WO2002096932A1 - Transporters and ion channels - Google Patents

Transporters and ion channels Download PDF

Info

Publication number
WO2002096932A1
WO2002096932A1 PCT/US2002/016446 US0216446W WO02096932A1 WO 2002096932 A1 WO2002096932 A1 WO 2002096932A1 US 0216446 W US0216446 W US 0216446W WO 02096932 A1 WO02096932 A1 WO 02096932A1
Authority
WO
WIPO (PCT)
Prior art keywords
polynucleotide
polypeptide
seq
amino acid
trich
Prior art date
Application number
PCT/US2002/016446
Other languages
French (fr)
Inventor
Brigitte E. Raumann
Jennifer A. Griffin
April J.A. Hafalia
Sajeev Batra
Monique G. Yao
Ian J. Forsythe
Jayalaxmi Ramkumar
Brendan M. Duggan
Mariah R. Baughn
Yalda Azimzai
Bridget A. Warren
Preeti G. Lal
Kimberly J. Gietzen
_Narinder K. CHAWLA
Shanya D. Becha
Y. Tom Tang
Henry Yue
Anna M. Chinn
Original Assignee
Incyte Genomics, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Incyte Genomics, Inc. filed Critical Incyte Genomics, Inc.
Priority to CA002447662A priority Critical patent/CA2447662A1/en
Priority to EP02731927A priority patent/EP1390391A4/en
Priority to US10/478,758 priority patent/US20040152874A1/en
Priority to JP2003500111A priority patent/JP2005507238A/en
Publication of WO2002096932A1 publication Critical patent/WO2002096932A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/02Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • A61P15/08Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/22Anxiolytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/10Antimycotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • This invention relates to nucleic acid and amino acid sequences of transporters and ion channels and to the use of these sequences in the diagnosis, prevention, and treatment of transport, neurological, muscular, immunological, and cell proliferative disorders, as well as disorders of iron metabolism, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of transporters and ion channels.
  • Eukaryotic cells are surrounded and subdivided into functionally distinct organelles by hydrophobic lipid bilayer membranes which are highly impermeable to most polar molecules.
  • Cells and organelles require transport proteins to import and export essential nutrients and metal ions including K + , NH , P,., SO ⁇ 2 ", sugars, and vitamins, as well as various metabolic waste products.
  • Transport proteins also play roles in antibiotic resistance, toxin secretion, ion balance, synaptic neurotransmission, kidney function, intestinal absorption, tumor growth, and other diverse cell functions (Griffith, J. and C. Sansom (1998) The Transporter Facts Book, Academic Press, San Diego CA, pp. 3-29).
  • Transport can occur by a passive concentration-dependent mechanism, or can be linked to an energy source such as ATP hydrolysis or an ion gradient.
  • Proteins that function in transport include carrier proteins, which bind to a specific solute and undergo a conformational change that translocates the bound solute across the membrane, and channel proteins, which form hydrophilic pores that allow specific solutes to diffuse through the membrane down an electrochemical solute gradient.
  • Carrier proteins which transport a single solute from one side of the membrane to the other are called uniporters.
  • coupled transporters link the transfer of one solute with simultaneous or sequential transfer of a second solute, either in the same direction (symport) or in the opposite direction (antiport).
  • intestinal and kidney epithelium contains a variety of symporter systems driven by the sodium gradient that exists across the plasma membrane. Sodium moyes into the cell down its electrochemical gradient and brings the solute into the cell with it. The sodium gradient that provides the driving force for solute upt ⁇ ike is maintained by the ubiquitous Na + /K + ATPase system.
  • Sodium-coupled transporters include the m « ⁇ mmalian glucose transporter (SGLT1), iodide transporter (NTS), and multivitamin transporter (SMVT). All three transporters have twelve putative transmembrane segments, extracellular glycosylation sites, and cytoplasmically- oriented N- and C-termini. NTS plays a crucial role in the evaluation, diagnosis, and treatment of various thyroid pathologies because it is the molecular basis for radioiodide thyroid-imaging techniques and for specific targeting of radioisotopes to the thyroid gland (Levy, O. et al. (1997) Proc. Natl. Acad. Sci. USA 94:5568-5573).
  • SMVT is expressed in the intestinal mucosa, kidney, and placenta, and is implicated in the transport of the water-soluble vitamins, e.g., biotin and pantofhenate (Prasad, P.D. et al. (1998) J. Biol. Chem. 273:7501-7506).
  • MFS major facilitator superfamily
  • MFS transporters are single polypeptide carriers that transport small solutes in response to ion gradients.
  • Members of the MFS are found in all classes of living organisms, and include transporters for sugars, oligosaccharides, phosphates, nitrates, nucleosides, monocarboxylates, and drugs.
  • MFS transporters found in eukaryotes all have a structure comprising 12 transmembrane segments (Pao, S.S. et al. (1998) Microbiol. Molec. Biol. Rev. 62:1-34).
  • GLUT1-GLUT7 The largest family of MFS transporters is the sugar transporter family, which includes the seven glucose transporters (GLUT1-GLUT7) found in humans that are required for the transport of glucose and other hexose sugars. These glucose transport proteins have unique tissue distributions and physiological functions.
  • GLUT1 provides many cell types with their basal glucose requirements and transports glucose across epithelial and endothelial barrier tissues;
  • GLUT2 facilitates glucose uptake or efflux from the liver;
  • GLUT3 regulates glucose supply to neurons;
  • GLUT4 is responsible for insulin- regulated glucose disposal; and
  • GLUT5 regulates fructose uptake into skeletal muscle.
  • Monocarboxylate anion transporters are proton-coupled symporters with abroad substrate specificity that includes L-lactate, pyruvate, and the ketone bodies acetate, acetoacetate, and beta-hydroxybutyrate. At least seven isoforms have been identified to date. The isoforms are predicted to have twelve transmembrane (TM) helical domains with a large intracellular loop between TM6 and TM7, and play a critical role in mamtaining intracellular pH by removing the protons that are produced stoichiometrically with lactate during glycolysis.
  • TM transmembrane
  • H + -monocarboxylate transporter is that of the erythrocyte membrane, which transports L-lactate and a wide range of other aliphatic monocarboxylates.
  • Other cells possess H + -linked monocarboxylate transporters with differing substrate and inhibitor selectivities.
  • cardiac muscle and tumor cells have transporters that differ in their K ⁇ values for certain substrates, including stereoselectivity for L- over D-lactate, and in their sensitivity to inhibitors.
  • Organic anion tiansporters are selective for hydrophobic, charged molecules with electron-attracting side groups.
  • Organic cation transporters such as the ammonium transporter, mediate the secretion of a variety of drugs and endogenous metabolites, and contribute to the maintenance of intercellular pH (Poole, R.C. and A.P. Halestrap (1993) Am. J. Physiol. 264:C761-C782; Price, N.T. et al. (1998) Biochem. J. 329:321-328; and Martinelle, K. and I. Haggstrom (1993) J. Biotechnol.
  • ATP-binding cassette (ABC) transporters are members of a superfamily of membrane proteins that transport substances ranging from small molecules such as ions, sugars, amino acids, peptides, and phospholipids, to lipopeptides, large proteins, and complex hydrophobic drugs.
  • ABC transporters consist of four modules: two nucleotide-binding domains (NBD), which hydrolyze ATP to supply the energy required for transport, and two membrane-spanning domains (MSD), each containing six putative transmembrane segments. These four modules may be encoded by a single gene, as is the case for the cystic fibrosis transmembrane regulator (CFTR), or by separate genes.
  • NBD nucleotide-binding domains
  • MSD membrane-spanning domains
  • each gene product contains a single NBD and MSD. These "half- molecules" form homo- and heterodimers, such as Tapl and Tap2, the endoplasmic reticulum-based major histocompatibility (MHC) peptide transport system.
  • MHC major histocompatibility
  • CFTR cystic fibrosis
  • ALDP adrenoleukodystrophy protein
  • ALDP adrenoleukodystrophy protein
  • Zelfweger syndrome peroxisomal membrane protein-70, PMP70
  • hyperinsulinemic hypoglycemia sulfonylurea receptor, SUR.
  • MDR multidrug resistance
  • a number of metal ions such as iron, zinc, copper, cobalt, manganese, molybdenum, selenium, nickel, and chromium are important as cofactors for a number of enzymes.
  • copper is involved in hemoglobin synthesis, connective tissue metabolism, and bone development, by acting as a cofactor in oxidoreductases such as superoxide dismutase, ferroxidase (ceruloplasmin), and lysyl oxidase.
  • Copper and other metal ions must be provided in the diet, and are absorbed by transporters in the gastrointestinal tract. Plasma proteins transport the metal ions to the liver and other target organs, where specific transporters move the ions into cells and cellular organelles as needed. Imbalances in metal ion metabolism have been associated with a number of disease states (Danks, D.M. (1986) J. Med. Genet. 23:99-106).
  • Fatty acid tr ⁇ sport protein an integral membrane protein with four transmembrane segments, is expressed in tissues exhibiting high levels of plasma membrane fatty acid flux, such as muscle, heart, and adipose. Expression of FATP is upregulated in 3T3-L1 cells during adipose conversion, and expression in COS7 fibroblasts elevates uptake of long-chain fatty acids (Hui, T.Y. et al. (1998) J. Biol. Chem. 273:27420-27429).
  • Mitochondrial carrier proteins are tiansmembrane-spanning proteins which transport ions and charged metabolites between the cytosol and the mitochondrial matrix. Examples include the ADP, ATP carrier protein; the 2-oxoglutarate/malate carrier; the phosphate carrier protein; the pyruvate carrier; the dicarboxylate carrier which transports malate, succinate, fumarate, and phosphate; the tricarboxylate carrier which transports citrate and malate; and the Grave's disease carrier protein, a protein recognized by IgG in patients with active Grave's disease, an autoimmune disorder resulting in hyperthyroidism. Proteins in this family consist of three tandem repeats of an approximately.100
  • This class of transporters also includes the mitochondrial uncoupling proteins, which create proton leaks across the inner mitochondrial membrane, thus uncoupling oxidative phosphorylation from ATP synthesis. The result is energy dissipation in the form of heat. Mitochondrial uncoupling proteins have been implicated as modulators of thermoregulation and metabolic rate, and have been proposed as potential targets for drugs against metabolic diseases such as obesity (Ricquier, D. et al. (1999) J. Int. Med. 245:637-642).
  • Urea transporters (UT, UrT) play a central role in urea excretion and water balance by allowing the accumulation and concentration of urea in the kidney medulla (Hediger, M.A. et al. (1996) Kidney Int. 49:1615-1623). Urea is a major solute found in urine and is the principal means by which mammals dispose of nitrogen-based waste products. Urea transporter proteins have been identified in erythropoietic cells (UT-B) and in the kidney medula (UT-A). Several isoforms of the renal urea transporter (UT-A) have been cloned (le., UT-Al, UT-A2, UT-A3, and UT-A4).
  • UT-A2 may be upregulated in response to uremia.
  • UT-A3 may be expressed in the testis.
  • Urea transporters may also be expressed in the brain (Karakashian, A. et al. (1999) J. Am. Soc. Nephrol. 1999 10:230-237; Couriaud, C. et al. (1996) Biochim Biophys Acta. 1996 1309:197-19).
  • At least two distinct classes of urea transporters are present in humans: constitutively-expressed transporters, and vasopressin-regulated transporters (Olives, B. et al. (1996) FEBS Lett. 386:156-160).
  • a number of metal ions such as iron, zinc, copper, cobalt, manganese, molybdenum, selenium, nickel, and chromium are important as cofactors for a number of enzymes.
  • copper is involved in hemoglobin synthesis, connective tissue metabolism, and bone development, by acting as a cof actor in oxidoreductases such as superoxide dismutase, ferroxidase (ceroloplasmin), and lysyl oxidase.
  • Copper and other metal ions must be provided in the diet, and are absorbed by transporters in the gastrointestinal tract. Plasma proteins transport the metal ions to the liver and other target organs, where specific transporters move the ions into cells and cellular organelles as needed.
  • Ferritin is a ubiquitous iron-binding *V,./ protein that is involved in iron storage and detoxification in microbes, plants, and animals.
  • Mammalian ferritin consists of 24 subunits of two types, H (for heart, or heavy) and L (for light or liver). These subunits assemble into a spherical structure which can accommodate up to 4,000 iron atoms as ferrihydrite, FeOOH (Aisen, P. et al. (1999) Curr. Opin. Chem. Biol. 3:200-206).
  • the nuclear pore complex is a large multiprotein complex spanning the nuclear envelope which mediates the transport of proteins and RNA molecules between the nucleus and the cytoplasm, thus contributing to the regulation of gene expression.
  • the NPC allows passive diffusion of ions, small molecules, and macromolecules under about 60kD, while larger macromolecules are transported by facilitated, energy-dependent pathways.
  • Nuclear localization signals consisting of short stretches of amino acids enriched in basic residues, are found on proteins that are targeted to the nucleus, such as the glucocorticoid receptor.
  • the NLS is recognized by the NLS receptor, importin, which then interacts with the monomeric GTP-binding protein Ran.
  • NLS protein/receptor Ran complex navigates the nuclear pore with the help of the homodimeric protein nuclear transport factor 2 (NTF2) (Nakielny, S. and Dreyfuss, G. (1997) Curr. Opin. Cell Biol. 9:420- 429; Gorlich, D. (1997) Curr. Opin. Cell Biol. 9:412-419).
  • NTF2 homodimeric protein nuclear transport factor 2
  • p62, p58, p54, and p45 exist as a stable "p62 complex" that forms a ring localized on both nucleoplasmic and cytoplasmic surfaces of the NPC.
  • the p62, p58, and p54 proteins all interact directly with the cytosolic transport factors p97 and NTF2, suggesting that the p62 complex is an important ligand binding site near the central gated channel of the NPC (Hu, T. et al. (1996) J. Cell Biol. 134:589-601).
  • the electrical potential of a cell is generated and maintained by controlling the movement of ions across the plasma membrane.
  • the movement of ions requires ion channels, which form ion r selective pores within the membrane.
  • ion channels There are two basic types of ion channels, ion transporters and gated ion channels.
  • Ion transporters utilize the energy obtained from ATP hydrolysis to actively transport an ion against the ion's concentration gradient.
  • Gated ion channels allow passive flow of an ion down the ion's electrochemical gradient under restricted conditions.
  • ion channels generate, maintain, and utilize an electrochemical gradient that is used in 1) electrical impulse conduction down the axon of a nerve cell, 2) transport of molecules into cells against concentration gradients, 3) initiation of muscle contraction, and 4) endocrine cell secretion.
  • Ion transporters generate and maintain the resting electrical potential of a cell. Utilizing the energy derived from ATP hydrolysis, they transport ions against the ion's concentration gradient. These transmembrane ATPases are divided into three families.
  • the phosphorylated (P) class ion transporters including Na + -K + ATPase, Ca 2+ -ATPase, and H + -ATPase, are activated by a phosphorylation event.
  • P-class ion transporters are responsible for mamtaining resting potential distributions such that cytosolic concentrations of Na + and Ca 2+ are low and cytosolic concentration of , K + is high.
  • the vacuolar (V) class of ion transporters includes H + pumps on intracellular organelles, such as lysosomes and Golgi. V-class ion transporters are responsible for generating the low pH within the lumen of these organelles that is required for function.
  • the coupling factor (F) class consists of H + pumps in the mitochondria. F-class ion tr «ansporters utilize a proton gradient to generate ATP from ADP and inorganic phosphate (PV).
  • the P- ATPases are hexamers of a 100 kD subunit with ten transmembrane domains and several large cytoplasmic regions that may play a role in ion binding (Scarborough, G. A. (1999) Curr. Opin. Cell Biol. 11:517-522).
  • the V-ATPases are composed of two functional domains: the V x domain, a peripheral complex responsible for ATP hydrolysis; and the V 0 domain, an integral complex responsible for proton translocation across the membrane.
  • the F-ATPases are structurally and evolutionarily related to the V-ATPases.
  • the F- ATPase F 0 domain contains 12 copies of the c subunit, a highly hydrophobic protein composed of two transmembrane domains and containing a single buried carboxyl group in TM2 that is essential for proton tr ⁇ msport.
  • the V- ATPase V 0 domain contains three types of homologous c subunits with four or five transmembrane domains and the essential carboxyl group in TM4 or TM3. Both types of complex also contain a single a subunit that maybe involved in regulating the pH dependence of activity (Forgac, M. (1999) J. Biol. Chem. 274:12951-12954).
  • the resting potential of the cell is utilized in many processes involving carrier proteins and gated ion channels.
  • Carrier proteins utilize the resting potential to tr ⁇ sport molecules into and out of the cell.
  • Amino acid and glucose transport into many cells is linked to sodium ion co-tr. nsport (symport) so that the movement of Na + down an electrochemical gradient drives transport of the other molecule up a concentration gradient.
  • cardiac muscle links transfer of Ca 2+ out of the cell with transport of Na + into the cell (antiport).
  • Gated ion channels control ion flow by regulating the opening c nd closing of pores.
  • the ability to control ion flux through various gating mechanisms allows ion channels to mediate such diverse signaling and homeostatic functions as neuronal and endocrine signaling, muscle contraction, fertilization, and regulation of ion and pH balance.
  • Gated ion channels are categorized according to the manner of regulating the gating function.
  • Mechanically-gated channels open their pores in response to mechanical stress; voltage-gated channels (e.g., Na + , K + , Ca 2+ , and Cl" channels) open their pores in response to ch «anges in membrane potential; and ligand-gated channels (e.g., acetylcholine-, serotonin-, and glutamate-gated cation, channels, and GAB A- and glycine-gated chloride channels) open their pores in the presence of a specific ion, nucleotide, or neurotransmitter.
  • the gating properties of a particular i ⁇ n channel i.e., its threshold for and duration of opening and closing
  • association with auxiliary channel proteins and/or post translational modifications, such as phosphorylation are sometimes modulated by : association with auxiliary channel proteins and/or post translational modifications, such as phosphorylation.
  • Mechanically-gated or mechanosensitive ion channels act as transducers for the senses of touch, hearing, and balance, and also play important roles in cell volume regulation, smooth muscle contraction, and cardiac rhythm generation.
  • a stretch-inactivated channel (SIC) was recently cloned from rat kidney.
  • the SIC channel belongs to a group of channels which are activated by pressure or stress on the cell membrane and conduct both Ca 2+ and Na + (Suzuki, M. et al. (1999) J. Biol. Chem. 274:6330-6335).
  • the pore-forming subunits of the voltage-gated cation channels form a superfamily of ion channel proteins.
  • the characteristic domain of these channel proteins comprises six transmembrane domains (S1-S6), a pore-fo ⁇ ning region (P) located between S5 and S6, and intracellular amino and carboxy termini. In the Na + and Ca 2+ subfamilies, this domain is repeated four times, while in the K + channel subfamily, each channel is formed from a tetramer of either identical or dissimilar subunits.
  • the P region contains information specifying the ion selectivity for the channel. In the case of K + channels, a GYG tripeptide is involved in this selectivity (Ishii, T.M. et al. (1997) Proc. Natl. Acad. Sci. USA 94:11651-11656).
  • Voltage-gated Na + and K + channels are necessary for the function of electrically excitable cells, such as nerve and muscle cells. Action potentials, which lead to neurotransmitter release and muscle contraction, arise from large, transient changes in the permeability of the membrane to Na + and K + ions. Depolarization of the membrane beyond the threshold level opens voltage-gated Na + channels. Sodium ions flow into the cell, further depolarizing the membrane and opening more voltage-gated Na + channels, which propagates the depolarization down the length of the cell. Depolarization also opens voltage-gated potassium channels. Consequently, potassium ions flow outward, which leads to repolarization of the membrane. Voltage-gated channels utilize charged residues in the fourth transmembrane segment (S4) to sense voltage change.
  • S4 fourth transmembrane segment
  • Voltage-gated Na + channels are heterotrimeric complexes composed of a 260 kDa pore- forming ⁇ subunit that associates with two smaller auxiliary subunits, ⁇ l and ⁇ 2.
  • the ⁇ 2 subunit is a integral membrane glycoprotein that contains an extracellular Ig domain, and its association with ⁇ .and ⁇ l subunits correlates with increased functional. expression of the channel, a change in its gating properties, as well as an increase in whole cell capacitance due to an increase in membrane surface area (Isom, L.L. et al. (1995) Cell 83 :433-442).
  • Non voltage-gated Na + channels include the members of the amiloride-sensitive Na + channel/degenerin (NaC/DEG) family. Channel subunits of this family are thought to consist of two transmembrane domains flanking a long extracellular loop, with the amino and carboxyl termini located within the cell.
  • the NaC/DEG family includes the epithelial Na + channel (ENaC) involved in Na + reabsorption in epithelia including the airway, distal colon, cortical collecting duct of the kidney, and exocrine duct glands. Mutations in ENaC result in pseudohypoaldosteronism type 1 and Liddle's syndrome (pseudohyperaldosteronism).
  • the NaC/DEG family also includes the recently characterized H + -gated cation channels or acid-sensing ion channels (ASIC).
  • ASIC subunits are expressed in the brain and form heteromultimeric Na + -permeable channels. These channels require acid pH fluctuations for activation.
  • ASIC subunits show homology to the degenerins, a family of mechanically- gated channels originally isolated from C. elegans. Mutations in the degenerins cause neurodegeneration. ASIC subunits may also have a role in neuronal function, or in pain perception, since tissue acidosis causes pain (Waldmann, R. and M. Lazdunski (1998) Curr. Opin. Neurobiol. 8:418-424; Eglen, R.M. et al. (1999) Trends Pharmacol. Sci. 20:337-342).
  • K + channels are located in all cell types, and maybe regulated by voltage, ATP concentration, or second messengers such as Ca 2+ and cAMP.
  • K + channels are involved in protein synthesis, control of endocrine secretions, and the maintenance of osmotic equilibrium across membranes.
  • K + channels are responsible for setting resting membrane potential.
  • the cytosol contains non-diffusible anions and, to balance this net negative charge, the cell contains a Na + - K + pump and ion channels that provide the redistribution of Na + , K + , and Cl " .
  • the pump actively transports Na + out of the cell and K + into the cell in a 3 :2 ratio. Ion channels in the plasma membrane allow K + and Cl" to flow by passive diffusion. Because of the high negative charge within the cytosol, Cl " flows out of the cell. The flow of K + is balanced by an electromotive force pulling K + into the cell, and a K + concentration gradient pushing K + out of the cell. Thus, the resting membrane potential is primarily regulated by K + flow (Salkoff, L. and T. Jegla (1995) Neuron 15:489-492).
  • Potassium channel subunits of the Shaker-like superfamily all have the characteristic six tiansmembrane/1 pore domain structure. Four subunits combine as homo- or heterotetramers to form functional K channels. These pore-forming subunits also associate with various cytoplasmic ⁇ subunits that alter channel inactivation kinetics.
  • the Shaker-like channel family includes the voltage- gated K + channels as well as the delayed rectifier type channels such as the human ether-a-go-go related gene (HERG) associated with long QT, a cardiac dysrythmia syndrome (Curran, M.E. (1998) Curr. Opin. Biotechnol. 9:565-572; Kaczorowski, G.J. and M.L. Garcia (1999) Curr. Opin. Chem. Biol. 3:448-458).
  • HERG human ether-a-go-go related gene
  • Kir channels have the property of preferentially conducting K + currents in the inward direction. These proteins consist of a single potassium selective pore domain and two transmembrane domains, which correspond to the fifth and sixth transmembrane domains of voltage-gated K + channels. Kir subunits also associate as tetramers.
  • the Kir family includes ROMK1, mutations in which lead to Bartter syndrome, a renal tubular disorder. Kir channels are also involved in regulation of cardiac pacemaker activity, seizures and epilepsy, and insulin regulation (Doupnik, CA. et al. (1995) Curr. Opin. Neurobiol. 5:268-277; Curran, supra).
  • the recently recognized TWIK K + channel family includes the mammalian TWIK-1, TREK-1 and TASK proteins. Members of this family possess an overall structure with four transmembrane domains and two P domains. These proteins are probably involved in controlling the resting potential in a large set of cell types (Duprat, F. et al. (1997) EMBO J 16:5464-5471).
  • the voltage-gated Ca + channels have been classified into several subtypes based upon their electiophysiological and pharmacological characteristics. L-type Ca 2 * channels are predominantly expressed in heart and skeletal muscle where they play an essential role in excitation-contraction coupling.
  • T-type channels are important for cardiac pacemaker activity, while N-type and P/Q-type channels ate involved in the control of neurotransmitter release in die central and peripheral nervous system.
  • the L-type and N-type voltage-gated Ca 2+ channels have been purified and, though their functions differ dramatically, they have similar subunit compositions.
  • the channels are composed of three subunits.
  • the ⁇ subunit forms the membrane pore and voltage sensor, while the c ⁇ and ⁇ subunits modulate the voltage-dependence, gating properties, and the current amplitude of the channel.
  • These subunits are encoded by at least six ⁇ l5 one c ⁇ , and four ⁇ genes.
  • a fourth subunit, ⁇ has been identified in skeletal muscle (Walker, D. et al. (1998) J. Biol. Chem. 273:2361-2367; McCleskey, E.W. (1994) Curr. Opin. Neurobiol. 4:304-312).
  • the high-voltage-activated Ca(2+) channels that have been characterized biochemically include complexes of a pore-forming alphal subunit of approximately 190-250 kDa; a transmembrane complex of alpha2 and delta subunits; an intracellular beta subunit; and in some cases a transmembrane gamma subunit.
  • a variety of alphal subunits, alpha2delta complexes, beta subunits, and gamma subunits are known.
  • the Cavl family of alphal subunits conduct L-type Ca(2+) currents, which initiate muscle contraction, endocrine secretion, and gene transcription, and are regulated primarily by second messenger-activated protein phosphorylation pathways.
  • the Cav2 family of alphal subunits conduct N-type, P/Q-type, and R-type Ca(2+) currents, which initiate rapid synaptic transmission and are regulated primarily by direct interaction with G proteins and SNARE proteins and secondarily by protein phosphorylation.
  • the Cav3 family of alphal subunits conduct T-type Ca(2+) currents, which are activated and inactivated more rapidly and at more negative membrane potentials than other Ca(2+) current types.
  • the distinct structures and patterns of regulation of these three families of Ca(2+) channels provide an array of Ca(2+) entry pathways in response to changes in membrane potential and a range of possibilities for regulation of Ca(2+) entry by second messenger pathways and interacting proteins (Catterall, W.A. (2000) Annu. Rev. Cell Dev. Biol. 16:521-555).
  • the alpha-2 subunit of the voltage-gated Ca2+-channel may include one or more Cache domains.
  • An extracellular Cache domain maybe fused to an intracellular catalytic domain, such as the histidine kinase, PP2C phosphatase, GGDEF (a predicted diguanylate cyclase), HD-GYP (a predicted phosphodiesterase) or adenylyl cyclase domain, or to a noncatalytic domain, like the methyl-accepting, DNA-binding winged helix-turn-helix, GAF, PAS or HAMP (domain found in istidine kinases, denylyl cyclases, ethyl-binding proteins and phosphatases). Small molecules are bound via the Cache domain and this signal is converted into diverse outputs depending on the intracellular domains (Anantharaman, V. and Aravind, L.(2000) Trends Biochem. Sci. 25:535-537).
  • Trp The transient receptor family (Trp) of calcium ion channels are thought to mediate capacitative calcium entry (CCE).
  • CCE is the Ca 2+ influx into cells to resupply Ca 2+ stores depleted by the action of inositol triphosphate (IP3) and other agents in response to numerous hormones and growth factors.
  • IP3 inositol triphosphate
  • Trp and Trp-like were first cloned from Drosophila and have similarity to voltage gated Ca2+ channels in the S3 through S6 regions. This suggests that Trp and/or related proteins may form mammalian CCC entry channels (Zhu, X. et al. (1996) Cell 85:661-671; Boulay, G. et al. (1997) J. Biol. Chem.
  • Melastatin is a gene isolated in both the mouse and human, and whose expression in melanoma cells is inversely correlated with melanoma aggressiveness in vivo.
  • the human cDNA transcript corresponds to a 1533-amino acid protein having homology to members of the Trp family. It has been proposed that the combined use of malastatin mRNA expression status and tumor thickness might allow for the determination of subgroups of patients at both low and high risk for developing metastatic disease (Duncan, L.M. et al (2001) I. Clin. Oncol. 19:568-576). Chloride channels are necessary in endocrine secretion and in regulation of cytosolic and organelle pH.
  • CFTR cystic fibrosis transmembrane conductance regulator
  • Loss of CFTR function decreases ttansepithelial water secretion and, as a result, the layers of mucus that coat the respiratory tree, pancreatic ducts, and intestine are dehydrated and difficult to clear. The resulting blockage of these sites leads to pancreatic insufficiency, "meconium ileus", and devastating "chronic obstructive pulmonary disease” (Al-Awqati, Q. et al. (1992) J. Exp. Biol. 172:245-266).
  • the voltage-gated chloride channels are characterized by 10-12 transmembrane domains, as well as two small globular domains known as CBS domains.
  • the CLC subunits probably function as homotetramers.
  • CLC proteins are involved in regulation of cell volume, membrane potential stabilization, signal transduction, and ttansepithelial transport. Mutations in CLC-1, expressed predominantly in skeletal muscle, are responsible for autosomal recessive generalized myotonia and autosomal dominant myotonia congenita, while mutations in the kidney channel CLC-5 lead to kidney stones (Jentsch, TJ. (1996) Curr. Opin. Neurobiol. 3:13-310).
  • Ligand-gated channels open their pores when an extracellular or intracellular mediator binds to the channel.
  • Neurotransmitter-gated channels are channels that open when a neurotransmitter binds to their extracellular domain. These channels exist in the postsynaptic membrane of nerve or muscle cells.
  • Chloride channels open in response to inhibitory neurotransmitters, such as ⁇ -aminobutyric acid (GAB A) and glycine, leading to hyperpolarization of the membrane and the subsequent generation of an action potential.
  • Neurotransmitter-gated ion channels have four transmembrane domains and probably function as pentamers (Jentsch, supra). Amino acids in the second transmembrane domain appear to be import « nt in determining channel permeation and selectivity (Sather, W.A. et al. (1994) Curr. Opin. Neurobiol. 4:313-323).
  • Ligand-gated channels can be regulated by intracellular second messengers.
  • calcium-activated K + channels are gated by internal calcium ions.
  • an influx of calcium during depolarization opens K + channels to modulate the magnitude of the action potential (Ishi et al., supra).
  • the large conductance (BK) channel has been purified from brain and its subunit composition determined.
  • the subunit of the BK channel has seven rather than six transmembrane domains in contrast to voltage-gated K + channels.
  • the extra transmembrane domain is located at the subunit N- terminus.
  • a 28-amino-acid stretch in the C-terminal region of the subunit contains many negatively charged residues and is thought to be the region responsible for calcium binding.
  • the ⁇ subunit consists of two transmembrane domains connected by a glycosylated extracellular loop, with intracellular N- and C-termini (Kaczorowski, supra; Vergara, C. et al. (1998) Curr. Opin. Neurobiol. 8:321-329).
  • Cyclic nucleotide-gated (CNG) channels are gated by cytosolic cyclic nucleotides.
  • the best examples of these are the cAMP-gated Na + channels involved in olfaction and the cGMP-gated cation channels involved in vision. Both systems involve ligand-mediated activation of a G-protein coupled receptor which then alters the level of cyclic nucleotide within the cell.
  • CNG channels also represent a major pathway for Ca + entry into neurons, and play roles in neuronal development and plasticity.
  • CNG channels are tetramers containing at least two types of subunits, an subunit which can form functional homomeric channels, and a ⁇ subunit, which modulates the channel properties.
  • All CNG subunits have six transmembrane domains and a pore forming region between the fifth and sixth transmembrane domains, similar to voltage-gated K + channels.
  • a large C-terminal domain contains a cyclic nucleotide binding domain, while the N-te ⁇ ninal domain confers variation among channel subtypes (Zufall, F. et al. (1997) Curr. Opin. Neurobiol. 7:404-412).
  • ion channel proteins may also be modulated by a variety of intracellular signalling proteins.
  • Many channels have sites for phosphorylation by one or more protein kinases including protein kinase A, protein kinase C, tyrosine kinase, and casein kinase ⁇ , all of which regulate ion channel activity in cells.
  • Kir channels are activated by the binding of the G ⁇ subunits of heterotrimeric G-proteins (Reimann, F. and F.M. Ashcroft (1999) Curr. Opin. Cell. Biol. 11:503-508).
  • Other proteins are involved in the localization of ion channels to specific sites in the cell membrane.
  • Such proteins include the PDZ domain proteins known as MAGUKs (membrane-associated guanylate kinases) which regulate the clustering of ion channels at neuronal synapses (Craven, S.E. and D.S. Bredt (1998) Cell 93:495-498).
  • MAGUKs membrane-associated guanylate kinases
  • Human diseases caused by mutations in ion channel genes include disorders of skeletal muscle, cardiac muscle, and the central nervous system. Mutations in the pore-forming subunits of sodium and chloride channels cause myotonia, a muscle disorder in which relaxation after voluntary contraction is delayed. Sodium channel myotonias have been treated with channel blockers. Mutations in muscle sodium and calcium channels cause forms of periodic paralysis, while mutations in the sarcoplasmic calcium release channel, T-tubule calcium channel, and muscle sodium channel cause malignant hyperthermia.
  • Cardiac arrythmia disorders such as the long QT syndromes and idiopathic ventricular fibrillation are caused by mutations in potassium and sodium channels (Cooper, E.C. and L.Y. Jan (1998) Proc. Natl. Acad. Sci. USA 96:4759-4766).
  • AU four known human idiopathic epilepsy genes code for ion channel proteins (Berkovic, S.F. and LE. Scheffer (1999) Curr. Opin. Neurology 12:177-182).
  • Other neurological disorders such as ataxias, hemiplegic migraine and hereditary deafness can also result from mutations in ion channel genes (Jen, J. (1999) Curr. Opin. Neurobiol. 9:274-280; Cooper, supra).
  • Ion channels have been the target for many drug therapies. Neurotransmitter-gated channels have been targeted in therapies for treatment of insomnia, anxiety, depression, and schizophrenia. Voltage-gated channels have been targeted in therapies for arrhythmia, ischemic stroke, head trauma, and neurodegenerative disease (Taylor, CP. and L.S. Narasimhan (1997) Adv. Pharmacol. 39:47-98). Various classes of ion channels also play an important role in the perception of pain, and thus are potential targets for new analgesics. These include the vanilloid-gated ion channels, which Me activated by the vanilloid capsaicin, as well as by noxious heat. Local anesthetics such as lidocaine and mexiletine which blockade voltage-gated Na + channels have been useful in the treatment of neuropathic pain (Eglen, supra).
  • T-cell activation depends upon calcium signaling, and a diverse set of T-cell specific ion channels has been characterized that affect this signaling process.
  • Channel blocking agents can inhibit secretion of lymphokines, cell proliferation, and killing of target cells.
  • a peptide antagonist of the T-cell potassium channel Kvl.3 was found to suppress delayed-type hypersensitivity .and allogenic responses in pigs, validating the idea of channel blockers as safe and efficacious immunosuppressants (Cahalan, M.D. and K.G. Chandy (1997) Curr. Opin. Biotechnol. 8:749-756).
  • SLC26 gene family (solute carrier family 26) ion transporters have been . associated with human disease. Defects in the sulfate transporter encoded by the DTDST gene cause diastrophic dysplasia, atelosteogenesis type JI, or achondrogenesis type IB. Defects in the chloride transporter encoded by the CLD (formerly known as DRA) gene causes congenital chloride diarrhea. Defects in the iodide transporter encoded by the PDS gene is associated with Pendred syndrome (PS) and nonsyndromic deafness type DFNB4. A fourth member of the family transports anions such as sulfate, oxalate, and bicarbonate.
  • PS Pendred syndrome
  • DFNB4 member of the family transports anions such as sulfate, oxalate, and bicarbonate.
  • a fifth member functions as a motor protein of the cochlear outer hair cells.
  • a sixth member, SLC26A6, has recently been identified as a sulfate transporter (Waldegger, S. et al. (2001) Genomics 72:43-50 and references within).
  • array technology can provide a simple way to explore the expression of a single polymorphic gene or the expression profile of a large number of related or unrelated genes.
  • arrays are employed to detect the expression of a specific gene or its variants.
  • arrays provide a platform for identifying genes that are tissue specific, are affected by a substance being tested in a toxicology assay, are part of a signaling cascade, carry out housekeeping functions, or are specifically related to a particular genetic predisposition, condition, disease, or disorder.
  • Jurkat is an acute T cell leukemia cell line that grows actively in the absence of external stimuli. Jurkat has been extensively used to study signaling in human T cells.
  • PMA is a broad activator of the protein kinase C-dependent pathways.
  • Ionomycin is a calcium ionophore that permits entry of calcium into the cell, hence increasing the cytosolic calcium concentration.
  • the combination of PMA and ionomycin activates two of the major signaling pathways used by mammalian cells to interact with their environment. In T cells, the combination of PMA and ionomycin mimics the type of secondary signaling events elicited during optimal B cell activation.
  • the invention features purified polypeptides, transporters and ion channels, referred to collectively as “TRICH' and individually as “TRICH-1,” “TRICH-2,” “TRICH-3,” “TRICH-4,” “TRICH-5,” “TRICH-6,” “TRICH-7,” “TRICH-8,” and “TRICH-9.”
  • the invention provides an isolated polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ JD NO:l-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:l-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-9.
  • the invention provides an isolated polypeptide comprising the amino acid sequence of
  • the invention further provides an isolated polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:l-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:l- 9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ JD NO: 1-9.
  • polynucleotide encodes a polypeptide selected from the group consisting of SEQ JD NO: 1-9. In another alternative, the polynucleotide is selected from the group consisting of SEQ JD NO: 10-18.
  • the invention provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ JD NO:l-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-9.
  • the invention provides a cell transformed with the recombinant polynucleotide.
  • the invention provides a transgenic organism comprising the recombinant polynucleotide.
  • the invention also provides a method for producing a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:l-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ JD NO:l-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group . consisting of SEQ ID NO: 1-9, .and d) an immunogenic fragment of a polypeptide having an a ino acid sequence selected from the group consisting of SEQ ID NO:l-9.
  • the method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.
  • the invention provides an isolated antibody which specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ JD NO:l-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ JD NO:l-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ JD NO:l-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ JD NO:l-9.
  • the invention further provides an isolated polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:10-18, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ JD NO:10-18, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d).
  • the polynucleotide comprises at least 60 contiguous nucleotides. Additionally, the invention provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:10-18, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ JD NO:10-18, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d).
  • the method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and optionally, if present, the amount thereof.
  • the probe comprises at least 60 contiguous nucleotides.
  • the invention further provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:10-18, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:10-18, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d).
  • the method comprises a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.
  • the invention further provides a composition comprising an effective amount of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:l-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-9, and a pharmaceutically acceptable excipient.
  • the composition comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 1-9.
  • the invention additionally provides a method of treating a disease or condition associated with decreased expression of functional TRICH, comprising administering to a patient in need of such treatment the composition.
  • the invention also provides a method for screening a compound for effectiveness as an agonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-9.
  • the method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity in the sample.
  • the invention provides a composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient.
  • the invention provides a method of treating a disease or condition associated with decreased expression of functional TRICH, comprising administering to a patient in need of such treatment the composition.
  • the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ JD NO:l-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:l-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ JD NO: 1-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ JD NO:l-9.
  • the method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagomst activity in the sample.
  • the invention provides a composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient.
  • the invention provides a method of treating a disease or condition associated with overexpression of functional TRICH, comprising administering to a patient in need of such treatment the composition.
  • the invention further provides a method of screening for a compound that specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:l-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ JD NO:l-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ JD NO: 1-9.
  • the method comprises a) combining the polypeptide with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide to the test compound, thereby identifying a compound that specifically binds to the polypeptide.
  • the invention further provides a method of screening for a compound that modulates the activity of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:l-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:l-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-9.
  • the method comprises a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound, and c) comparing the activity of the polypeptide in the presence of the test compound with the activity of the polypeptide in the absence of the test compound, wherein a change in the activity of the polypeptide in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide.
  • the invention further provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a polynucleotide sequence selected from the group consisting of SEQ ID NO: 10-18, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, b) detecting altered expression of the target polynucleotide, and c) comparing the expression of the target polynucleotide in the presence of varying amounts of the compound and in the absence of the compound.
  • the invention further provides a method for assessing toxicity of a test compound, said method comprising a) treating a biological sample containing nucleic acids with the test compound; b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ JD NO:10-18, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ JD NO: 10-18, i ⁇ ) a polynucleotide having a sequence complementary to i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv).
  • Hybridization occurs under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:10-18, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ JD NO:10-18, i ⁇ ) a polynucleotide complementary to the polynucleotide of i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv).
  • the target polynucleotide comprises a fragment of a polynucleotide sequence selected from the group consisting of i)-v) above; c) quantifying the amount of hybridization complex; and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.
  • Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the present invention.
  • Table 2 shows the GenBank identification number and annotation of the nearest GenBank homolog for polypeptides of the invention. The probability scores for the matches between each polypeptide and its homolog(s) are also shown.
  • Table 3 shows structural features of polypeptide sequences of the invention, including predicted motifs and domains, along with the methods, algorithms, and searchable databases used for analysis of the polypeptides.
  • Table 4 lists the cDNA and/or genomic DNA fragments which were used to assemble polynucleotide sequences of the invention, along with selected fragments of the polynucleotide sequences.
  • Table 5 shows the representative cDNA library for polynucleotides of the invention.
  • Table 6 provides an appendix which describes the tissues and vectors used for construction of the cDNA libraries shown in Table 5.
  • Table 7 shows the tools, programs, and algorithms used to analyze the polynucleotides and polypeptides of the invention, along with applicable descriptions, references, and threshold parameters.
  • TRICH refers to the amino acid sequences of substantially purified TRICH obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.
  • agonist refers to a molecule which intensifies or mimics the biological activity of TRICH.
  • Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of TRICH either by directly interacting with TRICH or by acting on components of the biological pathway in which TRICH participates.
  • An "allelic variant” is an alternative form of the gene encoding TRICH. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form.
  • allelic variants which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.
  • altered nucleic acid sequences encoding TRICH include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as TRICH or a polypeptide with at least one functional characteristic of TRICH. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding TRICH, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding TRICH.
  • the encoded protein may also be "altered,” and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent TRICH.
  • Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of TRICH is retained.
  • negatively charged amino acids may include aspartic acid and glutamic acid
  • positively charged amino acids may include lysine and arginine.
  • Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine.
  • Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.
  • amino acid and amino acid sequence refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where "amino acid sequence” is recited to refer to a sequence of a naturally occurring protein molecule, “amino acid sequence” and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule. "Amplification” relates to the production of additional copies of a nucleic acid sequence.
  • Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.
  • PCR polymerase chain reaction
  • Antagonist refers to a molecule which inhibits or attenuates the biological activity of TRICH. Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of TRICH either by directly interacting with TRICH or by acting on components of the biological pathway in which TRICH participates.
  • antibody refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab') 2 , and Fv fragments, which are capable of binding an epitopic determinant.
  • Antibodies that bind TRICH polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen.
  • the polypeptide or oligopeptide used to immunize an animal e.g., a mouse, a rat, or a rabbit
  • an animal e.g., a mouse, a rat, or a rabbit
  • Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.
  • antigenic detenninant'' refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody.
  • a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (particular regions or three-dimensional structures on the protein).
  • An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.
  • aptamer refers to a nucleic acid or oligonucleotide molecule that binds to a specific molecular target.
  • Aptamers are derived from an in vitro evolutionary process (e.g., SELEX (Systematic Evolution of Ligands by Exponential Enrichment), described in U.S. Patent No. 5,270,163), which selects for target-specific aptamer sequences from large combinatorial libraries.
  • Aptamer compositions may be double-stranded or single-stranded, and may include deoxyribonucleotides, ribonucleotides, nucleotide derivatives, or other nucleotide-like molecules.
  • the nucleotide components of an aptamer may have modified sugar groups (e.g., the 2 -OH group of a ribonucleotide may be replaced by 2'-F or 2'-NH 2 ), which may improve a desired property, e.g., resistance to nucleases or longer lifetime in blood.
  • Aptamers may be conjugated to other molecules, e.g., a high molecular weight carrier to slow clearance of the aptamer from the circulatory system.
  • Aptamers maybe specifically cross-linked to their cognate ligands, e.g., by photo-activation of a cross-linker. (See, e.g., Brody, E.N. and L. Gold (2000) J. Biotechnol. 74:5-13.)
  • RNA aptamer refers to an aptamer which is expressed in vivo.
  • a vaccinia virus-based RNA expression system has been used to express specific RNA aptamers at high levels in the cytoplasm of leukocytes (Blind, M. et al. (1999) Proc. Natl. Acad. Sci. USA 96:3606-3610).
  • spiegelmer refers to an aptamer which includes L-DNA, L-RNA, or other left- handed nucleotide derivatives or nucleotide-like molecules. Aptamers containing left-handed nucleotides are resistant to degradation by naturally occurring enzymes, which normally act on substrates containing right-handed nucleotides.
  • antisense refers to any composition capable of base-pairing with the "sense" (coding) strand of a specific nucleic acid sequence.
  • Antisense compositions may include DNA; RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified sugar groups such as 2'-me1hoxyethyl sugars or 2'-methoxyethoxy sugars; or oligonucleotides having modified bases such as 5-methyl cytosine, 2 -deoxyuracil, or 7-deaza-2 -deoxyguanosine.
  • Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation.
  • the designation "negative” or “minus” can refer to the antisense strand, and the designation “positive” or “plus” can refer to the sense strand of a reference DNA molecule.
  • biologically active refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule.
  • immunologically active or “immunogenic” refers to the capability of the natural, recombinant, or synthetic TRICH, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.
  • Complementary describes the relationship between two single-stranded nucleic acid sequences that anneal by base-pairing. For example, 5 -AGT-3' pairs with its complement, 3'-TCA-5'.
  • composition comprising a given polynucleotide sequence and a “composition comprising a given amino acid sequence” refer broadly to any composition containing the given polynucleotide or amino acid sequence.
  • the composition may comprise a dry formulation or an aqueous solution.
  • Compositions comprising polynucleotide sequences encoding TRICH or fragments of TRICH may be employed as hybridization probes.
  • the probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate.
  • the probe may be deployed in an aqueous solution containing salts (e.g., NaCI), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).
  • salts e.g., NaCI
  • detergents e.g., sodium dodecyl sulfate; SDS
  • other components e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.
  • Consensus sequence refers to a nucleic acid sequence which has been subjected to repeated DNA sequence analysis to resolve uncalled bases, extended using the XL-PCR kit (Applied Biosystems, Foster City CA) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from one or more overlapping cDNA, EST, or genomic DNA fragments using a computer program for fragment assembly, such as the GELVTEW fragment assembly system (GCG, Madison WI) or Phrap (University of Washington, Seattle WA). Some sequences have been both extended and assembled to produce the consensus sequence.
  • Constant amino acid substitutions are those substitutions that are predicted to least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions.
  • the table below shows amino acids which maybe substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions.
  • Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chain.
  • a “deletion” refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.
  • derivative refers to a chemically modified polynucleotide or polypeptide. Chemical modifications of a polynucleotide can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group.
  • a derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule.
  • a derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.
  • a “detectable label” refers to a reporter molecule or enzyme that is capable of generating a measurable signal and is covalently or noncovalently joined to a polynucleotide or polypeptide.
  • “Differential expression” refers to increased or upregulated; or decreased, downregulated, or absent gene or protein expression, determined by comparing at least two different samples. Such comparisons may be carried out between, for example, a treated and an untreated sample, or a diseased and a normal sample.
  • “Exon shuffling” refers to the recombination of different coding regions (exons). Since an exon may represent a structural or functional domain of the encoded protein, new proteins may be assembled tlirough the novel reassortment of stable substructures, thus allowing acceleration of the evolution of new protein functions.
  • a “fragment” is a unique portion of TRICH or the polynucleotide encoding TRICH which is identical in sequence to but shorter in length than the parent sequence.
  • a fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue.
  • a fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues.
  • a fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes maybe at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule.
  • a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50%) of a polypeptide as shown in a certain defined sequence.
  • these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, maybe encompassed by the present embodiments.
  • a fragment of SEQ ID NO:10-18 comprises a region of unique polynucleotide sequence that specifically identifies SEQ ID NO:10-18, for example, as distinct from any other sequence in the genome from which the fragment was obtained.
  • a fragment of SEQ JD NO:10-18 is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO: 10-18 from related polynucleotide sequences.
  • the precise length of a fragment of SEQ JD NO:10-18 and the region of SEQ JD NO:10-18 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.
  • a fragment of SEQ ID NO:l-9 is encoded by a fragment of SEQ JD NO.TO-18.
  • a fragment of SEQ JD NO: 1-9 comprises a region of unique amino acid sequence that specifically identifies SEQ JD NO:l-9.
  • a fragment of SEQ ID NO:l-9 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ JD NO: 1-9.
  • the precise length of a fragment of SEQ JD NO:l-9 and the region of SEQ JD NO:l-9 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.
  • a “full length” polynucleotide sequence is one containing at least a translation initiation codon (e.g., methionine) followed by an open reading frame and a translation termination codon.
  • a “full length” polynucleotide sequence encodes a “full length” polypeptide sequence.
  • “Homology” refers to sequence simibrity or, interchangeably, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences.
  • percent identity and % identity refer to the percentage of residue matches between at least two polynucleotide sequences aHgned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.
  • NCBI National Center for Biotechnology Information
  • BLAST Basic Local Alignment Search Tool
  • NCBI National Center for Biotechnology Information
  • BLAST Basic Local Alignment Search Tool
  • the BLAST software suite includes various sequence analysis programs including "blastn,” that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases.
  • BLAST 2 Sequences are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences” tool Version 2.0.12 (April-21-2000) set at default parameters. Such default parameters maybe, for example: Matrix: BLOSUM62
  • Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides.
  • Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
  • Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.
  • the phrases "percent identity” and "% identity,” as applied to polypeptide sequences refer to the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge andjiydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.
  • NCBI BLAST software suite may be used.
  • BLAST 2 Sequences Version 2.0.12 (April-21-2000) with blastp set at default parameters.
  • Such default parameters may be, for example:
  • Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues.
  • Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
  • HACs Human artificial chromosomes
  • ' liumanized antibody refers to an antibody molecule in which the amino acid sequence in the non-antigen bincling regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.
  • Hybridization refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of complementarity. Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the "washing" step(s). The washing step(s) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched.
  • Permissive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and maybe consistent among hybridization experiments, whereas wash conditions maybe varied among experiments to achieve the desired stringency, and therefore hybridization specificity. Permissive annealing conditions occur, for example, at 68 °C in the presence of about 6 x SSC, about 1% (w/v) SDS, and about 100 ⁇ g/ml sheared, denatured salmon sperm DNA.
  • stringency of hybridization is expressed, in part, with reference to the temperature under which the wash step is carried out.
  • wash temperatures are typically selected to be about 5°C to 20°C lower than the thermal melting point ( faced for the specific sequence at a defined ionic strength and pH.
  • the T m is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe.
  • High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65 °C, 60°C, 55°C, or 42 °C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%.
  • blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 ⁇ g/ml.
  • Organic solvent such as formamide at a concentration of about 35-50% v v
  • Organic solvent such as formamide at a concentration of about 35-50% v v
  • Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art.
  • Hybridization particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.
  • hybridization complex refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases.
  • a hybridization complex maybe formed in solution (e.g., C 0 t or R 0 t analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).
  • insertion and “addition” refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.
  • Immuno response can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.
  • an “immunogenic fragment” is a polypeptide or oligopeptide fragment of TRICH which is capable of eliciting an immune response when introduced into a living organism, for example, a mammal.
  • the term “immunogenic fragment” also includes any polypeptide or oligopeptide fragment of TRICH which is useful in any of the antibody production methods disclosed herein or known in the art.
  • microarray refers to an arrangement of a plurality of polynucleotides, polypeptides, or other chemical compounds on a substrate.
  • array element refers to a polynucleotide, polypeptide, or other chemical compound having a unique and defined position on a microarray.
  • modulate refers to a change in the activity of TRICH. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of TRICH.
  • nucleic acid and nucleic acid sequence refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.
  • PNA peptide nucleic acid
  • operably linked refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence.
  • a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence.
  • Operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.
  • PNA protein nucleic acid
  • PNA refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.
  • Post-translational modification of an TRICH may involve lipidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cell type depending on the enzymatic milieu of TRICH.
  • Probe refers to nucleic acid sequences encoding TRICH, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences. Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes.
  • Primer pairs can be used for amplification (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR).
  • Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence.
  • probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.
  • PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).
  • Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope.
  • the Primer3 primer selection program (available to the public from the Whitehead Institute MIT Center for Genome Research, Cambridge MA) allows the user to input a "mispriming library," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.)
  • the PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences.
  • this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments.
  • the oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.
  • a "recombinant nucleic acid” is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, supra.
  • the term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid.
  • a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence. Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.
  • such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be use to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.
  • a “regulatory element” refers to a nucleic acid sequence usually derived from untranslated regions of a gene and includes enhancers, promoters, introns, and 5' and 3' untranslated regions (UTRs). Regulatory elements interact with host or viral proteins which control transcription, translation, or RNA stability.
  • Reporter molecules are chemical or biochemical moieties used for labeling a nucleic acid, amino acid, or antibody. Reporter molecules include radionuclides; enzymes; fluorescent, chemiluminescent, or chromogenic agents; substrates; cofactors; inhibitors; magnetic particles; and other moieties known in the art.
  • RNA equivalent in reference to a DNA sequence, is composed of the same linear sequence of nucleotides as the reference DNA sequence with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
  • sample is used in its broadest sense.
  • a sample suspected of containing TRICH, nucleic acids encoding TRICH, or fragments thereof may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.
  • binding and “specifically binding” refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A,” the presence of a polypeptide comprising the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.
  • substantially purified refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which they are naturally associated. '
  • Substrate refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries.
  • the substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.
  • a “transcript image” or “expression profile” refers to the collective pattern of gene expression by a particular cell type or tissue under given conditions at a given time.
  • Transformation describes a process by which exogenous DNA is introduced into a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell.
  • the method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, bacteriophage or viral infection, electroporation, heat shock, lipofection, and particle bombardment.
  • transformed cells includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.
  • a "transgenic organism,” as used herein, is any organism, including but not limited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is inttoduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus.
  • the nucleic acid can be introduced by infection with a recombinant viral vector, such as a lentiviral vector (Lois, C et al. (2002) Science 295:868-872).
  • a recombinant viral vector such as a lentiviral vector
  • the term genetic manipulation does not include classical cross-breeding, or in vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule.
  • the transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, plants and animals.
  • the isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook et al. (1989), supra.
  • a "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07- 1999) set at default parameters.
  • Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length.
  • a variant may be described as, for example, an "allelic” (as defined above), “splice,” “species,” or “polymorphic” variant.
  • a splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing.
  • the corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule.
  • Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides will generally have significant amino acid identity relative to each other.
  • a polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species.
  • Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base.
  • SNPs single nucleotide polymorphisms
  • the presence of SNPs maybe indicative of, for example, a certain population, a disease state, or a propensity for a disease state.
  • a "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07- 1999) set at default parameters.
  • Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length of one of the polypeptides.
  • the invention is based on the discovery of new human transporters and ion channels (TRICH), the polynucleotides encoding TRICH, and the use of these compositions for the diagnosis, prevention, and treatment of transport, neurological, muscular, immunological, and cell proliferative disorders, as well as disorders of iron metabolism.
  • TRICH new human transporters and ion channels
  • Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the invention. Each polynucleotide and its conesponding polypeptide are correlated to a single Incyte project identification number (Incyte Project ID). Each polypeptide sequence is denoted by both a polypeptide sequence identification number (Polypeptide SEQ JD NO:) and an Incyte polypeptide sequence number (Incyte Polypeptide ID) as shown.
  • polynucleotide sequence is denoted by both a polynucleotide sequence identification number (Polynucleotide SEQ ID NO:) and an Incyte polynucleotide consensus sequence number (Incyte Polynucleotide JD) as shown.
  • Table 2 shows sequences with homology to the polypeptides of the invention as identified by
  • FIG. 1 shows the polypeptide sequence identification number (Polypeptide SEQ ID NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for polypeptides of the invention.
  • Column 3 shows the GenBank identification number (GenBank JD NO:) of the nearest GenBank homolog.
  • Column 4 shows the probability scores for the matches between each polypeptide and its homolog(s).
  • Column 5 shows the annotation of the GenBank homolog(s) along with relevant citations where applicable, all of which are expressly incorporated by reference herein.
  • Table 3 shows various structural features of the polypeptides of the invention. Columns 1 and 2
  • FIG. 3 shows the number of amino acid residues in each polypeptide.
  • Column 4 shows potential phosphorylation sites, and column 5 shows potential glycosylation sites, as determined by the MOTIF ' S program of the GCG sequence analysis software package (Genetics Computer Group, Madison WI).
  • Column 6 shows amino acid residues comprising signature sequences, domains, and motifs.
  • Column 7 shows analytical methods for protein structure/function analysis and in some cases, searchable databases to which the analytical methods were applied.
  • SEQ ID NO:3 is 50% identical, from residue A14 to residue R236, to Caulobacter crescentus MotA TolQ/ExbB proton channel family protein (GenBank JD gl3424917) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 6.2e-53, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance.
  • SEQ JD NO:3 also contains a MotA/TolQ/ExbB proton channel family domain as determined by searching for statistically significant matches in the hidden M ⁇ irkov model (HMM)-based PFAM database of conserved protein family domains.
  • HMM hidden M ⁇ irkov model
  • SEQ ID NO:4 is 99% identical, from residue G88 to residue R947, to human calcium channel alpha-2-delta3 subunit (GenBank ID g7105926) as determined by the Basic Local Alignment Search Tool (BLAST).
  • the BLAST probability score is 0.0, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance.
  • SEQ ID NO:4 also contains a cache domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS amd MOTJFS analyses provide further conoborative evidence that SEQ ID NO:4 is a calcium channel alpha-2-delta3 subunit.
  • SEQ ID NO:5 is 81% identical, from residue E8 to residue E461, to the murine urea transporter UTA-3 (GenBank JD gl 1177180) as . determined by the Basic Local Alignment Search Tool (BLAST).
  • the BLAST probability score is 4.0e-207, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance.
  • SEQ JD NO:6 is 40% identical, from residue E43 to residue L443, to the human solute carrier family 26 member 6 protein (SLC26A6), an anion transporter (GenBank ID gl3344999), as dete ⁇ nined by BLAST analysis with a probability score of 4.0e-93.
  • SEQ ID NO:6 also contains a sulfate transporter domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains.
  • HMM hidden Markov model
  • SEQ ID NO:6 is a sulfate transporter.
  • SEQ ID NO:7 is 96% identical, from residue Ml to residue E323, to human GT mitochondrial solute carrier protein (GenBank ID g386960) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 6.2e-167, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance.
  • SEQ JD NO:7 also contains mitochondrial carrier protein domains as determined by searching for statistically significant matches in the hidden M ⁇ trkov model (HMM)-based PFAM database of conserved protein family domains.
  • HMM hidden M ⁇ trkov model
  • SEQ ID NO:7 is a mitochondrial carrier protein.
  • SEQ ID NO:l-2 and SEQ ID NO:8-9 were analyzed and annotated in a similar manner. The algorithms and parameters for the analysis of SEQ ID NO:l-9 are described in Table 7.
  • polynucleotide sequence identification number Polynucleotide SEQ ID NO:
  • Incyte ID Incyte polynucleotide consensus sequence number
  • Column 2 shows the nucleotide start (5') and stop (3') positions of the cDNA and/or genomic sequences used to assemble the full length polynucleotide sequences of the invention, and of fragments of the polynucleotide sequences which are useful, for example, in hybridization or amplification technologies that identify SEQ ID NO:10-18 or that distinguish between SEQ JD NO:10-18 and related polynucleotide sequences.
  • the polynucleotide fragments described in Column 2 of Table 4 may refer specifically, for example, to Incyte cDNAs derived from tissue-specific cDNA libraries or from pooled cDNA libraries.
  • the polynucleotide fragments described in column 2 may refer to GenBank cDNAs or.ESTs which contributed to the assembly of the full length polynucleotide sequences.
  • the polynucleotide fragments described in column 2 may identify sequences derived from the ENSEMBL (The Sanger Centre, Cambridge, UK) database (Le. , those sequences including the • designation "ENST").
  • the polynucleotide fragments described in column 2 may be derived from the NCBI RefSeq Nucleotide Sequence Records Database (le., those sequences including the designation "NM” or “NT”) or the NCBI RefSeq Protein Sequence Records (Le., those sequences including the designation "NP”).
  • the polynucleotide fragments described in column 2 may refer to assemblages of both cDNA and Genscan-predicted exons brought together by an "exon stitching" algorithm. For example, a polynucleotide sequence identified as
  • FL_XXXXXX_N ⁇ N 2 _YYYYY_N 3 _N 4 represents a "stitched" sequence in which XXKXXX is the identification number of the cluster of sequences to which the algorithm was applied, and YYYYYis the number of the prediction generated by the algorithm, and N i 2, s...» if present, represent specific exons fliat may have been manually edited during analysis (See Example V).
  • the polynucleotide fragments in column 2 may refer to assemblages of exons brought together by an "exon-stretching" algorithm.
  • a polynucleotide sequence identified as FLXXXXX_ ⁇ AAAA_gBBBBB_l_N is a "stretched" sequence, with XXXXX being the Incyte project identification number, gAAAAA being the GenBank identification number of the human genomic sequence to which the "exon-stietching" algorithm was applied, gBBBBB being the GenBank identification number or NCBI RefSeq identification number of the nearest GenBank protein homolog, and N referring to specific exons (See Example V).
  • RefSeq identifier (denoted by " ⁇ M,” “ ⁇ P,” or “NT”) maybe used in place of the GenBank identifier (i.e., gBBBBB).
  • a prefix identifies component sequences that were hand-edited, predicted from genomic DNA sequences, or derived from a combination of sequence analysis methods.
  • the following Table lists examples of component sequence prefixes and corresponding sequence analysis methods associated with the prefixes (see Example TV and Example V).
  • Table 5 shows the representative cDNA libraries for those full length polynucleotide sequences which were assembled using Incyte cDNA sequences.
  • the representative cDNA library is the Incyte cDNA library which is most frequently represented by the Incyte cDNA sequences which were used to assemble and confirm the above polynucleotide sequences.
  • the tissues and vectors which were used to construct the cDNA libraries shown in Table 5 are described in Table 6.
  • the invention also encompasses TRICH variants.
  • a prefened TRICH variant is one which has at least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the TRICH amino acid sequence, and which contains at least one functional or structural characteristic of TRICH.
  • the invention also encompasses polynucleotides which encode TRICH.
  • the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:10-18, which encodes TRICH.
  • the polynucleotide sequences of SEQ JD NO:10-18, as presented in the Sequence Listing, embrace the equivalent RNA sequences, wherein occunences of the nitrogenous base yrnine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
  • the invention also encompasses a variant of a polynucleotide sequence encoding TRICH.
  • such a variant polynucleotide sequence will have at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding TRICH.
  • a particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ JD NO: 10- 18 which has at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ JD NO:10-18. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of TRICH.
  • a polynucleotide variant of the invention is a splice variant of a polynucleotide sequence encoding TRICH.
  • a splice variant may have portions which have significant sequence identity to the polynucleotide sequence encoding TRICH, but will generally have a greater or lesser number of polynucleotides due to additions or deletions of blocks of sequence arising from alternate splicing of exons during mRNA processing.
  • a splice variant may have less than about 70%, or alternatively less than about 60%, or alternatively less than about 50% polynucleotide sequence identity to the polynucleotide sequence encoding TRICH over its entire length; however, portions of the splice variant will have at least about 70%, or alternatively at least about 85%, or alternatively at least about 95%, or alternatively 100% polynucleotide sequence identity to portions of the polynucleotide sequence encoding TRICH. Any one of the splice variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of TRICH.
  • nucleotide sequences which encode TRICH and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring TRICH under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding TRICH or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host.
  • RNA transcripts having more desirable properties such as a greater half-life, than transcripts produced from the naturally occurring sequence.
  • the invention also encompasses production of DNA sequences which encode TRICH and TRICH derivatives, or fragments thereof, entirely by synthetic chemistry.
  • the synthetic sequence maybe inserted into any of the many available expression vectors and cell systems using reagents well known in the art.
  • synthetic chemistry maybe used to introduce mutations into a sequence encoding TRICH or any fragment thereof.
  • polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO: 10-18 and fragments thereof under various conditions of stringency.
  • Hybridization conditions including .annealing and wash conditions, are described in "Definitions.” Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention.
  • the methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Applied Biosystems), thermostable T7 polymerase (Amersham Biosciences, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Invitrogen, Carlsbad CA).
  • sequence preparation is automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (Applied Biosystems).
  • Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (Applied Biosystems), the MEGABACE 1000 DNA sequencing system (Amersham Biosciences), or other systems known in the art.
  • the resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology. John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology. Wiley VCH, New York NY, pp. 856-853.)
  • the nucleic acid sequences encoding TRICH may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in die art to detect upstream sequences, such as promoters and regulatory elements.
  • PCR-based methods known in die art to detect upstream sequences, such as promoters and regulatory elements.
  • one mettiod which maybe employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322.)
  • Another method, inverse PCR uses primers that extend in divergent directions to amplify unknown sequence from a circularized template.
  • the template is derived from restriction fragments comprising a known genomic locus and surrounding sequences.
  • a third method, capture PCR involves PCR amplification of DNA fragments adjacent to known sequences inhuman and yeast artificial chromosome DNA.
  • capture PCR involves PCR amplification of DNA fragments adjacent to known sequences inhuman and yeast artificial chromosome DNA.
  • multiple restriction enzyme digestions and ligations maybe used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR.
  • Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-3060).
  • primers may be designed using commercially available software, such as OLIGO 4.06 primer analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C
  • oligo d(T) library When screening for full length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic l ⁇ br.aries may be useful for extension of sequence into 5' non-transcribed regulatory regions.
  • Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products.
  • capillary sequencing may employ flowable polymers for electiophoretic separation, four different nucleotide- specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths.
  • Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Applied Biosystems), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled.
  • Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.
  • polynucleotide sequences or fragments thereof which encode TRICH may be cloned in recombinant DNA molecules that direct expression of TRICH, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express TRICH.
  • nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter TRICH-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product.
  • DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides maybe used to engineer the nucleotide sequences.
  • oligonucleotide- mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.
  • the nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent No. 5,837,458; Chang, C.-C et al. (1999) Nat. Biotechnol. 17:793-797; Christians, EC. et al. (1999) Nat. Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or improve the biological properties of TRICH, such as its biological or enzymatic activity or its abihty to bind to other molecules or compounds.
  • MOLECULARBREEDING Maxygen Inc., Santa Clara CA; described in U.S. Patent No. 5,837,458; Chang, C.-C et al. (1999) Nat. Biotechnol. 17:793-797; Christians, EC. e
  • DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These prefened variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection screening.
  • genetic diversity is created through "artificial" breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations maybe recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively, fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.
  • sequences encoding TRICH may be synthesized, in whole or in part, using chemical methods well known in the art.
  • chemical methods See, e.g., Caruthers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; and Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232.
  • TRICH itself or a fragment thereof may be synthesized using chemical methods.
  • peptide synthesis can be performed using various solution-phase or solid-phase techniques.
  • the peptide maybe substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.)
  • the composition of the synthetic peptides maybe confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, supra, pp. 28-53.)
  • the nucleotide sequences encoding TRICH or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host.
  • these elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3 'untranslated regions in the vector and in polynucleotide sequences encoding TRICH. Such elements may vary in their strength and specificit)'.
  • Specific initiation signals may also be used to achieve more efficient translation of sequences encoding TRICH. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence.
  • exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector.
  • Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162.)
  • a variety of expression vector/host systems may be utilized to contain and express sequences encoding TRICH. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems.
  • microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors
  • yeast transformed with yeast expression vectors insect cell systems infected with viral expression vectors (e.g., baculovirus)
  • plant cell systems transformed with viral expression vectors e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic
  • Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids may be used for dehvery of nucleotide sequences to the targeted organ, tissue, or cell population.
  • adenoviruses or herpes or vaccinia viruses, or from various bacterial plasmids.
  • cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding TRICH. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding TRICH can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Invitrogen).
  • PBLUESCRIPT Stratagene, La Jolla CA
  • PSPORT1 plasmid Invitrogen
  • vectors which direct high level expression of TRICH may be used. For example, vectors containing the strong, inducible SP6 or T7 bacteriophage promoter may be used.
  • Yeast expression systems may be used for production of TRICH.
  • a number of vectors containing constitutive or inducible promoters such as alpha factor, alcohol oxidase, and PGH promoters, maybe used in the yeast Saccharomyces cerevisiae or Pichia pastoris.
  • promoters such as alpha factor, alcohol oxidase, and PGH promoters
  • yeast Saccharomyces cerevisiae or Pichia pastoris may be used for production of TRICH.
  • promoters such as alpha factor, alcohol oxidase, and PGH promoters
  • Plant systems may also be used for expression of TRICH. Transcription of sequences encoding TRICH may be driven by viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 3:17-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters maybe used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; BrogHe, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ.
  • viral promoters e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 3:1311).
  • plant promoters such as
  • constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection.
  • pathogen-mediated transfection See, e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196.
  • a number of viral-based expression systems may be utilized.
  • sequences encoding TRICH maybe ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential El or E3 region of the viral genome may be used to obtain infective virus which expresses TRICH in host cells.
  • a non-essential El or E3 region of the viral genome may be used to obtain infective virus which expresses TRICH in host cells.
  • transcription enhancers such as the Rous sarcoma virus (RS V) enhancer, may be used to increase expression in mammalian host cells.
  • RS V Rous sarcoma virus
  • SV40 or EBV- based vectors may also be used for high-level protein expression.
  • HACs Human artificial chromosomes
  • HACs may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid.
  • HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345- 355.)
  • sequences encoding TRICH can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media.
  • the purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences.
  • Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.
  • selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in tk and apr cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection.
  • dhfr confers resistance to methotrexate
  • neo confers resistance to the arninoglycosides neomycin and G-418
  • als and pat confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively.
  • Visible markers e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), ⁇ glucuronidase and its substrate ⁇ -glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, CA. (1995) Methods Mol. Biol. 55:121-131.)
  • marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed.
  • sequence encoding TRICH is inserted within a marker gene sequence
  • transformed cells containing sequences encoding TRICH can be identified by the absence of marker gene function.
  • a marker gene can be placed in tandem with a sequence encoding TRICH under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.
  • host cells that contain the nucleic acid sequence encoding TRICH and that express TRICH may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences. Immunological methods for detecting and measuring the expression of TTUCH using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS).
  • ELISAs enzyme-linked immunosorbent assays
  • RIAs radioimmunoassays
  • FACS fluorescence activated cell sorting
  • a two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on TRICH is preferred, but a competitive binding assay may be employed.
  • assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St. Paul MN, Sect. IV; Coligan, J.E. et al. (1997) Cunent Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols, Humana Press, Totowa NJ.)
  • Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding TRICH include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide.
  • the sequences encoding TRICH, or any fragments thereof maybe cloned into a vector for the production of an mRNA probe.
  • RNA polymerase such as T7, T3 , or SP6 and labeled nucleotides.
  • T7, T3 , or SP6 an appropriate RNA polymerase
  • Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.
  • Host cells transformed with nucleotide sequences encoding TRICH may be cultured under conditions suitable for the expression and recovery of the protein from cell culture.
  • the protein produced by a transformed cell maybe secreted or retained intracellularly depending on the sequence and/or the vector used.
  • expression vectors containing polynucleotides which encode TRICH maybe designed to contain signal sequences which direct secretion of TRICH through a prokaryotic or eukaryotic cell membrane.
  • a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion.
  • modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation.
  • Post-tianslational processing which cleaves a "prepro” or “pro” form of the protein may also be used to specify protein targeting, folding, and/or activity.
  • Different host cells which have specific cellular machinery and characteristic mechanisms for post-tianslational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and maybe chosen to ensure the correct modification and processing of the foreign protein.
  • ATCC American Type Culture Collection
  • Manassas VA Manassas VA
  • nucleic acid sequences encoding TRICH maybe ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems.
  • a chimeric TRICH protein containing a heterologous moiety that can be recognized by a corrrmercialfy available antibody may facilitate the screening of peptide libraries for inhibitors of TRICH activity.
  • Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices.
  • Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, c-myc, and hemagglutinin (HA).
  • GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively.
  • FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags.
  • a fusion protein may also be engineered to contain a proteolytic cleavage site located between the TRICH encoding sequence and the heterologous protein sequence, so that TRICH may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, supra, ch. 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.
  • synthesis of radiolabeled TRICH may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, 35 S -methionine.
  • TRICH of the present invention or fragments thereof may be used to screen for compounds that specifically bind to TRICH. At least one and up to a plurahty of test compounds may be screened for specific binding to TRICH.
  • test compounds include antibodies, oligonucleotides, proteins (e.g., ligands or receptors), or small molecules.
  • the compound thus identified is closely related to the natural ligand of TRICH, e.g., a ligand or fragment thereof, a natural substrate, a structural or functional mimetic, or a natural binding partner. (See, e.g., Coligan, J.E. et al.
  • the compound thus identified is a natural ligand of a receptor TRICH.
  • TRICH receptor for Interference Signals
  • the compound can be closely related to the natural receptor to which TRICH binds, at least a fragment of the receptor, or a fragment of the receptor including all or a portion of the ligand binding site or binding pocket.
  • the compound may be a receptor for TRICH which is capable of propagating a signal, or a decoy receptor for TRICH which is not capable of propagating a signal (Asbkenazi, A. and V.M. Divit (1999) Curc. Opin. Cell Biol. 11:255-260; Mantovani, A. et al. (2001) Trends Immunol. 22:328-336).
  • the compound can be rationally designed using known techniques.
  • Etanercept is an engineered p75 tumor necrosis factor (TNF) receptor dimer linked to the Fc portion of human I Gi (Taylor, P.C et al. (2001) Cun. Opin. Immunol. 13:611-616).
  • TNF tumor necrosis factor
  • TRICH involves producing appropriate cells which express TRICH, either as a secreted protein or on the cell membrane.
  • Prefened cells include cells from mammals, yeast, Drosophila, or E. coli. Cells expressing TRICH or cell membrane fractions which contain TRICH are then contacted with a test compound and binding, stimulation, or inhibition of activity of either TRICH or the compound is analyzed.
  • An assay may simply test binding of a test compound to the polypeptide, wherein binding is detected by a fluorophore, radioisotope, enzyme conjugate, or other detectable label.
  • the assay may comprise the steps of combining at least one test compound with TRICH, either in solution or affixed to a solid support, and detecting the binding of TRICH to the compound.
  • the assay may detect or measure binding of a test compound in the presence of a labeled competitor.
  • the assay may be carried out using cell-free preparations, chemical libraries, or natural product mixtures, and the test compound(s) maybe free in solution or affixed to a solid support.
  • Axx assay can be used to assess the ability of a compound to bind to its natural ligand and/or to inhibit the binding of its natural ligand to its natural receptors.
  • examples of such assays include radio- labeling assays such as those described in U.S. Patent No. 5,914,236 and U.S. Patent No. 6,372,724.
  • one or more amino acid substitutions can be introduced into a polypeptide compound (such as a receptor) to improve or alter its ability to bind to its natural ligands. (See, e.g., Matthews, D.J. and J.A. Wells. (1994) Chem. Biol.
  • one or more amino acid substitutions can be introduced into a polypeptide compound (such as a ligand) to improve or alter its abihty to bind to its natural receptors.
  • a polypeptide compound such as a ligand
  • TRICH of the present invention or fragments thereof maybe used to screen for compounds that modulate the activity of TRICH.
  • Such compounds may include agonists, antagonists, or partial or inverse agonists.
  • an assay is performed under conditions permissive for TRICH activity, wherein TRICH is combined with at least one test compound, and the activity of TRICH in the presence of a test compound is compared with the activity of TRICH in the absence of the test compound. A change in the activity of TRICH in the presence of the test compound is indicative of a compound that modulates the activity of TRICH.
  • a test compound is combined with an in vitro or cell-free system comprising TRICH under conditions suitable for TRICH activity, and the assay is performed. In either of these assays, a test compound which modulates the activity of TRICH may do so indirectly and need not come in direct contact with the test compound. At least one and up to a plurality of test compounds may be screened.
  • polynucleotides encoding TRICH or their mammalian homologs may be "knocked out" in an animal model system using homologous recombination in embryonic stem (ES) cells.
  • ES embryonic stem
  • Such techniques are well known in the art and are useful for the generation of animal models of human disease.
  • mouse ES cehs such as the mouse 129/SvJ cell line, are derived from the early mouse embryo and grown in culture.
  • the ES cells are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotransferase gene (neo; Capecchi, M.R. (1989) Science 244:1288-1292).
  • a marker gene e.g., the neomycin phosphotransferase gene (neo; Capecchi, M.R. (1989) Science 244:1288-1292).
  • the vector integrates into the conesponding region of the host genome by homologous recombination.
  • homologous recombination takes place using the Cre-loxP system to knockout a gene of interest in a tissue- or developmental stage-specific manner (Marth, J.D. (1996) Clin. Invest. 97:1999-2002; Wagner, K.U. et al. (1997) Nucleic Acids Res. 25:4323-4330).
  • Transformed ES cells are identified and microinjected into mouse cell blastocysts such as those from the C57BL/6 mouse strain.
  • the blastocysts are surgically transferred to pseudopregnant dams, and the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains.
  • Transgenic animals thus generated may be tested with potential therapeutic or toxic agents.
  • Polynucleotides encoding TRICH may also be manipulated in vitro in ES cells derived from human blastocysts.
  • Human ES cells have the potential to differentiate into at least eight separate cell lineages including endoderm, mesoderm, and ectodermal cell types. These cell lineages differentiate into, for example, neural cehs, hematopoietic lineages, and cardiomyocytes (Thomson, J.A. et al. (1998) Science 282:1145-1147).
  • Polynucleotides encoding TRICH can also be used to create 'Tmockin" humanized animals (pigs) or transgenic animals (mice or rats) to model human disease.
  • knockin technology a region of a polynucleotide encoding TRICH is injected into animal ES cells, and the injected sequence integrates into the animal cell genome.
  • Transformed cehs are injected into blastulae, and the blastulae are implanted as described above.
  • Transgenic progeny or inbred lines are studied and treated with potential pharmaceutical agents to obtain information on treatment of a human disease.
  • a mammal inbred to overexpress TRICH e.g., by secreting TRICH in its milk, may also serve as a convenient source of that protein (Janne, J. et al. (1998) Biotechnol. Annu. Rev. 4:55-74). THERAPEUTICS
  • TRICH appears to play a role in tr ⁇ nsport, neurological, muscular, immunological, and cell proliferative disorders, as well as disorders of iron metabolism.
  • TRICH appears to play a role in tr ⁇ nsport, neurological, muscular, immunological, and cell proliferative disorders, as well as disorders of iron metabolism.
  • TRICH or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TRICH.
  • a transport disorder such as akinesia, amyotrophic lateral sclerosis, ataxia telangiectasia, cystic fibrosis, Becker's muscular dystrophy, Bell's palsy, Charcot-Marie Tooth disease, diabetes mellitus, diabetes insipidus, diabetic neuropathy, Duchenne muscular dystrophy, hyperkalemic periodic paralysis, normokalemic periodic paralysis, Parkinson's disease, malignant hyperthermia, multidrug resistance, myasthenia gravis, myotonic dystrophy, catatonia, tardive dyskinesia, dystonias, peripheral neuropathy, cerebral neoplasms, prostate cancer, cardiac disorders associated with transport, e.g., angina, bradyarryfhmia, tachyany
  • cystic fibrosis Becker's muscular dyst
  • a vector capable of expressing TRICH or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TRICH including, but not limited to, those described above.
  • composition comprising a substantially purified TRICH in conjunction with a suitable pharmaceutical carrier maybe administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TRICH including, but not limited to, those provided above.
  • an agonist which modulates the activity of TRICH maybe administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TRICH including, but not limited to, those listed above.
  • an antagonist of TRICH may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of TRICH.
  • disorders include, but are not limited to, transport, neurological, muscular, immunological, and cell proliferative disorders, as well as disorders of iron metabolism described above.
  • an antibody which specifically binds TRICH may be used directly as an antagonist or indirectly as a targeting or dehvery mechanism for bringing a pharmaceutical agent to ceUs or tissues which express TRICH.
  • a vector expressing the complement of the polynucleotide encoding TRICH may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of TRICH including, but not limited to, those described above.
  • any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles.
  • the combination of therapeutic agents may act synergisticahy to effect the treatment or prevention of die various disorders described above. Using this approach, one maybe able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.
  • TRICH An antagonist of TRICH may be produced using methods which are generally known in the art.
  • purified TRICH may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind TRICH.
  • Antibodies to TRICH may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library.
  • Neutralizing antibodies i.e., those which inhibit dimer formation
  • Single chain antibodies may be potent enzyme inhibitors and may have advantages in the design of peptide • mimetics, and in the development of immuno-adsorbents and biosensors (Muyldermans, S. (2001) J. Biotechnol. 74:277-302).
  • various hosts including goats, rabbits, rats, mice, camels, dromedaries, Uamas, humans, and others may be immunized by injection with TRICH or with any fragment or ohgopeptide thereof which has immunogenic properties.
  • various adjuvants may be used to increase immunological response.
  • adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol.
  • BCG Bacilli Calmette-Guerin
  • Corynebacterium parvum are especiaUy preferable.
  • the oligopeptides, peptides, or fragments used to induce antibodies to TRICH have an amino acid sequence consisting of at least about 5 amino acids, and generaUy wiU consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein. Short stretches of TRICH amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule maybe produced.
  • Monoclonal antibodies to TRICH may be prepared using any technique which provides for the production of antibody molecules by continuous ceU lines in culture. These include, but are not limited to, the hybridoma technique, the human B-ceU hybridoma technique, and the EBV-hybridoma technique.
  • the hybridoma technique the human B-ceU hybridoma technique
  • EBV-hybridoma technique See, e.g., Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, RJ. et al. (1983) Proc. Natl. Acad. Sci. USA 80:2026-2030; and Cole, S.P. et al. (1984) Mol. CeU Biol.
  • Antibodies with related specificity, but of distinct idiotypic composition may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton, D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137.)
  • Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. USA 86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299.)
  • Antibody fragments which contain specific binding sites for TRICH may also be generated.
  • fragments include, but are not limited to, F(ab') 2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments.
  • Fab expression libraries may be constructed to aUow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) Science 246:1275-1281.)
  • immunoassays may be used for screening to identify antibodies having the desired specificity.
  • Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are weU known in the art.
  • Such immunoassays typically involve the measurement of complex formation between TRICH and its specific antibody.
  • a two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering TRICH epitopes is generaUy used, but a competitive binding assay may also be employed (Pound, supra).
  • K a is defined as the molar concentration of TRICH-antibody complex divided by the molar concentrations of free antigen and free antibody under equihbrium conditions.
  • K a association constant
  • the K a determined for a preparation of monoclonal antibodies, which are monospecific for a particular TRICH epitope, represents a true measure of affinity.
  • High-affinity antibody preparations with K a ranging from about 10 9 to 10 12 L/mole are prefened for use in immunoassays in which the TRICH- antibody complex must withstand rigorous manipulations.
  • Low-affinity antibody preparations with K a ranging from about 10 6 to 10 7 L/mole are prefened for use in immunopurification and similar procedures which ultimately require dissociation of TRICH, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington DC; LiddeU, J.E. and A. Cryer (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).
  • polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications.
  • a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml is generaUy employed in procedures requiring precipitation of TRICH-antibody complexes.
  • Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generaUy available. (See, e.g., Catty, supra, and Coligan et al. supra.)
  • the polynucleotides encoding TRICH, or any fragment or complement thereof maybe used for therapeutic purposes.
  • modifications of gene expression can be achieved by designing complementary sequences or antisense molecules (DNA, RNA, PNA, or modified oligonucleotides) to the coding or regulatory regions of the gene encoding TRICH.
  • complementary sequences or antisense molecules DNA, RNA, PNA, or modified oligonucleotides
  • antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding TRICH. (See, e.g., Agrawal, S., ed. (1996) Antisense Therapeutics, Humana Press Inc., Totawa NJ.)
  • Antisense sequences can be delivered intraceUularly in the form of an expression plasmid which, upon transcription, produces a sequence complementary to at least a portion of the ceUular sequence encoding the target protein.
  • Slater J.E. et al. (1998) J. AUergy Clin. Immunol. 102(3):469-475; and Scanlon, K.J. et al.
  • Antisense sequences can also be introduced intraceUularly through the use of viral vectors, such as retrovirus and adeno-associated virus vectors.
  • viral vectors such as retrovirus and adeno-associated virus vectors.
  • Other gene dehvery mechanisms include liposome-derived systems, artificial viral envelopes, and other systems known in the art.
  • Rossi e.g., Rossi,, J.J. (1995) Br. Med. BuU. 51(l):217-225; Boado, RJ. et al. (1998) J. Pharm. Sci. 87(11):1308-1315; and Morris, M.C. et al. (1997) Nucleic Acids Res. 25(14):2730-2736.
  • polynucleotides encoding TRICH may be used for somatic or germline gene therapy.
  • Gene therapy may be performed to (i) correct a genetic deficiency (e.g., in the cases of severe combined immunodeficiency (SCJD)-Xl disease characterized by X- linked inheritance (Cavazzana-Calvo, M. et al. (2000) Science 288:669-672), severe combined immunodeficiency syndrome associated with an inherited adenosine deaminase (ADA) deficiency (Blaese, R.M. et al. (1995) Science 270:475-480; Bordignon, C. et al.
  • SCJD severe combined immunodeficiency
  • ADA adenosine deaminase
  • hepatitis B or C virus HBV, HCV
  • fungal parasites such as Candida albicans and Paracoccidioides brasiliensis
  • protozoan parasites such as Plasmodiumfalciparum and Tiypanosoma cruzi.
  • diseases or disorders caused by deficiencies in TRICH are treated by constructing mammalian expression vectors encoding TRICH and introducing these vectors by mechanical means into TRICH-deficient cehs.
  • Mechanical transfer technologies for use with ceUs in vivo or ex vitro include (i) direct DNA microinjection into individual ceUs, (ii) ballistic gold particle dehvery, (hi) hposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the use of DNA transposons (Morgan, R.A. and W.F. Anderson (1993) Annu. Rev. Biochem. 62:191-217; Ivies, Z. (1997) CeU 91:501-510; Boulay, J-L. and H.
  • TRICH Transcription activator-like effector
  • Expression vectors that may be effective for the expression of TRICH include, but are not limited to, the PCDNA 3.1, EPITAG, PRCCMV2, PREP, PVAX, PCR2-TOPOTA vectors (Invitrogen, Carlsbad CA), PCMV-SCRIPT, PCMV-TAG, PEGSH/PERV (Stratagene, La JoUa CA), and PTET-OFF, PTET-ON, PTRE2, PTRE2-LUC, PTK-HYG (Clontech, Palo Alto CA).
  • TRICH maybe expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or ⁇ -actin genes), (ii) an inducible promoter (e.g., die tetracycline-regulated promoter (Gossen, M. and H. Bujard (1992) Proc. Natl. Acad. Sci. USA 89:5547-5551; Gossen, M. et al. (1995) Science 268:1766-1769; Rossi, F.M.V. and H.M. Blau (1998) Curr. Opin. Biotechnol.
  • a constitutively active promoter e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or ⁇ -actin genes
  • FK506/rapamycin inducible promoter or the RU486/mifepristone inducible promoter (Rossi, F.M.V. and H.M. Blau, supra ), or (hi) a tissue-specific promoter or the native promoter of the endogenous gene encoding TRICH from a normal individual.
  • CommerciaUy available liposome transformation kits e.g., the PERFECT LIPID TRANSFECTION KIT, available from Invitrogen
  • aUow one with ordinary skiU in the art to dehver polynucleotides to target ceUs in culture and require minimal effort to optimize experimental parameters.
  • transformation is performed using the calcium phosphate method (Graham, F.L. and A.J. Eb (1973) Virology 52:456-467), or by electroporation (Neumann, E. et al. (1982) EMBO J. 1:841-845).
  • the introduction of DNA to primary ceUs requires modification of these standardized mammalian transfection protocols.
  • diseases or disorders caused by genetic defects with respect to TRICH expression are treated by constructing a retrovirus vector consisting of (i) the polynucleotide encoding TRICH under the control of an independent promoter or the retrovirus long terminal repeat (LTR) promoter, (ii) appropriate RNA packaging signals, and (i ⁇ ) a Rev-responsive element (RRE) along with additional retrovirus cw-acting RNA sequences and coding sequences required for efficient vector propagation.
  • Retrovirus vectors e.g., PFB and PEBNEO
  • Retrovirus vectors are commerciaUy available (Stratagene) and are based on published data (Riviere, I. et al. (1995) Proc. Natl. Acad. Sci.
  • the vector is propagated in an appropriate vector producing ceU line (VPCL) that expresses an envelope gene with a tiopism for receptors on the target ceUs or a promiscuous envelope protein such as VSVg (Armentano, D. et al. (1987) J. Virol. 61:1647-1650; Bender, M.A. et al. (1987) J. Virol. 61:1639-1646; Adam, M.A. and A.D. Mffler (1988) J. Virol. 62:3802-3806; DuU, T. et al. (1998) J. Virol. 72:8463-8471; Zufferey, R.
  • VSVg vector producing ceU line
  • U.S. Patent No. 5,910,434 to Rigg discloses a method for obtaining retrovirus packaging ceU lines and is hereby incorporated by reference. Propagation of retrovirus vectors, transduction of a population of ceUs (e.g., CD4 + T-ceUs), and the return of transduced ceUs to a patient are procedures weU known to persons skilled in the art of gene therapy and have been weU documented (Ranga, U. et al. (1997) J. Virol. 71:7020-7029; Bauer, G. et al.
  • an adenovirus-based gene therapy dehvery system is used to dehver polynucleotides encoding TRICH to ceUs which have one or more genetic abnormalities with respect to the expression of TRICH.
  • the construction and packaging of adenovirus-based vectors are weU known to those with ordinary skiU in the art.
  • Replication defective adenovirus vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas (Csete, M.E. et al. (1995) Transplantation 27:263-268). PotentiaUy useful adenoviral vectors are described in U.S. Patent No.
  • Adadenovirus vectors for gene therapy hereby incorporated by reference.
  • adenoviral vectors see also Antinozzi, P . et al. (1999) Annu. Rev. Nutr. 19:511-544 and Verma, IM. and N. Somia (1997) Nature 18:389:239-242, both incorporated by reference herein.
  • a herpes-based, gene therapy dehvery system is used to dehver polynucleotides encoding TRICH to target ceUs which have one or more genetic abnormalities with respect to the expression of TRICH.
  • the use of herpes simplex virus (HSV)-based vectors may be especiaUy valuable for introducing TRICH to ceUs of the central nervous system, for which HSV has a tropism.
  • the construction and packaging of herpes-based vectors are weU known to those with ordinary skiU in the art.
  • a rephcation-competent herpes simplex virus (HSV) type 1 -based vector has been used to dehver a reporter gene to the eyes of primates (Liu, X. et al.
  • HSV-1 virus vector has also been disclosed in detail in U.S. Patent No. 5,804,413 to DeLuca ("Herpes simplex virus strains for gene transfer"), which is hereby incorporated by reference.
  • U.S. Patent No. 5,804,413 teaches the use of recombinant HSV d92 which consists of a genome containing at least one exogenous gene to be tiansfened to a ceU under the control of the appropriate promoter for purposes including human gene therapy. Also taught by this patent are the construction and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22. For HSV vectors, see also Goins, W.F.
  • an alphavirus (positive, single-stranded RNA virus) vector is used to dehver polynucleotides encoding TRICH to target ceUs.
  • SFV Semliki Forest Virus
  • This subgenomic RNA replicates to higher levels than the full length genomic RNA, resulting in the overproduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase).
  • inserting the coding sequence for TRICH into the alphavirus genome in place of the capsid-coding region results in the production of a large number of TRICH-coding RNAs and the synthesis of high levels of TRICH in vector transduced ceUs.
  • alphavirus infection is typicaUy associated with ceU lysis within a few days
  • the abihty to estabhsh a persistent infection in hamster normal kidney cehs (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic replication of alphaviruses can be altered to suit the needs of the gene therapy application (Dryga, S.A. et al. (1997) Virology 228:74-83).
  • the wide host range of alphaviruses wiU aU ow the introduction of TRICH into a variety of ceU types.
  • the specific transduction of a subset of ceUs in a population may require the sorting of ceUs prior to transduction.
  • the methods of manipulating infectious cDNA clones of alphaviruses, performing alphavirus cDNA and RNA transfections, and perfo ⁇ ning alphavirus infections, are weU known to those with ordinary skiU in the art.
  • Oligonucleotides derived from the transcription initiation site may also be employed to inhibit gene expression.
  • inhibition can be achieved using triple hehx base-pairing methodology.
  • Triple hehx pairing is useful because it causes inhibition of the abihty of the double hehx to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules.
  • Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Can, Molecular and Immunologic Approaches. Futura Pubhshing, Mt. Kisco NY, pp. 163-177.)
  • a complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.
  • Ribozymes enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA.
  • the mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, foUowed by endonucleolytic cleavage.
  • engineered hammerhead motif ribozyme molecules may specificaUy and efficiently catalyze endonucleolytic cleavage of sequences encoding TRICH.
  • RNA sequences of between 15 and 20 ribonucleotides may be evaluated for secondary structural features which may render the ohgonucleotide inoperable.
  • the suitabihty of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.
  • RNA molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemicaUy synthesizing oligonucleotides such as sohd phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding TRICH. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into ceU lines, ceUs, or tissues.
  • RNA molecules may be modified to increase intraceUular stabihty and half-life. Possible modifications include, but are not limited to, die addition of flanking sequences at the 5 ' and/or 3 ' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule.
  • An additional embodiment of the invention encompasses a method for screening for a compound which is effective in altering expression of a polynucleotide encoding TRICH.
  • Compounds which may be effective in altering expression of a specific polynucleotide may include, but are not limited to, oligonucleotides, antisense ohgonucleotides, triple hehx-fonning oligonucleotides, transcription factors and other polypeptide transcriptional regulators, and non-macromolecular chemical entities which are capable of interacting with specific polynucleotide sequences. Effective compounds may alter polynucleotide expression by acting as either inhibitors or promoters of polynucleotide expression.
  • a compound which specificaUy inhibits expression of the polynucleotide encoding TRICH may be therapeuticaUy useful, and in the treatment of disorders associated with decreased TRICH expression or activity, a compound which specificaUy promotes expression of the polynucleotide encoding TRICH maybe therapeuticaUy useful.
  • At least one, and up to a plurahty, of test compounds may be screened for effectiveness in altering expression of a specific polynucleotide.
  • a test compound may be obtained by any method commonly known in the art, including chemical modification of a compound known to be effective in altering polynucleotide expression; selection from an existing, commerciaUy-available or proprietary hbrary of naturaUy-occurring or non-natural chemical compounds; rational design of a compound based on chemical and/or structural properties of the target polynucleotide; and selection from a hbrary of chemical compounds created combinatoriaUy or randomly.
  • a sample comprising a polynucleotide encoding TRICH is exposed to at least one test compound thus obtained.
  • the sample may comprise, for example, an intact or permeabilized ceU, or an in vitro cell-free or reconstituted biochemical system.
  • Alterations in the expression of a polynucleotide encoding TRICH are assayed by any method commonly known in the art.
  • TypicaUy the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence of the polynucleotide encoding TRICH.
  • the amount of hybridization may be quantified, thus fonning the basis for a comparison of the expression of the polynucleotide both with and without exposure to one or more test compounds. Detection of a change in the expression of a polynucleotide exposed to a test compound indicates that the test compound is effective in altering the expression of the polynucleotide.
  • a screen for a compound effective in altering expression of a specific polynucleotide can be canied out, for example, using a Schizosaccharomyces pombe gene expression system (Atkins, D. et al. (1999) U.S. Patent No. 5,932,435; Arndt, G.M. et al. (2000) Nucleic Acids Res. 28:E15) or a human ceU line such as HeLa ceU (Clarke, M.L. et al. (2000) Biochem. Biophys. Res. Commun. 268:8-13).
  • a Schizosaccharomyces pombe gene expression system (Atkins, D. et al. (1999) U.S. Patent No. 5,932,435; Arndt, G.M. et al. (2000) Nucleic Acids Res. 28:E15) or a human ceU line such as HeLa ceU (Clarke, M.L. et al.
  • a particular embodiment of the present invention involves screening a combinatorial hbrary of ohgonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified ohgonucleotides) for antisense activity against a specific polynucleotide sequence (Bruice, T.W. et al. (1997) U.S. Patent No. 5,686,242; Bruice, T.W. et al. (2000) U.S. Patent No. 6,022,691). Many methods for introducing vectors into ceUs or tissues are available and equaUy suitable for use in vivo, in vitro, and ex vivo.
  • ohgonucleotides such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified ohgonucleotides
  • vectors For ex vivo therapy, vectors maybe introduced into stem ceUs taken from the patient and clonaUy propagated for autologous transplant back into that same patient. Dehvery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are weU known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nat. Biotechnol. 15:462-466.)
  • any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.
  • An additional embodiment of the invention relates to the administration of a composition which generaUy comprises an active ingredient formulated with a pharmaceuticaUy acceptable excipient.
  • Excipients may include, for example, sugars, starches, ceUuloses, gums, and proteins.
  • Various formulations are commonly known and are thoroughly discussed in the latest edition of Remington's Pharmaceutical Sciences (Maack Pubhshing, Easton PA).
  • Such compositions may consist of TRICH, antibodies to TRICH, and mimetics, agonists, antagonists, or inhibitors of TRICH.
  • compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intiameduUary, intrathecal, intiaventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.
  • compositions for pulmonary administration may be prepared in hquid or dry powder form. These compositions are generaUy aerosohzed immediately prior to inhalation by the patient.
  • smaU molecules e.g. traditional low molecular weight organic drugs
  • aerosol dehvery of fast- acting formulations is weU-known in the art.
  • macromolecules e.g. larger peptides and proteins
  • Pulmonary dehvery has the advantage of administration without needle injection, and obviates the need for potentiaUy toxic penetration enhancers.
  • compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose.
  • the deterniination of an effective dose is weU within the capabihty of those skiUed in the art.
  • Speciahzed forms of compositions maybe prepared for direct intraceUular dehvery of macromolecules comprising TRICH or fragments thereof.
  • hposome preparations containing a ceU-impermeable macrornolecule may promote ceU fusion and intraceUular dehvery of the macrornolecule.
  • TRICH or a fragment thereof may be joined to a short cationic N- terminal portion from the HTV Tat-1 protein. Fusion proteins thus generated have been found to transduce into the ceUs of aU tissues, including the brain, in a mouse model system (Schwarze, S.R. et al. (1999) Science 285:1569-1572).
  • the therapeuticaUy effective dose can be estimated initiaUy either in ceU culture assays, e.g., of neoplastic ceUs, or in animal models such as mice, rats, rabbits, dogs, monkeys, or pigs.
  • ceU culture assays e.g., of neoplastic ceUs
  • animal models such as mice, rats, rabbits, dogs, monkeys, or pigs.
  • An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.
  • a therapeuticaUy effective dose refers to that amount of active ingredient, for example TRICH or fragments thereof, antibodies of TRICH, and agonists, antagonists or inhibitors of TRICH, which ameliorates the symptoms or condition.
  • Therapeutic efficacy and toxicity maybe detennined by standard pharmaceutical procedures in ceU cultures or with experimental animals, such as by calculating the ED 50 (the dose therapeuticaUy effective in 50% of the population) or LD 50 (the dose lethal to 50% of the population) statistics.
  • the dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD 50 /ED 50 ratio.
  • Compositions which exhibit large therapeutic indices are prefened.
  • the data obtained from ceU culture assays and animal studies are used to formulate a range of dosage for human use.
  • the dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED 50 with httle or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the
  • the exact dosage wiU be deteimined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combinations), reaction sensitivities, and response to therapy. Long-acting compositions maybe administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation. Normal dosage amounts may vary from about 0.1 ⁇ g to 100,000 ⁇ g, up to a total dose of about 1 gram, depending upon the route of administration.
  • antibodies which specificaUy bind TRICH may be used for the diagnosis of disorders characterized by expression of TRICH, or in assays to monitor patients being treated with TRICH or agonists, antagonists, or inhibitors of TRICH.
  • Antibodies useful for diagnostic purposes maybe prepared in the same manner as described above for therapeutics. Diagnostic assays for TRICH include methods which utilize the antibody and a label to detect TRICH in human body fluids or in extracts of ceUs or tissues.
  • the antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule.
  • a wide variety of reporter molecules, several of which are described above, are known in the art and may be used.
  • TRICH ELISAs, RIAs, and FACS
  • ELISAs ELISAs
  • RIAs RIAs
  • FACS fluorescence-activated cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic cytoplasmic acid, and others.
  • Quantities of TRICH expressed in subject, control, and disease samples frombiopsied tissues are compared with the standard values. Deviation between standard and subject values estabhshes the parameters for diagnosing disease.
  • the polynucleotides encoding TRICH may be used for diagnostic purposes.
  • the polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs.
  • the polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of TRICH maybe conelated with disease.
  • the diagnostic assay may be used to determine absence, presence, and excess expression of TRICH, and to monitor regulation of TRICH levels during therapeutic intervention.
  • hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding TRICH or closely related molecules may be used to identify nucleic acid sequences which encode TRICH.
  • the specificity of the probe whether it is made from ahighly specific region, e.g., the 5'regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification wiU determine whether the probe identifies only naturally occurring sequences encoding TRICH, aUehc variants, or related sequences.
  • Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the TRICH encoding sequences.
  • the hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO: 10-18 or from genomic sequences including promoters, enhancers, and introns of the TRICH gene.
  • Means for producing specific hybridization probes for DNAs encoding TRICH include the cloning of polynucleotide sequences encoding TRICH or TRICH derivatives into vectors for the production of mRNA probes.
  • vectors are known in the art, are commerciaUy available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides.
  • Hybridization probes maybe labeled by a variety of reporter groups, for example, by radionuchdes such as 32 P or 35 S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.
  • Polynucleotide sequences encoding TRICH may be used for the diagnosis of disorders associated with expression of TRICH.
  • disorders include, but are not limited to, a transport disorder such as akinesia, amyotiophic lateral sclerosis, ataxia telangiectasia, cystic fibrosis, Becker's muscular dystrophy, BeU's palsy, Charcot-Marie Tooth disease, diabetes meUitus, diabetes insipidus, diabetic neuropathy, Duchenne muscular dystrophy, hyperkalemic periodic paralysis, normokalemic periodic paralysis, Parkinson's disease, malignant hyperthermia, multidrug resistance, myasthenia gravis, myotonic dystrophy, catatonia, tardive dyskinesia, dystonias, peripheral neuropathy, cerebral neoplasms, prostate cancer, cardiac disorders associated with transport, e.g., angina, bradyarrythmia, tachyanythmia, hypertension,
  • TRICH may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered TRICH expression.
  • Such qualitative or quantitative methods are weU known in the art.
  • the nucleotide sequences encoding TRICH may be useful in assays that detect the presence of associated disorders, particularly those mentioned above.
  • the nucleotide sequences encoding TRICH may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. Jf the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding TRICH in the sample indicates the presence of the associated disorder.
  • Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.
  • a normal or standard profile for expression is established. This may be accomphshed by combining body fluids or ceU extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding TRICH, under conditions suitable for hybridization or amphfication.
  • Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantiaUy purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to estabhsh the presence of a disorder.
  • hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject.
  • the results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.
  • the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms.
  • a more definitive diagnosis of this type may aUow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.
  • ohgonucleotides designed from the sequences encoding TRICH may involve the use of PCR. These ohgomers may be chemicaUy synthesized, generated enzymaticaUy, or produced in vitro.
  • Ohgomers wiU preferably contain a fragment of a polynucleotide encoding TRICH, or a fragment of a polynucleotide complementary to the polynucleotide encoding TRICH, and wiU be employed under optimized conditions for identification of a specific gene or condition.
  • Ohgomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.
  • ohgonucleotide primers derived from the polynucleotide sequences encoding TRICH may be used to detect single nucleotide polymorphisms (SNPs).
  • SNPs are substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease in humans.
  • Methods of SNP detection include, but are not limited to, single-stranded conformation ⁇ polymorphism (SSCP) and fluorescent SSCP (fSSCP) methods.
  • SSCP single-stranded conformation ⁇ polymorphism
  • fSSCP fluorescent SSCP
  • ohgonucleotide primers derived from the polynucleotide sequences encoding TRICH are used to amplify DNA using the polymerase chain reaction (PCR).
  • the DNA may be derived, for example, from diseased or normal tissue, biopsy samples, bodily fluids, and the like.
  • SNPs in the DNA cause differences in the secondary and tertiary structures of PCR products in single-stranded form, and these differences are detectable using gel electrophoresis in non-denaturing gels.
  • the ohgonucleotide primers are fluorescently labeled, which ahows detection of the amplimers in high-throughput equipment such as DNA sequencing machines.
  • AdditionaUy sequence database analysis methods, termed in sihco SNP (isSNP), are capable of identifying polymorphisms by comparing the sequence of individual overlapping DNA fragments which assemble into a common consensus sequence.
  • SNPs may be detected and characterized by mass spectrometry using, for example, the high throughput MASSARRAY system (Sequenom, Inc., San Diego CA).
  • SNPs may be used to study the genetic basis of human disease. For example, at least 16 common SNPs have been associated with non-insulin-dependent diabetes mellitus. SNPs are also useful for examining differences in disease outcomes in monogenic disorders, such as cystic fibrosis, sickle ceU anemia, or chronic granulomatous disease. For example, variants in the mannose-binding lectin, MBL2, have been shown to be conelated with deleterious pulmonary outcomes in cystic fibrosis. SNPs also have utility in pharmacogenomics, the identification of genetic variants that influence a patient's response to a drug, such as hfe-threatening toxicity.
  • N-acetyl transferase is associated with a high incidence of peripheral neuropafliy in response to the anti-tuberculosis drug isoniazid, while a variation in the core promoter of the ALOX5 gene results in diminished clinical response to treatment with an anti-asthma drug that targets the 5-li ⁇ oxygenase pathway.
  • Analysis of the distribution of SNPs in different populations is useful for investigating genetic drift, mutation, recombination, and selection, as weU as for tracing the origins of populations and their migrations.
  • TRICH TRICH
  • the speed of quantitation of multiple samples maybe accelerated by running the assay in a high-throughput format where the oligomer or polynucleotide of - interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.
  • ohgonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as elements on a microanay.
  • the microarray can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described below.
  • the microarray may also be used to identify genetic variants, mutations, and polymorphisms. This information maybe used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, to monitor progression/regression of disease as a function of gene expression, and to develop and monitor the activities of therapeutic agents in the treatment of disease.
  • this information may be used to develop a pharmacogenomic profile of a patient in order to select the most appropriate and effective treatment regimen for that patient.
  • therapeutic agents which are highly effective and display the fewest side effects may be selected for a patient based on his/her pharmacogenomic profile.
  • TRICH, fragments of TRICH, or antibodies specific for TRICH may be used as elements on a microarray.
  • the microarray may be used to monitor or measure protein- protein interactions, drug-target interactions, and gene expression profiles, as described above.
  • a particular embodiment relates to the use of the polynucleotides of the present invention to generate a transcript image of a tissue or ceU type.
  • a transcript image represents the global pattern of gene expression by a particular tissue or ceU type. Global gene expression patterns are analyzed by quantifying the number of expressed genes and their relative abundance under given conditions and at a given time. (See SeiThamer et al., "Comparative Gene Transcript Analysis," U.S. Patent No.
  • a transcript image may be generated by hybridizing the polynucleotides of the present invention or their complements to the totality of transcripts or reverse transcripts of a particular tissue or ceU type.
  • the hybridization takes place in high-throughput format, wherein the polynucleotides of the present invention or their complements comprise a subset of a plurahty of elements on a microarray.
  • the resultant transcript image would provide a profile of gene activity.
  • Transcript images maybe generated using transcripts isolated from tissues, ceU lines, biopsies, or other biological samples.
  • the transcript image may thus reflect gene expression in vivo, as in the case of a tissue or biopsy sample, or in vitro, as in the case of a ceU line.
  • Transcript images which profile the expression of the polynucleotides of the present invention may also be used in conjunction with in vitro model systems and preclinical evaluation of , pharmaceuticals, as weU as toxicological testing of industrial and naturaUy-occurring environmental compounds.
  • AU compounds induce characteristic gene expression patterns, frequently termed molecular fingerprints or toxicant signatures, which are indicative of mechanisms of action and toxicity (Nuwaysir, E.F. et al. (1999) Mol. Carcinog. 24:153-159; Sterner, S. and N.L. Anderson (2000)
  • the toxicity of a test compound is assessed by treating a biological sample containing nucleic acids with the test compound.
  • Nucleic acids that are expressed in the treated biological sample are hybridized with one or more probes specific to the polynucleotides of the present invention, so that transcript levels conesponding to the polynucleotides of the present invention may be quantified.
  • the transcript levels in the treated biological sample are compared with levels in an untreated biological sample. Differences in the transcript levels between the two samples are indicative of a toxic response caused by the test compound in the treated sample.
  • proteome refers to the global pattern of protein expression in a particular tissue or cell type. Each protein component of a proteome can be subjected individuaUy to further analysis. Proteome expression patterns, or profiles, are analyzed by quantifying the number of expressed proteins and their relative abundance under given conditions and at a given time. A profile of a ceU's proteome may thus be generated by separating and analyzing the polypeptides of a particular tissue or ceU type.
  • the separation is achieved using two-dimensional gel electrophoresis, in which proteins from a sample are separated by isoelectric focusing in the first dimension, and then according to molecular weight by sodium dodecyl sulfate slab gel electrophoresis in the second dimension (Steiner and Anderson, supra).
  • the proteins are visualized in the gel as discrete and uniquely positioned spots, typicaUy by staining the gel with an agent such as Coomassie Blue or silver or fluorescent stains.
  • the optical density of each protein spot is generaUy proportional to the level of the protein in the sample.
  • the optical densities of equivalently positioned protein spots from different samples are compared to identify any changes in protein spot density related to the treatment.
  • the proteins in the spots are partiaUy sequenced using, for example, standard methods employing chemical or enzymatic cleavage foUowed by mass spectrometry.
  • the identity of the protein in a spot may be determined by comparing its partial sequence, preferably of at least 5 contiguous amino acid residues, to the polypeptide sequences of the present invention. In some cases, further sequence data may be obtained for definitive protein identification.
  • a proteomic profile may also be generated using antibodies specific for TRICH to quantify the levels of TRICH expression.
  • the antibodies are used as elements on a microanay, and protein expression levels are quantified by exposing the microanay to the sample and detecting the levels of protein bound to each array element (Lueking, A. et al. (1999) Anal. Biochem. 270:103-111; Mendoze, L.G. et al. (1999) Biotechniques 27:778-788). Detection maybe performed by a variety of methods known in the art, for example, by reacting the proteins in the sample with a thioi- or amino-reactive fluorescent compound and detecting the amount of fluorescence bound at each array element.
  • Toxicant signatures at the proteome level are also useful for toxicological screening, and should be analyzed in paraUel with toxicant signatures at the transcript level.
  • There is a poor conelation between transcript and protein abundances for some proteins in some tissues (Anderson, N.L. and J. SeiThamer (1997) Electrophoresis 18:533-537), so proteome toxicant signatures maybe useful in the analysis of compounds which do not significantly affect the transcript image, but which alter the proteomic profile.
  • the analysis of transcripts in body fluids is difficult, due to rapid degradation of mRNA, so proteomic profiling maybe more rehable and informative in such cases.
  • the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound.
  • Proteins that are expressed in the treated biological sample are separated so that the amount of each protein can be quantified.
  • the amount of each protein is compared to the amount of the corresponding protein in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.
  • Individual proteins are identified by sequencing the amino acid residues of the individual proteins and comparing these partial sequences to the polypeptides of the present invention.
  • the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins from the biological sample are incubated with antibodies specific to the polypeptides of the present invention. The amount of protein recognized by the antibodies is quantified.
  • the amount of protein in the treated biological sample is compared with the amount in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.
  • Microanays may be prepared, used, and analyzed using methods known in the art.
  • nucleic acid sequences encoding TRICH maybe used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. Either coding or noncoding sequences may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentiaUy cause undesired cross hybridization during chromosomal mapping.
  • sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial PI constructions, or single chromosome cDNA libraries.
  • HACs human artificial chromosomes
  • YACs yeast artificial chromosomes
  • BACs bacterial artificial chromosomes
  • PI constructions or single chromosome cDNA libraries.
  • the nucleic acid sequences of the invention may be used to develop genetic linkage maps, for example, which conelate the inheritance of a disease state with the inheritance of a particular chromosome region or restriction fragment length polymorphism (RFLP).
  • RFLP restriction fragment length polymorphism
  • FISH Fluorescent in situ hybridization
  • Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMJM) World Wide Web site. Correlation between the location of the gene encoding TRICH on a physical map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder and thus may further positional cloning efforts.
  • In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using estabhshed chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammahan species, such as mouse, may reveal associated markers even if the exact chromosomal locus is not known.
  • any sequences mapping to that area may represent associated or regulatory genes for further investigation.
  • the nucleotide sequence of the instant invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.
  • TRICH in another embodiment, TRICH, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques.
  • the fragment employed in such screening maybe free in solution, affixed to a sohd support, borne on a ceU surface, or located intraceUularly. The formation of binding complexes between TRICH and the agent being tested may be measured.
  • Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest.
  • This method large numbers of different smaU test compounds are synthesized on a sohd substrate. The test compounds are reacted with TRICH, or fragments thereof, and washed. Bound TRICH is then detected by methods weU known in the art. Purified TRICH can also be coated directly onto plates for use in the aforementioned drug screening techniques.
  • non-neutralizing antibodies can be used to capture the peptide and immobilize it on a sohd support.
  • nucleotide sequences which encode TRICH may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are cunently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.
  • Incyte cDNAs were derived from cDNA libraries described in the LJFESEQ GOLD database (Incyte Genomics, Palo Alto CA). Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Invitrogen), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.
  • TRIZOL Invitrogen
  • poly(A)+ RNA was isolated using ohgo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN).
  • Stratagene was provided with RNA and constructed the conesponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Invitrogen), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, supra, units 5.1-6.6.) Reverse transcription was initiated using ohgo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes.
  • the cDNA was size-selected (300- 1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Biosciences) or preparative agarose gel electrophoresis.
  • cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), PSPORT1 plasmid (Invitrogen), PCDNA2.1 plasmid (Invitrogen, Carlsbad CA), PBK-CMV plasmid (Stratagene), PCR2-TOPOTA plasmid (Invitrogen), PCMV-ICIS plasmid (Stratagene), pIGEN (Incyte Genomics, Palo Alto CA), pRARE (Incyte Genomics), or pINCY (Incyte Genomics), or derivatives thereof.
  • PBLUESCRIPT plasmid (Stratagene)
  • PSPORT1 plasmid Invitrogen
  • PCDNA2.1 plasmid Invitrogen, Carlsbad CA
  • PBK-CMV plasmid PCR2-TOPOTA plasmid
  • Plasmids obtained as described in Example I were recovered from host cells by in vivo excision using the UNJZAP vector system (Stratagene) or by ceU lysis. Plasmids were purified using at least one of the foUowing: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP 96 plasmid purification kit from QIAGEN. FoUowing precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C
  • plasmid DNA was amplified from host ceU lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host ceU lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-weU plates, and the concentration of amphfied plasmid DNA was quantified fluorometricaUy using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSKAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland). III. Sequencing and Analysis
  • Incyte cDNA recovered in plasmids as described in Example II were sequenced as foUows. Sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Applied Biosystems) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the
  • cDNA sequencing reactions were prepared using reagents provided by Amersham Biosciences or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Apphed Biosystems). Electiophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Amersham Biosciences); the ABI PRISM 373 or 377 sequencing system (Apphed Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames with ⁇ n the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VTU.
  • the polynucleotide sequences derived from Incyte cDNAs were vahdated by removing vector, linker, and poly(A) sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis.
  • the Incyte cDNA sequences or translations thereof were then queried against a selection of public databases such as the GenBank primate, rodent, mammahan, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM; PROTEOME databases with sequences from Homo sapiens, Rattus norvegicus, Mus musculus, Caenorhabditis elegans, Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Candida albicans (Incyte Genomics, Palo Alto CA); hidden Markov model (HMM)-based protein family databases such as PFAM, INCY, and TIGRFAM (Haft, D.H.
  • HMM hidden Markov model
  • HMM-based protein domain databases such as SMART (Schultz et al. (1998) Proc. Natl. Acad. Sci. USA 95:5857-5864; Letunic, I. et al. (2002) Nucleic Acids Res. 30:242-244).
  • HMM is a probabilistic approach which analyzes consensus primary structures of gene families. See, for example, Eddy, S.R. (1996) Curr. Opin. Struct. Biol. 6:361-365.
  • the queries were performed using programs based on BLAST, FASTA, BLIMPS, and HMMER.
  • the Incyte cDNA sequences were assembled to produce full length polynucleotide sequences.
  • GenBank cDNAs, GenBank ESTs, stitched sequences, stretched sequences, or Genscan-predicted coding sequences were used to extend Incyte cDNA assemblages to full length. Assembly was performed using programs based on Phred, Phrap, and Consed, and cDNA assemblages were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA.
  • the fuU length polynucleotide sequences were translated to derive the corresponding fuU length polypeptide sequences.
  • a polypeptide of the invention may begin at any of the methionine residues of the full length translated polypeptide.
  • FuU length polypeptide sequences were subsequently analyzed by querying against databases such as the GenBank protein databases (genpept), SwissProt, the PROTEOME databases, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, bidden Markov model (HMM)-based protein family databases such as PFAM, INCY, and TIGRFAM; and HMM-based protein domain databases such as SMART.
  • GenBank protein databases Genpept
  • PROTEOME databases
  • BLOCKS BLOCKS
  • PRINTS DOMO
  • PRODOM Prosite
  • Prosite bidden Markov model
  • Prosite bidden Markov model
  • HMM-based protein family databases such as PFAM, INCY, and TIGRFAM
  • HMM-based protein domain databases such as SMART.
  • FuU length polynucleotide sequences are also analyzed using MACDNASIS PRO software (
  • Polynucleotide and polypeptide sequence alignments are generated using default parameters specified by the CLUSTAL algorithm as incorporated into the MEGALIGN multisequence alignment program (DNASTAR), which also calculates the percent identity between aligned sequences.
  • Table 7 summarizes the tools, programs, and algorithms used for the analysis and assembly of Incyte cDNA and fuU length sequences and provides apphcable descriptions, references, and threshold parameters.
  • the first column of Table 7 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, aU of which are incorporated by reference herein in their entirety, and the fourth column presents, where apphcable, the scores, probabihty values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score or the lower the probabihty value, the greater the identity between two sequences).
  • Genscan is a general-purpose gene identification program which analyzes genomic DNA sequences from a variety of organisms (See Burge, C and S. Karlin (1997) J. Mol. Biol. 268:78-94, and Burge, C and S. Karlin (1998) Curr. Opin. Struct. Biol. 8:346-354). The program concatenates predicted exons to form an assembled cDNA sequence extending from a metihonine to a stop codon.
  • Genscan is a FASTA database of polynucleotide and polypeptide sequences.
  • the maximum range of sequence for Genscan to analyze at once was set to 30 kb.
  • the encoded polypeptides were analyzed by querying against PFAM models for tiansporters and ion channels. Potential transporters and ion channels were also identified by homology to Incyte cDNA sequences that had been annotated as transporters and ion channels. These selected Genscan-predicted sequences were then compared by BLAST analysis to the genpept and gbpri public databases.
  • Genscan-predicted sequences were then edited by comparison to the top BLAST hit from genpept to conect enors in the sequence predicted by Genscan, such as extra or omitted exons.
  • BLAST analysis was also used to find any Incyte cDNA or public cDNA coverage of the Genscan-predicted sequences, thus providing evidence for transcription.
  • Incyte cDNA coverage was available, this information was used to correct or confirm the Genscan predicted sequence.
  • FuU length polynucleotide sequences were obtained by assembling Genscan-predicted coding sequences with Incyte cDNA sequences and/or pubhc cDNA sequences using the assembly process described in Example TU.
  • full length polynucleotide sequences were derived entirely from edited or unedited Genscan-predicted coding sequences.
  • Partial cDNA sequences were extended with exons predicted by the Genscan gene identification program described in Example IV. Partial cDNAs assembled as described in Example HI were mapped to genomic DNA and parsed into clusters containing related cDNAs and Genscan exon predictions from one or more genomic sequences. Each cluster was analyzed using an algorithm based on graph theory and dynamic programming to integrate cDNA and genomic information, generating possible splice variants that were subsequently confirmed, edited, or extended to create a fuU length sequence. Sequence intervals in which the entire length of the interval was present on more than one sequence in the cluster were identified, and intervals thus identified were considered to be equivalent by transitivity.
  • Inconect exons predicted by Genscan were corrected by comparison to the top BLAST hit from genpept. Sequences were further extended with additional cDNA sequences, or by inspection of genomic DNA, when necessary. "Stretched" Sequences Partial DNA sequences were extended to fuU length with an algorithm based on BLAST analysis. First, partial cDNAs assembled as described in Example UI were queried against pubhc databases such as the GenBank primate, rodent, mammahan, vertebrate, and eukaryote databases using the BLAST program. The nearest GenBank protein homolog was then compared by BLAST analysis to either Incyte cDNA sequences or GenScan exon predicted sequences described in Example IV.
  • a chimeric protein was generated by using the resultant high-scoring segment pairs (HSPs) to map the translated sequences onto the GenBank protein homolog. Insertions or deletions • may occur in the chimeric protein with respect to the original GenBank protein homolog.
  • GenBank protein homolog, the chimeric protein, or both were used as probes to search for homologous genomic sequences from the pubhc human genome databases. Partial DNA sequences were therefore "stretched” or extended by the addition of homologous genomic sequences. The resultant stretched sequences were examined to determine whether it contained a complete gene.
  • sequences which were used to assemble SEQ JD NO:10-18 were compared with sequences from the Incyte LJFESEQ database and pubhc domain databases using BLAST and other implementations of the Smith- Waterman algorithm. Sequences from these databases that matched SEQ ID NO:10-18 were assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 7). Radiation hybrid and genetic mapping data available from pubhc resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Genethon were used to deteimine if any of the clustered sequences had been previously mapped. Inclusion of a mapped sequence in a cluster resulted in the assignment of aU sequences of that cluster, including its particular SEQ ID NO:, to that map location.
  • pubhc resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Genethon were used to deteimine if any of the clustered sequences
  • Map locations are represented by ranges, or intervals, of human chromosomes.
  • the map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p- arm.
  • centiMorgan cM
  • centiMorgan is a unit of measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.
  • the cM distances are based on genetic markers mapped by Genethon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters.
  • the product score takes into account both the degree of similarity between two sequences and the length of the sequence match.
  • the product score is a normalized value between 0 and 100, and is calculated as foUows: the BLAST score is multiplied by the percent nucleotide identity and the product is divided by (5 times the length of the shorter of the two sequences).
  • the BLAST score is calculated by assigning a score of +5 for every base that matches in a high-scoring segment pah (HSP), and -4 for every mismatch. Two sequences may share more than one HSP (separated by gaps). If there is more than one HSP, then the pair widi the highest BLAST score is used to calculate the product score.
  • the product score represents a balance between fractional overlap and quahty in a BLAST alignment. For example, a product score of 100 is produced only for 100% identity over the entire length of the shorter of the two sequences being compared. A product score of 70 is produced either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other. A product score of 50 is produced either by 100% identity and 50% overlap at one end, or 79% identity and 100% overlap.
  • polynucleotide sequences encoding TRICH are analyzed with respect to the tissue sources from which they were derived. For example, some full length sequences are assembled, at least in part, with overlapping Incyte cDNA sequences (see Example TH). Each cDNA sequence is derived from a cDNA hbrary constructed from a human tissue.
  • Each human tissue is classified into one of the foUowing organ tissue categories: cardiovascular system; connective tissue; digestive system; embryonic structures; endocrine system; exocrine glands; genitalia, female; genitaha, male; germ ceUs; hemic and mirnune system; hver; musculoskeletal system; nervous system; pancreas; respiratory system; sense organs; skin; stomatognaihic system; unclassified/mixed; or urinary tract.
  • the number of libraries in each category is counted and divided by the total number of libraries across aU categories.
  • each human tissue is classified into one of the foUowing disease/condition categories: cancer, ceU line, developmental, inflammation, neurological, trauma, cardiovascular, pooled, and other, and the number of libraries in each category is counted and divided by the total number of libraries across aU categories. The resulting percentages reflect the tissue- and disease-specific expression of cDNA encoding TRICH.
  • FuU length polynucleotide sequences were also produced by extension of an appropriate fragment of the frdl length molecule using ohgonucleotide primers designed from this fragment.
  • One primer was synthesized to initiate 5' extension of the known fragment, and the other primer was synthesized to initiate 3 ' extension of the known fragment.
  • the initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68 °C to about 72 °C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.
  • Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.
  • the plate was scanned in a Fluoroskan JI (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA.
  • a 5 ⁇ l to 10 ⁇ l aliquot of the reaction mixture was analyzed by electrophoresis on a 1 % agarose gel to determine which reactions were successful in extending the sequence.
  • the extended nucleotides were desalted and concentrated, tiansfened to 384-weU plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to rehgation into pUC 18 vector (Amersham Biosciences).
  • CviJI cholera virus endonuclease Molecular Biology Research, Madison WI
  • sonicated or sheared prior to rehgation into pUC 18 vector
  • the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega).
  • Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Biosciences), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent E. coh ceUs. Transformed ceUs were selected on antibiotic-containing media, and individual colonies were picked and cultared overnight at 37 °C in 384-weU plates in LB/2x carb liquid media.
  • the ceUs were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Biosciences) and Pfu DNA polymerase (Stratagene) with the foUowing parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above.
  • fuU length polynucleotide sequences are verified using the above procedure or are used to obtain 5' regulatory sequences using the above procedure along with ohgonucleotides designed for such extension, and an appropriate genomic hbrary.
  • SNPs single nucleotide polymorphisms
  • LIFESEQ database Incyte Genomics
  • Sequences from the same gene were clustered together and assembled as described in Example HI, aUowing the identification of aU sequence variants in the gene.
  • An algorithm consisting of a series of filters was used to distinguish SNPs from other sequence variants. Preliminary filters removed the majority of basecaU enors by requiring a rninimum Phred quahty score of 15, and removed sequence alignment errors and enors resulting from improper trimming of vector sequences, chimeras, and sphce variants.
  • Certain SNPs were selected for further characterization by mass spectrometry using the high throughput MASSARRAY system (Sequenom, Inc.) to analyze aUele frequencies at the SNP sites in four different human populations.
  • the Caucasian population comprised 92 individuals (46 male, 46 female), including 83 from Utah, four French, three Venezuelan, and two Amish individuals.
  • the African population comprised 194 individuals (97 male, 97 female), aU African Americans.
  • the Hispanic population comprised 324 individuals (162 male, 162 female), aU Mexican Hispanic.
  • the Asian population comprised 126 individuals (64 male, 62 female) with a reported parental breakdown of 43% Chinese, 31% Japanese, 13% Korean, 5% Vietnamese, and 8% other Asian.
  • AUele frequencies were first analyzed in the Caucasian population; in some cases those SNPs which showed no aUelic variance in this population were not further tested in the other three populations.
  • Hybridization probes derived from SEQ JD NO: 10-18 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of ohgonucleotides, consisting of about 20 base pairs, is specificaUy described, essentiaUy the same procedure is used with larger nucleotide fragments.
  • Ohgonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 ⁇ Ci of [ ⁇ - 32 P] adenosine ti ⁇ phosphate (Amersham Biosciences), and T4 polynucleotide kinase (DuPont NEN, Boston MA).
  • the labeled ohgonucleotides are substantiaUy purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Biosciences).
  • the DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & SchueU, Durham NH). Hybridization is carried out for 16 hours at 40 °C To remove nonspecific signals, blots are sequentiahy washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared. XI. Microarrays
  • the linkage or synthesis of anay elements upon a microanay can be achieved utilizing photohthography, piezoelectric printing (ink-jet printing, See, e.g., Baldeschweiler, supra.), mechanical microspotting technologies, and derivatives thereof.
  • the substrate in each of the aforementioned technologies should be uniform and sohd with a non-porous surface (Schena (1999), supra).
  • Suggested substrates include sihcon, sihca, glass shdes, glass chips, and sihcon wafers.
  • a procedure analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures.
  • a typical anay may be produced using available methods and machines weU known to those of ordinary skiU in the art and may contain any appropriate number of elements.
  • FuU length cDNAs, Expressed Sequence Tags (ESTs), or fragments or oligomers thereof may comprise the elements of the microanay.
  • Fragments or ohgomers suitable for hybridization can be selected using software weU known in the art such as LASERGENE software (DNASTAR).
  • the array elements are hybridized with polynucleotides in a biological sample.
  • the polynucleotides in the biological sample are conjugated to a fluorescent label or other molecular tag for ease of detection.
  • a fluorescence scanner is used to detect hybridization at each anay element.
  • laser desorbtion and mass spectrometry may be used for detection of hybridization.
  • the degree of complementarity and the relative abundance of each polynucleotide which hybridizes to an element on the microanay maybe assessed.
  • microarray preparation and usage is described in detail below.
  • Total RNA is isolated from tissue samples using the guanidinium thiocyanate method and poly(A) + RNA is purified using the oligo-(dT) ceUulose method.
  • Each poly(A) + RNA sample is reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/ ⁇ l oligo-(dT) primer (21mer), IX first strand buffer, 0.03 units/ ⁇ l RNase inhibitor, 500 ⁇ M dATP, 500 ⁇ M dGTP, 500 ⁇ M dTTP, 40 ⁇ M dCTP, 40 ⁇ M dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Biosciences).
  • the reverse transcription reaction is performed in a 25 ml volume containing 200 ng poly(A) + RNA with GEMBRIGHT kits (Incyte).
  • Specific control ⁇ oly(A) + RNAs are synthesized by in vitro transcription from non-coding yeast genomic DNA. After incubation at 37° C for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeling) is treated with 2.5 ml of 0.5M sodium hydroxide and incubated for 20 minutes at 85° C to the stop the reaction and degrade the RNA. Samples are purified using two successive CHROMA SPIN 30 gel filtration spin columns (CLONTECH Laboratories, Inc.
  • Anay elements are amplified in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5 ⁇ g. Amphfied anay elements are then purified using SEPHACRYL-400 (Amersham Biosciences). Purified array elements are immobilized on polymer-coated glass shdes. Glass microscope shdes (Corning) are cleaned by ultrasound in 0.1% SDS and acetone, with extensive distilled water washes between and after treatments. Glass shdes are etched in 4% hydrofluoric acid (VWR Scientific Products Corporation (VWR), West Chester PA), washed extensively in distiUed water, and coated with 0.05% aminopropyl silane (Sigma) in 95% ethanol. Coated shdes are cured in a 110°C oven.
  • Anay elements are apphed to the coated glass substrate using a procedure described in U.S. Patent No. 5,807,522, incorporated herein by reference.
  • 1 ⁇ l of the anay element DNA is loaded into the open capillary printing element by a high-speed robotic apparatus.
  • the apparatus then deposits about 5 nl of array element sample per shde.
  • Microarrays are UV-crosslinked using a STRATALTNKER UV-crosslinker (Stratagene). Microarrays are washed at room temperature once in 0.2% SDS and three times in distiUed water. Non-specific binding sites are blocked by incubation of microanays in 0.2% casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford MA) for 30 minutes at 60° C foUowed by washes in 0.2% SDS and distiUed water as before.
  • PBS phosphate buffered saline
  • Hybridization reactions contain 9 ⁇ l of sample mixture consisting of 0.2 ⁇ g each of Cy3 and Cy5 labeled cDNA synthesis products in 5X SSC, 0.2% SDS hybridization buffer.
  • the sample mixture is heated to 65° C for 5 minutes and is ahquoted onto the microanay surface and covered with an 1.8 cm 2 covershp.
  • the arrays are transferred to a waterproof chamber having a cavity just slightly larger than a microscope shde. The chamber is kept at 100% humidity internaUy by the addition of 140 ⁇ l of 5X SSC in a corner of the chamber.
  • the chamber containing the anays is incubated for about 6.5 hours at 60°C
  • the anays are washed for 10 min at 45°C in a first wash buffer (IX SSC, 0.1% SDS), three times for 10 minutes each at 45° C in a second wash buffer (0. IX SSC), and dried. Detection
  • Reporter-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5.
  • the excitation laser light is focused on the array using a 20X microscope objective (Nikon, Inc., Melville NY).
  • the shde containing the array is placed on a computer-conteoUed X-Y stage on the microscope and raster- scanned past the objective.
  • the 1.8 cm x 1.8 cm anay used in the present example is scanned with a resolution of 20 micrometers.
  • a mixed gas multiline laser excites the two fluorophores sequentiaUy. Emitted light is split, based on wavelength, into two photomultiplier tube detectors (PMT R1477,
  • a specific location on the array contains a complementary DNA sequence, aUowing the intensity of the signal at that location to be conelated with a weight ratio of hybridizing species of 1:100,000.
  • the calibration is done by labeling samples of the calibrating cDNA with the two fluorophores and adding identical amounts of each to the hybridization mixture.
  • the output of the photomultiplier tube is digitized using a 12-bit RTI-835H analog-to-digital (A/D) conversion board (Analog Devices, Inc., Norwood MA) instaUed in an IBM-compatible PC computer.
  • the digitized data are displayed as an image where the signal intensity is mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal).
  • the data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first corrected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore 's emission spectrum.
  • a grid is superimposed over the fluorescence signal image such that the signal from each spot is centered in each element of the grid.
  • the fluorescence signal within each element is then integrated to obtain a numerical value conesponding to the average intensity of the signal.
  • the software used for signal analysis is the GEMTOOLS gene expression analysis program (Incyte). Anay elements that exhibited at least about a two-fold change in expression, a signal-to-background ratio of at least 2.5, and an element spot size of at least 40% were identified as differentiaUy expressed using the GEMTOOLS program (Incyte Genomics). Expression
  • SEQ ID NO: 10 showed differential expression in association with Jurkat ceU lines treated with PMA and ionomycin as compared to untreated Jurkat ceU lines, as determined by microanay analysis.
  • the expression of SEQ ID NO: 10 was decreased by at least two fold in Jurkat ceUs treated with at least 100 nM PMA and at least 1 microgram/ml ionomycin for 1 hour, as compared to controls. Therefore, in an embodiment, SEQ JD NO: 10 can be used in diagnostic assays for and/or monitoring treatment of immune response disorders.
  • Sequences complementary to the TRICH-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturaUy occurring TRICH.
  • ohgonucleotides comprising from about 15 to 30 base pairs is described, essentiaUy the same procedure is used with smaUer or with larger sequence fragments.
  • Appropriate ohgonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of TRICH.
  • a complementary ohgonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence.
  • a complementary ohgonucleotide is designed to prevent ribosomal binding to the TRICH-encoding transcript.
  • TRICH Transcription factor-like protein
  • cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription.
  • promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element.
  • Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3).
  • Antibiotic resistant bacteria express TRICH upon induction with isopropyl beta-D- thiogalactopyranoside (JPTG).
  • TRICH in eukaryotic ceUs is achieved by infecting insect or mammahan ceU lines with recombinant Autograpbica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus.
  • AcMNPV Autograpbica californica nuclear polyhedrosis virus
  • the nonessential polyhedrin gene of baculovims is replaced with cDNA encoding TRICH by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription.
  • Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect ceUs in most cases, or human hepatocytes, in some cases.
  • TRICH is synthesized as a fusion protein with, e.g., glutathione S-tiansferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude ceU lysates.
  • GST glutathione S-tiansferase
  • FLAG or 6-His a peptide epitope tag
  • GST a 26-kilodalton enzyme from Schistosoma iaponicum. enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Biosciences).
  • the GST moiety can be proteolyticaUy cleaved from TRICH at specificaUy engineered sites.
  • FLAG an 8-amino acid peptide
  • 6-His a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch. 10 and 16). Purified TRICH obtained by these methods can be used directly in the assays shown in Examples XVH, XVm, and X where apphcable.
  • TRICH function is assessed by expressing the sequences encoding TRICH at physiologicahy elevated levels in mammahan ceU culture systems.
  • cDNA is subcloned into a mammahan expression vector containing a strong promoter that drives high levels of cDNA expression.
  • Vectors of choice include PCMV SPORT plasmid (Invitrogen, Carlsbad CA) and PCR3.1 plasmid (Invitrogen), both of which contain the cytomegalovirus promoter.
  • recombinant vector 5-10 ⁇ g of recombinant vector are transiently transfected into a human ceU line, for example, an endothelial or hematopoietic ceU hne, using either hposome formulations or electroporation. 1-2 ⁇ g of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected ceUs from nontransfected ceUs and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein
  • FCM Flow cytometiy
  • TRICH The influence of TRICH on gene expression can be assessed using highly purified populations of ceUs transfected with sequences encoding TRICH and either CD64 or CD64-GFP.
  • CD64 and CD64-GFP are expressed on the surface of transfected ceUs and bind to conserved regions of human immunoglobulin G (IgG).
  • Transfected ceUs are efficiently separated from nontransfected ceUs using magnetic beads coated with either human IgG or antibody against CD64 (D YNAL, Lake Success NY).
  • mRNA can be purified from the ceUs using methods weU known by those of skiU in the art. Expression of mRNA encoding TRICH and other genes of interest can be analyzed by northern analysis or microarray techniques. XV. Production of TRICH Specific Antibodies
  • the TRICH amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skiU in the art.
  • Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are weU described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.)
  • ohgopeptides of about 15 residues in length are synthesized using an ABI 431 A peptide synthesizer (Apphed Biosystems) using FMOC chemistry and coupled to KLH (Sigma- Aldrich, St. Louis MO) by reaction with N-maleirmdobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity.
  • MFS N-maleirmdobenzoyl-N-hydroxysuccinimide ester
  • Rabbits are immunized with die oligopeptide-KLH complex in complete Freund's adjuvant.
  • Resulting antisera are tested for antipeptide and anti-TRICH activity by, for example, binding the peptide or TRICH to a substrate, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.
  • XVI. Purification of Naturally Occurring TRICH Using Specific Antibodies NaturaUy occurring or recombinant TRICH is substantiaUy purified by immunoaffinity chromatography using antibodies specific for TRICH.
  • An immunoaffinity column is constructed by covalently coupling anti-TRICH antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Biosciences).
  • the resin is blocked and washed according to the manufacturer's instructions.
  • Media containing TRICH are passed over the immunoaffinity column, and the column is washed under conditions that aUow the preferential absorbance of TRICH (e.g., high ionic strength buffers in the presence of detergent).
  • the column is eluted under conditions that disrupt antibody TRICH binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and TRICH is collected.
  • aUow the preferential absorbance of TRICH e.g., high ionic strength buffers in the presence of detergent.
  • the column is eluted under conditions that disrupt antibody TRICH binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and TRICH is collected.
  • a chaotrope such as urea or thi
  • Molecules that interact with TRICH may include transporter substrates, agonists or antagonists, modulatory proteins such as G ⁇ proteins (Reimann, supra) or proteins involved in TRICH locahzation or clustering such as MAGUKs (Craven, supra).
  • TRICH, or biologicaUy active fragments thereof are labeled with 125 I Bolton-Hunter reagent. (See, e.g., Bolton A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539.)
  • Candidate molecules previously arrayed in the wehs of a multi-weU plate are incubated with the labeled TRICH, washed, and any weUs with labeled TRICH complex are assayed.
  • TRICH Data obtained using different concentrations of TRICH are used to calculate values for the number, affinity, and association of TRICH with the candidate molecules.
  • molecules interacting with TRICH are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989) Nature 340:245-246, or using commerciaUy available kits based on the two-hybrid system, such as the MATCHMAKER system (Clontech).
  • TRICH, or fragments thereof are expressed as fusion proteins with the DNA binding domain of Gal4 or lexA, and potential interacting proteins are expressed as fusion proteins with an activation domain.
  • TRICH fusion protein Interactions between the TRICH fusion protein and the TRICH interacting proteins (fusion proteins with an activation domain) reconstitute a transactivation function that is observed by expression of a reporter gene.
  • TRICH interacting proteins fusion proteins with an activation domain
  • Yeast 2-hybrid systems are commerciaUy available, and methods for use of the yeast 2-hybrid system with ion channel proteins are discussed in Niethammer, M. and M. Sheng (1998, Methods Enzymol. 293 : 104- 122).
  • TRICH may also be used in the PATHCALLING process (CuraGen Corp., New Haven CT) which employs the yeast two-hybrid system in a high-throughput manner to determine aU interactions between the proteins encoded by two large libraries of genes (Nandabalan, K. et al. (2000) U.S. Patent No. 6,057,101).
  • Potential TRICH agonists or antagonists may be tested for activation or inhibition of TRICH ion channel activity using the assays described in section XVJJI. XVIII. Demonstration of TRICH Activity
  • TRICH can be expressed by transforming a mammahan ceU line such as COS7, HeLa or CHO with a eukaryotic expression vector encoding TRICH. Eukaryotic expression vectors are commerciaUy available, and the techniques to introduce them into ceUs are weU known to those skilled in the art.
  • a second plasmid which expresses any one of a number of marker genes, such as ⁇ - galactosidase, is co-transformed into the ceUs to aUow rapid identification of those ceUs which have taken up and expressed die foreign DNA. The ceUs are incubated for 48-72 hours after transformation under conditions appropriate for the ceU line to aUow expression and accumulation of TRICH and ⁇ -galactosidase.
  • Transformed ceUs expressing ⁇ -galactosidase are stained blue when a suitable colorimetric substrate is added to the culture media under conditions that are weU known in the art. Stained ceUs are tested for differences in membrane conductance by electrophysiological techniques that are weU known in the art. Untiansformed ceUs, and/or ceUs transformed with either vector sequences alone or ⁇ -galactosidase sequences alone, are used as controls and tested in parahel. CeUs expressing TRICH wiU have higher cation conductance relative to control ceUs. The contribution of TRICH to conductance can be confirmed by incubating the ceUs using antiboilies specific for TRICH. The antibodies wiU bind to the extiaceUular side of TRICH, thereby blocking the pore in the ion channel, and the associated conductance.
  • TRICH ion channel activity of TRICH is measured as cunent flow across a TRICH- containing Xenopus laevis oocyte membrane using the two-electrode voltage-clamp technique (Ishi et al., supra; Jegla, T. and L. Salkoff (1997) J. Neurosci. 17:32-44).
  • TRICH is subcloned into an appropriate Xenopus oocyte expression vector, such as pBF, and 0.5-5 ng of mRNA is injected into mature stage IV oocytes. Injected oocytes are incubated at 18 °C for 1-5 days.
  • IntraceUular solution containing 116 mM K-gluconate, 4 mM KC1, and 10 mM Hepes (pH 7.2).
  • the intraceUular solution is supplemented with varying concentrations of the TRICH mediator, such as cAMP, cGMP, or Ca +2 (in the form of CaCy, where appropriate.
  • Electrode resistance is set at 2-5 M ⁇ and electrodes are fiUed with the intraceUular solution lacking mediator. Experiments are performed at room temperature from a holding potential of 0 mV. Voltage ramps (2.5 s) from -100 to 100 mV are acquired at a sampling frequency of 500 Hz. Cunent measured is proportional to the activity of TRICH in the assay. For example, the activity of TRICH-3 is measured as proton conductance and the activity of
  • TRICH-4 is measured as calcium conductance.
  • Transport activity of TRICH is assayed by measuring uptake of labeled substrates into Xenopus laevis oocytes.
  • Oocytes at stages V and VI are injected with TRICH mRNA (10 ng per oocyte) and incubated for 3 days at 18 °C in OR2 medium (82.5mM NaCI, 2.5 mM KC1, ImM CaCl 2 , ImM MgCl 2 , ImM Na j HPO ⁇ 5 mM Hepes, 3.8 mM NaOH , 50 ⁇ g/ml gentamycin, pH 7.8) to aUow expression of TRICH.
  • Oocytes are then transferred to standard uptake medium (lOOmM NaCI, 2 mM KC1, ImM CaCl 2 , ImM MgCl 2 , 10 mM Hepes Tris pH 7.5).
  • Uptake of various substrates e.g., amino acids, sugars, drugs, ions, and neurotransmitters
  • labeled substrate e.g. radiolabeled with 3 H, fluorescently labeled with rhodamine, etc.
  • uptake is tenninated by washing the oocytes three times in Na + -free me&um, measuring the incorporated label, and comparing with controls.
  • TRICH activity is proportional to the level of internalized labeled substrate.
  • Test substrates include, but are not limited to, mehbiose or other carbohydrates for TRICH-1, urea for TRICH-5, and sulphate for TRICH-6.
  • ATPase activity associated with TRICH can be measured by hydrolysis of radiolabeled ATP- [ ⁇ - 32 P], separation of the hydrolysis products by chromatographic methods, and quantitation of the recovered 32 P using a scintillation counter.
  • the reaction mixture contains ATP-[ ⁇ - 32 PJ and varying amounts of TRICH in a suitable buffer incubated at 37 °C for a suitable period of time.
  • the reaction is terminated by acid precipitation with trichloroacetic acid and then neutralized with base, and an ahquot of the reaction mixture is subjected to membrane or filter paper-based chromatography to separate the reaction products.
  • the amount of 3 P liberated is counted in a scintiUation counter.
  • the amount of radioactivity recovered is proportional to the ATPase activity of TRICH in the assay.
  • hon uptake activity of TRICH is assayed in 100 mM HEPES/NaOH buffer (pH 7.0) with a Fe 2+ /TRICH molar ratio of 1000:1 at room temperature, hon incorporation is monitored by measuring the absorbance at 310 nm using a UV spectiophotometer (Masuda, T. et al. (2001) J. Biol. Chem. 276:19575-19579).
  • XIX Identification of TRICH Agonists and Antagonists
  • TRICH is expressed in a eukaryotic ceU line such as CHO (Chinese Hamster Ovary) or HEK (Human Embryonic Kidney) 293.
  • Ion channel activity of the transformed cehs is measured in the presence and absence of candidate agonists or antagonists. Ion channel activity is assayed using patch clamp methods weU known in the art or as described in Example XVH. Alternatively, ion channel activity is assayed using fluorescent techniques that measure ion flux across the ceU membrane (Velicelebi, G. et al. (1999) Meth. Enzymol. 294:20-47; West, M.R. and CR. MoUoy (1996) Anal. Biochem. 241:51-58).
  • These assays may be adapted for high-throughput screening using microplates. Changes in internal ion concentration are measured using fluorescent dyes such as the Ca 2+ indicator Fluo-4 AM (available from Molecular Probes) in combination with the FLIPR fluorimetric plate reading system (Molecular Devices). In a more generic version of this assay, changes in membrane potential caused by ionic flux across the plasma membrane are measured using oxonyl dyes such as DiBAC 4 (Molecular Probes). DiBAC 4 equihbrates between the extraceUular solution and ceUular sites according to the ceUular membrane potential.
  • fluorescent dyes such as the Ca 2+ indicator Fluo-4 AM (available from Molecular Probes) in combination with the FLIPR fluorimetric plate reading system (Molecular Devices).
  • oxonyl dyes such as DiBAC 4 (Molecular Probes). DiBAC 4 equihbrates between the extraceUular solution and ceUular sites according to the ceUular membrane potential.
  • Candidate agonists or antagonists may be selected from known ion channel agonists or antagonists, peptide libraries, or combinatorial chemical libraries.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Diabetes (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Psychiatry (AREA)
  • Cardiology (AREA)
  • Reproductive Health (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Psychology (AREA)
  • Endocrinology (AREA)
  • Hematology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biochemistry (AREA)
  • Gynecology & Obstetrics (AREA)
  • Pregnancy & Childbirth (AREA)
  • Vascular Medicine (AREA)
  • Emergency Medicine (AREA)
  • Obesity (AREA)

Abstract

The invention provides human transporters and ion channels (TRICH) and polynucleotides which identify and encode TRICH. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with aberrant expression of TRICH.

Description

TRANSPORTERS AND ION CHANNELS
TECHNICAL FIELD
This invention relates to nucleic acid and amino acid sequences of transporters and ion channels and to the use of these sequences in the diagnosis, prevention, and treatment of transport, neurological, muscular, immunological, and cell proliferative disorders, as well as disorders of iron metabolism, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of transporters and ion channels.
BACKGROUND OF THE INVENTION
Eukaryotic cells are surrounded and subdivided into functionally distinct organelles by hydrophobic lipid bilayer membranes which are highly impermeable to most polar molecules. Cells and organelles require transport proteins to import and export essential nutrients and metal ions including K+, NH , P,., SOψ2", sugars, and vitamins, as well as various metabolic waste products. Transport proteins also play roles in antibiotic resistance, toxin secretion, ion balance, synaptic neurotransmission, kidney function, intestinal absorption, tumor growth, and other diverse cell functions (Griffith, J. and C. Sansom (1998) The Transporter Facts Book, Academic Press, San Diego CA, pp. 3-29). Transport can occur by a passive concentration-dependent mechanism, or can be linked to an energy source such as ATP hydrolysis or an ion gradient. Proteins that function in transport include carrier proteins, which bind to a specific solute and undergo a conformational change that translocates the bound solute across the membrane, and channel proteins, which form hydrophilic pores that allow specific solutes to diffuse through the membrane down an electrochemical solute gradient.
Carrier proteins which transport a single solute from one side of the membrane to the other are called uniporters. In contrast, coupled transporters link the transfer of one solute with simultaneous or sequential transfer of a second solute, either in the same direction (symport) or in the opposite direction (antiport). For example, intestinal and kidney epithelium contains a variety of symporter systems driven by the sodium gradient that exists across the plasma membrane. Sodium moyes into the cell down its electrochemical gradient and brings the solute into the cell with it. The sodium gradient that provides the driving force for solute upt∑ike is maintained by the ubiquitous Na+/K+ ATPase system. Sodium-coupled transporters include the m«^mmalian glucose transporter (SGLT1), iodide transporter (NTS), and multivitamin transporter (SMVT). All three transporters have twelve putative transmembrane segments, extracellular glycosylation sites, and cytoplasmically- oriented N- and C-termini. NTS plays a crucial role in the evaluation, diagnosis, and treatment of various thyroid pathologies because it is the molecular basis for radioiodide thyroid-imaging techniques and for specific targeting of radioisotopes to the thyroid gland (Levy, O. et al. (1997) Proc. Natl. Acad. Sci. USA 94:5568-5573). SMVT is expressed in the intestinal mucosa, kidney, and placenta, and is implicated in the transport of the water-soluble vitamins, e.g., biotin and pantofhenate (Prasad, P.D. et al. (1998) J. Biol. Chem. 273:7501-7506).
One of the largest families of transporters is the major facilitator superfamily (MFS), also called the uniporter-symporter-antiporter family. MFS transporters are single polypeptide carriers that transport small solutes in response to ion gradients. Members of the MFS are found in all classes of living organisms, and include transporters for sugars, oligosaccharides, phosphates, nitrates, nucleosides, monocarboxylates, and drugs. MFS transporters found in eukaryotes all have a structure comprising 12 transmembrane segments (Pao, S.S. et al. (1998) Microbiol. Molec. Biol. Rev. 62:1-34). The largest family of MFS transporters is the sugar transporter family, which includes the seven glucose transporters (GLUT1-GLUT7) found in humans that are required for the transport of glucose and other hexose sugars. These glucose transport proteins have unique tissue distributions and physiological functions. GLUT1 provides many cell types with their basal glucose requirements and transports glucose across epithelial and endothelial barrier tissues; GLUT2 facilitates glucose uptake or efflux from the liver; GLUT3 regulates glucose supply to neurons; GLUT4 is responsible for insulin- regulated glucose disposal; and GLUT5 regulates fructose uptake into skeletal muscle. Defects in glucose transporters are involved in a recently identified neurological syndrome causing infantile seizures and developmental delay, as well as glycogen storage disease, Fanconi-Bickel syndrome, and non-insulin-dependent diabetes mellitus (Mueckler, M. (1994) Eur. J. Biochem. 219:713-725; Longo, N. and L.J. Elsas (1998) Adv. Pediatr. 45:293-313).
Monocarboxylate anion transporters are proton-coupled symporters with abroad substrate specificity that includes L-lactate, pyruvate, and the ketone bodies acetate, acetoacetate, and beta-hydroxybutyrate. At least seven isoforms have been identified to date. The isoforms are predicted to have twelve transmembrane (TM) helical domains with a large intracellular loop between TM6 and TM7, and play a critical role in mamtaining intracellular pH by removing the protons that are produced stoichiometrically with lactate during glycolysis. The best characterized H+-monocarboxylate transporter is that of the erythrocyte membrane, which transports L-lactate and a wide range of other aliphatic monocarboxylates. Other cells possess H+-linked monocarboxylate transporters with differing substrate and inhibitor selectivities. In particular, cardiac muscle and tumor cells have transporters that differ in their K^ values for certain substrates, including stereoselectivity for L- over D-lactate, and in their sensitivity to inhibitors. There are Na+-monocarboxylate cotr∞sporters on the luminal surface of intestinal and kidney epithelia, which allow the uptake of lactate, pyruvate, and ketone bodies in these tissues. In addition, there are specific and selective transporters for organic cations and organic anions in organs including the kidney, intestine and liver. Organic anion tiansporters are selective for hydrophobic, charged molecules with electron-attracting side groups. Organic cation transporters, such as the ammonium transporter, mediate the secretion of a variety of drugs and endogenous metabolites, and contribute to the maintenance of intercellular pH (Poole, R.C. and A.P. Halestrap (1993) Am. J. Physiol. 264:C761-C782; Price, N.T. et al. (1998) Biochem. J. 329:321-328; and Martinelle, K. and I. Haggstrom (1993) J. Biotechnol. 30:339-350). ATP-binding cassette (ABC) transporters are members of a superfamily of membrane proteins that transport substances ranging from small molecules such as ions, sugars, amino acids, peptides, and phospholipids, to lipopeptides, large proteins, and complex hydrophobic drugs. ABC transporters consist of four modules: two nucleotide-binding domains (NBD), which hydrolyze ATP to supply the energy required for transport, and two membrane-spanning domains (MSD), each containing six putative transmembrane segments. These four modules may be encoded by a single gene, as is the case for the cystic fibrosis transmembrane regulator (CFTR), or by separate genes. When encoded by separate genes, each gene product contains a single NBD and MSD. These "half- molecules" form homo- and heterodimers, such as Tapl and Tap2, the endoplasmic reticulum-based major histocompatibility (MHC) peptide transport system. Several genetic diseases are attributed to defects in ABC transporters, such as the following diseases and their corresponding proteins: cystic fibrosis (CFTR, an ion channel), adrenoleukodystrophy (adrenoleukodystrophy protein, ALDP), Zelfweger syndrome (peroxisomal membrane protein-70, PMP70), and hyperinsulinemic hypoglycemia (sulfonylurea receptor, SUR). Overexpression of the multidrug resistance (MDR) protein, another ABC transporter, in human cancer cells makes the cells resistant to a variety of cytotoxic drugs used in chemotherapy (Taglicht, D. and S. Michaelis (1998) Meth. Enzymol. 292:130-162).
A number of metal ions such as iron, zinc, copper, cobalt, manganese, molybdenum, selenium, nickel, and chromium are important as cofactors for a number of enzymes. For example, copper is involved in hemoglobin synthesis, connective tissue metabolism, and bone development, by acting as a cofactor in oxidoreductases such as superoxide dismutase, ferroxidase (ceruloplasmin), and lysyl oxidase. Copper and other metal ions must be provided in the diet, and are absorbed by transporters in the gastrointestinal tract. Plasma proteins transport the metal ions to the liver and other target organs, where specific transporters move the ions into cells and cellular organelles as needed. Imbalances in metal ion metabolism have been associated with a number of disease states (Danks, D.M. (1986) J. Med. Genet. 23:99-106).
Transport of fatty acids across the plasma membrane can occur by diffusion, a high capacity, low affinity process. However, under normal physiological conditions a significant fraction of fatty acid transport appears to occur via a high affinity, low capacity protein-mediated transport process. Fatty acid tr^sport protein (FATP), an integral membrane protein with four transmembrane segments, is expressed in tissues exhibiting high levels of plasma membrane fatty acid flux, such as muscle, heart, and adipose. Expression of FATP is upregulated in 3T3-L1 cells during adipose conversion, and expression in COS7 fibroblasts elevates uptake of long-chain fatty acids (Hui, T.Y. et al. (1998) J. Biol. Chem. 273:27420-27429). Mitochondrial carrier proteins are tiansmembrane-spanning proteins which transport ions and charged metabolites between the cytosol and the mitochondrial matrix. Examples include the ADP, ATP carrier protein; the 2-oxoglutarate/malate carrier; the phosphate carrier protein; the pyruvate carrier; the dicarboxylate carrier which transports malate, succinate, fumarate, and phosphate; the tricarboxylate carrier which transports citrate and malate; and the Grave's disease carrier protein, a protein recognized by IgG in patients with active Grave's disease, an autoimmune disorder resulting in hyperthyroidism. Proteins in this family consist of three tandem repeats of an approximately.100
•. amino. acid domain, each of which contains two transmembrane regions (Stryer, L. (1995;);: S5. -i..
Biochemistrvi W.H. Freeman and Company, New York NY, p. 551; PROSTTE PDOC001_89. !;. n >
Mitochondrial energy transfer proteins signature; Online Mendelian Inheritance in Man (OMTM)=. *275000 Graves Disease).
This class of transporters also includes the mitochondrial uncoupling proteins, which create proton leaks across the inner mitochondrial membrane, thus uncoupling oxidative phosphorylation from ATP synthesis. The result is energy dissipation in the form of heat. Mitochondrial uncoupling proteins have been implicated as modulators of thermoregulation and metabolic rate, and have been proposed as potential targets for drugs against metabolic diseases such as obesity (Ricquier, D. et al. (1999) J. Int. Med. 245:637-642).
Urea transporters (UT, UrT) play a central role in urea excretion and water balance by allowing the accumulation and concentration of urea in the kidney medulla (Hediger, M.A. et al. (1996) Kidney Int. 49:1615-1623). Urea is a major solute found in urine and is the principal means by which mammals dispose of nitrogen-based waste products. Urea transporter proteins have been identified in erythropoietic cells (UT-B) and in the kidney medula (UT-A). Several isoforms of the renal urea transporter (UT-A) have been cloned (le., UT-Al, UT-A2, UT-A3, and UT-A4). The expression of UT-A2 may be upregulated in response to uremia. UT-A3 may be expressed in the testis. Urea transporters may also be expressed in the brain (Karakashian, A. et al. (1999) J. Am. Soc. Nephrol. 1999 10:230-237; Couriaud, C. et al. (1996) Biochim Biophys Acta. 1996 1309:197-19). At least two distinct classes of urea transporters are present in humans: constitutively-expressed transporters, and vasopressin-regulated transporters (Olives, B. et al. (1996) FEBS Lett. 386:156-160).
A number of metal ions such as iron, zinc, copper, cobalt, manganese, molybdenum, selenium, nickel, and chromium are important as cofactors for a number of enzymes. For example, copper is involved in hemoglobin synthesis, connective tissue metabolism, and bone development, by acting as a cof actor in oxidoreductases such as superoxide dismutase, ferroxidase (ceroloplasmin), and lysyl oxidase. Copper and other metal ions must be provided in the diet, and are absorbed by transporters in the gastrointestinal tract. Plasma proteins transport the metal ions to the liver and other target organs, where specific transporters move the ions into cells and cellular organelles as needed. Imbalances in metal ion metabolism have been associated with a number of disease states (Danks, D.M. (1986) J. Med. Genet. 23:99-106). Iron plays an essential role in oxygen transport and redox reactions, particularly cell respiration; however, iron is also toxic when present in excess. In humans, unregulated ironiabsorption, leads to cirrhosis, endocrine, failure, arthritis and cardiomyopathy, as well as hepatocellular carcinoma ■ ■„• ' (Griffiths,- W.J.H. et al. (1999) Mol. Med. Today 5:431-438). Ferritin is a ubiquitous iron-binding *V,./ protein that is involved in iron storage and detoxification in microbes, plants, and animals. Mammalian ferritin consists of 24 subunits of two types, H (for heart, or heavy) and L (for light or liver). These subunits assemble into a spherical structure which can accommodate up to 4,000 iron atoms as ferrihydrite, FeOOH (Aisen, P. et al. (1999) Curr. Opin. Chem. Biol. 3:200-206).
The nuclear pore complex (NPC) is a large multiprotein complex spanning the nuclear envelope which mediates the transport of proteins and RNA molecules between the nucleus and the cytoplasm, thus contributing to the regulation of gene expression. The NPC allows passive diffusion of ions, small molecules, and macromolecules under about 60kD, while larger macromolecules are transported by facilitated, energy-dependent pathways. Nuclear localization signals (NLS), consisting of short stretches of amino acids enriched in basic residues, are found on proteins that are targeted to the nucleus, such as the glucocorticoid receptor. The NLS is recognized by the NLS receptor, importin, which then interacts with the monomeric GTP-binding protein Ran. This NLS protein/receptor Ran complex navigates the nuclear pore with the help of the homodimeric protein nuclear transport factor 2 (NTF2) (Nakielny, S. and Dreyfuss, G. (1997) Curr. Opin. Cell Biol. 9:420- 429; Gorlich, D. (1997) Curr. Opin. Cell Biol. 9:412-419). Four O-linked glycoproteins, p62, p58, p54, and p45, exist as a stable "p62 complex" that forms a ring localized on both nucleoplasmic and cytoplasmic surfaces of the NPC. The p62, p58, and p54 proteins all interact directly with the cytosolic transport factors p97 and NTF2, suggesting that the p62 complex is an important ligand binding site near the central gated channel of the NPC (Hu, T. et al. (1996) J. Cell Biol. 134:589-601).
Ion Channels
The electrical potential of a cell is generated and maintained by controlling the movement of ions across the plasma membrane. The movement of ions requires ion channels, which form ionr selective pores within the membrane. There are two basic types of ion channels, ion transporters and gated ion channels. Ion transporters utilize the energy obtained from ATP hydrolysis to actively transport an ion against the ion's concentration gradient. Gated ion channels allow passive flow of an ion down the ion's electrochemical gradient under restricted conditions. Together, these types of ion channels generate, maintain, and utilize an electrochemical gradient that is used in 1) electrical impulse conduction down the axon of a nerve cell, 2) transport of molecules into cells against concentration gradients, 3) initiation of muscle contraction, and 4) endocrine cell secretion. Ion Transporters
Ion transporters generate and maintain the resting electrical potential of a cell. Utilizing the energy derived from ATP hydrolysis, they transport ions against the ion's concentration gradient. These transmembrane ATPases are divided into three families. The phosphorylated (P) class ion transporters, including Na+-K+ ATPase, Ca2+-ATPase, and H+-ATPase, are activated by a phosphorylation event. P-class ion transporters are responsible for mamtaining resting potential distributions such that cytosolic concentrations of Na+ and Ca2+ are low and cytosolic concentration of , K+ is high. The vacuolar (V) class of ion transporters includes H+ pumps on intracellular organelles, such as lysosomes and Golgi. V-class ion transporters are responsible for generating the low pH within the lumen of these organelles that is required for function. The coupling factor (F) class consists of H+ pumps in the mitochondria. F-class ion tr«ansporters utilize a proton gradient to generate ATP from ADP and inorganic phosphate (PV).
The P- ATPases are hexamers of a 100 kD subunit with ten transmembrane domains and several large cytoplasmic regions that may play a role in ion binding (Scarborough, G. A. (1999) Curr. Opin. Cell Biol. 11:517-522). The V-ATPases are composed of two functional domains: the Vx domain, a peripheral complex responsible for ATP hydrolysis; and the V0 domain, an integral complex responsible for proton translocation across the membrane. The F-ATPases are structurally and evolutionarily related to the V-ATPases. The F- ATPase F0 domain contains 12 copies of the c subunit, a highly hydrophobic protein composed of two transmembrane domains and containing a single buried carboxyl group in TM2 that is essential for proton tr∑msport. The V- ATPase V0 domain contains three types of homologous c subunits with four or five transmembrane domains and the essential carboxyl group in TM4 or TM3. Both types of complex also contain a single a subunit that maybe involved in regulating the pH dependence of activity (Forgac, M. (1999) J. Biol. Chem. 274:12951-12954).
The resting potential of the cell is utilized in many processes involving carrier proteins and gated ion channels. Carrier proteins utilize the resting potential to tr^sport molecules into and out of the cell. Amino acid and glucose transport into many cells is linked to sodium ion co-tr. nsport (symport) so that the movement of Na+ down an electrochemical gradient drives transport of the other molecule up a concentration gradient. Similarly, cardiac muscle links transfer of Ca2+ out of the cell with transport of Na+ into the cell (antiport). Gated Ion Channels
Gated ion channels control ion flow by regulating the opening c nd closing of pores. The ability to control ion flux through various gating mechanisms allows ion channels to mediate such diverse signaling and homeostatic functions as neuronal and endocrine signaling, muscle contraction, fertilization, and regulation of ion and pH balance. Gated ion channels are categorized according to the manner of regulating the gating function. Mechanically-gated channels open their pores in response to mechanical stress; voltage-gated channels (e.g., Na+, K+, Ca2+, and Cl" channels) open their pores in response to ch«anges in membrane potential; and ligand-gated channels (e.g., acetylcholine-, serotonin-, and glutamate-gated cation, channels, and GAB A- and glycine-gated chloride channels) open their pores in the presence of a specific ion, nucleotide, or neurotransmitter. The gating properties of a particular iόn channel (i.e., its threshold for and duration of opening and closing) are sometimes modulated by: association with auxiliary channel proteins and/or post translational modifications, such as phosphorylation.
Mechanically-gated or mechanosensitive ion channels act as transducers for the senses of touch, hearing, and balance, and also play important roles in cell volume regulation, smooth muscle contraction, and cardiac rhythm generation. A stretch-inactivated channel (SIC) was recently cloned from rat kidney. The SIC channel belongs to a group of channels which are activated by pressure or stress on the cell membrane and conduct both Ca2+ and Na+ (Suzuki, M. et al. (1999) J. Biol. Chem. 274:6330-6335).
The pore-forming subunits of the voltage-gated cation channels form a superfamily of ion channel proteins. The characteristic domain of these channel proteins comprises six transmembrane domains (S1-S6), a pore-foπning region (P) located between S5 and S6, and intracellular amino and carboxy termini. In the Na+ and Ca2+ subfamilies, this domain is repeated four times, while in the K+ channel subfamily, each channel is formed from a tetramer of either identical or dissimilar subunits. The P region contains information specifying the ion selectivity for the channel. In the case of K+ channels, a GYG tripeptide is involved in this selectivity (Ishii, T.M. et al. (1997) Proc. Natl. Acad. Sci. USA 94:11651-11656).
Voltage-gated Na+ and K+ channels are necessary for the function of electrically excitable cells, such as nerve and muscle cells. Action potentials, which lead to neurotransmitter release and muscle contraction, arise from large, transient changes in the permeability of the membrane to Na+ and K+ ions. Depolarization of the membrane beyond the threshold level opens voltage-gated Na + channels. Sodium ions flow into the cell, further depolarizing the membrane and opening more voltage-gated Na + channels, which propagates the depolarization down the length of the cell. Depolarization also opens voltage-gated potassium channels. Consequently, potassium ions flow outward, which leads to repolarization of the membrane. Voltage-gated channels utilize charged residues in the fourth transmembrane segment (S4) to sense voltage change. The open state lasts only about 1 millisecond, at which time the channel spontaneously converts into an inactive state that cannot be opened irrespective of the membrane potential. Inactivation is mediated by the channel's N-terminus, which acts as a plug that closes the pore. The transition from an inactive to a closed state requires a return to resting potential. Voltage-gated Na+ channels are heterotrimeric complexes composed of a 260 kDa pore- forming α subunit that associates with two smaller auxiliary subunits, βl and β2. The β2 subunit is a integral membrane glycoprotein that contains an extracellular Ig domain, and its association with α .and βl subunits correlates with increased functional. expression of the channel, a change in its gating properties, as well as an increase in whole cell capacitance due to an increase in membrane surface area (Isom, L.L. et al. (1995) Cell 83 :433-442).
Non voltage-gated Na+ channels include the members of the amiloride-sensitive Na+ channel/degenerin (NaC/DEG) family. Channel subunits of this family are thought to consist of two transmembrane domains flanking a long extracellular loop, with the amino and carboxyl termini located within the cell. The NaC/DEG family includes the epithelial Na+ channel (ENaC) involved in Na+ reabsorption in epithelia including the airway, distal colon, cortical collecting duct of the kidney, and exocrine duct glands. Mutations in ENaC result in pseudohypoaldosteronism type 1 and Liddle's syndrome (pseudohyperaldosteronism). The NaC/DEG family also includes the recently characterized H+-gated cation channels or acid-sensing ion channels (ASIC). ASIC subunits are expressed in the brain and form heteromultimeric Na+-permeable channels. These channels require acid pH fluctuations for activation. ASIC subunits show homology to the degenerins, a family of mechanically- gated channels originally isolated from C. elegans. Mutations in the degenerins cause neurodegeneration. ASIC subunits may also have a role in neuronal function, or in pain perception, since tissue acidosis causes pain (Waldmann, R. and M. Lazdunski (1998) Curr. Opin. Neurobiol. 8:418-424; Eglen, R.M. et al. (1999) Trends Pharmacol. Sci. 20:337-342).
K+ channels are located in all cell types, and maybe regulated by voltage, ATP concentration, or second messengers such as Ca2+ and cAMP. In non-excitable tissue, K+ channels are involved in protein synthesis, control of endocrine secretions, and the maintenance of osmotic equilibrium across membranes. In neurons and other excitable cells, in addition to regulating action potentials and repolarizing membranes, K+ channels are responsible for setting resting membrane potential. The cytosol contains non-diffusible anions and, to balance this net negative charge, the cell contains a Na+- K+ pump and ion channels that provide the redistribution of Na+, K+, and Cl". The pump actively transports Na+ out of the cell and K+ into the cell in a 3 :2 ratio. Ion channels in the plasma membrane allow K+ and Cl" to flow by passive diffusion. Because of the high negative charge within the cytosol, Cl" flows out of the cell. The flow of K+ is balanced by an electromotive force pulling K+ into the cell, and a K+ concentration gradient pushing K+ out of the cell. Thus, the resting membrane potential is primarily regulated by K+flow (Salkoff, L. and T. Jegla (1995) Neuron 15:489-492).
Potassium channel subunits of the Shaker-like superfamily all have the characteristic six tiansmembrane/1 pore domain structure. Four subunits combine as homo- or heterotetramers to form functional K channels. These pore-forming subunits also associate with various cytoplasmic β subunits that alter channel inactivation kinetics. The Shaker-like channel family includes the voltage- gated K+ channels as well as the delayed rectifier type channels such as the human ether-a-go-go related gene (HERG) associated with long QT, a cardiac dysrythmia syndrome (Curran, M.E. (1998) Curr. Opin. Biotechnol. 9:565-572; Kaczorowski, G.J. and M.L. Garcia (1999) Curr. Opin. Chem. Biol. 3:448-458).
A second superfamily of K+ channels is composed of the inward rectifying channels (Kir). Kir channels have the property of preferentially conducting K+ currents in the inward direction. These proteins consist of a single potassium selective pore domain and two transmembrane domains, which correspond to the fifth and sixth transmembrane domains of voltage-gated K+ channels. Kir subunits also associate as tetramers. The Kir family includes ROMK1, mutations in which lead to Bartter syndrome, a renal tubular disorder. Kir channels are also involved in regulation of cardiac pacemaker activity, seizures and epilepsy, and insulin regulation (Doupnik, CA. et al. (1995) Curr. Opin. Neurobiol. 5:268-277; Curran, supra). The recently recognized TWIK K+ channel family includes the mammalian TWIK-1, TREK-1 and TASK proteins. Members of this family possess an overall structure with four transmembrane domains and two P domains. These proteins are probably involved in controlling the resting potential in a large set of cell types (Duprat, F. et al. (1997) EMBO J 16:5464-5471). The voltage-gated Ca + channels have been classified into several subtypes based upon their electiophysiological and pharmacological characteristics. L-type Ca2* channels are predominantly expressed in heart and skeletal muscle where they play an essential role in excitation-contraction coupling. T-type channels are important for cardiac pacemaker activity, while N-type and P/Q-type channels ate involved in the control of neurotransmitter release in die central and peripheral nervous system. The L-type and N-type voltage-gated Ca2+ channels have been purified and, though their functions differ dramatically, they have similar subunit compositions. The channels are composed of three subunits. The α subunit forms the membrane pore and voltage sensor, while the c^δ and β subunits modulate the voltage-dependence, gating properties, and the current amplitude of the channel. These subunits are encoded by at least six αl5 one c^δ, and four β genes. A fourth subunit, γ, has been identified in skeletal muscle (Walker, D. et al. (1998) J. Biol. Chem. 273:2361-2367; McCleskey, E.W. (1994) Curr. Opin. Neurobiol. 4:304-312).
The high-voltage-activated Ca(2+) channels that have been characterized biochemically include complexes of a pore-forming alphal subunit of approximately 190-250 kDa; a transmembrane complex of alpha2 and delta subunits; an intracellular beta subunit; and in some cases a transmembrane gamma subunit. A variety of alphal subunits, alpha2delta complexes, beta subunits, and gamma subunits are known. The Cavl family of alphal subunits conduct L-type Ca(2+) currents, which initiate muscle contraction, endocrine secretion, and gene transcription, and are regulated primarily by second messenger-activated protein phosphorylation pathways. The Cav2 family of alphal subunits conduct N-type, P/Q-type, and R-type Ca(2+) currents, which initiate rapid synaptic transmission and are regulated primarily by direct interaction with G proteins and SNARE proteins and secondarily by protein phosphorylation. The Cav3 family of alphal subunits conduct T-type Ca(2+) currents, which are activated and inactivated more rapidly and at more negative membrane potentials than other Ca(2+) current types. The distinct structures and patterns of regulation of these three families of Ca(2+) channels provide an array of Ca(2+) entry pathways in response to changes in membrane potential and a range of possibilities for regulation of Ca(2+) entry by second messenger pathways and interacting proteins (Catterall, W.A. (2000) Annu. Rev. Cell Dev. Biol. 16:521-555).
The alpha-2 subunit of the voltage-gated Ca2+-channel may include one or more Cache domains. An extracellular Cache domain maybe fused to an intracellular catalytic domain, such as the histidine kinase, PP2C phosphatase, GGDEF (a predicted diguanylate cyclase), HD-GYP (a predicted phosphodiesterase) or adenylyl cyclase domain, or to a noncatalytic domain, like the methyl-accepting, DNA-binding winged helix-turn-helix, GAF, PAS or HAMP (domain found in istidine kinases, denylyl cyclases, ethyl-binding proteins and phosphatases). Small molecules are bound via the Cache domain and this signal is converted into diverse outputs depending on the intracellular domains (Anantharaman, V. and Aravind, L.(2000) Trends Biochem. Sci. 25:535-537).
The transient receptor family (Trp) of calcium ion channels are thought to mediate capacitative calcium entry (CCE). CCE is the Ca2+ influx into cells to resupply Ca2+ stores depleted by the action of inositol triphosphate (IP3) and other agents in response to numerous hormones and growth factors. Trp and Trp-like were first cloned from Drosophila and have similarity to voltage gated Ca2+ channels in the S3 through S6 regions. This suggests that Trp and/or related proteins may form mammalian CCC entry channels (Zhu, X. et al. (1996) Cell 85:661-671; Boulay, G. et al. (1997) J. Biol. Chem. 272:29672-29680). Melastatin is a gene isolated in both the mouse and human, and whose expression in melanoma cells is inversely correlated with melanoma aggressiveness in vivo. The human cDNA transcript corresponds to a 1533-amino acid protein having homology to members of the Trp family. It has been proposed that the combined use of malastatin mRNA expression status and tumor thickness might allow for the determination of subgroups of patients at both low and high risk for developing metastatic disease (Duncan, L.M. et al (2001) I. Clin. Oncol. 19:568-576). Chloride channels are necessary in endocrine secretion and in regulation of cytosolic and organelle pH. In secretory epithelial cells, Cl" enters the cell across a basolateral membrane through an Na +, K+/C1" cotransporter, accumulating in the cell above its electrochemical equilibrium , . concentration. Secretion of CT from the apical surface, in response to hormonal stimulation, leads to flow of Na+ and water into the secretory lumen. The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel encoded by the gene for cystic fibrosis, a common fatal genetic disorder in humans. CFTR is a member of the ABC transporter family, and is composed of two domains each consisting of six transmembrane domains followed by a nucleotide-binding site. Loss of CFTR function decreases ttansepithelial water secretion and, as a result, the layers of mucus that coat the respiratory tree, pancreatic ducts, and intestine are dehydrated and difficult to clear. The resulting blockage of these sites leads to pancreatic insufficiency, "meconium ileus", and devastating "chronic obstructive pulmonary disease" (Al-Awqati, Q. et al. (1992) J. Exp. Biol. 172:245-266).
The voltage-gated chloride channels (CLC) are characterized by 10-12 transmembrane domains, as well as two small globular domains known as CBS domains. The CLC subunits probably function as homotetramers. CLC proteins are involved in regulation of cell volume, membrane potential stabilization, signal transduction, and ttansepithelial transport. Mutations in CLC-1, expressed predominantly in skeletal muscle, are responsible for autosomal recessive generalized myotonia and autosomal dominant myotonia congenita, while mutations in the kidney channel CLC-5 lead to kidney stones (Jentsch, TJ. (1996) Curr. Opin. Neurobiol. 6:303-310). Ligand-gated channels open their pores when an extracellular or intracellular mediator binds to the channel. Neurotransmitter-gated channels are channels that open when a neurotransmitter binds to their extracellular domain. These channels exist in the postsynaptic membrane of nerve or muscle cells. There are two types of neurotransmitter-gated channels. Sodium channels open in response to excitatory neurotransmitters, such as acetylcholine, glutamate, and serotonin. This opening causes an influx of Na+ and produces the initial localized depolarization that activates the voltage-gated channels and starts the action potential. Chloride channels open in response to inhibitory neurotransmitters, such as γ-aminobutyric acid (GAB A) and glycine, leading to hyperpolarization of the membrane and the subsequent generation of an action potential. Neurotransmitter-gated ion channels have four transmembrane domains and probably function as pentamers (Jentsch, supra). Amino acids in the second transmembrane domain appear to be import« nt in determining channel permeation and selectivity (Sather, W.A. et al. (1994) Curr. Opin. Neurobiol. 4:313-323).
Ligand-gated channels can be regulated by intracellular second messengers. For example, calcium-activated K+ channels are gated by internal calcium ions. In nerve cells, an influx of calcium during depolarization opens K+ channels to modulate the magnitude of the action potential (Ishi et al., supra). The large conductance (BK) channel has been purified from brain and its subunit composition determined. The subunit of the BK channel has seven rather than six transmembrane domains in contrast to voltage-gated K+ channels. The extra transmembrane domain is located at the subunit N- terminus. A 28-amino-acid stretch in the C-terminal region of the subunit (the "calcium bowl" region) contains many negatively charged residues and is thought to be the region responsible for calcium binding. The β subunit consists of two transmembrane domains connected by a glycosylated extracellular loop, with intracellular N- and C-termini (Kaczorowski, supra; Vergara, C. et al. (1998) Curr. Opin. Neurobiol. 8:321-329).
Cyclic nucleotide-gated (CNG) channels are gated by cytosolic cyclic nucleotides. The best examples of these are the cAMP-gated Na + channels involved in olfaction and the cGMP-gated cation channels involved in vision. Both systems involve ligand-mediated activation of a G-protein coupled receptor which then alters the level of cyclic nucleotide within the cell. CNG channels also represent a major pathway for Ca + entry into neurons, and play roles in neuronal development and plasticity. CNG channels are tetramers containing at least two types of subunits, an subunit which can form functional homomeric channels, and a β subunit, which modulates the channel properties. All CNG subunits have six transmembrane domains and a pore forming region between the fifth and sixth transmembrane domains, similar to voltage-gated K+ channels. A large C-terminal domain contains a cyclic nucleotide binding domain, while the N-teπninal domain confers variation among channel subtypes (Zufall, F. et al. (1997) Curr. Opin. Neurobiol. 7:404-412).
The activity of other types of ion channel proteins may also be modulated by a variety of intracellular signalling proteins. Many channels have sites for phosphorylation by one or more protein kinases including protein kinase A, protein kinase C, tyrosine kinase, and casein kinase π, all of which regulate ion channel activity in cells. Kir channels are activated by the binding of the Gβγ subunits of heterotrimeric G-proteins (Reimann, F. and F.M. Ashcroft (1999) Curr. Opin. Cell. Biol. 11:503-508). Other proteins are involved in the localization of ion channels to specific sites in the cell membrane. Such proteins include the PDZ domain proteins known as MAGUKs (membrane-associated guanylate kinases) which regulate the clustering of ion channels at neuronal synapses (Craven, S.E. and D.S. Bredt (1998) Cell 93:495-498). Disease Correlation
The etiology of numerous human diseases and disorders can be attributed to defects in the transport of molecules across membranes. Defects in the trafficking of membrane-bound tr^sporters and ion channels are associated with several disorders, e.g., cystic fibrosis, glucose-galactose malabsorption syndrome, hypercholesterolemia, von Gierke disease, and certain forms of diabetes mellitus. Single-gene defect diseases resulting in an inability to transport small molecules across membranes include, e.g., cystinuria, kninoglycinuria, Hartup disease, and Fanconi disease (van't Hoff, . W.G. (1996) Exp. Nephrol. 4:253-262; Talente, G.M. et al. (1994) Ann. Intern. Med. 120:218-226; . and Chillon, M. et al. (1995) New Engl. J. Med. 332:1475-1480). Human diseases caused by mutations in ion channel genes include disorders of skeletal muscle, cardiac muscle, and the central nervous system. Mutations in the pore-forming subunits of sodium and chloride channels cause myotonia, a muscle disorder in which relaxation after voluntary contraction is delayed. Sodium channel myotonias have been treated with channel blockers. Mutations in muscle sodium and calcium channels cause forms of periodic paralysis, while mutations in the sarcoplasmic calcium release channel, T-tubule calcium channel, and muscle sodium channel cause malignant hyperthermia. Cardiac arrythmia disorders such as the long QT syndromes and idiopathic ventricular fibrillation are caused by mutations in potassium and sodium channels (Cooper, E.C. and L.Y. Jan (1998) Proc. Natl. Acad. Sci. USA 96:4759-4766). AU four known human idiopathic epilepsy genes code for ion channel proteins (Berkovic, S.F. and LE. Scheffer (1999) Curr. Opin. Neurology 12:177-182). Other neurological disorders such as ataxias, hemiplegic migraine and hereditary deafness can also result from mutations in ion channel genes (Jen, J. (1999) Curr. Opin. Neurobiol. 9:274-280; Cooper, supra).
Ion channels have been the target for many drug therapies. Neurotransmitter-gated channels have been targeted in therapies for treatment of insomnia, anxiety, depression, and schizophrenia. Voltage-gated channels have been targeted in therapies for arrhythmia, ischemic stroke, head trauma, and neurodegenerative disease (Taylor, CP. and L.S. Narasimhan (1997) Adv. Pharmacol. 39:47-98). Various classes of ion channels also play an important role in the perception of pain, and thus are potential targets for new analgesics. These include the vanilloid-gated ion channels, which Me activated by the vanilloid capsaicin, as well as by noxious heat. Local anesthetics such as lidocaine and mexiletine which blockade voltage-gated Na+ channels have been useful in the treatment of neuropathic pain (Eglen, supra).
Ion channels in the immune system have recently been suggested as targets for immunomodulation. T-cell activation depends upon calcium signaling, and a diverse set of T-cell specific ion channels has been characterized that affect this signaling process. Channel blocking agents can inhibit secretion of lymphokines, cell proliferation, and killing of target cells. A peptide antagonist of the T-cell potassium channel Kvl.3 was found to suppress delayed-type hypersensitivity .and allogenic responses in pigs, validating the idea of channel blockers as safe and efficacious immunosuppressants (Cahalan, M.D. and K.G. Chandy (1997) Curr. Opin. Biotechnol. 8:749-756).
In addition, several SLC26 gene family (solute carrier family 26) ion transporters have been . associated with human disease. Defects in the sulfate transporter encoded by the DTDST gene cause diastrophic dysplasia, atelosteogenesis type JI, or achondrogenesis type IB. Defects in the chloride transporter encoded by the CLD (formerly known as DRA) gene causes congenital chloride diarrhea. Defects in the iodide transporter encoded by the PDS gene is associated with Pendred syndrome (PS) and nonsyndromic deafness type DFNB4. A fourth member of the family transports anions such as sulfate, oxalate, and bicarbonate. A fifth member functions as a motor protein of the cochlear outer hair cells. A sixth member, SLC26A6, has recently been identified as a sulfate transporter (Waldegger, S. et al. (2001) Genomics 72:43-50 and references within). Expression profiling
Array technology can provide a simple way to explore the expression of a single polymorphic gene or the expression profile of a large number of related or unrelated genes. When the expression of a single gene is examined, arrays are employed to detect the expression of a specific gene or its variants. When an expression profile is examined, arrays provide a platform for identifying genes that are tissue specific, are affected by a substance being tested in a toxicology assay, are part of a signaling cascade, carry out housekeeping functions, or are specifically related to a particular genetic predisposition, condition, disease, or disorder.
The potential application of gene expression profiling is particularly relevant to improving diagnosis, prognosis, and treatment of disease that affect the immune response. Jurkat is an acute T cell leukemia cell line that grows actively in the absence of external stimuli. Jurkat has been extensively used to study signaling in human T cells.
PMA is a broad activator of the protein kinase C-dependent pathways. Ionomycin is a calcium ionophore that permits entry of calcium into the cell, hence increasing the cytosolic calcium concentration. The combination of PMA and ionomycin activates two of the major signaling pathways used by mammalian cells to interact with their environment. In T cells, the combination of PMA and ionomycin mimics the type of secondary signaling events elicited during optimal B cell activation.
The discovery of new transporters and ion channels, and the polynucleotides encoding them, satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of transport, neurological, muscular, immunological, and cell proliferative disorders, as well as disorders of iron metabolism, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of transporters and ion channels.
SUMMARY OF THE INVENTION
The invention features purified polypeptides, transporters and ion channels, referred to collectively as "TRICH' and individually as "TRICH-1," "TRICH-2," "TRICH-3," "TRICH-4," "TRICH-5," "TRICH-6," "TRICH-7," "TRICH-8," and "TRICH-9." In one aspect, the invention provides an isolated polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ JD NO:l-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:l-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-9. In one alternative, the invention provides an isolated polypeptide comprising the amino acid sequence of SEQ ID NO:l-9.
The invention further provides an isolated polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:l-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:l- 9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ JD NO: 1-9. In one alternative, the polynucleotide encodes a polypeptide selected from the group consisting of SEQ JD NO: 1-9. In another alternative, the polynucleotide is selected from the group consisting of SEQ JD NO: 10-18. Additionally, the invention provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ JD NO:l-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-9. In one alternative, the invention provides a cell transformed with the recombinant polynucleotide. In another alternative, the invention provides a transgenic organism comprising the recombinant polynucleotide.
The invention also provides a method for producing a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:l-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ JD NO:l-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group . consisting of SEQ ID NO: 1-9, .and d) an immunogenic fragment of a polypeptide having an a ino acid sequence selected from the group consisting of SEQ ID NO:l-9. The method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.
Additionally, the invention provides an isolated antibody which specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ JD NO:l-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ JD NO:l-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ JD NO:l-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ JD NO:l-9.
The invention further provides an isolated polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:10-18, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ JD NO:10-18, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). In one alternative, the polynucleotide comprises at least 60 contiguous nucleotides. Additionally, the invention provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:10-18, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ JD NO:10-18, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). The method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and optionally, if present, the amount thereof. In one alternative, the probe comprises at least 60 contiguous nucleotides.
The invention further provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:10-18, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:10-18, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). The method comprises a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.
The invention further provides a composition comprising an effective amount of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:l-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-9, and a pharmaceutically acceptable excipient. In one embodiment, the composition comprises an amino acid sequence selected from the group consisting of SEQ ID NO: 1-9. The invention additionally provides a method of treating a disease or condition associated with decreased expression of functional TRICH, comprising administering to a patient in need of such treatment the composition. The invention also provides a method for screening a compound for effectiveness as an agonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-9. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity in the sample. In one alternative, the invention provides a composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with decreased expression of functional TRICH, comprising administering to a patient in need of such treatment the composition.
Additionally, the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ JD NO:l-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:l-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ JD NO: 1-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ JD NO:l-9. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagomst activity in the sample. In one alternative, the invention provides a composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with overexpression of functional TRICH, comprising administering to a patient in need of such treatment the composition.
The invention further provides a method of screening for a compound that specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 1-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:l-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ JD NO:l-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ JD NO: 1-9. The method comprises a) combining the polypeptide with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide to the test compound, thereby identifying a compound that specifically binds to the polypeptide.
The invention further provides a method of screening for a compound that modulates the activity of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:l-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:l-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-9. The method comprises a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound, and c) comparing the activity of the polypeptide in the presence of the test compound with the activity of the polypeptide in the absence of the test compound, wherein a change in the activity of the polypeptide in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide.
The invention further provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a polynucleotide sequence selected from the group consisting of SEQ ID NO: 10-18, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, b) detecting altered expression of the target polynucleotide, and c) comparing the expression of the target polynucleotide in the presence of varying amounts of the compound and in the absence of the compound.
The invention further provides a method for assessing toxicity of a test compound, said method comprising a) treating a biological sample containing nucleic acids with the test compound; b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ JD NO:10-18, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ JD NO: 10-18, iϋ) a polynucleotide having a sequence complementary to i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv). Hybridization occurs under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:10-18, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ JD NO:10-18, iϋ) a polynucleotide complementary to the polynucleotide of i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv). Alternatively, the target polynucleotide comprises a fragment of a polynucleotide sequence selected from the group consisting of i)-v) above; c) quantifying the amount of hybridization complex; and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.
BRIEF DESCRIPTION OF THE TABLES
Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the present invention.
Table 2 shows the GenBank identification number and annotation of the nearest GenBank homolog for polypeptides of the invention. The probability scores for the matches between each polypeptide and its homolog(s) are also shown.
Table 3 shows structural features of polypeptide sequences of the invention, including predicted motifs and domains, along with the methods, algorithms, and searchable databases used for analysis of the polypeptides.
Table 4 lists the cDNA and/or genomic DNA fragments which were used to assemble polynucleotide sequences of the invention, along with selected fragments of the polynucleotide sequences. Table 5 shows the representative cDNA library for polynucleotides of the invention.
Table 6 provides an appendix which describes the tissues and vectors used for construction of the cDNA libraries shown in Table 5.
Table 7 shows the tools, programs, and algorithms used to analyze the polynucleotides and polypeptides of the invention, along with applicable descriptions, references, and threshold parameters.
DESCRIPTION OF THE INVENTION
Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.
It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.
Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the prefened machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention. DEFINITIONS
"TRICH" refers to the amino acid sequences of substantially purified TRICH obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.
The term "agonist" refers to a molecule which intensifies or mimics the biological activity of TRICH. Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of TRICH either by directly interacting with TRICH or by acting on components of the biological pathway in which TRICH participates. An "allelic variant" is an alternative form of the gene encoding TRICH. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational ch< nges which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.
"Altered" nucleic acid sequences encoding TRICH include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as TRICH or a polypeptide with at least one functional characteristic of TRICH. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding TRICH, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding TRICH. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent TRICH. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of TRICH is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, and positively charged amino acids may include lysine and arginine. Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine. Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine. The terms "amino acid" and "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where "amino acid sequence" is recited to refer to a sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule. "Amplification" relates to the production of additional copies of a nucleic acid sequence.
Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.
The term "antagonist" refers to a molecule which inhibits or attenuates the biological activity of TRICH. Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of TRICH either by directly interacting with TRICH or by acting on components of the biological pathway in which TRICH participates.
The term "antibody" refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab')2, and Fv fragments, which are capable of binding an epitopic determinant. Antibodies that bind TRICH polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the tr<anslation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.
The term "antigenic detenninant'' refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (particular regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.
The term "aptamer" refers to a nucleic acid or oligonucleotide molecule that binds to a specific molecular target. Aptamers are derived from an in vitro evolutionary process (e.g., SELEX (Systematic Evolution of Ligands by Exponential Enrichment), described in U.S. Patent No. 5,270,163), which selects for target-specific aptamer sequences from large combinatorial libraries. Aptamer compositions may be double-stranded or single-stranded, and may include deoxyribonucleotides, ribonucleotides, nucleotide derivatives, or other nucleotide-like molecules. The nucleotide components of an aptamer may have modified sugar groups (e.g., the 2 -OH group of a ribonucleotide may be replaced by 2'-F or 2'-NH2), which may improve a desired property, e.g., resistance to nucleases or longer lifetime in blood. Aptamers may be conjugated to other molecules, e.g., a high molecular weight carrier to slow clearance of the aptamer from the circulatory system. Aptamers maybe specifically cross-linked to their cognate ligands, e.g., by photo-activation of a cross-linker. (See, e.g., Brody, E.N. and L. Gold (2000) J. Biotechnol. 74:5-13.)
The term "intramer" refers to an aptamer which is expressed in vivo. For example, a vaccinia virus-based RNA expression system has been used to express specific RNA aptamers at high levels in the cytoplasm of leukocytes (Blind, M. et al. (1999) Proc. Natl. Acad. Sci. USA 96:3606-3610). The term "spiegelmer" refers to an aptamer which includes L-DNA, L-RNA, or other left- handed nucleotide derivatives or nucleotide-like molecules. Aptamers containing left-handed nucleotides are resistant to degradation by naturally occurring enzymes, which normally act on substrates containing right-handed nucleotides.
The term "antisense" refers to any composition capable of base-pairing with the "sense" (coding) strand of a specific nucleic acid sequence. Antisense compositions may include DNA; RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified sugar groups such as 2'-me1hoxyethyl sugars or 2'-methoxyethoxy sugars; or oligonucleotides having modified bases such as 5-methyl cytosine, 2 -deoxyuracil, or 7-deaza-2 -deoxyguanosine. Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation. The designation "negative" or "minus" can refer to the antisense strand, and the designation "positive" or "plus" can refer to the sense strand of a reference DNA molecule.
The term "biologically active" refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" or "immunogenic" refers to the capability of the natural, recombinant, or synthetic TRICH, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.
"Complementary" describes the relationship between two single-stranded nucleic acid sequences that anneal by base-pairing. For example, 5 -AGT-3' pairs with its complement, 3'-TCA-5'.
A "composition comprising a given polynucleotide sequence" and a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution. Compositions comprising polynucleotide sequences encoding TRICH or fragments of TRICH may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCI), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.). "Consensus sequence" refers to a nucleic acid sequence which has been subjected to repeated DNA sequence analysis to resolve uncalled bases, extended using the XL-PCR kit (Applied Biosystems, Foster City CA) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from one or more overlapping cDNA, EST, or genomic DNA fragments using a computer program for fragment assembly, such as the GELVTEW fragment assembly system (GCG, Madison WI) or Phrap (University of Washington, Seattle WA). Some sequences have been both extended and assembled to produce the consensus sequence. "Conservative amino acid substitutions" are those substitutions that are predicted to least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions. The table below shows amino acids which maybe substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions. Original Residue Conservative Substitution
Ala Gly, Ser
Arg His, Lys
Asn Asp, Gin, His Asp Asn, Glu
Cys Ala, Ser
Gin Asn, Glu, His
Glu Asp, Gin, His
Gly Ala His Asn, Arg, Gin, Glu lie Leu, Val
Leu Ue, Val
Lys Arg, Gin, Glu
Met Leu, He Phe His, Met, Leu, Trp, Tyr
Ser Cys, Thr
Thr Ser, Val
Trp Phe, Tyr
Tyr His, Phe, Trp Val He, Leu, Thr
Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chain.
A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.
The term "derivative" refers to a chemically modified polynucleotide or polypeptide. Chemical modifications of a polynucleotide can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.
A "detectable label" refers to a reporter molecule or enzyme that is capable of generating a measurable signal and is covalently or noncovalently joined to a polynucleotide or polypeptide. "Differential expression" refers to increased or upregulated; or decreased, downregulated, or absent gene or protein expression, determined by comparing at least two different samples. Such comparisons may be carried out between, for example, a treated and an untreated sample, or a diseased and a normal sample. "Exon shuffling" refers to the recombination of different coding regions (exons). Since an exon may represent a structural or functional domain of the encoded protein, new proteins may be assembled tlirough the novel reassortment of stable substructures, thus allowing acceleration of the evolution of new protein functions.
A "fragment" is a unique portion of TRICH or the polynucleotide encoding TRICH which is identical in sequence to but shorter in length than the parent sequence. A fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues. A fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes, maybe at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule. For example, a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50%) of a polypeptide as shown in a certain defined sequence. Clearly these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, maybe encompassed by the present embodiments.
A fragment of SEQ ID NO:10-18 comprises a region of unique polynucleotide sequence that specifically identifies SEQ ID NO:10-18, for example, as distinct from any other sequence in the genome from which the fragment was obtained. A fragment of SEQ JD NO:10-18 is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO: 10-18 from related polynucleotide sequences. The precise length of a fragment of SEQ JD NO:10-18 and the region of SEQ JD NO:10-18 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.
A fragment of SEQ ID NO:l-9 is encoded by a fragment of SEQ JD NO.TO-18. A fragment of SEQ JD NO: 1-9 comprises a region of unique amino acid sequence that specifically identifies SEQ JD NO:l-9. For example, a fragment of SEQ ID NO:l-9 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ JD NO: 1-9. The precise length of a fragment of SEQ JD NO:l-9 and the region of SEQ JD NO:l-9 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.
A "full length" polynucleotide sequence is one containing at least a translation initiation codon (e.g., methionine) followed by an open reading frame and a translation termination codon. A "full length" polynucleotide sequence encodes a "full length" polypeptide sequence. "Homology" refers to sequence simibrity or, interchangeably, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences.
The terms "percent identity" and "% identity," as applied to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aHgned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.
Percent identity between polynucleotide sequences maybe determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison WI). CLUSTAL V is described in Higgins, D.G. and P.M. Sharp (1989) CABIOS 5:151-153 and inHiggins, D.G. et al. (1992) CABIOS 8:189-191. For pairwise alignments of polynucleotide sequences, the default parameters are set as follows: Ktuple=2, gap penalty=5, window=4, and "diagonals saved"=4. The "weighted" residue weight table is selected as the default. Percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polynucleotide sequences.
Alternatively, a suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410), which is available from several sources, including the NCBI, Bethesda, MD, and on the Internet at http://www.ncbi.nlm.nih.gov/BLAST/. The BLAST software suite includes various sequence analysis programs including "blastn," that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called "BLAST 2 Sequences" that is used for direct pairwise comparison of two nucleotide sequences. "BLAST 2 Sequences" can be accessed and used interactively at http://www.ncbi.nlm.n .gov/gorf/bl2.html. The "BLAST 2 Sequences" tool can be used for both blastn and blastp (discussed below). BLAST programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool Version 2.0.12 (April-21-2000) set at default parameters. Such default parameters maybe, for example: Matrix: BLOSUM62
Reward for match: 1
Penalty for mismatch: -2
Open Gap: 5 and Extension Gap: 2 penalties Gap x drop-off: 50
Expect: 10
Word Size: 11
Filter: on
Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein. The phrases "percent identity" and "% identity," as applied to polypeptide sequences, refer to the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge andjiydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.
Percent identity between polypeptide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program (described and referenced above). For pairwise alignments of polypeptide sequences using CLUSTAL V, the default parameters are set as follows: Ktuple=l, gap penalty=3, window=5, and "diagonals saved"=5. The PAM250 matrix is selected as the default residue weight table. As with polynucleotide alignments, the percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polypeptide sequence pairs.
Alternatively the NCBI BLAST software suite may be used. For example, for a pairwise comparison of two polypeptide sequences, one may use the "BLAST 2 Sequences" tool Version 2.0.12 (April-21-2000) with blastp set at default parameters. Such default parameters may be, for example:
Matrix: BLOSUM62 Open Gap: 11 and Extension Gap: 1 penalties
Gap x drop-off: 50 Expect: 10 Word Size: 3 Filter: on Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
"Human artificial chromosomes" (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size and which contain all of the elements required for chromosome replication, segregation and maintenance. The term ' liumanized antibody" refers to an antibody molecule in which the amino acid sequence in the non-antigen bincling regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.
"Hybridization" refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of complementarity. Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the "washing" step(s). The washing step(s) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched. Permissive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and maybe consistent among hybridization experiments, whereas wash conditions maybe varied among experiments to achieve the desired stringency, and therefore hybridization specificity. Permissive annealing conditions occur, for example, at 68 °C in the presence of about 6 x SSC, about 1% (w/v) SDS, and about 100 μg/ml sheared, denatured salmon sperm DNA.
Generally, stringency of hybridization is expressed, in part, with reference to the temperature under which the wash step is carried out. Such wash temperatures are typically selected to be about 5°C to 20°C lower than the thermal melting point ( „ for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. An equation for calculating Tm and conditions for nucleic acid hybridization are well known and can be found in Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; specifically see volume 2, chapter 9. High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65 °C, 60°C, 55°C, or 42 °C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%. Typically, blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 μg/ml. Organic solvent, such as formamide at a concentration of about 35-50% v v, may also be used under particular circumstances, such as for RNADNA hybridizations. Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art. Hybridization, particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.
The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A hybridization complex maybe formed in solution (e.g., C0t or R0t analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).
The words "insertion" and "addition" refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively. "Immune response" can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.
An "immunogenic fragment" is a polypeptide or oligopeptide fragment of TRICH which is capable of eliciting an immune response when introduced into a living organism, for example, a mammal. The term "immunogenic fragment" also includes any polypeptide or oligopeptide fragment of TRICH which is useful in any of the antibody production methods disclosed herein or known in the art. The term "microarray" refers to an arrangement of a plurality of polynucleotides, polypeptides, or other chemical compounds on a substrate.
The terms "element" and "array element" refer to a polynucleotide, polypeptide, or other chemical compound having a unique and defined position on a microarray.
The term "modulate" refers to a change in the activity of TRICH. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of TRICH.
The phrases "nucleic acid" and "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.
"Operably linked" refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.
"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.
"Post-translational modification" of an TRICH may involve lipidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cell type depending on the enzymatic milieu of TRICH. "Probe" refers to nucleic acid sequences encoding TRICH, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences. Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. "Primers" are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR). Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.
Methods for preparing and using probes and primers are described in the references, for example Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; Ausubel, F.M. et al. (1987) Current Protocols in Molecular- Biology, Greene Publ. Assoc. & Wiley-Intersciences, New York NY; Tunis, M. et al. (1990) PCR Protocols, A Guide to Methods and Applications, Academic Press, San Diego CA. PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).
Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU primer selection program (available to the public from the Genome Center at University of Texas South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope. The Primer3 primer selection program (available to the public from the Whitehead Institute MIT Center for Genome Research, Cambridge MA) allows the user to input a "mispriming library," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.) The PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments. The oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.
A "recombinant nucleic acid" is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, supra. The term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid. Frequently, a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence. Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell. Alternatively, such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be use to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.
A "regulatory element" refers to a nucleic acid sequence usually derived from untranslated regions of a gene and includes enhancers, promoters, introns, and 5' and 3' untranslated regions (UTRs). Regulatory elements interact with host or viral proteins which control transcription, translation, or RNA stability.
"Reporter molecules" are chemical or biochemical moieties used for labeling a nucleic acid, amino acid, or antibody. Reporter molecules include radionuclides; enzymes; fluorescent, chemiluminescent, or chromogenic agents; substrates; cofactors; inhibitors; magnetic particles; and other moieties known in the art.
An "RNA equivalent," in reference to a DNA sequence, is composed of the same linear sequence of nucleotides as the reference DNA sequence with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
The term "sample" is used in its broadest sense. A sample suspected of containing TRICH, nucleic acids encoding TRICH, or fragments thereof may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.
The terms "specific binding" and "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide comprising the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.
The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which they are naturally associated. '
A "substitution" refers to the replacement of one or more amino acid residues or nucleotides by different amino acid residues or nucleotides, respectively. "Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.
A "transcript image" or "expression profile" refers to the collective pattern of gene expression by a particular cell type or tissue under given conditions at a given time.
'Transformation" describes a process by which exogenous DNA is introduced into a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, bacteriophage or viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed cells" includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time. A "transgenic organism," as used herein, is any organism, including but not limited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is inttoduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus. In one alternative, the nucleic acid can be introduced by infection with a recombinant viral vector, such as a lentiviral vector (Lois, C et al. (2002) Science 295:868-872). The term genetic manipulation does not include classical cross-breeding, or in vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule. The transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, plants and animals. The isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook et al. (1989), supra.
A "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07- 1999) set at default parameters. Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length. A variant may be described as, for example, an "allelic" (as defined above), "splice," "species," or "polymorphic" variant. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides will generally have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs maybe indicative of, for example, a certain population, a disease state, or a propensity for a disease state.
A "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07- 1999) set at default parameters. Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length of one of the polypeptides. THE INVENTION
The invention is based on the discovery of new human transporters and ion channels (TRICH), the polynucleotides encoding TRICH, and the use of these compositions for the diagnosis, prevention, and treatment of transport, neurological, muscular, immunological, and cell proliferative disorders, as well as disorders of iron metabolism.
Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the invention. Each polynucleotide and its conesponding polypeptide are correlated to a single Incyte project identification number (Incyte Project ID). Each polypeptide sequence is denoted by both a polypeptide sequence identification number (Polypeptide SEQ JD NO:) and an Incyte polypeptide sequence number (Incyte Polypeptide ID) as shown. Each polynucleotide sequence is denoted by both a polynucleotide sequence identification number (Polynucleotide SEQ ID NO:) and an Incyte polynucleotide consensus sequence number (Incyte Polynucleotide JD) as shown. Table 2 shows sequences with homology to the polypeptides of the invention as identified by
BLAST analysis against the GenBank protein (genpept) database. Columns 1 and 2 show the polypeptide sequence identification number (Polypeptide SEQ ID NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for polypeptides of the invention. Column 3 shows the GenBank identification number (GenBank JD NO:) of the nearest GenBank homolog. Column 4 shows the probability scores for the matches between each polypeptide and its homolog(s). Column 5 shows the annotation of the GenBank homolog(s) along with relevant citations where applicable, all of which are expressly incorporated by reference herein.
Table 3 shows various structural features of the polypeptides of the invention. Columns 1 and
2 show the polypeptide sequence identification number (SEQ ID NO:) and the conesponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for each polypeptide of the invention. Column
3 shows the number of amino acid residues in each polypeptide. Column 4 shows potential phosphorylation sites, and column 5 shows potential glycosylation sites, as determined by the MOTIF'S program of the GCG sequence analysis software package (Genetics Computer Group, Madison WI). Column 6 shows amino acid residues comprising signature sequences, domains, and motifs. Column 7 shows analytical methods for protein structure/function analysis and in some cases, searchable databases to which the analytical methods were applied.
Together, Tables 2 and 3 summarize the properties of polypeptides of the invention, and these properties establish that the claimed polypeptides are transporters and ion channels. For example, SEQ ID NO:3 is 50% identical, from residue A14 to residue R236, to Caulobacter crescentus MotA TolQ/ExbB proton channel family protein (GenBank JD gl3424917) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 6.2e-53, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ JD NO:3 also contains a MotA/TolQ/ExbB proton channel family domain as determined by searching for statistically significant matches in the hidden M∑irkov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from further BLAST analyses provide further corroborative evidence that SEQ ID NO:3 is a proton channel. In an alternative example, SEQ ID NO:4 is 99% identical, from residue G88 to residue R947, to human calcium channel alpha-2-delta3 subunit (GenBank ID g7105926) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 0.0, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:4 also contains a cache domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS amd MOTJFS analyses provide further conoborative evidence that SEQ ID NO:4 is a calcium channel alpha-2-delta3 subunit. In an alternative example, SEQ ID NO:5 is 81% identical, from residue E8 to residue E461, to the murine urea transporter UTA-3 (GenBank JD gl 1177180) as . determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 4.0e-207, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. In an alternative example, SEQ JD NO:6 is 40% identical, from residue E43 to residue L443, to the human solute carrier family 26 member 6 protein (SLC26A6), an anion transporter (GenBank ID gl3344999), as deteπnined by BLAST analysis with a probability score of 4.0e-93. SEQ ID NO:6 also contains a sulfate transporter domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS analysis provide further conoborative evidence that SEQ ID NO:6 is a sulfate transporter. In an alternative example, SEQ ID NO:7 is 96% identical, from residue Ml to residue E323, to human GT mitochondrial solute carrier protein (GenBank ID g386960) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 6.2e-167, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ JD NO:7 also contains mitochondrial carrier protein domains as determined by searching for statistically significant matches in the hidden M∑trkov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS, MOTIFS, and PROFTLESCAN analyses provide further corroborative evidence that SEQ ID NO:7 is a mitochondrial carrier protein. SEQ ID NO:l-2 and SEQ ID NO:8-9 were analyzed and annotated in a similar manner. The algorithms and parameters for the analysis of SEQ ID NO:l-9 are described in Table 7.
As shown in Table 4, die full length polynucleotide sequences of the present invention were assembled using cDNA sequences or coding (exon) sequences derived from genomic DNA, or any combination of these two types of sequences. Column 1 lists the polynucleotide sequence identification number (Polynucleotide SEQ ID NO:), the corresponding Incyte polynucleotide consensus sequence number (Incyte ID) for each polynucleotide of the invention, and the length of each polynucleotide sequence in basepairs. Column 2 shows the nucleotide start (5') and stop (3') positions of the cDNA and/or genomic sequences used to assemble the full length polynucleotide sequences of the invention, and of fragments of the polynucleotide sequences which are useful, for example, in hybridization or amplification technologies that identify SEQ ID NO:10-18 or that distinguish between SEQ JD NO:10-18 and related polynucleotide sequences.
The polynucleotide fragments described in Column 2 of Table 4 may refer specifically, for example, to Incyte cDNAs derived from tissue-specific cDNA libraries or from pooled cDNA libraries. Alternatively, the polynucleotide fragments described in column 2 may refer to GenBank cDNAs or.ESTs which contributed to the assembly of the full length polynucleotide sequences. In addition, the polynucleotide fragments described in column 2 may identify sequences derived from the ENSEMBL (The Sanger Centre, Cambridge, UK) database (Le. , those sequences including the designation "ENST"). Alternatively, the polynucleotide fragments described in column 2 may be derived from the NCBI RefSeq Nucleotide Sequence Records Database (le., those sequences including the designation "NM" or "NT") or the NCBI RefSeq Protein Sequence Records (Le., those sequences including the designation "NP"). Alternatively, the polynucleotide fragments described in column 2 may refer to assemblages of both cDNA and Genscan-predicted exons brought together by an "exon stitching" algorithm. For example, a polynucleotide sequence identified as
FL_XXXXXX_N^N2_YYYYY_N3_N4 represents a "stitched" sequence in which XXKXXX is the identification number of the cluster of sequences to which the algorithm was applied, and YYYYYis the number of the prediction generated by the algorithm, and Ni 2,s...» if present, represent specific exons fliat may have been manually edited during analysis (See Example V). Alternatively, the polynucleotide fragments in column 2 may refer to assemblages of exons brought together by an "exon-stretching" algorithm. For example, a polynucleotide sequence identified as FLXXXXXX_ ≠AAAA_gBBBBB_l_Nis a "stretched" sequence, with XXXXXX being the Incyte project identification number, gAAAAA being the GenBank identification number of the human genomic sequence to which the "exon-stietching" algorithm was applied, gBBBBB being the GenBank identification number or NCBI RefSeq identification number of the nearest GenBank protein homolog, and N referring to specific exons (See Example V). In instances where a RefSeq sequence was used as a protein homolog for the "exon-stietching" algorithm, a RefSeq identifier (denoted by "ΝM," "ΝP," or "NT") maybe used in place of the GenBank identifier (i.e., gBBBBB).
Alternatively, a prefix identifies component sequences that were hand-edited, predicted from genomic DNA sequences, or derived from a combination of sequence analysis methods. The following Table lists examples of component sequence prefixes and corresponding sequence analysis methods associated with the prefixes (see Example TV and Example V).
Figure imgf000041_0001
In some cases, Incyte cDNA coverage redundant with the sequence coverage shown in Table 4 was obtained to confirm the final consensus polynucleotide sequence, but the relevant Incyte cDNA identification numbers are not shown. Table 5 shows the representative cDNA libraries for those full length polynucleotide sequences which were assembled using Incyte cDNA sequences. The representative cDNA library is the Incyte cDNA library which is most frequently represented by the Incyte cDNA sequences which were used to assemble and confirm the above polynucleotide sequences. The tissues and vectors which were used to construct the cDNA libraries shown in Table 5 are described in Table 6. The invention also encompasses TRICH variants. A prefened TRICH variant is one which has at least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the TRICH amino acid sequence, and which contains at least one functional or structural characteristic of TRICH.
The invention also encompasses polynucleotides which encode TRICH. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:10-18, which encodes TRICH. The polynucleotide sequences of SEQ JD NO:10-18, as presented in the Sequence Listing, embrace the equivalent RNA sequences, wherein occunences of the nitrogenous base yrnine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose. The invention also encompasses a variant of a polynucleotide sequence encoding TRICH. In particular, such a variant polynucleotide sequence will have at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding TRICH. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ JD NO: 10- 18 which has at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ JD NO:10-18. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of TRICH.
In addition, or in the alternative, a polynucleotide variant of the invention is a splice variant of a polynucleotide sequence encoding TRICH. A splice variant may have portions which have significant sequence identity to the polynucleotide sequence encoding TRICH, but will generally have a greater or lesser number of polynucleotides due to additions or deletions of blocks of sequence arising from alternate splicing of exons during mRNA processing. A splice variant may have less than about 70%, or alternatively less than about 60%, or alternatively less than about 50% polynucleotide sequence identity to the polynucleotide sequence encoding TRICH over its entire length; however, portions of the splice variant will have at least about 70%, or alternatively at least about 85%, or alternatively at least about 95%, or alternatively 100% polynucleotide sequence identity to portions of the polynucleotide sequence encoding TRICH. Any one of the splice variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of TRICH.
It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding TRICH, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring TRICH, and all such variations are to be considered as being specifically disclosed. Although nucleotide sequences which encode TRICH and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring TRICH under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding TRICH or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding TRICH and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.
The invention also encompasses production of DNA sequences which encode TRICH and TRICH derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence maybe inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry maybe used to introduce mutations into a sequence encoding TRICH or any fragment thereof.
Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO: 10-18 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 152:507- 511.) Hybridization conditions, including .annealing and wash conditions, are described in "Definitions." Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Applied Biosystems), thermostable T7 polymerase (Amersham Biosciences, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Invitrogen, Carlsbad CA). Preferably, sequence preparation is automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (Applied Biosystems). Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (Applied Biosystems), the MEGABACE 1000 DNA sequencing system (Amersham Biosciences), or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology. John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology. Wiley VCH, New York NY, pp. 856-853.)
The nucleic acid sequences encoding TRICH may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in die art to detect upstream sequences, such as promoters and regulatory elements. For example, one mettiod which maybe employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences inhuman and yeast artificial chromosome DNA. (See, e.g., Lagerstiom, M. et al. (1991) PCR Methods Applic. 1:111-119.) In this method, multiple restriction enzyme digestions and ligations maybe used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-3060).
Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 primer analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C
When screening for full length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic lϊbr.aries may be useful for extension of sequence into 5' non-transcribed regulatory regions.
Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electiophoretic separation, four different nucleotide- specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Applied Biosystems), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.
In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode TRICH may be cloned in recombinant DNA molecules that direct expression of TRICH, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express TRICH.
The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter TRICH-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides maybe used to engineer the nucleotide sequences. For example, oligonucleotide- mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.
The nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent No. 5,837,458; Chang, C.-C et al. (1999) Nat. Biotechnol. 17:793-797; Christians, EC. et al. (1999) Nat. Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or improve the biological properties of TRICH, such as its biological or enzymatic activity or its abihty to bind to other molecules or compounds. DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These prefened variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection screening. Thus, genetic diversity is created through "artificial" breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations maybe recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively, fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.
In anoflier embodiment, sequences encoding TRICH may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; and Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232.) Alternatively, TRICH itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solution-phase or solid-phase techniques. (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York NY, pp. 55-60; and Roberge, J.Y. et al. (1995) Science 269:202-204.) Automated synthesis maybe achieved using the ABI 431A peptide synthesizer (Applied Biosystems). AdditionaUy, the amino acid sequence of TRICH, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide or a polypeptide having a sequence of a naturally occurring polypeptide.
The peptide maybe substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.) The composition of the synthetic peptides maybe confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, supra, pp. 28-53.)
In order to express a biologically active TRICH, the nucleotide sequences encoding TRICH or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3 'untranslated regions in the vector and in polynucleotide sequences encoding TRICH. Such elements may vary in their strength and specificit)'. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding TRICH. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding TRICH and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162.)
Methods which are well known to those skilled in the art maybe used to construct expression vectors containing sequences encoding TRICH and appropriate transcriptional and translational control elements. These methods include in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) Current Protocols in Molecular Biology, John Wiley & Sons, New York NY, ch. 9, 13, and 16.)
A variety of expression vector/host systems may be utilized to contain and express sequences encoding TRICH. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. (See, e.g., Sambrook, supra; Ausubel, supra; Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509; Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91 :3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945; Takamatsu, N. (1987) EMBO J. 6:307-311; The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196; Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659; and Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355.) Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for dehvery of nucleotide sequences to the targeted organ, tissue, or cell population. (See, e.g., Di Nicola, M. et al. (1998) Cancer Gen. Ther. 5(6):350-356; Yu, M. et al. (1993) Proc. Natl. Acad. Sci. USA 90(13):6340-6344; Buller, R.M. et al. (1985) Nature 317(6040):813-815; McGregor, D.P. et al. (1994) Mol. Immunol. 31(3):219-226; and Verma, I.M. and N. Somia (1997) Nature 389:239-242.) The invention is not limited by the host cell employed. In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding TRICH. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding TRICH can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Invitrogen). Ligation of sequences encoding TRICH into the vector's multiple cloning site disrupts the lacZ gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509.) When large quantities of TRICH are needed, e.g. for the production of antibodies, vectors which direct high level expression of TRICH may be used. For example, vectors containing the strong, inducible SP6 or T7 bacteriophage promoter may be used.
Yeast expression systems may be used for production of TRICH. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH promoters, maybe used in the yeast Saccharomyces cerevisiae or Pichia pastoris. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, supra; Bitter, G.A. et al. (1987) Methods Enzymol. 153:516-544; and Scorer, CA. et al. (1994) Bio/Technology 12:181-184.)
Plant systems may also be used for expression of TRICH. Transcription of sequences encoding TRICH may be driven by viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters maybe used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; BrogHe, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196.) In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding TRICH maybe ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential El or E3 region of the viral genome may be used to obtain infective virus which expresses TRICH in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RS V) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV- based vectors may also be used for high-level protein expression.
Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345- 355.)
For long term production of recombinant proteins in mammalian systems, stable expression of TRICH in cell lines is prefened. For example, sequences encoding TRICH can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.
Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in tk and apr cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, dhfr confers resistance to methotrexate; neo confers resistance to the arninoglycosides neomycin and G-418; and als and pat confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g.,
Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. USA 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., trpB and hisD, which alter cellular requirements for metabolites. (See, e.g., Hartman, S.C. and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. USA 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), β glucuronidase and its substrate β-glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, CA. (1995) Methods Mol. Biol. 55:121-131.)
Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding TRICH is inserted within a marker gene sequence, transformed cells containing sequences encoding TRICH can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding TRICH under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.
In general, host cells that contain the nucleic acid sequence encoding TRICH and that express TRICH may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences. Immunological methods for detecting and measuring the expression of TTUCH using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on TRICH is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St. Paul MN, Sect. IV; Coligan, J.E. et al. (1997) Cunent Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols, Humana Press, Totowa NJ.)
A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding TRICH include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding TRICH, or any fragments thereof, maybe cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by addition of an appropriate RNA polymerase such as T7, T3 , or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Biosciences, Promega (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like. Host cells transformed with nucleotide sequences encoding TRICH may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell maybe secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode TRICH maybe designed to contain signal sequences which direct secretion of TRICH through a prokaryotic or eukaryotic cell membrane.
In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-tianslational processing which cleaves a "prepro" or "pro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-tianslational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and maybe chosen to ensure the correct modification and processing of the foreign protein.
In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding TRICH maybe ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric TRICH protein containing a heterologous moiety that can be recognized by a corrrmercialfy available antibody may facilitate the screening of peptide libraries for inhibitors of TRICH activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, c-myc, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the TRICH encoding sequence and the heterologous protein sequence, so that TRICH may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, supra, ch. 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins. In a further embodiment of the invention, synthesis of radiolabeled TRICH may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, 35S -methionine.
TRICH of the present invention or fragments thereof may be used to screen for compounds that specifically bind to TRICH. At least one and up to a plurahty of test compounds may be screened for specific binding to TRICH. Examples of test compounds include antibodies, oligonucleotides, proteins (e.g., ligands or receptors), or small molecules. In one embodiment, the compound thus identified is closely related to the natural ligand of TRICH, e.g., a ligand or fragment thereof, a natural substrate, a structural or functional mimetic, or a natural binding partner. (See, e.g., Coligan, J.E. et al. (1991) Cunent Protocols in Immunology 2):Chapter 5.) In another embodiment, the compound thus identified is a natural ligand of a receptor TRICH. (See, e.g., Howard, A.D. et al. (2001) Trends Pharmacol. Sci.22:132-140; Wise, A. et al. (2002) Drug Discovery Today 7:235-246.)
In other embodiments, the compound can be closely related to the natural receptor to which TRICH binds, at least a fragment of the receptor, or a fragment of the receptor including all or a portion of the ligand binding site or binding pocket. For example, the compound may be a receptor for TRICH which is capable of propagating a signal, or a decoy receptor for TRICH which is not capable of propagating a signal (Asbkenazi, A. and V.M. Divit (1999) Curc. Opin. Cell Biol. 11:255-260; Mantovani, A. et al. (2001) Trends Immunol. 22:328-336). The compound can be rationally designed using known techniques. Examples of such techniques include those used to construct the compound etanercept (ENBREL; Immunex Corp., Seattle WA), which is efficacious for treating rheumatoid arthritis in humans. Etanercept is an engineered p75 tumor necrosis factor (TNF) receptor dimer linked to the Fc portion of human I Gi (Taylor, P.C et al. (2001) Cun. Opin. Immunol. 13:611-616). In one embodiment, screening for compounds which specifically bind to, stimulate, or inhibit
TRICH involves producing appropriate cells which express TRICH, either as a secreted protein or on the cell membrane. Prefened cells include cells from mammals, yeast, Drosophila, or E. coli. Cells expressing TRICH or cell membrane fractions which contain TRICH are then contacted with a test compound and binding, stimulation, or inhibition of activity of either TRICH or the compound is analyzed.
An assay may simply test binding of a test compound to the polypeptide, wherein binding is detected by a fluorophore, radioisotope, enzyme conjugate, or other detectable label. For example, the assay may comprise the steps of combining at least one test compound with TRICH, either in solution or affixed to a solid support, and detecting the binding of TRICH to the compound. Alternatively, the assay may detect or measure binding of a test compound in the presence of a labeled competitor. Additionally, the assay may be carried out using cell-free preparations, chemical libraries, or natural product mixtures, and the test compound(s) maybe free in solution or affixed to a solid support.
Axx assay can be used to assess the ability of a compound to bind to its natural ligand and/or to inhibit the binding of its natural ligand to its natural receptors. Examples of such assays include radio- labeling assays such as those described in U.S. Patent No. 5,914,236 and U.S. Patent No. 6,372,724. In a related embodiment, one or more amino acid substitutions can be introduced into a polypeptide compound (such as a receptor) to improve or alter its ability to bind to its natural ligands. (See, e.g., Matthews, D.J. and J.A. Wells. (1994) Chem. Biol. 1:25-30.) In another related embodiment, one or more amino acid substitutions can be introduced into a polypeptide compound (such as a ligand) to improve or alter its abihty to bind to its natural receptors. (See, e.g., Qinningham, B.C. and J.A. Wells (1991) Proc. Natl. Acad. Sci. USA 88:3407-3411; Lowman, H.B. et al. (1991) J. Biol. Chem. 266:10982-10988.)
TRICH of the present invention or fragments thereof maybe used to screen for compounds that modulate the activity of TRICH. Such compounds may include agonists, antagonists, or partial or inverse agonists. In one embodiment, an assay is performed under conditions permissive for TRICH activity, wherein TRICH is combined with at least one test compound, and the activity of TRICH in the presence of a test compound is compared with the activity of TRICH in the absence of the test compound. A change in the activity of TRICH in the presence of the test compound is indicative of a compound that modulates the activity of TRICH. Alternatively, a test compound is combined with an in vitro or cell-free system comprising TRICH under conditions suitable for TRICH activity, and the assay is performed. In either of these assays, a test compound which modulates the activity of TRICH may do so indirectly and need not come in direct contact with the test compound. At least one and up to a plurality of test compounds may be screened.
In another embodiment, polynucleotides encoding TRICH or their mammalian homologs may be "knocked out" in an animal model system using homologous recombination in embryonic stem (ES) cells. Such techniques are well known in the art and are useful for the generation of animal models of human disease. (See, e.g., U.S. Patent No. 5,175,383 and U.S. Patent No. 5,767,337.) For example, mouse ES cehs, such as the mouse 129/SvJ cell line, are derived from the early mouse embryo and grown in culture. The ES cells are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotransferase gene (neo; Capecchi, M.R. (1989) Science 244:1288-1292). The vector integrates into the conesponding region of the host genome by homologous recombination. Alternatively, homologous recombination takes place using the Cre-loxP system to knockout a gene of interest in a tissue- or developmental stage-specific manner (Marth, J.D. (1996) Clin. Invest. 97:1999-2002; Wagner, K.U. et al. (1997) Nucleic Acids Res. 25:4323-4330). Transformed ES cells are identified and microinjected into mouse cell blastocysts such as those from the C57BL/6 mouse strain. The blastocysts are surgically transferred to pseudopregnant dams, and the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains. Transgenic animals thus generated may be tested with potential therapeutic or toxic agents. Polynucleotides encoding TRICH may also be manipulated in vitro in ES cells derived from human blastocysts. Human ES cells have the potential to differentiate into at least eight separate cell lineages including endoderm, mesoderm, and ectodermal cell types. These cell lineages differentiate into, for example, neural cehs, hematopoietic lineages, and cardiomyocytes (Thomson, J.A. et al. (1998) Science 282:1145-1147).
Polynucleotides encoding TRICH can also be used to create 'Tmockin" humanized animals (pigs) or transgenic animals (mice or rats) to model human disease. With knockin technology, a region of a polynucleotide encoding TRICH is injected into animal ES cells, and the injected sequence integrates into the animal cell genome. Transformed cehs are injected into blastulae, and the blastulae are implanted as described above. Transgenic progeny or inbred lines are studied and treated with potential pharmaceutical agents to obtain information on treatment of a human disease. Alternatively, a mammal inbred to overexpress TRICH, e.g., by secreting TRICH in its milk, may also serve as a convenient source of that protein (Janne, J. et al. (1998) Biotechnol. Annu. Rev. 4:55-74). THERAPEUTICS
Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of TRICH and tiansporters and ion channels. In addition, examples of tissues expressing TRICH can be found in Table 6 and can also be found in Example XI. Therefore, TRICH appears to play a role in tr< nsport, neurological, muscular, immunological, and cell proliferative disorders, as well as disorders of iron metabolism. In the treatment of disorders associated with increased TRICH expression or activity, it is desirable to decrease the expression or activity of TRICH. In the treatment of disorders associated with decreased TRICH expression or activity, it is desirable to increase the expression or activity of TRICH. Therefore, in one embodiment, TRICH or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TRICH. Examples of such disorders include, but are not limited to, a transport disorder such as akinesia, amyotrophic lateral sclerosis, ataxia telangiectasia, cystic fibrosis, Becker's muscular dystrophy, Bell's palsy, Charcot-Marie Tooth disease, diabetes mellitus, diabetes insipidus, diabetic neuropathy, Duchenne muscular dystrophy, hyperkalemic periodic paralysis, normokalemic periodic paralysis, Parkinson's disease, malignant hyperthermia, multidrug resistance, myasthenia gravis, myotonic dystrophy, catatonia, tardive dyskinesia, dystonias, peripheral neuropathy, cerebral neoplasms, prostate cancer, cardiac disorders associated with transport, e.g., angina, bradyarryfhmia, tachyanythmia, hypertension, Long QT syndrome, myocarditis, cardiomyopathy, nemaline myopathy, centronuclear myopathy, lipid myopathy, mitochondrial myopathy, thyrotoxic myopathy, ethanol myopathy, dermatomyositis, inclusion body myositis, infectious myositis, polymyositis, neurological disorders associated with transport, e.g., Alzheimer's disease, amnesia, bipolar disorder, dementia, depression, epilepsy, Tourette's disorder, paranoid psychoses, and schizophrenia, and other disorders associated with transport, e.g., neurofibromatosis, postherpetic neuralgia, trigeminal neuropathy, sarcoidosis, sickle cell anemia, Wilson's disease, cataracts, infertility, pulmonary artery stenosis, sensorineural autosomal deafness, hyperglycemia, hypoglycemia, Grave's disease, goiter, Gushing' s disease, Addison's disease, glucose-galactose malabsorption syndrome, hypercholesterolemia, adrenoleukodystrophy, Zellweger syndrome, Menkes disease, occipital horn syndrome, von Gierke disease, cystinuria, iminoglycinuria, Hartup disease, and Fanconi disease; a neurological disorder such as epilepsy, ischemic cerebro vascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofϊbromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system including Down syndrome, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular ώsorders, peripheral nervous system disorders, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropatiiy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, Tourette's disorder, progressive supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia; a muscle disorder such as cardiomyopathy, myocarditis, Duchenne's muscular dystrophy, Becker's muscular dystrophy, myotonic dystrophy, central core disease, nemaline myopathy, centionuclear myopathy, hpid myopathy, mitochondrial myopathy, infectious myositis, polymyositis, dermatomyositis, inclusion body myositis, thyrotoxic myopathy, ethanol myopathy, angina, anaphylactic shock, anhythmias, asthma, cardiovascular shock, Cushing's syndrome, hypertension, hypoglycemia, myocardial infarction, migraine, pheochromocytoma, and myopathies including encephalopathy, epilepsy, Kearns-Sayre syndrome, lactic acidosis, myoclonic disorder, ophthalmoplegia, and acid maltase deficiency (AMD, also known as Pompe's disease); an immunological disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosmophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjdgren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, comphcations of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; and a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MOD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, gangha, gastiointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; and a disorder of iron metabolism such as hypotiansferrinaemia, acaemloplas inaemia, adult, juvenile, and neonatal haemochromatosis.
In another embodiment, a vector capable of expressing TRICH or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TRICH including, but not limited to, those described above.
In a further embodiment, a composition comprising a substantially purified TRICH in conjunction with a suitable pharmaceutical carrier maybe administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TRICH including, but not limited to, those provided above.
In still another embodiment, an agonist which modulates the activity of TRICH maybe administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TRICH including, but not limited to, those listed above.
In a further embodiment, an antagonist of TRICH may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of TRICH. Examples of such disorders include, but are not limited to, transport, neurological, muscular, immunological, and cell proliferative disorders, as well as disorders of iron metabolism described above. In one aspect, an antibody which specifically binds TRICH may be used directly as an antagonist or indirectly as a targeting or dehvery mechanism for bringing a pharmaceutical agent to ceUs or tissues which express TRICH.
In an additional embodiment, a vector expressing the complement of the polynucleotide encoding TRICH may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of TRICH including, but not limited to, those described above. In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention ma be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergisticahy to effect the treatment or prevention of die various disorders described above. Using this approach, one maybe able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.
An antagonist of TRICH may be produced using methods which are generally known in the art. In particular, purified TRICH may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind TRICH. Antibodies to TRICH may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are generally prefened for therapeutic use. Single chain antibodies (e.g., from camels or Uamas) may be potent enzyme inhibitors and may have advantages in the design of peptide mimetics, and in the development of immuno-adsorbents and biosensors (Muyldermans, S. (2001) J. Biotechnol. 74:277-302).
For the production of antibodies, various hosts including goats, rabbits, rats, mice, camels, dromedaries, Uamas, humans, and others may be immunized by injection with TRICH or with any fragment or ohgopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especiaUy preferable.
It is prefened that the oligopeptides, peptides, or fragments used to induce antibodies to TRICH have an amino acid sequence consisting of at least about 5 amino acids, and generaUy wiU consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein. Short stretches of TRICH amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric molecule maybe produced.
Monoclonal antibodies to TRICH may be prepared using any technique which provides for the production of antibody molecules by continuous ceU lines in culture. These include, but are not limited to, the hybridoma technique, the human B-ceU hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, RJ. et al. (1983) Proc. Natl. Acad. Sci. USA 80:2026-2030; and Cole, S.P. et al. (1984) Mol. CeU Biol. 62:109-120.) In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) Proc. Natl. Acad. Sci. USA 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; and Takeda, S. et al. (1985) Nature 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce TRICH-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton, D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137.)
Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. USA 86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299.)
Antibody fragments which contain specific binding sites for TRICH may also be generated. For example, such fragments include, but are not limited to, F(ab')2 fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed to aUow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) Science 246:1275-1281.)
Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are weU known in the art. Such immunoassays typically involve the measurement of complex formation between TRICH and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering TRICH epitopes is generaUy used, but a competitive binding assay may also be employed (Pound, supra).
Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for TRICH. Affinity is expressed as an association constant, Ka, which is defined as the molar concentration of TRICH-antibody complex divided by the molar concentrations of free antigen and free antibody under equihbrium conditions. The Ka determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple TRICH epitopes, represents the average affinity, or avidity, of the antibodies for TRICH. The Ka determined for a preparation of monoclonal antibodies, which are monospecific for a particular TRICH epitope, represents a true measure of affinity. High-affinity antibody preparations with Ka ranging from about 109 to 1012 L/mole are prefened for use in immunoassays in which the TRICH- antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with Ka ranging from about 106 to 107 L/mole are prefened for use in immunopurification and similar procedures which ultimately require dissociation of TRICH, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington DC; LiddeU, J.E. and A. Cryer (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).
The titer and avidity of polyclonal antibody preparations maybe further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is generaUy employed in procedures requiring precipitation of TRICH-antibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody quality and usage in various applications, are generaUy available. (See, e.g., Catty, supra, and Coligan et al. supra.) In another embodiment of the invention, the polynucleotides encoding TRICH, or any fragment or complement thereof, maybe used for therapeutic purposes. In one aspect, modifications of gene expression can be achieved by designing complementary sequences or antisense molecules (DNA, RNA, PNA, or modified oligonucleotides) to the coding or regulatory regions of the gene encoding TRICH. Such technology is weU known in die art, and antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding TRICH. (See, e.g., Agrawal, S., ed. (1996) Antisense Therapeutics, Humana Press Inc., Totawa NJ.)
In therapeutic use, any gene dehvery system suitable for introduction of the antisense sequences into appropriate target cehs can be used. Antisense sequences can be delivered intraceUularly in the form of an expression plasmid which, upon transcription, produces a sequence complementary to at least a portion of the ceUular sequence encoding the target protein. (See, e.g., Slater, J.E. et al. (1998) J. AUergy Clin. Immunol. 102(3):469-475; and Scanlon, K.J. et al. (1995) 9(13):1288-1296.) Antisense sequences can also be introduced intraceUularly through the use of viral vectors, such as retrovirus and adeno-associated virus vectors. (See, e.g., MiUer, A.D. (1990) Blood 76:271; Ausubel, supra; Uckert, W. and W. Walther (1994) Pharmacol. Ther. 63(3):323-347.) Other gene dehvery mechanisms include liposome-derived systems, artificial viral envelopes, and other systems known in the art. (See, e.g., Rossi,, J.J. (1995) Br. Med. BuU. 51(l):217-225; Boado, RJ. et al. (1998) J. Pharm. Sci. 87(11):1308-1315; and Morris, M.C. et al. (1997) Nucleic Acids Res. 25(14):2730-2736.)
In another embodiment of the invention, polynucleotides encoding TRICH may be used for somatic or germline gene therapy. Gene therapy may be performed to (i) correct a genetic deficiency (e.g., in the cases of severe combined immunodeficiency (SCJD)-Xl disease characterized by X- linked inheritance (Cavazzana-Calvo, M. et al. (2000) Science 288:669-672), severe combined immunodeficiency syndrome associated with an inherited adenosine deaminase (ADA) deficiency (Blaese, R.M. et al. (1995) Science 270:475-480; Bordignon, C. et al. (1995) Science 270:470-475), cystic fibrosis (Zabner, J. et al. (1993) CeU 75:207-216; Crystal, R.G. et al. (1995) Hum. Gene Therapy 6:643-666; Crystal, R.G. et al. (1995) Hum. Gene Therapy 6:667-703), thalassamias, familial hypercholesterolemia, and hemophilia resulting from Factor VJH or Factor IX deficiencies (Crystal, R.G. (1995) Science 270:404-410; Ver a, IM. and N. Somia (1997) Nature 389:239-242)), (ii) express a conditionaUy lethal gene product (e.g., in the case of cancers which result from unregulated ceU proliferation), or (iii) express a protein which affords protection against intiaceUular parasites (e.g., against human retioviruses, such as human immunodeficiency virus (HIV) (Baltimore, D. (1988) Nature 335:395-396; Poeschla, E. et al. (1996) Proc. Natl. Acad. Sci. USA 93:11395-11399), hepatitis B or C virus (HBV, HCV); fungal parasites, such as Candida albicans and Paracoccidioides brasiliensis; and protozoan parasites such as Plasmodiumfalciparum and Tiypanosoma cruzi). In the case where a genetic deficiency in TRICH expression or regulation causes disease, the expression of TTRICH from an appropriate population of transduced cehs may aUeviate the clinical manifestations caused by the genetic deficiency.
In a further embodiment of the invention, diseases or disorders caused by deficiencies in TRICH are treated by constructing mammalian expression vectors encoding TRICH and introducing these vectors by mechanical means into TRICH-deficient cehs. Mechanical transfer technologies for use with ceUs in vivo or ex vitro include (i) direct DNA microinjection into individual ceUs, (ii) ballistic gold particle dehvery, (hi) hposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the use of DNA transposons (Morgan, R.A. and W.F. Anderson (1993) Annu. Rev. Biochem. 62:191-217; Ivies, Z. (1997) CeU 91:501-510; Boulay, J-L. and H. Recipon (1998) Curr. Opin. Biotechnol. 9:445-450). Expression vectors that may be effective for the expression of TRICH include, but are not limited to, the PCDNA 3.1, EPITAG, PRCCMV2, PREP, PVAX, PCR2-TOPOTA vectors (Invitrogen, Carlsbad CA), PCMV-SCRIPT, PCMV-TAG, PEGSH/PERV (Stratagene, La JoUa CA), and PTET-OFF, PTET-ON, PTRE2, PTRE2-LUC, PTK-HYG (Clontech, Palo Alto CA). TRICH maybe expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or β-actin genes), (ii) an inducible promoter (e.g., die tetracycline-regulated promoter (Gossen, M. and H. Bujard (1992) Proc. Natl. Acad. Sci. USA 89:5547-5551; Gossen, M. et al. (1995) Science 268:1766-1769; Rossi, F.M.V. and H.M. Blau (1998) Curr. Opin. Biotechnol. 9:451-456), commerciaUy available in the T-REX plasmid (Invitrogen)); the ecdysone-inducible promoter (available in the plasmids PVGRXR and PIND; Invitrogen); the
FK506/rapamycin inducible promoter; or the RU486/mifepristone inducible promoter (Rossi, F.M.V. and H.M. Blau, supra ), or (hi) a tissue-specific promoter or the native promoter of the endogenous gene encoding TRICH from a normal individual.
CommerciaUy available liposome transformation kits (e.g., the PERFECT LIPID TRANSFECTION KIT, available from Invitrogen) aUow one with ordinary skiU in the art to dehver polynucleotides to target ceUs in culture and require minimal effort to optimize experimental parameters. In the alternative, transformation is performed using the calcium phosphate method (Graham, F.L. and A.J. Eb (1973) Virology 52:456-467), or by electroporation (Neumann, E. et al. (1982) EMBO J. 1:841-845). The introduction of DNA to primary ceUs requires modification of these standardized mammalian transfection protocols.
In another embodiment of the invention, diseases or disorders caused by genetic defects with respect to TRICH expression are treated by constructing a retrovirus vector consisting of (i) the polynucleotide encoding TRICH under the control of an independent promoter or the retrovirus long terminal repeat (LTR) promoter, (ii) appropriate RNA packaging signals, and (iϋ) a Rev-responsive element (RRE) along with additional retrovirus cw-acting RNA sequences and coding sequences required for efficient vector propagation. Retrovirus vectors (e.g., PFB and PEBNEO) are commerciaUy available (Stratagene) and are based on published data (Riviere, I. et al. (1995) Proc. Natl. Acad. Sci. USA 92:6733-6737), incorporated by reference herein. The vector is propagated in an appropriate vector producing ceU line (VPCL) that expresses an envelope gene with a tiopism for receptors on the target ceUs or a promiscuous envelope protein such as VSVg (Armentano, D. et al. (1987) J. Virol. 61:1647-1650; Bender, M.A. et al. (1987) J. Virol. 61:1639-1646; Adam, M.A. and A.D. Mffler (1988) J. Virol. 62:3802-3806; DuU, T. et al. (1998) J. Virol. 72:8463-8471; Zufferey, R. et al. (1998) J. Virol. 72:9873-9880). U.S. Patent No. 5,910,434 to Rigg ("Method for obtaining retrovirus packaging ceU lines producing high transducing efficiency retroviral supernatant") discloses a method for obtaining retrovirus packaging ceU lines and is hereby incorporated by reference. Propagation of retrovirus vectors, transduction of a population of ceUs (e.g., CD4+ T-ceUs), and the return of transduced ceUs to a patient are procedures weU known to persons skilled in the art of gene therapy and have been weU documented (Ranga, U. et al. (1997) J. Virol. 71:7020-7029; Bauer, G. et al. (1997) Blood 89:2259-2267; Bonyhadi, M.L. (1997) J. Virol. 71:4707-4716; Ranga, U. et al. (1998) Proc. Natl. Acad. Sci. USA 95:1201-1206; Su, L. (1997) Blood 89:2283-2290).
In the alternative, an adenovirus-based gene therapy dehvery system is used to dehver polynucleotides encoding TRICH to ceUs which have one or more genetic abnormalities with respect to the expression of TRICH. The construction and packaging of adenovirus-based vectors are weU known to those with ordinary skiU in the art. Replication defective adenovirus vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas (Csete, M.E. et al. (1995) Transplantation 27:263-268). PotentiaUy useful adenoviral vectors are described in U.S. Patent No. 5,707,618 to Armentano ("Adenovirus vectors for gene therapy"), hereby incorporated by reference. For adenoviral vectors, see also Antinozzi, P . et al. (1999) Annu. Rev. Nutr. 19:511-544 and Verma, IM. and N. Somia (1997) Nature 18:389:239-242, both incorporated by reference herein.
In another alternative, a herpes-based, gene therapy dehvery system is used to dehver polynucleotides encoding TRICH to target ceUs which have one or more genetic abnormalities with respect to the expression of TRICH. The use of herpes simplex virus (HSV)-based vectors may be especiaUy valuable for introducing TRICH to ceUs of the central nervous system, for which HSV has a tropism. The construction and packaging of herpes-based vectors are weU known to those with ordinary skiU in the art. A rephcation-competent herpes simplex virus (HSV) type 1 -based vector has been used to dehver a reporter gene to the eyes of primates (Liu, X. et al. (1999) Exp. Eye Res. 169:385-395). The construction of a HSV-1 virus vector has also been disclosed in detail in U.S. Patent No. 5,804,413 to DeLuca ("Herpes simplex virus strains for gene transfer"), which is hereby incorporated by reference. U.S. Patent No. 5,804,413 teaches the use of recombinant HSV d92 which consists of a genome containing at least one exogenous gene to be tiansfened to a ceU under the control of the appropriate promoter for purposes including human gene therapy. Also taught by this patent are the construction and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22. For HSV vectors, see also Goins, W.F. et al. (1999) J. Virol. 73:519-532 and Xu, H. et al. (1994) Dev. Biol. 163:152-161, hereby incorporated by reference. The manipulation of cloned herpesvirus sequences, the generation of recombinant virus foUowing the transfection of multiple plasmids containing different segments of the large herpesvirus genomes, the growth and propagation of herpesvirus, and the infection of ceUs with herpesvirus are techniques weU known to those of ordinary skiU in the art.
In another alternative, an alphavirus (positive, single-stranded RNA virus) vector is used to dehver polynucleotides encoding TRICH to target ceUs. The biology of the prototypic alphavirus, Semliki Forest Virus (SFV), has been studied extensively and gene transfer vectors have been based on the SFV genome (Garoff, H. and K.-J. Li (1998) Cun. Opin. Biotechnol. 9:464-469). During alphavirus RNA replication, a subgenomic RNA is generated that normaUy encodes the viral capsid proteins. This subgenomic RNA replicates to higher levels than the full length genomic RNA, resulting in the overproduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase). Similarly, inserting the coding sequence for TRICH into the alphavirus genome in place of the capsid-coding region results in the production of a large number of TRICH-coding RNAs and the synthesis of high levels of TRICH in vector transduced ceUs. While alphavirus infection is typicaUy associated with ceU lysis within a few days, the abihty to estabhsh a persistent infection in hamster normal kidney cehs (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic replication of alphaviruses can be altered to suit the needs of the gene therapy application (Dryga, S.A. et al. (1997) Virology 228:74-83). The wide host range of alphaviruses wiU aUow the introduction of TRICH into a variety of ceU types. The specific transduction of a subset of ceUs in a population may require the sorting of ceUs prior to transduction. The methods of manipulating infectious cDNA clones of alphaviruses, performing alphavirus cDNA and RNA transfections, and perfoπning alphavirus infections, are weU known to those with ordinary skiU in the art.
Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, may also be employed to inhibit gene expression. Similarly, inhibition can be achieved using triple hehx base-pairing methodology. Triple hehx pairing is useful because it causes inhibition of the abihty of the double hehx to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Can, Molecular and Immunologic Approaches. Futura Pubhshing, Mt. Kisco NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.
Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, foUowed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specificaUy and efficiently catalyze endonucleolytic cleavage of sequences encoding TRICH.
Specific ribozyme cleavage sites within any potential RNA target are initiaUy identified by scanning the target molecule for ribozyme cleavage sites, including the foUowing sequences: GUA, GUU, and GUC Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the ohgonucleotide inoperable. The suitabihty of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.
Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemicaUy synthesizing oligonucleotides such as sohd phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA sequences encoding TRICH. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into ceU lines, ceUs, or tissues.
RNA molecules may be modified to increase intraceUular stabihty and half-life. Possible modifications include, but are not limited to, die addition of flanking sequences at the 5 ' and/or 3 ' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in ah of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as weU as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases. An additional embodiment of the invention encompasses a method for screening for a compound which is effective in altering expression of a polynucleotide encoding TRICH. Compounds which may be effective in altering expression of a specific polynucleotide may include, but are not limited to, oligonucleotides, antisense ohgonucleotides, triple hehx-fonning oligonucleotides, transcription factors and other polypeptide transcriptional regulators, and non-macromolecular chemical entities which are capable of interacting with specific polynucleotide sequences. Effective compounds may alter polynucleotide expression by acting as either inhibitors or promoters of polynucleotide expression. Thus, in the treatment of disorders associated with increased TRICH expression or activity, a compound which specificaUy inhibits expression of the polynucleotide encoding TRICH may be therapeuticaUy useful, and in the treatment of disorders associated with decreased TRICH expression or activity, a compound which specificaUy promotes expression of the polynucleotide encoding TRICH maybe therapeuticaUy useful. At least one, and up to a plurahty, of test compounds may be screened for effectiveness in altering expression of a specific polynucleotide. A test compound may be obtained by any method commonly known in the art, including chemical modification of a compound known to be effective in altering polynucleotide expression; selection from an existing, commerciaUy-available or proprietary hbrary of naturaUy-occurring or non-natural chemical compounds; rational design of a compound based on chemical and/or structural properties of the target polynucleotide; and selection from a hbrary of chemical compounds created combinatoriaUy or randomly. A sample comprising a polynucleotide encoding TRICH is exposed to at least one test compound thus obtained. The sample may comprise, for example, an intact or permeabilized ceU, or an in vitro cell-free or reconstituted biochemical system. Alterations in the expression of a polynucleotide encoding TRICH are assayed by any method commonly known in the art. TypicaUy, the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence of the polynucleotide encoding TRICH. The amount of hybridization may be quantified, thus fonning the basis for a comparison of the expression of the polynucleotide both with and without exposure to one or more test compounds. Detection of a change in the expression of a polynucleotide exposed to a test compound indicates that the test compound is effective in altering the expression of the polynucleotide. A screen for a compound effective in altering expression of a specific polynucleotide can be canied out, for example, using a Schizosaccharomyces pombe gene expression system (Atkins, D. et al. (1999) U.S. Patent No. 5,932,435; Arndt, G.M. et al. (2000) Nucleic Acids Res. 28:E15) or a human ceU line such as HeLa ceU (Clarke, M.L. et al. (2000) Biochem. Biophys. Res. Commun. 268:8-13). A particular embodiment of the present invention involves screening a combinatorial hbrary of ohgonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified ohgonucleotides) for antisense activity against a specific polynucleotide sequence (Bruice, T.W. et al. (1997) U.S. Patent No. 5,686,242; Bruice, T.W. et al. (2000) U.S. Patent No. 6,022,691). Many methods for introducing vectors into ceUs or tissues are available and equaUy suitable for use in vivo, in vitro, and ex vivo. For ex vivo therapy, vectors maybe introduced into stem ceUs taken from the patient and clonaUy propagated for autologous transplant back into that same patient. Dehvery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are weU known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nat. Biotechnol. 15:462-466.)
Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.
An additional embodiment of the invention relates to the administration of a composition which generaUy comprises an active ingredient formulated with a pharmaceuticaUy acceptable excipient. Excipients may include, for example, sugars, starches, ceUuloses, gums, and proteins. Various formulations are commonly known and are thoroughly discussed in the latest edition of Remington's Pharmaceutical Sciences (Maack Pubhshing, Easton PA). Such compositions may consist of TRICH, antibodies to TRICH, and mimetics, agonists, antagonists, or inhibitors of TRICH.
The compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intiameduUary, intrathecal, intiaventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.
Compositions for pulmonary administration may be prepared in hquid or dry powder form. These compositions are generaUy aerosohzed immediately prior to inhalation by the patient. In the case of smaU molecules (e.g. traditional low molecular weight organic drugs), aerosol dehvery of fast- acting formulations is weU-known in the art. In the case of macromolecules (e.g. larger peptides and proteins), recent developments in the field of pulmonary dehvery via the alveolar region of the lung have enabled the practical dehvery of drugs such as insulin to blood circulation (see, e.g., Patton, J.S. et al, U.S. Patent No. 5,997,848). Pulmonary dehvery has the advantage of administration without needle injection, and obviates the need for potentiaUy toxic penetration enhancers.
Compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The deterniination of an effective dose is weU within the capabihty of those skiUed in the art.
Speciahzed forms of compositions maybe prepared for direct intraceUular dehvery of macromolecules comprising TRICH or fragments thereof. For example, hposome preparations containing a ceU-impermeable macrornolecule may promote ceU fusion and intraceUular dehvery of the macrornolecule. Alternatively, TRICH or a fragment thereof may be joined to a short cationic N- terminal portion from the HTV Tat-1 protein. Fusion proteins thus generated have been found to transduce into the ceUs of aU tissues, including the brain, in a mouse model system (Schwarze, S.R. et al. (1999) Science 285:1569-1572). For any compound, the therapeuticaUy effective dose can be estimated initiaUy either in ceU culture assays, e.g., of neoplastic ceUs, or in animal models such as mice, rats, rabbits, dogs, monkeys, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.
A therapeuticaUy effective dose refers to that amount of active ingredient, for example TRICH or fragments thereof, antibodies of TRICH, and agonists, antagonists or inhibitors of TRICH, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity maybe detennined by standard pharmaceutical procedures in ceU cultures or with experimental animals, such as by calculating the ED50 (the dose therapeuticaUy effective in 50% of the population) or LD50 (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD50/ED50 ratio. Compositions which exhibit large therapeutic indices are prefened. The data obtained from ceU culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED50 with httle or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.
The exact dosage wiU be deteimined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combinations), reaction sensitivities, and response to therapy. Long-acting compositions maybe administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation. Normal dosage amounts may vary from about 0.1 μg to 100,000 μg, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of dehvery is provided in the literature and generaUy available to practitioners in the art. Those skiUed in the art wiU employ different formulations for nucleotides than for proteins or then- inhibitors. Similarly, dehvery of polynucleotides or polypeptides wiUbe specific to particular ceUs, conditions, locations, etc. DIAGNOSTICS
In another embodiment, antibodies which specificaUy bind TRICH may be used for the diagnosis of disorders characterized by expression of TRICH, or in assays to monitor patients being treated with TRICH or agonists, antagonists, or inhibitors of TRICH. Antibodies useful for diagnostic purposes maybe prepared in the same manner as described above for therapeutics. Diagnostic assays for TRICH include methods which utilize the antibody and a label to detect TRICH in human body fluids or in extracts of ceUs or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.
A variety of protocols for measuring TRICH, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of TRICH expression. Normal or standard values for TRICH expression are established by combining body fluids or ceU extracts taken from normal mammahan subjects, for example, human subjects, with antibodies to TRICH under conditions suitable for complex formation. The amount of standard complex formation maybe quantitated by various methods, such as photometric means. Quantities of TRICH expressed in subject, control, and disease samples frombiopsied tissues are compared with the standard values. Deviation between standard and subject values estabhshes the parameters for diagnosing disease. In another embodiment of the invention, the polynucleotides encoding TRICH may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of TRICH maybe conelated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of TRICH, and to monitor regulation of TRICH levels during therapeutic intervention.
In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding TRICH or closely related molecules may be used to identify nucleic acid sequences which encode TRICH. The specificity of the probe, whether it is made from ahighly specific region, e.g., the 5'regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification wiU determine whether the probe identifies only naturally occurring sequences encoding TRICH, aUehc variants, or related sequences.
Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the TRICH encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO: 10-18 or from genomic sequences including promoters, enhancers, and introns of the TRICH gene.
Means for producing specific hybridization probes for DNAs encoding TRICH include the cloning of polynucleotide sequences encoding TRICH or TRICH derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commerciaUy available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes maybe labeled by a variety of reporter groups, for example, by radionuchdes such as 32P or 35S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like. Polynucleotide sequences encoding TRICH may be used for the diagnosis of disorders associated with expression of TRICH. Examples of such disorders include, but are not limited to, a transport disorder such as akinesia, amyotiophic lateral sclerosis, ataxia telangiectasia, cystic fibrosis, Becker's muscular dystrophy, BeU's palsy, Charcot-Marie Tooth disease, diabetes meUitus, diabetes insipidus, diabetic neuropathy, Duchenne muscular dystrophy, hyperkalemic periodic paralysis, normokalemic periodic paralysis, Parkinson's disease, malignant hyperthermia, multidrug resistance, myasthenia gravis, myotonic dystrophy, catatonia, tardive dyskinesia, dystonias, peripheral neuropathy, cerebral neoplasms, prostate cancer, cardiac disorders associated with transport, e.g., angina, bradyarrythmia, tachyanythmia, hypertension, Long QT syndrome, myocarditis, cardiomyopathy, nemaline myopathy, centionuclear myopathy, hpid myopathy, mitochondrial myopathy, thyrotoxic myopathy, ethanol myopathy, dermatomyositis, inclusion body myositis, infectious myositis, polymyositis, neurological disorders associated with transport, e.g., Alzheimer's disease, amnesia, bipolar disorder, dementia, depression, epilepsy, Tourette's disorder, paranoid psychoses, and schizophrenia, and other disorders associated wifli transport, e.g., neurofibromatosis, postherpetic neuralgia, tiigeminal neuropathy, sarcoidosis, sickle ceU anemia, Wilson's disease, cataracts, infertihty, pulmonary artery stenosis, sensorineural autosomal deafness, hyperglycemia, hypoglycemia, Grave's disease, goiter, Cushing's disease, Addison's disease, glucose-galactose malabsorption syndrome, hypercholesterolemia, adrenoleukodystrophy, ZeUweger syndrome, Menkes disease, occipital horn syndrome, von Gierke disease, cystinuria, iminoglycinuria, Hartup disease, and Fanconi disease; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotiophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myehtis and radicuhtis, viral cential nervous system disease, prion diseases including kuru, Creutzfeldt- Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabohc diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebeUoretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system including Down syndrome, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis, inherited, metabohc, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, Tourette's disorder, progressive supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia; a muscle disorder such as cardiomyopathy, myocarditis, Duchenne's muscular dystiophy, Becker's muscular dystrophy, myotonic dystrophy, central core disease, nemaline myopathy, centionuclear myopathy, hpid myopathy, mitochondrial myopathy, infectious myositis, polymyositis, dermatomyositis, inclusion body myositis, thyrotoxic myopathy, ethanol myopathy, angina, anaphylactic shock, airhythmias, asthma, cardiovascular shock, Oishing's syndrome, hypertension, hypoglycemia, myocardial infarction, migraine, pheochromocytoma, and myopathies including encephalopathy, epilepsy, Kearns-Sayre syndrome, lactic acidosis, myoclonic disorder, ophthalmoplegia, and acid maltase deficiency (AMD, also known as Pompe's disease); an immunological disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, aUergies, ankylosing spondyhtis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes melhtus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjδgren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; and a ceU proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gah bladder, gangha, gastrointestinal tract, heart, kidney, hver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; and a disorder of iron metabolism such as hypotransferrinaemia, acae loplasminaemia, adult, juvenile, and neonatal haemochromatosis. The polynucleotide sequences encoding TRICH may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered TRICH expression. Such qualitative or quantitative methods are weU known in the art.
In a particular aspect, the nucleotide sequences encoding TRICH may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding TRICH may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. Jf the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding TRICH in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.
In order to provide a basis for the diagnosis of a disorder associated with expression of TRICH, a normal or standard profile for expression is established. This may be accomphshed by combining body fluids or ceU extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding TRICH, under conditions suitable for hybridization or amphfication. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantiaUy purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to estabhsh the presence of a disorder.
Once the presence of a disorder is estabhshed and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.
With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may aUow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.
Additional diagnostic uses for ohgonucleotides designed from the sequences encoding TRICH may involve the use of PCR. These ohgomers may be chemicaUy synthesized, generated enzymaticaUy, or produced in vitro. Ohgomers wiU preferably contain a fragment of a polynucleotide encoding TRICH, or a fragment of a polynucleotide complementary to the polynucleotide encoding TRICH, and wiU be employed under optimized conditions for identification of a specific gene or condition. Ohgomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.
In a particular aspect, ohgonucleotide primers derived from the polynucleotide sequences encoding TRICH may be used to detect single nucleotide polymorphisms (SNPs). SNPs are substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease in humans. Methods of SNP detection include, but are not limited to, single-stranded conformation ■ polymorphism (SSCP) and fluorescent SSCP (fSSCP) methods. In SSCP, ohgonucleotide primers derived from the polynucleotide sequences encoding TRICH are used to amplify DNA using the polymerase chain reaction (PCR). The DNA may be derived, for example, from diseased or normal tissue, biopsy samples, bodily fluids, and the like. SNPs in the DNA cause differences in the secondary and tertiary structures of PCR products in single-stranded form, and these differences are detectable using gel electrophoresis in non-denaturing gels. In fSCCP, the ohgonucleotide primers are fluorescently labeled, which ahows detection of the amplimers in high-throughput equipment such as DNA sequencing machines. AdditionaUy, sequence database analysis methods, termed in sihco SNP (isSNP), are capable of identifying polymorphisms by comparing the sequence of individual overlapping DNA fragments which assemble into a common consensus sequence. These computer- based methods filter out sequence variations due to laboratory preparation of DNA and sequencing errors using statistical models and automated analyses of DNA sequence chromatograms. In the alternative, SNPs may be detected and characterized by mass spectrometry using, for example, the high throughput MASSARRAY system (Sequenom, Inc., San Diego CA).
SNPs may be used to study the genetic basis of human disease. For example, at least 16 common SNPs have been associated with non-insulin-dependent diabetes mellitus. SNPs are also useful for examining differences in disease outcomes in monogenic disorders, such as cystic fibrosis, sickle ceU anemia, or chronic granulomatous disease. For example, variants in the mannose-binding lectin, MBL2, have been shown to be conelated with deleterious pulmonary outcomes in cystic fibrosis. SNPs also have utility in pharmacogenomics, the identification of genetic variants that influence a patient's response to a drug, such as hfe-threatening toxicity. For example, a variation in N-acetyl transferase is associated with a high incidence of peripheral neuropafliy in response to the anti-tuberculosis drug isoniazid, while a variation in the core promoter of the ALOX5 gene results in diminished clinical response to treatment with an anti-asthma drug that targets the 5-liρoxygenase pathway. Analysis of the distribution of SNPs in different populations is useful for investigating genetic drift, mutation, recombination, and selection, as weU as for tracing the origins of populations and their migrations. (Taylor, J.G. et al. (2001) Trends Mol. Med. 7:507-512; Kwok, P.-Y. and Z. Gu (1999) Mol. Med. Today 5:538-543; Nowotny, P. et al. (2001) Cun. Opin. Neurobiol. 11:637-641.)
Methods which may also be used to quantify the expression of TRICH include radiolabeling or biotinylating nucleotides, coamphfication of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236.) The speed of quantitation of multiple samples maybe accelerated by running the assay in a high-throughput format where the oligomer or polynucleotide of - interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.
In further embodiments, ohgonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as elements on a microanay. The microarray can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described below. The microarray may also be used to identify genetic variants, mutations, and polymorphisms. This information maybe used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, to monitor progression/regression of disease as a function of gene expression, and to develop and monitor the activities of therapeutic agents in the treatment of disease. In particular, this information may be used to develop a pharmacogenomic profile of a patient in order to select the most appropriate and effective treatment regimen for that patient. For example, therapeutic agents which are highly effective and display the fewest side effects may be selected for a patient based on his/her pharmacogenomic profile.
In another embodiment, TRICH, fragments of TRICH, or antibodies specific for TRICH may be used as elements on a microarray. The microarray may be used to monitor or measure protein- protein interactions, drug-target interactions, and gene expression profiles, as described above. A particular embodiment relates to the use of the polynucleotides of the present invention to generate a transcript image of a tissue or ceU type. A transcript image represents the global pattern of gene expression by a particular tissue or ceU type. Global gene expression patterns are analyzed by quantifying the number of expressed genes and their relative abundance under given conditions and at a given time. (See SeiThamer et al., "Comparative Gene Transcript Analysis," U.S. Patent No.
5,840,484, expressly incorporated by reference herein.) Thus a transcript image may be generated by hybridizing the polynucleotides of the present invention or their complements to the totality of transcripts or reverse transcripts of a particular tissue or ceU type. In one embodiment, the hybridization takes place in high-throughput format, wherein the polynucleotides of the present invention or their complements comprise a subset of a plurahty of elements on a microarray. The resultant transcript image would provide a profile of gene activity.
Transcript images maybe generated using transcripts isolated from tissues, ceU lines, biopsies, or other biological samples. The transcript image may thus reflect gene expression in vivo, as in the case of a tissue or biopsy sample, or in vitro, as in the case of a ceU line. Transcript images which profile the expression of the polynucleotides of the present invention may also be used in conjunction with in vitro model systems and preclinical evaluation of , pharmaceuticals, as weU as toxicological testing of industrial and naturaUy-occurring environmental compounds. AU compounds induce characteristic gene expression patterns, frequently termed molecular fingerprints or toxicant signatures, which are indicative of mechanisms of action and toxicity (Nuwaysir, E.F. et al. (1999) Mol. Carcinog. 24:153-159; Sterner, S. and N.L. Anderson (2000)
Toxicol. Lett. 112-113:467-471, expressly incorporated by reference herein). If a test compound has a signature similar to that of a compound with known toxicity, it is likely to share those toxic properties. These fingerprints or signatures are most useful and refined when they contain expression information from a large number of genes and gene families. IdeaUy, a genome-wide measurement of expression provides the highest quality signature. Even genes whose expression is not altered by any tested compounds are important as weU, as the levels of expression of these genes are used to normahze the rest of the expression data. The normalization procedure is useful for comparison of expression data after treatment with different compounds. While the assignment of gene function to elements of a toxicant signature aids in interpretation of toxicity mechanisms, knowledge of gene function is not necessary for the statistical matching of signatures which leads to prediction of toxicity. (See, for example, Press Release 00-02 from the National Institute of Environmental Healfli Sciences, released February 29, 2000, available at http://www.niehs.nih.gov/oc/news/toxchip.htm.) Therefore, it is important and desirable in toxicological screening using toxicant signatures to include aU expressed gene sequences.
In one embodiment, the toxicity of a test compound is assessed by treating a biological sample containing nucleic acids with the test compound. Nucleic acids that are expressed in the treated biological sample are hybridized with one or more probes specific to the polynucleotides of the present invention, so that transcript levels conesponding to the polynucleotides of the present invention may be quantified. The transcript levels in the treated biological sample are compared with levels in an untreated biological sample. Differences in the transcript levels between the two samples are indicative of a toxic response caused by the test compound in the treated sample.
Another particular embodiment relates to the use of the polypeptide sequences of the present invention to analyze the proteome of a tissue or ceU type. The term proteome refers to the global pattern of protein expression in a particular tissue or cell type. Each protein component of a proteome can be subjected individuaUy to further analysis. Proteome expression patterns, or profiles, are analyzed by quantifying the number of expressed proteins and their relative abundance under given conditions and at a given time. A profile of a ceU's proteome may thus be generated by separating and analyzing the polypeptides of a particular tissue or ceU type. In one embodiment, the separation is achieved using two-dimensional gel electrophoresis, in which proteins from a sample are separated by isoelectric focusing in the first dimension, and then according to molecular weight by sodium dodecyl sulfate slab gel electrophoresis in the second dimension (Steiner and Anderson, supra). The proteins are visualized in the gel as discrete and uniquely positioned spots, typicaUy by staining the gel with an agent such as Coomassie Blue or silver or fluorescent stains. The optical density of each protein spot is generaUy proportional to the level of the protein in the sample. The optical densities of equivalently positioned protein spots from different samples, for example, from biological samples either treated or untreated with a test compound or therapeutic agent, are compared to identify any changes in protein spot density related to the treatment. The proteins in the spots are partiaUy sequenced using, for example, standard methods employing chemical or enzymatic cleavage foUowed by mass spectrometry. The identity of the protein in a spot may be determined by comparing its partial sequence, preferably of at least 5 contiguous amino acid residues, to the polypeptide sequences of the present invention. In some cases, further sequence data may be obtained for definitive protein identification. A proteomic profile may also be generated using antibodies specific for TRICH to quantify the levels of TRICH expression. In one embodiment, the antibodies are used as elements on a microanay, and protein expression levels are quantified by exposing the microanay to the sample and detecting the levels of protein bound to each array element (Lueking, A. et al. (1999) Anal. Biochem. 270:103-111; Mendoze, L.G. et al. (1999) Biotechniques 27:778-788). Detection maybe performed by a variety of methods known in the art, for example, by reacting the proteins in the sample with a thioi- or amino-reactive fluorescent compound and detecting the amount of fluorescence bound at each array element. Toxicant signatures at the proteome level are also useful for toxicological screening, and should be analyzed in paraUel with toxicant signatures at the transcript level. There is a poor conelation between transcript and protein abundances for some proteins in some tissues (Anderson, N.L. and J. SeiThamer (1997) Electrophoresis 18:533-537), so proteome toxicant signatures maybe useful in the analysis of compounds which do not significantly affect the transcript image, but which alter the proteomic profile. In addition, the analysis of transcripts in body fluids is difficult, due to rapid degradation of mRNA, so proteomic profiling maybe more rehable and informative in such cases. In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins that are expressed in the treated biological sample are separated so that the amount of each protein can be quantified. The amount of each protein is compared to the amount of the corresponding protein in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample. Individual proteins are identified by sequencing the amino acid residues of the individual proteins and comparing these partial sequences to the polypeptides of the present invention. In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins from the biological sample are incubated with antibodies specific to the polypeptides of the present invention. The amount of protein recognized by the antibodies is quantified. The amount of protein in the treated biological sample is compared with the amount in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.
Microanays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93:10614-10619; Baldeschweher et al. (1995) PCT application WO95/251116; Shalon, D. et al. (1995) PCT application WO95/35505; HeUer, RA. et al. (1997) Proc. Natl. Acad. Sci. USA 94:2150-2155; and HeUer, M.J. et al. (1997) U.S. Patent No. 5,605,662.) Various types of microarrays are weU known and thoroughly described in DNA Microarrays: A Practical Approach, M. Schena, ed. (1999) Oxford University Press, London, hereby expressly incorporated by reference. In another embodiment of the invention, nucleic acid sequences encoding TRICH maybe used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. Either coding or noncoding sequences may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentiaUy cause undesired cross hybridization during chromosomal mapping. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial PI constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355; Price, CM. (1993) Blood Rev. 7:127-134; and Trask, BJ. (1991) Trends Genet. 7:149-154.) Once mapped, the nucleic acid sequences of the invention may be used to develop genetic linkage maps, for example, which conelate the inheritance of a disease state with the inheritance of a particular chromosome region or restriction fragment length polymorphism (RFLP). (See, for example, Lander, E.S. and D. Botstein (1986) Proc. Natl. Acad. Sci. USA 83:7353-7357.) Fluorescent in situ hybridization (FISH) maybe conelated with other physical and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, supra, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMJM) World Wide Web site. Correlation between the location of the gene encoding TRICH on a physical map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder and thus may further positional cloning efforts. In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using estabhshed chromosomal markers, may be used for extending genetic maps. Often the placement of a gene on the chromosome of another mammahan species, such as mouse, may reveal associated markers even if the exact chromosomal locus is not known. This information is valuable to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the gene or genes responsible for a disease or syndrome have been crudely locahzed by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to llq22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, RA. et al. (1988) Nature 336:577-580.) The nucleotide sequence of the instant invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.
In another embodiment of the invention, TRICH, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening maybe free in solution, affixed to a sohd support, borne on a ceU surface, or located intraceUularly. The formation of binding complexes between TRICH and the agent being tested may be measured.
Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different smaU test compounds are synthesized on a sohd substrate. The test compounds are reacted with TRICH, or fragments thereof, and washed. Bound TRICH is then detected by methods weU known in the art. Purified TRICH can also be coated directly onto plates for use in the aforementioned drug screening techniques.
Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a sohd support.
In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding TRICH specificaUy compete with a test compound for binding TRICH.
In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with TRICH. In additional embodiments, the nucleotide sequences which encode TRICH may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are cunently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.
Without further elaboration, it is beheved that one skiUed in the art can, using the preceding description, utihze the present invention to its fuUest extent. The foUowing embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.
The disclosures of aU patents, applications and pubhcations, mentioned above and below, including U.S. Ser. No. 60/296,881, U.S. Ser. No. 60/305,105, U.S. Ser No. 60/293,722, and U.S. Ser No. 60/304,593 , are expressly incorporated by reference herein.
EXAMPLES I. Construction of cDNA Libraries
Incyte cDNAs were derived from cDNA libraries described in the LJFESEQ GOLD database (Incyte Genomics, Palo Alto CA). Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Invitrogen), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.
Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most libraries, poly(A)+ RNA was isolated using ohgo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).
In some cases, Stratagene was provided with RNA and constructed the conesponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Invitrogen), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, supra, units 5.1-6.6.) Reverse transcription was initiated using ohgo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300- 1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Biosciences) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), PSPORT1 plasmid (Invitrogen), PCDNA2.1 plasmid (Invitrogen, Carlsbad CA), PBK-CMV plasmid (Stratagene), PCR2-TOPOTA plasmid (Invitrogen), PCMV-ICIS plasmid (Stratagene), pIGEN (Incyte Genomics, Palo Alto CA), pRARE (Incyte Genomics), or pINCY (Incyte Genomics), or derivatives thereof. Recombinant plasmids were transformed into competent E. coli cehs including XLl-Blue, XLl-BlueMRF, or SOLR from Stratagene or DH5α, DH10B, or ElecteoMAX DH10B from Invitiogen. II. Isolation of cDNA Clones
Plasmids obtained as described in Example I were recovered from host cells by in vivo excision using the UNJZAP vector system (Stratagene) or by ceU lysis. Plasmids were purified using at least one of the foUowing: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP 96 plasmid purification kit from QIAGEN. FoUowing precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C
Alternatively, plasmid DNA was amplified from host ceU lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host ceU lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-weU plates, and the concentration of amphfied plasmid DNA was quantified fluorometricaUy using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSKAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland). III. Sequencing and Analysis
Incyte cDNA recovered in plasmids as described in Example II were sequenced as foUows. Sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Applied Biosystems) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the
MICROLAB 2200 (Hamilton) liquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Biosciences or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Apphed Biosystems). Electiophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Amersham Biosciences); the ABI PRISM 373 or 377 sequencing system (Apphed Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames withάn the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VTU.
The polynucleotide sequences derived from Incyte cDNAs were vahdated by removing vector, linker, and poly(A) sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis. The Incyte cDNA sequences or translations thereof were then queried against a selection of public databases such as the GenBank primate, rodent, mammahan, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM; PROTEOME databases with sequences from Homo sapiens, Rattus norvegicus, Mus musculus, Caenorhabditis elegans, Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Candida albicans (Incyte Genomics, Palo Alto CA); hidden Markov model (HMM)-based protein family databases such as PFAM, INCY, and TIGRFAM (Haft, D.H. et al. (2001) Nucleic Acids Res. 29:41-43); and HMM-based protein domain databases such as SMART (Schultz et al. (1998) Proc. Natl. Acad. Sci. USA 95:5857-5864; Letunic, I. et al. (2002) Nucleic Acids Res. 30:242-244). (HMM is a probabilistic approach which analyzes consensus primary structures of gene families. See, for example, Eddy, S.R. (1996) Curr. Opin. Struct. Biol. 6:361-365.) The queries were performed using programs based on BLAST, FASTA, BLIMPS, and HMMER. The Incyte cDNA sequences were assembled to produce full length polynucleotide sequences. Alternatively, GenBank cDNAs, GenBank ESTs, stitched sequences, stretched sequences, or Genscan-predicted coding sequences (see Examples TV and V) were used to extend Incyte cDNA assemblages to full length. Assembly was performed using programs based on Phred, Phrap, and Consed, and cDNA assemblages were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The fuU length polynucleotide sequences were translated to derive the corresponding fuU length polypeptide sequences. Alternatively, a polypeptide of the invention may begin at any of the methionine residues of the full length translated polypeptide. FuU length polypeptide sequences were subsequently analyzed by querying against databases such as the GenBank protein databases (genpept), SwissProt, the PROTEOME databases, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, bidden Markov model (HMM)-based protein family databases such as PFAM, INCY, and TIGRFAM; and HMM-based protein domain databases such as SMART. FuU length polynucleotide sequences are also analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR).
Polynucleotide and polypeptide sequence alignments are generated using default parameters specified by the CLUSTAL algorithm as incorporated into the MEGALIGN multisequence alignment program (DNASTAR), which also calculates the percent identity between aligned sequences.
Table 7 summarizes the tools, programs, and algorithms used for the analysis and assembly of Incyte cDNA and fuU length sequences and provides apphcable descriptions, references, and threshold parameters. The first column of Table 7 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, aU of which are incorporated by reference herein in their entirety, and the fourth column presents, where apphcable, the scores, probabihty values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score or the lower the probabihty value, the greater the identity between two sequences).
The programs described above for the assembly and analysis of full length polynucleotide and polypeptide sequences were also used to identify polynucleotide sequence fragments from SEQ JD NO:10-18. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amphfication technologies are described in Table 4, column 2.
IV. Identification and Editing of Coding Sequences from Genomic DNA
Putative transporters and ion channels were initiaUy identified by running the Genscan gene identification program against public genomic sequence databases (e.g., gbpri and gbhtg). Genscan is a general-purpose gene identification program which analyzes genomic DNA sequences from a variety of organisms (See Burge, C and S. Karlin (1997) J. Mol. Biol. 268:78-94, and Burge, C and S. Karlin (1998) Curr. Opin. Struct. Biol. 8:346-354). The program concatenates predicted exons to form an assembled cDNA sequence extending from a metihonine to a stop codon. The output of Genscan is a FASTA database of polynucleotide and polypeptide sequences. The maximum range of sequence for Genscan to analyze at once was set to 30 kb. To determine which of these Genscan predicted cDNA sequences encode transporters and ion channels, the encoded polypeptides were analyzed by querying against PFAM models for tiansporters and ion channels. Potential transporters and ion channels were also identified by homology to Incyte cDNA sequences that had been annotated as transporters and ion channels. These selected Genscan-predicted sequences were then compared by BLAST analysis to the genpept and gbpri public databases. Where necessary, the Genscan-predicted sequences were then edited by comparison to the top BLAST hit from genpept to conect enors in the sequence predicted by Genscan, such as extra or omitted exons. BLAST analysis was also used to find any Incyte cDNA or public cDNA coverage of the Genscan-predicted sequences, thus providing evidence for transcription. When Incyte cDNA coverage was available, this information was used to correct or confirm the Genscan predicted sequence. FuU length polynucleotide sequences were obtained by assembling Genscan-predicted coding sequences with Incyte cDNA sequences and/or pubhc cDNA sequences using the assembly process described in Example TU. Alternatively, full length polynucleotide sequences were derived entirely from edited or unedited Genscan-predicted coding sequences.
V. Assembly of Genomic Sequence Data with cDNA Sequence Data "Stitched" Sequences
Partial cDNA sequences were extended with exons predicted by the Genscan gene identification program described in Example IV. Partial cDNAs assembled as described in Example HI were mapped to genomic DNA and parsed into clusters containing related cDNAs and Genscan exon predictions from one or more genomic sequences. Each cluster was analyzed using an algorithm based on graph theory and dynamic programming to integrate cDNA and genomic information, generating possible splice variants that were subsequently confirmed, edited, or extended to create a fuU length sequence. Sequence intervals in which the entire length of the interval was present on more than one sequence in the cluster were identified, and intervals thus identified were considered to be equivalent by transitivity. For example, if an interval was present on a cDNA and two genomic sequences, then aU three intervals were considered to be equivalent. This process aUows unrelated but consecutive genomic sequences to be brought together, bridged by cDNA sequence. Intervals thus identified were then "stitched" together by the stitching algorithm in the order that they appear along their parent sequences to generate the longest possible sequence, as weU as sequence variants. Linkages between intervals which proceed along one type of parent sequence (cDNA to cDNA or genomic sequence to genomic sequence) were given preference over linkages which change parent type (cDNA to genomic sequence). The resultant stitched sequences were translated and compared by BLAST analysis to the genpept and gbpri pubhc databases. Inconect exons predicted by Genscan were corrected by comparison to the top BLAST hit from genpept. Sequences were further extended with additional cDNA sequences, or by inspection of genomic DNA, when necessary. "Stretched" Sequences Partial DNA sequences were extended to fuU length with an algorithm based on BLAST analysis. First, partial cDNAs assembled as described in Example UI were queried against pubhc databases such as the GenBank primate, rodent, mammahan, vertebrate, and eukaryote databases using the BLAST program. The nearest GenBank protein homolog was then compared by BLAST analysis to either Incyte cDNA sequences or GenScan exon predicted sequences described in Example IV. A chimeric protein was generated by using the resultant high-scoring segment pairs (HSPs) to map the translated sequences onto the GenBank protein homolog. Insertions or deletions may occur in the chimeric protein with respect to the original GenBank protein homolog. The GenBank protein homolog, the chimeric protein, or both were used as probes to search for homologous genomic sequences from the pubhc human genome databases. Partial DNA sequences were therefore "stretched" or extended by the addition of homologous genomic sequences. The resultant stretched sequences were examined to determine whether it contained a complete gene. VI. Chromosomal Mapping of TRICH Encoding Polynucleotides
The sequences which were used to assemble SEQ JD NO:10-18 were compared with sequences from the Incyte LJFESEQ database and pubhc domain databases using BLAST and other implementations of the Smith- Waterman algorithm. Sequences from these databases that matched SEQ ID NO:10-18 were assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 7). Radiation hybrid and genetic mapping data available from pubhc resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Genethon were used to deteimine if any of the clustered sequences had been previously mapped. Inclusion of a mapped sequence in a cluster resulted in the assignment of aU sequences of that cluster, including its particular SEQ ID NO:, to that map location.
Map locations are represented by ranges, or intervals, of human chromosomes. The map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p- arm. (The centiMorgan (cM) is a unit of measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly equivalent to 1 megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.) The cM distances are based on genetic markers mapped by Genethon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters. Human genome maps and other resources available to the pubhc, such as the NCBI "GeneMap'99" World Wide Web site (http://www.ncbi.nlm.nih.gov/genemap/), can be employed to determine if previously identified disease genes map within or in proximity to the intervals indicated above. VII. Analysis of Polynucleotide Expression Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular ceU type or tissue have been bound. (See, e.g., Sambrook, supra, ch. 7; Ausubel (1995) supra, ch. 4 and 16.)
Analogous computer techniques applying BLAST were used to search for identical or related molecules in cDNA databases such as GenBank or LJJRESEQ (Incyte Genomics). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:
BLAST Score x Percent Identity
5 x minimum {length(Seq. 1), length(Seq. 2)}
The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. The product score is a normalized value between 0 and 100, and is calculated as foUows: the BLAST score is multiplied by the percent nucleotide identity and the product is divided by (5 times the length of the shorter of the two sequences). The BLAST score is calculated by assigning a score of +5 for every base that matches in a high-scoring segment pah (HSP), and -4 for every mismatch. Two sequences may share more than one HSP (separated by gaps). If there is more than one HSP, then the pair widi the highest BLAST score is used to calculate the product score. The product score represents a balance between fractional overlap and quahty in a BLAST alignment. For example, a product score of 100 is produced only for 100% identity over the entire length of the shorter of the two sequences being compared. A product score of 70 is produced either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other. A product score of 50 is produced either by 100% identity and 50% overlap at one end, or 79% identity and 100% overlap.
Alternatively, polynucleotide sequences encoding TRICH are analyzed with respect to the tissue sources from which they were derived. For example, some full length sequences are assembled, at least in part, with overlapping Incyte cDNA sequences (see Example TH). Each cDNA sequence is derived from a cDNA hbrary constructed from a human tissue. Each human tissue is classified into one of the foUowing organ tissue categories: cardiovascular system; connective tissue; digestive system; embryonic structures; endocrine system; exocrine glands; genitalia, female; genitaha, male; germ ceUs; hemic and mirnune system; hver; musculoskeletal system; nervous system; pancreas; respiratory system; sense organs; skin; stomatognaihic system; unclassified/mixed; or urinary tract. The number of libraries in each category is counted and divided by the total number of libraries across aU categories. Similarly, each human tissue is classified into one of the foUowing disease/condition categories: cancer, ceU line, developmental, inflammation, neurological, trauma, cardiovascular, pooled, and other, and the number of libraries in each category is counted and divided by the total number of libraries across aU categories. The resulting percentages reflect the tissue- and disease-specific expression of cDNA encoding TRICH.
VIII. Extension of TRICH Encoding Polynucleotides
FuU length polynucleotide sequences were also produced by extension of an appropriate fragment of the frdl length molecule using ohgonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer was synthesized to initiate 3 ' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68 °C to about 72 °C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.
Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.
High fidelity amphfication was obtained by PCR using methods weU known in the art. PCR was performed in 96-weU plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg2+, (NϊL^SO^ and 2-mercaptoethanol, Taq DNA polymerase (Amersham Biosciences), ELONGASE enzyme (Invitrogen), and Pfu DNA polymerase (Stratagene), with the foUowing parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68 °C, 5 min; Step 7: storage at 4°C In the alternative, die parameters for primer pair T7 and SK+ were as foUows: Step 1: 94 °C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68 °C, 5 min; Step 7: storage at 4°C The concentration of DNA in each weU was determined by dispensing 100 μl PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in IX TE and 0.5 μl of undiluted PCR product into each weU of an opaque fluorirneter plate (Corning Costar, Acton MA), aUowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan JI (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 μl to 10 μl aliquot of the reaction mixture was analyzed by electrophoresis on a 1 % agarose gel to determine which reactions were successful in extending the sequence.
The extended nucleotides were desalted and concentrated, tiansfened to 384-weU plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to rehgation into pUC 18 vector (Amersham Biosciences). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Biosciences), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent E. coh ceUs. Transformed ceUs were selected on antibiotic-containing media, and individual colonies were picked and cultared overnight at 37 °C in 384-weU plates in LB/2x carb liquid media.
The ceUs were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Biosciences) and Pfu DNA polymerase (Stratagene) with the foUowing parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethysulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Biosciences) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Apphed Biosystems).
In like manner, fuU length polynucleotide sequences are verified using the above procedure or are used to obtain 5' regulatory sequences using the above procedure along with ohgonucleotides designed for such extension, and an appropriate genomic hbrary.
IX. Identification of Single Nucleotide Polymorphisms in TRICH Encoding Polynucleotides
Common DNA sequence Viariants known as single nucleotide polymorphisms (SNPs) were identified in SEQ JD NO: 10-18 using the LIFESEQ database (Incyte Genomics). Sequences from the same gene were clustered together and assembled as described in Example HI, aUowing the identification of aU sequence variants in the gene. An algorithm consisting of a series of filters was used to distinguish SNPs from other sequence variants. Preliminary filters removed the majority of basecaU enors by requiring a rninimum Phred quahty score of 15, and removed sequence alignment errors and enors resulting from improper trimming of vector sequences, chimeras, and sphce variants. An automated procedure of advanced chromosome analysis analysed the original chromatogram files in the vicinity of the putative SNP. Clone enor filters used statisticaUy generated algorithms to identify errors introduced during laboratory processing, such as those caused by reverse transcriptase, polymerase, or somatic mutation. Clustering enor filters used statisticaUy generated algorithms to identify enors resulting from clustering of close homologs or pseudogenes, or due to contamination by non-human sequences. A final set of filters removed duplicates and SNPs found in immunoglobulins or T-ceU receptors.
Certain SNPs were selected for further characterization by mass spectrometry using the high throughput MASSARRAY system (Sequenom, Inc.) to analyze aUele frequencies at the SNP sites in four different human populations. The Caucasian population comprised 92 individuals (46 male, 46 female), including 83 from Utah, four French, three Venezuelan, and two Amish individuals. The African population comprised 194 individuals (97 male, 97 female), aU African Americans. The Hispanic population comprised 324 individuals (162 male, 162 female), aU Mexican Hispanic. The Asian population comprised 126 individuals (64 male, 62 female) with a reported parental breakdown of 43% Chinese, 31% Japanese, 13% Korean, 5% Vietnamese, and 8% other Asian. AUele frequencies were first analyzed in the Caucasian population; in some cases those SNPs which showed no aUelic variance in this population were not further tested in the other three populations.
X. Labeling and Use of Individual Hybridization Probes
Hybridization probes derived from SEQ JD NO: 10-18 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of ohgonucleotides, consisting of about 20 base pairs, is specificaUy described, essentiaUy the same procedure is used with larger nucleotide fragments. Ohgonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 μCi of [γ-32P] adenosine tiϊphosphate (Amersham Biosciences), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled ohgonucleotides are substantiaUy purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Biosciences). An ahquot containing 107 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the foUowing endonucleases: Ase I, Bgl H, Eco Rl, Pst I, Xba I, or Pvu H (DuPont NEN).
The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & SchueU, Durham NH). Hybridization is carried out for 16 hours at 40 °C To remove nonspecific signals, blots are sequentiahy washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared. XI. Microarrays
The linkage or synthesis of anay elements upon a microanay can be achieved utilizing photohthography, piezoelectric printing (ink-jet printing, See, e.g., Baldeschweiler, supra.), mechanical microspotting technologies, and derivatives thereof. The substrate in each of the aforementioned technologies should be uniform and sohd with a non-porous surface (Schena (1999), supra). Suggested substrates include sihcon, sihca, glass shdes, glass chips, and sihcon wafers. Alternatively, a procedure analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical anay may be produced using available methods and machines weU known to those of ordinary skiU in the art and may contain any appropriate number of elements. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645; MarshaU, A. and J. Hodgson (1998) Nat. Biotechnol. 16:27-31.) FuU length cDNAs, Expressed Sequence Tags (ESTs), or fragments or oligomers thereof may comprise the elements of the microanay. Fragments or ohgomers suitable for hybridization can be selected using software weU known in the art such as LASERGENE software (DNASTAR). The array elements are hybridized with polynucleotides in a biological sample. The polynucleotides in the biological sample are conjugated to a fluorescent label or other molecular tag for ease of detection. After hybridization, nonhybridized nucleotides from the biological sample are removed, and a fluorescence scanner is used to detect hybridization at each anay element. Alternatively, laser desorbtion and mass spectrometry may be used for detection of hybridization. The degree of complementarity and the relative abundance of each polynucleotide which hybridizes to an element on the microanay maybe assessed. In one embodiment, microarray preparation and usage is described in detail below.
Tissue or CeU Sample Preparation
Total RNA is isolated from tissue samples using the guanidinium thiocyanate method and poly(A)+ RNA is purified using the oligo-(dT) ceUulose method. Each poly(A)+ RNA sample is reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/μl oligo-(dT) primer (21mer), IX first strand buffer, 0.03 units/μl RNase inhibitor, 500 μM dATP, 500 μM dGTP, 500 μM dTTP, 40 μM dCTP, 40 μM dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Biosciences). The reverse transcription reaction is performed in a 25 ml volume containing 200 ng poly(A)+ RNA with GEMBRIGHT kits (Incyte). Specific control ρoly(A)+ RNAs are synthesized by in vitro transcription from non-coding yeast genomic DNA. After incubation at 37° C for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeling) is treated with 2.5 ml of 0.5M sodium hydroxide and incubated for 20 minutes at 85° C to the stop the reaction and degrade the RNA. Samples are purified using two successive CHROMA SPIN 30 gel filtration spin columns (CLONTECH Laboratories, Inc. (CLONTECH), Palo Alto CA) and after combining, both reaction samples are ethanol precipitated using 1 ml of glycogen (1 mg/ml), 60 ml sodium acetate, and 300 ml of 100% ethanol. The sample is then dried to completion using a SpeedVAC (Savant Instruments Inc., Holbrook NY) and resuspended in 14 μl 5X SSC/0.2% SDS. Microarray Preparation Sequences of the present invention are used to generate array elements. Each array element is amplified from bacterial cehs containing vectors with cloned cDNA inserts. PCR amphfication uses primers complementary to the vector sequences flanking the cDNA insert. Anay elements are amplified in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5 μg. Amphfied anay elements are then purified using SEPHACRYL-400 (Amersham Biosciences). Purified array elements are immobilized on polymer-coated glass shdes. Glass microscope shdes (Corning) are cleaned by ultrasound in 0.1% SDS and acetone, with extensive distilled water washes between and after treatments. Glass shdes are etched in 4% hydrofluoric acid (VWR Scientific Products Corporation (VWR), West Chester PA), washed extensively in distiUed water, and coated with 0.05% aminopropyl silane (Sigma) in 95% ethanol. Coated shdes are cured in a 110°C oven.
Anay elements are apphed to the coated glass substrate using a procedure described in U.S. Patent No. 5,807,522, incorporated herein by reference. 1 μl of the anay element DNA, at an average concentration of 100 ng/μl, is loaded into the open capillary printing element by a high-speed robotic apparatus. The apparatus then deposits about 5 nl of array element sample per shde.
Microarrays are UV-crosslinked using a STRATALTNKER UV-crosslinker (Stratagene). Microarrays are washed at room temperature once in 0.2% SDS and three times in distiUed water. Non-specific binding sites are blocked by incubation of microanays in 0.2% casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford MA) for 30 minutes at 60° C foUowed by washes in 0.2% SDS and distiUed water as before. Hybridization
Hybridization reactions contain 9 μl of sample mixture consisting of 0.2 μg each of Cy3 and Cy5 labeled cDNA synthesis products in 5X SSC, 0.2% SDS hybridization buffer. The sample mixture is heated to 65° C for 5 minutes and is ahquoted onto the microanay surface and covered with an 1.8 cm2 covershp. The arrays are transferred to a waterproof chamber having a cavity just slightly larger than a microscope shde. The chamber is kept at 100% humidity internaUy by the addition of 140 μl of 5X SSC in a corner of the chamber. The chamber containing the anays is incubated for about 6.5 hours at 60°C The anays are washed for 10 min at 45°C in a first wash buffer (IX SSC, 0.1% SDS), three times for 10 minutes each at 45° C in a second wash buffer (0. IX SSC), and dried. Detection
Reporter-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5. The excitation laser light is focused on the array using a 20X microscope objective (Nikon, Inc., Melville NY). The shde containing the array is placed on a computer-conteoUed X-Y stage on the microscope and raster- scanned past the objective. The 1.8 cm x 1.8 cm anay used in the present example is scanned with a resolution of 20 micrometers.
In two separate scans, a mixed gas multiline laser excites the two fluorophores sequentiaUy. Emitted light is split, based on wavelength, into two photomultiplier tube detectors (PMT R1477,
Hamamatsu Photonics Systems, Bridgewater NJ) conesponding to the two fluorophores. Appropriate filters positioned between the array and the photomultiplier tubes are used to filter the signals. The emission maxima of the fluorophores used are 565 nm for Cy3 and 650 nm for Cy5. Each anay is typicaUy scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus is capable of recording the spectra from both fluorophores simultaneously. The sensitivity of the scans is typicaUy cahbrated using the signal intensity generated by a cDNA control species added to the sample mixture at a known concentration. A specific location on the array contains a complementary DNA sequence, aUowing the intensity of the signal at that location to be conelated with a weight ratio of hybridizing species of 1:100,000. When two samples from different sources (e.g., representing test and control ceUs), each labeled with a different fluorophore, are hybridized to a single anay for the purpose of identifying genes that are differentiaUy expressed, the calibration is done by labeling samples of the calibrating cDNA with the two fluorophores and adding identical amounts of each to the hybridization mixture.
The output of the photomultiplier tube is digitized using a 12-bit RTI-835H analog-to-digital (A/D) conversion board (Analog Devices, Inc., Norwood MA) instaUed in an IBM-compatible PC computer. The digitized data are displayed as an image where the signal intensity is mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal). The data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first corrected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore 's emission spectrum.
A grid is superimposed over the fluorescence signal image such that the signal from each spot is centered in each element of the grid. The fluorescence signal within each element is then integrated to obtain a numerical value conesponding to the average intensity of the signal. The software used for signal analysis is the GEMTOOLS gene expression analysis program (Incyte). Anay elements that exhibited at least about a two-fold change in expression, a signal-to-background ratio of at least 2.5, and an element spot size of at least 40% were identified as differentiaUy expressed using the GEMTOOLS program (Incyte Genomics). Expression
SEQ ID NO: 10 showed differential expression in association with Jurkat ceU lines treated with PMA and ionomycin as compared to untreated Jurkat ceU lines, as determined by microanay analysis. The expression of SEQ ID NO: 10 was decreased by at least two fold in Jurkat ceUs treated with at least 100 nM PMA and at least 1 microgram/ml ionomycin for 1 hour, as compared to controls. Therefore, in an embodiment, SEQ JD NO: 10 can be used in diagnostic assays for and/or monitoring treatment of immune response disorders. XII. Complementary Polynucleotides
Sequences complementary to the TRICH-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturaUy occurring TRICH. Although use of ohgonucleotides comprising from about 15 to 30 base pairs is described, essentiaUy the same procedure is used with smaUer or with larger sequence fragments. Appropriate ohgonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of TRICH. To inhibit transcription, a complementary ohgonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary ohgonucleotide is designed to prevent ribosomal binding to the TRICH-encoding transcript.
XIII. Expression of TRICH
Expression and purification of TRICH is achieved using bacterial or virus-based expression systems. For expression of TRICH in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express TRICH upon induction with isopropyl beta-D- thiogalactopyranoside (JPTG). Expression of TRICH in eukaryotic ceUs is achieved by infecting insect or mammahan ceU lines with recombinant Autograpbica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovims is replaced with cDNA encoding TRICH by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect ceUs in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)
In most expression systems, TRICH is synthesized as a fusion protein with, e.g., glutathione S-tiansferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude ceU lysates. GST, a 26-kilodalton enzyme from Schistosoma iaponicum. enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Biosciences). FoUowing purification, the GST moiety can be proteolyticaUy cleaved from TRICH at specificaUy engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commerciaUy available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch. 10 and 16). Purified TRICH obtained by these methods can be used directly in the assays shown in Examples XVH, XVm, and X where apphcable.
XIV. Functional Assays TRICH function is assessed by expressing the sequences encoding TRICH at physiologicahy elevated levels in mammahan ceU culture systems. cDNA is subcloned into a mammahan expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include PCMV SPORT plasmid (Invitrogen, Carlsbad CA) and PCR3.1 plasmid (Invitrogen), both of which contain the cytomegalovirus promoter. 5-10 μg of recombinant vector are transiently transfected into a human ceU line, for example, an endothelial or hematopoietic ceU hne, using either hposome formulations or electroporation. 1-2 μg of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected ceUs from nontransfected ceUs and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein
(GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometiy (FCM), an automated, laser optics-based technique, is used to identify transfected ceUs expressing GFP or CD64-GFP and to evaluate the apoptotic state of the cehs and other ceUular properties. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with ceU death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in ceU size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of ceU surface and intraceUular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the ceU surface. Methods in flow cytometiy are discussed in Ormerod, M.G. (1994) Flow Cytometiy. Oxford, New York NY.
The influence of TRICH on gene expression can be assessed using highly purified populations of ceUs transfected with sequences encoding TRICH and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected ceUs and bind to conserved regions of human immunoglobulin G (IgG). Transfected ceUs are efficiently separated from nontransfected ceUs using magnetic beads coated with either human IgG or antibody against CD64 (D YNAL, Lake Success NY). mRNA can be purified from the ceUs using methods weU known by those of skiU in the art. Expression of mRNA encoding TRICH and other genes of interest can be analyzed by northern analysis or microarray techniques. XV. Production of TRICH Specific Antibodies
TRICH substantiaUy purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize animals (e.g., rabbits, mice, etc.) and to produce antibodies using standard protocols. Alternatively, the TRICH amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skiU in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are weU described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.)
TypicaUy, ohgopeptides of about 15 residues in length are synthesized using an ABI 431 A peptide synthesizer (Apphed Biosystems) using FMOC chemistry and coupled to KLH (Sigma- Aldrich, St. Louis MO) by reaction with N-maleirmdobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, supra.) Rabbits are immunized with die oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide and anti-TRICH activity by, for example, binding the peptide or TRICH to a substrate, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG. XVI. Purification of Naturally Occurring TRICH Using Specific Antibodies NaturaUy occurring or recombinant TRICH is substantiaUy purified by immunoaffinity chromatography using antibodies specific for TRICH. An immunoaffinity column is constructed by covalently coupling anti-TRICH antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Biosciences). After the coupling, the resin is blocked and washed according to the manufacturer's instructions. Media containing TRICH are passed over the immunoaffinity column, and the column is washed under conditions that aUow the preferential absorbance of TRICH (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody TRICH binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and TRICH is collected. XVII. Identification of Molecules Which Interact with TRICH
Molecules that interact with TRICH may include transporter substrates, agonists or antagonists, modulatory proteins such as Gβγ proteins (Reimann, supra) or proteins involved in TRICH locahzation or clustering such as MAGUKs (Craven, supra). TRICH, or biologicaUy active fragments thereof, are labeled with 125I Bolton-Hunter reagent. (See, e.g., Bolton A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539.) Candidate molecules previously arrayed in the wehs of a multi-weU plate are incubated with the labeled TRICH, washed, and any weUs with labeled TRICH complex are assayed. Data obtained using different concentrations of TRICH are used to calculate values for the number, affinity, and association of TRICH with the candidate molecules. Alternatively, molecules interacting with TRICH are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989) Nature 340:245-246, or using commerciaUy available kits based on the two-hybrid system, such as the MATCHMAKER system (Clontech). TRICH, or fragments thereof, are expressed as fusion proteins with the DNA binding domain of Gal4 or lexA, and potential interacting proteins are expressed as fusion proteins with an activation domain. Interactions between the TRICH fusion protein and the TRICH interacting proteins (fusion proteins with an activation domain) reconstitute a transactivation function that is observed by expression of a reporter gene. Yeast 2-hybrid systems are commerciaUy available, and methods for use of the yeast 2-hybrid system with ion channel proteins are discussed in Niethammer, M. and M. Sheng (1998, Methods Enzymol. 293 : 104- 122).
TRICH may also be used in the PATHCALLING process (CuraGen Corp., New Haven CT) which employs the yeast two-hybrid system in a high-throughput manner to determine aU interactions between the proteins encoded by two large libraries of genes (Nandabalan, K. et al. (2000) U.S. Patent No. 6,057,101). Potential TRICH agonists or antagonists may be tested for activation or inhibition of TRICH ion channel activity using the assays described in section XVJJI. XVIII. Demonstration of TRICH Activity
Ion channel activity of TRICH is demonstrated using an electrophysiological assay for ion conductance. TRICH can be expressed by transforming a mammahan ceU line such as COS7, HeLa or CHO with a eukaryotic expression vector encoding TRICH. Eukaryotic expression vectors are commerciaUy available, and the techniques to introduce them into ceUs are weU known to those skilled in the art. A second plasmid which expresses any one of a number of marker genes, such as β- galactosidase, is co-transformed into the ceUs to aUow rapid identification of those ceUs which have taken up and expressed die foreign DNA. The ceUs are incubated for 48-72 hours after transformation under conditions appropriate for the ceU line to aUow expression and accumulation of TRICH and β-galactosidase.
Transformed ceUs expressing β-galactosidase are stained blue when a suitable colorimetric substrate is added to the culture media under conditions that are weU known in the art. Stained ceUs are tested for differences in membrane conductance by electrophysiological techniques that are weU known in the art. Untiansformed ceUs, and/or ceUs transformed with either vector sequences alone or β-galactosidase sequences alone, are used as controls and tested in parahel. CeUs expressing TRICH wiU have higher cation conductance relative to control ceUs. The contribution of TRICH to conductance can be confirmed by incubating the ceUs using antiboilies specific for TRICH. The antibodies wiU bind to the extiaceUular side of TRICH, thereby blocking the pore in the ion channel, and the associated conductance.
Alternatively, ion channel activity of TRICH is measured as cunent flow across a TRICH- containing Xenopus laevis oocyte membrane using the two-electrode voltage-clamp technique (Ishi et al., supra; Jegla, T. and L. Salkoff (1997) J. Neurosci. 17:32-44). TRICH is subcloned into an appropriate Xenopus oocyte expression vector, such as pBF, and 0.5-5 ng of mRNA is injected into mature stage IV oocytes. Injected oocytes are incubated at 18 °C for 1-5 days. Inside-out macropatcb.es are excised into an intraceUular solution containing 116 mM K-gluconate, 4 mM KC1, and 10 mM Hepes (pH 7.2). The intraceUular solution is supplemented with varying concentrations of the TRICH mediator, such as cAMP, cGMP, or Ca+2 (in the form of CaCy, where appropriate. Electrode resistance is set at 2-5 MΩ and electrodes are fiUed with the intraceUular solution lacking mediator. Experiments are performed at room temperature from a holding potential of 0 mV. Voltage ramps (2.5 s) from -100 to 100 mV are acquired at a sampling frequency of 500 Hz. Cunent measured is proportional to the activity of TRICH in the assay. For example, the activity of TRICH-3 is measured as proton conductance and the activity of
TRICH-4 is measured as calcium conductance.
Transport activity of TRICH is assayed by measuring uptake of labeled substrates into Xenopus laevis oocytes. Oocytes at stages V and VI are injected with TRICH mRNA (10 ng per oocyte) and incubated for 3 days at 18 °C in OR2 medium (82.5mM NaCI, 2.5 mM KC1, ImM CaCl2, ImM MgCl2, ImM NajHPO^ 5 mM Hepes, 3.8 mM NaOH , 50μg/ml gentamycin, pH 7.8) to aUow expression of TRICH. Oocytes are then transferred to standard uptake medium (lOOmM NaCI, 2 mM KC1, ImM CaCl2, ImM MgCl2, 10 mM Hepes Tris pH 7.5). Uptake of various substrates (e.g., amino acids, sugars, drugs, ions, and neurotransmitters) is initiated by adding labeled substrate (e.g. radiolabeled with 3H, fluorescently labeled with rhodamine, etc.) to the oocytes. After incubating for 30 minutes, uptake is tenninated by washing the oocytes three times in Na+-free me&um, measuring the incorporated label, and comparing with controls. TRICH activity is proportional to the level of internalized labeled substrate. Test substrates include, but are not limited to, mehbiose or other carbohydrates for TRICH-1, urea for TRICH-5, and sulphate for TRICH-6.
ATPase activity associated with TRICH can be measured by hydrolysis of radiolabeled ATP- [γ-32P], separation of the hydrolysis products by chromatographic methods, and quantitation of the recovered 32P using a scintillation counter. The reaction mixture contains ATP-[γ-32PJ and varying amounts of TRICH in a suitable buffer incubated at 37 °C for a suitable period of time. The reaction is terminated by acid precipitation with trichloroacetic acid and then neutralized with base, and an ahquot of the reaction mixture is subjected to membrane or filter paper-based chromatography to separate the reaction products. The amount of 3 P liberated is counted in a scintiUation counter. The amount of radioactivity recovered is proportional to the ATPase activity of TRICH in the assay.
Alternatively, hon uptake activity of TRICH is assayed in 100 mM HEPES/NaOH buffer (pH 7.0) with a Fe2+/TRICH molar ratio of 1000:1 at room temperature, hon incorporation is monitored by measuring the absorbance at 310 nm using a UV spectiophotometer (Masuda, T. et al. (2001) J. Biol. Chem. 276:19575-19579). XIX. Identification of TRICH Agonists and Antagonists
TRICH is expressed in a eukaryotic ceU line such as CHO (Chinese Hamster Ovary) or HEK (Human Embryonic Kidney) 293. Ion channel activity of the transformed cehs is measured in the presence and absence of candidate agonists or antagonists. Ion channel activity is assayed using patch clamp methods weU known in the art or as described in Example XVH. Alternatively, ion channel activity is assayed using fluorescent techniques that measure ion flux across the ceU membrane (Velicelebi, G. et al. (1999) Meth. Enzymol. 294:20-47; West, M.R. and CR. MoUoy (1996) Anal. Biochem. 241:51-58). These assays may be adapted for high-throughput screening using microplates. Changes in internal ion concentration are measured using fluorescent dyes such as the Ca2+ indicator Fluo-4 AM (available from Molecular Probes) in combination with the FLIPR fluorimetric plate reading system (Molecular Devices). In a more generic version of this assay, changes in membrane potential caused by ionic flux across the plasma membrane are measured using oxonyl dyes such as DiBAC4 (Molecular Probes). DiBAC4 equihbrates between the extraceUular solution and ceUular sites according to the ceUular membrane potential. The dye's fluorescence intensity is 20-fold greater when bound to hydrophobic intraceUular sites, aUowing detection of DiBAC4 entry into the ceU (Gonzalez, J.E. and PA. Negulescu (1998) Gun. Opin. Biotechnol. 9:624- 631). Candidate agonists or antagonists may be selected from known ion channel agonists or antagonists, peptide libraries, or combinatorial chemical libraries.
Various modifications and variations of the described methods and systems of the invention wiU be apparent to those skiUed in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with certain embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for canying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the foUowing claims. Table 1
Figure imgf000098_0001
Table 2
Figure imgf000099_0001
Table 2
Figure imgf000100_0001
Table 3
o o
Figure imgf000101_0001
Table 3
Figure imgf000102_0001
Table 3
Figure imgf000103_0001
Table 3
o ω
Figure imgf000104_0001
Table 3
Figure imgf000105_0001
Table 4
Figure imgf000106_0001
Table 4
Figure imgf000107_0001
Table 5
Figure imgf000108_0001
Table 6
Figure imgf000109_0001
Table 7
Figure imgf000110_0001
Table 7
Figure imgf000111_0001
Table 7
Figure imgf000112_0001

Claims

What is claimed is:
1. An isolated polypeptide selected from the group consisting of: a) a polypeptide comprising «τn amino acid sequence selected from the group consisting of SEQ JX> NO:l-9, b) ' a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO: 1-3, SEQ ID NO:5-6, and SEQ JD NO.8-9, c) a polypeptide comprising a naturally occurring amino acid sequence at least 91 % identical to the amino acid sequence of SEQ ID NO:4, d) a polypeptide comprising a naturally occurring amino acid sequence at least 95% identical to the amino acid sequence of SEQ ID NO:7, e) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:l-9, and f) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO: 1-9.
2. An isolated polypeptide of claim 1 comprising an amino acid sequence selected from the group consisting of SEQ JD NO:l-9.
3. An isolated polynucleotide encoding a polypeptide of claim 1.
4. An isolated polynucleotide encoding a polypeptide of claim 2.
5. An isolated polynucleotide of claim 4 comprising a polynucleotide sequence selected from the group consisting of SEQ JD NO:10-18.
6. A recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide of claim 3.
7. A cell transformed with a recombinant polynucleotide of claim 6.
8. A transgenic organism comprising a recombinant polynucleotide of claim 6.
9. A method of producing a polypeptide of claim 1, the method comprising: a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide, and said recombinant polynucleotide comprises a promoter sequence operably linked to a polynucleotide encoding the polypeptide of claim 1, and b) recovering the polypeptide so expressed.
10. A method of claim 9, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of SEQ JD NO: 1-9.
11. An isolated antibody which specifically binds to a polypeptide of claim 1.
12. An isolated polynucleotide selected from the group consisting of: a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:10-18, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ JD NO:10-18, c) a polynucleotide complementary to a polynucleotide of a), d) a polynucleotide complementary to a polynucleotide of b), and e) an RNA equivalent of a)-d).
13. An isolated polynucleotide comprising at least 60 contiguous nucleotides of a polynucleotide of claim 12.
14. A method of detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 12, the method comprising: a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and, optionally, if present, the amount thereof.
15. A method of claim 14, wherein the probe comprises at least 60 contiguous nucleotides.
16. A method of detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 12, the method comprising: a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.
17. A composition comprising a polypeptide of claim 1 and a pharmaceutically acceptable excipient.
18. A composition of claim 17, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of SEQ JD NO: 1-9.
19. A method for treating a disease or condition associated with decreased expression of functional TRICH, comprising administering to a patient in need of such treatment the composition of claim 17.
20. A method of screening a compound for effectiveness as an agonist of a polypeptide of claim 1, the method comprising: a) exposing a sample comprising a polypeptide of claim 1 to a compound, and b) detecting agonist activity in the sample.
21. A composition comprising an agonist compound identified by a method of claim 20 and a pharmaceutically acceptable excipient.
22. A method for treating a disease or condition associated with decreased expression of functional TRICH, comprising administering to a patient in need of such treatment a composition of claim 21.
23. A method of screening a compound for effectiveness as an antagonist of a polypeptide of claim 1, the method comprising: a) exposing a sample comprising a polypeptide of claim 1 to a compound, and b) detecting antago ist activity in the sample.
24. A composition comprising an antagonist compound identified by a method of claim 23 and a pharmaceutically acceptable excipient.
25. A method for treating a disease or condition associated with overexpression of functional TRICH, comprising administering to a patient in need of such treatment a composition of claim 24.
26. A method of screening for a compound that specifically binds to the polypeptide of claim 1, the method comprising: a) combining the polypeptide of claim 1 with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide of claim 1 to the test compound, thereby identifying a compound that specifically binds to the polypeptide of claim 1.
27. A method of screening for a compound that modulates the activity of the polypeptide of claim 1, the method comprising: a) combining the polypeptide of claim 1 with at least one test compound under conditions permissive for the activity of the polypeptide of claim 1, b) assessing the activity of the polypeptide of claim 1 in the presence of the test compound, and c) comparing the activity of the polypeptide of claim 1 in the presence of the test compound with the activity of the polypeptide of claim 1 in the absence of the test compound, wherein a change in the activity of the polypeptide of claim 1 in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide of cMm 1.
28. A method of screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence of claim 5, the method comprising: a) exposing a sample comprising the target polynucleotide to a compound, under conditions suitable for the expression of the target polynucleotide, b) detecting altered expression of the target polynucleotide, and c) comparing the expression of the target polynucleotide in the presence of varying amounts of the compound and in the absence of the compound.
29. A method of assessing toxicity of a test compound, the method comprising: a) treating a biological sample containing nucleic acids with the test compound, b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide of claim 12 under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide comprising a polynucleotide sequence of a polynucleotide of claim 12 or fragment thereof, c) quantifying the amount of hybridization complex, and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.
30. A diagnostic test for a condition or disease associated with the expression of TRICH in a biological sample, the method comprising: a) combining the biological sample with an antibody of claim 11, under conditions suitable for the antibody to bind the polypeptide and form an antibodyrpolypeptide complex, and b) detecting the complex, wherein the presence of the complex conelates with the presence of the polypeptide in the biological sample.
31. The antibody of claim 11, wherein the antibody is: a) a chimeric antibody, b) a single chain antibody, c) a Fab fragment, d) a F(ab')2 fragment, or e) a humanized antibody.
32. A composition comprising an antibody of claim 11 and an acceptable excipient.
33. A method of diagnosing a condition or disease associated with the expression of TRICH in a subject, comprising administering to said subject an effective amount of the composition of claim 32.
34. A composition of claim 32, wherein the antibody is labeled.
35. A method of diagnosing a condition or disease associated with the expression of TRICH in a subject, comprising administering to said subject an effective amount of the composition of claim
34.
36. A method of preparing a polyclonal antibody with the specificity of the antibody of claim 11, the method comprising: a) immunizing an animal with a polypeptide consisting of an amino acid sequence selected from the group consisting of SEQ JD NO:l-9,"or an immunogenic fragment thereof, under conditions to elicit an antibody response, b) isolating antibodies from said animal, and c) screening the isolated antibodies with the polypeptide, thereby identifying a polyclonal antibody which specifically binds to a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ JD NO:l-9.
37. A polyclonal antibody produced by a method of claim 36.
38. A composition comprising the polyclonal antibody of claim 37 and a suitable carrier.
39. A method of making a monoclonal antibody with the specificity of the antibody of claim 11, the method comprising: a) immunizing an animal with a polypeptide consisting of an amino acid sequence selected from the group consisting of SEQ JD NO:l-9, or an immunogenic fragment thereof, under conditions to elicit an antibody response, b) isolating antibody producing cells from the animal, c) fusing the antibody producing cells with immortalized cells to form monoclonal antibody-producing hybridoma cells, d) culturing the hybridoma cells, and e) isolating from the culture monoclonal antibody which specifically binds to a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ JD NO:l-9.
40. A monoclonal antibody produced by a method of claim 39.
41. A composition comprising the monoclonal antibody of claim 40 and a suitable canier.
42. The antibody of claim 11, wherein the antibody is produced by screening a Fab expression
Hbrary.
43. The antibody of claim 11, wherein the antibody is produced by screening a recombinant immunoglobulin Hbrary.
44. A method of detecting a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ JD NO: 1-9 in a sample, the method comprising: a) incubating the antibody of claim 11 with a sample under conditions to allow specific binding of the antibody and the polypeptide, s nd b) detecting specific binding, wherein specific binding indicates the presence of a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ JD NO:l-9 in the sample.
45. A method of purifying a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:l-9 from a sample, the method comprising: a) incubating the antibody of claim 11 with a sample under conditions to allow specific binding of the antibody and the polypeptide, and b) separating the antibody from the sample and obtaining the purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ JD
NO.1-9.
46. A microanay wherein at least one element of the microanay is a polynucleotide of claim
13.
47. A method of generating an expression profile of a sample which contains polynucleotides, the method comprising: a) labeling the polynucleotides of the sample, b) contacting the elements of the microanay of claim 46 with the labeled polynucleotides of the sample under conditions suitable for the formation of a hybridization complex, and c) quantifying the expression of the polynucleotides in the sample.
48. An anay comprising different nucleotide molecules affixed in distinct physical locations on a soHd substrate, wherein at least one of said nucleotide molecules comprises a first oHgonucleotide or polynucleotide sequence specifically hybridizable with at least 30 contiguous nucleotides of a target polynucleotide, and wherein said target polynucleotide is a polynucleotide of claim 12.
49. An anay of claim 48, wherein said first oHgonucleotide or polynucleotide sequence is completely complementary to at least 30 contiguous nucleotides of said target polynucleotide.
50. An array of claim 48, wherein said first oHgonucleotide or polynucleotide sequence is completely complementary to at least 60 contiguous nucleotides of said target polynucleotide.
51. An array of claim 48, wherein said first oHgonucleotide or polynucleotide sequence is completely complementary to said target polynucleotide.
52. An array of claim 48, which is a microanay.
53. An array of claim 48, further comprising said target polynucleotide hybridized to a nucleotide molecule comprising said first oHgonucleotide or polynucleotide sequence.
54. An anay of claim 48, wherein a Hnker joins at least one of said nucleotide molecules to said soHd substrate.
55. An anay of claim 48, wherein each distinct physical location on the substrate contains multiple nucleotide molecules, and the multiple nucleotide molecules at any single distinct physical location have the same sequence, and each distinct physical location on the substrate contains nucleotide molecules having a sequence which differs from the sequence of nucleotide molecules at another distinct physical location on the substrate.
56. A polypeptide of claim 1, comprising the amino acid sequence of SEQ JD NO:l.
57. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:2.
58. A polypeptide of claim 1, comprising the amino acid sequence of SEQ JD NO:3.
59. A polypeptide of claim 1, comprising the amino acid sequence of SEQ JD NO:4.
60. A polypeptide of claim 1, comprising the amino acid sequence of SEQ JD NO:5.
61. A polypeptide of claim 1, comprising the amino acid sequence of SEQ JD NO:6.
62. A polypeptide of claim 1, comprising the amino acid sequence of SEQ JD NO:7.
63. A polypeptide of claim 1, comprising the amino acid sequence of SEQ JD NO:8.
64. A polypeptide of claim 1, comprising the amino acid sequence of SEQ JD NO:9.
65. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ JD NO:10.
66. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ JD NO:ll.
67. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ JD NO:12.
68. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ JD NO:13.
69. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ JD NO:14.
70. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ JD NO:15.
71. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ JD NO:16.
72. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ JD NO:17.
73. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:18.
PCT/US2002/016446 2001-05-25 2002-05-24 Transporters and ion channels WO2002096932A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA002447662A CA2447662A1 (en) 2001-05-25 2002-05-24 Transporters and ion channels
EP02731927A EP1390391A4 (en) 2001-05-25 2002-05-24 Transporters and ion channels
US10/478,758 US20040152874A1 (en) 2002-05-24 2002-05-24 Transporter and ion channels
JP2003500111A JP2005507238A (en) 2001-05-25 2002-05-24 Transporters and ion channels

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US29372201P 2001-05-25 2001-05-25
US60/293,722 2001-05-25
US29688101P 2001-06-08 2001-06-08
US60/296,881 2001-06-08
US30459301P 2001-07-10 2001-07-10
US60/304,593 2001-07-10
US30510501P 2001-07-12 2001-07-12
US60/305,105 2001-07-12

Publications (1)

Publication Number Publication Date
WO2002096932A1 true WO2002096932A1 (en) 2002-12-05

Family

ID=27501607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/016446 WO2002096932A1 (en) 2001-05-25 2002-05-24 Transporters and ion channels

Country Status (4)

Country Link
EP (1) EP1390391A4 (en)
JP (1) JP2005507238A (en)
CA (1) CA2447662A1 (en)
WO (1) WO2002096932A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3879695B2 (en) * 2003-04-25 2007-02-14 チッソ株式会社 Flame retardant polyolefin resin composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998042738A1 (en) * 1997-03-21 1998-10-01 Human Genome Sciences, Inc. 87 human secreted proteins
EP1088071A4 (en) * 1998-06-16 2005-03-02 Human Genome Sciences Inc 94 human secreted proteins
AU2001243293A1 (en) * 2000-02-25 2001-09-03 Biogen, Inc. Sodium/solute symporter-like protein and nucleic acids encoding same
EP1326972A2 (en) * 2000-09-15 2003-07-16 Incyte Genomics, Inc. Transporters and ion channels

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK [online] 23 December 1999 (1999-12-23), RUBEN ET AL.: "Human secreted protein HDLBQ19", XP002957867, Database accession no. (AAY86313) *
See also references of EP1390391A4 *

Also Published As

Publication number Publication date
EP1390391A1 (en) 2004-02-25
CA2447662A1 (en) 2002-12-05
EP1390391A4 (en) 2005-03-30
JP2005507238A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
EP1313854A2 (en) Transporters and ion channels
WO2003093444A2 (en) Transporters and ion channels
EP1257578A2 (en) Transporters and ion channels
EP1320600A1 (en) Transporters and ion channels
WO2003027228A2 (en) Receptors and membrane-associated proteins
WO2002046415A2 (en) Polynucleotide and polypeptide sequences of putative transporters and ion channells
EP1412387A2 (en) Transporters and ion channels
EP1326972A2 (en) Transporters and ion channels
US20060194275A1 (en) Transporter and ion channels
WO2001092304A2 (en) Transporters and ion channels
US20060035315A1 (en) Transporters and ion channels
EP1383798A2 (en) Transporters and ion channels
WO2001077174A2 (en) Human transporters and ion channels
WO2003083085A2 (en) Transporters and ion channels
EP1358330A2 (en) Transporters and ion channels
WO2003016493A2 (en) Transporters and ion channels
WO2002002633A2 (en) Transporters and ion channels
WO2004048599A2 (en) Transporters and ion channels
WO2002096932A1 (en) Transporters and ion channels
US20040152874A1 (en) Transporter and ion channels
US20040127683A1 (en) Transporters and ion channels
WO2004035755A2 (en) Transporters and ion channels
WO2004083395A2 (en) Transporters and ion channels
WO2004013293A2 (en) Transporters and ion channels

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002731927

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2447662

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10478758

Country of ref document: US

Ref document number: 2003500111

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2002731927

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2002731927

Country of ref document: EP