JPS5886868A - Non-insulation type l-c resonance converter - Google Patents

Non-insulation type l-c resonance converter

Info

Publication number
JPS5886868A
JPS5886868A JP18351781A JP18351781A JPS5886868A JP S5886868 A JPS5886868 A JP S5886868A JP 18351781 A JP18351781 A JP 18351781A JP 18351781 A JP18351781 A JP 18351781A JP S5886868 A JPS5886868 A JP S5886868A
Authority
JP
Japan
Prior art keywords
capacitor
transistor
voltage
cycle
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18351781A
Other languages
Japanese (ja)
Other versions
JPS6229987B2 (en
Inventor
Tokimune Kitajima
北島 時宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP18351781A priority Critical patent/JPS5886868A/en
Publication of JPS5886868A publication Critical patent/JPS5886868A/en
Publication of JPS6229987B2 publication Critical patent/JPS6229987B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

PURPOSE:To reduce switching loss by utilizing resonance action and forming the currents of a switching element and a diode in sine wave shape. CONSTITUTION:When an ON-cycle, both-end voltage of a capacitor 11 at a moment when a transistor 9 is at ON is under a state lower than input voltage. Accordingly, LC resonance charging currents flow through the capacitor 11 from an input power supply by LC resonance action. The maximum value is kept until the next OFF-cycle is started at both-end voltage of the capacitor 11. When a transistor 13 is at ON at OFF-cycle, the charge of the capacitor 11 is discharged to an output capacitor 5 by resonance action with a coil 14. Currents do not flow from the input side because the transistor 9 is at OFF, and currents do not flow through the input side from the output side.

Description

【発明の詳細な説明】 本発明はスイッチング方式電源としての非絶縁形Dc−
DCコンバータの改良に関するO従来上の種の非絶縁形
DC−DCコンI(−夕として、第1図に示すようなチ
ョッパ方式が広く知られている。これはトランジスタ2
のスイッチング動作によって直流入力電圧1から変換さ
れた矩形波パルス電圧を、4.5のLCによる平滑回路
に印加して、その平均直流電圧を出力として取シ出すも
のである。入力電圧、出力電圧、スイッチング周期、ト
ランジスタのオン幅をそれぞれ、V+。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a non-isolated DC-
Regarding improvement of DC converters, the chopper type shown in FIG. 1 is widely known as a conventional non-insulated DC-DC converter.
A rectangular wave pulse voltage converted from a DC input voltage 1 by the switching operation is applied to a smoothing circuit using a 4.5 LC, and the average DC voltage is taken out as an output. The input voltage, output voltage, switching period, and transistor on-width are each V+.

■。* T * T oxとすると、これらの間には下
記(1)式の関係が成立する。
■. Assuming *T*Tox, the relationship expressed by the following equation (1) holds between these.

出力電圧罵は通常周期Tを固定し、オン幅TONを可変
することによって安定化される。
The output voltage is usually stabilized by fixing the period T and varying the on-width TON.

しかし従来のチョッパ方式の場合、トランジスタの負荷
が銹導負荷であル、ターンオンおよびターンオフ時に急
激に大電流をスイッチングするために、素子内の蓄積電
荷に起因してトランジスタおよびダイオードのスイッチ
ングロスが大きいとか、放射ノイズが大きくしかもかな
ル高調波にわたってレベルが高いとか、逆サージ防止の
ためトランジスタやダイオードにサージサプレッサが必
要である等の欠点があった。しかもこれらの欠点はスイ
ッチング動作の高周波化と共に顕著になるため、高周波
化による電源の小形化を阻害する基本的な要因となって
いた。
However, in the case of the conventional chopper method, the load on the transistor is a conductive load, and large currents are rapidly switched during turn-on and turn-off, resulting in large switching losses in the transistor and diode due to accumulated charge within the element. The disadvantages are that the radiation noise is large and has a high level across all harmonics, and that the transistors and diodes require surge suppressors to prevent reverse surges. Furthermore, these drawbacks become more noticeable as the frequency of the switching operation becomes higher, and thus become a fundamental factor that hinders the miniaturization of power supplies due to the increase in frequency.

本発明はLC共振作用を利用してサイン波電流をスイッ
チングすることによシ上記欠点を除去し、低損失で信頼
度が高く、動作周波数の高周波化が可能な非絶縁形DC
−DCコンバータを提供するものである。
The present invention eliminates the above drawbacks by switching a sine wave current using LC resonance, and provides a non-insulated DC that has low loss, high reliability, and can operate at a high frequency.
- It provides a DC converter.

本発明の構成は、非絶縁4DC−、DCコンバータにお
いて、第1のコイルと第1のスイッチング素子と第1の
ダイオードと第1のコンデンサとよ〕なる直列回路が入
力電源の両端に接続され、第2のダイオードと第2のス
イッチング素子と第2のコイルと第2のコンデンサとよ
シなる直列回路が前記第1のコンデンサの両端に並列に
接続され、前記第2のコンデンサに並列に負荷抵抗が接
続されていることを特徴とする。
The configuration of the present invention is that in a non-isolated 4DC-DC converter, a series circuit consisting of a first coil, a first switching element, a first diode, and a first capacitor is connected to both ends of an input power source, A series circuit consisting of a second diode, a second switching element, a second coil, and a second capacitor is connected in parallel across the first capacitor, and a load resistor is connected in parallel to the second capacitor. is characterized in that it is connected.

次に本発明の動作原理について説明する0素子がターン
オンすると、第1のコイルと第1のコンデンサの共振作
用によって、入力電源から第1のコンデンサへ電荷が供
給される。この時第2のスイッチング素子はオフ状態で
あシ、また第1のダイオードがあるため第1のコンデン
サは入力電源電圧よルも高い第1共振サイクルの最大電
圧値まで充電されると、放電することなくそのまま最大
電圧を維持する。
Next, the operating principle of the present invention will be explained. When the 0 element is turned on, charge is supplied from the input power source to the first capacitor due to the resonance effect of the first coil and the first capacitor. At this time, the second switching element is in the off state, and since the first diode is present, the first capacitor is discharged when it is charged to the maximum voltage value of the first resonance cycle, which is higher than the input power supply voltage. The maximum voltage is maintained as it is.

次に第1のスイッチング素子空オフ叫、第2のスイッチ
ジグ素子がオンすると、第1のコンデンサと第2のコイ
ルの共振作用によって第1のコンデンサから第2のコン
デンサへ電荷が移動し、第2のコンデンサの両端電圧を
出力として取シ出す。
Next, when the first switching element turns off and the second switching element turns on, the charge moves from the first capacitor to the second capacitor due to the resonance between the first capacitor and the second coil. Take out the voltage across the capacitor No. 2 as an output.

第1のコンデンサの放電後、その両端電圧は入力電圧お
よび第2のコンデンサの両端電圧よルも低く′なるが、
第1のスイッチング素子はオフ状態であシ、第2のダイ
オードがあるため入出力から電流が流れこむことはない
After the first capacitor is discharged, the voltage across it becomes lower than the input voltage and the voltage across the second capacitor.
The first switching element is in an off state, and since there is a second diode, no current flows from the input and output.

1周期の伝送電力は共振波形によって決定されるため、
周波数を可変することにょ)伝送電力を制御することが
できる。
Since the transmission power for one period is determined by the resonant waveform,
Transmission power can be controlled by varying the frequency.

次に本発明を実施例によシ図面を参照して説明する。Next, the present invention will be explained by way of embodiments with reference to the drawings.

第2図は本発明に係る非絶縁形DC−DCwンパータの
回路図を示す。第2図において、コイル8、トランジス
タ9、ダイオード10.コンテン?11からなる直列回
路が入力電源1の両端に接続され、ダイオード12、ト
ランジスタ13、コイル14、コンデンサ5からなる直
列回路が前記コンデンサ11に並列に接続されている。
FIG. 2 shows a circuit diagram of a non-insulated DC-DCw pumper according to the present invention. In FIG. 2, a coil 8, a transistor 9, a diode 10. Content? A series circuit consisting of a diode 12, a transistor 13, a coil 14, and a capacitor 5 is connected in parallel to the capacitor 11.

出力はコンデンサ5の両端電圧を本コンバータの出力電
圧とし、コンデンサ5と並列に抵抗6が接続されている
。トランジスタ9.13の駆動は制御回路15によって
なされ、制御回路15は検出出力電圧を安定化するよう
その発振周波数を変木つつトランジスタ9.13 を交
互にオンオフさせる。
The output voltage of the converter is the voltage across the capacitor 5, and a resistor 6 is connected in parallel with the capacitor 5. The transistor 9.13 is driven by a control circuit 15, which turns the transistor 9.13 on and off alternately while changing its oscillation frequency to stabilize the detected output voltage.

ここでトランジスタ9がオン、トランジスタ13がオフ
している期間をオンサイクル、その逆の期間をオフサイ
クルとする。本回路のスイッチング動作は、オンサイク
ルとオフサイクルの2つのサイ゛クルからなシ、2つの
サイクルによって1周期を形成する。
Here, the period in which the transistor 9 is on and the transistor 13 is off is defined as an on cycle, and the opposite period is defined as an off cycle. The switching operation of this circuit consists of two cycles, an on cycle and an off cycle, and two cycles form one cycle.

上記のような回路構成において、まずオンサイクル時、
トランジスタ9がオンした瞬間のコンデンサ11の両端
電圧は後述するように入力電圧よりも低い状態にある。
In the above circuit configuration, first, during the on-cycle,
The voltage across the capacitor 11 at the moment the transistor 9 is turned on is lower than the input voltage, as will be described later.

したがってLC共振作用によシ第3図(1)に示すよう
、なLC共振充電電流が入力電源からコンデンサ11へ
流れる。この充電電流が流れ終り丸状gAにおいて、コ
ンデンサ11の両端電圧は第3図(3)に示すように共
振波形の最大値をとる。この電圧社入力電圧よシも高い
値であるが、ダイオード10があるため入力電源へ向っ
て放電されることはなく、またトランジスタ13はオフ
しているため出力コンデンサ5へ放電されることはない
。したがって次のオフサイクルが始まるまでコンデンサ
11の両端電圧社最大値を維持する〇 次にオフサイクルにおいて、トランジスタ13がオンす
ると、=イル14との共伽作用によシ第3図(2)に示
すようにコンデンサ11の電荷社出力コンデンサ5へ放
電される。この放電共振波形の第1サイクルにおいて、
コンデンサ11の[圧u第3図(8)に示すように最小
電圧をとシ、この値は入力電源および出力電圧よシ低い
値であるが、トランジスタ9がオフしているため入力側
から電流が流れこむことはなく、またダイオード12に
よ)出力側から入力側に電流が流れζむことはない。
Therefore, due to the LC resonance effect, an LC resonance charging current flows from the input power source to the capacitor 11, as shown in FIG. 3(1). At the end of the flow of the charging current at round gA, the voltage across the capacitor 11 assumes the maximum value of the resonance waveform as shown in FIG. 3 (3). Although this voltage is also higher than the input voltage, it will not be discharged to the input power supply because of the diode 10, and since the transistor 13 is off, it will not be discharged to the output capacitor 5. . Therefore, the maximum value of the voltage across the capacitor 11 is maintained until the start of the next off-cycle. Next, in the off-cycle, when the transistor 13 is turned on, due to the synergistic action with the voltage source 14, the voltage across the capacitor 11 is As shown, the capacitor 11 is discharged to the output capacitor 5. In the first cycle of this discharge resonance waveform,
As shown in Figure 3 (8), the minimum voltage of the capacitor 11 is lower than the input power supply voltage and the output voltage, but since the transistor 9 is off, the current from the input side is No current flows in, and no current flows from the output side to the input side (through the diode 12).

いま入力電源電圧、コイル8.14のインダクタンス、
コンデンサ11の容量、出力電圧をそれぞれVIN 、
 hg + 1114 + Ct+ + v、とし、各
サイクルの開始時を原点にとった時間を、オンサイクル
においてt・n、オフサイクルにおいてt@rtとする
と、オンサイクルにおけるトランジスタ9のコレクタ電
流Iceおよびオアサイクルにおけるトランジスタ13
のコレクタ電流1c1m はそれぞれ下式で表わされる
Now the input power supply voltage, the inductance of coil 8.14,
The capacitance and output voltage of capacitor 11 are VIN, respectively.
hg + 1114 + Ct+ + v, and if the time taken from the start of each cycle is t·n in the on-cycle and t@rt in the off-cycle, then the collector current Ice of the transistor 9 in the on-cycle and the OR Transistor 13 in cycle
The collector current 1c1m of is expressed by the following formula.

ここで■cun、Vcnmはそれぞれコンデンサ11の
オンサイクルにおける最大値、オフサイクルにおける最
小値である〇 上記(2)、(8)かられかるように、各トランジスタ
を流れる電流はサイン波状であ夛、発生ノイズ周波数は
基本波のみであn高盲閘波成分はない。またターンオン
およびターンオフ時のトラン2スタ9.13 およびダ
イオード10.12の電流は零であル、スイッチングロ
ス杜なく、またサージ電流もない。したがって動作周波
数を高周波化しても、ノイズ、サージ電流が増大したシ
、コンバータの効率が低下するようなことはない。
Here ■ cun and Vcnm are the maximum value in the on cycle and the minimum value in the off cycle of the capacitor 11, respectively. As can be seen from (2) and (8) above, the current flowing through each transistor has a sine wave shape. , the generated noise frequency is only the fundamental wave and there is no n-high blind control wave component. Furthermore, the currents in the transistor 2 star 9.13 and the diode 10.12 during turn-on and turn-off are zero, there is no switching loss, and there is no surge current. Therefore, even if the operating frequency is increased, there will be no increase in noise, surge current, or decrease in converter efficiency.

なお周波数、負荷抵抗、トランジスタ13の最大電流を
それぞれf、R,lcxsMとすると、出力電力れは したがって出力電圧v、紘     −]と表わされる
。上式から出力電圧V、はJfに比例し、逆に周波数f
を制御することによシ、出力電圧が安淀化されることが
わかる。
Note that if the frequency, load resistance, and maximum current of the transistor 13 are f, R, and lcxsM, respectively, the output power is expressed as the output voltage v, hiro-]. From the above equation, the output voltage V, is proportional to Jf, and conversely, the frequency f
It can be seen that by controlling the output voltage, the output voltage can be stabilized.

以上に説明したように、本発明によれば、非絶縁形コン
バータにおいて、共振作用を利用しスイッチング素子お
よびダイオードの電流をサイン波状にすることによシ、
スイッチングロスがなく高周波化した場合でも低損失で
あり、ノイズは基本波のみであシ高周波成分を含むこと
なく、またサージ電流が流れないためスイッチング素子
およびダイオードにサージサプレッサは不要である等の
すぐれた効果が得られる0
As explained above, according to the present invention, in a non-isolated converter, by making the current of the switching element and the diode into a sine wave shape by using the resonance effect,
There is no switching loss and the loss is low even when the frequency is increased, the noise is only the fundamental wave and does not contain high frequency components, and since no surge current flows, there is no need for a surge suppressor in the switching element or diode. 0

【図面の簡単な説明】[Brief explanation of drawings]

第1図位従来のチョッパ方式のDC−DC−ンノく−タ
の回路図、第2図は本発明の一実施例の、DC−DCコ
ンバータρ回路図、第3図は各トランジスタの電流およ
び共振コンデンサの電圧のタイムチャートである。 なお図面に使用した符号はそれぞれ以下のものを示す。 1・・・・・・入力電源、5・・・・・・出力コンデン
サ、6・・・・・・負荷抵抗、8.14・・・・・・コ
イル、9.13・・・・・・トランジスタ、10.12
・・・・・・ダイオード、11・・・・・・コンデンサ
、15・・・・・・制御回路。
Figure 1 is a circuit diagram of a conventional chopper-type DC-DC converter, Figure 2 is a circuit diagram of a DC-DC converter according to an embodiment of the present invention, and Figure 3 is a circuit diagram of a DC-DC converter according to an embodiment of the present invention. 5 is a time chart of voltage of a resonant capacitor. The symbols used in the drawings indicate the following. 1... Input power supply, 5... Output capacitor, 6... Load resistance, 8.14... Coil, 9.13... transistor, 10.12
... Diode, 11 ... Capacitor, 15 ... Control circuit.

Claims (1)

【特許請求の範囲】[Claims] 非絶縁形DC−DCコンバータにおいて、第1のコイル
と第1のスイッチング素子と第1のダイオードと第1の
コンデンサとよシなる直列回路が入力電源の両端に接続
され、第2のダイオードと第2のスイッチング素子と第
2のコイルと第2のコンデンサとよシなる直列回路が前
記第1のコンデンサの両端に並列に接続され、前記第2
のコンデンサに並列に負荷抵抗が接続されていることを
特徴とする入出力非絶縁形LC共振コンノぐ一タ0
In a non-isolated DC-DC converter, a series circuit consisting of a first coil, a first switching element, a first diode, and a first capacitor is connected across an input power source, and a series circuit consisting of a first coil, a first switching element, a first diode, and a first capacitor is connected across an input power source; A series circuit consisting of a second switching element, a second coil, and a second capacitor is connected in parallel across the first capacitor;
An input/output non-insulated type LC resonant converter, characterized in that a load resistor is connected in parallel to the capacitor.
JP18351781A 1981-11-16 1981-11-16 Non-insulation type l-c resonance converter Granted JPS5886868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18351781A JPS5886868A (en) 1981-11-16 1981-11-16 Non-insulation type l-c resonance converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18351781A JPS5886868A (en) 1981-11-16 1981-11-16 Non-insulation type l-c resonance converter

Publications (2)

Publication Number Publication Date
JPS5886868A true JPS5886868A (en) 1983-05-24
JPS6229987B2 JPS6229987B2 (en) 1987-06-30

Family

ID=16137223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18351781A Granted JPS5886868A (en) 1981-11-16 1981-11-16 Non-insulation type l-c resonance converter

Country Status (1)

Country Link
JP (1) JPS5886868A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002099947A1 (en) * 2001-05-31 2002-12-12 Mitsubishi Denki Kabushiki Kaisha Power unit and method for power supply of power unit
JP2012231657A (en) * 2010-08-26 2012-11-22 Semiconductor Energy Lab Co Ltd Dc-dc converter and semiconductor device
KR20130109967A (en) 2010-05-21 2013-10-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and display device
US8922182B2 (en) 2009-12-04 2014-12-30 Semiconductor Energy Laboratory Co., Ltd. DC converter circuit and power supply circuit
US9793801B2 (en) 2010-05-21 2017-10-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002099947A1 (en) * 2001-05-31 2002-12-12 Mitsubishi Denki Kabushiki Kaisha Power unit and method for power supply of power unit
US8922182B2 (en) 2009-12-04 2014-12-30 Semiconductor Energy Laboratory Co., Ltd. DC converter circuit and power supply circuit
US9270173B2 (en) 2009-12-04 2016-02-23 Semiconductor Energy Laboratory Co., Ltd. DC converter circuit and power supply circuit
KR20130109967A (en) 2010-05-21 2013-10-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and display device
US9793801B2 (en) 2010-05-21 2017-10-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
JP2012231657A (en) * 2010-08-26 2012-11-22 Semiconductor Energy Lab Co Ltd Dc-dc converter and semiconductor device
US8686696B2 (en) 2010-08-26 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. DC-DC converter and semiconductor device

Also Published As

Publication number Publication date
JPS6229987B2 (en) 1987-06-30

Similar Documents

Publication Publication Date Title
US4720667A (en) Zero-current switching quasi-resonant converters operating in a full-wave mode
US4720668A (en) Zero-voltage switching quasi-resonant converters
JP3861220B2 (en) DC-DC converter
JPH08509354A (en) High frequency AC / AC converter with power factor correction
JP4535492B2 (en) Buck-boost chopper circuit
JPH08130871A (en) Dc-dc converter
JPS5886868A (en) Non-insulation type l-c resonance converter
JPH07123707A (en) Partial resonance type constant-frequency pwm controlled dc-dc converter
US11973440B2 (en) Isolated DC/DC converter with secondary-side full bridge diode rectifier and asymmetrical auxiliary capacitor
JP2001309646A (en) Switching power unit
JPH0588067B2 (en)
JP3214687B2 (en) Step-down high power factor converter
JPH10146048A (en) Chopper type dc-dc converter
CN105515383A (en) Switching controlling circuit, converter, and switching controlling method
JP2540832B2 (en) Back converter
JPS6231584B2 (en)
CN117060707B (en) Single-stage single-phase bridgeless Zeta type PFC converter
JP3397456B2 (en) DC-DC converter
JPS61280769A (en) Noise absorber circuit
US20220231602A1 (en) Buck voltage regulator device
JP3562251B2 (en) Power supply
JPH0147116B2 (en)
JP4329451B2 (en) Switching power supply
SU1078559A1 (en) A.c.voltage-to-d.c.voltage converter
JP3725378B2 (en) Single phase buck-boost high power factor converter