device is surrounded by a heat insulating material and sealed so that the inside can be held under an argon gas atmosphere.
基板の成長面を傾斜させない場合 (傾斜角度は 0度) は、 図 8に示したような 基板 5 0を使用した。 基板の成長面を傾斜させる場合は、 図 1 4に示すように、 傾斜しない場合に対して任意の角度で成長面を傾斜させた傾斜型基板を使用した。 各基板は、 連結器 9によって連続的に連結されており、 基板を系外から連続し て導入し、 成長したシリコン薄板 3 2ごと基板を系外に排出することが可能であ る。 連結体が装置系外から導入される装置外壁および排出される装置外壁には、 基板導入口および排出口が設けられており、 装置系内の雰囲気圧力を大気圧以上 にすることで大気混入を防いでいる。 装置系内から排出される雰囲気ガスは、 た だちに基板導入口および排出口直近に配置された排気ダクトによって、 排気ガス 処理施設に送られる。 When the growth surface of the substrate was not inclined (the inclination angle was 0 degree), a substrate 50 as shown in FIG. 8 was used. When the growth surface of the substrate was inclined, as shown in FIG. 14, an inclined substrate in which the growth surface was inclined at an arbitrary angle with respect to the case where the substrate was not inclined was used. Each board is continuously connected by the coupler 9, and the boards are connected continuously from outside the system. It is possible to discharge the substrate together with the grown silicon thin plate 32 outside the system. A board introduction port and a discharge port are provided on the outer wall of the equipment where the connector is introduced from the outside of the equipment and the outer wall of the equipment where it is discharged. I'm preventing. Atmospheric gases exhausted from the system are immediately sent to the exhaust gas treatment facility by the exhaust ducts located close to the substrate inlet and outlet.
この方式によって、 連続的にシリコン薄板を製造、 取出しすることが可能とな る。 系外にて、 シリコン薄板を基板から剥離し、 収集する工程、 基板 (特に成長 面) の清掃や調整、 基板の取替えなどが連続運転しながら行なうことが可能であ る。 また、 連結された基板は、 系外にてテンションを制御することにより、 任意 圧力で基板を回転冷却体 3 1に押し当てることが可能となる。 基板が回転冷却体 3 1に接触してから、 回転冷却体 3 1から離れるまでの間は、 実施の形態 1と同 様に、 回転冷却体と一体化している。 つまり、 融液に浸漬し、 融液から離れるま での間は、 円運動をするため、 実施の形態 1と同様のシリコン薄板の成長が可能 である。  This method makes it possible to continuously produce and remove silicon thin plates. Outside the system, the process of peeling and collecting the silicon thin plate from the substrate, cleaning and adjusting the substrate (especially the growth surface), and replacing the substrate can be performed while the continuous operation is in progress. Further, by controlling the tension of the connected substrate outside the system, the substrate can be pressed against the rotary cooling body 31 at an arbitrary pressure. Between the time when the substrate comes into contact with the rotary cooling body 31 and the time when the substrate separates from the rotary cooling body 31, as in the first embodiment, the substrate is integrated with the rotary cooling body. In other words, the silicon thin plate performs a circular motion until it is immersed in the melt and separates from the melt, so that it is possible to grow a silicon thin plate as in the first embodiment.
1 2面体角柱型の回転冷却体上の傾斜させない基板の成長面を 2 0 O mm角の 正方形とすると、 回転冷却体と基板を含む回転冷却体の高さ (対向する面と面の 距離 各成長面の中心部の回転直径) は約 7 4 O mmとなる。  1 If the growth surface of the substrate on the dihedral prismatic rotary cooling body that is not tilted is a square of 20 O mm square, the height of the rotating cooling body including the rotating cooling body and the substrate (distance between the facing surface and the surface The rotation diameter at the center of the growth surface is about 74 O mm.
本実施の形態では、 傾斜角度 5 αが 0度〜 7 5度の傾斜成長面基板 3 5を用意 し、 これらを用いてシリコン薄板 3 2の製造を行なった。 それぞれの傾斜成長面 基板 3 5に対して、 まず、 回転冷却体 3 1を回転することで、 傾斜成長面基板 3 5を連続的に導入、 排出させ、 次にるつぼ 3 4を上昇し、 成長面 3 5 aをシリコ ン融液 3 3に浸漬し、 続いてシリコン融液 3 3から離れることで、 成長面表面に シリコン薄板 3 2が成長する。 成長したシリコン薄板 3 2は基板と一体化したま ま系外へ排出される。  In the present embodiment, an inclined growth surface substrate 35 having an inclination angle 5α of 0 ° to 75 ° was prepared, and a silicon thin plate 32 was manufactured using these substrates. For each inclined growth surface substrate 35, first, the rotating cooling body 31 is rotated to continuously introduce and discharge the inclined growth surface substrate 35, and then the crucible 34 is raised to grow. The surface 35a is immersed in the silicon melt 33, and then separated from the silicon melt 33, so that the silicon thin plate 32 grows on the growth surface. The grown silicon thin plate 32 is discharged outside the system while being integrated with the substrate.
本実施の形態では、 傾斜角度 0度の基板を取付けたときの成長面の中心部が最 も下に位置した場所を基準とし、 成長面をシリコン融液 3 3に 2 O mm浸漬して、 成長面にシリコン薄板 3 2を成長させた。 その後、 該シリコン薄板 3 2を装置か ら 出し、 表面うねり、 板厚の評価を行なった。 取出したシリコン薄板 3 2の表面うねりを測定したところ、 最大うねり (W CM) は、 図 1 9に示すように、 傾斜角度 0度において約 4 0 0 μ παであるが、 傾 斜角度 1 5度〜 5 5度では 2 0 0 μ m以下であり、 この範囲で非常に平滑性を向 上できることがわかった。 これは、 実施の形態 1と同様の結果である。 成長面 3 5 a (および基板) 力 S円運動しない場合でも、 少なくとも融液に浸入するときか ら、 融液から離れるときまでの間、 成長面が円運動する場合は、 実施の形態 1と 同様の効果を得ることが可能である。 In the present embodiment, the growth surface is immersed in the silicon melt 33 at 2 O mm with reference to the position where the center of the growth surface when the substrate having the inclination angle of 0 ° is mounted is located at the lowest position. A silicon thin plate 32 was grown on the growth surface. Thereafter, the silicon thin plate 32 was taken out of the apparatus, and the surface undulation and the plate thickness were evaluated. When the surface undulation of the removed silicon thin plate 32 was measured, the maximum undulation (WCM) was about 400 μπα at a tilt angle of 0 ° as shown in Fig. 19, but the tilt angle was 15 It is less than 200 μm at degrees to 55 degrees, and it was found that the smoothness can be greatly improved in this range. This is the same result as in the first embodiment. Growth surface 35a (and substrate) Force S Even if there is no circular motion, if the growth surface circularly moves from at least when it enters the melt to when it separates from the melt, the same as in the first embodiment. A similar effect can be obtained.
次に、 取出したシリコン薄板の様々な部位での板厚を測定した。 板厚差も、 実 施の形態.1と同様に、 図 1 9に示すように、 傾斜角度 5 αが 5 0度以内では、 板 厚差は 1 5 0 m以下であるが、 5 0度を超えると板厚差が増加し 1 5 O /i Hi以 上になることがわかった。 板厚差が 1 5 O /z m未満となるように、 傾斜角度 5ひ は 5 5度以下に設定することが望ましい。  Next, the thickness of the removed silicon thin plate at various sites was measured. As in Embodiment 1, as shown in Fig. 19, when the inclination angle 5α is within 50 degrees, the thickness difference is less than 150 m, but 50 degrees. It was found that the difference in plate thickness increased when the ratio exceeded 15 O / i Hi or more. It is desirable to set the inclination angle to 5 or 55 degrees or less so that the sheet thickness difference is less than 15 O / zm.
以上から、 シリコン薄板の平滑化を実現し、 かつ、 板厚差の影響を大きく受け ないことから、 本装置構成においては、 傾斜角度は 1 5度〜 5 0度にすることが 望ましい。 本実施の形態における、 傾斜角度 1 5度〜 5 0度とは、 つまり、 図 1 6のグラフにて換算できるように、 成長面の移動方向先端部が融液から離れると きの成長面と融液面のなす角度が 2 0度〜 6 0度であり、 かつ、 末端部が融液か ら離れるときの成長面と融液面のなす角度が 6 0度〜 1 0 0度であることに相当 する。 つまり、 成長面の移動方向先端部が融液から離れるときの成長面と融液面 とのなす角度を 2 0度〜 6 0度、 末端部が融液から離れるときの成長面と融液面 とのなす角度を 6 0度〜 1 0 0度の範囲に制御することによって、 平坦表面を持 つ低コストな結晶薄板を得ることが可能である。  From the above, it is desirable to set the inclination angle to 15 to 50 degrees in the present apparatus configuration because the silicon thin plate is smoothed and is not greatly affected by the difference in thickness. In the present embodiment, the inclination angle of 15 degrees to 50 degrees means, as can be converted in the graph of FIG. 16, the inclination angle between the growth surface and the growth surface when the tip of the growth surface moves away from the melt. The angle between the melt surface is 20 degrees to 60 degrees, and the angle between the growth surface and the melt surface when the end is separated from the melt is 60 degrees to 100 degrees. Is equivalent to In other words, the angle between the growth surface and the melt surface when the tip of the growth surface moves away from the melt is 20 degrees to 60 degrees, and the growth surface and the melt surface when the ends are away from the melt. By controlling the angle between 60 ° and 100 °, it is possible to obtain a low-cost crystal sheet having a flat surface.
(実施の形態 3 )  (Embodiment 3)
実施の形態 3は、 基板が融液に浸漬している間も円軌道ではない運動をするが、 少なくとも融液から離れる時点では円軌道に沿った円運動をする場合に対して、 シリコン薄板表面を平滑にし、 また、 シリコン薄板の結晶性を改善する方法であ る。  In the third embodiment, although the substrate does not move in a circular orbit while the substrate is immersed in the melt, at least at a point away from the melt, the substrate makes a circular motion along the circular orbit. This is a method for smoothing silicon and improving the crystallinity of a silicon thin plate.
図 1 5は実施の形態 3に沿ったシリコン薄板製造装置である。 シリコン薄板製 造装置は、 角型るつぼ 4 4と、 るつぼ 4 4に供給されたシリコンを溶融する加熱 ヒータ、 シリコン融液 4 3に対して並行に配置された同じサイズを有する 2つの 1 2面体角柱型の回転冷却体 1 2、 1 3およびこれらを支持する回転軸、 各々が 一定間隔で連結された基板で構成される。 これらは直方体の装置外壁およぴ断熱 材の中に収納されている。 装置内部は、 断熱材に囲まれて、 内部をアルゴンガス 雰囲気下に保持可能にシールされている。 FIG. 15 shows a silicon thin plate manufacturing apparatus according to the third embodiment. The silicon thin plate manufacturing equipment consists of a square crucible 44 and a heating unit that melts the silicon supplied to the crucible 44. Heaters, two 12-hedral prismatic rotary cooling bodies 12 and 13 having the same size and arranged in parallel to the silicon melt 4 3 and a rotating shaft supporting them are connected at regular intervals. It consists of a substrate. These are housed in a rectangular parallelepiped device outer wall and heat insulating material. The inside of the device is surrounded by heat insulating material, and the inside of the device is sealed so that it can be held under an argon gas atmosphere.
基板の成長面を傾斜させない場合 (傾斜角度は 0度) は、 図 8に示したような 基板 5 0を使用した。 基板の成長面を傾斜させる場合は、 図 1 5に示すように、 傾斜しない場合に対して任意の角度で成長面を傾斜させた傾斜型基板を使用した。 各基板 4 5は、 連結器 1 9によって連続的に連結されており、 基板を系外から 連続して導入し、 第 1の回転冷却体 1 2に押し当てられてシリコン融液 4 3に浸 漬される。 続いて、 シリコン融液内で回転冷却体 1 2を離れ、 シリコン融液に浸 漬した状態のまま、 第 2の回転冷却体 1 3に向かって移動する。 回転冷却体 1 3 に押し当てられた基板 4 5は、 回転冷却体 1 3に固定された状態でシリコン融液 から離れるため、 成長面がシリコン融液から離れるときの基板の運動は、 回転冷 却体 1 3と同様に、 円軌道となる。 基板はシリコン融液 4 3から離れた後に、 回 転冷却体 1 3からも離れ、 成長したシリコン薄板 4 2ごと基板を系外に排出する ことが可能である。  When the growth surface of the substrate was not inclined (the inclination angle was 0 degree), a substrate 50 as shown in FIG. 8 was used. When the growth surface of the substrate was tilted, as shown in Fig. 15, an inclined substrate whose growth surface was tilted at an arbitrary angle with respect to the case where the substrate was not tilted was used. The substrates 45 are continuously connected by a coupler 19, and the substrates are continuously introduced from outside the system, pressed against the first rotary cooling body 12 and immersed in the silicon melt 43. Pickled. Subsequently, the rotary cooling body 12 is separated from the silicon melt and moves toward the second rotary cooling body 13 while being immersed in the silicon melt. Since the substrate 45 pressed against the rotating cooling body 13 is separated from the silicon melt while being fixed to the rotating cooling body 13, the movement of the substrate when the growth surface is separated from the silicon melt is a rotation cooling. As in the case of reject 13, the orbit is circular. After the substrate is separated from the silicon melt 43, it is also separated from the rotary cooling body 13 and the substrate together with the grown silicon thin plate 42 can be discharged out of the system.
実施の形態 2と同様に、 装置外壁には、 基板導入口および排出口が設けられて おり、 装置系内の雰囲気圧力を大気圧以上にすることで大気混入を防いでいる。 装置系内から排出される雰囲気ガスは、 排気ダクトによって、 排気ガス処理施設 に送られる。  As in the second embodiment, a substrate introduction port and a discharge port are provided on the outer wall of the apparatus, and the atmospheric pressure in the apparatus system is set to be equal to or higher than the atmospheric pressure, thereby preventing entry into the atmosphere. Atmospheric gas discharged from the system is sent to an exhaust gas treatment facility by an exhaust duct.
この方式によって、 連続的にシリコン薄板を製造、 取出しすることが可能とな る。 また、 融液に浸潰している時間 (成長面が融液内を移動する距離) が長いた め、 回転冷却体の回転数 (基板の移動速度) を早めたときに、 浸漬時間不足によ る成長面への成長不足を解消することが可能であり、 結果的にシリコン薄板の製 造時間を短縮し、 コスト低減が可能となる。  This method makes it possible to continuously produce and remove silicon thin plates. In addition, since the time for immersion in the melt (the distance that the growth surface moves in the melt) is long, when the rotation speed of the rotary cooling body (the moving speed of the substrate) is increased, the immersion time is insufficient. It is possible to eliminate the shortage of growth on the growing surface, and as a result, it is possible to shorten the manufacturing time of silicon thin plates and reduce costs.
実施の形態 2と同様に、 系外にて、 シリコン薄板を基板から剥離し、 収集する 工程、 基板 (特に成長面) の清掃や調整、 基板の取替えなどが連続運転しながら 行なうことが可能である。 また、 連結された基板は、 系外にてテンションを制御 することにより、 任意の圧力で基板を回転冷却体 1 2、 1 3に押し当てることが 可能となる。 As in Embodiment 2, the process of peeling and collecting the silicon thin plate from the substrate, collecting and cleaning the substrate (especially the growth surface), replacing the substrate, etc. can be performed while the system is running outside the system. is there. In addition, the connected substrate controls the tension outside the system By doing so, it becomes possible to press the substrate against the rotary cooling bodies 12 and 13 at an arbitrary pressure.
1 2面体角柱型の回転冷却体 1 2、 1 3上の傾斜させない基板の成長面を 2 0 O mm角の正方形とすると、 回転冷却体 1 2もしくは 1 3と基板を含む複合回転 冷却体の高さ (対向する面と面の距離=各成長面の中心部の回転直径) は約 7 4 O mmとなる。  1 Assuming that the growth surface of the substrate not tilted on the dihedral prismatic rotary cooling body 1 2, 1 3 is a square of 20 O mm square, the rotation cooling body 12 or 13 and the combined rotary cooling body including the substrate The height (distance between opposing surfaces = rotation diameter at the center of each growth surface) is approximately 74 O mm.
本実施の形態では、 実施の形態 2と同様の傾斜しない基板もしくは傾斜型基板 を用いた。 傾斜角度 5 αが 0度〜 7 5度の傾斜成長面基板 4 5を用意し、 これら を用いてシリコン薄板 4 2の製造を行なった。 それぞれの傾斜成長面基板 4 5に 対して、 まず、 回転冷却体 1 2、 1 3を回転することで、 傾斜成長面基板 4 5を 連続的に導入、 排出させ、 次にるつぼ 4 4を上昇し、 成長面 4 5 aをシリコン融 液 4 3に浸漬し、 続いてシリコン融液 4 3から離れることで、 成長面表面にシリ コン薄板 4 2が成長する。 成長したシリコン薄板 4 2は基板と一体化したまま系 外へ排出される。  In the present embodiment, a non-tilted substrate or an inclined substrate similar to that of the second embodiment is used. An inclined growth surface substrate 45 having an inclination angle 5α of 0 ° to 75 ° was prepared, and a silicon thin plate 42 was manufactured using these substrates. For each inclined growth surface substrate 45, first, the rotating cooling bodies 12 and 13 are rotated to continuously introduce and discharge the inclined growth surface substrate 45, and then raise the crucible 44. Then, the growth surface 45a is immersed in the silicon melt 43, and then separated from the silicon melt 43, whereby the silicon thin plate 42 grows on the growth surface. The grown silicon thin plate 42 is discharged outside the system while being integrated with the substrate.
本実施の形態では、 傾斜角度 0度の基板を取付けたときの成長面の中心部が最 も下に位置した場所を基準とし、 成長面をシリコン融液 4 3に 2 0 mm浸漬して、 成長面にシリコン薄板 4 2を成長させた。 その後、 該シリコン薄板 4 2を装置か ら取出し、 表面うねり、 板厚の評価を行なった。  In the present embodiment, the growth surface is immersed in the silicon melt 43 by 20 mm with reference to the position where the center of the growth surface when the substrate having the inclination angle of 0 ° is attached is located at the lowest position. A silicon thin plate 42 was grown on the growth surface. Thereafter, the silicon thin plate 42 was taken out of the apparatus, and the surface undulation and the thickness were evaluated.
取出したシリコン薄板 4 2の表面うねりを測定したところ、 最大うねり (W CM) は、 図 2 0に示すように、 傾斜角度◦度において約 4 0 0 μ πιであるが、 傾 斜角度 1 5度〜 5 0度では 1 5 Ο μ πι以下であり、 この範囲で非常に平滑性を向 上できることがわかった。 これは、 実施の形態 1〜 2と同様の結果である。  When the surface undulation of the removed silicon thin plate 42 was measured, the maximum undulation (WCM) was about 400 μππ at an inclination angle of ◦ degrees as shown in Fig. 20, but the inclination angle was 15 It is less than 15 Ομπι at degrees to 50 degrees, and it was found that the smoothness can be greatly improved in this range. This is the same result as in the first and second embodiments.
成長面 4 5 a (および基枳) が円運動しない場合でも、 少なくとも融液から離 れるときに成長面が円運動する場合は、 実施の形態 1〜 2と同様の効果を得るこ とが可能である。  Even if the growth surface 45a (and the base surface) does not make a circular motion, the same effect as in Embodiments 1 and 2 can be obtained if the growth surface makes a circular motion at least when it separates from the melt. It is.
次に、 取出したシリコン薄板の様々な部位での板厚を測定した。 板厚差も、 実 施の形態 1〜 2と同様に、 図 2 0に示すように、 傾斜角度 5 ひが 5 0度以内では、 板厚差は 1 5 以下であるが、 5 0度を超えると板厚差が増加し、 1 5 0 /x m以上になる。 板厚差が 1 5 O /x m未満となるように、 傾斜角度 5 ひは 5 0度以 下に設定することが望ましい。 Next, the thickness of the removed silicon thin plate at various sites was measured. As shown in Fig. 20, the sheet thickness difference is less than 15 when the inclination angle is less than 50 degrees, as in the first and second embodiments. If it exceeds, the thickness difference increases and becomes 150 / xm or more. Inclination angle 5 or 50 degrees or less so that the thickness difference is less than 15 O / xm It is desirable to set below.
以上から、 シリコン薄板の平滑化を実現し、 かつ、 板厚差の影響を大きく受け ないことから、 本装置構成においては、 傾斜角度は 1 5度〜 5 0度にすることが 望ましい。 本実施の形態における、 傾斜角度 1 5度〜 5 0度とは、 つまり、 図 1 6のグラフから換算できるように、 成長面の移動方向先端部が融液から離れると きの成長面と融液面のなす角度が 2 0度〜 6 0度であり、 かつ、 末端部が融液か ら離れるときの成長面と融液面のなす角度が 6 0度〜 1 0 0度であることに相当 する。 つまり、 成長面の移動方向先端部が融液から離れるときの成長面と融液面 とのなす角度を 2 0度〜 6 0度、 末端部が融液から離れるときの成長面と融液面 とのなす角度を 6 0度〜 1 0 0度の範囲に制御することによって、 平坦表面を持 つ低コストな結晶薄板を得ることが可能である。  From the above, it is desirable to set the inclination angle to 15 to 50 degrees in the present apparatus configuration because the silicon thin plate is smoothed and is not greatly affected by the difference in thickness. In the present embodiment, the inclination angle of 15 degrees to 50 degrees means that, as can be converted from the graph of FIG. 16, the growth surface moves in the direction of movement away from the melt. The angle between the liquid surface is 20 to 60 degrees, and the angle between the growth surface and the melt surface when the end is separated from the melt is 60 to 100 degrees. Equivalent to. In other words, the angle between the growth surface and the melt surface when the tip of the growth surface moves away from the melt is 20 degrees to 60 degrees, and the growth surface and the melt surface when the ends are away from the melt. By controlling the angle between 60 ° and 100 °, it is possible to obtain a low-cost crystal sheet having a flat surface.
(比較例 1 )  (Comparative Example 1)
比較例 1は、 成長面を傾斜させず、 円筒型の回転冷却体を用いた、 従来の方法 を模擬した例である。  Comparative Example 1 is an example of simulating a conventional method using a cylindrical rotary cooling body without tilting the growth surface.
図 2 2は比較例 1に沿ったシリコン薄板製造装置である。 装置構成は、 実施の 形態 1における 1 2面体多角柱型の回転冷却体 1および傾斜成長面基板 5の替わ りに、 直径 7 4 O mmの円筒型の回転冷却体 8 1を用いている。  FIG. 22 shows a silicon thin plate manufacturing apparatus according to Comparative Example 1. In the apparatus configuration, a cylindrical rotary cooling body 81 having a diameter of 74 O mm is used instead of the dodecahedral polygonal column type rotary cooling body 1 and the inclined growth surface substrate 5 in the first embodiment.
まず、 るつぼ 8 4を上昇し、 カーボンネット 8 8を卷きつけた回転冷却体 8 1 をシリコン融液 8 3に 2 O mm浸漬し、 回転冷却体 8 1を回転しつつカーボンネ ット 8 8を引き出すことによって、 つづい T回転冷却体表面に成長したシリコン 薄板 8 2を引き出した。 円筒型回転冷却体を用いるため、 成長面の各部位におい て、 浸漬深さ、 融液から離れるときの成長面と融液面とのなす角度は一定である。 本比較例における、 融液から離れるときの成長面と融液面とのなす角度は約 2 0 度である。 表面に這い上がったシリコン融液 8 2 aは局在してシリコン薄板表面 に残り、 表面に局在的に液だまり 8 2 bが発生した。 さらに回転が進んだ位置で は、 液だまり 8 2 bが徐々に固まることによって、 シリコン薄板表面に大きなう ねりができた。  First, the crucible 84 is raised, and the rotating cooling body 81 around which the carbon net 88 is wound is immersed in the silicon melt 83 for 2 mm, and the rotating cooling body 81 is rotated while the carbon net 88 is rotated. By pulling out, the silicon thin plate 82 grown on the surface of the T-rotating cooling body was pulled out. Since a cylindrical rotary cooling body is used, the immersion depth and the angle between the growth surface and the melt surface when moving away from the melt are constant at each part of the growth surface. In the present comparative example, the angle formed by the growth surface and the melt surface when leaving the melt is about 20 degrees. The silicon melt 82a crawled up on the surface was localized and remained on the surface of the silicon thin plate, and a liquid pool 82b was locally generated on the surface. At the position where the rotation further advanced, a large swell was formed on the surface of the silicon thin plate due to the liquid pool 82 b gradually solidifying.
取出したシリコン薄板の表面うねりを測定したところ、 最大うねり (WCM) は 約 4 5 0 μ πιであった。 実施の形態 1〜3と比較すると、 平坦表面を持つシリコ ン薄板を得る条件である成長面先端部が融液から離れるときの成長面と融液面の なす角度ひが 2 0度〜 6 0度の範囲は満たすことはできる力 成長面が融液から 離れるときの成長面と融液面のなす角度が 6 0度〜 1 0 0度の範囲を満たせない ため、 平面状成長面の場合のように、 成長面が湯面から離れるときの成長面と融 液面とのなす角度が増加することによるシリコン薄板上に這い上がる融液の低減 が行なわれないため、 平面状の成長面を使用した場合に比べて最大うねりが増加 した。 Measurement of the surface waviness of the extracted silicon thin, the maximum waviness (W CM) was about 4 5 0 μ πι. Compared to Embodiments 1-3, silicon with a flat surface The force that can satisfy the angle between the growth surface and the melt surface when the tip of the growth surface separates from the melt, which is the condition for obtaining a thin plate, is between 20 and 60 degrees. Since the angle between the growth surface and the melt surface at the time of separation cannot satisfy the range of 60 degrees to 100 degrees, as in the case of the planar growth surface, the growth surface is The maximum waviness increased compared to the case where a flat growth surface was used, because the melt rising on the silicon thin plate was not reduced by increasing the angle formed with the melt surface.
シリコン薄板各部位における板厚の最大値と最小値との差 (板厚差) は、 各部 位における浸漬深さの違いがないために小さく、 約 4 5 /i mであった。  The difference between the maximum value and the minimum value (thickness difference) at each part of the silicon thin plate was small, because there was no difference in the immersion depth at each part, and was about 45 / im.
(実施の形態 4 )  (Embodiment 4)
実施の形態 1〜 3および比較例 1によって製造されたシリコン薄板を用いて、 太陽電池を作製した。 作製の手順の一例は、 洗浄、 テクスチャエッチング、 拡散 層形成、 酸化膜除去、 反射防止膜形成、 バックエッチ、 裏面電極形成、 受光面電 極形成の順序であり、 一般的な手法である。 各工程間は基本的には自動搬送機構 による受け渡しを行なった。  A solar cell was manufactured using the silicon thin plates manufactured according to Embodiments 1 to 3 and Comparative Example 1. An example of a manufacturing procedure is a sequence of cleaning, texture etching, formation of a diffusion layer, removal of an oxide film, formation of an antireflection film, back etching, formation of a back surface electrode, and formation of a light receiving surface electrode, which are general methods. Delivery between each process was basically performed by an automatic transport mechanism.
実施の形態 1および実施の形態 2によるシリコン薄板に関しては、 傾斜角度 1 5度〜 5 0度の傾斜成長面基板を使用したシリコン薄板はすべて自動搬送ができ たが、 その他のシリコン薄板に関しては、 一部、 液だまりによる凹凸があること により自動搬送機構が使用できないものがあった。 比較例 1によるシリコン薄板 に関しては、 湾曲が残ること、 液だまりによる回凸があることにより自動搬送機 構が使用できなかった。  Regarding the silicon thin plates according to the first and second embodiments, all the silicon thin plates using the inclined growth surface substrate having an inclination angle of 15 to 50 degrees could be automatically transported, but for the other silicon thin plates, In some cases, the automatic transport mechanism could not be used due to unevenness due to liquid pools. With respect to the silicon thin plate according to Comparative Example 1, the automatic transfer mechanism could not be used because of the remaining curvature and the convexity due to the liquid pool.
次に、 比較例 1および実施の形態 1〜 3における傾斜角度 0度と 4 0度の傾斜 成長面基板を使用したシリコン薄板から製作した太陽電池の特性を、 ソーラーシ ミュレータによつて測定した結果を下記表 1に示す。 纖電 β度 w ≡ 最^ Next, the results of measuring the characteristics of a solar cell manufactured from a silicon thin plate using an inclined growth surface substrate with a tilt angle of 0 ° and 40 ° in Comparative Example 1 and Embodiments 1 to 3 using a solar simulator are shown. It is shown in Table 1 below. Fiber Electricity β Degree w ≡ Maximum ^
曲線因子  Fill factor
MnA/cm2) (mV) (mW/cm2) (%) 比較例 1 25 570 10 0. 702 10 i 角度 o度 26 575 11 0. 736 11 惧斜角度 40度 28 575 12 0. 739 12 惧斜角度 0度 26 575 11 0. 736 11 惧斜角度 40度 28 575 12 0. 739 12 银斜角度 0度 26 575 11 0. 736 11 俱斜角度 40度 27 575 12 0. 773 12 実施の形態 1、 実施の形態 2および実施の形態 3ともに、 傾斜角度 4 0度によ る太陽電池の短絡電流密度は 2 7〜 2 8 mA/ c m2であり、 比較例 1の 2 5 m ノ0 1112、 傾斜角度0度の2 6 111八/ / 0 1112ょり大きぃ。 これは、 液だまり.によ る微小粒径領域の欠陥がテクスチャエッチングによって除去されているためと考 えられる。 曲線因子も欠陥低減のため向上しており、 変換効率は比較例 1で 1 0 %に対し、 実施の形態 1〜3の傾斜角度 0度では 1 1 %、 傾斜角度 4 0度では 1 2 %と大幅に改善できた。 MnA / cm 2 ) (mV) (mW / cm 2 ) (%) Comparative example 1 25 570 10 0.702 10 i angle o degree 26 575 11 0.736 11 diagonal angle 40 degree 28 575 12 0.739 12 Angle of inclination 0 degree 26 575 11 0.736 11 Angle of inclination 40 degree 28 575 12 0.739 12 银 Angle of inclination 0 degree 26 575 11 0.736 11 俱 Angle of inclination 40 degree 27 575 12 0.773 12 embodiment 1, both embodiment 3 embodiment 2 and embodiment, the short circuit current density of the solar cell that by the inclination angle 4 0 degree is 2 7~ 2 8 mA / cm 2 , 2 5 m Bruno 0 of Comparative example 1 111 2 , tilt angle 0 degree 2 6 1 1 1 1 8 / / 0 111 2 bigger ぃ. This is presumably because the defects in the fine particle size region due to the liquid pool were removed by texture etching. The fill factor is also improved to reduce defects, and the conversion efficiency is 10% in Comparative Example 1, 11% in Embodiments 1 to 3 at an inclination angle of 0 °, and 12% at an inclination angle of 40 °. And could be greatly improved.
(実施の形態 5 )  (Embodiment 5)
得られる板状シリコンの比抵抗が 2 Ω ■ c mになるようにボロンの濃度を調整 したシリコン原料を、 高純度黒鉛製るつぼに入れ、 そのるつぼを、 図 6に示す装 置内に設置した。 次に、 チャンバ内の真空引きを行ない、 一旦 5 P a以下まで減 圧する。 その後、 チャンバ内に A rガスを導入し、 7 0 0 h P aを保ちつつ、 常 に S L/m i nでチャンバ上部より A rガスをフローしたままにする。  A silicon raw material whose boron concentration was adjusted so that the specific resistance of the obtained plate-like silicon was 2 Ω mcm was put into a high-purity graphite crucible, and the crucible was set in the apparatus shown in FIG. Next, the inside of the chamber is evacuated and the pressure is once reduced to 5 Pa or less. Thereafter, Ar gas is introduced into the chamber, and while maintaining 700 hPa, the Ar gas always flows from the upper part of the chamber at SL / min.
次に、 シリコン溶解用のヒータ温度を 1 4 8 0 °Cに設定し、 完全にシリコンを 溶融状態にする。 このとき、 シリコン原料は溶解することで液面が低くなること 力 ら、 新たにシリコン原料を投入することで、 湯面位置を所定の位置にあわせる。 その後、 シリコン融液温度を 1 4 2 0 °Cに設定し、 3 0分間そのまま保持し、 融 液温度の安定化を図る。 このとき、 湯面の凝固がないことを確認した。 Next, the temperature of the silicon melting heater is set at 148 ° C., and the silicon is completely melted. At this time, the liquid level is lowered by dissolving the silicon raw material. Therefore, by adding new silicon raw material, the molten metal surface position is adjusted to a predetermined position. After that, set the temperature of the silicon melt to 142 ° C and hold it for 30 minutes. Stabilize the liquid temperature. At this time, it was confirmed that there was no solidification of the molten metal surface.
次に、 冷却機構と加熱機構を併用して温度制御された基体を、 シリコン融液へ の浸漬させる。 このときの、 基板の制御温度は、 3 0 0 °C、 6 0 0 °C、 9 0 0 °C の 3条件で行なった。  Next, the substrate whose temperature is controlled using both the cooling mechanism and the heating mechanism is immersed in the silicon melt. At this time, the control temperature of the substrate was three conditions of 300 ° C., 600 ° C., and 900 ° C.
その後、 るつぼを徐々に上昇させ、 傾斜基板が完全に浸漬できるような位置ま で上昇してきた所で、 基体をシリコン融液に浸漬した。 このときの傾斜基板の傾 斜角度は、 1 0 ° であった。 このときの基体の移動速度は、 3 0 0 c m/m i n であった。 このとき、 得られた板状シリコンは、 基体から容易に剥離することが でき、 そのサイズは、 7 5 mm X 7 5 mmであった。 このような正方形の薄板シ リコンを 1 0 0枚作製し、 重量から板厚を換算した。 得られた板厚の平均値を表. 2に示す。  After that, the crucible was gradually raised, and the base was immersed in the silicon melt when the inclined substrate was raised to a position where it could be completely immersed. At this time, the tilt angle of the tilted substrate was 10 °. At this time, the moving speed of the substrate was 300 cm / min. At this time, the obtained plate-like silicon could be easily peeled off from the substrate, and its size was 75 mm × 75 mm. 100 sheets of such square thin plate silicon were produced, and the plate thickness was converted from the weight. Table 2 shows the average values of the obtained sheet thicknesses.
次に、 得られた板状シリコンを用いて、 太陽電池の作製を行なった。 得られた 板状シリコンは、 硝酸とフッ酸との混合溶液でェツチングおよび洗浄を行ない、 その後、 水酸化ナトリウムを用いてアルカリエッチングを行なった。 その後、 P O C 1 3拡散により p型基板に n層を形成した。 板状シリコン表面に形成されて いる P S G膜をフッ酸で除去した後、 太陽電池の受光面側となる n層上にプラズ マ C VDを用いてシリコン窒化膜を形成した。 次に、 太陽電池の裏面側となる面 に形成されている n層を硝酸とフッ酸との混合溶液でェッチング除去し、 p基板 を露出させ、 その上に裏面電極および p +層を同時に形成した。 次に、 受光面側 の電極をスクリーン印刷法を用いて形成した。 その後、 半田コートを行ない、 太 陽電池を作製した。 Next, a solar cell was manufactured using the obtained plate-like silicon. The obtained plate-like silicon was etched and washed with a mixed solution of nitric acid and hydrofluoric acid, and then alkali-etched with sodium hydroxide. Thereafter, an n layer was formed on p-type substrate by POC 1 3 diffusion. After removing the PSG film formed on the plate-like silicon surface with hydrofluoric acid, a silicon nitride film was formed using plasma CVD on the n-layer on the light-receiving surface side of the solar cell. Next, the n-layer formed on the back side of the solar cell is etched away with a mixed solution of nitric acid and hydrofluoric acid, exposing the p-substrate, and simultaneously forming the back electrode and p + layer on it. did. Next, the electrode on the light receiving surface side was formed using a screen printing method. Thereafter, solder coating was performed to produce a solar cell.
作製した太陽電池は、 AM I . 5、 1 0 O mW/ c m2の照射下にてセル特性 の測定を行なった。 得られだ特性の平均値を表 2に示す。 The cell characteristics of the manufactured solar cell were measured under irradiation of AM I.5, 10 OmW / cm 2 . Table 2 shows the average values of the obtained characteristics.
円軌道であっても基板の角度を変えることで、 向ってくる流れを作ることがで きる。  By changing the angle of the substrate even in a circular orbit, it is possible to create an oncoming flow.
表 2 Table 2
基板温度 重量換算板厚 短絡電流 開放電圧 曲線因子 変換効率 Substrate temperature Weight equivalent plate thickness Short-circuit current Open-circuit voltage Fill factor Conversion efficiency
(°C) ( m) (mA/cm2) (mV) (-) (%)(° C) (m) (mA / cm 2 ) (mV) (-) (%)
300 550 29. 5 593 0. 75 13. 1300 550 29.5 593 0.75 13.1
600 480 28. 9 590 0. 75 12. 8600 480 28.9 590 0.75 12.8
900 350 28. 5 589 0. 73 12. 3 (実施の形態 6 ) 900 350 28.5 589 0.73 12.3 (Embodiment 6)
得られる板状シリコンの比抵抗が 0 . 5 Ω · c mになるようにボロンの濃度を 調整したシリコン原料を、 高純度黒鉛製るつぼに入れ、 そのるつぼを、 図 2 1に 示す装置内に設置した。 図において、 製造装置は基板 2 6 2、 固定台 2 6 3、 回 転軸に接続された長さ可変軸 2 6 4、 融液 2 6 5、 ヒータ 2 6 6、 るつぼ台 2 6 7、 はるつぼ昇降軸 2 6 8を備えている。 長さ可変軸 2 6 4は、 基板が融液から 脱出時に、 基板と回転軸の中心からの距離が長くできるような構造になっている。 次に、 チャンバ内の真空引きを行ない、 ー且 1 0 P a以下まで減圧する。 その後、 チャンバ内に A rガスを導入し、 7 0 0 h P aを保ちつつ、 常に 1 0 LZm i n でチャンバ上部より A rガスをフローしたままにする。  A silicon raw material whose boron concentration has been adjusted so that the specific resistance of the obtained plate-like silicon is 0.5 Ωcm is placed in a high-purity graphite crucible, and the crucible is set up in the device shown in Fig. 21 did. In the figure, the manufacturing equipment consists of a substrate 26 2, a fixed base 26 3, a variable-length shaft 26 4 connected to the rotating shaft, a melt 26 5, a heater 26 6, and a crucible 26 2 7. It has a crucible elevating shaft 2 6 8. The variable length shaft 264 is structured so that the distance from the substrate to the center of the rotating shaft can be increased when the substrate escapes from the melt. Next, the inside of the chamber is evacuated, and the pressure is reduced to 10 Pa or less. After that, Ar gas is introduced into the chamber, and Ar gas is always kept flowing from the upper part of the chamber at 10 LZmin while maintaining 700 hPa.
次に、 シリコン溶解用のヒータ温度を 1 5 0 0 °Cに設定し、 完全にシリコンを 溶融状態にする。 このとき、 シリコン原料は溶解することで液面が低くなること から'、 新たにシリコン原料を投入することで、 湯面位置を所定の位置にあわせる。 その後、 シリコン融液温度を 1 4 1 0 °Cに設定し、. 3 0分間そのまま保持し、 融 液温度の安定化を図る。 このとき、 湯面の凝固がないことを確認した。  Next, the temperature of the heater for melting silicon is set to 1500 ° C., and silicon is completely melted. At this time, the liquid level is lowered by dissolving the silicon raw material, so that the silicon surface is adjusted to a predetermined position by newly adding the silicon raw material. Thereafter, the temperature of the silicon melt is set at 140 ° C., and the temperature is maintained for 30 minutes to stabilize the melt temperature. At this time, it was confirmed that there was no solidification of the molten metal surface.
次に、 冷却機構と加熱機構を併用して温度制御された基体を、 シリコン融液へ の浸漬させる。 このときの基板の制御温度は、 4 0 0 °Cで行なった。  Next, the substrate whose temperature is controlled using both the cooling mechanism and the heating mechanism is immersed in the silicon melt. The control temperature of the substrate at this time was 400 ° C.
その後、 るつぼを徐々に上昇させ、 基板が完全に浸漬できるような位置まで上 昇してきた所で、 基体をシリコン融液に浸清した。 このときの基体の移動速度は、 4 0 0 c m/m i nであった。  Then, the crucible was gradually raised, and when the substrate was raised to a position where the substrate could be completely immersed, the substrate was immersed in a silicon melt. At this time, the moving speed of the substrate was 400 cm / min.
このとき、 得られた板状シリコンは、 基体から容易に剥離することができ、 そ のサイズは、 1 0 O mm X 1 0 O mmであった。 このような正方形のシリコン薄 板を 1 0枚作製し、 重量から板厚を換算した。 得られた板厚の平均値を表 3に示 す。 また、 シリコン薄板 1枚あたりの、 表面に存在する小さな突起の数を表 3に 示す。  At this time, the obtained plate-like silicon could be easily peeled from the substrate, and its size was 10 Omm X 10 Omm. Ten such square silicon thin plates were prepared, and the thickness was converted from the weight. Table 3 shows the average values of the obtained plate thicknesses. Table 3 shows the number of small protrusions on the surface per silicon thin plate.
(比較例 2 )  (Comparative Example 2)
長さ可変軸を用いずに基板と回転軸の中心からの距離が一定になるようにした こと以外全て実施の形態 6と全く同じ方法で、 シリコン薄板を作製し、 重量から 板厚を換算した。 得られた板厚の平均値を表 3に示す。 また、 シリコン薄板 1枚 あたりの、.表面に存在する小さな突起の数を表 3に示す。 A silicon thin plate was manufactured in exactly the same manner as in Embodiment 6 except that the distance from the center of the substrate and the rotation axis was kept constant without using a variable length axis. The plate thickness was converted. Table 3 shows the average values of the obtained plate thicknesses. Table 3 shows the number of small protrusions on the surface per silicon thin plate.
表 3
Figure imgf000031_0001
(発明の効果)
Table 3
Figure imgf000031_0001
(The invention's effect)
本発明に係る薄板の製造方法は、 成長面を有する基板を、 金属材料もしくは半 導体材料のうち少なくともいずれか一方を含有する材料の融液に接触させ、 前記 材料を基板に成長させることで、 前記材料で形成された薄板を得る薄板製造方法 において、 基板の薄板成長面側から見たときに、 融液が基板の薄板成長面側に向 かって来る (近づいてくる) ようにすることで、 融液のメニスカス形状を制御し、 よって、 小さい突起の少ない平坦表面を持つ薄板を低コストで安定して連続的に 成長させることができた。  In the method for producing a thin plate according to the present invention, a substrate having a growth surface is brought into contact with a melt of a material containing at least one of a metal material and a semiconductor material, and the material is grown on the substrate. In the method of manufacturing a thin plate for obtaining a thin plate formed of the above material, the melt is directed toward (approached to) the thin plate growth surface of the substrate when viewed from the thin plate growth surface of the substrate, By controlling the meniscus shape of the melt, it was possible to stably and continuously grow a thin plate having a flat surface with few small protrusions at low cost.
また、 成長面を有する基板を配置された移動体を移動させることにより、 前記 基板の表面を金属材料もしくは半導体材料のうち.少なくともいずれか一方を含有 する材料の融液に接触させ、 その後、 前記基板の表面を前記融液から離す一連の 移動動作によって、 前記材料を前記基板の表面に成長させることで、 前記材料で 形成された薄板を得る薄板製造方法において、 基板の薄板成長面側から見たとき に、 融液が基板の薄板成長面側に向かって来る (近づいてくる) 構成を採用する ことで、 小さい突起の少ない平坦表面を持つ薄板を低コストで安定して製造でき た。  Further, by moving a moving body on which a substrate having a growth surface is disposed, the surface of the substrate is brought into contact with a melt of a material containing at least one of a metal material and a semiconductor material, and thereafter, In a sheet manufacturing method for obtaining a thin plate formed of the material by growing the material on the surface of the substrate by a series of moving operations for separating the surface of the substrate from the melt, the method includes the steps of: By adopting a configuration in which the melt comes to (approaches) the growth side of the substrate when the substrate is thin, a thin plate with few flat protrusions and a flat surface can be stably manufactured at low cost.
本発明に係る薄板製造方法は、 成長面の移動方向先端部と円軌道回転軸中心と の距離が、 該成長面の移動方向末端部と円軌道回転軸中心との距離より小さくな るように、 成長面を傾斜させることによって、 成長面が融液から離れるときの成 長面と融液面とのなす角度を增加させ、 成長面に這い上がる融液量を減少するこ とが可能であり、 その結果、 平坦表面を持つ薄板を低コストで安定して連続的に 成長させることができた。  In the method for producing a thin plate according to the present invention, the distance between the tip of the growth surface in the movement direction and the center of the circular orbital rotation axis is smaller than the distance between the end of the growth surface in the movement direction and the center of the circular orbital rotation shaft. By inclining the growth surface, it is possible to increase the angle between the growth surface and the melt surface when the growth surface separates from the melt, and to reduce the amount of melt crawling on the growth surface. As a result, a thin plate with a flat surface could be stably and continuously grown at low cost.
また、 成長面を傾斜させる、 回転冷却体の大きさを変更する、 成長面の面積を 変更する、 浸漬深さを変更することなどによって、 該成長面の移動方向先端部が 融液から離れるときの成長面と融液面とのなす角度を 2 0度〜 6 0度、 該成長面 の移動方向末端部が融液から離れるときの成長面と融液面とのなす角度を 6 0度 〜1 0 0度の範囲にすることにより、 成長面に這い上がる融液量と、 成長した結 晶薄板の板厚むらとの最適化を計ることができ、 平滑でかつ板厚むらの少ない結 晶薄板を得ることができた。 Also, tilt the growth surface, change the size of the rotating cooling body, and increase the area of the growth surface. By changing the immersion depth, the angle between the growth surface and the melt surface when the tip of the growth surface in the moving direction moves away from the melt is from 20 degrees to 60 degrees. By setting the angle between the growth surface and the melt surface when the end in the moving direction of the melt separates from the melt in the range of 60 ° to 100 °, the amount of the melt crawling on the growth surface and It was possible to optimize the thickness of the crystal thin plate, and to obtain a smooth and thin crystal thin plate.
また、 前記材料としてシリコン材料を用いることによって、 半導体デバイス、 特に太陽電池の材料となる低コストシリコンウェハを得ることができた。  In addition, by using a silicon material as the material, a low-cost silicon wafer serving as a material of a semiconductor device, particularly, a solar cell could be obtained.
さらに、 本発明に係る薄板製造方法によって得られた薄板を用いることによつ て、 材料の低コスト化が可能であり、 また、 融液這い上がりによる微小粒径領域 が低減され、 結晶性が向上するため、 一般的な太陽電池の製造方法を用いて変換 効率が向上した太陽電池を得ることができた。  Furthermore, by using the thin plate obtained by the thin plate manufacturing method according to the present invention, it is possible to reduce the cost of the material, to reduce the fine particle size region due to the rise of the melt, and to reduce the crystallinity. To improve the performance, a solar cell with improved conversion efficiency was obtained using a general solar cell manufacturing method.
上述の如く、 成長面を傾斜させる、 回転冷却体の大きさを変更する、 成長面の 面積を変更する、 浸漬深さを変更することなどによって、 成長面が融液から離れ るときの成長面と融液面とのなす角度を増加することによって、 シリコン融液の 這い上がりおよび液だまりを低減することができ、 シリコン薄板の表面が平滑に なり、 研磨、 スライス工程によらずシリコンウェハを形成できた。  As mentioned above, the growth surface when the growth surface separates from the melt by inclining the growth surface, changing the size of the rotating cooling body, changing the area of the growth surface, changing the immersion depth, etc. Increases the angle between the silicon melt and the melt surface, thereby reducing the crawling of the silicon melt and the accumulation of liquid, making the surface of the silicon thin plate smooth and forming a silicon wafer regardless of the polishing and slicing processes. did it.
産業上の利用可能性 Industrial applicability
本発明の製造方法に基づけば、 回転冷却体は円筒型に替わり、 多面体を始めと する平面状の成長面を持つ基板もしくは構瑋を適用できるため、 平板平滑なシリ コンウェハを形成することが可能である。 また、 微小粒径領域が低減され、 結晶 性が向上するため、 一般的な太陽電池の製造方法を用いて変換効率を向上するこ とができ、 その結果、 より低コストでシリコンウェハを提供することができる。  According to the manufacturing method of the present invention, the rotary cooling body is replaced with a cylindrical type, and a substrate or a structure having a planar growth surface such as a polyhedron can be applied, so that a flat and smooth silicon wafer can be formed. It is. In addition, since the fine grain size region is reduced and the crystallinity is improved, the conversion efficiency can be improved by using a general solar cell manufacturing method. As a result, a silicon wafer can be provided at lower cost. be able to.

Claims

請求の範囲 The scope of the claims
1 . 薄板成長面を有する基板を、 金属材料もしくは半導体材料のうち少なくとも いずれか一方を含有する材料の融液に接触させ、 前記材料の薄板を基板に成長さ せることで、 前記材料で形成された薄板を得る薄板製造方法において、 基板の薄 板成長面側から見たときに、 融液が基板の薄板成長面側に向かうように基板およ び または融液が移動することを特徴とする薄板製造方法。 1. A substrate having a thin plate growth surface is brought into contact with a melt of a material containing at least one of a metal material and a semiconductor material, and a thin plate of the material is grown on the substrate, thereby forming the substrate. A method for producing a thin sheet, characterized in that the substrate and / or the melt move so that the melt moves toward the sheet growth side of the substrate when viewed from the sheet growth side of the substrate. Thin plate manufacturing method.
2 . 薄板成長面の移動方向先端部が融液から離れる時点における、 前記薄板成長 面と融液面とのなす角度が 2 0度〜 6 0度であるとともに、'  2. The angle between the thin-plate growth surface and the melt surface at the time when the leading end in the moving direction of the thin-plate growth surface separates from the melt is 20 degrees to 60 degrees, and
前記薄板成長面の移動方向末端部が融液から離れる時点における、 前記薄板成 長面と融液面とのなす角度が 6 0度〜 1 0 0度である、 請求項 1に記載の薄板製 造方法。  2 .The thin plate according to claim 1, wherein an angle formed by the thin plate growth surface and the melt surface at a point in time when an end portion in the moving direction of the thin plate growth surface is separated from the melt is 60 degrees to 100 degrees. Construction method.
3 . 半導体材料がシリコン材料であることを特徴とする請求項 1に記載の薄板製 造方法。  3. The method according to claim 1, wherein the semiconductor material is a silicon material.
4 . 請求項 1に記載の薄板製造方法によって製造された薄板を用いた太陽電池。 4. A solar cell using a thin plate manufactured by the thin plate manufacturing method according to claim 1.
5 . 薄板成長面を有する基板を配置した移動体を移動させることにより、 前記基 板の薄板成長面を金属材料もしくは半導体材料のうち少なくともいずれか一方を 含有する材料の融液に接触させ、 その後、 前記基板の表面を前記融液から離す一 連の移動動作によって、 前記材料の薄板を前記基板に成長させることで、 前記材 料で形成された薄板を得る薄板製造方法において、 基板の薄板成長面側から見た ときに、 融液が基板の薄板成長面側に向かうように基板および Zまたは融液が移 動することを特徴とする薄板製造方法。 5. Move the moving body on which the substrate having the thin plate growth surface is arranged to bring the thin plate growth surface of the substrate into contact with a melt of a material containing at least one of a metal material and a semiconductor material. A method for producing a thin plate made of the material by growing a thin plate of the material on the substrate by a series of moving operations for separating a surface of the substrate from the melt; A method for manufacturing a thin plate, comprising: moving a substrate and Z or a melt so that the melt moves toward a thin plate growth surface side of the substrate when viewed from a surface side.
6 . .薄板成長面を有する基板を配置した移動体を移動させることにより、 前記基 板の薄板表面を、 金属材料もしくは半導体材料のうち少なくともいずれか一方を 含有する材料の融液に接触させ、 その後、 前記基板の薄板成長面を前記融液から 離す一連の移動動作によって、 前記材料の結晶を前記基板に成長させることで、 前記材料で形成された薄板を得る薄板製造方法において、  6. By moving a moving body on which a substrate having a thin plate growth surface is arranged, the thin plate surface of the substrate is brought into contact with a melt of a material containing at least one of a metal material and a semiconductor material, Then, by a series of moving operations for separating the thin plate growth surface of the substrate from the melt, a crystal of the material is grown on the substrate, thereby obtaining a thin plate formed of the material.
前記基板が融液から離れるときの軌道が円軌道であり、  The orbit when the substrate separates from the melt is a circular orbit,
前記成長面の移動方向先端部と前記円軌道の回転軸中心との距離 1^が、 前記 成長面の移動方向末端部と前記円軌道の回転軸中心との距離 R2より小さいこと を特徴とする薄板製造方法。 The distance 1 ^ between the tip of the growth surface in the moving direction and the center of the rotation axis of the circular orbit is Sheet production process, characterized in that the moving direction end of the growth surface smaller than the distance R 2 between the rotation center of the circular path.
PCT/JP2002/006189 2001-06-29 2002-06-20 Thin sheet producing method, and solar cell WO2003002457A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-198366 2001-06-29
JP2001198366 2001-06-29
JP2001346225A JP4132786B2 (en) 2001-06-29 2001-11-12 Thin plate manufacturing method and solar cell
JP2001-346225 2001-11-12

Publications (1)

Publication Number Publication Date
WO2003002457A1 true WO2003002457A1 (en) 2003-01-09

Family

ID=26617854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006189 WO2003002457A1 (en) 2001-06-29 2002-06-20 Thin sheet producing method, and solar cell

Country Status (3)

Country Link
JP (1) JP4132786B2 (en)
TW (1) TW546848B (en)
WO (1) WO2003002457A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4712677B2 (en) * 2006-11-14 2011-06-29 シャープ株式会社 Thin plate manufacturing method and thin plate manufacturing apparatus
JP2009054769A (en) * 2007-08-27 2009-03-12 Sharp Corp Sheet manufacturing apparatus and sheet manufacturing method
JP4998488B2 (en) * 2009-02-12 2012-08-15 トヨタ自動車株式会社 SiC single crystal production equipment by solution method
JP5019398B2 (en) * 2009-03-06 2012-09-05 シャープ株式会社 Thin plate manufacturing apparatus and manufacturing method
JP6865431B2 (en) 2017-02-16 2021-04-28 国立大学法人埼玉大学 Etching method
JP7148382B2 (en) 2018-12-12 2022-10-05 Ykk Ap株式会社 Split frame material and method for manufacturing split frame material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1029895A (en) * 1996-07-17 1998-02-03 Sharp Corp Apparatus for production of silicon ribbon and its production
JP2001151505A (en) * 1999-09-14 2001-06-05 Sharp Corp Manufacturing device for polycrystalline silicon sheet and manufacturing method thereof
JP2001247396A (en) * 1999-12-27 2001-09-11 Sharp Corp Method and apparatus for producing crystal sheet and solar cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1029895A (en) * 1996-07-17 1998-02-03 Sharp Corp Apparatus for production of silicon ribbon and its production
JP2001151505A (en) * 1999-09-14 2001-06-05 Sharp Corp Manufacturing device for polycrystalline silicon sheet and manufacturing method thereof
JP2001247396A (en) * 1999-12-27 2001-09-11 Sharp Corp Method and apparatus for producing crystal sheet and solar cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DALY J.T. ET AL.: "Enhancing liquid phase epitaxial growth rates trough laminar solution flow", US DOE REP, 1987, pages 61 - 64, XP002956634 *

Also Published As

Publication number Publication date
TW546848B (en) 2003-08-11
JP2003081690A (en) 2003-03-19
JP4132786B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
US6946029B2 (en) Sheet manufacturing method, sheet, sheet manufacturing apparatus, and solar cell
JP4121697B2 (en) Crystal sheet manufacturing method and manufacturing apparatus thereof
US6207891B1 (en) Columnar-grained polycrystalline solar cell substrate
KR101805096B1 (en) Methods and apparatus for making thin semiconductor bodies from molten material
US7071489B2 (en) Silicon plate and solar cell
KR101527139B1 (en) Recrystallization of semiconductor wafers in a thin film capsule and related processes
KR20120055592A (en) Composite crucible, method for producing same, and method for producing silicon crystal
JP2004140120A (en) Polycrystalline silicon substrate
WO2003002457A1 (en) Thin sheet producing method, and solar cell
JP2002080295A (en) Apparatus of manufacturing silicon ribbon and solar cell using it
JP2002237465A (en) Method for manufacturing solid-phase sheet
JP4817761B2 (en) Method for manufacturing semiconductor ingot and solar cell element
JP2003095630A (en) Silicon sheet and solar battery including the same
JP4282278B2 (en) Substrate, plate manufacturing method using the substrate, plate and solar cell produced from the plate
JP2004140087A (en) Polycrystalline silicon substrate for solar cell and method for manufacturing the same, and method for manufacturing solar cell using the substrate
JP2003054932A (en) Manufacturing device of semiconductor substrate, semiconductor substrate and manufacturing method thereof and solar cell
JP4434837B2 (en) Solar cell
JP2004123433A (en) Silicon sheet,its manufacturing process, substrate for manufacturing the same and solar battery
TW202129090A (en) Producing a ribbon or wafer with regions of low oxygen concentration
JP2004319621A (en) Substrate, plate-shaped body, its manufacturing method, and solar battery produced from plate-shaped body
JP2000144457A (en) Electrode plate for plasma etching equipment, enabling formation of uniform etching surface
JP2004149375A (en) Method and apparatus for manufacturing thin plate
JP2004262732A (en) Substrate for manufacturing sheet-like silicon, method for manufacturing sheet-like silicon and solar battery using sheet-like silicon
JP2005119955A (en) Method for continuously manufacturing crystal silicon and apparatus therefor
JP2012012277A (en) Vessel with wave dissipating structure and method for producing tabular semiconductor using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase