WO2002103240A1 - Melting device and waste treatment system - Google Patents

Melting device and waste treatment system Download PDF

Info

Publication number
WO2002103240A1
WO2002103240A1 PCT/JP2002/006053 JP0206053W WO02103240A1 WO 2002103240 A1 WO2002103240 A1 WO 2002103240A1 JP 0206053 W JP0206053 W JP 0206053W WO 02103240 A1 WO02103240 A1 WO 02103240A1
Authority
WO
WIPO (PCT)
Prior art keywords
melting
waste
exhaust gas
burner
gas
Prior art date
Application number
PCT/JP2002/006053
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Yamada
Tadashi Miyata
Original Assignee
Zet. Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zet. Co., Ltd. filed Critical Zet. Co., Ltd.
Publication of WO2002103240A1 publication Critical patent/WO2002103240A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L13/00Construction of valves or dampers for controlling air supply or draught
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/18Arrangements of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/20Arrangements of heating devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/04Ram or pusher apparatus

Definitions

  • the present invention relates to an apparatus for melting waste and a waste treatment system, and more particularly, it is generated by incineration of garbage or by the purification of metals such as aluminum, iron and copper, or the production of solids.
  • the present invention relates to a melting device for melting a metal scale, and a waste treatment system provided with the melting device.
  • Conventional melting equipment has a melting furnace for heating the waste.
  • the melting furnace has a melting chamber for storing waste.
  • the waste stored in the melting chamber is heated by a melting parner arranged in the melting chamber.
  • the melting burner burns combustible gas and heats the waste at about 1300 ° C.
  • a melting accelerator such as a thermite, is charged into the melting chamber to ignite the melting accelerator.
  • a melting chamber containing waste and a brown gas in which hydrogen and oxygen are mixed at a molar ratio of 2: 1 are burned, and The melting flame that emits the flame of the gas toward the waste and melts the waste in the melting chamber.
  • a shut-off device for shutting off the inflow of gas are provided.
  • a waste treatment system provided with the above-mentioned melting device and a heat energy utilization facility that is connected to the melting device via a heat medium supply pipe and stores a processed material. .
  • the heat energy utilization equipment receives a part of the exhaust gas from the melting device through the heat medium supply pipe, and uses the thermal energy of the exhaust gas to burn or heat the processed material.
  • a method of using the above melting apparatus consists of supplying waste to the melting chamber, shutting off the flow of air from outside the melting device into the melting chamber, and using brown gas in which hydrogen and oxygen are mixed in a 2: 1 molar ratio. Burning the waste to melt the waste.
  • FIG. 1 is a sectional view of a melting apparatus according to a first embodiment of the present invention.
  • Figure 2 is an enlarged sectional view of the melting furnace.
  • FIG. 3 is a block diagram of a waste disposal system according to the first embodiment of the present invention.
  • FIG. 4A and 4B are cross-sectional views of a melting furnace of a melting device according to a second embodiment of the present invention.
  • FIG. 5 is a sectional view of a melting device according to a third embodiment of the present invention.
  • FIG. 6 is a partially broken plan view of the melting furnace of FIG.
  • FIG. 7 is a partially cutaway front view of the melting furnace of FIG.
  • Fig. 8 is a sectional view of the wrench.
  • FIG. 9A is a partial cross-sectional view of the burner of FIG.
  • FIG. 9B is a front view of one of the bars in FIG.
  • FIG. 10 is a sectional view of another example of a fusion burner.
  • the waste treatment system 400 includes a melting device 41, a gas generator 42 for supplying fuel gas to the melting device 41, and an incinerator connected to the melting device 41. Including 4 and 3.
  • the incinerator 43 is a facility that uses the thermal energy of the melting device 41.
  • the melting device 41 has a melting furnace 10 for melting waste, and a melting furnace for waste. It has a slag recovery section 20 for recovering molten slag generated by the process and an exhaust gas processing section 30 for processing exhaust gas generated when the waste is melted.
  • the gas generator 42 generates brown gas by electrolyzing or thermally decomposing water.
  • Plane gas is a mixed gas with a 2: 1 molar ratio between hydrogen gas and oxygen gas.
  • the brown gas is supplied to the melting furnace 10, the slag recovery unit 20 and the exhaust gas treatment unit 30, and is used as fuel for heat treatment of waste and exhaust gas.
  • Incinerator 4 3 contains and incinerates waste such as paper, wood, cloth, plastic and combustible waste.
  • the melting device 41 supplies a part of the exhaust gas generated when the waste 70 is melted to the incinerator 43.
  • the incinerator 43 uses the exhaust gas as thermal energy.
  • the incinerated ash generated by the incineration of the processed material is sent from the incinerator 43 to the melting furnace 10.
  • the incineration ash is melted in the melting furnace 10.
  • Exhaust gas generated by incineration of the treated material is returned from the incinerator 43 to the exhaust gas treatment section 30.
  • the exhaust gas processing unit 30 processes the exhaust gas returned from the incinerator 43 and the exhaust gas not sent to the incinerator 43.
  • the melting device 41 will be described.
  • the right side of FIG. 1 is the front of the melting device 41
  • the left side of FIG. 1 is the rear of the melting device 41.
  • a melting furnace 10 is provided at the upper left side of the melting device 41.
  • the melting furnace 10 has a melting chamber 11 defined by a heat-resistant wall 60 made of zirconia.
  • a supply port 12 is formed above the left heat-resistant wall 60.
  • the charging cylinder 15 is connected to the melting chamber 11 via the supply port 12.
  • the pusher 13 is provided to be able to reciprocate inside the charging cylinder 15.
  • a hopper 14 is attached to the upper part of the charging cylinder 15.
  • Waste 70 is supplied from the hopper 14 to the charging cylinder 15 as shown by the arrow.
  • Waste 70 is solids that contain little moisture, such as the incineration ash from incinerators 43, incineration ash incinerated at landfills, metal scales or metal scales produced by the forging of solids. Or a substance containing water, such as sludge or waste chemicals.
  • a blocking device or seal 13a At the end of the pusher 13 is provided a blocking device or seal 13a, With the pusher 13 moved toward the supply port 12, the seal 13 a closes the supply port 12.
  • the melting furnace 10 has a discharge path 16.
  • the bottom surface 17 of the melting chamber 11 is inclined so as to become higher as approaching the discharge passage 16. Due to the inclined bottom surface 17, the waste 70 in the melting chamber 11 is deposited on the left side. Therefore, the surface 70 a of the waste 70 is inclined from the supply port 12 toward the discharge path 16.
  • a stopper 16a is formed at the right end of the bottom surface 17 to prevent the waste 70 from spilling out of the discharge channel 16.
  • a first melting panner 18 is supported by a drive or cylinder 19 opposite the inclined surface 70a of the deposited waste 70.
  • the tip surface 18c of the first melting burner 18 faces the lower left corner of the melting chamber 11 so that the tip surface 18c is substantially parallel to the surface 70a of the waste 70. Placed. As shown in FIG. 2, the first melting burner 18 is moved by the expansion and contraction of a cylinder 19.
  • a gas generator 42 is connected to a base end of the first melting burner 18 via a gas supply pipe 18a.
  • the gas generator 42 supplies brown gas to the first melting parner 18.
  • the first melting burner 18 burns brown gas.
  • the brown gas flame is discharged from the tip surface 18c of the first melting burner 18 toward the surface 70a of the waste 70. Waste 70 is melted from the surface 70a by the combustion heat of the brown gas. Brown gas produces only steam after combustion.
  • the temperature outside of the brown gas flame is 200-250 ° C in the immediate vicinity of the flame, whereas 100-150 ° C at a position slightly away from the flame ° C.
  • the temperature of the brown gas flame that is, the heat of combustion
  • the distance L between the tip surface 18c of the first melting burner 18 and the surface 70a of the waste 70 is set so that the heat of combustion of the brown gas is most efficiently applied to the waste 70. , Held at about 10 O mm.
  • a cooling pipe 18 b passing just inside the tip face 18 c is connected to the first melting burner 18.
  • the refrigerant such as water or air flows through the cooling pipe 18b
  • the tip end surface 18c of the first melting burner 18 is cooled.
  • brown gas fuel The first heat burner 18 is prevented from being melted by the burning heat.
  • the stroke of cylinder 19 is about 15 O mm.
  • harmful gases such as nitrogen oxides, carbon monoxide, carbon dioxide, sulfur oxides, and dioxins are generated in the melting chamber 11 and are 200 to 250. Most harmful gases are decomposed into harmless compounds by the high temperature of 0 ° C brown gas flame. In addition, water vapor generated by the combustion of brown gas is also decomposed into hydrogen gas and oxygen gas. Exhaust gas containing a mixed gas of hydrogen and oxygen and a small amount of harmful gas that has not been decomposed flows from the melting chamber 11 along with the molten slag 7 Ob through the discharge path 16 to the slag recovery section downstream of the melting furnace 10. Discharged to 20.
  • harmful gases such as nitrogen oxides, carbon monoxide, carbon dioxide, sulfur oxides, and dioxins are generated in the melting chamber 11 and are 200 to 250. Most harmful gases are decomposed into harmless compounds by the high temperature of 0 ° C brown gas flame. In addition, water vapor generated by the combustion of brown gas is also decomposed into hydrogen gas and oxygen gas. Exhaust gas containing a
  • the slag recovery section 20 is formed below the melting furnace 10.
  • the slag collecting section 20 has a collecting chamber 20a partitioned by a heat-resistant wall 60.
  • the discharge passage 16 has an opening in the upper wall of the collection chamber 20a.
  • the recovery tank 21 is partitioned by a heat-resistant wall 60.
  • a first discharge path 22 that connects the collection chamber 20a with the outside of the melting device 41 is formed on the right side of the collection tank 21.
  • a first cooling tank 23 is disposed below the first discharge path 22.
  • a cooling liquid such as water is stored in the first cooling tank 23.
  • the second discharge passage 24 penetrates the bottom wall of the recovery tank 21. Below the second discharge path 24, a second cooling tank 25 in which a cooling liquid such as water is stored is arranged. Pulp 26 is attached to the first discharge path 22 and the second discharge path 24. By operating the valve 26, the first discharge path 22 and the second discharge path 24 are opened and closed.
  • the molten slag 70 b is stored in the recovery tank 21.
  • Recovery slag in recovery tank 2 1 7 0 When the stored amount of b exceeds the threshold, the molten slag 70 b overflows.
  • the valve 26 By operating the valve 26 to open the first discharge path 22, the molten slag 70 b is dropped into the first cooling tank 23. Since the molten slag 70 b is solidified by the cooling liquid, the solid slag is collected in the first cooling tank 23.
  • the second discharge path 24 is opened.
  • the molten slag 70b falls into the second cooling tank 25, and the solid slag is collected.
  • a second melting parner 144 is disposed above the recovery tank 21.
  • the second melting parner 44 burns the brown gas supplied from the gas generator 42 and heats the recovery chamber 20a to 100 to 200 ° C.
  • the second melting burner 4 blows out the flame almost horizontally. Therefore, the molten slag 70 b and the exhaust gas discharged from the discharge path 16 to the recovery chamber 20 a pass through the flame of the second molten parner 144.
  • impurities such as particles of unmolten waste 70 and harmful gas in the molten slag 70b are decomposed.
  • the harmful gas contained in the exhaust gas in a small amount is almost completely decomposed and removed. Therefore, the exhaust gas and the molten slag 70b in the recovery chamber 20a do not contain harmful gases.
  • the exhaust gas treatment section 30 is connected to an exhaust section 31 a formed downstream of the slag recovery section 20, a smoke tower 35 connected to the exhaust section 31 a, and a smoke tower 35.
  • Exhaust duct 36 The exhaust part 31 a is communicated with the collection chamber 20 a by the exhaust path 31.
  • the flue gas tower 35 is connected to the exhaust port 32 of the exhaust path 31.
  • the exhaust duct 36 is connected to the upper end of the flue gas tower 35.
  • the exhaust gas in the recovery chamber 20a flows toward the exhaust port 32 along the exhaust path 31 while colliding with the plurality of barriers 33. Thereby, impurities such as soot contained in the exhaust gas are removed.
  • the exhaust gas is discharged to the outside of the melting device 41 through the exhaust port 32, the smoke exhaust tower 35, and the exhaust duct 36.
  • a fan 34 or shut-off device is provided inside the flue gas tower 35.
  • the fan 34 When the fan 34 is rotated, the exhaust gas in the flue gas tower 35 is sent to the exhaust duct 36.
  • the exhaust duct 36 On the other hand, when the fan 34 is stopped, the exhaust duct 36 is shut off from the exhaust tower 35. Therefore, the flow of exhaust gas is stopped.
  • a part of the cooling pipe 18 b is formed in a wavy shape and housed in the exhaust duct 36.
  • the refrigerant flowing in the cooling pipe 18 b is preheated by the exhaust gas in the exhaust duct 36.
  • the first melting burner 18 is cooled by the preheated refrigerant. This prevents the first melting burner 18 from being damaged because the first melting burner 18 does not receive a rapid temperature change.
  • a plurality of exhaust burners 45 are provided in the exhaust passage 31.
  • the plurality of exhaust treatment burners 45 burn the brown gas supplied from the gas generator 42.
  • the exhaust gas 31 is heated to 850 to 150 ° C. by the combustion heat of the blown gas.
  • the harmful gas in the exhaust gas is completely decomposed into a mixed gas of hydrogen and oxygen by the heat of combustion of the brown gas when passing through the exhaust passage 31.
  • the mixed gas of hydrogen and oxygen is cooled to 450 ⁇ 50 ° C while passing through the flue gas tower 35 to become water vapor.
  • the heat of the steam is transmitted to the refrigerant flowing through the cooling pipe 18 b of the exhaust duct 36.
  • the steam cooled to about 100 ° C is discharged.
  • a boundary chamber 46 provided at the boundary between the recovery chamber 20a and the exhaust path 31 is connected to the incinerator 43 via a heat medium supply pipe 47. Part of the exhaust gas passing through the boundary chamber 46 flows into the incinerator 43 via the heat medium supply pipe 47. Since the temperature of the exhaust gas passing through the boundary chamber 46 is 900 to 200 ° C., the exhaust gas has enough heat energy to incinerate the treated material in the incinerator 43.
  • An exhaust gas transfer pipe 48 connects the incinerator 43 and the exhaust part 31a. Specifically, the exhaust gas transfer pipe 48 communicates with the exhaust passage 31 downstream of the boundary chamber 46. Exhaust gas from the incinerator 43, including harmful gases, is sent to an exhaust passage 31 via an exhaust gas transfer pipe 48. The exhaust gas sent from the incinerator 43 to the exhaust part 31a is heated in the exhaust path 31 by a plurality of exhaust treatment burners 45. As a result, the harmful gas in the exhaust gas is decomposed into a mixed gas of hydrogen and oxygen.
  • the waste 70 is quickly and reliably melted by the high-temperature flame generated by the combustion of the brown gas. Even if the melting of the waste 70 produces a harmful gas, It is burned by a flame at a high temperature of 2000 to 2500 ° C, decomposed, and rendered harmless.
  • Melting device 4 1 is a pusher 1 3 seal 1 3 a, slag recovery section 20 valve 2 6.
  • the shut-off device such as the fan 34 of the exhaust unit 31a, the flow of air to the melting chamber 11 is blocked. Due to this, the melting chamber 1 1 is not cooled by the outside air
  • the temperature of the melting chamber 11 is detected by a plurality of temperature sensors 10 a provided in the melting furnace 10. Based on the detected temperature of the melting chamber 11, the seal 13 a of the pusher 13, the valve 26 and the fan 34 are operated to control the shutoff of the air flow. For example, if the temperature of the melting chamber 11 is 2000 to 2500 ° C, the shut-off device will prevent air from flowing into the melting chamber 11 so that the brown gas will not mix with impurities and lower the combustion temperature. Cut off.
  • the valve 26 of the slag recovery section 20 of the melting apparatus 41 is closed, and the fan 34 of the exhaust section 31a is stopped.
  • the brown gas is supplied from the gas generator 42 to the burners 18, 44, 45 and ignited.
  • the temperature sensor 10 a detects that the temperature of the melting chamber 11 has reached 150 ° C.
  • the waste 70 is supplied from the charging cylinder 15 into the melting chamber 11. A part of the waste 70 is melted immediately after passing through the supply port 12.
  • the first melting burner 18 is advanced while melting the waste 70, and stops at a position advanced by about 150 mm. Approximately 150 mm thick waste 70 from the position of the original surface 70a is almost completely melted. Then, there is no melt around the flame of the burner 18, and the temperature of the melting chamber 11 starts to decrease. When this temperature decrease is detected by the temperature sensor 10a, the cylinder contracts and the first melting burner 18 is retracted. At about the same time, the pulp 26 of the slag recovery section 20 is opened. Collection The molten slag 70 b of the tank 21 falls through the first discharge path 22 and is collected in the first cooling tank 23.
  • Hazardous gas is generated once by melting the waste 70. Most of the harmful gas is burned and decomposed in the melting chamber 11 by the flame of the first melting parner 18 at a very high temperature of 2000 to 2500 ° C. The remaining harmful gas is almost completely burned and decomposed by the second melting burner 44 in the recovery chamber 20a. Water vapor generated by the combustion of brown gas is decomposed into hydrogen gas and oxygen gas by the heat of combustion of the brown gas.
  • the mixed gas of hydrogen and oxygen is sent as exhaust gas from the recovery chamber 20a to the exhaust passage 31.
  • the exhaust gas passes through the boundary champer 46 and is sent to the exhaust passage 31.
  • the exhaust gas is supplied to the incinerator 43 through the heat medium supply pipe 47, and is used for burning the treated material in the incinerator 43. Used as heat energy.
  • Exhaust gas containing harmful gas generated in the incinerator 43 is sent to the exhaust path 31 via the exhaust gas transfer pipe 48 and merges with the exhaust gas passing through the boundary champer 46.
  • the harmful gas contained in the exhaust gas of the exhaust passage 31 is decomposed by the flames of the plurality of exhaust treatment burners 45 and sent to the mixed gas power of hydrogen and oxygen S flue gas tower 35. While the fan 34 is stopped, the mixed gas is retained in the flue gas tower 35.
  • the fan 34 is rotated.
  • the mixed gas is sent from the flue gas tower 35 to the exhaust duct by the rotation of the fan 34.
  • the mixed gas of hydrogen and oxygen is cooled down to about 450 ° C. before reaching the exhaust duct 36 and becomes steam.
  • the heat of the steam is transferred to the refrigerant in the cooling pipe 18b. Water vapor cooled to about 100 ° C. is discharged from the exhaust duct 36.
  • the slag 70b is collected in the slag recovery section 20
  • steam is discharged from the exhaust gas processing section 30, and the temperature of the melting chamber 11 drops to about 1500 ° C.
  • the same amount of new waste 70 as the supplied amount is supplied from the charging cylinder 15 into the melting chamber 11.
  • the new waste 70 is, for example, a burning residue generated in the incinerator 43.
  • the fuel of the melting device 41 of the first embodiment is brown gas. Brown gas is burned without supplying air, and the heat of combustion is extremely high. Since the combustion temperature of brown gas is extremely high at 2000 to 2500 ° C, nitrogen oxides, carbon monoxide, carbon dioxide, sulfur oxides, and dioxins are burned and decomposed . Therefore, no harmful gas is discharged from the melting device 41.
  • the melting chamber 41 is supplied from the outside of the melting unit 41 by the seal 13 a of the pusher 13, the knob 26 of the slag recovery section 20 and the fan 34 of the exhaust section 31 a. Air flow to 1 is blocked. This prevents the brown gas from being mixed with impurities and lowering the combustion temperature. Further, leakage of the harmful gas before being decomposed from the melting device 41 is prevented.
  • the melting device 41 has a movable first melting burner 18.
  • the first melting burner 18 When supplying the waste 70, the first melting burner 18 is retracted. This prevents the waste 70 from adhering to the first molten burner 18, thereby preventing the first molten burner 18 from being damaged.
  • the first melting burner 18 when melting the waste 70, the first melting burner 18 is advanced.
  • the first melting burner 18 is retracted to temporarily stop the melting of the waste 70. Therefore, the waste 70 is reliably melted by the melting device 41 in a so-called patch-type process.
  • the exhaust gas passing through the exhaust path 31 is heated by the plurality of exhaust processing burners 45 arranged in the exhaust path 31.
  • Hazardous gases such as nitrogen oxides, carbon monoxide, carbon dioxide, sulfur oxides, and dioxins in the exhaust gas are decomposed, and no harmful gases are discharged from the melting device 41.
  • the waste treatment system 400 includes a melting device 41 and an incinerator 43 connected to the melting device 41.
  • the thermal energy of the melting device 41 that is, the high-temperature exhaust gas generated by the melting of the waste 70 is used as thermal energy for burning the processed material in the incinerator 43. Since the surplus energy of melting waste 70 is used efficiently and efficiently, the incinerator 43 consumes little energy. Therefore, the energy consumption of the waste treatment system 400 is relatively low.
  • Exhaust gas from the incinerator 43 is sent to the melting device 41 via the exhaust gas transfer pipe 48, where it is discarded.
  • the waste gas is treated in the exhaust gas treatment section 30 together with the exhaust gas of the substance 70.
  • Exhaust gas from waste treatment system 400 is treated in waste treatment system 400, and harmful gases such as nitrogen oxides, carbon monoxide, carbon dioxide, sulfur oxides, and dioxins are treated as waste treatment system 400. Not emitted from 0.
  • the waste treatment system 400 is a closed system for hazardous gases.
  • the exhaust gas from the incinerator 43 and the exhaust gas from the melting device 41 are collectively made harmless by the exhaust gas treatment section 30.
  • the exhaust gas treatment unit 30 serves both as a device for treating the exhaust gas from the incinerator 43 and a device for treating the exhaust gas from the melting device 41. Therefore, the exhaust gas of the waste treatment system 400 is efficiently treated.
  • the burning residue in the incinerator 43 is melted in the melting furnace 10 to form slag, and is not discharged outside the waste treatment system 400. Therefore, processed materials such as refuse are incinerated, and if there is any burning residue, the burning residue is melted.
  • the waste treatment system 400 is a closed system that treats waste 70 and treated materials without emitting harmful substances and harmful gases.
  • the waste treatment system 400 is a so-called zero emission system that efficiently treats burning residues and harmful gases and does not discharge industrial waste.
  • the heat medium supply pipe 47 is connected to the boundary chamber 46, and the exhaust gas transfer pipe 48 is connected to the exhaust path 31 downstream of the boundary chamber 46. Therefore, the exhaust gas from the incinerator 43 is not returned to the incinerator 43 through the heat medium supply pipe 47. Therefore, the harmful gas is efficiently treated in the exhaust gas treatment section 30.
  • the melting furnace 10 has a lower supply port 12a formed at the lower part of the melting chamber 11.
  • a cylindrical lower charging cylinder 15a is connected to the lower supply port 12a.
  • the lower charging cylinder 15a is connected to the upper charging cylinder 15 via the communication pipe 15b.
  • the lower pusher 13b is movably arranged in the lower charging cylinder 15a. .
  • the lower supply port 12a is selectively closed by the seal 13a attached to the tip of the lower pusher 13b. With the lower supply port 12 a open and the upper supply port 12 closed with the upper pusher 13, waste 70 flows from the hopper 14 to the lower side via the communication pipe 15 b. It is supplied to the input cylinder 15a. By pushing down the lower pusher 13 b, the waste 70 in the lower inlet cylinder 15 a is supplied to the melting chamber 11.
  • waste 70 By extruding waste 70 from the lower charging cylinder 15 a into the melting chamber 11 1, new waste 70 is placed below the waste 70 in the melting chamber 11, specifically, the first melting burner 1 Supplied to a position far from the end face 18 c of 8.
  • the inclination angle of the surface 70a of the waste 70 changes as shown in FIG. 4B.
  • the first melting burner 18 is movably supported with respect to the cylinder 19 so as to respond to the change in the inclination angle of the surface 70 a of the waste 70.
  • the first melting burner 18 is rotatably attached to the tip of a cylinder 19 having a swing mechanism (not shown) via a rotation shaft 18d.
  • the first melting burner 18 is shown so that the tip surface 18c is substantially parallel to the surface 70a of the waste 70 according to the change in the inclination angle of the surface 70a of the waste 70. Not pivoted about the pivot axis 18d by the pivot mechanism.
  • the gas supply pipe and the cooling pipe of the first embodiment are arranged in the first melting burner 18.
  • waste 70 is supplied from the upper charging cylinder 15 to the melting chamber 11, and the waste 70 is melted.
  • new waste 70 is supplied to the melting chamber 11 as follows. That is, the waste 70 is supplied from the hopper 14 to the lower charging cylinder 15a via the communication pipe 15b.
  • the temperature sensor 10a detects that the temperature of the melting chamber 11 has started to decrease
  • the lower pusher 13b is moved to the lower supply port 12a. This pushes new waste 70 behind the accumulated waste 70.
  • the addition of the waste 70 changes the inclination angle of the surface 70 a of the waste 70. Since the tip surface 18c of the first melting burner 18 is not substantially parallel to the surface 70a of the waste 70, the temperature of the melting chamber 11 does not rise. When the temperature sensor 10a detects that the temperature of the melting chamber 11 has not risen, the swinging mechanism operates and the first melting is performed. The bar "1 18 is rotated.
  • the waste 70 starts to be melted, and the temperature of the melting chamber 11 starts to rise.
  • the rotation of the first melting burner 18 is stopped.
  • New waste 70 is supplied to the lower charging cylinder 15 a via the hopper 14.
  • the lower pusher 13b is reciprocated, the waste 70 is supplied to the melting chamber 11, and the melting process is repeated.
  • the supply amount of the waste 70 from the lower charging cylinder 15a is adjusted to be substantially equal to the amount of the waste 70 melted in the melting chamber 11.
  • the melting device 41 of the second embodiment every time the temperature sensor 10a detects a decrease in the temperature of the melting chamber 11, waste 70 from the lower charging cylinder 15a enters the melting chamber 11. It is supplied continuously. Since the waste 70 is continuously melted, the efficiency of the melting process of the melting device 41 is improved.
  • the supply amount of the additional waste 70 is adjusted to be equal to the amount of the molten waste 70, a large amount of the waste 70 is processed by the melting device 41 in a relatively short time.
  • the third embodiment of the present invention will be described focusing on differences from the first embodiment.
  • the right side of FIG. 5 is the front of the melting device 41
  • the upper side of FIG. 6 is the left of the melting device 41.
  • the melting device 41 of the third embodiment has a box-shaped melting chamber 11 that is long in the front and back. As shown in FIG. 6, a supply port 12 is formed in the left wall at the rear of the melting chamber 11. The waste 70 is supplied to the melting chamber 11 through the supply port 12 by the continuous supply mechanism.
  • the continuous supply mechanism includes a hopper 73, a charging cylinder 71 connecting a lower portion of the hopper 73 and the supply port 12, and a pusher 72 disposed in the charging cylinder 71.
  • the pusher 7 2 is reciprocated in the input cylinder 71. Hopper waste 7 0 7 3 Then, the waste 70 is supplied from the supply port 12 to the melting chamber 11 by moving the pusher 72 toward the supply port 12 after being charged into the charging cylinder part 71 from the above. At this time, the tip of the pusher 72 does not reach the supply port 12 and is stopped at a position in the middle of the charging cylinder 71.
  • an outflow prevention wall 74 for damping the waste 70 is formed at the front end of the melting chamber 11.
  • a discharge concave portion 75 for discharging the molten molten slag forward is formed at the center of the upper end of the outflow prevention wall 74.
  • the bottom surface 17 of the melting chamber 11 is inclined so as to become lower as it approaches the outflow prevention wall 74. As a result, the waste 70 and the molten slag charged into the melting chamber 11 are guided from the supply port 12 toward the outflow prevention wall 74.
  • a discharge path 16 is defined in front of the outflow prevention wall 74. Below the outflow prevention wall 74, a rectangular box-shaped slag recovery section 20 is disposed. The discharge path 16 communicates with the slag recovery section 20 and the melting chamber 11. A cooling liquid such as water is stored in the slag recovery section 20, and a first recovery conveyor 77 is stored therein. A slag collection hole 76 is formed in the rear wall of the slag collection section 20. A second collection conveyor 78 linked to the first collection conveyor 77 is disposed in the slag collection hole 76.
  • the slag in the slag collection unit 20 is carried out by the first and second collection conveyors 77 and 78.
  • the slag collection hole 76 may be selectively shut off by an unillustrated shutoff device such as an air curtain.
  • a melting burner attaching portion 79 is supported, respectively.
  • the melting burner mounting portion 79 is disposed between the supply port 12 and the outflow prevention wall 74.
  • Each melt burner mount 79 has an inner slope 80 inclined at approximately 45 degrees.
  • Three pairs of third melting burners 81 are attached to each inner slope 80 along the longitudinal direction of the melting chamber 11. As shown in FIG. 6, the third molten burner on the right inner slope 80 is displaced from the third molten burner on the left inner slope 80. Therefore, the melting furnace 10 has six pairs of third melting burners 81.
  • a first exhaust port 82 is formed in the front wall of the melting chamber 11.
  • the first exhaust port 82 is connected to a flue gas tower 35 of an exhaust gas treatment section 30.
  • Flue gas tower 35 has a bent exhaust path 31. Exhaust gas generated by melting the waste 70 is sent to the exhaust passage 31.
  • two burner attachment portions 45 a are attached to the flue gas tower 35.
  • Two second exhaust processing burners 45b opposed to each other with the exhaust path 31 interposed therebetween are mounted on each of the two mounting portions 45a.
  • the second exhaust processing burner 45b Is the same as the third melting panner 81.
  • the smoke exhaust tower 35 is provided with a fan 34 for shutting off the exhaust passage 31.
  • a second exhaust port 83 is formed in the front wall of the slag recovery section 20.
  • the bypass cylinder 84 of the exhaust gas treatment section 30 connects the second exhaust port 83 and the flue gas tower 35. The flow of exhaust gas between the melting chamber 11 and the slag recovery section 20 is adjusted by the bypass cylinder 84.
  • the third melting burner 81 will be described with reference to FIGS. 8 and 9A.
  • the flame is ejected from the third melting burner 81 toward the left side of FIG.
  • the third melting part 81 includes a cylindrical parner main body 85 and a cylindrical refrigerant supply pipe 86 penetrating the bottom wall of the burner main body 85.
  • the refrigerant supply pipe 86 is The burner has a tapered tip disposed in the body 85.
  • the base end of the refrigerant supply pipe 86 protrudes from the bottom wall of the burner body 85.
  • the gas supply pipe 87 penetrates the bottom wall of the refrigerant supply pipe 86.
  • the tip of the gas supply pipe 87 is disposed on the left side of the tip of the refrigerant supply pipe 86 and the tip of the panner body 85.
  • a gas generator (not shown) is connected to the base end of the gas supply pipe 87. Brown gas generated by the gas generator is sent into the gas supply pipe 87.
  • a substantially annular nozzle fixing portion 88 is provided at the end of the burner body 85.
  • An annular nozzle mounting portion 89 is screwed into the end of the gas supply pipe 87.
  • the nozzle mounting portion 89 is engaged with a fixing step portion 90 formed inside the nozzle fixing portion 88, and is fixed to the nozzle fixing portion 88 by a hexagonal bolt 91.
  • a seal ring made of a rubber material (not shown) is arranged between the right end face of the nozzle mounting portion 89 and the fixed step portion 90.
  • a substantially cylindrical nozzle 92 is screwed into the tip of the nozzle mounting portion 89.
  • the nozzle 92 has an internal gas injection port 93 larger than the inner diameter of the gas supply pipe 87.
  • the bra sprayed from the gas injection port 9 3 The pressure of the black gas is lower than the pressure of the brown gas flowing through the gas supply pipe 87.
  • the brown gas injected from the relatively large-diameter nozzle 92 is burned, and a flame is generated.
  • a coolant supply hole 94 is formed in the peripheral wall near the base end of the coolant supply pipe 86.
  • a coolant discharge hole 95 is formed in the peripheral wall near the base end of the parner main body 85.
  • the refrigerant that is, water
  • Water flows in from the refrigerant supply hole 94. Water flows through a gap between the refrigerant supply pipe 86 and the gas supply pipe 87. The water is compressed by the tapered tip of the refrigerant supply pipe 86, and the pressurized water is jetted toward the right end face of the nozzle mounting portion 89. Thereby, the nozzle mounting portion 89 is directly cooled, and the nozzle 92 is indirectly cooled. Water flows between the burner main body 85 and the refrigerant supply pipe 86, and is discharged from the refrigerant discharge hole 95 to the outside of the panner main body 85.
  • the pusher 72 is retracted from the supply port 12, and the waste 70 is injected from the hopper 73 into the charging cylinder 71.
  • the pusher 72 is advanced toward the supply port 12 to supply the waste 70 in the charging cylinder 71 to the melting chamber 11.
  • the tip of the pusher 17 2 does not reach the supply port 12. Therefore, a part of the waste 70 remains in the charging cylinder 71.
  • the charging cylinder 71 is substantially closed by the wall of the remaining waste 70.
  • the pusher 72 is retracted, and the waste 70 is injected from the hopper 73 into the charging cylinder 71.
  • the waste 70 is supplied to the melting chamber 11 in the same manner as described above. By repeating the above operation, the waste 70 is continuously supplied to the melting chamber 11 and deposited on the melting chamber 11.
  • the waste 70 near the third melting panner 81 is melted by the flame and combustion heat of the plow gas.
  • the molten waste 70 becomes liquid molten slag, flows along the surface 70 a of the deposited waste 70 a to the front of the melting chamber 11, is blocked by the outflow prevention wall 74, and is stored. You.
  • the molten slag When the molten slag reaches the height of the discharge recess 75, the molten slag flows down into the slag recovery section 20 through the discharge recess 75 and the discharge path 16. The molten slag is cooled and solidified by the cooling liquid in the slag recovery section 20.
  • the solidified slag is a collection conveyor It is carried out from the slag collection hole 76 by 77,78.
  • the melting device 41 has a continuous supply mechanism for continuously feeding the waste 70 into the melting chamber 11. Since the waste 70 is continuously melted, the melting process is efficient.
  • a plurality of third melting parners 81 are attached to a melting burner attachment part 79 supported on a side wall of the melting chamber 11. Since the plurality of third melting pans 81 uniformly heat the waste 70, the waste 70 is efficiently melted.
  • the nozzle 92 of the third melting burner 81 has a gas injection port 93 having an inner diameter larger than the inner diameter of the gas supply pipe 87. Since the decompressed brown gas is emitted from the gas injection port 93, the flame of the brown gas is prevented from reaching far from the nozzle 92, and the flame is concentrated near the nozzle 92.
  • the nozzle 92 of the third melting burner 81 is detachable from the nozzle mounting portion 89. For example, by replacing the nozzle 92 with a different inner diameter of the gas injection port 93, the pressure of the brown gas injected from the gas injection port 93 is changed, so that the size of the flame of the plan gas can be easily increased. Can be changed to
  • Water for cooling the nozzle 92 of the third melting burner 81 is pressurized at the tapered tip of the refrigerant supply pipe 86 and is injected from the refrigerant supply pipe 86.
  • the jetted water surely comes into contact with the nozzle mounting portion 89, so that the nozzle mounting portion 89 and the nozzle 92 are reliably cooled.
  • the nozzle 92 of the third melting burner 81 is indirectly cooled, so that the nozzle 92 is prevented from being melted by the combustion heat of the brown gas.
  • the degree of cooling of the nozzle 92 can be changed, and the pressure of the brown gas can be changed according to the degree of cooling of the nozzle 92.
  • the volume is fine-tuned.
  • the size of the flame of the brown gas can be changed according to the distance between the tip of the nozzle 92 and the surface 70a of the waste 70.
  • the first to third embodiments may be modified as follows.
  • a shield wall may be provided between the supply port 12 and the first melting burner 18.
  • the shield wall prevents the incoming waste 70 from adhering to the first melting burner 18.
  • the first melting It may be immovably fixed to the melting chamber 11.
  • the waste 70 is deposited with the surface 70 a inclined from the supply port 12 toward the discharge path 16, but is not limited thereto. Waste 70 may be deposited so that In this case, the first melting parner 18 is arranged so that the tip surface 18c is horizontal.
  • a transfer means such as a conveyor or a cart is arranged between an outlet for taking out the firing residue of the incinerator 43 and the hoppers 14 and 73 of the melting furnace 10. Good.
  • the firing residue of the incinerator 43 is supplied to the hoppers 14 and 73 automatically or manually by the transfer means.
  • the residue of the incinerator 43 is easily and quickly transferred to the melting furnace 10, so that the working efficiency is improved and the processing time is reduced.
  • a generator of a thermal power plant may be connected to the melting device 41 instead of the incinerator 43 as the thermal energy utilization facility.
  • the processed material is a mixture containing fossil fuels.
  • Other thermal energy utilization equipment is, for example, a boiler device that heats boiler water (the processed material is boiler water) or a gas turbine device that burns a mixture containing fossil fuels.
  • the communication pipe 15b is omitted, a second hopper is provided above the lower charging cylinder 15a, and the waste 7 is placed inside the lower charging cylinder 15a from the second hopper. 0 may be input.
  • the water used for cooling the first molten burner 18 or the nozzle 92 is used.
  • the gas may be supplied to the gas generator 42, and the gas generator 42 may reuse the water to generate brown gas. In this case, since the amount of water used in operation of the waste treatment system 400 is reduced, the operation cost of the waste treatment system 400 is reduced, and energy can be saved. .
  • the steam exhausted from the exhaust duct 36 may be collected and used as a refrigerant for cooling the first melting burner 18. Further, after collecting the water vapor, it may be liquefied and supplied to the gas generator 42 to be used as a raw material of the brown gas or a refrigerant for cooling the first melting burner 18. In addition, this steam may be supplied to a steam utilization facility such as a boiler device or hydroponics. In this case, the waste treatment system The energy efficiency of the system 400 is further improved.
  • the melting chamber 11 and the slag collecting section 20 may be partitioned by a heat-resistant wall made of zirconia.
  • two or more pairs of burner attachment portions 45a may be provided in the smoke exhaust tower 35.
  • third fusion burners 81 may be attached to each fusion burner attachment portion 79. Further, a fusion burner mounting portion having one third fusion burner 81 may be fixed to each side wall of the fusion chamber 11.
  • the third melting burners 81 may be arranged at the same height, or may be arranged at different heights. However, it is preferable that the third melting panner 18 1 is arranged to be shifted in the longitudinal direction of the melting chamber 11.
  • the third melting burner 81 of the third embodiment may be changed to a fourth melting burner 96 shown in FIG.
  • the fourth melting burner 96 includes a vertically extending refrigerant supply pipe 86, a branched refrigerant supply pipe 97 branched from the middle and lower portions of the refrigerant supply pipe 86, and an interior of the branched refrigerant supply pipe 97.
  • a branch gas supply pipe 98 arranged at
  • the branch gas supply pipe 98 penetrates the refrigerant supply pipe 86 and is connected to an intermediate part and a lower part of the gas supply pipe 87 extending vertically.
  • the branch refrigerant supply pipes 97 are respectively screwed to the corresponding first connection cylinders 99.
  • the first connecting cylinder 99 is bent approximately 45 degrees downward.
  • the distal end of the first connecting cylinder 99 is screwed into a cylindrical nozzle fixing portion 100, respectively.
  • a nozzle fixing plate 101 is attached to the tip of the nozzle fixing part 100.
  • the nozzle fixing plate 101 is flush with the inner slope 80 of the fusion burner mounting portion 79.
  • a coolant discharge hole 95 is formed on the peripheral wall of each nozzle fixing portion 100, and a coolant discharge pipe 102 is connected to communicate with the coolant discharge hole 95.
  • the branch gas supply pipes 98 are respectively screwed to the second connecting tubes 103 extending in parallel with the first connecting tubes 99.
  • a cylindrical nozzle 92 is screwed into the distal end of the second connecting cylinder 103.
  • the nozzle 92 penetrates the nozzle fixing plate 101 and protrudes from the nozzle fixing portion 100.
  • the nozzle 92 has a gas injection port 93 having an inner diameter that varies stepwise.
  • the inner diameter of the gas injection port 93 is smaller than the inner diameter of the branch gas supply pipe 98, but close to the tip of the nozzle 92.
  • the gas injection port 93 on the other side is smaller than the side near the branch gas supply pipe 98.
  • the gas supply pipe 87 is connected to a gas generator (not shown).
  • the brown gas flows through the gas supply pipe 87, the branch gas supply pipe 98, and the second connecting cylinder 103, and reaches the gas injection port 93.
  • the brown gas is pressurized stepwise by passing through the gas injection port 93, and the compressed brown gas is injected from the nozzle 92 and burns outside the nozzle 92 to generate a flame.
  • Water as a refrigerant is pressurized and supplied to the refrigerant supply pipe 86.
  • This water cools the branch gas supply pipe 98 and the second connecting cylinder 103 by flowing along the branch refrigerant supply pipe 97 and the first connecting cylinder 99, and further, to the nozzle fixing part 100. Cooling is achieved by flowing along.
  • the water used for cooling is drained through the refrigerant discharge holes 95 and the refrigerant discharge pipes 102.
  • the pressure or volume of the brown gas is changed by adjusting the amount or pressure of the water injected into the refrigerant supply pipe 86.
  • the size of the flame caused by the combustion of the brown gas can be easily changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Chimneys And Flues (AREA)
  • Incineration Of Waste (AREA)

Abstract

A melting device (41) capable of melting waste by cutting out air, comprising a melting burner (18) for burning brown gas in a melting chamber (11) and cutout devices (13a, 26, 34) for cutting out the entry of air into the melting chamber, wherein the cutout devices cut out the entry of air into the melting chamber from the outside of the melting device during the combustion of the brown gas.

Description

溶融装置及び廃棄物処理システム並びにその使用方法  Melting apparatus, waste treatment system and method of using the same
[技術分野] [Technical field]
本発明は、 廃棄物を溶融するための装置及び廃棄物処理システムに関し、 詳し くは、 ゴミの焼却灰や、 アルミニウム、 鉄及ぴ銅のような金属の精鍊又は鎳物の 鎵造によって発生する金属スケールを溶融するための溶融装置、 及びその溶融装 置を備えた廃棄物処理システムに関する。  TECHNICAL FIELD The present invention relates to an apparatus for melting waste and a waste treatment system, and more particularly, it is generated by incineration of garbage or by the purification of metals such as aluminum, iron and copper, or the production of solids. The present invention relates to a melting device for melting a metal scale, and a waste treatment system provided with the melting device.
[背景技術]  [Background technology]
従来の溶融装置は廃棄物を加熱するための溶融炉を有する。 溶融炉は廃棄物を 貯留するための溶融室を有する。 溶融室に貯留された廃棄物は、 溶融室内に配置 された溶融パーナ一により加熱される。 溶融パーナ一は可燃性ガスを燃焼させて 廃棄物を約 1 3 0 0 °Cで加熱する。 さらに高温で廃棄物を加熱する必要がある場 合、 例えばテルミット剤のような溶融促進剤を溶融室に投入して溶融促進剤を着 火させていた。  Conventional melting equipment has a melting furnace for heating the waste. The melting furnace has a melting chamber for storing waste. The waste stored in the melting chamber is heated by a melting parner arranged in the melting chamber. The melting burner burns combustible gas and heats the waste at about 1300 ° C. When it is necessary to heat the waste at a higher temperature, a melting accelerator, such as a thermite, is charged into the melting chamber to ignite the melting accelerator.
ところが、 従来の溶融バーナーの燃料は化石燃料から得られた可燃性ガスであ つたため、 可燃性ガスを燃焼させるために、 溶融室に空気を供給する必要があつ た。 しかし、 可燃性ガスを空気中で燃焼させると、 空気中の窒素が酸化されて窒 素酸化物 (Ν Οχ) が生成される。 また、 可燃性ガスの燃焼時に一酸化炭素 (C ο) 、 二酸化炭素 (c o2) 及ぴ硫黄酸化物 (s ox) が生成される。 そのため、 多量の有害ガスを含む排ガスが従来の溶融装置から排出されていた。 However, since the fuel of the conventional melting burner was flammable gas obtained from fossil fuel, it was necessary to supply air to the melting chamber to burn the flammable gas. However, when combustible gas is burned in air, nitrogen in the air is oxidized to form nitrogen oxides (Ν Οχ). In addition, carbon monoxide (C ο), carbon dioxide (co 2 ), and sulfur oxide (so x ) are generated during the combustion of the combustible gas. For this reason, exhaust gas containing a large amount of harmful gas was discharged from the conventional melting equipment.
[発明の開示]  [Disclosure of the Invention]
本発明の目的は、 燃焼用の空気の供給が不要な溶融装置、 及ぴその溶融装置を 備えた廃棄物処理システムを提供することにある。 本発明の他の目的は、 有害ガ スを排出させなレ、溶融装置の使用方法を提供することにある。  An object of the present invention is to provide a melting device that does not require the supply of combustion air, and a waste treatment system including the melting device. Another object of the present invention is to provide a method of using a melting device that does not discharge harmful gas.
上記の目的を達成するために、 本発明の第 1の態様では、 廃棄物を収容する溶 融室と、 水素と酸素が 2 : 1のモル比で混合されたブラウンガスを燃焼し、 ブラ ゥンガスの炎を前記廃棄物に向けて嘖出させて溶融室内の廃棄物を溶融させる溶 融パーナ一と、 ブラウンガスの燃焼熱で廃棄物を溶融するとき、 溶融装置の外部 から溶融室への空気の流入を遮断する遮断装置とを備える溶融装置が提供される 本発明の第 2の態様では、 上記の溶融装置と、 熱媒体供給管を介して溶融装置 と接続され、 処理物を収容する熱エネルギー利用設備とを備る廃棄物処理システ ムが提供される。 熱エネルギー利用設備は排ガスの一部を熱媒体供給管を通して 溶融装置から受承し、 その排ガスの熱エネルギーを利用して、 処理物を燃焼又は 加熱させる。 In order to achieve the above object, according to a first aspect of the present invention, a melting chamber containing waste and a brown gas in which hydrogen and oxygen are mixed at a molar ratio of 2: 1 are burned, and The melting flame that emits the flame of the gas toward the waste and melts the waste in the melting chamber. When the waste is melted by the combustion heat of the brown gas, air from outside the melting device to the melting chamber And a shut-off device for shutting off the inflow of gas are provided. According to a second aspect of the present invention, there is provided a waste treatment system provided with the above-mentioned melting device and a heat energy utilization facility that is connected to the melting device via a heat medium supply pipe and stores a processed material. . The heat energy utilization equipment receives a part of the exhaust gas from the melting device through the heat medium supply pipe, and uses the thermal energy of the exhaust gas to burn or heat the processed material.
本発明の第 3の態様では、 上記の溶融装置の使用方法が提供される。 その方法 は、 廃棄物を溶融室に供給する工程と、 溶融装置の外部から溶融室への空気の流 入を遮断する工程と、 水素と酸素が 2 : 1のモル比で混合されたブラウンガスを 燃焼させて廃棄物を溶融させる工程とを含む。  According to a third aspect of the present invention, there is provided a method of using the above melting apparatus. The method consists of supplying waste to the melting chamber, shutting off the flow of air from outside the melting device into the melting chamber, and using brown gas in which hydrogen and oxygen are mixed in a 2: 1 molar ratio. Burning the waste to melt the waste.
[図面の簡単な説明]  [Brief description of drawings]
図 1は本発明の第 1実施形態に従う溶融装置の断面図。  FIG. 1 is a sectional view of a melting apparatus according to a first embodiment of the present invention.
図 2は溶融炉の拡大断面図。  Figure 2 is an enlarged sectional view of the melting furnace.
図 3は本発明の第 1実施形態に従う廃棄物処理システムのブロック図。  FIG. 3 is a block diagram of a waste disposal system according to the first embodiment of the present invention.
図 4 A及び図 4 Bは本発明の第 2実施形態に従う溶融装置の溶融炉の断面図。 図 5は本発明の第 3実施形態に従う溶融装置の断面図。  4A and 4B are cross-sectional views of a melting furnace of a melting device according to a second embodiment of the present invention. FIG. 5 is a sectional view of a melting device according to a third embodiment of the present invention.
図 6は図 5の溶融炉の部分破断平面図。  FIG. 6 is a partially broken plan view of the melting furnace of FIG.
図 7は図 6の溶融炉の部分破断正面図。  FIG. 7 is a partially cutaway front view of the melting furnace of FIG.
図 8はパーナ一の断面図。  Fig. 8 is a sectional view of the wrench.
図 9 Aは図 8のバーナーの部分断面図。  FIG. 9A is a partial cross-sectional view of the burner of FIG.
図 9 Bは図 8のバーう ""一の正面図。  FIG. 9B is a front view of one of the bars in FIG.
図 1 0は別例の溶融バーナーの断面図。  FIG. 10 is a sectional view of another example of a fusion burner.
[発明を実施するための最良の形態]  [Best Mode for Carrying Out the Invention]
以下、 本発明の第 1実施形態に従う溶融装置 4 1及び廃棄物処理システム 4 0 0について詳細に説明する。  Hereinafter, the melting device 41 and the waste treatment system 400 according to the first embodiment of the present invention will be described in detail.
図 3に示すように、 廃棄物処理システム 4 0 0は溶融装置 4 1と、 溶融装置 4 1に燃料ガスを供給するためのガス発生装置 4 2と、 溶融装置 4 1に接続された 焼却炉 4 3とを含む。 焼却炉 4 3は溶融装置 4 1の熱エネルギーを利用する設備 である。 溶融装置 4 1は、 廃棄物を溶融するための溶融炉 1 0と、 廃棄物の溶融 によって生じる溶融スラグを回収するためのスラグ回収部 2 0と、 廃棄物を溶融 したときに生じる排ガスを処理するための排ガス処理部 3 0とを有する。 As shown in FIG. 3, the waste treatment system 400 includes a melting device 41, a gas generator 42 for supplying fuel gas to the melting device 41, and an incinerator connected to the melting device 41. Including 4 and 3. The incinerator 43 is a facility that uses the thermal energy of the melting device 41. The melting device 41 has a melting furnace 10 for melting waste, and a melting furnace for waste. It has a slag recovery section 20 for recovering molten slag generated by the process and an exhaust gas processing section 30 for processing exhaust gas generated when the waste is melted.
ガス発生装置 4 2は水を電気分解又は熱分解してブラウンガスを発生する。 プ ラゥンガスは水素ガスと酸素ガスとのモル比が 2 : 1の混合ガスである。 ブラウ ンガスは溶融炉 1 0、 スラグ回収部 2 0及ぴ排ガス処理部 3 0に供給され、 廃棄 物及ぴ排ガスの熱処理するための燃料として使用される。  The gas generator 42 generates brown gas by electrolyzing or thermally decomposing water. Plane gas is a mixed gas with a 2: 1 molar ratio between hydrogen gas and oxygen gas. The brown gas is supplied to the melting furnace 10, the slag recovery unit 20 and the exhaust gas treatment unit 30, and is used as fuel for heat treatment of waste and exhaust gas.
焼却炉 4 3は紙くず、 木くず、 布屑、 プラスチック屑及ぴ可燃ゴミのような処 理物を収容し、 焼却する。 溶融装置 4 1は廃棄物 7 0を溶融したときに生じる排 ガスの一部を焼却炉 4 3に供給する。 焼却炉 4 3は排ガスを熱エネルギーとして 利用する。 処理物の焼却により生じた焼却灰は焼却炉 4 3から溶融炉 1 0へと送 られる。 焼却灰は溶融炉 1 0で溶融される。 処理物の焼却により生じた排ガスは 焼却炉 4 3から排ガス処理部 3 0に戻される。 排ガス処理部 3 0は焼却炉 4 3か ら戻された排ガスと、 焼却炉 4 3に送られなかった排ガスとを処理する。  Incinerator 4 3 contains and incinerates waste such as paper, wood, cloth, plastic and combustible waste. The melting device 41 supplies a part of the exhaust gas generated when the waste 70 is melted to the incinerator 43. The incinerator 43 uses the exhaust gas as thermal energy. The incinerated ash generated by the incineration of the processed material is sent from the incinerator 43 to the melting furnace 10. The incineration ash is melted in the melting furnace 10. Exhaust gas generated by incineration of the treated material is returned from the incinerator 43 to the exhaust gas treatment section 30. The exhaust gas processing unit 30 processes the exhaust gas returned from the incinerator 43 and the exhaust gas not sent to the incinerator 43.
次に、 溶融装置 4 1について説明する。 以下の説明では、 図 1の右方を溶融装 置 4 1の前部とし、 図 1の左方を溶融装置 4 1の後部とする。  Next, the melting device 41 will be described. In the following description, the right side of FIG. 1 is the front of the melting device 41, and the left side of FIG. 1 is the rear of the melting device 41.
図 1及び図 2に示すように、 溶融装置 4 1の左側上部に溶融炉 1 0が配設され る。 溶融炉 1 0はジルコユア製の耐熱壁 6 0によって区画された溶融室 1 1を有 する。 左側の耐熱壁 6 0の上部には、 供給口 1 2が形成される。 投入筒 1 5が供 給口 1 2を介して溶融室 1 1に連通される。 プッシヤー 1 3は投入筒 1 5の内部 で往復動可能に設けられる。 投入筒 1 5の上部にはホッパー 1 4が取り付けられ る。  As shown in FIGS. 1 and 2, a melting furnace 10 is provided at the upper left side of the melting device 41. The melting furnace 10 has a melting chamber 11 defined by a heat-resistant wall 60 made of zirconia. A supply port 12 is formed above the left heat-resistant wall 60. The charging cylinder 15 is connected to the melting chamber 11 via the supply port 12. The pusher 13 is provided to be able to reciprocate inside the charging cylinder 15. A hopper 14 is attached to the upper part of the charging cylinder 15.
廃棄物 7 0は矢印で示すようにホッパー 1 4から投入筒 1 5に供給される。 廃 棄物 7 0は、 焼却炉 4 3の焼却灰、 ゴミ処理場で焼却された焼却灰、 金属の精鍊 又は铸物の鎳造によって生成される金属スケールのような水分をほとんど含有し ない固体、 又は、 汚泥や廃棄薬剤のような水分を含有する物質である。  The waste 70 is supplied from the hopper 14 to the charging cylinder 15 as shown by the arrow. Waste 70 is solids that contain little moisture, such as the incineration ash from incinerators 43, incineration ash incinerated at landfills, metal scales or metal scales produced by the forging of solids. Or a substance containing water, such as sludge or waste chemicals.
図 2で示すように、 投入筒 1 5の内部に廃棄物 7 0が供給された状態で、 プッ シヤー 1 3が供給口 1 2に向かって移動することにより、 投入筒 1 5内の廃棄物 7 0が供給口 1 2から溶融室 1 1に落下する。  As shown in FIG. 2, when the waste 70 is supplied into the charging cylinder 15, the pusher 13 moves toward the supply port 12, thereby causing the waste in the charging cylinder 15 to move. 70 falls from the supply port 12 to the melting chamber 11.
プッシヤー 1 3の先端には遮断装置すなわちシール 1 3 aが設けられており、 プッシヤー 1 3が供給口 1 2に向かって移動した状態で、 シール 1 3 aは供給口 1 2を閉塞する。 At the end of the pusher 13 is provided a blocking device or seal 13a, With the pusher 13 moved toward the supply port 12, the seal 13 a closes the supply port 12.
溶融炉 1 0は排出路 1 6を有する。 溶融室 1 1の底面 1 7は、 排出路 1 6に接 近するに従って高くなるように傾斜している。 傾斜した底面 1 7により、 溶融室 1 1内の廃棄物 7 0は、 左側に偏って堆積される。 そのため、 廃棄物 7 0の表面 7 0 aは供給口 1 2から排出路 1 6に向かって傾斜している。 廃棄物 7 0が排出 路 1 6からこぼれ落ちるのを防止するためのストッパ 1 6 aが底面 1 7の右端に 形成される。  The melting furnace 10 has a discharge path 16. The bottom surface 17 of the melting chamber 11 is inclined so as to become higher as approaching the discharge passage 16. Due to the inclined bottom surface 17, the waste 70 in the melting chamber 11 is deposited on the left side. Therefore, the surface 70 a of the waste 70 is inclined from the supply port 12 toward the discharge path 16. A stopper 16a is formed at the right end of the bottom surface 17 to prevent the waste 70 from spilling out of the discharge channel 16.
堆積された廃棄物 7 0の傾斜した表面 7 0 aと対向するように第 1溶融パーナ 一 1 8が駆動装置すなわちシリンダ 1 9により支持されている。 言い換えると、 先端面 1 8 cは廃棄物 7 0の表面 7 0 aと略平行状になるように、 第 1溶融バー ナー 1 8の先端面 1 8 cは溶融室 1 1の左下隅に向けて配置される。 図 2に示す ように、 第 1溶融バーナー 1 8は、 シリンダ 1 9の伸縮により移動される。  A first melting panner 18 is supported by a drive or cylinder 19 opposite the inclined surface 70a of the deposited waste 70. In other words, the tip surface 18c of the first melting burner 18 faces the lower left corner of the melting chamber 11 so that the tip surface 18c is substantially parallel to the surface 70a of the waste 70. Placed. As shown in FIG. 2, the first melting burner 18 is moved by the expansion and contraction of a cylinder 19.
第 1溶融バーナー 1 8の基端部にはガス供給管 1 8 aを介してガス発生装置 4 2が接続されている。 ガス発生装置 4 2は第 1溶融パーナ一 1 8にブラウンガス を供給する。 第 1溶融バーナー 1 8はブラウンガスを燃焼する。 ブラウンガスの 炎は第 1溶融バーナー 1 8の先端面 1 8 cから廃棄物 7 0の表面 7 0 aに向かつ て嘖出される。 ブラウンガスの燃焼熱により、 廃棄物 7 0が表面 7 0 aから溶融 される。 ブラウンガスは燃焼後に水蒸気のみを生成する。  A gas generator 42 is connected to a base end of the first melting burner 18 via a gas supply pipe 18a. The gas generator 42 supplies brown gas to the first melting parner 18. The first melting burner 18 burns brown gas. The brown gas flame is discharged from the tip surface 18c of the first melting burner 18 toward the surface 70a of the waste 70. Waste 70 is melted from the surface 70a by the combustion heat of the brown gas. Brown gas produces only steam after combustion.
ブラウンガスの炎の外部の温度は、 炎の極近傍では 2 0 0 0〜2 5 0 0 °Cであ るのに対し、 炎からわずかに離れた位置では 1 0 0 0〜1 5 0 0 °Cである。 この ように、 ブラウンガスの炎の温度すなわち燃焼熱は、 炎からの距離の增加に応じ て急激に低下する。 そこで、 第 1溶融バーナー 1 8の先端面 1 8 cと廃棄物 7 0 の表面 7 0 aとの距離 Lは、 ブラウンガスの燃焼熱が最も効率的に廃棄物 7 0に 付与されるように、 約 1 0 O mmに保持される。 尚、 ブラウンガスの炎の近傍に 溶融物がない場合、 溶融室 1 1の温度はほとんど上昇しない。  The temperature outside of the brown gas flame is 200-250 ° C in the immediate vicinity of the flame, whereas 100-150 ° C at a position slightly away from the flame ° C. Thus, the temperature of the brown gas flame, that is, the heat of combustion, drops sharply as the distance from the flame increases. Therefore, the distance L between the tip surface 18c of the first melting burner 18 and the surface 70a of the waste 70 is set so that the heat of combustion of the brown gas is most efficiently applied to the waste 70. , Held at about 10 O mm. When there is no melt near the brown gas flame, the temperature of the melting chamber 11 hardly rises.
先端面 1 8 cのすぐ内側を通る冷却管 1 8 bが第 1溶融バーナー 1 8に接続さ れている。 水又は空気のような冷媒が冷却管 1 8 b内を流れることにより、 第 1 溶融バーナー 1 8の先端面 1 8 cが冷却される。 これにより、 ブラウンガスの燃 焼熱により第 1溶融バーナー 1 8が溶融するのが防止される。 A cooling pipe 18 b passing just inside the tip face 18 c is connected to the first melting burner 18. When the refrigerant such as water or air flows through the cooling pipe 18b, the tip end surface 18c of the first melting burner 18 is cooled. As a result, brown gas fuel The first heat burner 18 is prevented from being melted by the burning heat.
シリンダ 1 9のストロークは約 1 5 O mmである。 この範囲で第 1溶融パーナ 一 1 8が移動されることにより、 表面 7 0 aから約 1 5 O mmの厚さまでの範囲 の廃棄物 7 0が溶融される。 溶融された廃棄物 7 0は、 液状の溶融スラグ 7 0 b となり、 ストッパ 1 6 aを乗り越え、 排出路 1 6を介して排出される。 第 1溶融 パーナ一 1 8から更に離間して堆積された廃棄物 7 0は、 溶融されることなく溶 融室 1 1に残留する。 残留した廃棄物 7 0はブラウンガスの炎から耐熱壁 6 0を 保護する。  The stroke of cylinder 19 is about 15 O mm. By moving the first melting parner 18 in this range, the waste 70 ranging from the surface 70a to a thickness of about 15 Omm is melted. The molten waste 70 becomes a liquid molten slag 70 b, passes over the stopper 16 a, and is discharged through the discharge path 16. The waste 70 accumulated further away from the first melting parner 18 remains in the melting chamber 11 without being melted. The remaining waste 70 protects the heat-resistant wall 60 from brown gas flames.
廃棄物 7 0の溶融により、 窒素酸化物、 一酸化炭素、 二酸化炭素、 硫黄酸化物 、 ダイォキシン等の有害ガスが溶融室 1 1内でー且生成されるが、 2 0 0 0〜2 5 0 0 °Cという高温度のブラウンガスの炎により、 ほとんどの有害ガスは無害な 化合物に分解される。 また、 ブラウンガスの燃焼により生じる水蒸気も水素ガス と酸素ガスに分解される。 水素と酸素の混合ガスと、 分解されなかったわずかの 有害ガスとを含む排ガスが、 溶融スラグ 7 O bとともに溶融室 1 1から排出路 1 6を通って溶融炉 1 0の下流のスラグ回収部 2 0に排出される。  By melting the waste 70, harmful gases such as nitrogen oxides, carbon monoxide, carbon dioxide, sulfur oxides, and dioxins are generated in the melting chamber 11 and are 200 to 250. Most harmful gases are decomposed into harmless compounds by the high temperature of 0 ° C brown gas flame. In addition, water vapor generated by the combustion of brown gas is also decomposed into hydrogen gas and oxygen gas. Exhaust gas containing a mixed gas of hydrogen and oxygen and a small amount of harmful gas that has not been decomposed flows from the melting chamber 11 along with the molten slag 7 Ob through the discharge path 16 to the slag recovery section downstream of the melting furnace 10. Discharged to 20.
次に、 スラグ回収部 2 0について説明する。  Next, the slag collecting section 20 will be described.
図 1に示すように、 スラグ回収部 2 0は溶融炉 1 0の下方に形成されている。 スラグ回収部 2 0は耐熱壁 6 0によって区画された回収室 2 0 aを有する。 排出 路 1 6は回収室 2 0 aの上壁に開口を有する。 回収室 2 0 aの下半部において、 回収漕 2 1が耐熱壁 6 0によって区画されている。 スラグ回収部 2 0の下部にお いて、 回収漕 2 1の右側には回収室 2 0 aと溶融装置 4 1の外部とを連通する第 1吐出路 2 2が形成される。 第 1吐出路 2 2の下方位置には第 1冷却漕 2 3が配 置される。 第 1冷却漕 2 3内には水等の冷却用液体が貯留されている。  As shown in FIG. 1, the slag recovery section 20 is formed below the melting furnace 10. The slag collecting section 20 has a collecting chamber 20a partitioned by a heat-resistant wall 60. The discharge passage 16 has an opening in the upper wall of the collection chamber 20a. In the lower half of the recovery chamber 20a, the recovery tank 21 is partitioned by a heat-resistant wall 60. In the lower part of the slag collection section 20, a first discharge path 22 that connects the collection chamber 20a with the outside of the melting device 41 is formed on the right side of the collection tank 21. A first cooling tank 23 is disposed below the first discharge path 22. A cooling liquid such as water is stored in the first cooling tank 23.
第 2吐出路 2 4は回収漕 2 1の底壁を貫通している。 第 2吐出路 2 4の下方に は水等の冷却用液体が貯留された第 2冷却漕 2 5が配置される。 第 1吐出路 2 2 及ぴ第 2吐出路 2 4にはパルプ 2 6が取り付けられる。 バルブ 2 6を操作するこ とにより、 第 1吐出路 2 2及ぴ第 2吐出路 2 4は開放及び閉塞される。  The second discharge passage 24 penetrates the bottom wall of the recovery tank 21. Below the second discharge path 24, a second cooling tank 25 in which a cooling liquid such as water is stored is arranged. Pulp 26 is attached to the first discharge path 22 and the second discharge path 24. By operating the valve 26, the first discharge path 22 and the second discharge path 24 are opened and closed.
液状の溶融スラグ 7 0 b及ぴ排ガスが溶融室 1 1から回収室 2 0 aに流入する 。 溶融スラグ 7 0 bは回収漕 2 1に貯留される。 回収漕 2 1内の溶融スラグ 7 0 bの貯留量が閾値を越えると、 溶融スラグ 7 0 bはオーバーフローする。 バルブ 2 6を操作して第 1吐出路 2 2を開放することにより、 溶融スラグ 7 0 bは第 1 冷却漕 2 3に滴下される。 溶融スラグ 7 0 bは冷却用液体によって固化されるの で、 固体のスラグが第 1冷却漕 2 3に回収される。 Liquid molten slag 70 b and exhaust gas flow from the melting chamber 11 into the recovery chamber 20 a. The molten slag 70 b is stored in the recovery tank 21. Recovery slag in recovery tank 2 1 7 0 When the stored amount of b exceeds the threshold, the molten slag 70 b overflows. By operating the valve 26 to open the first discharge path 22, the molten slag 70 b is dropped into the first cooling tank 23. Since the molten slag 70 b is solidified by the cooling liquid, the solid slag is collected in the first cooling tank 23.
メンテナンス等の場合には第 2吐出路 2 4を開放する。 これにより、 溶融スラ グ 7 0 bが第 2冷却漕 2 5に落下し、 固体のスラグが回収される。  In the case of maintenance or the like, the second discharge path 24 is opened. As a result, the molten slag 70b falls into the second cooling tank 25, and the solid slag is collected.
回収室 2 0 aにおいて、 回収漕 2 1の上方位置には第 2溶融パーナ一 4 4が配 置される。 第 2溶融パーナ一 4 4はガス発生装置 4 2から供給されたブラウンガ スを燃焼して、 回収室 2 0 aを 1 0 0 0〜2 0 0 0 °Cに加熱する。 第 2溶融バー ナー 4 4はほぼ水平に炎を噴出する。 従って、 排出路 1 6から回収室 2 0 aへ排 出される溶融スラグ 7 0 b及び排ガスは、 '第 2溶融パーナ一 4 4の炎中を通過す ることになる。 これにより、 溶融スラグ 7 0 b中の未溶融の廃棄物 7 0の粒子、 有害ガス等の不純物が分解される。 また、 排ガスに若干量含まれる有害ガスはほ ぼ完全に分解され、 取り除かれる。 従って、 回収室 2 0 a内の排ガス及び溶融ス ラグ 7 0 bは有害ガスを含まない。  In the recovery chamber 20a, a second melting parner 144 is disposed above the recovery tank 21. The second melting parner 44 burns the brown gas supplied from the gas generator 42 and heats the recovery chamber 20a to 100 to 200 ° C. The second melting burner 4 blows out the flame almost horizontally. Therefore, the molten slag 70 b and the exhaust gas discharged from the discharge path 16 to the recovery chamber 20 a pass through the flame of the second molten parner 144. As a result, impurities such as particles of unmolten waste 70 and harmful gas in the molten slag 70b are decomposed. In addition, the harmful gas contained in the exhaust gas in a small amount is almost completely decomposed and removed. Therefore, the exhaust gas and the molten slag 70b in the recovery chamber 20a do not contain harmful gases.
次に、 排ガス処理部 3 0について説明する。  Next, the exhaust gas processing section 30 will be described.
排ガス処理部 3 0は、 スラグ回収部 2 0の下流に形成された排気部 3 1 a、 排 気部 3 1 aに接続された排煙塔 3 5、 及ぴ排煙塔 3 5に接続された排気ダクト 3 6とを含む。 排気部 3 1 aは排気路 3 1により回収室 2 0 aに連通される。 排煙 塔 3 5は排気路 3 1の排気口 3 2に接続される。 排気ダクト 3 6は排煙塔 3 5の 上端に接続される。  The exhaust gas treatment section 30 is connected to an exhaust section 31 a formed downstream of the slag recovery section 20, a smoke tower 35 connected to the exhaust section 31 a, and a smoke tower 35. Exhaust duct 36. The exhaust part 31 a is communicated with the collection chamber 20 a by the exhaust path 31. The flue gas tower 35 is connected to the exhaust port 32 of the exhaust path 31. The exhaust duct 36 is connected to the upper end of the flue gas tower 35.
回収室 2 0 aの排ガスは、 複数の障壁 3 3に衝突しながら排気路 3 1に沿って 排気口 3 2へ向かって流れる。 これにより、 排ガスに含まれる煤等の不純物が除 去される。 排ガスは排気口 3 2、 排煙塔 3 5及び排気ダクト 3 6を通って溶融装 置 4 1の外部へ排出される。  The exhaust gas in the recovery chamber 20a flows toward the exhaust port 32 along the exhaust path 31 while colliding with the plurality of barriers 33. Thereby, impurities such as soot contained in the exhaust gas are removed. The exhaust gas is discharged to the outside of the melting device 41 through the exhaust port 32, the smoke exhaust tower 35, and the exhaust duct 36.
ファン 3 4すなわち遮断装置が排煙塔 3 5の内部に設けられている。 ファン 3 4が回転される時、 排煙塔 3 5内の排ガスは排気ダクト 3 6へと送られる。 一方 、 ファン 3 4が停止している時、 排気ダクト 3 6は排煙塔 3 5から遮断される。 従って、 排ガスの流れは止められる。 冷却管 1 8 bの一部は波状に形成され、 排気ダクト 3 6に収容される。 冷却管 1 8 b内を流れる冷媒は、 排気ダクト 3 6内の排ガスにより予熱される。 第 1溶 融バーナー 1 8は予熱された冷媒で冷却される。 これにより、 第 1溶融バーナー 1 8は急激な温度変化を受けないので、 第 1溶融バーナー 1 8の破損が防止され る。 A fan 34 or shut-off device is provided inside the flue gas tower 35. When the fan 34 is rotated, the exhaust gas in the flue gas tower 35 is sent to the exhaust duct 36. On the other hand, when the fan 34 is stopped, the exhaust duct 36 is shut off from the exhaust tower 35. Therefore, the flow of exhaust gas is stopped. A part of the cooling pipe 18 b is formed in a wavy shape and housed in the exhaust duct 36. The refrigerant flowing in the cooling pipe 18 b is preheated by the exhaust gas in the exhaust duct 36. The first melting burner 18 is cooled by the preheated refrigerant. This prevents the first melting burner 18 from being damaged because the first melting burner 18 does not receive a rapid temperature change.
複数の排気処理バーナー 4 5が排気路 3 1に設けられている。 複数の排気処理 バーナー 4 5はガス発生装置 4 2から供給されたブラウンガスを燃焼する。 ブラ ゥンガスの燃焼熱により排気路 3 1は 8 5 0〜1 5 0 0 °Cに加熱される。 排ガス 中の有害ガスは、 排気路 3 1を通過する時に、 ブラウンガスの燃焼熱により、 水 素と酸素の混合ガスに完全に分解される。  A plurality of exhaust burners 45 are provided in the exhaust passage 31. The plurality of exhaust treatment burners 45 burn the brown gas supplied from the gas generator 42. The exhaust gas 31 is heated to 850 to 150 ° C. by the combustion heat of the blown gas. The harmful gas in the exhaust gas is completely decomposed into a mixed gas of hydrogen and oxygen by the heat of combustion of the brown gas when passing through the exhaust passage 31.
水素と酸素の混合ガスは排煙塔 3 5を通過中に 4 5 0 ± 5 0 °Cに冷却されて水 蒸気となる。 水蒸気の熱が排気ダクト 3 6の冷却管 1 8 bを流れる冷媒に伝達さ れる。 排気ダクト 3 6において、 約 1 0 0 °Cに冷却された水蒸気が排出される。 回収室 2 0 aと排気路 3 1との境界に設けられた境界チャンバ一 4 6は、 熱媒 体供給管 4 7を介して焼却炉 4 3に接続されている。 境界チャンバ一 4 6を通過 する排ガスの一部は熱媒体供給管 4 7を介して焼却炉 4 3に流れる。 境界チャン バー 4 6を通過する排ガスの温度は 9 0 0〜2 0 0 0 °Cであるので、 その排ガス は焼却炉 4 3内の処理物を焼却するに足る十分な熱エネルギーを有する。  The mixed gas of hydrogen and oxygen is cooled to 450 ± 50 ° C while passing through the flue gas tower 35 to become water vapor. The heat of the steam is transmitted to the refrigerant flowing through the cooling pipe 18 b of the exhaust duct 36. In the exhaust duct 36, the steam cooled to about 100 ° C is discharged. A boundary chamber 46 provided at the boundary between the recovery chamber 20a and the exhaust path 31 is connected to the incinerator 43 via a heat medium supply pipe 47. Part of the exhaust gas passing through the boundary chamber 46 flows into the incinerator 43 via the heat medium supply pipe 47. Since the temperature of the exhaust gas passing through the boundary chamber 46 is 900 to 200 ° C., the exhaust gas has enough heat energy to incinerate the treated material in the incinerator 43.
排ガス移送管 4 8は焼却炉 4 3と排気部 3 1 aとを接続する。 詳しくは、 排ガ ス移送管 4 8は境界チヤンバー 4 6の下流の排気路 3 1に連通する。 有害ガスを 含む、 焼却炉 4 3の排ガスは排ガス移送管 4 8を介して排気路 3 1へ送られる。 焼却炉 4 3から排気部 3 1 aへ送られた排ガスは、 排気路 3 1において複数の排 気処理バーナー 4 5で加熱される。 これにより、 排ガス中の有害ガスが分解され 、 水素と酸素の混合ガスとなる。  An exhaust gas transfer pipe 48 connects the incinerator 43 and the exhaust part 31a. Specifically, the exhaust gas transfer pipe 48 communicates with the exhaust passage 31 downstream of the boundary chamber 46. Exhaust gas from the incinerator 43, including harmful gases, is sent to an exhaust passage 31 via an exhaust gas transfer pipe 48. The exhaust gas sent from the incinerator 43 to the exhaust part 31a is heated in the exhaust path 31 by a plurality of exhaust treatment burners 45. As a result, the harmful gas in the exhaust gas is decomposed into a mixed gas of hydrogen and oxygen.
溶融装置 4 1内において、 廃棄物 7 0はブラウンガスの燃焼により生じる高温 " 度の炎によって迅速かつ確実に溶融される。 廃棄物 7 0の溶融によって有害ガス が生じた場合でも、 有害ガスは 2 0 0 0〜2 5 0 0 °Cという高温度の炎によって 燃焼され、 分解されて無害化される。  In the melting device 41, the waste 70 is quickly and reliably melted by the high-temperature flame generated by the combustion of the brown gas. Even if the melting of the waste 70 produces a harmful gas, It is burned by a flame at a high temperature of 2000 to 2500 ° C, decomposed, and rendered harmless.
溶融装置 4 1はプッシヤー 1 3のシール 1 3 a、 スラグ回収部 2 0のバルブ 2 6、 及び排気部 3 1 aのファン 3 4等の遮断装置を制御することにより、 溶融室 1 1への空気の流れを遮る。 これにより.、 溶融室 1 1は外気によって冷却されずMelting device 4 1 is a pusher 1 3 seal 1 3 a, slag recovery section 20 valve 2 6. By controlling the shut-off device such as the fan 34 of the exhaust unit 31a, the flow of air to the melting chamber 11 is blocked. Due to this, the melting chamber 1 1 is not cooled by the outside air
、 ブラウンガスの燃焼熱によって高温度に維持される。 It is maintained at a high temperature by the heat of combustion of brown gas.
詳しくは、 溶融室 1 1の温度は溶融炉 1 0に設けられた複数の温度センサ 1 0 aにより検出される。 検出された溶融室 1 1の温度に基づいて、 プッシヤー 1 3 のシール 1 3 a、 バルブ 2 6及びファン 3 4が操作され、 空気の流れの遮断が制 御される。 例えば、 溶融室 1 1の温度が 2 0 0 0〜2 5 0 0 °Cの場合、 ブラウン ガスに不純物が混じって燃焼温度が低下しないように、 遮断装置は溶融室 1 1に 空気が流れ込むのを遮断する。  Specifically, the temperature of the melting chamber 11 is detected by a plurality of temperature sensors 10 a provided in the melting furnace 10. Based on the detected temperature of the melting chamber 11, the seal 13 a of the pusher 13, the valve 26 and the fan 34 are operated to control the shutoff of the air flow. For example, if the temperature of the melting chamber 11 is 2000 to 2500 ° C, the shut-off device will prevent air from flowing into the melting chamber 11 so that the brown gas will not mix with impurities and lower the combustion temperature. Cut off.
以下、 廃棄物処理システム 4 0 0の作用について説明する。  Hereinafter, the operation of the waste treatment system 400 will be described.
図 3の廃棄物処理システム 4 0 0を使用するときには、 まず溶融装置 4 1のス ラグ回収部 2 0のバルブ 2 6を閉じ、 排気部 3 1 aのファン 3 4を停止する。 ガ ス発生装置 4 2からバーナー 1 8、 4 4、 4 5にブラウンガスを供給し、 点火す る。 温度センサ 1 0 aが、 溶融室 1 1の温度が 1 5 0 0 °Cまで達したことを検出 した後、 投入筒 1 5から溶融室 1 1内へ廃棄物 7 0が供給される。 廃棄物 7 0の 一部は供給口 1 2を通過した直後に溶融される。  When using the waste treatment system 400 shown in FIG. 3, first, the valve 26 of the slag recovery section 20 of the melting apparatus 41 is closed, and the fan 34 of the exhaust section 31a is stopped. The brown gas is supplied from the gas generator 42 to the burners 18, 44, 45 and ignited. After the temperature sensor 10 a detects that the temperature of the melting chamber 11 has reached 150 ° C., the waste 70 is supplied from the charging cylinder 15 into the melting chamber 11. A part of the waste 70 is melted immediately after passing through the supply port 12.
プッシヤー 1 3をスライドさせて、 シール 1 3 aで供給口 1 2を閉塞する。 こ れにより、 空気が溶融装置 4 1の外部から溶融室 1 1へ流れ込むのが完全に遮断 される。 溶融室 1 1の温度が 2 0 0 0 °Cに達した後、 シリンダ 1 9を伸張させて 、 第 1溶融バーナー 1 8を廃棄物 7 0の表面 7 0 aから約 1 0 0 mmの位置に移 動させる。 堆積された廃棄物 7 0は溶融し始め、 液状の溶融スラグ 7 0 bとなる 。 溶融スラグ 7 0 bは表面 7 0 aに沿って流れ落ち、 排出路 1 6を通過して、 回 収漕 2 1に回収される。  Slide the pusher 13 to close the supply port 12 with the seal 13a. As a result, the flow of air from outside the melting device 41 to the melting chamber 11 is completely blocked. After the temperature of the melting chamber 11 reaches 200 ° C., the cylinder 19 is extended and the first melting burner 18 is moved to a position approximately 100 mm from the surface 70 a of the waste 70. Move to. The deposited waste 70 begins to melt and becomes liquid molten slag 70b. The molten slag 70 b flows down along the surface 70 a, passes through the discharge channel 16, and is collected in the recovery tank 21.
第 1溶融バーナー 1 8は廃棄物 7 0を溶融しながら前進され、 約 1 5 0 mm前 進した位置で停止する。 元の表面 7 0 aの位置から約 1 5 0 m mの厚さの廃棄物 7 0がほぼ完全に溶融される。 すると、 バーナー 1 8の炎の周囲に溶融物がなく なるので、 溶融室 1 1の温度が低下し始める。 この温度低下が温度センサ 1 0 a によって検知されると、 がシリンダ 1 9を収縮して第 1溶融バーナー 1 8を後退 させる。 これとほぼ同時に、 スラグ回収部 2 0のパルプ 2 6が開放される。 回収 漕 2 1の溶融スラグ 7 0 bは第 1吐出路 2 2を介して落下し、 第 1冷却漕 2 3に 回収される。 The first melting burner 18 is advanced while melting the waste 70, and stops at a position advanced by about 150 mm. Approximately 150 mm thick waste 70 from the position of the original surface 70a is almost completely melted. Then, there is no melt around the flame of the burner 18, and the temperature of the melting chamber 11 starts to decrease. When this temperature decrease is detected by the temperature sensor 10a, the cylinder contracts and the first melting burner 18 is retracted. At about the same time, the pulp 26 of the slag recovery section 20 is opened. Collection The molten slag 70 b of the tank 21 falls through the first discharge path 22 and is collected in the first cooling tank 23.
廃棄物 7 0の溶融によって有害ガスが一旦生じる。 その有害ガスの大部分は、 2 0 0 0〜 2 5 0 0 °Cと非常に高温度の第 1溶融パーナ一 1 8の炎により、 溶融 室 1 1内で燃焼され、 分解される。 残りの有害ガスは、 回収室 2 0 aの第 2溶融 バーナー 4 4によりほぼ完全に燃焼され、 分解される。 ブラウンガスの燃焼によ り生じた水蒸気は、 ブラウンガスの燃焼熱により、 水素ガスと酸素ガスに分解さ れる。  Hazardous gas is generated once by melting the waste 70. Most of the harmful gas is burned and decomposed in the melting chamber 11 by the flame of the first melting parner 18 at a very high temperature of 2000 to 2500 ° C. The remaining harmful gas is almost completely burned and decomposed by the second melting burner 44 in the recovery chamber 20a. Water vapor generated by the combustion of brown gas is decomposed into hydrogen gas and oxygen gas by the heat of combustion of the brown gas.
水素と酸素の混合ガスは、 排ガスとして回収室 2 0 aから排気路 3 1へと送ら れる。 排ガスの温度が 9 0 0 °C未満の場合には、 排ガスは境界チャンパ一 4 6を 通過して排気路 3 1へと送られる。 他方、 排ガスの温度が 9 0 0 °C以上の場合に は、 この排ガスは熱媒体供給管 4 7を介して焼却炉 4 3へ供給され、 焼却炉 4 3 内の処理物を燃焼させるための熱エネルギーとして利用される。 焼却炉 4 3で生 じた有害ガスを含む排ガスは、 排ガス移送管 4 8を介して排気路 3 1へ送られ、 境界チャンパ一 4 6内を通過した排ガスに合流する。 排気路 3 1の排ガスに含ま れる有害ガスは、 複数の排気処理バーナー 4 5の炎により分解され、 水素と酸素 の混合ガス力 S排煙塔 3 5へと送られる。 ファン 3 4が停止している期間、 その混 合ガスは排煙塔 3 5内に保持される。  The mixed gas of hydrogen and oxygen is sent as exhaust gas from the recovery chamber 20a to the exhaust passage 31. When the temperature of the exhaust gas is lower than 900 ° C., the exhaust gas passes through the boundary champer 46 and is sent to the exhaust passage 31. On the other hand, when the temperature of the exhaust gas is 900 ° C. or more, the exhaust gas is supplied to the incinerator 43 through the heat medium supply pipe 47, and is used for burning the treated material in the incinerator 43. Used as heat energy. Exhaust gas containing harmful gas generated in the incinerator 43 is sent to the exhaust path 31 via the exhaust gas transfer pipe 48 and merges with the exhaust gas passing through the boundary champer 46. The harmful gas contained in the exhaust gas of the exhaust passage 31 is decomposed by the flames of the plurality of exhaust treatment burners 45 and sent to the mixed gas power of hydrogen and oxygen S flue gas tower 35. While the fan 34 is stopped, the mixed gas is retained in the flue gas tower 35.
溶融炉 1 0における溶融処理が一旦停止されると、 ファン 3 4が回転される。 混合ガスはファン 3 4の回転により、 排煙塔 3 5から排気ダクトへ送られる。 こ のとき、 水素と酸素の混合ガスは、 排気ダクト 3 6へ達するまでに 4 5 0 °C程度 まで冷やされて水蒸気となる。 排気ダクト 3 6内では、 水蒸気の熱が冷却管 1 8 b内の冷媒に伝達される。 約 1 0 0 °Cに冷やされた水蒸気が排気ダクト 3 6から 排出される。  Once the melting process in the melting furnace 10 is stopped, the fan 34 is rotated. The mixed gas is sent from the flue gas tower 35 to the exhaust duct by the rotation of the fan 34. At this time, the mixed gas of hydrogen and oxygen is cooled down to about 450 ° C. before reaching the exhaust duct 36 and becomes steam. In the exhaust duct 36, the heat of the steam is transferred to the refrigerant in the cooling pipe 18b. Water vapor cooled to about 100 ° C. is discharged from the exhaust duct 36.
スラグ回収部 2 0でスラグ 7 0 bが回収され、 排ガス処理部 3 0から水蒸気が 排出され、 かつ、 溶融室 1 1の温度が約 1 5 0 0 °Cまで下降した後、 上記操作で 溶融された量と等しい量の新たな廃棄物 7 0が投入筒 1 5から溶融室 1 1内へ供 給される。 新たな廃棄物 7 0は、 例えば、 焼却炉 4 3で生じた焼成残滓である。 上記操作が繰り返されることにより、 新たな廃棄物 7 0が溶融される。 第 1実施形態によれば、 以下の利点が得られる。 After the slag 70b is collected in the slag recovery section 20, steam is discharged from the exhaust gas processing section 30, and the temperature of the melting chamber 11 drops to about 1500 ° C. The same amount of new waste 70 as the supplied amount is supplied from the charging cylinder 15 into the melting chamber 11. The new waste 70 is, for example, a burning residue generated in the incinerator 43. By repeating the above operation, new waste 70 is melted. According to the first embodiment, the following advantages can be obtained.
第 1実施形態の溶融装置 4 1の燃料はブラウンガスである。 ブラウンガスは空 気を供給することなく燃焼され、 その燃焼熱は極めて高い。 ブラウンガスの燃焼 温度は 2 0 0 0〜2 5 0 0 °Cと非常に高いので、 窒素酸化物、 一酸化炭素、 二酸 化炭素、 硫黄酸化物、 及び、 ダイォキシンは燃焼され、 分解される。 そのため、 有害ガスは溶融装置 4 1から排出されない。 また、 ブラウンガスの燃焼時にはプ ッシヤー 1 3のシール 1 3 a、 スラグ回収部 2 0のノ ルブ 2 6及ぴ排気部 3 1 a のファン 3 4により、 溶融装置 4 1の外部から溶融室 1 1へ空気が流入するのが 遮断される。 これにより、 ブラウンガスに不純物が混じり、 燃焼温度が低下する ことが防止される。 また、 分解される前の有害ガスが溶融装置 4 1から漏れるの が防止される。  The fuel of the melting device 41 of the first embodiment is brown gas. Brown gas is burned without supplying air, and the heat of combustion is extremely high. Since the combustion temperature of brown gas is extremely high at 2000 to 2500 ° C, nitrogen oxides, carbon monoxide, carbon dioxide, sulfur oxides, and dioxins are burned and decomposed . Therefore, no harmful gas is discharged from the melting device 41. In addition, during the combustion of brown gas, the melting chamber 41 is supplied from the outside of the melting unit 41 by the seal 13 a of the pusher 13, the knob 26 of the slag recovery section 20 and the fan 34 of the exhaust section 31 a. Air flow to 1 is blocked. This prevents the brown gas from being mixed with impurities and lowering the combustion temperature. Further, leakage of the harmful gas before being decomposed from the melting device 41 is prevented.
溶融装置 4 1は移動可能な第 1溶融バーナー 1 8を有する。 廃棄物 7 0の供給 時には、 第 1溶融バーナー 1 8は後退される。 このため、 第 1溶融バーナー 1 8 に廃棄物 7 0が付着するのが防止されるので、 第 1溶融バーナー 1 8の破損は防 止される。 他方、 廃棄物 7 0を溶融する時には、 第 1溶融バーナー 1 8は前進さ れる。 他方、 所定量の廃棄物 7 0を溶融した後には、 廃棄物 7 0の溶融を一時的 に停止すべく、 第 1溶融バーナー 1 8はー且後退される。 従って、 廃棄物 7 0は いわゆるパッチ式処理で溶融装置 4 1により確実に溶融される。  The melting device 41 has a movable first melting burner 18. When supplying the waste 70, the first melting burner 18 is retracted. This prevents the waste 70 from adhering to the first molten burner 18, thereby preventing the first molten burner 18 from being damaged. On the other hand, when melting the waste 70, the first melting burner 18 is advanced. On the other hand, after a predetermined amount of the waste 70 has been melted, the first melting burner 18 is retracted to temporarily stop the melting of the waste 70. Therefore, the waste 70 is reliably melted by the melting device 41 in a so-called patch-type process.
排気路 3 1に配置された複数の排気処理バーナー 4 5により、 排気路 3 1を通 過中の排ガスは加熱される。 排ガス中の窒素酸化物、 一酸化炭素、,二酸化炭素、 硫黄酸化物、 ダイォキシン等の有害ガスは分解されるので、 有害ガスは溶融装置 4 1から排出されない。  The exhaust gas passing through the exhaust path 31 is heated by the plurality of exhaust processing burners 45 arranged in the exhaust path 31. Hazardous gases such as nitrogen oxides, carbon monoxide, carbon dioxide, sulfur oxides, and dioxins in the exhaust gas are decomposed, and no harmful gases are discharged from the melting device 41.
廃棄物処理システム 4 0 0は、 溶融装置 4 1と、 その溶融装置 4 1に接続され た焼却炉 4 3とを含む。 溶融装置 4 1の熱エネルギー、 すなわち、 廃棄物 7 0の 溶融によって生じた高温度の排気ガスが、 焼却炉 4 3で処理物を燃焼させるため の熱エネルギ,一として利用される。 廃棄物 7 0を溶融処理の余剰エネルギーは無 駄なく効率的に利用されるので、 焼却炉 4 3の消費エネルギーは少ない。 従って 、 廃棄物処理システム 4 0 0の消費エネレギ一は比較的低い。  The waste treatment system 400 includes a melting device 41 and an incinerator 43 connected to the melting device 41. The thermal energy of the melting device 41, that is, the high-temperature exhaust gas generated by the melting of the waste 70 is used as thermal energy for burning the processed material in the incinerator 43. Since the surplus energy of melting waste 70 is used efficiently and efficiently, the incinerator 43 consumes little energy. Therefore, the energy consumption of the waste treatment system 400 is relatively low.
焼却炉 4 3の排ガスは排ガス移送管 4 8を介して溶融装置 4 1に送られ、 廃棄 物 7 0の排ガスとともに、 排ガス処理部 3 0で処理される。 廃棄物処理システム 4 0 0の排ガスは廃棄物処理システム 4 0 0内で処理され、 窒素酸化物、 一酸化 炭素、 二酸化炭素、 硫黄酸化物、 ダイォキシン等の有害ガスは廃棄物処理システ ム 4 0 0から排出されない。 言い換えると、 廃棄物処理システム 4 0 0は有害ガ スに関してクローズドシステムである。 Exhaust gas from the incinerator 43 is sent to the melting device 41 via the exhaust gas transfer pipe 48, where it is discarded. The waste gas is treated in the exhaust gas treatment section 30 together with the exhaust gas of the substance 70. Exhaust gas from waste treatment system 400 is treated in waste treatment system 400, and harmful gases such as nitrogen oxides, carbon monoxide, carbon dioxide, sulfur oxides, and dioxins are treated as waste treatment system 400. Not emitted from 0. In other words, the waste treatment system 400 is a closed system for hazardous gases.
焼却炉 4 3の排ガスと溶融装置 4 1の排ガスは排ガス処理部 3 0で一括して無 害化される。 言い換えると、 排ガス処理部 3 0は焼却炉 4 3の排ガスを処理する ための装置と、 溶融装置 4 1の排ガスを処理するための装置とを兼ねている。 従 つて、 廃棄物処理システム 4 0 0の排ガスは効率的に処理される。  The exhaust gas from the incinerator 43 and the exhaust gas from the melting device 41 are collectively made harmless by the exhaust gas treatment section 30. In other words, the exhaust gas treatment unit 30 serves both as a device for treating the exhaust gas from the incinerator 43 and a device for treating the exhaust gas from the melting device 41. Therefore, the exhaust gas of the waste treatment system 400 is efficiently treated.
焼却炉 4 3内の焼成残滓は溶融炉 1 0で溶融されてスラグとされ、 廃棄物処理 システム 4 0 0の外部に排出されない。 従って、 ゴミ等の処理物は焼却され、 焼 成残滓が生じた場合には焼成残滓は溶融される。 言い換えると、 廃棄物処理シス テム 4 0 0は、 有害物や有害ガスを排出せずに、 廃棄物 7 0及び処理物を処理す るクローズドシステムである。 廃棄物処理システム 4 0 0は、 焼成残滓や有害ガ スを効率的に処理し、 産業廃棄物を排出しない、 いわゆるゼロ 'ェミッションシ ステムである。  The burning residue in the incinerator 43 is melted in the melting furnace 10 to form slag, and is not discharged outside the waste treatment system 400. Therefore, processed materials such as refuse are incinerated, and if there is any burning residue, the burning residue is melted. In other words, the waste treatment system 400 is a closed system that treats waste 70 and treated materials without emitting harmful substances and harmful gases. The waste treatment system 400 is a so-called zero emission system that efficiently treats burning residues and harmful gases and does not discharge industrial waste.
熱媒体供給管 4 7は境界チャンバ一 4 6に接続され、 排ガス移送管 4 8は境界 チャンバ一 4 6よりも下流の排気路 3 1に接続されている。 このため、 焼却炉 4 3の排ガスは熱媒体供給管 4 7を通って焼却炉 4 3に戻されない。 そのため、 有 害ガスは排ガス処理部 3 0で効率的に処理される。  The heat medium supply pipe 47 is connected to the boundary chamber 46, and the exhaust gas transfer pipe 48 is connected to the exhaust path 31 downstream of the boundary chamber 46. Therefore, the exhaust gas from the incinerator 43 is not returned to the incinerator 43 through the heat medium supply pipe 47. Therefore, the harmful gas is efficiently treated in the exhaust gas treatment section 30.
以下、 本発明の第 2実施形態について第 1実施形態との相違点を中心に説明す る。  Hereinafter, the second embodiment of the present invention will be described focusing on the differences from the first embodiment.
図 4 Aに示すように、 溶融炉 1 0は溶融室 1 1の下部に形成された下側供給口 1 2 aを有する。 下側供給口 1 2 aには筒状の下側投入筒 1 5 aが接続されてい る。 下側投入筒 1 5 aは連通管 1 5 bを介して上側投入筒 1 5と接続されている 下側投入筒 1 5 a内には下側プッシヤー 1 3 bが移動可能に配置されている。 下側プッシヤー 1 3 bの先端に取着されたシール 1 3 aにより、 下側供給口 1 2 aは選択的に閉鎖される。 下側供給口 1 2 aを開放し、 かつ、 上側の供給口 1 2を上側のプッシヤー 1 3 で閉塞した状態で、 廃棄物 7 0がホッパー 1 4から連通管 1 5 bを介して下側投 入筒 1 5 aに供給される。 下側プッシヤー 1 3 bを押し込むことにより、 下側投 入筒 1 5 aの廃棄物 7 0は溶融室 1 1へ供給される。 As shown in FIG. 4A, the melting furnace 10 has a lower supply port 12a formed at the lower part of the melting chamber 11. A cylindrical lower charging cylinder 15a is connected to the lower supply port 12a. The lower charging cylinder 15a is connected to the upper charging cylinder 15 via the communication pipe 15b. The lower pusher 13b is movably arranged in the lower charging cylinder 15a. . The lower supply port 12a is selectively closed by the seal 13a attached to the tip of the lower pusher 13b. With the lower supply port 12 a open and the upper supply port 12 closed with the upper pusher 13, waste 70 flows from the hopper 14 to the lower side via the communication pipe 15 b. It is supplied to the input cylinder 15a. By pushing down the lower pusher 13 b, the waste 70 in the lower inlet cylinder 15 a is supplied to the melting chamber 11.
下側投入筒 1 5 aから溶融室 1 1に廃棄物 7 0を押し出すことにより、 新たな 廃棄物 7 0が溶融室 1 1内の廃棄物 7 0の下部、 詳しくは、 第 1溶融バーナー 1 8の先端面 1 8 cから遠い位置に供給される。 下側投入筒 1 5 aから新たな廃棄 物 7 0の供給を複数回操り返すと、 やがて図 4 Bに示すように、 廃棄物 7 0の表 面 7 0 aの傾斜角度が変化する。 廃棄物 7 0の表面 7 0 aの傾斜角度の変化に対 応するように、 第 1溶融バーナー 1 8はシリンダ 1 9に対して摇動可能に支持さ れている。  By extruding waste 70 from the lower charging cylinder 15 a into the melting chamber 11 1, new waste 70 is placed below the waste 70 in the melting chamber 11, specifically, the first melting burner 1 Supplied to a position far from the end face 18 c of 8. When the supply of new waste 70 is repeated several times from the lower charging cylinder 15a, the inclination angle of the surface 70a of the waste 70 changes as shown in FIG. 4B. The first melting burner 18 is movably supported with respect to the cylinder 19 so as to respond to the change in the inclination angle of the surface 70 a of the waste 70.
詳しくは、 第 1溶融バーナー 1 8は図示しない揺動機構を備えたシリンダ 1 9 の先端に回動軸 1 8 dを介して回動可能に取り付けられる。 廃棄物 7 0の表面 7 0 aの傾斜角度の変化に応じて、 先端面 1 8 cが廃棄物 7 0の表面 7 0 aと略平 行状になるように、 第 1溶融バーナー 1 8は図示しない摇動機構によって回動軸 1 8 dの周りで回動される。 図示しないが、 第 1溶融バーナー 1 8内には、 第 1 実施形態のガス供給管及ぴ冷却管が配置されている。  More specifically, the first melting burner 18 is rotatably attached to the tip of a cylinder 19 having a swing mechanism (not shown) via a rotation shaft 18d. The first melting burner 18 is shown so that the tip surface 18c is substantially parallel to the surface 70a of the waste 70 according to the change in the inclination angle of the surface 70a of the waste 70. Not pivoted about the pivot axis 18d by the pivot mechanism. Although not shown, the gas supply pipe and the cooling pipe of the first embodiment are arranged in the first melting burner 18.
第 2実施形態の溶融装置 4 1の作用を説明する。  The operation of the melting device 41 of the second embodiment will be described.
まず、 第 1実施形態で説明した手順で、 廃棄物 7 0を上側の投入筒 1 5から溶 融室 1 1に供給し、 廃棄物 7 0を溶融する。 廃棄物 7 0の溶融後、 次のようにし て、 新たな廃棄物 7 0が溶融室 1 1に供給される。 すなわち、 ホッパー 1 4から 連通管 1 5 bを介して下側投入筒 1 5 aに廃棄物 7 0が供給される。 溶融室 1 1 の温度が下降し始めたことが温度センサ 1 0 aにより検知されると、 下側プッシ ヤー 1 3 bが下側供給口 1 2 aへ移動される。 これにより、 新たな廃棄物 7 0が 、 堆積されている廃棄物 7 0の後方に押し込まれる。  First, according to the procedure described in the first embodiment, waste 70 is supplied from the upper charging cylinder 15 to the melting chamber 11, and the waste 70 is melted. After the melting of the waste 70, new waste 70 is supplied to the melting chamber 11 as follows. That is, the waste 70 is supplied from the hopper 14 to the lower charging cylinder 15a via the communication pipe 15b. When the temperature sensor 10a detects that the temperature of the melting chamber 11 has started to decrease, the lower pusher 13b is moved to the lower supply port 12a. This pushes new waste 70 behind the accumulated waste 70.
廃棄物 7 0の追加により、 廃棄物 7 0の表面 7 0 aの傾斜角度が変化する。 第 1溶融バーナー 1 8の先端面 1 8 cが廃棄物 7 0の表面 7 0 aに対して略平行と ならないため、 溶融室 1 1の温度が上昇しない。 温度センサ 1 0 aにより溶融室 1 1の温度が上昇していないことが検知されると、 揺動機構が作動して第 1溶融 バー "一 1 8が回動される。 The addition of the waste 70 changes the inclination angle of the surface 70 a of the waste 70. Since the tip surface 18c of the first melting burner 18 is not substantially parallel to the surface 70a of the waste 70, the temperature of the melting chamber 11 does not rise. When the temperature sensor 10a detects that the temperature of the melting chamber 11 has not risen, the swinging mechanism operates and the first melting is performed. The bar "1 18 is rotated.
第 1溶融バーナー 1 8が廃棄物 7 0の表面 7 0 aと略平行となった場合、 廃棄 物 7 0が溶融され始めるので、 溶融室 1 1の温度が上昇し始める。 溶融室 1 1の 温度上昇が検出されたときに、 第 1溶融バーナー 1 8の回動は停止される。 下側投入筒 1 5 aにはホッパー 1 4を介して新たな廃棄物 7 0が供給される。 溶融室 1 1の温度の下降が検知される毎に下側プッシヤー 1 3 bが往復動され、 溶融室 1 1に廃棄物 7 0が供給され、 溶融処理が繰り返される。 なお、 下側投入 筒 1 5 aからの廃棄物 7 0の供給量は、 溶融室 1 1内で溶融された廃棄物 7 0の 量とほぼ等しく調整される。  When the first melting burner 18 is substantially parallel to the surface 70a of the waste 70, the waste 70 starts to be melted, and the temperature of the melting chamber 11 starts to rise. When the temperature rise of the melting chamber 11 is detected, the rotation of the first melting burner 18 is stopped. New waste 70 is supplied to the lower charging cylinder 15 a via the hopper 14. Each time a decrease in the temperature of the melting chamber 11 is detected, the lower pusher 13b is reciprocated, the waste 70 is supplied to the melting chamber 11, and the melting process is repeated. The supply amount of the waste 70 from the lower charging cylinder 15a is adjusted to be substantially equal to the amount of the waste 70 melted in the melting chamber 11.
第 2実施形態によれば、 以下の利点が得られる。  According to the second embodiment, the following advantages can be obtained.
第 2実施形態の溶融装置 4 1では、 温度センサ 1 0 aにより溶融室 1 1の温度 の下降が検知される毎に、 下側投入筒 1 5 aから廃棄物 7 0が溶融室 1 1に連続 して供給される。 廃棄物 7 0が連続して溶融処理されるので、 溶融装置 4 1の溶 融処理の効率は向上される。  In the melting device 41 of the second embodiment, every time the temperature sensor 10a detects a decrease in the temperature of the melting chamber 11, waste 70 from the lower charging cylinder 15a enters the melting chamber 11. It is supplied continuously. Since the waste 70 is continuously melted, the efficiency of the melting process of the melting device 41 is improved.
追加の廃棄物 7 0の供給量は溶融された廃棄物 7 0の量と等しく調整されるの で、 溶融装置 4 1により多量の廃棄物 7 0が比較的短時間で処理される。  Since the supply amount of the additional waste 70 is adjusted to be equal to the amount of the molten waste 70, a large amount of the waste 70 is processed by the melting device 41 in a relatively short time.
下側投入筒 1 5 aから廃棄物 7 0を溶融室 1 1に追加した後、 下側供給口 1 2 aは下側プッシヤー 1 3 bのシール 1 3 aで閉塞されるので、 溶融室 1 1への空 気の流入は確実に遮断される。  After adding waste 70 to the melting chamber 11 from the lower charging cylinder 15a, the lower supply port 12a is closed by the seal 13a of the lower pusher 13b. Air inflow to 1 is reliably shut off.
以下、 本発明の第 3実施形態について第 1実施形態との相違点を中心に説明す る。 以下の説明において、 図 5の右側を溶融装置 4 1の前方とし、 図 6の上側を 溶融装置 4 1の左方とする。  Hereinafter, the third embodiment of the present invention will be described focusing on differences from the first embodiment. In the following description, the right side of FIG. 5 is the front of the melting device 41, and the upper side of FIG. 6 is the left of the melting device 41.
図 5に示すように、 第 3実施形態の溶融装置 4 1は前後に長い箱形の溶融室 1 1を有する。 図 6に示すように、 溶融室 1 1の後部の左壁には供給口 1 2が形成 されている。 廃棄物 7 0は連続供給機構により供給口 1 2を通して溶融室 1 1に 供給される。  As shown in FIG. 5, the melting device 41 of the third embodiment has a box-shaped melting chamber 11 that is long in the front and back. As shown in FIG. 6, a supply port 12 is formed in the left wall at the rear of the melting chamber 11. The waste 70 is supplied to the melting chamber 11 through the supply port 12 by the continuous supply mechanism.
連続供給機構は、 ホッパー 7 3と、 ホッパー 7 3の下部と供給口 1 2とを接続 する投入筒部 7 1と、 投入筒部 7 1内に配置されたプッシヤー 7 2とを備える。 プッシヤー 7 2は投入筒部 7 1内で往復移動される。 廃棄物 7 0をホッパー 7 3 から投入筒部 7 1内に投入した後、 プッシヤー 7 2を供給口 1 2に向けて移動さ せることにより、 廃棄物 7 0は供給口 1 2から溶融室 1 1に供給される。 このと き、 プッシヤー 7 2の先端は供給口 1 2には到達せず、 投入筒部 7 1の途中の位 置で停止される。 The continuous supply mechanism includes a hopper 73, a charging cylinder 71 connecting a lower portion of the hopper 73 and the supply port 12, and a pusher 72 disposed in the charging cylinder 71. The pusher 7 2 is reciprocated in the input cylinder 71. Hopper waste 7 0 7 3 Then, the waste 70 is supplied from the supply port 12 to the melting chamber 11 by moving the pusher 72 toward the supply port 12 after being charged into the charging cylinder part 71 from the above. At this time, the tip of the pusher 72 does not reach the supply port 12 and is stopped at a position in the middle of the charging cylinder 71.
図 5に示すように、 溶融室 1 1の前端には廃棄物 7 0をせき止めるための流出 防止壁 7 4が形成されている。 流出防止壁 7 4の上端の中央には、 溶融された溶 融スラグを前方へ排出させるための排出凹部 7 5が形成されている。  As shown in FIG. 5, at the front end of the melting chamber 11, an outflow prevention wall 74 for damping the waste 70 is formed. At the center of the upper end of the outflow prevention wall 74, a discharge concave portion 75 for discharging the molten molten slag forward is formed.
溶融室 1 1の底面 1 7は流出防止壁 7 4に接近するに従って低くなるように傾 斜されている。 これにより、 溶融室 1 1に投入された廃棄物 7 0及び溶融スラグ は供給口 1 2から流出防止壁 7 4に向かって誘導される。  The bottom surface 17 of the melting chamber 11 is inclined so as to become lower as it approaches the outflow prevention wall 74. As a result, the waste 70 and the molten slag charged into the melting chamber 11 are guided from the supply port 12 toward the outflow prevention wall 74.
流出防止壁 7 4の前方に排出路 1 6が区画される。 流出防止壁 7 4の下方には 四角箱状のスラグ回収部 2 0が配置される。 排出路 1 6はスラグ回収部 2 0と溶 融室 1 1と連通する。 スラグ回収部 2 0には水等の冷却用液体が貯留され、 また 、 第 1回収コンベア 7 7が収容される。 スラグ回収部 2 0の後壁にはスラグ回収 孔 7 6が形成される。 第 1回収コンベア 7 7と連動する第 2回収コンベア 7 8が スラグ回収孔 7 6に配置される。  A discharge path 16 is defined in front of the outflow prevention wall 74. Below the outflow prevention wall 74, a rectangular box-shaped slag recovery section 20 is disposed. The discharge path 16 communicates with the slag recovery section 20 and the melting chamber 11. A cooling liquid such as water is stored in the slag recovery section 20, and a first recovery conveyor 77 is stored therein. A slag collection hole 76 is formed in the rear wall of the slag collection section 20. A second collection conveyor 78 linked to the first collection conveyor 77 is disposed in the slag collection hole 76.
第 1及ぴ第 2回収コンベア 7 7, 7 8によって、 スラグ回収部 2 0内のスラグ が搬出される。 スラグ回収孔 7 6は、 図示しないエアーカーテン等の遮断装置に よつて選択的に遮断されてもよい。  The slag in the slag collection unit 20 is carried out by the first and second collection conveyors 77 and 78. The slag collection hole 76 may be selectively shut off by an unillustrated shutoff device such as an air curtain.
図 7に示すように、 溶融室 1 1の左側壁及ぴ右側壁において、 溶融バーナー取 付け部 7 9がそれぞれ支持されている。 溶融バーナー取付け部 7 9は供給口 1 2 と流出防止壁 7 4との間に配置される。 各溶融バーナー取付け部 7 9は、 ほぼ 4 5度に傾斜した内側斜面 8 0を有する。 各内側斜面 8 0には、 三対の第 3溶融バ ーナー 8 1が、 溶融室 1 1の長手方向に沿って取付けられている。 図 6に示すよ うに、 '右側の内側斜面 8 0の第 3溶融バーナーは左側の内側斜面 8 0の第 3溶融 バーナーとずれた位置に配置される。 従って、 溶融炉 1 0は 6対の第 3溶融バー ナー 8 1を有する。  As shown in FIG. 7, on the left side wall and the right side wall of the melting chamber 11, a melting burner attaching portion 79 is supported, respectively. The melting burner mounting portion 79 is disposed between the supply port 12 and the outflow prevention wall 74. Each melt burner mount 79 has an inner slope 80 inclined at approximately 45 degrees. Three pairs of third melting burners 81 are attached to each inner slope 80 along the longitudinal direction of the melting chamber 11. As shown in FIG. 6, the third molten burner on the right inner slope 80 is displaced from the third molten burner on the left inner slope 80. Therefore, the melting furnace 10 has six pairs of third melting burners 81.
図 5に示すように、 溶融室 1 1の前壁には第 1排気口 8 2が形成されている。 第 1排気口 8 2には、 排ガス処理部 3 0の排煙塔 3 5が接続されている。 排煙塔 3 5は屈曲した排気路 3 1を有する。 廃棄物 7 0の溶融によって発生した排ガス が排気路 3 1へ送られる。 As shown in FIG. 5, a first exhaust port 82 is formed in the front wall of the melting chamber 11. The first exhaust port 82 is connected to a flue gas tower 35 of an exhaust gas treatment section 30. Flue gas tower 35 has a bent exhaust path 31. Exhaust gas generated by melting the waste 70 is sent to the exhaust passage 31.
図 6に示すように、 2つバーナー取付け部 4 5 aが排煙塔 3 5に取り付けられ ている。 排気路 3 1を挟んで互いに対向する 2つの第 2の排気処理バーナー 4 5 bが 2つバー^ "一取付け部 4 5 aにそれぞれ取付けられている。 第 2の排気処理 パーナ一 4 5 bは第 3溶融パーナ一 8 1と同一のものである。 排煙塔 3 5には、 排気路 3 1を遮断するためのファン 3 4が設けられる。  As shown in FIG. 6, two burner attachment portions 45 a are attached to the flue gas tower 35. Two second exhaust processing burners 45b opposed to each other with the exhaust path 31 interposed therebetween are mounted on each of the two mounting portions 45a. The second exhaust processing burner 45b Is the same as the third melting panner 81. The smoke exhaust tower 35 is provided with a fan 34 for shutting off the exhaust passage 31.
スラグ回収部 2 0の前壁には第 2排気口 8 3が形成される。 排ガス処理部 3 0 のパイパス筒 8 4が第 2排気口 8 3と排煙塔 3 5とを接続する。 溶融室 1 1 とス ラグ回収部 2 0との間の排気の流れがバイパス筒 8 4により調整される。  A second exhaust port 83 is formed in the front wall of the slag recovery section 20. The bypass cylinder 84 of the exhaust gas treatment section 30 connects the second exhaust port 83 and the flue gas tower 35. The flow of exhaust gas between the melting chamber 11 and the slag recovery section 20 is adjusted by the bypass cylinder 84.
次に、 図 8及び図 9 Aを参照して第 3溶融バーナー 8 1について説明する。 炎 は第 3溶融バーナー 8 1から図 8の左側に向かって噴出される。  Next, the third melting burner 81 will be described with reference to FIGS. 8 and 9A. The flame is ejected from the third melting burner 81 toward the left side of FIG.
第 3溶融パー^ "一 8 1は、 円筒状のパーナ一本体 8 5と、 バーナー本体 8 5の 底壁を貫通する円筒状の冷媒供給管 8 6とを含む。 冷媒供給管 8 6は、 バーナー 本体 8 5内に配置されたテーパ状の先端を有する。  The third melting part 81 includes a cylindrical parner main body 85 and a cylindrical refrigerant supply pipe 86 penetrating the bottom wall of the burner main body 85. The refrigerant supply pipe 86 is The burner has a tapered tip disposed in the body 85.
冷媒供給管 8 6の基端は、 バーナー本体 8 5の底壁から突出している。 ガス供 給管 8 7は冷媒供給管 8 6の底壁を貫通している。 ガス供給管 8 7の先端は冷媒 供給管 8 6の先端及びパーナ一本体 8 5の先端よりも左側に配置される。 ガス供 給管 8 7の基端には図示しないガス発生装置が接続される。 ガス発生装置で発生 したブラウンガスがガス供給管 8 7内に送られる。  The base end of the refrigerant supply pipe 86 protrudes from the bottom wall of the burner body 85. The gas supply pipe 87 penetrates the bottom wall of the refrigerant supply pipe 86. The tip of the gas supply pipe 87 is disposed on the left side of the tip of the refrigerant supply pipe 86 and the tip of the panner body 85. A gas generator (not shown) is connected to the base end of the gas supply pipe 87. Brown gas generated by the gas generator is sent into the gas supply pipe 87.
バーナー本体 8 5の先端には略円環状のノズル固定部 8 8が設けられる。 ガス 供給管 8 7の先端には円環状のノズル取付け部 8 9が螺合される。 ノズル取付け 部 8 9はノズル固定部 8 8の内側に形成された固定段部 9 0に係合され、 かつ、 六角孔付きボルト 9 1によってノズル固定部 8 8に.固定される。 ノズル取付け部 8 9の右端面と固定段部 9 0との間には、 図示しないゴム材料製のシールリング が配置される。  At the end of the burner body 85, a substantially annular nozzle fixing portion 88 is provided. An annular nozzle mounting portion 89 is screwed into the end of the gas supply pipe 87. The nozzle mounting portion 89 is engaged with a fixing step portion 90 formed inside the nozzle fixing portion 88, and is fixed to the nozzle fixing portion 88 by a hexagonal bolt 91. A seal ring made of a rubber material (not shown) is arranged between the right end face of the nozzle mounting portion 89 and the fixed step portion 90.
ノズル取付け部 8 9の先端には、 略円筒状のノズル 9 2が螺合される。 図 9 A 及ぴ図 9 Bに示すように、 ノズル 9 2は、 ガス供給管 8 7の内径よりも大きい内 形のガス噴射口 9 3を有する。 これにより、 ガス噴射口 9 3から嘖射されるブラ ゥンガスの圧力は、 ガス供給管 8 7を流れるブラウンガスの圧力よりも低下され る。 比較的大径のノズル 9 2から噴射されたブラウンガスが燃焼され、 炎が発生 する。 A substantially cylindrical nozzle 92 is screwed into the tip of the nozzle mounting portion 89. As shown in FIGS. 9A and 9B, the nozzle 92 has an internal gas injection port 93 larger than the inner diameter of the gas supply pipe 87. As a result, the bra sprayed from the gas injection port 9 3 The pressure of the black gas is lower than the pressure of the brown gas flowing through the gas supply pipe 87. The brown gas injected from the relatively large-diameter nozzle 92 is burned, and a flame is generated.
図 8に示すように、 冷媒供給管 8 6の基端付近の周壁には、 冷媒供給孔 9 4が 形成される。 パーナ一本体 8 5の基端付近の周壁には、 冷媒排出孔 9 5が形成さ れる。 冷媒すなわち水が冷媒供給孔 9 4から流入される。 水は冷媒供給管 8 6と ガス供給管 8 7との間の隙間を流れる。 水は冷媒供給管 8 6のテーパー状の先端 で圧縮され、 加圧された水がノズル取付け部 8 9の右端面に向けて噴射される。 これにより、 ノズル取付け部 8 9が直接冷却され、 また、 ノズル 9 2が間接冷却 される。 水はバーナー本体 8 5と冷媒供給管 8 6との間を流れ、 冷媒排出孔 9 5 からパーナ一本体 8 5の外部へ排水される。  As shown in FIG. 8, a coolant supply hole 94 is formed in the peripheral wall near the base end of the coolant supply pipe 86. A coolant discharge hole 95 is formed in the peripheral wall near the base end of the parner main body 85. The refrigerant, that is, water, flows in from the refrigerant supply hole 94. Water flows through a gap between the refrigerant supply pipe 86 and the gas supply pipe 87. The water is compressed by the tapered tip of the refrigerant supply pipe 86, and the pressurized water is jetted toward the right end face of the nozzle mounting portion 89. Thereby, the nozzle mounting portion 89 is directly cooled, and the nozzle 92 is indirectly cooled. Water flows between the burner main body 85 and the refrigerant supply pipe 86, and is discharged from the refrigerant discharge hole 95 to the outside of the panner main body 85.
次に、 溶融装置 4 1の作用について説明する。  Next, the operation of the melting device 41 will be described.
まず、 プッシヤー 7 2を供給口 1 2から後退させ、 ホッパー 7 3から投入筒部 7 1内に廃棄物 7 0を投入する。 プッシヤー 7 2を供給口 1 2に向けて前進させ て、 投入筒部 7 1内の廃棄物 7 0を溶融室 1 1に供給する。 このとき、 プッシャ 一 7 2の先端は供給口 1 2に到達しない。 このため、 廃棄物 7 0の一部が投入筒 部 7 1内に残留する。 投入筒部 7 1は残留した廃棄物 7 0の壁により実質的に閉 塞される。  First, the pusher 72 is retracted from the supply port 12, and the waste 70 is injected from the hopper 73 into the charging cylinder 71. The pusher 72 is advanced toward the supply port 12 to supply the waste 70 in the charging cylinder 71 to the melting chamber 11. At this time, the tip of the pusher 17 2 does not reach the supply port 12. Therefore, a part of the waste 70 remains in the charging cylinder 71. The charging cylinder 71 is substantially closed by the wall of the remaining waste 70.
プッシヤー 7 2を後退させ、 ホッパー 7 3から投入筒部 7 1内に廃棄物 7 0を 投入する。 前述と同様にして廃棄物 7 0を溶融室 1 1に供給する。 以上の操作が 繰り返されることによって廃棄物 7 0が連続して溶融室 1 1に供給され、 溶融室 1 1に堆積される。  The pusher 72 is retracted, and the waste 70 is injected from the hopper 73 into the charging cylinder 71. The waste 70 is supplied to the melting chamber 11 in the same manner as described above. By repeating the above operation, the waste 70 is continuously supplied to the melting chamber 11 and deposited on the melting chamber 11.
第 3溶融パーナ一 8 1の近傍の廃棄物 7 0は、 プラウンガスの炎及ぴ燃焼熱に よつて溶融される。 溶融された廃棄物 7 0は液状の溶融スラグとなり、 堆積され た廃棄物 7 0の表面 7 0 aに沿って溶融室 1 1の前方へと流れ、 流出防止壁 7 4 によってせき止められ、 貯留される。  The waste 70 near the third melting panner 81 is melted by the flame and combustion heat of the plow gas. The molten waste 70 becomes liquid molten slag, flows along the surface 70 a of the deposited waste 70 a to the front of the melting chamber 11, is blocked by the outflow prevention wall 74, and is stored. You.
溶融スラグが排出凹部 7 5の高さに達すると、 溶融スラグが排出凹部 7 5及ぴ 排出路 1 6を通してスラグ回収部 2 0内に流下する。 溶融スラグはスラグ回収部 2 0内の冷却用液体によって冷却され固化する。 固化したスラグは回収コンベア 7 7, 7 8によってスラグ回収孔 7 6から搬出される。 When the molten slag reaches the height of the discharge recess 75, the molten slag flows down into the slag recovery section 20 through the discharge recess 75 and the discharge path 16. The molten slag is cooled and solidified by the cooling liquid in the slag recovery section 20. The solidified slag is a collection conveyor It is carried out from the slag collection hole 76 by 77,78.
第 3実施形態によれば、 以下の利点が得られる。  According to the third embodiment, the following advantages can be obtained.
溶融装置 4 1は溶融室 1 1に廃棄物 7 0を連続して投入する連続供給機構を有 する。 廃棄物 7 0は連続して溶融されるので、 溶融処理は効率的である。  The melting device 41 has a continuous supply mechanism for continuously feeding the waste 70 into the melting chamber 11. Since the waste 70 is continuously melted, the melting process is efficient.
複数の第 3溶融パーナ一 8 1が、 溶融室 1 1の側壁に支持された溶融バーナー 取付け部 7 9に取り付けられる。 複数の第 3溶融パーナ一 8 1が廃棄物 7 0を偏 りなく加熱するので、 廃棄物 7 0は効率よく溶融される。  A plurality of third melting parners 81 are attached to a melting burner attachment part 79 supported on a side wall of the melting chamber 11. Since the plurality of third melting pans 81 uniformly heat the waste 70, the waste 70 is efficiently melted.
第 3溶融バーナー 8 1のノズル 9 2は、 ガス供給管 8 7の内径よりも大きい内 径のガス噴射口 9 3を有する。 減圧されたブラウンガスがガス噴射口 9 3から嘖 射されるので、 ブラゥンガスの炎がノズル 9 2から遠くまで達するのが防止され 、 炎はノズル 9 2の近傍に集中する。  The nozzle 92 of the third melting burner 81 has a gas injection port 93 having an inner diameter larger than the inner diameter of the gas supply pipe 87. Since the decompressed brown gas is emitted from the gas injection port 93, the flame of the brown gas is prevented from reaching far from the nozzle 92, and the flame is concentrated near the nozzle 92.
第 3溶融バーナー 8 1のノズル 9 2は、 ノズル取付け部 8 9力、ら取り外し可能 である。 例えば、 ガス噴射口 9 3の内径の異なるノズル 9 2に交換することによ つて、 ガス噴射口 9 3から噴射されるブラウンガスの圧力が変更されるので、 プ ラゥンガスの炎の大きさを容易に変更することができる。  The nozzle 92 of the third melting burner 81 is detachable from the nozzle mounting portion 89. For example, by replacing the nozzle 92 with a different inner diameter of the gas injection port 93, the pressure of the brown gas injected from the gas injection port 93 is changed, so that the size of the flame of the plan gas can be easily increased. Can be changed to
第 3溶融バーナー 8 1のノズル 9 2を冷却するための水は、 冷媒供給管 8 6の テーパー形の先端で加圧され、 冷媒供給管 8 6から噴射される。 噴射された水は ノズル取付け部 8 9に確実に接触するので、 ノズル取付け部 8 9及ぴノズル 9 2 が確実に冷却される。  Water for cooling the nozzle 92 of the third melting burner 81 is pressurized at the tapered tip of the refrigerant supply pipe 86 and is injected from the refrigerant supply pipe 86. The jetted water surely comes into contact with the nozzle mounting portion 89, so that the nozzle mounting portion 89 and the nozzle 92 are reliably cooled.
第 3溶融バーナー 8 1のノズノレ 9 2が間接的に冷却されるので、 ブラウンガス の燃焼熱によりノズル 9 2が溶融するのが防止される。 冷媒供給管 8 6内に供給 される水の量又は圧力を調節することで、 ノズル 9 2の冷却の度合いを変更する ことができ、 ノズル 9 2の冷却の度合いに応じて、 ブラウンガスの圧力または体 積が微調整される。 これにより、 ノズル 9 2の先端と廃棄物 7 0の表面 7 0 aと の距離に応じて、 ブラゥンガスの炎の大きさを変更することができる。  The nozzle 92 of the third melting burner 81 is indirectly cooled, so that the nozzle 92 is prevented from being melted by the combustion heat of the brown gas. By adjusting the amount or pressure of water supplied into the refrigerant supply pipe 86, the degree of cooling of the nozzle 92 can be changed, and the pressure of the brown gas can be changed according to the degree of cooling of the nozzle 92. Or the volume is fine-tuned. Thus, the size of the flame of the brown gas can be changed according to the distance between the tip of the nozzle 92 and the surface 70a of the waste 70.
第 1乃至第 3実施形態を次のように変更してもよい。  The first to third embodiments may be modified as follows.
第 1実施形態において、 例えば供給口 1 2と第 1溶融バーナー 1 8との間に、 シールド壁を設けてもよい。 シールド壁により、 投入中の廃棄物 7 0が第 1溶融 バーナー 1 8に付着することが防止される。 この場合、 第 1溶融パーナ一 1 8は 溶融室 1 1に移動不能に固定されてもよい。 In the first embodiment, for example, a shield wall may be provided between the supply port 12 and the first melting burner 18. The shield wall prevents the incoming waste 70 from adhering to the first melting burner 18. In this case, the first melting It may be immovably fixed to the melting chamber 11.
第 1実施形態では、 廃棄物 7 0は、 表面 7 0 aが供給口 1 2から排出路 1 6に 向かって傾斜して堆積されるが、 これに限定されず、 例えば表面 7 0 aが水平に なるように、 廃棄物 7 0を堆積させてもよい。 この場合、 第 1溶融パーナ一 1 8 は先端面 1 8 cが水平になるように配置される。  In the first embodiment, the waste 70 is deposited with the surface 70 a inclined from the supply port 12 toward the discharge path 16, but is not limited thereto. Waste 70 may be deposited so that In this case, the first melting parner 18 is arranged so that the tip surface 18c is horizontal.
各実施形態において、 焼却炉 4 3の焼成残渣を取り出すための取出口と、 溶融 炉 1 0のホッパー 1 4, 7 3との間に、 例えばコンベアや台車のような移送手段 を配置してもよい。 焼却炉 4 3の焼成残渣は移送手段によりホッパー 1 4 , 7 3 へ自動又は手動により供給される。 この場合、 焼却炉 4 3の残渣が溶融炉 1 0へ 容易かつ迅速に移送されるので、 作業効率は向上し、 処理時間は短縮する。 各実施形態において、 熱エネルギー利用設備として、 焼却炉 4 3の代わりに火 力発電所の発電機を溶融装置 4 1に接続してもよい。 この場合、 処理物は化石燃 料を含む混合気である。 他の熱エネルギー利用設備は、 例えば、 ポイラ水を加熱 するボイラー装置 (処理物はボイラ水) や、 化石燃料を含む混合気を燃焼させる ガスタービン装置である。  In each embodiment, for example, even if a transfer means such as a conveyor or a cart is arranged between an outlet for taking out the firing residue of the incinerator 43 and the hoppers 14 and 73 of the melting furnace 10. Good. The firing residue of the incinerator 43 is supplied to the hoppers 14 and 73 automatically or manually by the transfer means. In this case, the residue of the incinerator 43 is easily and quickly transferred to the melting furnace 10, so that the working efficiency is improved and the processing time is reduced. In each embodiment, a generator of a thermal power plant may be connected to the melting device 41 instead of the incinerator 43 as the thermal energy utilization facility. In this case, the processed material is a mixture containing fossil fuels. Other thermal energy utilization equipment is, for example, a boiler device that heats boiler water (the processed material is boiler water) or a gas turbine device that burns a mixture containing fossil fuels.
第 2実施形態において、 連通管 1 5 bを省略し、 下側投入筒 1 5 aの上部に第 2のホッパーを設け、 第 2のホッパーから下側投入筒 1 5 aの内部に廃棄物 7 0 を投入してもよい。  In the second embodiment, the communication pipe 15b is omitted, a second hopper is provided above the lower charging cylinder 15a, and the waste 7 is placed inside the lower charging cylinder 15a from the second hopper. 0 may be input.
各実施形態において、 第 1溶融バーナー 1 8又はノズル 9 2を冷却する冷媒と して水を用いた場合には、 第 1溶融パーナ一 1 8又はノズル 9 2の冷却に使用さ れた水をガス発生装置 4 2に供給し、 ガス発生装置 4 2がその水を再利用してブ ラウンガスを発生してもよい。 この場合、 廃棄物処理システム 4 0 0を運用で使 用される水の量が低減されるので、 廃棄物処理システム 4 0 0の運用コストは低 減され、 また、 省エネルギー化を図ることができる。  In each embodiment, when water is used as the refrigerant for cooling the first molten burner 18 or the nozzle 92, the water used for cooling the first molten burner 18 or the nozzle 92 is used. The gas may be supplied to the gas generator 42, and the gas generator 42 may reuse the water to generate brown gas. In this case, since the amount of water used in operation of the waste treatment system 400 is reduced, the operation cost of the waste treatment system 400 is reduced, and energy can be saved. .
排気ダクト 3 6から排気される水蒸気を回収し、 第 1溶融バーナー 1 8を冷却 する冷媒として利用してもよい。 また、 この水蒸気を回収した後、 液化させてガ ス発生装置 4 2に供給し、 ブラウンガスの原料や、 第 1溶融バーナー 1 8を冷却 する冷媒として利用してもよい。 また、 この水蒸気を、 例えばボイラー装置、 水 耕栽培等といった蒸気利用設備に供給してもよい。 この場合、 廃棄物処理システ ム 4 0 0のエネルギー効率はさらに向上する。 The steam exhausted from the exhaust duct 36 may be collected and used as a refrigerant for cooling the first melting burner 18. Further, after collecting the water vapor, it may be liquefied and supplied to the gas generator 42 to be used as a raw material of the brown gas or a refrigerant for cooling the first melting burner 18. In addition, this steam may be supplied to a steam utilization facility such as a boiler device or hydroponics. In this case, the waste treatment system The energy efficiency of the system 400 is further improved.
第 3実施形態において、 溶融室 1 1及ぴスラグ回収部 2 0をジルコニァ製の耐 熱壁によって区画してもよい。  In the third embodiment, the melting chamber 11 and the slag collecting section 20 may be partitioned by a heat-resistant wall made of zirconia.
第 3実施形態において、 排煙塔 3 5に 2対以上のバーナー取付け部 4 5 aを設 けてもよレ、。  In the third embodiment, two or more pairs of burner attachment portions 45a may be provided in the smoke exhaust tower 35.
第 3実施形態において、 2対以下又は 4対以上の第 3溶融バーナー 8 1を各溶 融バーナー取付け部 7 9に取付けてもよい。 また、 溶融室 1 1の各側壁に、 1つ の第 3溶融バーナー 8 1を有する溶融バーナー取付け部を固定してもよい。 第 3 溶融バーナー 8 1は同じ高さに配置してもよく、 また、 異なる高さに配置しても よい。 但し、 第 3溶融パーナ一 8 1は、 溶融室 1 1の長手方向にずれて配置され るのが好ましい。  In the third embodiment, two or less pairs or four or more pairs of third fusion burners 81 may be attached to each fusion burner attachment portion 79. Further, a fusion burner mounting portion having one third fusion burner 81 may be fixed to each side wall of the fusion chamber 11. The third melting burners 81 may be arranged at the same height, or may be arranged at different heights. However, it is preferable that the third melting panner 18 1 is arranged to be shifted in the longitudinal direction of the melting chamber 11.
第 3実施形態の第 3溶融バーナー 8 1を図 1 0に示す第 4溶融バーナー 9 6に 変更してもよい。 詳しくは、 第 4溶融バーナー 9 6は、 縦に延びる冷媒供給管 8 6と、 冷媒供給管 8 6の中間部と下部から分岐した分岐冷媒供給管 9 7と、 分岐 冷媒供給管 9 7の内部に配置された分岐ガス供給管 9 8とを有する。  The third melting burner 81 of the third embodiment may be changed to a fourth melting burner 96 shown in FIG. Specifically, the fourth melting burner 96 includes a vertically extending refrigerant supply pipe 86, a branched refrigerant supply pipe 97 branched from the middle and lower portions of the refrigerant supply pipe 86, and an interior of the branched refrigerant supply pipe 97. And a branch gas supply pipe 98 arranged at
分岐ガス供給管 9 8は冷媒供給管 8 6を貫通し、 縦に延びるガス供給管 8 7の 中間部及び下部にそれぞれ接続される。 分岐冷媒供給管 9 7は対応する第 1連結 筒 9 9にそれぞれ螺合される。 第 1連結筒 9 9はほぼ 4 5度下方に向けて折曲さ れている。 第 1連結筒 9 9の先端は筒状のノズル固定部 1 0 0にそれぞれ螺合さ れている。 ノズル固定部 1 0 0の先端にはノズル固定板 1 0 1が取り付けられる 。 ノズル固定板 1 0 1は溶融バーナー取付け部 7 9の内側斜面 8 0と面一である 。 各ノズル固定部 1 0 0の周壁には、 冷媒排出孔 9 5が形成され、 冷媒排出孔 9 5に連通するように冷媒排出管 1 0 2が接続される。  The branch gas supply pipe 98 penetrates the refrigerant supply pipe 86 and is connected to an intermediate part and a lower part of the gas supply pipe 87 extending vertically. The branch refrigerant supply pipes 97 are respectively screwed to the corresponding first connection cylinders 99. The first connecting cylinder 99 is bent approximately 45 degrees downward. The distal end of the first connecting cylinder 99 is screwed into a cylindrical nozzle fixing portion 100, respectively. A nozzle fixing plate 101 is attached to the tip of the nozzle fixing part 100. The nozzle fixing plate 101 is flush with the inner slope 80 of the fusion burner mounting portion 79. A coolant discharge hole 95 is formed on the peripheral wall of each nozzle fixing portion 100, and a coolant discharge pipe 102 is connected to communicate with the coolant discharge hole 95.
分岐ガス供給管 9 8は、 第 1連結筒 9 9と平行に延びる第 2連結筒 1 0 3にそ れぞれ螺合される。 第 2連結筒 1 0 3の先端には、 筒状のノズル 9 2がそれぞれ 螺合される。  The branch gas supply pipes 98 are respectively screwed to the second connecting tubes 103 extending in parallel with the first connecting tubes 99. A cylindrical nozzle 92 is screwed into the distal end of the second connecting cylinder 103.
ノズル 9 2はノズル固定板 1 0 1を貫通してノズル固定部 1 0 0から突出して いる。 ノズル 9 2は段階的に内径が異なるガス噴射口 9 3を有する。 ガス噴射口 9 3の内径は分岐ガス供給管 9 8の内径よりも小さいが、 ノズル 9 2の先端に近 い側のガス噴射口 9 3は分岐ガス供給管 9 8に近い側よりも小さい。 The nozzle 92 penetrates the nozzle fixing plate 101 and protrudes from the nozzle fixing portion 100. The nozzle 92 has a gas injection port 93 having an inner diameter that varies stepwise. The inner diameter of the gas injection port 93 is smaller than the inner diameter of the branch gas supply pipe 98, but close to the tip of the nozzle 92. The gas injection port 93 on the other side is smaller than the side near the branch gas supply pipe 98.
ガス供給管 8 7は図示しないガス発生装置に接続される。 ブラウンガスはガス 供給管 8 7、 分岐ガス供給管 9 8及び第 2連結筒 1 0 3内を流れ、 ガス噴射口 9 3に達する。 ブラウンガスはガス噴射口 9 3を通過することによって段階的に加 圧され、 圧縮されたブラウンガスがノズル 9 2から噴射され、 ノズル 9 2の外部 で燃焼され、 炎が発生する。  The gas supply pipe 87 is connected to a gas generator (not shown). The brown gas flows through the gas supply pipe 87, the branch gas supply pipe 98, and the second connecting cylinder 103, and reaches the gas injection port 93. The brown gas is pressurized stepwise by passing through the gas injection port 93, and the compressed brown gas is injected from the nozzle 92 and burns outside the nozzle 92 to generate a flame.
冷媒としての水が加圧されて冷媒供給管 8 6に供給される。 この水は分岐冷媒 供給管 9 7及び第 1違結筒 9 9に沿って流れることで分岐ガス供給管 9 8及び第 2連結筒 1 0 3を冷却し、 さらに、 ノズル固定部 1 0 0に沿って流れることでノ ズノレ 9 2を冷却する。 冷却に使用された水は、 冷媒排出孔 9 5及び冷媒排出管 1 0 2内を通って排水される。  Water as a refrigerant is pressurized and supplied to the refrigerant supply pipe 86. This water cools the branch gas supply pipe 98 and the second connecting cylinder 103 by flowing along the branch refrigerant supply pipe 97 and the first connecting cylinder 99, and further, to the nozzle fixing part 100. Cooling is achieved by flowing along. The water used for cooling is drained through the refrigerant discharge holes 95 and the refrigerant discharge pipes 102.
第 4溶融バーナー 9 6においても、 第 3溶融パーナ一 8 1と同様に、 冷媒供給 管 8 6内に圧入される水の量又は圧力を調節してブラウンガスの圧力や体積を変 更することにより、 ブラウンガスの燃焼による炎の大きさを容易に変更すること ができる。  In the fourth melting burner 96 as well, similarly to the third melting burner 81, the pressure or volume of the brown gas is changed by adjusting the amount or pressure of the water injected into the refrigerant supply pipe 86. Thus, the size of the flame caused by the combustion of the brown gas can be easily changed.

Claims

請求の範囲 The scope of the claims
1. 廃棄物 (7 0) の溶融装置 (4 1) であって、 1. A waste (70) melting device (4 1),
前記廃棄物を収容する溶融室 (1 1) と、  A melting chamber (11) for containing the waste;
前記溶融室内の前記廃棄物を溶融させるための溶融パーナ一 (1 8 ; 8 1 ; 9 6) と、 前記溶融パーナ一は、 水素と酸素が 2 : 1のモル比で混合されたブラウ ンガスを燃焼し、 ブラウンガスの炎を前記廃棄物に向けて噴出させることと、 前記ブラゥンガスの燃焼熱で前記廃棄物を溶融するとき、 前記溶融装置の外部 から前記溶融室への空気の流入を遮断する遮断装置 (1 3 a, 2 6, 34 ; 7 2 ) とを備える溶融装置。  A melting burner (18; 81; 96) for melting the waste in the melting chamber and a blown gas in which hydrogen and oxygen are mixed at a molar ratio of 2: 1 are used. Burning, causing a flame of brown gas to be ejected toward the waste; and, when the waste is melted by the heat of combustion of the brown gas, shutting off the flow of air from outside the melting device to the melting chamber. A melting device comprising a shut-off device (1 3a, 26, 34; 72).
2. 前記溶融室には、 前記廃棄物を前記溶融室に供給するための供給口 (1 2) と、 溶融された廃棄物を前記溶融室から排出するための排出路 (1 6) とが形成 されており、 前記廃棄物は傾斜した表面を有するように前記溶融室に堆積される ことと、 前記溶融装置は前記溶融バーナーを前記廃棄物の前記表面から一定の距 離を保持するように移動させる駆動装置 (1 9) を更に備える請求の範囲第 1項 に記載の溶融装置。 2. The melting chamber has a supply port (12) for supplying the waste to the melting chamber, and a discharge path (16) for discharging the molten waste from the melting chamber. Wherein the waste is deposited in the melting chamber with an inclined surface; and the melting device is adapted to maintain the melting burner at a certain distance from the surface of the waste. The melting device according to claim 1, further comprising a driving device (19) for moving.
3. 前記供給口の下方には、 前記廃棄物を前記溶融室の下部に供給するための下 側供給口 (1 2 a) が形成されていることを特徴とする請求の範囲第 2項に記載 の溶融装置。 ' 3. A lower supply port (12a) for supplying the waste to a lower part of the melting chamber is formed below the supply port, wherein the lower supply port (12a) is formed. The melting device according to claim 1. '
4. 前記溶融装置は更に、 前記溶融室と連通され、 前記溶融室で前記廃棄物を溶 融することにより発生した排ガスの通過を許容する排気路 (3 1) と、 前記排気 路に配置され、 かつ、 前記ブラウンガスを燃焼することにより、 前記排気路を通 過中の排ガスを熱分解させるための排気処理バーナー (45) とを含む排ガス処 理部 (3 0) を備える請求の範囲第 1項乃至第 3項のいずれか一項に記載の溶融 4. The melting device is further arranged in an exhaust path (31) communicating with the melting chamber and allowing passage of exhaust gas generated by melting the waste in the melting chamber; and an exhaust path. And an exhaust gas processing unit (30) including an exhaust gas processing burner (45) for thermally decomposing exhaust gas passing through the exhaust path by burning the brown gas. Melting according to any one of paragraphs 1 to 3
5. 前記排ガスを熱分解すべく、 前記排気処理バーナーは前記排気路を 850〜 1500°Cに加熱する請求の範囲第 4項に記載の溶融装置。 5. The melting apparatus according to claim 4, wherein the exhaust treatment burner heats the exhaust path to 850 to 1500 ° C to thermally decompose the exhaust gas.
6. 前記遮断装置は、 前記排ガス処理部に配置され、 前記廃棄物の溶融中に空気 が前記排気路を通って前記溶融室へ逆流するのを防止するためのファン (34) を含む請求の範囲第 4項に記載の溶融装置。 6. The shut-off device includes a fan (34) disposed in the exhaust gas treatment unit, for preventing air from flowing back to the melting chamber through the exhaust path during melting of the waste. 5. The melting apparatus according to item 4, wherein
7. 前記廃棄物を前記溶融室に供給するための供給口 (12) に接続され、 前記 溶融室に前記廃棄物を連続して供給するための連続供給機構 (71, 72, 73 ) を更に備え、 前記連続供給機構が前記廃棄物を連続して供給することにより、 前記廃棄物は前記供給口から前記排出路に向かって前記溶融室内で移動されるこ とと、 前記溶融バーナーは前記溶融室内を移動中の前記廃棄物を溶融させる請求 の範囲第 1項に記載の溶融装置。 7. A continuous supply mechanism (71, 72, 73) connected to a supply port (12) for supplying the waste to the melting chamber and continuously supplying the waste to the melting chamber. The continuous supply mechanism continuously supplies the waste, whereby the waste is moved from the supply port toward the discharge path in the melting chamber; The melting device according to claim 1, wherein the waste moving in a room is melted.
8. 前記溶融バーナーは、 前記廃棄物の移動方向に沿って配置された複数の溶融 バーナー (81) の一つである請求の範囲第 7項に記載の溶融装置。 8. The melting apparatus according to claim 7, wherein the melting burner is one of a plurality of melting burners (81) arranged along a moving direction of the waste.
9. 前記連続供給機構は、 前記供給口 (12) に連通し、 前記溶融装置の外部に 突出する投入筒 (71) と、 9. The continuous supply mechanism communicates with the supply port (12) and protrudes outside of the melting device.
前記投入筒内で移動可能に配置され、 前記廃棄物を前記供給口 (12) から前 記溶融室に押し出すためのプッシヤー (72) と、  A pusher (72) movably disposed in the charging cylinder, for pushing the waste from the supply port (12) to the melting chamber;
前記投入筒に接続されたホッパー (73) とを含み、 前記連続供給機構は、 前 記ホッパーから前記投入筒部に前記廃棄物を移送し、 前記プッシヤーを前記供給 口に向かって移動させることにより前記廃棄物を前記溶融室に供給し、 前記プッ シヤーを後退させる一連の操作を繰り返すことを特徴とする請求の範囲第 7項に  A hopper (73) connected to the charging cylinder, wherein the continuous supply mechanism transfers the waste from the hopper to the charging cylinder, and moves the pusher toward the supply port. The method according to claim 7, wherein a series of operations of supplying the waste to the melting chamber and retracting the pusher are repeated.
10. 前記溶融装置は更に、 前記排ガス処理部に収容された第 1の部分と前記溶 融バーナーの内部に配置された第 2の部分とを含む冷却管 (18 a) を備え、 冷 媒は前記第 1の部分を通過後前記第 2の部分を通過することと、 前記冷媒は前記 第 1の部分において前記排ガス処理部の余剰の熱により予熱され、 前記第 2の部 分において前記溶融バーナーを冷却することを特徴とする請求の範囲第 1項に記 10. The melting device further includes a cooling pipe (18a) including a first portion accommodated in the exhaust gas treatment section and a second portion disposed inside the melting burner. The medium passes through the second part after passing through the first part, and the refrigerant is preheated in the first part by excess heat of the exhaust gas treatment unit, and the refrigerant is preheated in the second part. The method according to claim 1, wherein the molten burner is cooled.
1 1. 前記溶融装置は、 前記供給口 (1 2) に連通し、 前記溶融装置の外部に突 出する投入筒 (1 5) と、 1 1. The melting device is connected to the supply port (12), and the charging cylinder (15) protruding outside the melting device;
前記投入筒内で移動可能に配置され、 前記廃棄物を前記供給口 (1 2) から前 記溶融室に押し出すためのプッシヤー (1 3) とを更に備え、 前記遮断装置は、 前記プッシヤーの端部に設けられ、 かつ、 前記プッシヤーが前記供給口に向かつ て移動された状態で前記供給口を閉塞するシール (1 3 a) を含む請求の範囲第 2項に記載の溶融装置。  A pusher (13) that is movably disposed within the charging cylinder, and that pushes the waste from the supply port (12) to the melting chamber, wherein the shutoff device includes an end of the pusher. 3. The melting device according to claim 2, further comprising a seal (13a) provided in the portion, and closing the supply port in a state where the pusher is moved toward the supply port.
1 2. 前記溶融バーナーが前記廃棄物を溶融しているとき、 前記溶融室の温度は 2000〜 2500°Cであることを特徴とする請求の範囲第 1項に記載の溶融装 12. The melting apparatus according to claim 1, wherein when the melting burner is melting the waste, the temperature of the melting chamber is 2000 to 2500 ° C.
1 3. 廃棄物処理システム (400) であって、 1 3. The waste treatment system (400)
請求の範囲第 1項乃至第 12項のいずれか一項に記載の溶融装置 (41) と、 熱媒体供給管 (47) を介して前記溶融装置と接続され、 処理物を収容する熱 エネルギー利用設備 (43) とを備え、 前記熱エネルギー利用設備は前記排ガス の一部を前記熱媒体供給管を通して前記溶融装置から受承し、 その排ガスの熱ェ ネルギーを利用して、 前記処理物を燃焼又は加熱させることを特徴とする廃棄物 処理システム (400) 。  13. The use of thermal energy for connecting the melting device (41) according to any one of claims 1 to 12 to the melting device via a heat medium supply pipe (47) and accommodating a processed material. The thermal energy utilization facility receives a part of the exhaust gas from the melting device through the heat medium supply pipe, and uses the thermal energy of the exhaust gas to burn the processed material. Or a waste treatment system characterized by heating.
14. 前記廃棄物処理システムは更に、 前記熱エネルギー利用設備と前記溶融装 置との間を接続する排ガス移送管 (48) を備え、 前記熱エネルギー利用設備で 生じた排ガスは前記排ガス移送管を介して前記溶融装置に送られ、 前記排気処理 バーナーにより熱分解される請求の範囲第 1 3項に記載の廃棄物処理- 14. The waste treatment system further includes an exhaust gas transfer pipe (48) connecting between the thermal energy utilization facility and the melting apparatus, and the exhaust gas generated in the thermal energy utilization facility passes through the exhaust gas transport pipe. The waste treatment according to claim 13, wherein the waste treatment is sent to the melting device through the above, and is thermally decomposed by the exhaust treatment burner.
1 5 . 前記処理物はゴミであり、 前記熱エネ ギー利用設備は、 前記ゴミを焼却 し、 かつ、 そのゴミの焼却時に生じた排ガスを前記溶融装置に戻す焼却炉であり 、 前記廃棄物は前記ゴミの焼却灰である請求の範囲第 1 4項に記載の廃棄物処理 システム。 15. The processed material is garbage, and the heat energy utilization equipment is an incinerator that incinerates the garbage and returns exhaust gas generated at the time of incineration of the garbage to the melting device. 15. The waste treatment system according to claim 14, wherein said waste is incinerated ash.
1 6 . 前記溶融炉で生じた排ガスの温度は 9 0 0〜 1 5 0 0 °Cであり、 この排ガ スの一部が前記熱エネルギー利用設備に供給される請求の範囲第 1 3乃至第 1 5 項のいずれか一項に記載の廃棄物処理、 16. The temperature of the exhaust gas generated in the melting furnace is 900 to 150 ° C., and a part of the exhaust gas is supplied to the thermal energy utilization equipment. Waste treatment as defined in any one of paragraphs 15 to 15;
1 7 . 請求の範囲第 1乃至第 1 2項のいずれか一項に記載の溶融装置の使用方法 であって、 17. A method for using the melting apparatus according to any one of claims 1 to 12, wherein
前記廃棄物を前記溶融室に供給する工程と、  Supplying the waste to the melting chamber;
前記溶融装置の外部から前記溶融室への空気の流入を遮断する工程と、 水素と酸素が 2 : 1のモル比で混合されたブラウンガスを燃焼させて、 前記廃 棄物を溶融させる工程と  A step of blocking the inflow of air from outside the melting device to the melting chamber; and a step of burning the brown gas in which hydrogen and oxygen are mixed at a molar ratio of 2: 1 to melt the waste.
を備える使用方法。 Usage method comprising:
1 8 . 前記溶融室に供給された前記廃棄物は傾斜した表面を有するように堆積さ れることと、 前記溶融する工程は、 18. The waste supplied to the melting chamber is deposited so as to have an inclined surface, and the melting step includes:
前記溶融バーナーと前記廃棄物の表面との距離を一定に維持しながら前記溶融 パー^ "一を移動させる工程と、  Moving the molten part while maintaining a constant distance between the molten burner and the surface of the waste;
前記廃棄物が所定量だけ溶融した後、 前記溶融バーナーを前記廃棄物から離間 させる工程とを含む、 請求の範囲第 1 7項に記載の使用方法。  18. The method according to claim 17, further comprising: after said waste is melted by a predetermined amount, separating said molten burner from said waste.
1 9 . 新たな廃棄物を前記所定量とほぼ等しい量だけ前記溶融室に供給する工程 を更に備える請求の範囲第 1 8項に記載の使用方法。 19. The method according to claim 18, further comprising the step of supplying new waste to the melting chamber in an amount substantially equal to the predetermined amount.
2 0 . 前記移動させる工程は、 前記廃棄物の表面とほぼ平行になるように、 前記 溶融バーナーを揺動させる工程を含む請求の範囲第 1 7項に記載の使用方法。 20. The use method according to claim 17, wherein the moving step includes a step of swinging the melting burner so as to be substantially parallel to a surface of the waste.
21. 前記供給する工程は前記溶融室内に堆積された前記廃棄物の下部に、 新た な廃棄物を連続して供給する工程を含む請求の範囲第 17項に記載の使用方法。 21. The method according to claim 17, wherein the supplying step includes a step of continuously supplying new waste to a lower portion of the waste deposited in the melting chamber.
PCT/JP2002/006053 2001-06-19 2002-06-18 Melting device and waste treatment system WO2002103240A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2001185449 2001-06-19
JP2001-185449 2001-06-19
JP2001-334363 2001-10-31
JP2001334363 2001-10-31
JP2002027441A JP3755055B2 (en) 2001-06-19 2002-02-04 Melt treatment apparatus and waste treatment system including the same
JP2002-27441 2002-02-04

Publications (1)

Publication Number Publication Date
WO2002103240A1 true WO2002103240A1 (en) 2002-12-27

Family

ID=27346977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/006053 WO2002103240A1 (en) 2001-06-19 2002-06-18 Melting device and waste treatment system

Country Status (2)

Country Link
JP (1) JP3755055B2 (en)
WO (1) WO2002103240A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4878805B2 (en) * 2005-10-06 2012-02-15 株式会社E.C.G Waste disposal method
CN111266391B (en) * 2020-03-13 2022-08-09 新疆浦盛环保科技有限公司 Solid waste treatment system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03191201A (en) * 1989-09-22 1991-08-21 Kobe Steel Ltd Method of producing reduction gas and burner
JPH05187621A (en) * 1992-01-09 1993-07-27 Takuma Co Ltd Incineration and melting treatment device for wastes and method therefor
JPH1172204A (en) * 1997-08-29 1999-03-16 Mitsubishi Heavy Ind Ltd Oxygen-blown liquid fuel burner
JPH11287426A (en) * 1998-03-31 1999-10-19 Mitsubishi Heavy Ind Ltd Ash melting furnace
JP2000039128A (en) * 1998-07-21 2000-02-08 Sankosha Corp Waste disposal equipment
JP2000039123A (en) * 1998-07-24 2000-02-08 Ekoo Kk Method and device for incinerating waste using blown gas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03191201A (en) * 1989-09-22 1991-08-21 Kobe Steel Ltd Method of producing reduction gas and burner
JPH05187621A (en) * 1992-01-09 1993-07-27 Takuma Co Ltd Incineration and melting treatment device for wastes and method therefor
JPH1172204A (en) * 1997-08-29 1999-03-16 Mitsubishi Heavy Ind Ltd Oxygen-blown liquid fuel burner
JPH11287426A (en) * 1998-03-31 1999-10-19 Mitsubishi Heavy Ind Ltd Ash melting furnace
JP2000039128A (en) * 1998-07-21 2000-02-08 Sankosha Corp Waste disposal equipment
JP2000039123A (en) * 1998-07-24 2000-02-08 Ekoo Kk Method and device for incinerating waste using blown gas

Also Published As

Publication number Publication date
JP3755055B2 (en) 2006-03-15
JP2003202105A (en) 2003-07-18

Similar Documents

Publication Publication Date Title
CN1759941B (en) New type heating and fusing method and equipment for dealing with flying ash generated by burning garbage
JP2525726B2 (en) Waste incinerator for bulk garbage and liquids containing hydrocarbons
US7318382B2 (en) Method for incineration disposal of waste
KR100529826B1 (en) Device and method for waste processing using Plasma pyrolysis
KR100411606B1 (en) a trash burn system
US4280417A (en) Incineration plant
CN101086334A (en) Industrial castoff fusing and solidifying device
CA2767286A1 (en) Gas barrier
CN201152531Y (en) Industrial dangerous waste incineration processing equipment for realizing multiple physical states
WO2002103240A1 (en) Melting device and waste treatment system
JP3623751B2 (en) Vertical waste incineration facility equipped with ash melting device and its operation method
JP3764634B2 (en) Oxygen burner type melting furnace
JPH11351530A (en) Incinerator system
JP3904379B2 (en) Dust discharge device for secondary combustion chamber
JPH05141633A (en) Rotary kiln type waste incineration device
JP3959067B2 (en) Incinerator
JP2799550B2 (en) Melting furnace
JP2005164097A (en) Melting furnace device
JP2005226953A (en) Incinerator
JP3762726B2 (en) Incineration ash molten exhaust gas treatment method
JPH11201433A (en) Incineration/melting treatment device of waste
JPH09273736A (en) Surface melting furnace
JPH0960829A (en) Garbage incineration ash melting furnace and system thereof
JP2005273975A (en) Waste treatment apparatus and waste treatment method
JP3461457B2 (en) Waste treatment equipment

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase