WO2002099947A1 - Power unit and method for power supply of power unit - Google Patents

Power unit and method for power supply of power unit Download PDF

Info

Publication number
WO2002099947A1
WO2002099947A1 PCT/JP2001/004614 JP0104614W WO02099947A1 WO 2002099947 A1 WO2002099947 A1 WO 2002099947A1 JP 0104614 W JP0104614 W JP 0104614W WO 02099947 A1 WO02099947 A1 WO 02099947A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
voltage
unit
output voltage
circuit
Prior art date
Application number
PCT/JP2001/004614
Other languages
French (fr)
Japanese (ja)
Inventor
Kouji Furuuchi
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to PCT/JP2001/004614 priority Critical patent/WO2002099947A1/en
Priority to JP2002568877A priority patent/JPWO2002099947A1/en
Publication of WO2002099947A1 publication Critical patent/WO2002099947A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter

Definitions

  • the present invention relates to a power supply device and a power supply method of the power supply device, for example, a portable electronic device driven by a battery and having an internal circuit operating within an operating voltage range of the battery.
  • the operating voltage range of a lithium-ion battery is 2.75 V to 4.2 V
  • the drive voltage (V cc) of an electronic circuit required for an LSI or the like for realizing the functions of a portable electronic device is The present invention relates to a power supply and a power supply method for the power supply when the voltage is 3 V or the like.
  • FIG. 6 shows a configuration of a conventional power supply device.
  • the battery 1 is a power source of the portable electronic device.
  • the step-up converter 2 converts the voltage of the battery 1 to a more stable high voltage.
  • the linear regulator 3 gradually reduces the output voltage of the step-up comparator 2 to the drive voltage of the electronic circuit 4.
  • the electronic circuit 4 indicates a main circuit of the portable electronic device.
  • the step-up comparator 2 is composed of a control circuit section 50, a switching transistor 51, a choke coil 52, a diode 53, and a capacitor 54.
  • the output voltage of the step-up comparator 2 is fed back to the control circuit 50.
  • the emitter terminal of the transistor 51 and one terminal of the capacitor 54 are connected to the reference voltage (ground) 55 of the circuit.
  • the reference voltage of the circuit is This is the negative electrode voltage of the power supply 101 inside the battery 1.
  • the negative electrode of the power supply 101 is connected to the grounds 102, 55, 57, 59, 301, 401, and the grounds 102, 55, 57, 59, 301, 401 maintain the reference voltage of the circuit.
  • a capacitor 56 is connected to the output side of the battery 1.
  • Capacitor 56 is connected to ground 57.
  • a capacitor 58 for stabilizing the output is connected to the output side of the linear regulator.
  • the capacitor 58 is connected to the ground 59.
  • the voltage of the battery 1 is higher than the voltage required by the electronic circuit 4. Even if the output is low, a stable output can be obtained.
  • the subsequent linear regulator 3 it is also possible to configure the subsequent linear regulator 3 as a step-down converter (chopper-type switching regulator).
  • the loss of the step-up converter 2 is the main factor that shortens the operation time of the device. There was a problem.
  • the linear regulator 3 is installed without the step-up / down power supply, and the battery 1 is used only in the voltage range of the battery 1 that is higher than the operating voltage of the electronic circuit 4. In some cases .
  • the operating voltage of the electronic circuit 4 is 3.3 V
  • only the voltage between 4.2 V and 3.5 V is used in consideration of the saturation voltage of the linear regulator 3.
  • step-up converter 2 As described above, depending on the power consumption of the device, to use the entire voltage range of battery 1, rather than installing step-up converter overnight 2, battery 1 without 4.2-volt converter above 4.2 V Using up to 3.5 V may result in a longer operating time because there is no loss in step-up converter 2.
  • step-up compa- nator 2 when the voltage of the battery 1 becomes smaller than the input voltage of the linear regulator 3 required to generate the operating voltage of the electronic device 4. Only. For this reason, while the battery 1 voltage is high, a step-up 2 Stop or pause (for example, if the step-up converter 2 is a PWM (pulse width modulation) switching type switching converter, the switching-on duty is 0% or close to it. The power loss of the step-up comparator 2 can be suppressed.
  • PWM pulse width modulation
  • the step-down power supply represented by the linear regulator 3 in the latter stage may use a switching-type step-down comparator depending on the situation.
  • step-up / down power supply device it is difficult to use the battery 1 over the entire range of the battery voltage range while suppressing the power supply device.
  • An object of the present invention is to provide a step-up / down power supply device capable of suppressing power loss.
  • Another object of the present invention is to eliminate the instability of power supply to electronic devices due to load fluctuations and to obtain a step-up / down power supply that can supply power stably. It is another object of the present invention to obtain a step-up / down power supply that can efficiently use a battery. Conventional example 2.
  • Japanese Unexamined Patent Publication No. 57-2063231 discloses that when a vehicle's engine is stopped, the battery cannot be started due to the discharge of the battery due to the operation of a DC-DC (direct current-direct current) comparator.
  • a battery, a DC-DC converter that boosts the voltage of this battery, an identification switch that also operates the DC_DC converter, and a constant-voltage circuit that receives the output of the booster A vehicle electronic device to which the output of the constant voltage circuit is input; and a circuit in which power is directly supplied from the battery to the vehicle electronic device via a diode when the DC-DC converter is off.
  • a power supply device for a vehicle electronic device provided with a power supply is described.
  • the above-mentioned identification switch when the above-mentioned identification switch is off, the above-mentioned DC-DC converter is not driven, and the battery is supplied to the constant voltage circuit through the above-mentioned diode. Further, it is supplied to the above-mentioned vehicle electronic device.
  • the above-mentioned identification switch When the above-mentioned identification switch is on, the battery is charged because the engine is running most of the time when the ignition switch is on. As a result, the battery does not discharge even if the power consumption increases due to the operation of the DC-DC converter. Also, when the vehicle's engine star starts, the DC-DC converter operates in the same way, and the battery voltage drops. In spite of this, it is stated that the voltage is boosted by the DC-DC converter and can be supplied to the above-mentioned vehicle electronic device with a normal voltage power supply.
  • Japanese Patent Application Laid-Open No. Hei 4-2590917 discloses that as a DC power supply device for driving electrical components having different operating voltages between a high-voltage drive system and a low-voltage drive system, there are two types of DC power supply devices: Switchin Gregiyure and Linear Regyure. It describes a DC power supply device provided with target voltage switching means for switching a target voltage of the switching power supply.
  • the switching regulator converts a DC voltage to a target voltage specified from the outside and outputs the target voltage to drive a high-voltage drive system. Further, the linear regulator circuit branches and inputs the output voltage from the switching regulator circuit, converts the output voltage to a predetermined voltage lower than the output voltage, and outputs the predetermined voltage, thereby driving a low voltage drive system. Further, when the output voltage from the switching regulator is supplied to the high-voltage drive system, the target voltage switching means is configured so that the switching voltage is higher than a target voltage that is not supplied. Change the target voltage for one night.
  • the DC power supply is intended to reduce the power loss caused by boosting the voltage required to drive the high-voltage drive system electrical components when driving the low-voltage drive system electrical components.
  • this does not solve the problem of effectively using the power supply to an unusable voltage range. Disclosure of the invention
  • the power supply device of the present invention includes: a first power supply unit that drives a load unit; A booster for boosting an output voltage of the first power supply connected between the first power supply and the load;
  • a bypass circuit unit connected in parallel with the booster unit and bypassing a current discharged from the first power supply unit
  • a step-down unit that steps down the voltage boosted by the step-up unit
  • a booster section and a second power supply section connected in parallel.
  • the booster has a switch for driving the booster, feeds the output voltage of the booster, controls the switch based on the feedback result, and keeps the output voltage constant. It is a stable non-isolated converter.
  • bypass circuit unit includes a diode through which a current flows only when an input voltage of the boosting unit is higher than an output voltage of the boosting unit.
  • the second power supply unit includes a power storage unit that is charged by an output current of the boosting unit.
  • the second power supply unit includes a first time setting circuit unit that sets a time period for discharging power from the second power supply unit;
  • the output voltage of the booster is changed in synchronization with the start of the time for discharging power from the second power supply set by the first time setting circuit.
  • a second time setting circuit for setting the time to
  • the power supply device includes a voltage variable circuit unit that changes an output voltage of the boosting unit during a time set in the second time setting circuit unit.
  • the power supply device sets the output voltage of the boosting unit to a voltage value higher than the output voltage of the second power supply unit while the second time setting circuit unit is operating. .
  • the load unit is driven by the first power supply unit
  • the output voltage of the first power supply unit is lower than the voltage required to drive the load unit, the output voltage of the first power supply unit is boosted;
  • the power supply method of the power supply device further includes charging the second power supply unit with a boosted output voltage of the first power supply unit.
  • the power supply method of the power supply device further includes setting a first time for discharging power from the second power supply unit,
  • the output voltage of the first power supply unit is changed during the second time.
  • the power supply method of the power supply device is further characterized in that, when the boosting of the output voltage of the first power supply unit is started, the boosted voltage is set higher than the output voltage of the second power supply unit. I do. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a configuration diagram of a step-up / down power supply device according to Embodiment 1.
  • FIG. 2 is a time chart illustrating an example of an operation of the auxiliary power supply circuit and an operation of charging the auxiliary power supply circuit according to Embodiment 1.
  • FIG. 3 shows the difference in operating state between the conventional step-up comparator and the step-up comparator according to the first embodiment according to the battery voltage.
  • Fig. 4 shows the voltage detection of the auxiliary power supply circuit according to the second embodiment.
  • FIG. FIG. 5 is a configuration diagram of a step-up / down power supply device according to the third embodiment.
  • Figure 6 is a block diagram of a conventional step-up / down power supply.
  • a battery 1 is an example of a first power supply unit and is a main power source of a portable electronic device.
  • the step-up converter 2 is an example of a booster, and is a non-insulating type converter that converts the voltage of the battery 1 to a more stable high voltage.
  • the linear regulator 3 is an example of a step-down unit, and stably steps down the output voltage of the step-up converter 2 to the drive voltage of the electronic circuit 4.
  • the electronic circuit 4 is an example of a load unit, and shows a main circuit of a portable electronic device.
  • the step-up converter 2 includes a control circuit section 50, a switching transistor 51, a choke coil 52, a diode 53, a capacitor 54, and a voltage variable circuit 13 (an example of a voltage variable circuit section).
  • the output voltage of the step-up comparator 2 is fed back to the control circuit 50 via the voltage variable circuit 13.
  • the emitter terminal of the transistor 51 and one terminal of the capacitor 54 are connected to a reference voltage (ground) 55 of the circuit.
  • the reference voltage of the circuit is the negative voltage of the power supply 101 inside the battery 1.
  • the negative pole of the power supply 101 is connected to the grounds 102, 55, 57, 59, 301, 401, 64, 66, and the grounds 102, 55, 57, 59, 301, Reference numerals 40 1, 64, and 66 maintain the reference voltage of the circuit.
  • a capacitor 56 is connected to the output side of the battery 1. Capacitor 56 is connected to ground 57. The output side of the linear regulator 3 is connected to a capacitor 58 for stabilizing the output. Capacitor 58 is connected to ground 59.
  • the voltage of the step-up comparator 2 is controlled by the voltage variable circuit 13. Has a variable function.
  • the bypass diode 5 is connected in parallel with the above-described step-up comparator 2 (an example of a bypass circuit). Further, the step-up comparator 2 can be started or stopped externally by inputting a ⁇ N / OFF (on / off) signal to the control circuit unit 50 from outside.
  • the auxiliary power supply circuit 6 is an example of a second power supply unit, and is connected to the output of the step-up converter 2 and the power source side of the bypass diode 5 to supplement the power.
  • the voltage detection circuit 7 connects one of the two terminals of the input to the positive terminal of the DC power supply 65 constituting the reference voltage, and the other to the output of the step-up converter 2 and the power source of the bypass diode 5.
  • the negative side of DC power supply 65 is connected to ground 66.
  • the voltage detection circuit 7 determines whether the auxiliary power supply circuit 6 supplies power.
  • the timer 8 is an example of a first time setting circuit section. The input is connected to the output of the voltage detection circuit 7, and the output is input to and controlled by the timer 9, the semiconductor switch 10, and the comparator 60.
  • the timer 8 operates the auxiliary power supply circuit 6 for an arbitrary time by the output of the voltage detection circuit 7.
  • the timer 9 is an example of a second time setting circuit unit.
  • the input is connected to the output of the timer 8, and the output of the timer 9 is connected to the voltage variable circuit 13.
  • the timer 9 operates the voltage variable circuit 13 so that the output voltage setting of the step-up comparator 2 is set higher than the normal operation state for an arbitrary time in synchronization with the start of the operation of the auxiliary power supply circuit 6.
  • the semiconductor switch 10 is a switch typified by a FET (Field Effect Transistor) or a bipolar transistor.
  • the semiconductor switch 10 turns on / off the auxiliary power supply by the output of the timer 8.
  • the semiconductor switch 11 is a switch represented by a FET (Field Effect Transistor) or a bipolar transistor.
  • Semiconductor switch 11 is driven by the output of comparator 60.
  • the capacitor 12 is an example of a power storage means. One of the two terminals is connected to the ground 64, and the other is connected to the cathode of the diode 61 and the anode of the diode 62. Capacitor 12 stores auxiliary power energy.
  • the diode 61 has its anode connected to the output of the step-up converter 2 and the output side of the bypass diode 5 via the resistor 63 and the semiconductor switch 11.
  • the diode 62 has its cathode side connected to the output of the step-up comparator 2 and the cathode side of the bypass diode 5 via the semiconductor switch 10.
  • Step-up converter 2 sets the output voltage so as to output the minimum voltage required for operation of linear regulator 3. Therefore, when the voltage of the battery 1 is higher than the output voltage set value of the step-up converter 2, the output feedback control circuit 50 of the step-up converter 2 operates to stop the switching operation of the transistor 51. However, the step-up comparator 2 is actually in a resting state or intermittently oscillating. In any case, the power loss is suppressed.
  • the bypass diode 5 reduces the voltage loss due to the input / output resistance of the step-up comparator 2 so that the output voltage of the step-up comparator 2 becomes as close to the battery 1 voltage as possible, and the step-up diode 5 Upcomer 2 works to keep the dormant state.
  • the auxiliary power supply circuit 6 detects the input voltage of the linear regulator 3 when the voltage of the battery 1 decreases due to a sudden increase in the load of the electronic circuit 4 or when the operation delay of the step-up comparator 2 occurs. When the voltage falls below the normal operating range, supplementary energy supplementation is performed rapidly, and the voltage is increased.
  • the initial set value of the output voltage setting of the up-converter 2 is set to a high voltage for charging the capacitor 12 in the auxiliary power supply circuit 6.
  • the output voltage of the step-up comparator 2 is set by varying the resistance value ratio of the portion for detecting the output voltage of the step-up comparator 2.
  • the above initial setting value operates only for a certain period of time, and the time setting is generated by a reset IC (Integrated Circuit) (not shown) because it is different from the setting time of the timer 9. However, since the setting time of the timer 9 is longer than the charging time of the capacitor 12 as described later, the time setting of the above initial setting value may be generated by the timer 9.
  • the voltage detection circuit 7 is a comparator that detects the voltage of the step-up comparator 2 and uses the minimum required operating voltage of the linear regulator 3 as a comparison reference value. When the voltage drops, the output signal of the voltage detection circuit 7 as a comparator is inverted.
  • the power supply operation of the auxiliary power supply circuit 6 also has a time lag element, so the voltage that is slightly higher than the minimum required operating voltage of the linear regulator 3 is used as the comparison reference value of the voltage detection circuit 7. .
  • the one-shot timer 8 and the timer 9 operate with the output signal of the voltage detection circuit 7 being inverted as a trigger.
  • the semiconductor switch 10 as an auxiliary power supply ON switch conducts for an arbitrary fixed time, and the electric charge accumulated in the capacitor 12 is converted into voltage energy through the diode 62 and the semiconductor switch 10 as voltage energy.
  • the voltage variable circuit 13 changes the output voltage of the step-up comparator 2 to about 0.5 V from the maximum voltage of the capacitor 12 of the auxiliary power supply circuit 6 for an arbitrarily set time by the output of the timer 9. Set to a high value. As a result, the output voltage of step-up converter 2 rises to the set value. You.
  • the semiconductor switch 10 which is the auxiliary power supply ON switch is turned off and the semiconductor switch 11 which is the auxiliary power supply charge ON switch is turned ON. Then, the auxiliary power supply circuit 6 rapidly charges the capacitor 12 with the increased output voltage of the step-up converter 2, and makes the capacitor 12 transition to the next auxiliary power supply operation preparation state.
  • the time of timer 9 is set to the sum of the time of timer 8 and the time of charging capacitor 12. However, considering some margin, it is desirable to set the time to be longer than the above sum.
  • FIG. 2 is a time chart showing an example of the operation of the auxiliary power supply circuit 6 and the operation of charging the auxiliary power supply circuit 6 according to the first embodiment.
  • the voltage of the battery 1 is higher (H) than the minimum operating voltage of the linear regulator 3.
  • the load of the electronic circuit 4 is in a small (L) state.
  • the output voltage of the step-up comparator 2 is higher (H) than the minimum operating voltage of the linear regulator 3.
  • the output signal of the voltage detection circuit 7 is in the Low (L) state.
  • the output of timer 8 is off (OFF).
  • the output of evening camera 9 is OFFF.
  • the output setting of the voltage variable circuit 13 is the minimum operating voltage (normal setting: N) of the linear regulator.
  • the semiconductor switch 10, which is the auxiliary power supply switch is an off-switch.
  • the semiconductor switch 11, which is the auxiliary power charging switch, is on (ON). This is normal operation.
  • the output signal of the voltage detection circuit 7 is in a High (H) state.
  • the output of timer 8 turns ON.
  • the semiconductor switch 10 is turned on.
  • the semiconductor switch 11 is turned off. This As a result, power is supplied from the capacitor 12 of the auxiliary power supply circuit 6 to the input of the linear regulator 3.
  • Step-up Comparator 2 starts operating.
  • the output voltage of the step-up converter 2 must be lower than the minimum operating voltage (M in) of the linear regulator 3 as shown by the dotted line in Fig. 2. become.
  • the semiconductor switch 11 becomes ON.
  • the capacitor 12 is rapidly charged from the increased output voltage of the step-up converter 2, and the capacitor 12 is shifted to the next auxiliary power supply operation preparation state.
  • FIG. 3 is a diagram showing, as an example, a difference between an operation state of a step-up downcomer which is a conventional power supply and an operation state of the power supply according to the first embodiment in accordance with the voltage of the battery 1.
  • the voltage is 3.3 V
  • the saturation voltage of the linear regulator is 0.3 V. Therefore, the minimum operating voltage of the linear regulator 3 is 3.6 V.
  • the operation of the step-up comparator 2 is in a halt state when the battery 1 voltage is between 4.2 V and 3.61 V.
  • the power loss in this portion can be suppressed as compared with the conventional power supply device, which is a continuous operation of the step-up comparator.
  • the output voltage of the step-up converter 2 is set as low as possible within the voltage range in which the subsequent linear regulator 3 can operate. I do. Further, the diode 5 having a low forward voltage is connected in parallel with the step-up converter 2 as a bypass diode. As a result, the voltage variable circuit 13 is set so that the operation of the step-up comparator 2 is at a maximum in the battery 1 voltage range, the power loss of the power supply unit is reduced, and the battery-powered portable The driving time of the electronic device can be extended.
  • the auxiliary power supply becomes an electric power tank circuit to supply power to the linear regulator 3 instead of the step-up comparator 2. Construct circuit 6. Then, when the load suddenly changes, the semiconductor switches 10 and 11 supply auxiliary power to the linear power supply 3 from the auxiliary power supply circuit 6 for a fixed time so that the power supply to the electronic circuit 4 can be stably performed. .
  • the output voltage setting of the step-up converter 2 is changed to a higher value by the voltage variable circuit 13 so that the state of the step-up converter 2 can be simultaneously changed to the normal switching operation state.
  • the time to increase the output voltage setting is from the auxiliary power supply circuit 6. Power supply time and auxiliary power supply circuit 6
  • the time during which power is supplied from the auxiliary power supply circuit 6 is the time required for the step-up converter 2 to return to the normal switching state.
  • the auxiliary power supply circuit 6 is charged, so that the output voltage setting is similarly increased.
  • Embodiment 1 an embodiment using a timer circuit to create an arbitrary time is shown.
  • a CR circuit using a simple capacitor (C) and a resistor (R) is used instead of the timers 8 and 9. Similar effects can be obtained with a constant circuit.
  • the second embodiment will be described with reference to FIG. 4 focusing on the differences from the first embodiment.
  • the drive circuit 14 includes a semiconductor switch 81, a capacitor 82, a resistor 83, and a diode 84.
  • the output of the voltage detection circuit 7 is connected to the anode side of the diode 84, and the switch input terminal of the semiconductor switch 81, one terminal of the capacitor 82 and the resistor 8 are connected to the output side of the diode 84. 3 is connected to one terminal.
  • the other terminal of each of the capacitor 82 and the resistor 83 is connected to the switch input terminal of the semiconductor switch 10 via the semiconductor switch 81 and to the ground 86.
  • the drive circuit 14 is a circuit for driving the semiconductor switch 10 which is an auxiliary power supply ON switch, and the semiconductor switch 10 is turned on by the CR time constant. Delays the transition from on to off.
  • the drive circuit 15 includes a semiconductor switch 71, a capacitor 72, resistors 73 and 75, and a diode 74.
  • the output of the voltage detection circuit 7 is connected to the node side of the diode 74, and the switch input terminal of the semiconductor switch 71, one terminal of the capacitor 72, and the resistor 73 are connected to the cathode side. Are connected to one terminal.
  • the other terminal of each of the capacitor 72 and the resistor 73 is connected to the signal input terminal of the voltage variable circuit 13 and the resistor 75 via the semiconductor switch 71, and to the ground 76. ing.
  • the drive circuit 15 is a circuit that drives the voltage variable circuit 13 and uses the CR time constant to set the voltage of the step-up converter 2 to a high voltage for a period determined by the CR time constant. 3 can be driven.
  • the grounds 76 and 86 are connected to the negative electrode of the power supply 101, and the ground grounds 76 and 86 maintain the reference voltage of the circuit.
  • the embodiment using the dedicated auxiliary power supply circuit 6 has been described.However, for example, a portable electronic device may use a plurality of power supply types, and these power supply outputs may be supplemented. Similar effects can be obtained as an energy supply source of the power supply circuit 6.
  • the third embodiment will be described with reference to FIG.
  • the output of the other power supply 16 is connected to the anode of the diode 62.
  • the output of the other power supply 16 is connected to the electronic circuit 4 and can directly drive the electronic circuit 4.
  • the output of the other power supply 16 is
  • the other power supply 16 that is connected to the output of the battery 1 and can substitute for the output of the battery 1 is an example of the second power supply unit, and the output voltage of the normal setting of the step-up comparator 2
  • the output capacity is higher than that of the linear regulator, and the power capacity is several times larger than the load capacity of the linear regulator.
  • the semiconductor switch 11 as the auxiliary power supply circuit charging on switch and the capacitor 12 for storing energy are unnecessary. Further, since the time during which the semiconductor switch 10 as the auxiliary power supply on switch is on and the time during which the voltage setting of the step-up comparator 2 is increased may be the same, the timer 9 is also unnecessary.
  • the configuration can be further reduced than in the second embodiment.
  • the effect on power saving is small since the other power supply 16 outputs are operating.
  • Lithium-based secondary batteries are generally used in portable electronic devices, but when they are used in one cell, the operating voltage is generally 2.75 V to 4.2 V.
  • the power supply In order to create a general operating voltage of 3 V or 3.3 V for electronic equipment within this usable voltage range, for example, the power supply must increase the voltage by using one battery voltage in the above-mentioned usable voltage range.
  • the first, second, and third embodiments relate to a method for improving the voltage conversion efficiency of this step-up / down power supply circuit.
  • the above-mentioned step-up / down power supply circuit is a step-up / down power supply that aims to increase the usable voltage range and minimizes power loss.
  • the output voltage of the step-up converter is set as low as possible at the lower end of the input range of the linear regulator 3 at the subsequent stage, and the boosted voltage is a constant voltage required by the electronic circuit 4. (Eg 3 V) to reduce the voltage to keep it constant at
  • An auxiliary power supply circuit 6 for compensating for a drop in the voltage of the battery 1 due to a sudden load change when the booster type converter is stopped,
  • a high-efficiency step-up power supply device comprising a voltage variable circuit 13 for temporarily setting the output voltage setting of the booster circuit higher than usual in synchronization with the operation of the auxiliary power supply circuit 6.
  • the step-up / down power supply circuit obtains the power supply of the auxiliary power supply circuit 6 for the purpose of obtaining the power supply of the auxiliary power supply circuit 6 by self-excitation as described above.
  • a high-efficiency step-up power supply device comprising: an auxiliary power supply circuit 6 equipped with a battery or a capacitor 12 that stores power at a voltage set higher than usual.
  • unnecessary boosting operation in the state where the first power supply section voltage is high and the power supply capacity is sufficient is stopped, high efficiency is maintained, and the use range of the battery is further reduced. Since the operation can be performed to the end, there is an effect that the power supply capacity can be used to the maximum.
  • the operation mode of the battery-powered portable electronic device is Suppress power loss in power supply devices in standby mode on mobile phones and low power consumption operation modes (called suspend mode, stamp mode, sleep mode) on PDAs and PCs, and further reduce power consumption There is an effect that can be realized.
  • the second power supply unit is not a multi-output power supply, it is possible to obtain an effect that stable power supply to the load unit can be realized. That is, even in a single power supply device, it is possible to obtain the effect of realizing stable power supply to the load unit.
  • the input voltage of the step-down unit is not packed and controlled. Providing the insulation type converter has the effect that the boosting operation can be automatically performed as needed when necessary.
  • the diode does not supply power without passing through the booster circuit at the time of boosting, and the loss of boosted power can be reduced.
  • the second power supply unit since the second power supply unit is charged, there is no need for a disposable auxiliary power supply, and there is an effect that a power supply device can be realized by the first power supply unit alone.
  • the power supply time from the second power supply unit can be set arbitrarily. Also, there is an effect that the output voltage of the booster can be arbitrarily varied for a certain period of time. As a result, the booster can smoothly transition to a normal operating state, and the power consumption can be further reduced.
  • a time setting circuit can be configured by configuring inexpensive components. According to the preferred embodiment of the present invention, it is possible to smoothly transition the state of the booster to a normal operation state, and further achieve an effect of further reducing power consumption. Also, there is an effect that the second power supply unit can be sufficiently charged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Dc-Dc Converters (AREA)

Abstract

A step-up/down power unit capable of efficiently utilizing a battery (1), characterized by comprising the battery (1) driving an electronic circuit (4), a step-up converter (2) building up the output voltage of the battery (1) connected between the battery (1) and the electronic circuit (4), a diode (5) connected parallel with the step-up converter (2) and bypassing a current discharged from the battery (1), a linear regulator (3) building down the voltage built up by the step-up converter (2), and an auxiliary power supply circuit (6) connected parallel with the step-up converter (2).

Description

明 細 書 電源装置及び電源装置の給電方法 技術分野  Description Power supply device and power supply method for power supply device
この発明は、 電源装置及び電源装置の給電方法、 例えば、 電池で駆動 し、 内部回路が電池の動作電圧範囲の内側で動作する携帯型電子機器に 関するものである。 例えば、 リチウムイオン電池の動作電圧範囲が 2 . 7 5 V〜4 . 2 Vであり、 かつ携帯型電子機器の機能を実現する為の L S I等に必要な電子回路の駆動電圧 (V c c ) が 3 Vである場合などの 電源装置及び電源装置の給電方法に関するものである。 背景技術  The present invention relates to a power supply device and a power supply method of the power supply device, for example, a portable electronic device driven by a battery and having an internal circuit operating within an operating voltage range of the battery. For example, the operating voltage range of a lithium-ion battery is 2.75 V to 4.2 V, and the drive voltage (V cc) of an electronic circuit required for an LSI or the like for realizing the functions of a portable electronic device is The present invention relates to a power supply and a power supply method for the power supply when the voltage is 3 V or the like. Background art
従来例 1 . Conventional example 1.
図 6は従来の電源装置における構成を示したものである。  FIG. 6 shows a configuration of a conventional power supply device.
ここで、 電池 1は、 携帯型電子機器の電力源となる。 ステップアップ コンパー夕 2は、 上記電池 1の電圧をより安定した高い電圧に変換する 。 リニアレギユレ一夕 3は、 上記ステップアップコンパ一夕 2の出力電 圧を電子回路 4の駆動電圧に安定して降圧する。 電子回路 4は、 携帯型 電子機器の主回路を示す。  Here, the battery 1 is a power source of the portable electronic device. The step-up converter 2 converts the voltage of the battery 1 to a more stable high voltage. The linear regulator 3 gradually reduces the output voltage of the step-up comparator 2 to the drive voltage of the electronic circuit 4. The electronic circuit 4 indicates a main circuit of the portable electronic device.
また、 ステップアップコンパ一夕 2は、 制御回路部 5 0、 スィッチン グを行なうトランジスタ 5 1、 チョークコイル 5 2、 ダイオード 5 3、 コンデンサ 5 4で構成される。 また、 ステップアップコンパ一夕 2の出 力電圧は制御回路部 5 0にフィードバックされている。 また、 トランジ ス夕 5 1のェミツ夕端子とコンデンサ 5 4の一方の端子は、 回路の基準 電圧 (グランド) 5 5に接続されている。 ここで、 回路の基準電圧は、 電池 1内部の電源 101の負極電圧である。 電源 1 01の負極は、 グラ ンド 102, 55, 57, 59, 301, 401に接続され、 上記グラ ンド 102, 55, 57, 59, 301, 401は回路の基準電圧を維 持している。 また、 電池 1の出力側にはコンデンサ 56が接続されてい る。 コンデンサ 56はグランド 57に接続されている。 リニアレギユレ 一夕 3の出力側には出力を安定化するためのコンデンサ 58が接続され ている。 また、 コンデンサ 58はグランド 59に接続されている。 次に動作について説明する。 電池 1の電圧をステップアップコンパ一 夕 2で電池 1の出力電圧範囲より高い電圧まで昇圧する。 この動作によ り、 電池 1の電圧の状態に関わらず、 一定の安定した電圧が生成される 次に、 ステップアップコンバータ 2で昇圧された一定の電圧を入力と して、 リニアレギユレ一夕 3が上記電圧を降圧する。 これにより、 一定 の安定した電子回路 4用の電圧が生成される。 携帯型電子機器の主回路 である電子回路 4は、 リニアレギユレ一夕 3で降圧された電圧に基づき 動作を行う。 このようにステップアップコンパ一夕 2を前段回路とし、 リニアレギユレ一夕 3を後段回路として構成したステップアップダウン 電源装置によれば、 電池 1の電圧が電子回路 4の必要とする電圧より高 ぃ塲合でも、 低い場合でも、 安定した出力を得ることができる。 従来技 術においては、 後段のリニアレギユレ一夕 3をステップダウンコンバー 夕 (チヨッパ式スイッチングレギユレ一夕) で構成することも可能であ る。 The step-up comparator 2 is composed of a control circuit section 50, a switching transistor 51, a choke coil 52, a diode 53, and a capacitor 54. The output voltage of the step-up comparator 2 is fed back to the control circuit 50. The emitter terminal of the transistor 51 and one terminal of the capacitor 54 are connected to the reference voltage (ground) 55 of the circuit. Where the reference voltage of the circuit is This is the negative electrode voltage of the power supply 101 inside the battery 1. The negative electrode of the power supply 101 is connected to the grounds 102, 55, 57, 59, 301, 401, and the grounds 102, 55, 57, 59, 301, 401 maintain the reference voltage of the circuit. A capacitor 56 is connected to the output side of the battery 1. Capacitor 56 is connected to ground 57. A capacitor 58 for stabilizing the output is connected to the output side of the linear regulator. The capacitor 58 is connected to the ground 59. Next, the operation will be described. The voltage of battery 1 is boosted to a voltage higher than the output voltage range of battery 1 by step-up comparator 2. By this operation, a constant voltage is generated irrespective of the state of the voltage of the battery 1.Next, the constant voltage boosted by the step-up converter 2 is input and the linear regulator 3 Step down the voltage. As a result, a constant and stable voltage for the electronic circuit 4 is generated. The electronic circuit 4, which is the main circuit of the portable electronic device, operates based on the voltage stepped down by the linear regulator 3. As described above, according to the step-up / down power supply device in which the step-up compa- nator 2 is configured as a preceding circuit and the linear regulator circuit 3 is configured as a subsequent circuit, the voltage of the battery 1 is higher than the voltage required by the electronic circuit 4. Even if the output is low, a stable output can be obtained. In the conventional technology, it is also possible to configure the subsequent linear regulator 3 as a step-down converter (chopper-type switching regulator).
また、 リニアレギユレ一夕 3と同様の機能を果たすスイッチングレギ ユレ一夕の方式として、 SEP I C (S i ng l e End P r im a r y I ndue t ann c e Con t r o l ) 回路方式やトラン ス方式がある。 ここで、 従来の携帯型端末における、 ステップアップダウン電源装置 は、 ステップアップコンパ一夕 2が常時動作する。 しかしながら、 常時 動作すると、 通常このようなスィツチングタイプの電源回路はその出力 電力が小さくなつた時には効率が極端に悪くなる特性を持っている。 そ のため、 携帯型電子機器の消費電力が小さくなつた時、 例えば、 携帯電 話における電話の待受け状態、 または PDA (P e r s o n a 1 D i g i t a 1 A s s i s t a n c e) や PC (P e r s o n a l C o mp u t e r) 等における省電力モード (サスペンド、 スタンパイ、 ス リーブ等の名称で用いられる) 等のような低消費電力モードでは、 ステ ップアップコンバータ 2の損失が、 機器の動作時間を短くしてしまう主 要因の一つとなり問題があった。 In addition, as a switching regulator system that performs the same function as the linear regulator system 3, there is a SEP IC (Single End PRIMary Ind ance ann tance Control) circuit system or a trans system. Here, in the step-up / down power supply device of the conventional portable terminal, the step-up compa- nator 2 always operates. However, when operating constantly, such switching type power supply circuits usually have the characteristic that the efficiency becomes extremely poor when the output power is reduced. Therefore, when the power consumption of the portable electronic device decreases, for example, when the mobile phone is in a standby state, or when a PDA (Persona 1 Digit 1 Assistance) or PC (Personal Computer) In the low power consumption mode such as the power saving mode (used by the names of suspend, stamp-pay, sleep, etc.), the loss of the step-up converter 2 is the main factor that shortens the operation time of the device. There was a problem.
そのため、 機器の動作条件等によっては、 ステップアップダウン電源 を搭載せず、 リニアレギユレ一夕 3のみを搭載し、 電子回路 4の動作電 圧より高い状態の電池 1電圧範囲でしか電池 1を利用しない場合もある 。 例えば電子回路 4の動作電圧が 3. 3 Vとした場合に、 リニアレギュ レー夕 3の飽和電圧分を考慮し、 4. 2 V〜3. 5 Vの間だけを利用し Therefore, depending on the operating conditions of the equipment, only the linear regulator 3 is installed without the step-up / down power supply, and the battery 1 is used only in the voltage range of the battery 1 that is higher than the operating voltage of the electronic circuit 4. In some cases . For example, when the operating voltage of the electronic circuit 4 is 3.3 V, only the voltage between 4.2 V and 3.5 V is used in consideration of the saturation voltage of the linear regulator 3.
、 3. 4 V以下は使用しない場合などである。 , 3.4 V or less is not used.
このように、 機器の消費電力によっては、 電池 1の電圧範囲を全て利 用しょうとステップアップコンパ一夕 2を搭載するよりも、 ステップァ ップコンバータ 2を搭載せずに電池 1を上記 4. 2 V〜3. 5 Vの間だ け利用する方がかえってステップアップコンバータ 2の損失が無い分、 動作時間が長くなる場合もある。  As described above, depending on the power consumption of the device, to use the entire voltage range of battery 1, rather than installing step-up converter overnight 2, battery 1 without 4.2-volt converter above 4.2 V Using up to 3.5 V may result in a longer operating time because there is no loss in step-up converter 2.
しかしながら、 本来このステップアップコンパ一夕 2の動作が必要な 期間は、 電池 1電圧が、 電子機器 4の動作電圧を発生するのに必要なリ 二ァレギユレ一夕 3の入力電圧より小さくなつた時だけである。 そのた め、 電池 1電圧が高い間は電力損失の大きいステップアップコンパ一夕 2を停止または休止状態 (例えば、 ステップアップコンパ一夕 2が P W M ( P u l s e W i d t h M o d u 1 a t i o n ) 制御タイプのス ィツチングコンバ一夕であるならば、 スィツチングオン D U T Yが 0 % あるいはそれに近い状態とすること) によりステツプアップコンパー夕 2の電力ロスを抑制できる。 However, during the period during which the operation of the step-up compa- nator 2 is originally required, when the voltage of the battery 1 becomes smaller than the input voltage of the linear regulator 3 required to generate the operating voltage of the electronic device 4. Only. For this reason, while the battery 1 voltage is high, a step-up 2 Stop or pause (for example, if the step-up converter 2 is a PWM (pulse width modulation) switching type switching converter, the switching-on duty is 0% or close to it. The power loss of the step-up comparator 2 can be suppressed.
しかし、 単純に停止および休止をさせた場合には、 負荷の変動により 出力電流が増加した時に電池 1電圧が低下してしまう。 これにより、 電 池 1電圧がリニアレギユレ一夕 3の必要とする電圧を下回ってしまう。 したがって、 電子機器 4への電源供給が不安定となり、 電子機器 4の誤 動作を発生させる。  However, when simply stopping and pausing, the battery 1 voltage drops when the output current increases due to load fluctuations. As a result, the voltage of the battery 1 falls below the voltage required by the linear regulator 3. Therefore, the power supply to the electronic device 4 becomes unstable, causing the electronic device 4 to malfunction.
よって、 通常はこの問題を防止するため、 ステップアップコンバータ Therefore, usually to prevent this problem, a step-up converter
2は、 高速な応答性能が得られる様にするために、 電池 1の最大電圧よ り高い出力電圧を設定し、 常時動作させる。 しかしながら、 これは、 上 述したように、 ステップアップコンパ一夕 2による電力損失を常時発生 させるということにつながる。 2 sets the output voltage higher than the maximum voltage of the battery 1 and keeps it operating at all times in order to obtain high-speed response performance. However, this leads, as described above, to always generate power loss due to the step-up compa- nator 2.
また、 後段のリニアレギユレ一夕 3で代表されるステップダウン電源 には、 状況によりスイッチング方式のステップダウンコンパ一夕が使用 される場合もある。  The step-down power supply represented by the linear regulator 3 in the latter stage may use a switching-type step-down comparator depending on the situation.
このように、 上記ステップアップダウン電源装置では、 電源装置の口 スを抑制しながら電池電圧範囲の全範囲に渡って電池 1を利用すること が困難である。  Thus, in the above-described step-up / down power supply device, it is difficult to use the battery 1 over the entire range of the battery voltage range while suppressing the power supply device.
本発明は、 電力損失を抑制できるステップアップダウン電源装置を得 ることを目的とする。  An object of the present invention is to provide a step-up / down power supply device capable of suppressing power loss.
また、 負荷の変動による電子機器への電源供給の不安定を解消し安定 して給電できるステップアップダウン電源装置を得ることを目的とする また、 電池を効率よく利用できるステップアップダウン電源装置を得 ることを目的とする。 従来例 2 . Another object of the present invention is to eliminate the instability of power supply to electronic devices due to load fluctuations and to obtain a step-up / down power supply that can supply power stably. It is another object of the present invention to obtain a step-up / down power supply that can efficiently use a battery. Conventional example 2.
特開昭 5 7 - 2 0 6 2 3 1号公報には、 車両のエンジン停止時に D C— D C (直流一直流) コンパ一夕の動作によるバッテリの放電により、 車 両が始動不能になることを回避するため、 バッテリと、 このバッテリの 電圧を昇圧する D C— D Cコンパ一夕と、 D C _ D Cコンバータの作動 を兼ねたイダニッシヨンスィツチと、 昇圧回路の出力が入力される定電 圧回路と、 定電圧回路の出力が入力される車両用電子機器と、 上記 D C 一 D Cコンパ一夕がォフの場合に上記パッテリから上記車両用電子機器 にダイォードを介して直接電源が供給される回路とを備えた車両用電子 機器の電源装置が記載されている。 Japanese Unexamined Patent Publication No. 57-2063231 discloses that when a vehicle's engine is stopped, the battery cannot be started due to the discharge of the battery due to the operation of a DC-DC (direct current-direct current) comparator. To avoid this, a battery, a DC-DC converter that boosts the voltage of this battery, an identification switch that also operates the DC_DC converter, and a constant-voltage circuit that receives the output of the booster A vehicle electronic device to which the output of the constant voltage circuit is input; and a circuit in which power is directly supplied from the battery to the vehicle electronic device via a diode when the DC-DC converter is off. A power supply device for a vehicle electronic device provided with a power supply is described.
図に示してはいないが、 上記構成において、 上記イダニッシヨンスィ ツチがオフのときは、 上記 D C— D Cコンパ一夕は駆動せず、 バッテリ は上記ダイォードを介して定電圧回路へ供給され、 さらに上記車両用電 子機器へ供給される。 上記イダニッシヨンスィッチがオンのときは、 そ のオン時のほとんどにおいてエンジンが作動しているときであることか らパッテリは充電される。 これにより、 D C—D Cコンパ一夕が作動し て消費電力が増加してもパッテリは放電しない。 また、 車両のエンジン スター夕始動時においても D C— D Cコンパ一夕は同様に作動し、 バッ テリの電圧は低下する。 これにもかかわらず電圧は D C— D Cコンパ一 夕により昇圧され正常な電圧電源で上記車両用電子機器に供給できる旨 記載されている。  Although not shown in the figure, in the above configuration, when the above-mentioned identification switch is off, the above-mentioned DC-DC converter is not driven, and the battery is supplied to the constant voltage circuit through the above-mentioned diode. Further, it is supplied to the above-mentioned vehicle electronic device. When the above-mentioned identification switch is on, the battery is charged because the engine is running most of the time when the ignition switch is on. As a result, the battery does not discharge even if the power consumption increases due to the operation of the DC-DC converter. Also, when the vehicle's engine star starts, the DC-DC converter operates in the same way, and the battery voltage drops. In spite of this, it is stated that the voltage is boosted by the DC-DC converter and can be supplied to the above-mentioned vehicle electronic device with a normal voltage power supply.
しかしながら、 上記電源装置においては、 パッテリは、 上記エンジン により通常は充電されていることを前提としたものであって、 パッテリ を使用不能な電圧範囲にまで有効に利用することを解決するものではな い。 従来例 3 . However, in the above power supply device, the battery is assumed to be normally charged by the engine, and However, this does not solve the problem of effectively using the voltage within the unusable voltage range. Conventional example 3.
特開平 4一 2 5 9 0 1 7号公報には、 高電圧駆動系と低電圧駆動系との 作動電圧の異なる電気部品を駆動する直流電源装置として、 スィッチン グレギユレ一夕とリニアレギユレ一夕と上記スィツチングレギユレ一夕 の目標電圧を切り替える目標電圧切替手段とを備えた直流電源装置が記 載されている。 Japanese Patent Application Laid-Open No. Hei 4-2590917 discloses that as a DC power supply device for driving electrical components having different operating voltages between a high-voltage drive system and a low-voltage drive system, there are two types of DC power supply devices: Switchin Gregiyure and Linear Regyure. It describes a DC power supply device provided with target voltage switching means for switching a target voltage of the switching power supply.
図に示してはいないが、 上記スイッチングレギユレ一夕は、 直流電圧 を外部から指定された目標電圧に変換して出力し、 高電圧駆動系を駆動 する。 また、 上記リニアレギユレ一夕は、 上記スイッチングレギユレ一 夕からの出力電圧を分岐入力し、 上記出力電圧より低い所定電圧に変換 して出力し、 低電圧駆動系を駆動している。 また、 上記スイッチングレ ギユレ一夕からの出力電圧を高電圧駆動系に供給する場合に、 供給しな ぃ塲合の目標電圧より大きくなるように、 上記目標電圧切替手段は上記 スィヅチングレギユレ一夕の目標電圧を切り替える。  Although not shown, the switching regulator converts a DC voltage to a target voltage specified from the outside and outputs the target voltage to drive a high-voltage drive system. Further, the linear regulator circuit branches and inputs the output voltage from the switching regulator circuit, converts the output voltage to a predetermined voltage lower than the output voltage, and outputs the predetermined voltage, thereby driving a low voltage drive system. Further, when the output voltage from the switching regulator is supplied to the high-voltage drive system, the target voltage switching means is configured so that the switching voltage is higher than a target voltage that is not supplied. Change the target voltage for one night.
これにより、 高電圧駆動系に供給しない場合のリニアレギユレ一夕で の電力損失を抑制している。  This suppresses power loss in the linear regulator when no power is supplied to the high-voltage drive system.
しかしながら、 上記直流電源装置は、 上記低電圧駆動系の電気部品を 駆動する際、 上記高電圧駆動系の電気部品を駆動するのに必要な電圧に 昇圧することによる電力損失を低減するためのものであって、 電源を使 用不能な電圧範囲にまで有効に利用することを解決するものではない。 発明の開示  However, the DC power supply is intended to reduce the power loss caused by boosting the voltage required to drive the high-voltage drive system electrical components when driving the low-voltage drive system electrical components. However, this does not solve the problem of effectively using the power supply to an unusable voltage range. Disclosure of the invention
本発明の電源装置は、 負荷部を駆動する第 1の電源部と、 上記第 1の電源部と上記負荷部との間に接続された第 1の電源部の 出力電圧を昇圧する昇圧部と、 The power supply device of the present invention includes: a first power supply unit that drives a load unit; A booster for boosting an output voltage of the first power supply connected between the first power supply and the load;
上記昇圧部と並列に接続され、 上記第 1の電源部から放電された電 流をパイパスするバイパス回路部と、  A bypass circuit unit connected in parallel with the booster unit and bypassing a current discharged from the first power supply unit;
上記昇圧部により昇圧された電圧を降圧する降圧部と、  A step-down unit that steps down the voltage boosted by the step-up unit,
上記昇圧部と並列に接続された第 2の電源部とを備えたことを特徴 とする。  A booster section and a second power supply section connected in parallel.
また、 上記昇圧部は、 上記昇圧部を駆動するスィッチを有するととも に、 上記昇圧部の出力電圧をフィードパックし、 上記フィードバックさ れた結果に基づき上記スィッチを制御し、 出力電圧を一定に安定化する 非絶縁型コンバータであることを特徴とする。 The booster has a switch for driving the booster, feeds the output voltage of the booster, controls the switch based on the feedback result, and keeps the output voltage constant. It is a stable non-isolated converter.
また、 上記バイパス回路部は、 上記昇圧部の入力電圧が上記昇圧部の 出力電圧より大きいときにのみ電流が流れるダイオードを備えたことを 特徴とする。 Further, the bypass circuit unit includes a diode through which a current flows only when an input voltage of the boosting unit is higher than an output voltage of the boosting unit.
また、 上記第 2の電源部は、 上記昇圧部の出力電流により充電される 蓄電手段を備えたことを特徴とする。 Further, the second power supply unit includes a power storage unit that is charged by an output current of the boosting unit.
また、 上記第 2の電源部は、 上記第 2の電源部から電力を放電する時 間を設定する第 1の時間設定回路部と、 Also, the second power supply unit includes a first time setting circuit unit that sets a time period for discharging power from the second power supply unit;
上記第 1の時間設定回路部により設定された上記第 2の電源部から 電力を放電させる時間の始期と同期して上記昇圧部の出力電圧を変更す る時間を設定する第 2の時間設定回路部とを備え、 The output voltage of the booster is changed in synchronization with the start of the time for discharging power from the second power supply set by the first time setting circuit. A second time setting circuit for setting the time to
上記電源装置は、 上記第 2の時間設定回路部に設定された時間中、 上記昇圧部の出力電圧を変更する電圧可変回路部を備えたことを特徴と する。  The power supply device includes a voltage variable circuit unit that changes an output voltage of the boosting unit during a time set in the second time setting circuit unit.
また、上記電源装置は、上記第 2の時間設定回路部が作動している間、 上記昇圧部の出力電圧を上記第 2の電源部の出力電圧より高い電圧値に 設定することを特徴とする。 Further, the power supply device sets the output voltage of the boosting unit to a voltage value higher than the output voltage of the second power supply unit while the second time setting circuit unit is operating. .
また、 本発明の電源装置の給電方法は、 第 1の電源部により負荷部を 駆動し、 Further, in the power supply method of the power supply device according to the present invention, the load unit is driven by the first power supply unit,
上記第 1の電源部の出力電圧が負荷部を駆動するために必要な電圧 より小さい場合に、 上記第 1の電源部の出力電圧を昇圧し、  When the output voltage of the first power supply unit is lower than the voltage required to drive the load unit, the output voltage of the first power supply unit is boosted;
上記第 1の電源部の出力電圧が負荷部を駆動するために必要な電圧 より小さくなるまで上記第 1の電源部から放電された電流をパイパスし、 上記第 1の電源部の昇圧された出力電圧が負荷部を駆動するために 必要な電圧より小さい場合に、 第 2の電源部により上記パイパスされた 電圧を昇圧し、  Bypassing the current discharged from the first power supply unit until the output voltage of the first power supply unit becomes lower than the voltage required to drive the load unit, and boosting the output of the first power supply unit. And boosting the bypassed voltage by the second power supply when the voltage is lower than the voltage required to drive the load;
上記第 1の電源部の出力電圧と上記第 1の電源部の昇圧された出力 電圧と上記第 2の電源部の出力電圧との少なくとも 1つの電圧を、 負荷 部を駆動する電圧まで降圧することを特徴とする。  Reducing at least one of the output voltage of the first power supply unit, the boosted output voltage of the first power supply unit, and the output voltage of the second power supply unit to a voltage for driving a load unit; It is characterized by.
また、 上記電源装置の給電方法は、 さらに、 上記第 2の電源部を上記 第 1の電源部の昇圧された出力電圧により充電することを特徴とする。 また、 上記電源装置の給電方法は、 さらに、 上記第 2の電源部から電 力を放電する第 1の時間を設定し、 Further, the power supply method of the power supply device further includes charging the second power supply unit with a boosted output voltage of the first power supply unit. The power supply method of the power supply device further includes setting a first time for discharging power from the second power supply unit,
上記設定された第 1の時間中、 上記第 2の電源部から電力を放電し、 上記第 2の電源部からの放電開始と同期して上記第 1の電源部の出 力電圧を変更する第 2の時間を設定し、  Discharging power from the second power supply unit during the set first time, and changing the output voltage of the first power supply unit in synchronization with the start of discharge from the second power supply unit. Set a time of 2,
上記第 2の時間中、 上記第 1の電源部の出力電圧を変更することを 特徴とする。 また、 上記電源装置の給電方法は、 さらに、 上記第 1の電源部の出力 電圧の昇圧を開始するときに、 上記昇圧する電圧を第 2の電源部の出力 電圧より高く設定することを特徴とする。 図面の簡単な説明  The output voltage of the first power supply unit is changed during the second time. Further, the power supply method of the power supply device is further characterized in that, when the boosting of the output voltage of the first power supply unit is started, the boosted voltage is set higher than the output voltage of the second power supply unit. I do. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 実施の形態 1によるステップアップダウン電源装置の構成図 図 2は、 実施の形態 1による補助給電回路の動作と補助給電回路への 充電動作の一例を示すタイムチャート図。  FIG. 1 is a configuration diagram of a step-up / down power supply device according to Embodiment 1. FIG. 2 is a time chart illustrating an example of an operation of the auxiliary power supply circuit and an operation of charging the auxiliary power supply circuit according to Embodiment 1.
図 3は、 従来のステップアップコンパ一夕と実施の形態 1によるステ ップアップコンパ一夕の動作状態の違いを電池電圧に合わせて示した図 図 4は、 実施の形態 2による補助給電回路の電圧検出部の構成図。 図 5は、 実施の形態 3よるステツプアップダウン電源装置の構成図。 図 6は、 従来のステップアップダウン電源装置の構成図。 発明を実施するための最良の形態 Fig. 3 shows the difference in operating state between the conventional step-up comparator and the step-up comparator according to the first embodiment according to the battery voltage. Fig. 4 shows the voltage detection of the auxiliary power supply circuit according to the second embodiment. FIG. FIG. 5 is a configuration diagram of a step-up / down power supply device according to the third embodiment. Figure 6 is a block diagram of a conventional step-up / down power supply. BEST MODE FOR CARRYING OUT THE INVENTION
実施の形態 1. Embodiment 1.
以下、 実施の形態 1を図に基づいて説明する。  Hereinafter, Embodiment 1 will be described with reference to the drawings.
図 1において、 電池 1は、 第 1の電源部の一例であり、 携帯型電子機 器の主電力源となる。 ステップアップコンパ一夕 2は、 昇圧部の一例で あり、 上記電池 1の電圧をより安定した高い電圧に変換する非絶縁型コ ンパ一夕である。 リニアレギユレ一夕 3は、 降圧部の一例であり、 上記 ステップアップコンバータ 2の出力電圧を電子回路 4の駆動電圧に安定 して降圧する。 電子回路 4は、 負荷部の一例であり、 携帯型電子機器の 主回路を示す。  In FIG. 1, a battery 1 is an example of a first power supply unit and is a main power source of a portable electronic device. The step-up converter 2 is an example of a booster, and is a non-insulating type converter that converts the voltage of the battery 1 to a more stable high voltage. The linear regulator 3 is an example of a step-down unit, and stably steps down the output voltage of the step-up converter 2 to the drive voltage of the electronic circuit 4. The electronic circuit 4 is an example of a load unit, and shows a main circuit of a portable electronic device.
また、 ステップアップコンバータ 2は、 制御回路部 50、 スィッチン グを行なうトランジスタ 5 1、 チョークコイル 52、 ダイオード 53、 コンデンサ 54、 電圧可変回路 1 3 (電圧可変回路部の一例) で構成さ れる。 ステップアップコンパ一夕 2の出力電圧は、 電圧可変回路 1 3を 介して制御回路部 5 0にフィードバックされている。 また、 トランジス 夕 5 1のエミッ夕端子とコンデンサ 54の一方の端子は、 回路の基準電 圧 (グランド) 55に接続されている。 ここで、 回路の基準電圧は、 電 池 1内部の電源 10 1の負極電圧である。 電源 1 0 1の負極は、 グラン ド 1 02, 5 5, 5 7, 59, 30 1, 40 1, 64, 66に接続され 、 上記グランド 1 0 2, 55, 57, 5 9, 30 1 , 40 1, 64, 6 6は回路の基準電圧を維持している。  The step-up converter 2 includes a control circuit section 50, a switching transistor 51, a choke coil 52, a diode 53, a capacitor 54, and a voltage variable circuit 13 (an example of a voltage variable circuit section). The output voltage of the step-up comparator 2 is fed back to the control circuit 50 via the voltage variable circuit 13. The emitter terminal of the transistor 51 and one terminal of the capacitor 54 are connected to a reference voltage (ground) 55 of the circuit. Here, the reference voltage of the circuit is the negative voltage of the power supply 101 inside the battery 1. The negative pole of the power supply 101 is connected to the grounds 102, 55, 57, 59, 301, 401, 64, 66, and the grounds 102, 55, 57, 59, 301, Reference numerals 40 1, 64, and 66 maintain the reference voltage of the circuit.
また、 電池 1の出力側にはコンデンサ 56が接続されている。 コンデ ンサ 56はグランド 5 7に接続されている。 リニアレギユレ一夕 3の出 力側には出力を安定化するためのコンデンサ 58が接続されている。 コ ンデンサ 58はグランド 59に接続されている。  A capacitor 56 is connected to the output side of the battery 1. Capacitor 56 is connected to ground 57. The output side of the linear regulator 3 is connected to a capacitor 58 for stabilizing the output. Capacitor 58 is connected to ground 59.
また、 ステップアップコンパ一夕 2は、 電圧可変回路 13により電圧 可変機能を持っている。 バイパスダイオード 5は、 上記ステップアップ コンパ一夕 2と並列に接続されている (パイパス回路部の一例である) 。 また、 ステップアップコンパ一夕 2は、 外部から制御回路部 5 0に〇 N/OF F (オン/オフ) 信号を入力することにより、 外部から起動ま たは停止させることができる。 補助給電回路 6は、 第 2の電源部の一例 であり、 ステップアップコンバータ 2の出力およびバイパスダイオード 5の力ソード側に接続され補助的に電力を補填する。 電圧検出回路 7は 、 2端子ある入力の一方を基準電圧を構成する直流電源 6 5の正極側に 接続し、 他方をステップアップコンバータ 2の出力およびバイパスダイ オード 5の力ソード側に接続する。 直流電源 6 5の負極側は、 グランド 6 6に接続されている。 電圧検出回路 7は、 補助給電回路 6が給電を行 なうか否かを判定する。 タイマ 8は、 第 1の時間設定回路部の一例であ り、 入力が電圧検出回路 7の出力に接続され、 出力がタイマ 9、 半導体 スィッチ 1 0、 コンパレータ 6 0に入力され制御されている。 タイマ 8 は、 電圧検出回路 7の出力により任意の時間補助給電回路 6を動作させ る。 タイマ 9は、 第 2の時間設定回路部の一例であり、 入力が夕イマ 8 の出力に接続され、 タイマ 9の出力が電圧可変回路 1 3に接続されてい る。 タイマ 9は、 補助給電回路 6の動作開始に同期して任意の時間ステ ップアップコンパ一夕 2の出力電圧設定を通常動作状態よりも高く設定 するように電圧可変回路 1 3を動作させる。 半導体スィッチ 1 0は、 F ET (F i e l d E f f e c t T r a n s i s t o e) やパイポー ラ型トランジスタに代表されるスィッチである。 半導体スィッチ 1 0は 、 夕イマ 8の出力により補助給電のオン ·オフをする。 半導体スィッチ 1 1は、 半導体スィツチ 1 0と同様 FET (F i e l d E f f e c t T r a n s i s t o e) やパイポーラ型トランジスタに代表されるス イッチである。 半導体スィッチ 1 1は、 コンパレータ 6 0の出力により 補助給電用エネルギを充電するための回路をオン ·オフをする。 コンデ ンサ 1 2は、 蓄電手段の一例であり、 2端子の内、 一方がグランド 6 4 に接続され、 他方がダイォード 6 1のカソード側およびダイォード 6 2 のアノード側に接続されている。 コンデンサ 1 2は、 補助給電用ェネル ギを蓄積する。 ダイオード 6 1は、 アノード側を抵抗 6 3、 半導体スィ ツチ 1 1を介してステップアップコンバ一夕 2の出力およびパイパスダ ィオード 5の力ソード側に接続されている。 ダイオード 6 2は、 カソー ド側が、 半導体スィッチ 1 0を介して、 ステップアップコンパ一夕 2の 出力およびバイパスダイォ一ド 5のカソード側に接続されている。 The voltage of the step-up comparator 2 is controlled by the voltage variable circuit 13. Has a variable function. The bypass diode 5 is connected in parallel with the above-described step-up comparator 2 (an example of a bypass circuit). Further, the step-up comparator 2 can be started or stopped externally by inputting a 〇N / OFF (on / off) signal to the control circuit unit 50 from outside. The auxiliary power supply circuit 6 is an example of a second power supply unit, and is connected to the output of the step-up converter 2 and the power source side of the bypass diode 5 to supplement the power. The voltage detection circuit 7 connects one of the two terminals of the input to the positive terminal of the DC power supply 65 constituting the reference voltage, and the other to the output of the step-up converter 2 and the power source of the bypass diode 5. The negative side of DC power supply 65 is connected to ground 66. The voltage detection circuit 7 determines whether the auxiliary power supply circuit 6 supplies power. The timer 8 is an example of a first time setting circuit section. The input is connected to the output of the voltage detection circuit 7, and the output is input to and controlled by the timer 9, the semiconductor switch 10, and the comparator 60. The timer 8 operates the auxiliary power supply circuit 6 for an arbitrary time by the output of the voltage detection circuit 7. The timer 9 is an example of a second time setting circuit unit. The input is connected to the output of the timer 8, and the output of the timer 9 is connected to the voltage variable circuit 13. The timer 9 operates the voltage variable circuit 13 so that the output voltage setting of the step-up comparator 2 is set higher than the normal operation state for an arbitrary time in synchronization with the start of the operation of the auxiliary power supply circuit 6. The semiconductor switch 10 is a switch typified by a FET (Field Effect Transistor) or a bipolar transistor. The semiconductor switch 10 turns on / off the auxiliary power supply by the output of the timer 8. Like the semiconductor switch 10, the semiconductor switch 11 is a switch represented by a FET (Field Effect Transistor) or a bipolar transistor. Semiconductor switch 11 is driven by the output of comparator 60. Turns on / off the circuit for charging the auxiliary power energy. The capacitor 12 is an example of a power storage means. One of the two terminals is connected to the ground 64, and the other is connected to the cathode of the diode 61 and the anode of the diode 62. Capacitor 12 stores auxiliary power energy. The diode 61 has its anode connected to the output of the step-up converter 2 and the output side of the bypass diode 5 via the resistor 63 and the semiconductor switch 11. The diode 62 has its cathode side connected to the output of the step-up comparator 2 and the cathode side of the bypass diode 5 via the semiconductor switch 10.
次に電源装置の動作について説明する。 ステップアップコンバータ 2 はリニアレギユレ一夕 3の動作に最低限必要な電圧を出力するように出 力電圧を設定する。 そのため、 電池 1電圧がステップアップコンバータ 2の出力電圧設定値より高い場合には、 ステップアップコンパ一夕 2の 出力フィードパック制御回路部 5 0はトランジスタ 5 1のスイッチング 動作を休止するように動作し、 実際にステップアップコンパ一夕 2は休 止状態となるか、 あるいは間欠発振動作となる。 いずれにしても電力損 失が抑制された状態となる。 バイパスダイオード 5は、 ステップアップ コンパ一夕 2の出力電圧ができるだけ電池 1電圧に近い値になるように ステップアップコンパ一夕 2の入出力抵抗による電圧ロスを緩和し、 よ り多くの時間、 ステップアップコンパ一夕 2が休止状態を保てるように 作用する。 補助給電回路 6は、 電子回路 4の負荷が急激に増加すること により、 電池 1の電圧が低下した場合、 または、 ステップアップコンパ 一夕 2の動作遅延等により発生するリニアレギュレー夕 3の入力電圧が 正常な動作範囲より低下した場合に、 急激に補助的なエネルギ補填を行 い、 電圧を上昇させる動作を行う。  Next, the operation of the power supply device will be described. Step-up converter 2 sets the output voltage so as to output the minimum voltage required for operation of linear regulator 3. Therefore, when the voltage of the battery 1 is higher than the output voltage set value of the step-up converter 2, the output feedback control circuit 50 of the step-up converter 2 operates to stop the switching operation of the transistor 51. However, the step-up comparator 2 is actually in a resting state or intermittently oscillating. In any case, the power loss is suppressed. The bypass diode 5 reduces the voltage loss due to the input / output resistance of the step-up comparator 2 so that the output voltage of the step-up comparator 2 becomes as close to the battery 1 voltage as possible, and the step-up diode 5 Upcomer 2 works to keep the dormant state. The auxiliary power supply circuit 6 detects the input voltage of the linear regulator 3 when the voltage of the battery 1 decreases due to a sudden increase in the load of the electronic circuit 4 or when the operation delay of the step-up comparator 2 occurs. When the voltage falls below the normal operating range, supplementary energy supplementation is performed rapidly, and the voltage is increased.
また、 本電源回路起動時においては、 電圧可変回路 1 3によるステツ プアップコンバータ 2の出力電圧設定の初期設定値は、 補助給電回路 6 におけるコンデンサ 1 2の充電のために高い電圧設定とする。 ここで、 電圧可変回路 1 3においては、 ステップアップコンパ一夕 2の出力電圧 を検出する部分の抵抗値比率を可変することによりステツプアップコン パー夕 2の出力電圧設定を行なう。 上記初期設定値は、 一定時間のみ作 用し、 その時間設定は、 夕イマ 9の設定時間とは異なることから、 図示 してはいないがリセッ卜 I C ( I n t e g r a t e d C i r c u i t ) により生成する。 ただし、 タイマ 9の設定時間は、 後述するようにコ ンデンサ 1 2の充電時間よりも長いことから、 上記初期設定値の時間設 定は、 夕イマ 9により生成してもよい。 Also, when starting up this power supply circuit, The initial set value of the output voltage setting of the up-converter 2 is set to a high voltage for charging the capacitor 12 in the auxiliary power supply circuit 6. Here, in the voltage variable circuit 13, the output voltage of the step-up comparator 2 is set by varying the resistance value ratio of the portion for detecting the output voltage of the step-up comparator 2. The above initial setting value operates only for a certain period of time, and the time setting is generated by a reset IC (Integrated Circuit) (not shown) because it is different from the setting time of the timer 9. However, since the setting time of the timer 9 is longer than the charging time of the capacitor 12 as described later, the time setting of the above initial setting value may be generated by the timer 9.
次に、 補助給電回路 6の動作について説明する。 電圧検出回路 7はス テツプアップコンパ一夕 2の電圧を検出するコンパレ一夕であり、 リニ ァレギユレ一夕 3の最低限必要な動作電圧を比較基準値として、 上記比 較基準値より検出電圧が低下した場合は、 コンパレータである電圧検出 回路 7の出力信号が反転する。 現実には補助給電回路 6の給電動作にも 時間的遅れ要素があるので電圧検出回路 7の比較基準値としてはリニア レギュレー夕 3の最低限必要な動作電圧より若干高い電圧を検出電圧値 とする。 電圧検出回路 7の出力信号が反転することをトリガとして 1シ ョット夕イマ 8及びタイマ 9が動作する。 このタイマ 8の出力により、 補助給電オンスイッチである半導体スィッチ 1 0が任意の一定時間導通 し、 コンデンサ 1 2に蓄積された電荷を電圧エネルギとしてダイオード 6 2、 半導体スィツチ 1 0を介してリニアレギユレ一夕 3の入力に供給 する。 更に、 タイマ 9の出力により、 任意に設定された時間の間、 電圧 可変回路 1 3はステツプアップコンパ一夕 2の出力電圧を補助給電回路 6のコンデンサ 1 2の最高電圧より 0 . 5 V程度高い値に設定する。 こ れにより、 ステップアップコンバ一夕 2の出力電圧は設定値まで上昇す る。 タイマー 8の設定時間に到達すると、 補助給電オンスイッチである 半導体スィツチ 1 0がオフすると同時に補助給電充電オンスィツチであ る半導体スィッチ 1 1がオンする。 そして、 補助給電回路 6は、 上昇し たステップアップコンバータ 2の出力電圧により、 急速にコンデンサ 1 2を充電し、 また、 コンデンサ 1 2を次の補助給電動作準備状態に遷移 させる。 タイマ 9の時間は、 タイマ 8の時間とコンデンサ 1 2の充電時 間の和に設定する。 ただし、 多少の余裕を考え、 上記和以上の時間に設 定するのが望ましい。 Next, the operation of the auxiliary power supply circuit 6 will be described. The voltage detection circuit 7 is a comparator that detects the voltage of the step-up comparator 2 and uses the minimum required operating voltage of the linear regulator 3 as a comparison reference value. When the voltage drops, the output signal of the voltage detection circuit 7 as a comparator is inverted. In practice, the power supply operation of the auxiliary power supply circuit 6 also has a time lag element, so the voltage that is slightly higher than the minimum required operating voltage of the linear regulator 3 is used as the comparison reference value of the voltage detection circuit 7. . The one-shot timer 8 and the timer 9 operate with the output signal of the voltage detection circuit 7 being inverted as a trigger. By the output of the timer 8, the semiconductor switch 10 as an auxiliary power supply ON switch conducts for an arbitrary fixed time, and the electric charge accumulated in the capacitor 12 is converted into voltage energy through the diode 62 and the semiconductor switch 10 as voltage energy. Supply to the input of evening 3. In addition, the voltage variable circuit 13 changes the output voltage of the step-up comparator 2 to about 0.5 V from the maximum voltage of the capacitor 12 of the auxiliary power supply circuit 6 for an arbitrarily set time by the output of the timer 9. Set to a high value. As a result, the output voltage of step-up converter 2 rises to the set value. You. When the set time of the timer 8 is reached, the semiconductor switch 10 which is the auxiliary power supply ON switch is turned off and the semiconductor switch 11 which is the auxiliary power supply charge ON switch is turned ON. Then, the auxiliary power supply circuit 6 rapidly charges the capacitor 12 with the increased output voltage of the step-up converter 2, and makes the capacitor 12 transition to the next auxiliary power supply operation preparation state. The time of timer 9 is set to the sum of the time of timer 8 and the time of charging capacitor 12. However, considering some margin, it is desirable to set the time to be longer than the above sum.
実施の形態 1による、 補助給電回路 6の動作と補助給電回路 6への充 電動作の一例を示すタイムチャートを図 2に示す。  FIG. 2 is a time chart showing an example of the operation of the auxiliary power supply circuit 6 and the operation of charging the auxiliary power supply circuit 6 according to the first embodiment.
図 2において、 電池 1の電圧は、 リニアレギユレ一夕 3の最低動作電 圧より高い (H) 状態にある。 電子回路 4の負荷は小さい (L ) 状態に ある。 ステップアップコンパ一夕 2の出力電圧は、 リニアレギユレ一夕 3の最低動作電圧より高い (H) 状態にある。 電圧検出回路 7の出力信 号は L o w ( L ) 状態にある。 タイマ 8の出力はオフ (O F F ) である 。 夕イマ 9の出力は O F Fである。 電圧可変回路 1 3の出力設定はリニ ァレギユレ一夕 3の最低動作電圧 (通常設定: N) である。 補助給電ス イッチである半導体スィッチ 1 0は O F Fである。 補助給電充電スイツ チである半導体スィッチ 1 1はオン (O N) である。 これを通常運転時 とする。  In FIG. 2, the voltage of the battery 1 is higher (H) than the minimum operating voltage of the linear regulator 3. The load of the electronic circuit 4 is in a small (L) state. The output voltage of the step-up comparator 2 is higher (H) than the minimum operating voltage of the linear regulator 3. The output signal of the voltage detection circuit 7 is in the Low (L) state. The output of timer 8 is off (OFF). The output of evening camera 9 is OFFF. The output setting of the voltage variable circuit 13 is the minimum operating voltage (normal setting: N) of the linear regulator. The semiconductor switch 10, which is the auxiliary power supply switch, is an off-switch. The semiconductor switch 11, which is the auxiliary power charging switch, is on (ON). This is normal operation.
ここで、 電子回路 4の負荷が大きい (H) 状態になると、 電池 1の電 圧は、 低下していく。 また、 ステップアップコンパ一夕 2の出力電圧も 低下する。  Here, when the load of the electronic circuit 4 becomes large (H), the voltage of the battery 1 decreases. In addition, the output voltage of the step-up comparator 2 also decreases.
また、 電圧検出回路 7の出力信号は H i g h (H) 状態になる。  Further, the output signal of the voltage detection circuit 7 is in a High (H) state.
これにより、 タイマ 8の出力は O Nになる。 これにより、 半導体スィ ツチ 1 0は O Nになる。 また、 半導体スィッチ 1 1は O F Fになる。 こ れにより補助給電回路 6のコンデンサ 1 2からリニアレギユレ一夕 3の 入力に電力を供給する。 As a result, the output of timer 8 turns ON. As a result, the semiconductor switch 10 is turned on. Also, the semiconductor switch 11 is turned off. This As a result, power is supplied from the capacitor 12 of the auxiliary power supply circuit 6 to the input of the linear regulator 3.
また、 夕イマ 9の出力は O Nになる。 これにより、 電圧可変回路 1 3 の出力設定は補助給電回路 6のコンデンサ 1 2の最高電圧より高い値 ( 高い電圧設定: H H) になる。 これにより、 ステップアップコンパ一夕 2が作動を開始する。 ここで、 コンデンサ 1 2から電力を供給しない場 合には、 図 2の点線で示したように、 ステップアップコンバータ 2の出 力電圧はリニアレギユレ一夕 3の最低動作電圧 (M i n ) を下回ること になる。  In addition, the output of image 9 becomes ON. As a result, the output setting of the voltage variable circuit 13 becomes a value higher than the maximum voltage of the capacitor 12 of the auxiliary power supply circuit 6 (high voltage setting: H H). As a result, Step-up Comparator 2 starts operating. Here, when power is not supplied from the capacitor 12, the output voltage of the step-up converter 2 must be lower than the minimum operating voltage (M in) of the linear regulator 3 as shown by the dotted line in Fig. 2. become.
次に、 ステップアップコンパ一夕 2の出力電圧が H状態になると、 電 圧検出回路 7の出力信号は L状態になる。  Next, when the output voltage of the step-up comparator 2 goes high, the output signal of the voltage detection circuit 7 goes low.
次に、 タイマ 8の出力は O F Fになると、 半導体スィッチ 1 0は O F Next, when the output of the timer 8 becomes OFF, the semiconductor switch 10 turns OFF.
Fになる。 また、 半導体スィッチ 1 1は O Nになる。 これにより、 上昇 したステップアップコンバータ 2の出力電圧より、 急速にコンデンサ 1 2に充電を行い、 コンデンサ 1 2を次の補助給電動作準備状態に遷移さ せる。 F. Further, the semiconductor switch 11 becomes ON. As a result, the capacitor 12 is rapidly charged from the increased output voltage of the step-up converter 2, and the capacitor 12 is shifted to the next auxiliary power supply operation preparation state.
次に、 タイマ 9の出力は O F Fになると、 これにより、 電圧可変回路 1 3の出力設定は N状態になる。 これにより、 ステップアップコンパ一 夕 2が作動を停止する。  Next, when the output of the timer 9 becomes OFF, the output setting of the voltage variable circuit 13 becomes N state. As a result, the operation of the step-up comparator 2 stops.
以上により一連の補助給電回路 6の動作と補助給電回路 6への充電動 作が終了する。  Thus, a series of operations of the auxiliary power supply circuit 6 and an operation of charging the auxiliary power supply circuit 6 are completed.
上記のように動作することにより、 より安定した電力供給をしながら 、 電池 1駆動時間を延ばすことが可能となる。  By operating as described above, it is possible to extend the driving time of one battery while supplying more stable power.
ここで、 例えば、 一例として従来の電源装置であるステップアップダ ゥンコンパ一夕と本実施の形態 1による電源装置の動作状態の違いを電 池 1電圧に合わせて示した図を図 3に示す。 ここで、 電子回路 4の作動 電圧を 3 . 3 V、 リニアレギユレ一夕 3飽和電圧を 0 . 3 Vとする。 よ つて、 リニアレギユレ一夕 3の最低動作電圧は 3 . 6 Vとする。 Here, for example, FIG. 3 is a diagram showing, as an example, a difference between an operation state of a step-up downcomer which is a conventional power supply and an operation state of the power supply according to the first embodiment in accordance with the voltage of the battery 1. Where the operation of the electronic circuit 4 The voltage is 3.3 V, and the saturation voltage of the linear regulator is 0.3 V. Therefore, the minimum operating voltage of the linear regulator 3 is 3.6 V.
図 3のケースでは、 電池 1電圧が 4 . 2 V〜 3 . 6 1 Vまでは、 本実 施の形態 1によればステップアップコンパ一夕 2が動作を休止状態とす ることになり、 従来の電源装置であるステップアップコンパ一夕部が連 続動作であることと比べて、 この部分の電力損失を抑制できる。  In the case of FIG. 3, according to the first embodiment, the operation of the step-up comparator 2 is in a halt state when the battery 1 voltage is between 4.2 V and 3.61 V. The power loss in this portion can be suppressed as compared with the conventional power supply device, which is a continuous operation of the step-up comparator.
このように、 本実施の形態 1のステップアップダウン電源装置におい て、 ステップアップコンバータ 2の出力電圧設定を、 後段のリニアレギ ユレ一夕 3が動作可能な電圧の範囲の中でできうる限り低く設定する。 さらに、 順方向電圧の低いダイオード 5をパイパスダイオードとして、 ステップアップコンバータ 2と並列に接続する。 これにより、 電池 1電 圧範囲の中で最大限ステツプアップコンパー夕 2の動作が休止状態とな るように電圧可変回路 1 3を設定し、 電源装置の電力損失を減らし、 電 池駆動携帯型電子機器の駆動時間を延ばすことができる。  As described above, in the step-up / down power supply of the first embodiment, the output voltage of the step-up converter 2 is set as low as possible within the voltage range in which the subsequent linear regulator 3 can operate. I do. Further, the diode 5 having a low forward voltage is connected in parallel with the step-up converter 2 as a bypass diode. As a result, the voltage variable circuit 13 is set so that the operation of the step-up comparator 2 is at a maximum in the battery 1 voltage range, the power loss of the power supply unit is reduced, and the battery-powered portable The driving time of the electronic device can be extended.
さらに、 負荷の変動に対して安定した電力供給を行うために、 ステツ プアップコンパ一夕 2回路が急変時 (例えば、 起動時) にステップアツ プコンバータ 2回路の動作を正常に行うまでの間、 つまりは、 電圧がリ 二ァレギユレ一夕 3が動作可能な電圧の範囲以下である間、 ステップァ ップコンパ一夕 2の代わりに電力をリニアレギユレ一夕 3に供給するた めの電力タンク回路となる補助給電回路 6を構成する。 そして、 負荷急 変時に半導体スィッチ 1 0、 1 1により一定時間補助給電回路 6からリ 二ァレギユレ一夕 3に電力を補助的に給電し、 電子回路 4への給電が安 定に行えるようにする。 また、 このとき、 同時にステップアップコンパ —夕 2回路を正常なスイッチング動作状態に状態遷移させるために、 ス テップアップコンバ一夕 2の出力電圧設定を電圧可変回路 1 3により高 く設定変更する。 出力電圧設定を高くする時間は、 補助給電回路 6から 給電している時間と補助給電回路 6のェネルギ貯蔵源となるコ In addition, in order to provide stable power supply against load fluctuations, it is necessary to wait until the two circuits of the step-up converter suddenly change (for example, at startup) until the two circuits of the step-up converter operate normally. In other words, while the voltage is lower than the voltage range at which the linear regulator 3 can operate, the auxiliary power supply becomes an electric power tank circuit to supply power to the linear regulator 3 instead of the step-up comparator 2. Construct circuit 6. Then, when the load suddenly changes, the semiconductor switches 10 and 11 supply auxiliary power to the linear power supply 3 from the auxiliary power supply circuit 6 for a fixed time so that the power supply to the electronic circuit 4 can be stably performed. . In addition, at this time, the output voltage setting of the step-up converter 2 is changed to a higher value by the voltage variable circuit 13 so that the state of the step-up converter 2 can be simultaneously changed to the normal switching operation state. The time to increase the output voltage setting is from the auxiliary power supply circuit 6. Power supply time and auxiliary power supply circuit 6
1 2に再充電する時間との和とする。 これは次の負荷急変に備えるため に必要な動作である。 また補助給電回路 6から給電している時間はステ ップアップコンバ一夕 2がノ一マルなスィツチング状態に戻るのに必要 な時間となる。 It is the sum of the time to recharge to 1 and 2. This is the necessary operation to prepare for the next sudden load change. The time during which power is supplied from the auxiliary power supply circuit 6 is the time required for the step-up converter 2 to return to the normal switching state.
また、 本電源回路起動時には補助給電回路 6に充電を行うため、 同様 に出力電圧設定を高くする。  Also, at the time of starting the power supply circuit, the auxiliary power supply circuit 6 is charged, so that the output voltage setting is similarly increased.
この実施の形態 1による補助給電回路 6を組み込んだステツプアップ ダウン電源装置を電池駆動型電子機器に組み込むことにより、 より安定 した電力供給をしながら、 電池 1駆動時間を延ばすことが可能となる。 実施の形態 2  By incorporating the step-up / down power supply device incorporating the auxiliary power supply circuit 6 according to the first embodiment into a battery-driven electronic device, it is possible to extend the driving time of one battery while supplying more stable power. Embodiment 2
上記実施の形態 1では、 任意の時間を作るためにタイマ回路を用いた 実施の形態を示したが、 タイマ 8、 9の代わりに簡易なコンデンサ (C ) と抵抗 (R ) を用いた C R時定数回路でも同様の効果が得られる。 以 下この実施の形態 2を、 実施の形態 1と異なる点を中心に、 図 4に基づ いて説明する。  In Embodiment 1 described above, an embodiment using a timer circuit to create an arbitrary time is shown. However, instead of the timers 8 and 9, a CR circuit using a simple capacitor (C) and a resistor (R) is used. Similar effects can be obtained with a constant circuit. Hereinafter, the second embodiment will be described with reference to FIG. 4 focusing on the differences from the first embodiment.
ドライブ回路 1 4は、 半導体スィツチ 8 1とコンデンサ 8 2と抵抗 8 3とダイォ一ド 8 4で構成されている。 ダイォ一ド 8 4のァノ一ド側に は電圧検出回路 7の出力が接続されていて、 力ソード側には半導体スィ ツチ 8 1のスィッチ入力端子とコンデンサ 8 2の一方の端子と抵抗 8 3 の一方の端子に接続されている。 コンデンサ 8 2と抵抗 8 3のそれぞれ 他方の端子は、 半導体スィッチ 8 1を介して半導体スィッチ 1 0のスィ ツチ入力端子に接続しているとともに、 グランド 8 6と接続されている 。 ドライブ回路 1 4は、 補助給電オンスイッチである半導体スィッチ 1 0を駆動する回路であり、 C R時定数により、 半導体スィッチ 1 0がォ ンからオフへ切り換わる時間を遅延させる。 The drive circuit 14 includes a semiconductor switch 81, a capacitor 82, a resistor 83, and a diode 84. The output of the voltage detection circuit 7 is connected to the anode side of the diode 84, and the switch input terminal of the semiconductor switch 81, one terminal of the capacitor 82 and the resistor 8 are connected to the output side of the diode 84. 3 is connected to one terminal. The other terminal of each of the capacitor 82 and the resistor 83 is connected to the switch input terminal of the semiconductor switch 10 via the semiconductor switch 81 and to the ground 86. The drive circuit 14 is a circuit for driving the semiconductor switch 10 which is an auxiliary power supply ON switch, and the semiconductor switch 10 is turned on by the CR time constant. Delays the transition from on to off.
ドライブ回路 1 5は、 半導体スィッチ 7 1とコンデンサ 7 2と抵抗 7 3、 7 5とダイオード 7 4で構成されている。 ダイオード 7 4のァノー ド側には電圧検出回路 7の出力が接続されていて、 カソ一ド側には半導 体スィッチ 7 1のスィッチ入力端子とコンデンサ 7 2の一方の端子と抵 抗 7 3の一方の端子に接続されている。 コンデンサ 7 2と抵抗 7 3のそ れぞれ他方の端子は、 半導体スィッチ 7 1を介して電圧可変回路 1 3の 信号入力端子と抵抗 7 5に接続しているとともに、 グランド 7 6と接続 されている。 ドライブ回路 1 5は電圧可変回路 1 3を駆動する回路であ り、 C R時定数により、 ステップアップコンバータ 2の電圧を C R時定 数で定めた期間、 高い電圧に設定するように電圧可変回路 1 3を駆動す ることを可能とする。 グランド 7 6 , 8 6は、 電源 1 0 1の負極に接続 され、 上記グランドグランド 7 6, 8 6は回路の基準電圧を維持してい る。  The drive circuit 15 includes a semiconductor switch 71, a capacitor 72, resistors 73 and 75, and a diode 74. The output of the voltage detection circuit 7 is connected to the node side of the diode 74, and the switch input terminal of the semiconductor switch 71, one terminal of the capacitor 72, and the resistor 73 are connected to the cathode side. Are connected to one terminal. The other terminal of each of the capacitor 72 and the resistor 73 is connected to the signal input terminal of the voltage variable circuit 13 and the resistor 75 via the semiconductor switch 71, and to the ground 76. ing. The drive circuit 15 is a circuit that drives the voltage variable circuit 13 and uses the CR time constant to set the voltage of the step-up converter 2 to a high voltage for a period determined by the CR time constant. 3 can be driven. The grounds 76 and 86 are connected to the negative electrode of the power supply 101, and the ground grounds 76 and 86 maintain the reference voltage of the circuit.
実施の形態 2では形態 1より安価な部品を構成してタイマー部分を構 成できる効果が得られる。 実施の形態 3 .  In the second embodiment, there is obtained an effect that a timer portion can be configured by configuring a cheaper component than in the first embodiment. Embodiment 3.
上記実施の形態 1と 2では、 専用の補助給電回路 6を用いた実施の形 態を示したが、 例えば携帯型電子機器には複数の電源種類を用いる場合 があり、 これらの電源出力を補助給電回路 6のエネルギ供給源としても 同様の効果が得られる。 以下この実施の形態 3を図 5に基づいて説明す る。  In the first and second embodiments, the embodiment using the dedicated auxiliary power supply circuit 6 has been described.However, for example, a portable electronic device may use a plurality of power supply types, and these power supply outputs may be supplemented. Similar effects can be obtained as an energy supply source of the power supply circuit 6. Hereinafter, the third embodiment will be described with reference to FIG.
他の電源 1 6の出力は、 ダイォード 6 2のアノード側に接続されてい る。 また、 他の電源 1 6の出力は、 電子回路 4に接続されていて、 電子 回路 4を直接駆動することもできる。 また、 他の電源 1 6の出力は、 電 池 1の出力に接続されていて、 電池 1の出力の代用をすることもできる 他の電源 1 6は、 第 2の電源部の一例であり、 ステップアップコンパ 一夕 2の通常設定の出力電圧よりも高い電圧を出力し、 かつ電源容量は リニアレギユレ一夕 3の負荷容量より数倍以上十分大きいものである。 補助給電スィッチである半導体スィッチ 1 0をオンすることにより、 他 の電源 1 6の出力から半導体スィッチ 1 0を介してリニアレギユレ一夕 3の入力にエネルギを供給する。 本実施の形態 3では、 補助給電回路 6 はエネルギを蓄積する必要がないので、 補助給電回路充電オンスィツチ である半導体スィッチ 1 1およびエネルギを蓄積するコンデンサ 1 2は 不要である。 更に、 補助給電オンスイッチである半導体スィッチ 1 0が オンしている時間とステップアップコンパ一夕 2の電圧設定を高くして いる時間が等しくてよいことから、 タイマ 9も不要となる。 The output of the other power supply 16 is connected to the anode of the diode 62. In addition, the output of the other power supply 16 is connected to the electronic circuit 4 and can directly drive the electronic circuit 4. The output of the other power supply 16 is The other power supply 16 that is connected to the output of the battery 1 and can substitute for the output of the battery 1 is an example of the second power supply unit, and the output voltage of the normal setting of the step-up comparator 2 The output capacity is higher than that of the linear regulator, and the power capacity is several times larger than the load capacity of the linear regulator. By turning on the semiconductor switch 10 which is an auxiliary power supply switch, energy is supplied from the output of the other power supply 16 to the input of the linear regulator 3 via the semiconductor switch 10. In the third embodiment, since the auxiliary power supply circuit 6 does not need to store energy, the semiconductor switch 11 as the auxiliary power supply circuit charging on switch and the capacitor 12 for storing energy are unnecessary. Further, since the time during which the semiconductor switch 10 as the auxiliary power supply on switch is on and the time during which the voltage setting of the step-up comparator 2 is increased may be the same, the timer 9 is also unnecessary.
本実施の形態 3では上記実施の形態 2よりも更に安価に構成できるこ とになる。 但し、 他の電源 1 6出力が動作していることから省電力化へ の影響は小さい。 携帯型電子機器において, リチウム系二次電池が一般的であるが、 こ れを 1セルで使用する場合、 利用電圧が一般的には 2 . 7 5 V〜4 . 2 Vとなる。 この利用電圧範囲の中で、 例えば電子機器の一般的な動作電 圧 3 Vまたは 3 . 3 Vを作るためには、 電源装置は、 上記利用電圧範囲 にある電池 1電圧により、 電圧を上げたり、 下げたりしなければならな レ^ 上記実施の形態 1、 2、 3は、 このステップアップダウン電源回路 について電圧変換効率を改善するための方式に関するものである。  According to the third embodiment, the configuration can be further reduced than in the second embodiment. However, the effect on power saving is small since the other power supply 16 outputs are operating. Lithium-based secondary batteries are generally used in portable electronic devices, but when they are used in one cell, the operating voltage is generally 2.75 V to 4.2 V. In order to create a general operating voltage of 3 V or 3.3 V for electronic equipment within this usable voltage range, for example, the power supply must increase the voltage by using one battery voltage in the above-mentioned usable voltage range. The first, second, and third embodiments relate to a method for improving the voltage conversion efficiency of this step-up / down power supply circuit.
前述したステップアップダウン電源回路は、 上記利用電圧範囲を上げ ることを目的とするステップアツプダウン電源装置で、 電力損失を極力 抑制するため、 昇圧型コンパ一夕の出力電圧設定を可能な限り、 後段の リニアレギユレ一夕 3の入力範囲の下限に設定した昇圧コンバータと、 その昇圧された電圧を電子回路 4が要求する一定電圧 (例えば 3 V) に一定化するために電圧を下げるリニアレギユー夕 3と、 The above-mentioned step-up / down power supply circuit is a step-up / down power supply that aims to increase the usable voltage range and minimizes power loss. In order to suppress this, the output voltage of the step-up converter is set as low as possible at the lower end of the input range of the linear regulator 3 at the subsequent stage, and the boosted voltage is a constant voltage required by the electronic circuit 4. (Eg 3 V) to reduce the voltage to keep it constant at
入力電圧電池 1電圧がリニアレギユレ一夕 3より高い状態の時にバイ パスするパイパスダイォード 5と、  Input voltage battery 1 Bypass diode 5 that bypasses when the voltage is higher than Linear Regula 3
昇圧型コンパ一夕停止時における、 急激な負荷変動による電池 1電圧 の低下をエネルギ補填するための補助給電回路 6と、  An auxiliary power supply circuit 6 for compensating for a drop in the voltage of the battery 1 due to a sudden load change when the booster type converter is stopped,
補助給電回路 6の動作に同期して一時的に昇圧回路の出力電圧設定を 通常より高く設定する電圧可変回路 1 3とを備えた、 高効率ステップァ ップダウン電源装置である。  A high-efficiency step-up power supply device comprising a voltage variable circuit 13 for temporarily setting the output voltage setting of the booster circuit higher than usual in synchronization with the operation of the auxiliary power supply circuit 6.
また、 ステップアップダウン電源回路は、 上記において補助給電回路 6の供給源を自励で得ることを目的として、 補助給電回路 6の供給源を 得るため、 電源回路起動時および補助給電回路 6動作時に予め定めた任 意の期間、 ステップアップコンバータ 2の出力電圧を通常より高く設定 する電圧可変回路 1 3と、  In addition, the step-up / down power supply circuit obtains the power supply of the auxiliary power supply circuit 6 for the purpose of obtaining the power supply of the auxiliary power supply circuit 6 by self-excitation as described above. A voltage variable circuit 13 for setting the output voltage of the step-up converter 2 higher than usual for a predetermined period;
上記通常より高く設定された電圧により電力を蓄積する電池またはコ ンデンサ 1 2を装備した補助給電回路 6とを備えた、 高効率ステップァ ップダウン電源装置である。 産業上の利用可能性  A high-efficiency step-up power supply device comprising: an auxiliary power supply circuit 6 equipped with a battery or a capacitor 12 that stores power at a voltage set higher than usual. Industrial applicability
この発明の好適な実施の形態によれば、 第 1の電源部電圧が高く、 電 源容量が十分ある状態での不要な昇圧動作を休止し、 高効率を維持し、 更に電池の利用範囲の最後まで動作させることが可能となることにより 、 電源容量を最大限まで使用することを実現できる効果がある。  According to the preferred embodiment of the present invention, unnecessary boosting operation in the state where the first power supply section voltage is high and the power supply capacity is sufficient is stopped, high efficiency is maintained, and the use range of the battery is further reduced. Since the operation can be performed to the end, there is an effect that the power supply capacity can be used to the maximum.
また、 以上により、 例えば、 電池駆動型携帯電子機器の動作モードが 携帯電話における待受け状態や P D Aや P C等における低消費電力動作 モード (サスペンドモード、 スタンパイモード、 スリープモードと称さ れている) での電源装置の電力損失を抑制し、 より一層の低消費電力化 を実現することができる効果がある。 As described above, for example, the operation mode of the battery-powered portable electronic device is Suppress power loss in power supply devices in standby mode on mobile phones and low power consumption operation modes (called suspend mode, stamp mode, sleep mode) on PDAs and PCs, and further reduce power consumption There is an effect that can be realized.
よって、 電源駆動時間をより長くした電池駆動型携帯電子機器が得ら れる効果がある。  Therefore, there is an effect that a battery-driven portable electronic device having a longer power supply driving time can be obtained.
また、 第 2の電源部が多出力電源でなくても負荷部に安定した電力供 給を実現できる効果を得ることができる。 すなわち、 単一電源機器にお いても負荷部に安定した電力供給を実現できる効果を得ることができる この発明の好適な実施の形態によれば、 降圧部の入力電圧をフィード パックし制御する非絶縁型コンバー夕を備えることにより、 必要時に必 要なだけ昇圧動作を自動的に行なうことができる効果がある。  Further, even if the second power supply unit is not a multi-output power supply, it is possible to obtain an effect that stable power supply to the load unit can be realized. That is, even in a single power supply device, it is possible to obtain the effect of realizing stable power supply to the load unit. According to the preferred embodiment of the present invention, the input voltage of the step-down unit is not packed and controlled. Providing the insulation type converter has the effect that the boosting operation can be automatically performed as needed when necessary.
この発明の好適な実施の形態によれば、 ダイオードにより、 昇圧時に 昇圧回路を経由せずに電力が供給されることがなく、 また、 昇圧された 電力の損失を低減することができる効果がある。  According to the preferred embodiment of the present invention, there is an effect that the diode does not supply power without passing through the booster circuit at the time of boosting, and the loss of boosted power can be reduced. .
この発明の好適な実施の形態によれば、 第 2の電源部が蓄電されるこ とにより使い捨ての補助電源が不要となり第 1の電源部単体で電源装置 を実現できる効果がある。  According to the preferred embodiment of the present invention, since the second power supply unit is charged, there is no need for a disposable auxiliary power supply, and there is an effect that a power supply device can be realized by the first power supply unit alone.
この発明の好適な実施の形態によれば、 第 2の電源部からの給電時間 を任意に設定できる効果がある。 また、 昇圧部の出力電圧を任意に一定 時間可変することができる効果がある。 これにより、 昇圧部を円滑に正 常な動作状態に状態遷移させることができ、 ひいては、 より一層の低消 費電力化を実現することができる効果がある。  According to the preferred embodiment of the present invention, the power supply time from the second power supply unit can be set arbitrarily. Also, there is an effect that the output voltage of the booster can be arbitrarily varied for a certain period of time. As a result, the booster can smoothly transition to a normal operating state, and the power consumption can be further reduced.
この発明の好適な実施の形態によれば、 安価な部品を構成して時間設 定回路を構成できる効果が得られる。 この発明の好適な実施の形態によれば、 昇圧部を円滑に正常な動作状 態に状態遷移させることができ、 ひいては、 より一層の低消費電力化を 実現することができる効果がある。 また、 第 2の電源部を十分充電する ことができる効果がある。 According to the preferred embodiment of the present invention, it is possible to obtain an effect that a time setting circuit can be configured by configuring inexpensive components. According to the preferred embodiment of the present invention, it is possible to smoothly transition the state of the booster to a normal operation state, and further achieve an effect of further reducing power consumption. Also, there is an effect that the second power supply unit can be sufficiently charged.

Claims

請求の範囲 The scope of the claims
1 . 負荷部を駆動する第 1の電源部と、 1. a first power supply unit for driving a load unit;
上記第 1の電源部と上記負荷部との間に接続された第 1の電源部の 出力電圧を昇圧する昇圧部と、  A booster for boosting an output voltage of the first power supply connected between the first power supply and the load;
上記昇圧部と並列に接続され、 上記第 1の電源部から放電された電 流をバイパスするパイパス回路部と、 ·  A bypass circuit unit connected in parallel with the booster unit and bypassing a current discharged from the first power supply unit;
上記昇圧部により昇圧された電圧を降圧する降圧部と、  A step-down unit that steps down the voltage boosted by the step-up unit,
上記昇圧部と並列に接続された第 2の電源部とを備えたことを特徴 とする電源装置。  A power supply device comprising the booster and a second power supply connected in parallel.
2 . 上記昇圧部は、 上記昇圧部を駆動するスィッチを有する とともに、 上記昇圧部の出力電圧をフィードバックじ、 上記フィードバ ックされた結果に基づき上記スィツチを制御し、 出力電圧を一定に安定 化する非絶縁型コンバータであることを特徴とする請求項 1記載の電源  2. The booster has a switch for driving the booster and feeds back the output voltage of the booster, controls the switch based on the feedback result, and stabilizes the output voltage to a constant value. 2. The power supply according to claim 1, wherein the power supply is a non-insulated converter.
3 . 上記バイパス回路部は、 上記昇圧部の入力電圧が上記昇 圧部の出力電圧より大きいときにのみ電流が流れるダイオードを備えた ことを特徴とする請求項 1記載の電源装置。 3. The power supply device according to claim 1, wherein the bypass circuit unit includes a diode through which a current flows only when an input voltage of the boosting unit is higher than an output voltage of the boosting unit.
4 . 上記第 2の電源部は、 上記昇圧部の出力電流により充電 される蓄電手段を備えたことを特徴とする請求項 1記載の電源装置。  4. The power supply device according to claim 1, wherein the second power supply unit includes a power storage unit that is charged by an output current of the boosting unit.
5 . 上記第 2の電源部は、 上記第 2の電源部から電力を放電 する時間を設定する第 1の時間設定回路部と、  5. The second power supply unit includes: a first time setting circuit unit that sets a time period for discharging power from the second power supply unit;
上記第 1の時間設定回路部により設定された上記第 2の電源部から 電力を放電させる時間の始期と同期して上記昇圧部の出力電圧を変更す る時間を設定する第 2の時間設定回路部とを備え、 The output voltage of the booster is changed in synchronization with the start of the time for discharging power from the second power supply set by the first time setting circuit. A second time setting circuit for setting the time to
上記電源装置は、 上記第 2の時間設定回路部に設定された時間中、 上記昇圧部の出力電圧を変更する電圧可変回路部を備えたことを特徴と する請求項 1記載の電源装置。  2. The power supply device according to claim 1, wherein the power supply device includes a voltage variable circuit unit that changes an output voltage of the boosting unit during a time set in the second time setting circuit unit.
6 . 上記電源装置は、 上記第 2の時間設定回路部が作動して いる間、 上記昇圧部の出力電圧を上記第 2の電源部の出力電圧より高い 電圧値に設定することを特徴とする請求項 5記載の電源装置。  6. The power supply device sets the output voltage of the boosting unit to a voltage value higher than the output voltage of the second power supply unit while the second time setting circuit unit is operating. The power supply device according to claim 5.
7 . 第 1の電源部により負荷部を駆動し、  7. The load is driven by the first power supply,
上記第 1の電源部の出力電圧が負荷部を駆動するために必要な電圧 より小さい場合に、 上記第 1の電源部の出力電圧を昇圧し、  When the output voltage of the first power supply unit is lower than the voltage required to drive the load unit, the output voltage of the first power supply unit is boosted;
上記第 1の電源部の出力電圧が負荷部を駆動するために必要な電圧 より小さくなるまで上記第 1の電源部から放電された電流をバイパスし, 上記第 1の電源部の昇圧された出力電圧が負荷部を駆動するために 必要な電圧より小さい場合に、 第 2の電源部により上記パイパスされた 電圧を昇圧し、  Bypassing the current discharged from the first power supply unit until the output voltage of the first power supply unit becomes lower than the voltage required to drive the load unit, and boosting the output of the first power supply unit. And boosting the bypassed voltage by the second power supply when the voltage is lower than the voltage required to drive the load;
上記第 1の電源部の出力電圧と上記第 1の電源部の昇圧された出力 電圧と上記第 2の電源部の出力電圧との少なくとも 1つの電圧を、 負荷 部を駆動する電圧まで降圧することを特徴とする電源装置の給電方法。  Reducing at least one of the output voltage of the first power supply unit, the boosted output voltage of the first power supply unit, and the output voltage of the second power supply unit to a voltage for driving a load unit; A power supply method for a power supply device, comprising:
8 . 上記電源装置の給電方法は、 さらに、 上記第 2の電源部 を上記第 1の電源部の昇圧された出力電圧により充電することを特徴と する請求項 7記載の電源装置の給電方法。  8. The power supply method for a power supply device according to claim 7, further comprising charging the second power supply unit with a boosted output voltage of the first power supply unit.
9 . 上記電源装置の給電方法は、 さらに、 上記第 2の電源部 から電力を放電する第 1の時間を設定し、  9. The power supply method of the power supply device further includes setting a first time for discharging power from the second power supply unit,
上記設定された第 1の時間中、 上記第 2の電源部から電力を放電し、 上記第 2の電源部からの放電開始と同期して上記第 1の電源部の出 力電圧を変更する第 2の時間を設定し、 Discharging power from the second power supply unit during the set first time; Setting a second time for changing the output voltage of the first power supply unit in synchronization with the start of discharge from the second power supply unit;
上記第 2の時間中、 上記第 1の電源部の出力電圧を変更することを 特徴とする請求項 7記載の電源装置の給電方法。  The power supply method for a power supply device according to claim 7, wherein the output voltage of the first power supply unit is changed during the second time.
1 0 . 上記電源装置の給電方法は、 さらに、 上記第 1の電源 部の出力電圧の昇圧を開始するときに、 上記昇圧する電圧を第 2の電源 部の出力電圧より高く設定することを特徴とする請求項 7記載の電源装 置の給電方法。  10. The power supply method of the power supply device further includes, when starting to boost the output voltage of the first power supply unit, setting the boosted voltage to be higher than the output voltage of the second power supply unit. The power supply method for a power supply device according to claim 7, wherein
PCT/JP2001/004614 2001-05-31 2001-05-31 Power unit and method for power supply of power unit WO2002099947A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2001/004614 WO2002099947A1 (en) 2001-05-31 2001-05-31 Power unit and method for power supply of power unit
JP2002568877A JPWO2002099947A1 (en) 2001-05-31 2001-05-31 Power supply device and power supply method for power supply device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2001/004614 WO2002099947A1 (en) 2001-05-31 2001-05-31 Power unit and method for power supply of power unit

Publications (1)

Publication Number Publication Date
WO2002099947A1 true WO2002099947A1 (en) 2002-12-12

Family

ID=11737384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004614 WO2002099947A1 (en) 2001-05-31 2001-05-31 Power unit and method for power supply of power unit

Country Status (2)

Country Link
JP (1) JPWO2002099947A1 (en)
WO (1) WO2002099947A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005013455A1 (en) * 2003-08-05 2005-02-10 Matsushita Electric Industrial Co., Ltd. Direct-current power supply and battery-powered electronic apparatus equipped with the power supply
JP2007249812A (en) * 2006-03-17 2007-09-27 Denso Corp Power supply device
JP2008187835A (en) * 2007-01-30 2008-08-14 Matsushita Electric Ind Co Ltd Power supply circuit and portable terminal device
JP2008199731A (en) * 2007-02-09 2008-08-28 Fujitsu Access Ltd Power supply unit
JP2010041857A (en) * 2008-08-06 2010-02-18 Canon Inc Power supply apparatus and imaging arrangement
JP2014230365A (en) * 2013-05-21 2014-12-08 新電元工業株式会社 Power supply device and electronic component testing device having the same
US9812959B2 (en) 2013-08-23 2017-11-07 Ricoh Electronic Devices Co., Ltd. Step up/down switching regulator
WO2023227854A1 (en) * 2022-05-25 2023-11-30 Cirrus Logic International Semiconductor Limited Apparatus and method for discharging a battery with improved efficiency

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114503415A (en) * 2020-09-08 2022-05-13 株式会社电装天 Power supply device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206231A (en) * 1981-06-12 1982-12-17 Hitachi Ltd Power source for automotive electronic device
JPS5886868A (en) * 1981-11-16 1983-05-24 Nec Corp Non-insulation type l-c resonance converter
JPH069346U (en) * 1992-06-29 1994-02-04 横河電機株式会社 Power system backup circuit
JPH08140286A (en) * 1994-11-10 1996-05-31 Fujitsu Ltd Power control circuit of battery built-in electronic equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206231A (en) * 1981-06-12 1982-12-17 Hitachi Ltd Power source for automotive electronic device
JPS5886868A (en) * 1981-11-16 1983-05-24 Nec Corp Non-insulation type l-c resonance converter
JPH069346U (en) * 1992-06-29 1994-02-04 横河電機株式会社 Power system backup circuit
JPH08140286A (en) * 1994-11-10 1996-05-31 Fujitsu Ltd Power control circuit of battery built-in electronic equipment

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005013455A1 (en) * 2003-08-05 2005-02-10 Matsushita Electric Industrial Co., Ltd. Direct-current power supply and battery-powered electronic apparatus equipped with the power supply
US7274116B2 (en) 2003-08-05 2007-09-25 Matsushita Electric Industrial Co., Ltd. direct-current power supply and battery-powered electronic apparatus equipped with the power supply
JP2007529185A (en) * 2003-08-05 2007-10-18 松下電器産業株式会社 DC power supply device and battery-powered electronic device incorporating the same
CN100438259C (en) * 2003-08-05 2008-11-26 松下电器产业株式会社 Direct-current power supply and battery-powered electronic apparatus equipped with the power supply
JP2007249812A (en) * 2006-03-17 2007-09-27 Denso Corp Power supply device
JP2008187835A (en) * 2007-01-30 2008-08-14 Matsushita Electric Ind Co Ltd Power supply circuit and portable terminal device
JP2008199731A (en) * 2007-02-09 2008-08-28 Fujitsu Access Ltd Power supply unit
JP2010041857A (en) * 2008-08-06 2010-02-18 Canon Inc Power supply apparatus and imaging arrangement
JP2014230365A (en) * 2013-05-21 2014-12-08 新電元工業株式会社 Power supply device and electronic component testing device having the same
US9812959B2 (en) 2013-08-23 2017-11-07 Ricoh Electronic Devices Co., Ltd. Step up/down switching regulator
WO2023227854A1 (en) * 2022-05-25 2023-11-30 Cirrus Logic International Semiconductor Limited Apparatus and method for discharging a battery with improved efficiency

Also Published As

Publication number Publication date
JPWO2002099947A1 (en) 2004-09-24

Similar Documents

Publication Publication Date Title
EP1905149B1 (en) Dual-input dc-dc converter with integrated ideal diode function
TWI290414B (en) DC to DC converter, voltage converting device, method for controlling a converter and boost DC to DC converter
KR100281862B1 (en) Secondary battery unit using electric double layer condenser
US7288854B2 (en) Power linear and switching regulators commonly controlled for plural loads
US7957165B2 (en) DC-DC converter with a plurality of soft-start control circuits
US8488340B2 (en) Power converter with boost-buck-buck configuration utilizing an intermediate power regulating circuit
US7253596B2 (en) Power supply apparatus capable of supplying a stable converted voltage
US8143748B2 (en) Power supply with standby power
EP2071714B1 (en) Dc/dc converter
JPH11196541A (en) Power supply unit
JP6152241B2 (en) Power system, portable electronic device, and power supply method
JP2009232665A (en) Power supply device and power supply control method
JP3591496B2 (en) Power supply
JP2015015896A (en) Apparatus for implementing unregulated dormant mode in power converter
JP4379396B2 (en) Buck-boost chopper type DC-DC converter
JPH1014127A (en) Multifunctional battery charger self-aligned as supply voltage regulator for device receiving power from the battery
JP2001103743A (en) Switching power source
US6307359B1 (en) DC-DC converter powered by doubled output voltage
WO2002099947A1 (en) Power unit and method for power supply of power unit
US20080003462A1 (en) Digital logic control DC-to-DC converter with controlled input voltage and controlled power output
JP4073880B2 (en) Electronics
US11855542B2 (en) Power-supply control device
CN112803744B (en) Low-power-consumption power supply starting control device and method and power supply equipment
JPH0787731A (en) Dc/dc converter
Nag et al. Fully Soft-Switching Flying Capacitor Based Quasi-Resonant Boost Converter

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 568877

Kind code of ref document: A

Format of ref document f/p: F

Ref document number: 2002568877

Country of ref document: JP

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase