JPS6231584B2 - - Google Patents

Info

Publication number
JPS6231584B2
JPS6231584B2 JP1691682A JP1691682A JPS6231584B2 JP S6231584 B2 JPS6231584 B2 JP S6231584B2 JP 1691682 A JP1691682 A JP 1691682A JP 1691682 A JP1691682 A JP 1691682A JP S6231584 B2 JPS6231584 B2 JP S6231584B2
Authority
JP
Japan
Prior art keywords
capacitor
voltage
transistor
coil
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1691682A
Other languages
Japanese (ja)
Other versions
JPS58136265A (en
Inventor
Tokimune Kitajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP1691682A priority Critical patent/JPS58136265A/en
Publication of JPS58136265A publication Critical patent/JPS58136265A/en
Publication of JPS6231584B2 publication Critical patent/JPS6231584B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Description

【発明の詳細な説明】 本発明は入出力非絶縁形スイツチング電源の改
良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in an input/output non-isolated switching power supply.

従来、この種の入出力非絶縁形スイツチング電
源として第1図に示すようなチヨツパ方式が広く
知られている。これはトランジスタ4のスイツチ
ング動作によつて直流入力電圧から変換された矩
形波パルス電圧をL8,C9からなる平滑回路に印
加して、その平均直流電圧を出力として取り出す
ものである。入力電圧、出力電圧スイツチング周
期、トランジスタのオン幅をそれぞれVi,V0
T,TONとするとこれらの間には下記の関係があ
る。
Conventionally, a chopper system as shown in FIG. 1 has been widely known as this type of input/output non-isolated switching power supply. This applies a rectangular wave pulse voltage converted from a DC input voltage by the switching operation of the transistor 4 to a smoothing circuit consisting of L 8 and C 9 , and outputs the average DC voltage. The input voltage, output voltage switching period, and transistor on-width are V i , V 0 ,
Assuming T and T ON , there is the following relationship between them.

V0=TON/TVi 出力電圧V0は通常周期Tを固定しオン幅TON
を可変することによつて安定化される。
V 0 = T ON /TV i The output voltage V 0 normally has a fixed period T and an on-width T ON
It is stabilized by varying the

しかし、従来のチヨツパ方式の場合、スイツチ
ングトランジスタの負荷が誘導負荷でありターン
オン及びターンオフ時に急激に大電流をスイツチ
ングするために、トランジスタ及びダイオードの
スイツチングロスが大きい、放射ノイズが大きく
しかもかなりの高調波にわたつてレベルが高い、
逆サージ防止のためトランジスタやダイオードに
サージサプレツサが必要である等の欠点があつ
た。またこれらの欠点はスイツチング動作の高周
波化と共に顕著になるため高周波化による電源の
小形化を阻外する基本的な要因であつた。
However, in the case of the conventional chopper method, the load of the switching transistor is an inductive load and a large current is suddenly switched at turn-on and turn-off, so the switching loss of the transistor and diode is large, the radiation noise is large, and there is also a considerable amount of noise. High level across harmonics,
There were drawbacks such as the need for surge suppressors for transistors and diodes to prevent reverse surges. In addition, these drawbacks become more noticeable as the frequency of the switching operation increases, and are therefore a fundamental factor that prevents the miniaturization of power supplies due to the increase in frequency.

本発明の目的はLC共振作用を利用してサイン
波電流をスイツチングすることにより上記欠点を
除去し、低損失で信頼度が高く、動作周波数の高
周波化が可能な入出力非絶縁形スイツチング電源
を提供することにある。
The purpose of the present invention is to eliminate the above drawbacks by switching a sine wave current using LC resonance, and to provide a non-isolated input/output switching power supply that has low loss, high reliability, and can operate at a high frequency. It is about providing.

本発明の入出力非絶縁形スイツチング電源は、
第1のコイルと第1のスイツチング素子と第1の
コンデンサとからなる直列回路が入力電源の両端
に接続され、前記第1のコンデンサと並列に第2
のスイツチング素子と第2のコイルと第2のコン
デンサとからなる直列回路と第1のダイオードが
接続され、前記第2のコンデンサと並列に負荷抵
抗器が接続されたことを特徴とする。
The input/output non-isolated switching power supply of the present invention has the following features:
A series circuit consisting of a first coil, a first switching element, and a first capacitor is connected to both ends of the input power supply, and a second capacitor is connected in parallel to the first capacitor.
The first diode is connected to a series circuit consisting of a switching element, a second coil, and a second capacitor, and a load resistor is connected in parallel with the second capacitor.

次に第2図に示す本発明の実施例につき説明す
る。この例はコイル12、トランジスタ13、コ
ンデンサ14からなる直列回路が入力電源1の両
端に接続され、前記コンデンサ14と並列にダイ
オード15及びトランジスタ16、コイル17、
コンデンサ9からなる直列回路が接続されてい
る。コンデンサ9の両端電圧を本電源の出力電圧
とし、コンデンサ9と並列に負荷抵抗器10を接
続している。トランジスタ13,16の駆動は制
御回路18によつてなされ、制御回路18は検出
出力電圧を安定化するよう、その発振周波数を変
えつつトランジスタ13,16を交互にオンオフ
させる。
Next, an embodiment of the present invention shown in FIG. 2 will be described. In this example, a series circuit consisting of a coil 12, a transistor 13, and a capacitor 14 is connected across the input power source 1, and in parallel with the capacitor 14, a diode 15, a transistor 16, a coil 17,
A series circuit consisting of a capacitor 9 is connected. The voltage across the capacitor 9 is the output voltage of the power supply, and a load resistor 10 is connected in parallel with the capacitor 9. The transistors 13 and 16 are driven by a control circuit 18, which turns the transistors 13 and 16 on and off alternately while changing its oscillation frequency so as to stabilize the detected output voltage.

ここでトランジスタ13がオン、トランジスタ
16がオフしている期間(1/2周期)をサイクル
、その逆の期間(1/2周期)をサイクルとす
る。本回路のスイツチング動作はサイクル、
からなり2つのサイクルによつて一周期を形成す
る。
Here, the period during which the transistor 13 is on and the transistor 16 is off (1/2 cycle) is defined as a cycle, and the opposite period (1/2 cycle) is defined as a cycle. The switching operation of this circuit is a cycle,
One period is formed by two cycles.

上記のような回路構成において、まずトランジ
スタ13がオンする直前のコンデンサ14の両端
電圧は後述するように0ボルトにある。したがつ
て、サイクルにおいてトランジスタ13がオン
するとLC共振作用により、第3図に示すような
LC共振電流iL12が入力電源1からコンデンサ1
4へ流れ込む。この充電電流が流れ終つた時点に
おいてコンデンサ11の両端電圧vC14は第3図
に示すように共振波形の最大値をとる。
In the above circuit configuration, the voltage across the capacitor 14 immediately before the transistor 13 turns on is 0 volts, as will be described later. Therefore, when the transistor 13 is turned on during the cycle, due to the LC resonance effect, as shown in FIG.
LC resonant current i L12 is from input power supply 1 to capacitor 1
Flows into 4. At the time when this charging current finishes flowing, the voltage v C14 across the capacitor 11 assumes the maximum value of the resonance waveform as shown in FIG.

ここでコイル12のインダクタンス、コンデン
サ14の容量、入力電圧をそれぞれL12,C14,E
とし、またサイクルの開始時を原点とする時刻
をtとすると下式(1)、(2)の関係が成り立つ。
Here, the inductance of the coil 12, the capacity of the capacitor 14, and the input voltage are L 12 , C 14 , and E
If t is the time when the origin is the start of the cycle, then the relationships of equations (1) and (2) below hold.

サイクルの残りの期間π√12 14<t<T/2 (Tはスイツチング周期)においては、コンデン
サC14の充電は完了しているが、トランジスタ1
6はオフし、またトランジスタ13の導通方向が
逆向きのため、コンデンサ14から入力側及び出
力側へ放電されず、コンデンサC14は充電時の最
大電圧vC14(nax)=2Eを維持する。
During the remaining period of the cycle π√ 12 14 <t<T/2 (T is the switching period), capacitor C 14 has been fully charged, but transistor 1
6 is turned off, and since the conducting direction of the transistor 13 is reversed, the capacitor 14 is not discharged to the input side and the output side, and the capacitor C 14 maintains the maximum voltage v C14 (nax) = 2E during charging.

次にサイクル(T/2<t<T)において、トラ ンジスタ13がオフし、トランジスタ16がオン
すると、コイル17との共振作用によりコンデン
サ14の電荷はコンデンサ9へ放電される。第3
図のiL17がこの放電電流を示す。放電途中にお
いてコンデンサ14の両端電圧は入力電圧E及び
出力電圧V0(コンデンサ9の電圧)よりも低く
なるがトランジスタ13がオフしており、またト
ランジスタ16の導通方向が逆向きのため、入出
力からコンデンサC14へ電流が流れ込むことはな
い。ここでコイル17のインダクタンスをL17
すると、コンデンサC14が放電を開始し、その両
端電圧が0ボルトになるまでの時間をτDCとする
と、コイル17の電流jL17及びコンデンサC14
両端電圧vC14,τDCは下式(3)〜(5)であらわされ
る。
Next, in a cycle (T/2<t<T), when the transistor 13 is turned off and the transistor 16 is turned on, the charge in the capacitor 14 is discharged to the capacitor 9 due to resonance with the coil 17. Third
i L17 in the figure indicates this discharge current. During discharging, the voltage across the capacitor 14 becomes lower than the input voltage E and the output voltage V 0 (voltage of the capacitor 9), but since the transistor 13 is off and the conduction direction of the transistor 16 is opposite, the input/output is No current flows from the capacitor C14 to the capacitor C14 . Here, if the inductance of the coil 17 is L17 , and the time from when the capacitor C14 starts discharging until the voltage across it reaches 0 volts is τ DC , then the current j L17 of the coil 17 and the current across the capacitor C14 is The voltage v C14 and τ DC are expressed by the following formulas (3) to (5).

但し、 E>V0 ………(6) 第3図からわかるように、コンデンサC14の両
端電圧が0ボルトまで低下した時、コイル17の
励磁電流は最大となる。コイル17の最大励磁電
流IL17nは下式(7)で表わされる。
However, E>V 0 (6) As can be seen from Figure 3, when the voltage across the capacitor C14 drops to 0 volts, the excitation current of the coil 17 reaches its maximum. The maximum excitation current I L17n of the coil 17 is expressed by the following formula (7).

以後のコイル17の励磁電流はダイオード15
を介してリセツトされる。このリセツト期間をτ
RSとすると、この期間のコイル17の電流iL17
及びτRSは下式(8)、(9)で表わされる。
The excitation current of the coil 17 thereafter is the diode 15.
It is reset via . This reset period is τ
RS , the current i of the coil 17 during this period L17
and τ RS are expressed by the following formulas (8) and (9).

L17=IL17n−V/L17(tT/2−τDC)…
……(8) τRS=L17L17n/V ………(9) コイル17の消磁完了後は、次のサイクルが
開始されるまで回路動作は静止している。
i L17 = I L17n −V 0 /L 17 (tT/2−τ DC )…
...(8) τ RS =L 17 I L17n /V 0 ......(9) After the demagnetization of the coil 17 is completed, the circuit operation remains stationary until the next cycle is started.

尚、前記(3)〜(9)式の導出において、コンデンサ
9の両端電圧、則ち出力電圧V0は、コンデンサ
9と抵抗器10とからなる放電回路の時定数は周
期Tに比べて非常に大きいと仮定しており、サイ
クル、を通してその電圧値は不変であるとし
た。
In the derivation of equations (3) to (9) above, the voltage across the capacitor 9, that is, the output voltage V0 , is determined by the fact that the time constant of the discharge circuit consisting of the capacitor 9 and the resistor 10 is much larger than the period T. It is assumed that the voltage value is large and that the voltage value remains unchanged throughout the cycle.

以上の説明からわかるように、各トランジスタ
を流れる電流がサイン波状のため発生ノイズ周波
数は基本波のみであり高調波成分はほとんどな
い。
As can be seen from the above explanation, since the current flowing through each transistor has a sine wave shape, the generated noise frequency is only the fundamental wave and there are almost no harmonic components.

またターンオン及びターンオフ時のトランジス
タ13,16の電流は0であり、スイツチングロ
スはなくまたサージ電流もない。したがつて動作
周波数を高周波化しても、ノイズサージ電流が増
大したり、電源の電力変換効率が低下するような
ことはない。
Further, the currents of the transistors 13 and 16 during turn-on and turn-off are 0, and there is no switching loss or surge current. Therefore, even if the operating frequency is increased, the noise surge current will not increase or the power conversion efficiency of the power supply will not decrease.

尚、周波数、負荷抵抗をそれぞれ,Rとする
と出力電力P0は P0=1/2C14V C14(nax)=V /R…
……(10) VC14(nax)=2Eであるから、出力電圧V0は(10)式
より下式(11)のように表わされる。
Furthermore, if the frequency and load resistance are respectively R, the output power P 0 is P 0 = 1/2C 14 V 2 C14(nax) = V 0 2 /R...
...(10) Since V C14(nax) = 2E, the output voltage V 0 can be expressed as the following equation (11) from equation (10).

V0=E√214 ………(11) 上式から出力電圧V0は,R,Eの関数であ
り、逆に入力電圧Eあるいは負荷抵抗Rの変動に
対して、周波数を調整することにより、出力電
圧V0を安定化できることがわかる。
V 0 = E√2 14 ......(11) From the above formula, the output voltage V 0 is a function of R and E, and conversely, the frequency can be adjusted in response to fluctuations in the input voltage E or load resistance R. It can be seen that the output voltage V 0 can be stabilized.

本発明は以上説明したように入出力非絶縁降圧
形スイツチング電源において共振作用を利用しス
イツチング素子の電流をサイン波状にすることに
よりスイツチングロスがなく高周波化した場合で
も低損失である。ノイズはLC共振周波数の基本
波のみであり、高周波成分をほとんど含まない。
またサージ電流が流れないためスイツチング素子
にサージサプレツサが不要である等のすぐれた特
徴を有する。
As explained above, the present invention utilizes resonance in an input/output non-isolated step-down switching power supply to make the current of the switching element into a sine wave shape, thereby eliminating switching loss and achieving low loss even when the frequency is increased. The noise is only the fundamental wave of the LC resonance frequency and contains almost no high frequency components.
Furthermore, since no surge current flows, it has excellent features such as eliminating the need for a surge suppressor in the switching element.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の例を示す回路図、第2図は本発
明の一実施例を示す回路図、第3図は第2図の動
作を示す波形図である。 1……入力電源、2……抵抗器、3……コンデ
ンサ、4……トランジスタ、5……ダイオード、
6……抵抗器、7……コンデンサ、8……コイ
ル、9……コンデンサ、10……負荷抵抗器、1
1……制御回路、12……コイル、13……トラ
ンジスタ、14……コンデンサ、15……ダイオ
ード、16……トランジスタ、17……コイル、
18……制御回路。
FIG. 1 is a circuit diagram showing a conventional example, FIG. 2 is a circuit diagram showing an embodiment of the present invention, and FIG. 3 is a waveform diagram showing the operation of FIG. 2. 1...Input power supply, 2...Resistor, 3...Capacitor, 4...Transistor, 5...Diode,
6...Resistor, 7...Capacitor, 8...Coil, 9...Capacitor, 10...Load resistor, 1
1... Control circuit, 12... Coil, 13... Transistor, 14... Capacitor, 15... Diode, 16... Transistor, 17... Coil,
18...Control circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 第1のコイルと第1のスイツチング素子と第
1のコンデンサとからなる直列回路が入力電源の
両端に接続され、前記第1のコンデンサと並列に
第2のスイツチング素子と第2のコイルと第2の
コンデンサとからなる直列回路と第1のダイオー
ドが接続され、前記第2のコンデンサと並列に負
荷抵抗器が接続されたことを特徴とする入出力非
絶縁形スイツチング電源。
1 A series circuit consisting of a first coil, a first switching element, and a first capacitor is connected to both ends of an input power supply, and a series circuit consisting of a second switching element, a second coil, and a first capacitor is connected in parallel to the first capacitor. 1. An input/output non-isolated switching power supply, characterized in that a series circuit consisting of two capacitors and a first diode are connected, and a load resistor is connected in parallel with the second capacitor.
JP1691682A 1982-02-04 1982-02-04 Input/output non-insulating type switching power source Granted JPS58136265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1691682A JPS58136265A (en) 1982-02-04 1982-02-04 Input/output non-insulating type switching power source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1691682A JPS58136265A (en) 1982-02-04 1982-02-04 Input/output non-insulating type switching power source

Publications (2)

Publication Number Publication Date
JPS58136265A JPS58136265A (en) 1983-08-13
JPS6231584B2 true JPS6231584B2 (en) 1987-07-09

Family

ID=11929451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1691682A Granted JPS58136265A (en) 1982-02-04 1982-02-04 Input/output non-insulating type switching power source

Country Status (1)

Country Link
JP (1) JPS58136265A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2655786B1 (en) * 1989-12-12 1993-11-12 Sextant Avionique SUPPLY OF THE ALTERNATE-CONTINUOUS CONVERTER TYPE WITH CUT-OUT.
JP6356052B2 (en) * 2014-11-26 2018-07-11 株式会社ダイヘン Step-down chopper circuit and power supply for welding

Also Published As

Publication number Publication date
JPS58136265A (en) 1983-08-13

Similar Documents

Publication Publication Date Title
JPH0832162B2 (en) DC-DC converter and DC-DC conversion method
JPH09308244A (en) Snubber circuit in switching power supply
JPH08130871A (en) Dc-dc converter
JPH0564432A (en) Power source
JPS6231584B2 (en)
JPS6229987B2 (en)
JPS5972934A (en) High dielectric load ac power source
JPH01268451A (en) Overvoltage suppressing circuit for semiconductor device
JPH0147116B2 (en)
JP3397456B2 (en) DC-DC converter
JPH08168240A (en) Dc-dc converter
JPS5840916B2 (en) Natural commutation type DC↓-DC converter
US4176302A (en) Vertical deflection output circuit
JPS6367427B2 (en)
JPH03195356A (en) Input and output inversion type dc-dc converter
JPS6319591Y2 (en)
JPH0716302B2 (en) Switching power supply circuit
JP2972415B2 (en) Boost converter
JP2003348834A (en) Single-phase step-up/down converter
JP3073792B2 (en) Inverter device
JPH0442772A (en) Switching power unit
KR920000361B1 (en) High efficiency driver circuit for ringing converter
JP4396108B2 (en) Power factor correction circuit
KR820001669B1 (en) Switched-mode voltage converter
JPH0564448A (en) Switching power unit