CA2447662A1 - Transporters and ion channels - Google Patents
Transporters and ion channels Download PDFInfo
- Publication number
- CA2447662A1 CA2447662A1 CA002447662A CA2447662A CA2447662A1 CA 2447662 A1 CA2447662 A1 CA 2447662A1 CA 002447662 A CA002447662 A CA 002447662A CA 2447662 A CA2447662 A CA 2447662A CA 2447662 A1 CA2447662 A1 CA 2447662A1
- Authority
- CA
- Canada
- Prior art keywords
- polynucleotide
- polypeptide
- seq
- amino acid
- trich
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/02—Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/08—Drugs for genital or sexual disorders; Contraceptives for gonadal disorders or for enhancing fertility, e.g. inducers of ovulation or of spermatogenesis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
- A61P21/04—Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/02—Drugs for disorders of the nervous system for peripheral neuropathies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/08—Antiepileptics; Anticonvulsants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
- A61P25/16—Anti-Parkinson drugs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/18—Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/22—Anxiolytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/24—Antidepressants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/10—Antimycotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P33/00—Antiparasitic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/12—Antihypertensives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Biomedical Technology (AREA)
- Diabetes (AREA)
- Cardiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Psychiatry (AREA)
- Pain & Pain Management (AREA)
- Physical Education & Sports Medicine (AREA)
- Endocrinology (AREA)
- Urology & Nephrology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Reproductive Health (AREA)
- Immunology (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Hematology (AREA)
- Psychology (AREA)
- Biophysics (AREA)
- Zoology (AREA)
- Gynecology & Obstetrics (AREA)
- Pregnancy & Childbirth (AREA)
- Tropical Medicine & Parasitology (AREA)
- Vascular Medicine (AREA)
- Obesity (AREA)
Abstract
The invention provides human transporters and ion channels (TRICH) and polynucleotides which identify and encode TRICH. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating, or preventing disorders associated with aberrant expression of TRICH.
Description
2 PCT/US02/16446 TRANSPORTERS AND ION CHANNELS
TECHNICAL FIELD
This invention relates to nucleic acid and amino acid sequences of transporters and ion channels and to the use of these sequences in the diagnosis, prevention, and treatment of taransport, neurological, muscular, immunological, and cell proliferative disorders, as well as disorders of iron metabolism, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of transporters and ion channels.
BACKGROUND OF THE INVENTION
Eukaryotic cells are surrounded and subdivided into functionally distinct organelles by hydrophobic lipid bilayer membranes which are highly impermeable to most polar molecules. Cells and organelles require transport proteins to import and export essential nutrients and metal ions including K+, NH4+, P;, 504, sugars, and vitamins, as well as various metabolic waste products. Transport proteins also play roles in antibiotic resistance, toxin secretion, ion balance, synaptic neurotransmission, kidney function, intestinal absorption, tumor growth, and other diverse cell functions (Griffith, J. and C.
Sansom (1998) The Transporter Facts Book, Academic Press, San Diego CA, pp. 3-29). Transport can occur by a passive concentration-dependent mechanism, or can be linked to an energy source such as ATP hydrolysis or au ion gradient. Pxoteins that function in transport include carrier proteins, which bind to a specific solute and undergo a conformational change that translocates the bound solute across the membrane, and channel proteins, which form hydrophilic pores that allow specific solutes to diffuse through the membrane down an electrochemical solute gradient.
Carrier proteins which transport a single solute from one side of the membrane to the other are called uniporters. In contrast, coupled transporters link the transfer of one solute with simultaneous or sequential transfer of a second solute, either in the same direction (symport) or in the opposite direction (antiport). For example, intestinal and kidney epithelium contains a variety of symporter systems driven by the sodium gradient that exists across the plasma membrane. Sodium moves into the cell down its electrochemical gradient and brings the solute into the cell with it. The 3o sodium gradient that provides the driving force for solute uptake is maintained by the ubiquitous Na+/K+ ATPase system. Sodium-coupled transporters include the mammalian glucose transporter (SGLT1), iodide transporter (NIS), and multivitamin transporter (SMVT). All three transporters have twelve putative txansmembrane segments, extracellular glycosylation sites, and cytoplasmically-oriented N- and C-termini. NIS plays a crucial role in the evaluation, diagnosis, and treatment of various thyroid pathologies because it is the molecular basis for radioiodide thyroid-imaging techniques and for specific targeting of radioisotopes to the thyroid gland (Levy, O. et al. (1997) Proc. Natl.
Acad. Sci. USA 94:5568-5573). SMVT is expressed in the intestinal mucosa, kidney, and placenta, and is implicated in the transport of the water-soluble vitamins, e.g., biotin and pantothenate (Prasad, P.D. et al. (1998) J. Biol. Chem. 273:7501-7506).
One of the largest families of transporters is the major facilitator superfamily (MFS), also called the uniporter-symporter-antiporter family. MFS transporters are single polypeptide carriers that transport small solutes in response to ion gradients. Members of the MFS are found in all classes of living organisms, and include transporters for sugars, oligosaccharides, phosphates, nitrates, nucleosides, monocarboxylates, and drugs. MFS transporters found in eukaryotes all have a structure comprising 12 transmembrane segments (Pao, S.S. et al. (1998) Microbiol.
Molec. Biol. Rev. 62:1-34).
The largest family of MFS transporters is the sugar transporter family, which includes the seven glucose transporters (GLUT1-GLUT7) found in humans that are required for the transport of glucose and other hexose sugars. These glucose transport proteins have unique tissue distributions and physiological functions. GLUT1 provides many cell types with their basal glucose requirernerlts and transports glucose across epithelial and endothelial barrier tissues;, GLUT2 facilitates glucose uptake or efflux from the liver; GLUT3 regulates glucose supply to neurons; GLUT4 is responsible for insulin-. regulated glucose disposal; and GLUTS regulates fructose uptake into skeletal muscle. Defects in glucose transporters are involved in a recently identified neurological syndrome causing infantile seizures and developmental delay, as wall as glycogen storage disease, Fanconi-Bickel syndrome, and non-insulin-dependent diabetes mellitus (Mueckler, M. (1994) Eur. J. Biochem.
219:713-725; Longo, N. and L.J. Elsas (1998) Adv. Pediatr. 45:293-313).
Monocarboxylate anion transporters are proton-coupled symporters with a broad substrate specificity that includes L-lactate, pyruvate, and the ketone bodies acetate, acetoacetate, and beta-hydroxybutyrate. At least seven isoforms have been identified to date.
The isoforms are predicted to have twelve transme~Cnbrane (TM) helical domains with a Iarge intracellular loop between TM6 and TM7, and play a critical role in maintaining intracellular pH by removing the protons that are produced stoichiometrically with lactate during glycolysis. The best characterized H+-monocarboxylate transporter is that of the erythrocyte membrane, which transports L-lactate and a Wide range of other aliphatic monocarboxyla'tes. Other cells possess H+-linked monocarboxylate transporters with differing substrate and inhibitor selectivities. In particular, cardiac muscle and tumor cells have transporters that differ in their K"~ values for certain substrates, including stereoselectivity for L- over D-lactate, and in their sensitivity to inhibitors. There are Na+-monocarboxylate cotransporters on the luminal surface of intestinal and kidney epithelia, which allow the uptake of lactate, pyruvate, and ketone bodies in these tissues. In addition, there are specific and selective transporters for organic cations and organic anions in organs including the kidney, intestine and liver.
Organic anion transporters are selective for hydrophobic, charged molecules with electron-attracting side groups. Organic cation transporters, such as the ammonium transporter, mediate the secretion of a variety of drugs and endogenous metabolites, and contribute to the maintenance of intercellular pH
(Poole, R.C. and A.P. Halestrap (1993) Am. J. Physiol. 264:C761-C782; Price, N.T. et al. (1998) Biochem. J. 329:321-328; and Martinelle, K. and I. Haggstrom (1993) J.
Biotechnol. 30:339-350).
ATP-binding cassette (ABC) transporters are members of a superfamily of membrane proteins that transport substances ranging from small molecules such as ions, sugars, amino acids, peptides, and phospholipids, to lipopeptides, large proteins, and complex hydrophobic drugs. ABC
transporters consist of four modules: two nucleotide-binding domains (NBD), which hydrolyze ATP to supply the energy required for transport, and two membrane-spanning domains (MSD), each containing six putative transmembrane segments. These four modules may be encoded by a single gene.as;is the case for the cystic fibrosis transmembrane regulator (CFTR), or by separate genes.
When.encoded by separate genes, each gene product contains a single NBD and MSD. These '.'half ' molecules" forth homo- and heterodimers, such as Tap1 and Tap2, the endoplasmic reticulum-Based major histocompatibility (MHC) peptide transport system. Several genetic diseases are attributed to defects in ABC transporters, such as the following diseases and their corresponding proteins: cystic fibrosis (CFTR, an ion channel), adrenoleukodystrophy (adrenoleukodystrophy protein, ALDP), Zellweger syndrome (peroxisonlal membrane protein-70, PMP70), and hyperinsulinemic hypoglycemia (sulfonylurea receptor, SUR). Overexpression of the multidrug resistance (MDR) protein, anothex ABC transporter, in human cancer cells makes the cells resistant to a variety of cytotoxic drugs used in chemotherapy (Taglicht, D. and S. Michaelis (1998) Meth. Enzymol. 292:130-162).
A number of metal ions such as iron, zinc, copper, cobalt, manganese, molybdenum, selenium, nickel, and chromium are important as cofactors for a number of enzymes. For example, copper is involved in hemoglobin synthesis, connective tissue metabolism, and bone development, by acting as a cofactor in oxidoreductases such as superoxide dismutase, ferroxidase (ceruloplasmin), and lysyl oxidase. Copper and other metal ions must be provided in the diet, and are absorbed by transporters in the gastrointestinal tract. Plasma proteins transport the metal ions to the liver and other target organs, where specific transporters move the ions into cells and cellular organelles as needed. Imbalances in metal ion metabolism have been associated with a number of disease states (Darks, D.M. (1986) J.
Med. Genet. 23:99-106).
Transport of fatty acids across the plasma membrane can occur by diffusion, a high capacity, low affinity process. However, under normal physiological conditions a signi~.cant fraction of fatty acid transport appears to occur via a high affinity, low capacity protein-mediated transport process.
Fatty acid transport protein (FATP), an integral membrane protein with four transmembrane segments, is expressed in tissues exhibiting high levels of plasma membrane fatty acid flux, such as muscle, heart, and adipose. Expression of FATP is upregulated in 3T3-L1 cells during adipose conversion, and expression in COS7 fibroblasts elevates uptake of long-chain fatty acids (Hui, T.Y. et al. (1998) J. Biol. Chem. 273:27420-27429).
Mitochondrial carrier proteins are transmembrane-spanning proteins which transport ions and charged metabolites between the cytosol and the mitochondrial matrix. Examples include the ADP, ATP carrier protein; the 2-oxoglutarate/malate carrier; the phosphate carrier protein; the pyruvate carrier; the dicarboxylate carrier which transports malate, succinate, famerete, and phosphate; the tricarboxylate carrier which transports citrate and malate; and the Grave's disease carrier protein, a protein recognized by IgG in patients with active Grave's disease, an autoimmune disorder resulting in hyperthyroidism: Proteins in this family consist of three tandem repeats of an approximately.100;
amino. acid.domain, each of which contains two transmembrane regions (Stryer, L. (1995.);:-:;_: :;..
BiochemistryW'.H. Freeman and Company, New York NY, p. 551; PROSITE
PDOC00'189. !,, ,~~ ~ .
Mitochondrial energy transfer proteins signature; Online Mendelian Inheritance in Man (C)MINI)~.
*275000 Graves Disease).
This class of transporters also includes the mitochondrial uncoupling proteins, which create proton leaks across the inner xnitochondrial membrane, thus uncoupling oxidative phosphorylation from ATP synthesis. The result is energy dissipation in the form of heat.
Mitochondrial uncoupling proteins have been implicated as modulators of thermoregulation and metabolic rate, and have been proposed as potential targets for drugs against metabolic diseases such as obesity (Ricquier, D. et al. (1999) J.
Int. Med. 245:637-642).
Urea trausporters (UT, UrT) play a central role in urea excretion and water balance by allowing the accumulation and concentration of urea in the kidney medulla (Hediger, M.A. et al.
(1996) Kidney Int. 49:1615-1623). Urea is a major solute found in urine and is the principal means by which mammals dispose of nitrogen-based waste products. Urea transporter proteins have been identified in erythropoietic cells (UT-B) and in the kidney medula (UT-A).
Several isoforms of the renal urea transporter (UT-A) have been cloned (i.e., UT-A1, UT-A2, UT-A3, and UT-A4). The expression of UT-A2 may be upregulated in response to uremia. UT-A3 may be expressed in the testis. Urea transporters rnay also be expressed in the brain (I~arakashian, A. et al. (1999) J. Am.
Soc. Nephrol. 1999 10:230-237; Couriaud, C. et al. (1996) Biochim Biophys Acta. 1996 1309:197-19).
At least two distinct classes of urea transporters are present in humans:
constitutively-expressed transporters, and vasopressin-regulated transporters (Olives, B. et al. (1996) FEBS Lett.
386:156-160).
A number of metal ions such as iron, zinc, copper, cobalt, manganese, molybdenum, selenium, nickel, and chromium are important as cofactors for a number of enzymes. For example, copper is involved in hemoglobin synthesis, connective tissue metabolism, and bone development, by acting as a cofactor in oxidoreductases such as superoxide dismutase, ferroxidase (ceruloplasmin), and lysyl oxidase. Copper and other metal ions must be provided in the diet, and are absorbed by transporters in the gastrointestinal tract. Plasma proteins transport the metal ions to the liver and other target organs, where specific transporters move the ions into cells and cellular organelles as needed. Imbalances in metal ion metabolism have been associated with a number of disease states (Darks, D.M. (1986) J.
Med. Genet. 23:99-106).
Iron plays an essential role in oxygen transport and redox reactions, particularly cell respiration~:liowever,: iron is also toxic when present in excess. In humans, unregulated ironabsorption;
.leads to cirrhosis, endocrine. failure, arthritis and cardiomyopathy, as well as hepatocellular.carcinoW a ~.;;
(GriffithsW:rJ;H. et al. (1999) Mol. Med. Today: 5:431-438). Ferritin is a ubiquitous iron-binding u'~='~ ";
protein that i's~involved in iron storage and detoxification in microbes, plants, and animals. Mammalian ferritin consists of 24 subunits of two types, H (for heart, or heavy) and L
(for light or liver). These subunits assemble into a spherical structure which can accommodate up to 4,000 iron atoms as ferrihydrite, FeOOH (Aisen, P. et al. (1999) Curr. Opin. Chem. Biol. 3:200-206).
The nuclear pore complex (NPC) is a large multiprotein complex spanning the nuclear envelope which mediates the transport of proteins and RNA molecules between the nucleus and the cytoplasm, thus contributing to the regulation of gene expression. The NPC
allows passive diffusion of ions, small molecules, and macromolecules under about 60kD, while larger macromolecules are transported by facilitated, energy-dependent pathways. Nuclear localization signals (NLS), consisting of short stretches of amino acids enriched in basic residues, are found on proteins that are targeted to the nucleus, such as the glucocorticoid receptor. The NLS is recognized by the NLS receptor, importin, which then interacts with the monomeric GTP-binding protein Ran.
This NLS
protein/receptor/Ran complex navigates the nuclear pore with the help of the homodimeric protein nuclear transport factor 2 (NTF2) (Nakielny, S. and Dreyfuss, G. (1997) Curr.
Opin. Cell Biol. 9:420-429; Gorlich, D. (1997) Curr. Opin. Cell Biol. 9:412-419). Four O-linked glycoproteins, p62, p58, p54, and p45, exist as a stable "p62 complex" that foams a ring localized on both nucleoplasmic and cytoplasmic surfaces of the NPC. The p62, p58, and p54 proteins all interact directly with the cytosolic trausport factors p97 and NTF2, suggesting that the p62 complex is an important ligand binding site near the central gated channel of the NPC (Hu, T. et al. (1996) J. Cell Biol. 134:589-601).
Ion Channels The electrical potential of a cell is generated and maintained by controlling the movement of ions across the plasma membrane. The movement of ions requires ion channels, which form ion-selective pores within the membrane. There are two basic types of ion channels, ion transporters and gated ion channels. Ion transporters utilize the energy obtained from ATP
hydrolysis to actively transport an ton against the ion's concentration gradient. Gated ion channels allow passive flow of au ion down the ion's electrochemical gradient under restricted conditions.
Together; these types of ion channels generate, maintain, and utilize an electrochemical gradient that is used in 1) electrical impulse conduction down the axon of a nerve cell, 2) transport of molecules into cells against concentration gradients, 3) initiation of muscle contraction, and 4) endocrine cell secretion.
Ion Transporters Ion transporters generate and maintain the resting electrical potential of a cell. Utilizing the energy derived from ATP hydrolysis, they transport ions against the ion's concentration gradient.
These transmembrane ATPases are divided into three families. The phosphorylated (P) class ion transporters, including Na+-K+ ATPase, Ca2+-ATPase, and H+-ATPase, are activated by a phosphorylation event. P-class ion transporters are responsible for maintaining resting potential distributions such that cytosolic concentrations of Na+ and Ca2+ are low and cytosolic concentration of , K+ is high. The.vacuolar (V) class of ion transporters includes H+ pumps on intracellular organelles, such as lysosomes and Golgi. V-class ion~transporters are responsible for generating the low pH
within the lumen of these organelles that is required for function. The coupling factor (F) class consists of H+ pumps in the mitochondria. F-class ion transporters utilize a proton gradient to generate ATP from ADP and inorganic phosphate (Pi).
The P-ATPases are hexamers of a 100 kD subunit with ten trausmembrane domains and several large cytoplasmic regions that may play a role in ion binding (Scarborough, G.A. (1999) Curr.
Opin. Cell Biol. 11:517-522). The V-ATPases are composed of two functional domains: the Vl domain, a peripheral complex responsible for ATP hydrolysis; and the Vo domain, an integral complex responsible for proton trauslocation across the membrane. The F-ATPases are structurally and evolutionarily related to the V-ATPases. The F-ATPase Fo domain contains 12 copies of the c subunit, a highly hydrophobic protein composed of two trausmembrane domains and containing a single buried carboxyl group in TM2 that is essential for proton transport. The V-ATPase Vo domain contains three types of homologous c subunits with four or five transmembrane domains and the essential carboxyl group in TM4 or TM3. Both types of complex also contain a single a subunit that may be involved in regulating the pH dependence of activity (Forgac, M. (1999) J. Biol. Chem.
274:12951-12954).
The resting potential of the cell is utilized in many processes involving carrier proteins and gated ion channels. Carrier proteins utilize the resting potential to transport molecules into and out of the cell. Amino acid and glucose transport into many cells is linked to sodium ion co-transport (symport) so that the movement of Na+ down an electrochemical gradient drives transport of the other molecule up a concentration gradient. Similarly, cardiac muscle licks transfer of Ca2+ out of the cell with transport of Na* into the cell (antiport).
Gated Ion Channels Gated ion channels control ion flow by regulating the opening and closing of pores. The ability 1o to control ion flux through various gating mechanisms allows ion channels to mediate such diverse signaling and homeostatic functions as neuronal and endocrine signaling, muscle contraction, fertilization, and regulation of ion and pH balance. Gated ion channels are categorized according to the manner of regulating the gating function. Mechanically-gated channels open their pores in response to mechanical stress; voltage-gated channels (e.g., Na+, K+, Caz+, and Cl-channels) open their pores in response to changes in membrane potential; and ligand-gated channels (e.g., acetylcholine-, serotonin-, and glutamate-gated cation~channels, and GABA- and glycine-gated chloride channels) open their poxes in the presence of.a specific ion, nucleotide, or neurotransmitter.
The gating properties of a particular ion channel (i.e., its threshold for and duration of opening and closing) are sometimes modulatedbyassociation with auxiliary channel proteins andlor post translational modifications, such as phosphorylation.
Mechanically-gated or mechanosensitive ion channels act as transducers for the senses of touch, hearing, and balance, and also play important roles in cell volume regulation, smooth muscle contraction, and cardiac rhythm generation. A stretch-inactivated channel (SIC) was recently cloned from rat kidney. The SIC channel belongs to a group of channels which are activated by pressure or stress on the cell membrane and conduct both Caz+ and Na+ (Suzuki, M. et al.
(1999) J. Biol. Chem.
274:6330-6335).
The pore-forming subunits of the voltage-gated cation channels form a superfamily of ion channel proteins. 'The characteristic domain of these channel proteins comprises six transmembrane domains (S1-S6), a pore-forming region (P) located between SS and S6, and intracellular amino and carboxy termini. In the Na+ and Ca2+ subfamilies, this domain is repeated four times, while in the K+
channel subfamily, each channel is formed from a tetramer of either identical or dissimilar subunits.
The P region contains information specifying the ion selectivity for the channel. In the case of K+
channels, a GYG tripeptide is involved in this selectivity (Ishii, T.M. et al.
(1997) Proc. Natl. Aced.
Sci. USA 94:11651-11656).
Voltage-gated Na+ and K+ channels are necessary for the function of electarically excitable cells, such as nerve and muscle cells. Action potentials, which lead to neurotransmitter release and muscle contraction, arise from large, transient changes in the permeability of the membrane to Na+
and K+ ions. Depolarization of the membrane beyond the threshold level opens voltage-gated Na+
channels. Sodium ions flow into the cell, further depolarizing the membrane and opening more voltage-gated Na+ channels, which propagates the depolarization down the length of the cell.
Depolarization also opens voltage-gated potassium channels. Consequently, potassium ions flow outward, which leads to repolarization of the membrane. Voltage-gated channels utilize charged residues in the fourth transmembrane segment (S4) to sense voltage change. The open state lasts only about 1 millisecond, at which time the channel spontaneously converts into an inactive state that cannot be opened irrespective of the membrane potential. Inactivation is mediated by the channel's N-terminus, which acts as a plug that closes the pore. The transition from an inactive to a closed state .
requires a return to resting potential.
Voltage-gated Nay channels are heterotrimeric complexes composed of a 260 kDa pore-forming a subunit that associates with two smaller auxiliary subunits, (31 and j32. The J32 subunit is a .
integral membrane glycoprotein that contains an extracellular Ig domain, and its association with a and (31 subunits correlates with increased functional.expression of.the channel, a change in its gating properties, as well as an increase in whole cell capacitance due to an increase in membrane surface area (Isom, L.L. et al. (1995) Cell 83:433-442).
Non voltage-gated Na+ channels include the members of the amiloride-sensitive Na+
channel/degenerin (NaC/DEG) family. Channel subunits of this family are thought to consist of two transmembrane domains flanking a long extxacellular loop, with the amino and carboxyl termini located within the cell. The NaC/DEG family includes the epithelial Na+ channel (ENaC) involved in Na+
reabsorption in epithelia including the airway, distal colon, cortical collecting duct of the kidney, and exocrine duct glands. Mutations in ENaC result in pseudohypoaldosteronism type 1 and Liddle's syndrome (pseudohyperaldosteronism). The NaC/DEG family also includes the xecently characterized H+-gated cation channels or acid-sensing ion channels (ASIC). ASIC subunits are expressed in the brain and form heteromultimeric Nay-permeable channels. These channels require acid pH
fluctuations for activation. ASIC subunits show homology to the degenerins, a family of mechanically-gated channels originally isolated from C. elegans. Mutations in the degenerins cause neurodegeneration. ASIC subunits may also have a role in neuronal function, or in pain perception, since tissue acidosis causes pain (Waldmann, R. and M. Lazdunski (1998) Curr.
Opin. Neurobiol.
8:418-424; Eglen, R,M. et al. (1999) Trends Pharmacol. Sci. 20:337-342).
K+ channels are located in all cell types, and may be regulated by voltage, ATP concentration, or second messengers such as Ca2+ and CAMP. In non-excitable tissue, K+
channels are involved in protein synthesis, control of endocrine secretions, and the maintenance of osmotic equilibrium across membranes. In neurons and other excitable cells, in addition to regulating action potentials and repolarizing membranes, K+ channels are responsible for setting resting membrane potential. The cytosol contains non-diffusible anions and, to balance this net negative charge, the cell contains a Na+-K+ pump and ion channels that provide the redistribution of Na+, K+, and Cl-.
The pump actively transports Na+ out of the cell and K~ into the cell in a 3:2 ratio. Ion channels in the plasma membxane allow K+ and Cl- to flow by passive diffusion. Because of the high negative charge within the cytosol, Cl- flows out of the cell. The flow of K+ is balanced by an electromotive force pulling K+ into the cell, and a K+ concentration gradient pushing K+ out of the cell. Thus, the resting membrane potential is primarily regulated by K+flow (Salkoff, L. and T. Jegla (1995) Neuron 15:489-492).
Potassium channel subunits of the Shaker-like superfamily all have the characteristic six IS transmembrane/1 pore domain structure. Four subunits combine as homo- or heterotetramers to form functional K channels. These pore-forming subunits also associate with various cytoplasmic (3 subunits that alter channel inactivation.kinetics. The Shaker-like channel family includes the voltage-gated K+ channels as well as the delayed rectifier type channels such as the human ether-a-go-go related gene (HERG) associated with long QT, a cardiac dysrythmia'syndrome (Curran, M.E. (1998) 2o Curr. Opin. Biotechnol. 9:565-572; Kaczorowski, G.J. and M.L. Garcia (1999) Curr. Opin. Chem.
Biol. 3:448-458).
A second superfamily of K+ channels is composed of the inward rectifying channels (Kir).
Kir channels have the property of preferentially conducting K+ currents in the inwaxd direction. These proteins consist of a single potassium selective pore domain and two transmembrane domains, which 25 correspond to the fifth and sixth transmembrane domains of voltage-gated K+
channels. Kir subunits also associate as tetramers. The Kir family includes ROMK1, mutations in which lead to Banter syndrome, a renal tubular disorder. Kir channels are also involved in regulation of cardiac pacemaker activity, seizures and epilepsy, and insulin regulation (Doupnik, C.A. et al.
(1995) Curr. Opin.
Neurobiol. 5:268-277; Curran, supra).
30 The recently recognized TWIK K+ channel family includes the mammalian TWIK-1, TREK-1 and TASK proteins. Members of this family possess an overall structure with four transmembrane domains and two P domains. These proteins are probably involved in controlling the resting potential in a large set of cell types (Duprat, F. et al. (1997) EMBO J 16:5464-5471).
The voltage-gated Ca2+ channels have been classified into several subtypes based upon their electrophysiological and pharmacological characteristics. L-type Ca~* channels are predominantly expressed in heart and skeletal muscle where they play an essential role in excitation-contraction coupling. T-type channels are important for cardiac pacemaker activity, while N-type and P/Q-type channels are involved in the control of neurotransmitter release in the central and peripheral nervous system. The L-type and N-type voltage-gated Ca 2+ channels have been purified and, though their functions differ dramatically, they have similar subunit compositions. The channels are composed of three subunits. The al subunit forms the membrane pore and voltage sensor, while the a28 and (3 subunits modulate the voltage-dependence, gating properties, and the current amplitude of the channel.
These subunits are encoded by at least six al, one az~, and four ~3 genes. A
fourth subunit, y, has been identified in skeletal muscle (Walker, D. et al. (1998) J. Biol. Chem.
273:2361-2367; McCleskey, E.W. (1994) Curr. Opin. Neurobiol. 4:304-312).
The high-voltage-activated Ca(2+) channels that have been characterized biochemically include complexes of a pore-forming alphal subunit of approximately 190-250 kDa; a transmembrane complex of alpha2 and delta subunits; an intracellular beta subunit; and in some cases a transmembrane gamma subunit. A variety of alphal subunits, alpha2delta complexes, beta subunits, and gamma subunits are known. The Cav1 family of alphal subunits conduct L-type Ca(2+) currents, which initiate muscle contraction, endocrine secretion, and gene transcription, and are regulated primarily by second messenger-activated protein phosphorylation~pathways. The Cad family of alphal subunits conduct N-type, P/Q-type, and R-type Ca(2+) currents, which initiate rapid synaptic transmission and are regulated primarily by direct interaction with G proteins and SNARE proteins and secondarily by protein phosphorylation. The Cav3 family of alphal subunits conduct T-type Ca(2+) currents, which are activated and inactivated more rapidly and at more negative membrane potentials than other Ca(2+) current types. The distinct structures and patterns of regulation of these three families of Ca(2+) channels provide an array of Ca(2+) entry pathways in response to changes in membrane potential and a range of possibilities for regulation of Ca(2+) entry by second messenger pathways and interacting proteins (Catterall, W.A. (2000) Annu. Rev. Cell Dev.
Biol. 16:521-555).
The alpha-2 subunit of the voltage-gated Ca2+-chancel may include one or more Cache domains. An extracellular Cache domain may be fused to an intracellular catalytic domain, such as 3o the histidine kinase, PP2C phosphatase, GGDEF (a predicted diguanylate cyclase), HD-GYP (a predicted phosphodiesterase) or adenylyl cyclase domain, or to a noncatalytic domain, like the methyl-accepting, DNA binding winged helix-turn-helix, GAF, PAS or HAMP
(domain found in istidine kiuases, denylyl cyclases, ethyl-binding proteins and phosphatases).
Small molecules are bound via the Cache domain and this signal is converted into diverse outputs depending on the intracellular domains (Anantharaman, V, and Aravind, L.(2000) Trends Biochem. Sci. 25:535-537).
The transient receptor family (Trp) of calcium ion channels are thought to mediate capacitative calcium entry (CCE). CCE is the Ca2+ influx into cells to resupply Ca2+ stores depleted by the action of inositol triphosphate (IP3) and other agents iu response to numerous hormones and growth factors. Trp and Trp-like were first cloned from Drosophila and have similarity to voltage gated Ca2+ channels in the S3 through S6 regions. This suggests that Trp and/or related proteins may foam mammalian CCC entry channels (Zhu, X. et al. (1996) Cell 85:661-671;
Boulay, G. et al. (1997) J. Biol. Chem. 272:29672-29680). Melastatin is a gene isolated in both the mouse and human, and whose expression in melanoma cells is inversely correlated with melanoma aggressiveness in vivo.
The human cDNA transcript corresponds to a 1533-amino acid protein having homology to members of the Trp family. It has been proposed that the combined use of malastatin mRNA expression status and tumor thickness might allow for the determination of subgroups of patients at both low and high risk for developing metastatic disease (Duncan, L.M. et al (2001) J. Clip.
Oncol. 19:568-576).
Chloride channels are necessary in endocrine secretion and in regulation of cytosolic and . .. . ., organelle pH. In secretory epithelial cells, Cl- enters the cell across a basolateral membrane through r . an Na+, I~~/Cl- cotxansporter, accumulating in the cell above its electrochemical equilibrium. .
. ~ concentration. Secretion of Cl- from the apical surface, in response to hormonal stimulation, leads to flow of Na * and water into the secretory lumen. The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel encoded by the gene for cystic fibrosis, a common fatal genetic disorder in humans. CFTR is a member of the ABC transporter family, and is composed of two domains each consisting of six transmembrane domains followed by a nucleotide binding site. Loss of CFIR function decreases transepithelial water secretion and, as a result, the layers of mucus that coat the respiratory tree, pancreatic ducts, and intestine are dehydrated and difficult to clear. The resulting blockage of these sites leads to pancreatic insufficiency, "meconium ileus", and devastating "chronic obstructive pulmonary disease" (Al-Awqati, ~. et al. (1992) J. Exp. Biol.
172:245-266).
The voltage-gated chloride channels (CLC) are characterized by 10-12 transmembrane domains, as well as two small globular domains known as CBS domains. The CLC
subunits probably function as homotetramers. CLC proteins are involved in regulation of cell volume, membrane potential stabilization, signal transduction, and transepithelial transport.
Mutations in CLC-1, expressed predominantly in skeletal muscle, are responsible for autosomal recessive generalized myotonia and autosomal dominant myotonia congenita, while mutations in the kidney channel CLC-5 lead to kidney stones (Jentsch, T.J. (1996) C~rr. Opin. Neurobiol. 6:303-310).
Ligand-gated channels open their pores when an extracellular or intracellular mediator binds to the channel. Neurotransmitter-gated channels are channels that open when a neurotransmitter binds to their extracellular domain. These channels exist in the postsynaptic membrane of nerve or muscle cells. There are two types of neurotransmitter-gated channels. Sodium channels open in response to excitatory neurotransmitters, such as acetylcholine, glutamate, and serotonin.
This opening causes an influx of Na+ and produces the initial localized depolarization that activates the voltage-gated channels and starts the action potential. Chloride channels open in response to inhibitory neurotransmitters, such as y-aminobutyric acid (GABA) and glycine, leading to hyperpolarization of the membrane and the subsequent generation of an action potential. Neurotransmitter-gated ion channels have four transmembrane domains and probably function as pentamers (Jentsch, s_upra).
Amino acids in the second transmembrane domain appear to be important in determining channel permeation and selectivity (Sather, W.A. et al. (1994) Curr. Opin. Neurobiol. 4:313-323).
Ligand-gated channels can be regulated by intracellular second messengers. For example, calcium-activated K+ channels are gated by internal calcium ions. In nerve cells, an influx of calcium during depolarization opens K+ channels to modulate the magnitude of the action potential (Ishi et al., ., supra). The large conductance (BK) channel has been purified from brain and its subunit~composition determined. The et subunit of the BK channel has seven rather than six transmembrane domains in'.
contrast to .voltage-gated K+ channels. The extra transmembrane domain is located at the,subunit N-terminus. A 28-amino-acid stretch in the C-terminal region of the subunit (the "calcium bowl" region) contains many negatively charged residues and is thought to be the region responsible for calcium binding. The (3 subunit consists of two transmembrane domains connected by a glycosylated extracellular loop, with intracellular N- and C-termini (Kaczorowski, supra;
Vergara, C. et al. (1998) C~rr. Opin. Neurobiol. 8:321-329).
Cyclic nucleotide-gated (CNG) channels are gated by cytosolic cyclic nucleotides. The best examples of these are the CAMP-gated Na+ channels involved in olfaction and the cGMP-gated canon channels involved in vision. Both systems involve ligand-mediated activation of a G-protein coupled receptor which then alters the level of cyclic nucleotide within the cell. CNG channels also represent a major pathway for Ca2+ entry into neurons; and play roles in neuronal development and plasticity. CNG channels are tetramers contain'tug at least two types of subunits, an a subunit which can form functional homomeric channels, and a (3 subunit, which modulates the channel properties.
All CNG subunits have six transmembrane domains and a pore forming region between the fifth and sixth transmembrane domains, similar to voltage-gated K+ channels. A large C-terminal domain contains a cyclic nucleotide binding domain, while the N-terminal domain confers variation among channel subtypes (Zufall, F. et al. (1997) Curr. Opin. Neurobiol. 7:404-412).
The activity of other types of ion channel proteins may also be modulated by a variety of intracellular signalling proteins. Many channels have sites for phosphorylation by one or more protein kinases including protein kinase A, protein kinase C, tyrosine kinase, and casein kinase II, all of which regulate ion channel activity in cells. Kir channels are activated by the binding of the G(3~y subunits of heterotrimeric G-proteins (Reimann, F. and F.M. Ashcroft (1999) Curr. Opin.
Cell.,Biol. 11:503-508).
Other proteins are involved in the localization of ion channels to specific sites in the cell membrane.
Such proteins include the PDZ domain proteins known as MAGUKs (membrane-associated guanylate kinases) which regulate the clustering of ion channels at neuronal synapses (Craven, S.E. and D.S.
1o Bredt (1998) Cell 93:495-498).
Disease Correlation The etiology of numerous human diseases and disorders can be attributed to defects in the transport of molecules across membranes. Defects in the trafficking of membrane-bound transporters and ion channels are associated with several disorders, e.g., cystic fibrosis, glucose-galactose malabsorption syndrome, hypercholesterolemia, von Gierke disease, and certain forms of diabetes mellitus. Single-gene defect diseases resulting in an inability to transport small molecules across membranes include, e.g., cystinuria, iminoglycinuria, Hartup disease, and Fanconi disease.(van't Hoff, .,.
W.G.~ (1996) Exp. Nephrol. 4:253-262; Talente, G.M. et al. (1994) Ann. Intern.
Med. 120:218-226; - .
and Chillon, M. et al. (1995) New Engl. J. Med. 332:1475-1480).
Human diseases caused by mutations in ion channel genes include disorders of skeletal muscle, cardiac muscle, and the central nervous system. Mutations in the pore-forming subunits of sodium and chloride channels cause myotonia, a muscle disorder in which relaxation after voluntary contraction is delayed. Sodium channel myotonias have been treated with channel blockers.
Mutations in muscle sodium and calcium channels cause forms of periodic paralysis, while mutations in the sarcoplasmic calcium release channel, T-tubule calcium channel, and muscle sodium channel cause malignant hyperthermia. Cardiac arrythmia disorders such as the long QT
syndromes and idiopathic ventricular fibrillation are caused by mutations in potassium and sodium channels (Cooper, E.C. and L.Y. Jan (1998) Proc. Natl. Acad. Sci. USA 96:4759-4766). All four known human idiopathic epilepsy genes code for ion channel proteins (Berkovic, S.F. and LE. Scheffer (1999) Curr.
Opin. Neurology 12:177-182). Other neurological disorders such as ataxias, hemiplegic migraine and hereditary deafness can also result from mutations in ion channel genes (Jen, J. (1999) Curr. Opin.
Neurobiol. 9:274-280; Cooper, su ra).
Ion channels have been the target for many drug therapies. Neurotransmitter-gated channels have been targeted in therapies for treatment of insomnia, anxiety, depression, and schizophrenia.
Voltage-gated chancels have been targeted in therapies for arrhythmia, ischemic stroke, head trauma, and neurodegenerative disease (Taylor, C.P. and L.S. Narasimhan (1997) Adv.
Pharmacol. 39:47-98).
Various classes of ion channels also play an important role in the perception of pain, and thus are potential targets for new analgesics. These include the vanilloid-gated ion channels, which are activated by the vanilloid capsaicin, as well as by noxious heat. Local anesthetics such as lidocaine and mexiletine which blockade voltage-gated Na+ channels have been useful in the treatment of neuropathic pain (Eglen, su ra).
Ion channels in the immune system have recently been suggested as targets for immunomodulation. T-cell activation depends upon calcium signaling, and a diverse set of T-cell specific ion channels has been characterized that affect this signaling process. Channel blocking agents can inhibit secretion of lymphokines, cell proliferation, and killing of target cells. A peptide antagonist of the T-cell potassium channel Kvl.3 was found to suppress delayed-type hypersensitivity and allogenic responses in pigs, validating the idea of channel blockers as safe and efficacious immunosuppressants (Cahalan, M.D. and K.G. Chandy (1997) Curr. Opin.
Biotechnol. 8:749-756).
In addition, several SLC26 gene family (solute carrier family 26) ion trausporters have been associated with human disease. Defects in the sulfate transporter encoded by the DTDST gene . . .
cause diastrophic dysplasia, atelosteogenesis type It, or achondrogenesis type IB. Defects in the chloride transporter encoded by the CLD (formerly known as DRA) gene causes congenital chloride diarrhea. Defects in the iodide transporter encoded by the PDS gene is associated with Pendred syndrome (PS) and nonsyndromic deafness type DFNB4. A fourth member of the family transports anions such as sulfate, oxalate, and bicarbonate. A fifth member functions as a motor protein of the cochlear outer hair cells. A sixth member, SLC26A6, has recently been identified as a sulfate transporter (Waldegger, S. et al. (2001) Genomics 72:43-50 and references within).
Expression profiling Array technology can provide a simple way to explore the expression of a single polymorphic gene or the expression profile of a large number of related or unrelated genes. When the expression of a single gene is examined, arrays are employed to detect the expression of a specific gene or its variants. When an expression profile is examined, arrays provide a platform for identifying genes that are tissue specific, are affected by a scbstance being tested in a toxicology assay, are part of a signaling cascade, carry out housekeeping functions, or are specifically related to a particular genetic predisposition, condition, disease, or disorder.
The potential application of gene expression profiling is particularly relevant to improving diagnosis, prognosis, and treatment of disease that affect the immune response. Jurkat is an acute T
cell leukemia cell line that grows actively in the absence of external stimuli. Jurkat has been extensively used to study signaling in human T cells.
PMA is a broad activator of the protein kinase C-dependent pathways. Ionomycin is a calcium ionophore that permits entry of calcium into the cell, hence increasing the cytosolic calcium concentration. The combination of PMA and ionomycin activates two of the major signaling pathways used by mammalian cells to interact with their environment. In T cells, the combination of PMA and ionomycin mimics the type of secondary signaling events elicited during optimal B cell activation.
The discovery of new transporters and ion channels, and the polynucleotides encoding them, satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of transport, neurological, muscular, immunological, and cell proliferative disorders, as well as disorders of iron metabolism, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of transporters and ion channels.
SUMMARY OF THE INVENTION
The invention features purified polypeptides, transporters and ion channels, referred to collectively as "TRICIT' and individually as "TRICH-1," "TRICH-2," "TRICH-3,"
"TRICH-4,"
"TRICH-5," "TRICH-6,'.' "TRICH-7," "TRICH-8," and "TRICH-9." In one aspect, the invention provides an isolated polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID N0:1-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-9. In one alternative, the invention provides an isolated polypeptide comprising the amino acid sequence of SEQ ID NO:1-9.
The invention further provides an isolated polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID N0:1-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID N0:1-9, e) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID N0:1-9, and d) an irnmunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID N0:1-9. In one alternative, the polynucleotide encodes a polypeptide selected from the group consisting of SEQ
m N0:1-9. In another alternative, the polynucleotide is selected from the group consisting of SEQ ID N0:10-18.
Additionally, the invention provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ m N0:1-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ m N0:1-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ m N0:1-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ m N0:1-9. In one alternative, the invention provides a cell transformed with the recombinant polynucleotide. In another alternative, the invention provides a transgenic organism comprising the recombinant polynucleotide.
The invention also provides a method for producing a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ m N0:1-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ m N0:1-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ m N0:1-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ m N0:1-9. The method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.
Additionally, the invention provides an isolated antibody which specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ m N0:1-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ m NO:I-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ m N0:1-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ
3o m N0:1-9.
The invention further provides an isolated polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ
m N0:10-I8, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ m N0:10-18, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). In one alternative, the polynucleotide comprises at least 60 contiguous nucleotides.
Additionally, the invention provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ
ID N0:10-18, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ )D N0:10-18, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). The method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and optionally, if present, .the amount thereof.
In one alternative, the probe comprises at least 60 contiguous nucleotides. . . .
The invention further provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ll~
N0:10-18, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90%
identical to a polynucleotide sequence selected from the group consisting of SEQ ~ NO:10-18, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). The method comprises a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.
The invention further provides a composition comprising an effective amount of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ )D NO:1-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ m NO:1-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ m N0:1-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ m NO:1-9, and a pharmaceutically acceptable excipient. In one embodiment, the composition comprises an amino acid sequence selected from the group consisting of SEQ m N0:1-9. The invention additionally provides a method of treating a disease or condition associated with decreased expression of functional TRICH, comprising administering to a patient in need of such treatment the composition.
The invention also provides a method for screening a compound for effectiveness as an agonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ m N0:1-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90°Io identical to an amino acid sequence selected from the group consisting of SEQ a7 N0:1-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ m N0:1-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ m N0:1-9. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity in the sample. In one alternative, the invention provides a composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with decreased expression of functional T1RICH, comprising .
administering to a patient in need of such treatment the composition. .:
Additionally, the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ m N0:1-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ a7 NO:1-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ m N0:1-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ m NO:1-9. °The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagonist activity in the sample.
In one alternative, the invention provides a composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with overexpression of functional TRICH, comprising adnvnistering to a patient in need of such treatment the composition.
The invention further provides a method of screening fox a compound that specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ l~ N0:1-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ m N0:1-9, c) a biologically active fragment of a polypeptide having au amino acid sequence selected from the group consisting of SEQ m N0:1-9, and d) an irnmunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ m N0:1-9. The method comprises a) combining the polypeptide with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide to the test compound, thereby identifying a compound that specifically binds to the polypeptide.
The invention further provides a method of screening for a compound that modulates the activity of a polypeptide selected from the group consisting of a) a polypeptide comprising au amino acid sequence selected from the group consisting of SEQ m N0:1-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ~ N0:1-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ll7 N0:1-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ m NO:1-9. The method comprises a) combining. the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound, and c) comparing the .activity of the polypeptide in the presence of the test compound with the activity of the polypeptide in the absence of the test compound, wherein a change in the activity of the polypeptide in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide.
The invention further provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a polynucleotide sequence selected from the group consisting of SEQ m N0:10-18, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, b) detecting altered expression of the target polynucleotide, and c) comparing the expression of the target polynucleotide in the presence of varying amounts of the compound and in the absence of the compound.
The invention further provides a method for assessing toxicity of a test compound, said method comprising a) treating a biological sample containing nucleic acids with the test compound; b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ
ll~ NO:10-18, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID N0:10-18, iii) a polynucleotide having a sequence complementary to i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv). Hybridization occuxs under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID N0:10-18, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:10-18, iii) a polynucleotide complementary to the polynucleotide of i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv). Alternatively, the target polynucleotide comprises a fragment of a polynucleotide sequence selected from the group consisting of i)-v) above; c) quantifying the amount of hybridization complex; and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of - toxicity of the test compound.
BRIEF DESCRIPTION OF THE TABLES
Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the present invention.
Table 2 shows the GenBank identification number and annotation of the nearest GenBank homolog for polypeptides of the invention. The probability scores for the matches between each polypeptide and its homolog(s) are also shown.
Table 3 shows structural features of polypeptide sequences of the invention, including predicted motifs and domains, along with the methods, algorithms, and searchable databases used for analysis of the polypeptides.
Table 4 lists the cDNA and/or genomic DNA fragments which were used to assemble polynucleotide sequences of the invention, along with selected fragments of the polynucleotide sequences.
Table 5 shows the representative cDNA library for polynucleotides of the invention.
Table 6 provides an appendix which describes the tissues and vectors used for construction of the cDNA libraries shown in Table 5.
Table 7 shows the tools, programs, and algorithms used to analyze the polynucleotides and polypeptides of the invention, along with applicable descriptions, references, and threshold parameters.
DESCRIPTION OF THE INVENTION
Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.
It must be noted that as used herein and in the appended claims, the singular forms "a," "an,"
and "the" include pluxal reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.
Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs.
Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.
DEFINITIONS
"TRICK' refers to the amino acid sequences of substantially purified TRICH
obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.
The term "agonist" refers to a molecule which intensifies or mimics the biological activity of TRICH. Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of TRICH either by directly interacting with TRICH or by acting on components of the biological pathway in which TRICH
participates.
An "allelic variant" is an alternative form of the gene encoding TRICH.
Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides.
Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.
"Altered" nucleic acid sequences encoding TRICH include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as TRICH or a polypeptide with at least one functional characteristic of TRICH. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oIigonucleotide probe of the polynucleotide encoding TRICH, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding TRICH.
The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and xesult in a functionally equivalent TRICH.
Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of TRICH is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, and positively charged amino acids may include lysine and arginine. Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine. Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine;
and phenylalanine and tyrosine.
The terms "amino acid" and "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where "amino acid sequence" is recited to refer to a sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.
"Amplification" relates to the production of additional copies of a nucleic acid sequence.
Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.
The term "antagonist" refers to a molecule which inhibits or attenuates the biological activity of TRICH. Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of TRICH either by directly interacting with TRICH or by acting on components of the biological pathway in which TRICH participates.
The term "antibody" refers to intact i_m_m__unoglobulin molecules as well as to fragments thereof, such as Fab, Flab' )2, and Fv fragments, which are capable of binding an epitopic determinant.
Antibodies that bind TRICH polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize au animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.
The term "antigenic determinant" refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (particular regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.
The term "aptamer" refers to a nucleic acid or oligonucleotide molecule that binds to a specific molecular target. Aptamers are derived from an iw vitro evolutionary process (e.g., SELEX
(Systematic Evolution of Ligands by EXponential Enrichment), described in U.S.
Patent No.
5,270,163), which selects for target-specific aptamer sequences from large combinatorial libraries.
Aptamer compositions may be double-stranded or single-stranded, and may include deoxyribonucleotides, ribonucleotides, nucleotide derivatives, or other nucleotide-like molecules. The nucleotide components of an aptamer may have modified sugar groups (e.g., the 2'-OH group of a ribonucleotide may be replaced by 2'-F or 2'-NHZ), which may improve a desired property, e.g., resistance to nucleases or longer lifetime in blood. Aptamers may be conjugated to other molecules, e.g., a high molecular weight carrier to slow clearance of the aptamer from the circulatory system.
Aptamers may be specifically cross-licked to their cognate ligands, e.g., by photo-activation of a cross-linker. (See, e.g., Brody, E.N. and L. Gold (2000) J. Biotechnol. 74:5-13.) The term "intramer" xefers to an aptamer which is expressed in vivo. For example, a vaccinia virus-based RNA expression system has been used to express specific RNA
aptamers at high levels in the cytoplasm of leukocytes (Blind, M. et al. (1999) Proc. Natl. Acad. Sci.
USA 96:3606-3610).
The term "spiegeliner" refers to an aptamer which includes L-DNA, L-RNA, or other left handed nucleotide derivatives or nucleotide-like molecules. Aptamers containing left-handed nucleotides are resistant to degradation by naturally occurring enzymes, which normally act on substrates containing right handed nucleotides.
The term "antisense" refers to any composition capable of base-pairing with the "sense"
(coding) strand of a specific nucleic acid sequence. Antisense compositions may include DNA; RNA;
peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorotluoates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified sugar groups such as 2 =methoxyethyl sugars or 2'-methoxyethoxy sugars; or oligonucleotides having modified bases such as 5-methyl cytosine, 2'-deoxyuracil, or 7-deaza-2'-deoxyguanosine. Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation. The designation "negative" or "minus" can refer to the antisense strand, and the designation "positive" or "plus" can refer to the sense strand of a reference DNA molecule.
The term "biologically active" refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" or "immunogenic"
refers to the capability of the natural, recombinant, or synthetic TRICH, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.
"Complementary" describes the relationship between two single-stranded nucleic acid sequences that anneal by base-pairing. For example, 5'-AGT-3' pairs with its complement,
TECHNICAL FIELD
This invention relates to nucleic acid and amino acid sequences of transporters and ion channels and to the use of these sequences in the diagnosis, prevention, and treatment of taransport, neurological, muscular, immunological, and cell proliferative disorders, as well as disorders of iron metabolism, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of transporters and ion channels.
BACKGROUND OF THE INVENTION
Eukaryotic cells are surrounded and subdivided into functionally distinct organelles by hydrophobic lipid bilayer membranes which are highly impermeable to most polar molecules. Cells and organelles require transport proteins to import and export essential nutrients and metal ions including K+, NH4+, P;, 504, sugars, and vitamins, as well as various metabolic waste products. Transport proteins also play roles in antibiotic resistance, toxin secretion, ion balance, synaptic neurotransmission, kidney function, intestinal absorption, tumor growth, and other diverse cell functions (Griffith, J. and C.
Sansom (1998) The Transporter Facts Book, Academic Press, San Diego CA, pp. 3-29). Transport can occur by a passive concentration-dependent mechanism, or can be linked to an energy source such as ATP hydrolysis or au ion gradient. Pxoteins that function in transport include carrier proteins, which bind to a specific solute and undergo a conformational change that translocates the bound solute across the membrane, and channel proteins, which form hydrophilic pores that allow specific solutes to diffuse through the membrane down an electrochemical solute gradient.
Carrier proteins which transport a single solute from one side of the membrane to the other are called uniporters. In contrast, coupled transporters link the transfer of one solute with simultaneous or sequential transfer of a second solute, either in the same direction (symport) or in the opposite direction (antiport). For example, intestinal and kidney epithelium contains a variety of symporter systems driven by the sodium gradient that exists across the plasma membrane. Sodium moves into the cell down its electrochemical gradient and brings the solute into the cell with it. The 3o sodium gradient that provides the driving force for solute uptake is maintained by the ubiquitous Na+/K+ ATPase system. Sodium-coupled transporters include the mammalian glucose transporter (SGLT1), iodide transporter (NIS), and multivitamin transporter (SMVT). All three transporters have twelve putative txansmembrane segments, extracellular glycosylation sites, and cytoplasmically-oriented N- and C-termini. NIS plays a crucial role in the evaluation, diagnosis, and treatment of various thyroid pathologies because it is the molecular basis for radioiodide thyroid-imaging techniques and for specific targeting of radioisotopes to the thyroid gland (Levy, O. et al. (1997) Proc. Natl.
Acad. Sci. USA 94:5568-5573). SMVT is expressed in the intestinal mucosa, kidney, and placenta, and is implicated in the transport of the water-soluble vitamins, e.g., biotin and pantothenate (Prasad, P.D. et al. (1998) J. Biol. Chem. 273:7501-7506).
One of the largest families of transporters is the major facilitator superfamily (MFS), also called the uniporter-symporter-antiporter family. MFS transporters are single polypeptide carriers that transport small solutes in response to ion gradients. Members of the MFS are found in all classes of living organisms, and include transporters for sugars, oligosaccharides, phosphates, nitrates, nucleosides, monocarboxylates, and drugs. MFS transporters found in eukaryotes all have a structure comprising 12 transmembrane segments (Pao, S.S. et al. (1998) Microbiol.
Molec. Biol. Rev. 62:1-34).
The largest family of MFS transporters is the sugar transporter family, which includes the seven glucose transporters (GLUT1-GLUT7) found in humans that are required for the transport of glucose and other hexose sugars. These glucose transport proteins have unique tissue distributions and physiological functions. GLUT1 provides many cell types with their basal glucose requirernerlts and transports glucose across epithelial and endothelial barrier tissues;, GLUT2 facilitates glucose uptake or efflux from the liver; GLUT3 regulates glucose supply to neurons; GLUT4 is responsible for insulin-. regulated glucose disposal; and GLUTS regulates fructose uptake into skeletal muscle. Defects in glucose transporters are involved in a recently identified neurological syndrome causing infantile seizures and developmental delay, as wall as glycogen storage disease, Fanconi-Bickel syndrome, and non-insulin-dependent diabetes mellitus (Mueckler, M. (1994) Eur. J. Biochem.
219:713-725; Longo, N. and L.J. Elsas (1998) Adv. Pediatr. 45:293-313).
Monocarboxylate anion transporters are proton-coupled symporters with a broad substrate specificity that includes L-lactate, pyruvate, and the ketone bodies acetate, acetoacetate, and beta-hydroxybutyrate. At least seven isoforms have been identified to date.
The isoforms are predicted to have twelve transme~Cnbrane (TM) helical domains with a Iarge intracellular loop between TM6 and TM7, and play a critical role in maintaining intracellular pH by removing the protons that are produced stoichiometrically with lactate during glycolysis. The best characterized H+-monocarboxylate transporter is that of the erythrocyte membrane, which transports L-lactate and a Wide range of other aliphatic monocarboxyla'tes. Other cells possess H+-linked monocarboxylate transporters with differing substrate and inhibitor selectivities. In particular, cardiac muscle and tumor cells have transporters that differ in their K"~ values for certain substrates, including stereoselectivity for L- over D-lactate, and in their sensitivity to inhibitors. There are Na+-monocarboxylate cotransporters on the luminal surface of intestinal and kidney epithelia, which allow the uptake of lactate, pyruvate, and ketone bodies in these tissues. In addition, there are specific and selective transporters for organic cations and organic anions in organs including the kidney, intestine and liver.
Organic anion transporters are selective for hydrophobic, charged molecules with electron-attracting side groups. Organic cation transporters, such as the ammonium transporter, mediate the secretion of a variety of drugs and endogenous metabolites, and contribute to the maintenance of intercellular pH
(Poole, R.C. and A.P. Halestrap (1993) Am. J. Physiol. 264:C761-C782; Price, N.T. et al. (1998) Biochem. J. 329:321-328; and Martinelle, K. and I. Haggstrom (1993) J.
Biotechnol. 30:339-350).
ATP-binding cassette (ABC) transporters are members of a superfamily of membrane proteins that transport substances ranging from small molecules such as ions, sugars, amino acids, peptides, and phospholipids, to lipopeptides, large proteins, and complex hydrophobic drugs. ABC
transporters consist of four modules: two nucleotide-binding domains (NBD), which hydrolyze ATP to supply the energy required for transport, and two membrane-spanning domains (MSD), each containing six putative transmembrane segments. These four modules may be encoded by a single gene.as;is the case for the cystic fibrosis transmembrane regulator (CFTR), or by separate genes.
When.encoded by separate genes, each gene product contains a single NBD and MSD. These '.'half ' molecules" forth homo- and heterodimers, such as Tap1 and Tap2, the endoplasmic reticulum-Based major histocompatibility (MHC) peptide transport system. Several genetic diseases are attributed to defects in ABC transporters, such as the following diseases and their corresponding proteins: cystic fibrosis (CFTR, an ion channel), adrenoleukodystrophy (adrenoleukodystrophy protein, ALDP), Zellweger syndrome (peroxisonlal membrane protein-70, PMP70), and hyperinsulinemic hypoglycemia (sulfonylurea receptor, SUR). Overexpression of the multidrug resistance (MDR) protein, anothex ABC transporter, in human cancer cells makes the cells resistant to a variety of cytotoxic drugs used in chemotherapy (Taglicht, D. and S. Michaelis (1998) Meth. Enzymol. 292:130-162).
A number of metal ions such as iron, zinc, copper, cobalt, manganese, molybdenum, selenium, nickel, and chromium are important as cofactors for a number of enzymes. For example, copper is involved in hemoglobin synthesis, connective tissue metabolism, and bone development, by acting as a cofactor in oxidoreductases such as superoxide dismutase, ferroxidase (ceruloplasmin), and lysyl oxidase. Copper and other metal ions must be provided in the diet, and are absorbed by transporters in the gastrointestinal tract. Plasma proteins transport the metal ions to the liver and other target organs, where specific transporters move the ions into cells and cellular organelles as needed. Imbalances in metal ion metabolism have been associated with a number of disease states (Darks, D.M. (1986) J.
Med. Genet. 23:99-106).
Transport of fatty acids across the plasma membrane can occur by diffusion, a high capacity, low affinity process. However, under normal physiological conditions a signi~.cant fraction of fatty acid transport appears to occur via a high affinity, low capacity protein-mediated transport process.
Fatty acid transport protein (FATP), an integral membrane protein with four transmembrane segments, is expressed in tissues exhibiting high levels of plasma membrane fatty acid flux, such as muscle, heart, and adipose. Expression of FATP is upregulated in 3T3-L1 cells during adipose conversion, and expression in COS7 fibroblasts elevates uptake of long-chain fatty acids (Hui, T.Y. et al. (1998) J. Biol. Chem. 273:27420-27429).
Mitochondrial carrier proteins are transmembrane-spanning proteins which transport ions and charged metabolites between the cytosol and the mitochondrial matrix. Examples include the ADP, ATP carrier protein; the 2-oxoglutarate/malate carrier; the phosphate carrier protein; the pyruvate carrier; the dicarboxylate carrier which transports malate, succinate, famerete, and phosphate; the tricarboxylate carrier which transports citrate and malate; and the Grave's disease carrier protein, a protein recognized by IgG in patients with active Grave's disease, an autoimmune disorder resulting in hyperthyroidism: Proteins in this family consist of three tandem repeats of an approximately.100;
amino. acid.domain, each of which contains two transmembrane regions (Stryer, L. (1995.);:-:;_: :;..
BiochemistryW'.H. Freeman and Company, New York NY, p. 551; PROSITE
PDOC00'189. !,, ,~~ ~ .
Mitochondrial energy transfer proteins signature; Online Mendelian Inheritance in Man (C)MINI)~.
*275000 Graves Disease).
This class of transporters also includes the mitochondrial uncoupling proteins, which create proton leaks across the inner xnitochondrial membrane, thus uncoupling oxidative phosphorylation from ATP synthesis. The result is energy dissipation in the form of heat.
Mitochondrial uncoupling proteins have been implicated as modulators of thermoregulation and metabolic rate, and have been proposed as potential targets for drugs against metabolic diseases such as obesity (Ricquier, D. et al. (1999) J.
Int. Med. 245:637-642).
Urea trausporters (UT, UrT) play a central role in urea excretion and water balance by allowing the accumulation and concentration of urea in the kidney medulla (Hediger, M.A. et al.
(1996) Kidney Int. 49:1615-1623). Urea is a major solute found in urine and is the principal means by which mammals dispose of nitrogen-based waste products. Urea transporter proteins have been identified in erythropoietic cells (UT-B) and in the kidney medula (UT-A).
Several isoforms of the renal urea transporter (UT-A) have been cloned (i.e., UT-A1, UT-A2, UT-A3, and UT-A4). The expression of UT-A2 may be upregulated in response to uremia. UT-A3 may be expressed in the testis. Urea transporters rnay also be expressed in the brain (I~arakashian, A. et al. (1999) J. Am.
Soc. Nephrol. 1999 10:230-237; Couriaud, C. et al. (1996) Biochim Biophys Acta. 1996 1309:197-19).
At least two distinct classes of urea transporters are present in humans:
constitutively-expressed transporters, and vasopressin-regulated transporters (Olives, B. et al. (1996) FEBS Lett.
386:156-160).
A number of metal ions such as iron, zinc, copper, cobalt, manganese, molybdenum, selenium, nickel, and chromium are important as cofactors for a number of enzymes. For example, copper is involved in hemoglobin synthesis, connective tissue metabolism, and bone development, by acting as a cofactor in oxidoreductases such as superoxide dismutase, ferroxidase (ceruloplasmin), and lysyl oxidase. Copper and other metal ions must be provided in the diet, and are absorbed by transporters in the gastrointestinal tract. Plasma proteins transport the metal ions to the liver and other target organs, where specific transporters move the ions into cells and cellular organelles as needed. Imbalances in metal ion metabolism have been associated with a number of disease states (Darks, D.M. (1986) J.
Med. Genet. 23:99-106).
Iron plays an essential role in oxygen transport and redox reactions, particularly cell respiration~:liowever,: iron is also toxic when present in excess. In humans, unregulated ironabsorption;
.leads to cirrhosis, endocrine. failure, arthritis and cardiomyopathy, as well as hepatocellular.carcinoW a ~.;;
(GriffithsW:rJ;H. et al. (1999) Mol. Med. Today: 5:431-438). Ferritin is a ubiquitous iron-binding u'~='~ ";
protein that i's~involved in iron storage and detoxification in microbes, plants, and animals. Mammalian ferritin consists of 24 subunits of two types, H (for heart, or heavy) and L
(for light or liver). These subunits assemble into a spherical structure which can accommodate up to 4,000 iron atoms as ferrihydrite, FeOOH (Aisen, P. et al. (1999) Curr. Opin. Chem. Biol. 3:200-206).
The nuclear pore complex (NPC) is a large multiprotein complex spanning the nuclear envelope which mediates the transport of proteins and RNA molecules between the nucleus and the cytoplasm, thus contributing to the regulation of gene expression. The NPC
allows passive diffusion of ions, small molecules, and macromolecules under about 60kD, while larger macromolecules are transported by facilitated, energy-dependent pathways. Nuclear localization signals (NLS), consisting of short stretches of amino acids enriched in basic residues, are found on proteins that are targeted to the nucleus, such as the glucocorticoid receptor. The NLS is recognized by the NLS receptor, importin, which then interacts with the monomeric GTP-binding protein Ran.
This NLS
protein/receptor/Ran complex navigates the nuclear pore with the help of the homodimeric protein nuclear transport factor 2 (NTF2) (Nakielny, S. and Dreyfuss, G. (1997) Curr.
Opin. Cell Biol. 9:420-429; Gorlich, D. (1997) Curr. Opin. Cell Biol. 9:412-419). Four O-linked glycoproteins, p62, p58, p54, and p45, exist as a stable "p62 complex" that foams a ring localized on both nucleoplasmic and cytoplasmic surfaces of the NPC. The p62, p58, and p54 proteins all interact directly with the cytosolic trausport factors p97 and NTF2, suggesting that the p62 complex is an important ligand binding site near the central gated channel of the NPC (Hu, T. et al. (1996) J. Cell Biol. 134:589-601).
Ion Channels The electrical potential of a cell is generated and maintained by controlling the movement of ions across the plasma membrane. The movement of ions requires ion channels, which form ion-selective pores within the membrane. There are two basic types of ion channels, ion transporters and gated ion channels. Ion transporters utilize the energy obtained from ATP
hydrolysis to actively transport an ton against the ion's concentration gradient. Gated ion channels allow passive flow of au ion down the ion's electrochemical gradient under restricted conditions.
Together; these types of ion channels generate, maintain, and utilize an electrochemical gradient that is used in 1) electrical impulse conduction down the axon of a nerve cell, 2) transport of molecules into cells against concentration gradients, 3) initiation of muscle contraction, and 4) endocrine cell secretion.
Ion Transporters Ion transporters generate and maintain the resting electrical potential of a cell. Utilizing the energy derived from ATP hydrolysis, they transport ions against the ion's concentration gradient.
These transmembrane ATPases are divided into three families. The phosphorylated (P) class ion transporters, including Na+-K+ ATPase, Ca2+-ATPase, and H+-ATPase, are activated by a phosphorylation event. P-class ion transporters are responsible for maintaining resting potential distributions such that cytosolic concentrations of Na+ and Ca2+ are low and cytosolic concentration of , K+ is high. The.vacuolar (V) class of ion transporters includes H+ pumps on intracellular organelles, such as lysosomes and Golgi. V-class ion~transporters are responsible for generating the low pH
within the lumen of these organelles that is required for function. The coupling factor (F) class consists of H+ pumps in the mitochondria. F-class ion transporters utilize a proton gradient to generate ATP from ADP and inorganic phosphate (Pi).
The P-ATPases are hexamers of a 100 kD subunit with ten trausmembrane domains and several large cytoplasmic regions that may play a role in ion binding (Scarborough, G.A. (1999) Curr.
Opin. Cell Biol. 11:517-522). The V-ATPases are composed of two functional domains: the Vl domain, a peripheral complex responsible for ATP hydrolysis; and the Vo domain, an integral complex responsible for proton trauslocation across the membrane. The F-ATPases are structurally and evolutionarily related to the V-ATPases. The F-ATPase Fo domain contains 12 copies of the c subunit, a highly hydrophobic protein composed of two trausmembrane domains and containing a single buried carboxyl group in TM2 that is essential for proton transport. The V-ATPase Vo domain contains three types of homologous c subunits with four or five transmembrane domains and the essential carboxyl group in TM4 or TM3. Both types of complex also contain a single a subunit that may be involved in regulating the pH dependence of activity (Forgac, M. (1999) J. Biol. Chem.
274:12951-12954).
The resting potential of the cell is utilized in many processes involving carrier proteins and gated ion channels. Carrier proteins utilize the resting potential to transport molecules into and out of the cell. Amino acid and glucose transport into many cells is linked to sodium ion co-transport (symport) so that the movement of Na+ down an electrochemical gradient drives transport of the other molecule up a concentration gradient. Similarly, cardiac muscle licks transfer of Ca2+ out of the cell with transport of Na* into the cell (antiport).
Gated Ion Channels Gated ion channels control ion flow by regulating the opening and closing of pores. The ability 1o to control ion flux through various gating mechanisms allows ion channels to mediate such diverse signaling and homeostatic functions as neuronal and endocrine signaling, muscle contraction, fertilization, and regulation of ion and pH balance. Gated ion channels are categorized according to the manner of regulating the gating function. Mechanically-gated channels open their pores in response to mechanical stress; voltage-gated channels (e.g., Na+, K+, Caz+, and Cl-channels) open their pores in response to changes in membrane potential; and ligand-gated channels (e.g., acetylcholine-, serotonin-, and glutamate-gated cation~channels, and GABA- and glycine-gated chloride channels) open their poxes in the presence of.a specific ion, nucleotide, or neurotransmitter.
The gating properties of a particular ion channel (i.e., its threshold for and duration of opening and closing) are sometimes modulatedbyassociation with auxiliary channel proteins andlor post translational modifications, such as phosphorylation.
Mechanically-gated or mechanosensitive ion channels act as transducers for the senses of touch, hearing, and balance, and also play important roles in cell volume regulation, smooth muscle contraction, and cardiac rhythm generation. A stretch-inactivated channel (SIC) was recently cloned from rat kidney. The SIC channel belongs to a group of channels which are activated by pressure or stress on the cell membrane and conduct both Caz+ and Na+ (Suzuki, M. et al.
(1999) J. Biol. Chem.
274:6330-6335).
The pore-forming subunits of the voltage-gated cation channels form a superfamily of ion channel proteins. 'The characteristic domain of these channel proteins comprises six transmembrane domains (S1-S6), a pore-forming region (P) located between SS and S6, and intracellular amino and carboxy termini. In the Na+ and Ca2+ subfamilies, this domain is repeated four times, while in the K+
channel subfamily, each channel is formed from a tetramer of either identical or dissimilar subunits.
The P region contains information specifying the ion selectivity for the channel. In the case of K+
channels, a GYG tripeptide is involved in this selectivity (Ishii, T.M. et al.
(1997) Proc. Natl. Aced.
Sci. USA 94:11651-11656).
Voltage-gated Na+ and K+ channels are necessary for the function of electarically excitable cells, such as nerve and muscle cells. Action potentials, which lead to neurotransmitter release and muscle contraction, arise from large, transient changes in the permeability of the membrane to Na+
and K+ ions. Depolarization of the membrane beyond the threshold level opens voltage-gated Na+
channels. Sodium ions flow into the cell, further depolarizing the membrane and opening more voltage-gated Na+ channels, which propagates the depolarization down the length of the cell.
Depolarization also opens voltage-gated potassium channels. Consequently, potassium ions flow outward, which leads to repolarization of the membrane. Voltage-gated channels utilize charged residues in the fourth transmembrane segment (S4) to sense voltage change. The open state lasts only about 1 millisecond, at which time the channel spontaneously converts into an inactive state that cannot be opened irrespective of the membrane potential. Inactivation is mediated by the channel's N-terminus, which acts as a plug that closes the pore. The transition from an inactive to a closed state .
requires a return to resting potential.
Voltage-gated Nay channels are heterotrimeric complexes composed of a 260 kDa pore-forming a subunit that associates with two smaller auxiliary subunits, (31 and j32. The J32 subunit is a .
integral membrane glycoprotein that contains an extracellular Ig domain, and its association with a and (31 subunits correlates with increased functional.expression of.the channel, a change in its gating properties, as well as an increase in whole cell capacitance due to an increase in membrane surface area (Isom, L.L. et al. (1995) Cell 83:433-442).
Non voltage-gated Na+ channels include the members of the amiloride-sensitive Na+
channel/degenerin (NaC/DEG) family. Channel subunits of this family are thought to consist of two transmembrane domains flanking a long extxacellular loop, with the amino and carboxyl termini located within the cell. The NaC/DEG family includes the epithelial Na+ channel (ENaC) involved in Na+
reabsorption in epithelia including the airway, distal colon, cortical collecting duct of the kidney, and exocrine duct glands. Mutations in ENaC result in pseudohypoaldosteronism type 1 and Liddle's syndrome (pseudohyperaldosteronism). The NaC/DEG family also includes the xecently characterized H+-gated cation channels or acid-sensing ion channels (ASIC). ASIC subunits are expressed in the brain and form heteromultimeric Nay-permeable channels. These channels require acid pH
fluctuations for activation. ASIC subunits show homology to the degenerins, a family of mechanically-gated channels originally isolated from C. elegans. Mutations in the degenerins cause neurodegeneration. ASIC subunits may also have a role in neuronal function, or in pain perception, since tissue acidosis causes pain (Waldmann, R. and M. Lazdunski (1998) Curr.
Opin. Neurobiol.
8:418-424; Eglen, R,M. et al. (1999) Trends Pharmacol. Sci. 20:337-342).
K+ channels are located in all cell types, and may be regulated by voltage, ATP concentration, or second messengers such as Ca2+ and CAMP. In non-excitable tissue, K+
channels are involved in protein synthesis, control of endocrine secretions, and the maintenance of osmotic equilibrium across membranes. In neurons and other excitable cells, in addition to regulating action potentials and repolarizing membranes, K+ channels are responsible for setting resting membrane potential. The cytosol contains non-diffusible anions and, to balance this net negative charge, the cell contains a Na+-K+ pump and ion channels that provide the redistribution of Na+, K+, and Cl-.
The pump actively transports Na+ out of the cell and K~ into the cell in a 3:2 ratio. Ion channels in the plasma membxane allow K+ and Cl- to flow by passive diffusion. Because of the high negative charge within the cytosol, Cl- flows out of the cell. The flow of K+ is balanced by an electromotive force pulling K+ into the cell, and a K+ concentration gradient pushing K+ out of the cell. Thus, the resting membrane potential is primarily regulated by K+flow (Salkoff, L. and T. Jegla (1995) Neuron 15:489-492).
Potassium channel subunits of the Shaker-like superfamily all have the characteristic six IS transmembrane/1 pore domain structure. Four subunits combine as homo- or heterotetramers to form functional K channels. These pore-forming subunits also associate with various cytoplasmic (3 subunits that alter channel inactivation.kinetics. The Shaker-like channel family includes the voltage-gated K+ channels as well as the delayed rectifier type channels such as the human ether-a-go-go related gene (HERG) associated with long QT, a cardiac dysrythmia'syndrome (Curran, M.E. (1998) 2o Curr. Opin. Biotechnol. 9:565-572; Kaczorowski, G.J. and M.L. Garcia (1999) Curr. Opin. Chem.
Biol. 3:448-458).
A second superfamily of K+ channels is composed of the inward rectifying channels (Kir).
Kir channels have the property of preferentially conducting K+ currents in the inwaxd direction. These proteins consist of a single potassium selective pore domain and two transmembrane domains, which 25 correspond to the fifth and sixth transmembrane domains of voltage-gated K+
channels. Kir subunits also associate as tetramers. The Kir family includes ROMK1, mutations in which lead to Banter syndrome, a renal tubular disorder. Kir channels are also involved in regulation of cardiac pacemaker activity, seizures and epilepsy, and insulin regulation (Doupnik, C.A. et al.
(1995) Curr. Opin.
Neurobiol. 5:268-277; Curran, supra).
30 The recently recognized TWIK K+ channel family includes the mammalian TWIK-1, TREK-1 and TASK proteins. Members of this family possess an overall structure with four transmembrane domains and two P domains. These proteins are probably involved in controlling the resting potential in a large set of cell types (Duprat, F. et al. (1997) EMBO J 16:5464-5471).
The voltage-gated Ca2+ channels have been classified into several subtypes based upon their electrophysiological and pharmacological characteristics. L-type Ca~* channels are predominantly expressed in heart and skeletal muscle where they play an essential role in excitation-contraction coupling. T-type channels are important for cardiac pacemaker activity, while N-type and P/Q-type channels are involved in the control of neurotransmitter release in the central and peripheral nervous system. The L-type and N-type voltage-gated Ca 2+ channels have been purified and, though their functions differ dramatically, they have similar subunit compositions. The channels are composed of three subunits. The al subunit forms the membrane pore and voltage sensor, while the a28 and (3 subunits modulate the voltage-dependence, gating properties, and the current amplitude of the channel.
These subunits are encoded by at least six al, one az~, and four ~3 genes. A
fourth subunit, y, has been identified in skeletal muscle (Walker, D. et al. (1998) J. Biol. Chem.
273:2361-2367; McCleskey, E.W. (1994) Curr. Opin. Neurobiol. 4:304-312).
The high-voltage-activated Ca(2+) channels that have been characterized biochemically include complexes of a pore-forming alphal subunit of approximately 190-250 kDa; a transmembrane complex of alpha2 and delta subunits; an intracellular beta subunit; and in some cases a transmembrane gamma subunit. A variety of alphal subunits, alpha2delta complexes, beta subunits, and gamma subunits are known. The Cav1 family of alphal subunits conduct L-type Ca(2+) currents, which initiate muscle contraction, endocrine secretion, and gene transcription, and are regulated primarily by second messenger-activated protein phosphorylation~pathways. The Cad family of alphal subunits conduct N-type, P/Q-type, and R-type Ca(2+) currents, which initiate rapid synaptic transmission and are regulated primarily by direct interaction with G proteins and SNARE proteins and secondarily by protein phosphorylation. The Cav3 family of alphal subunits conduct T-type Ca(2+) currents, which are activated and inactivated more rapidly and at more negative membrane potentials than other Ca(2+) current types. The distinct structures and patterns of regulation of these three families of Ca(2+) channels provide an array of Ca(2+) entry pathways in response to changes in membrane potential and a range of possibilities for regulation of Ca(2+) entry by second messenger pathways and interacting proteins (Catterall, W.A. (2000) Annu. Rev. Cell Dev.
Biol. 16:521-555).
The alpha-2 subunit of the voltage-gated Ca2+-chancel may include one or more Cache domains. An extracellular Cache domain may be fused to an intracellular catalytic domain, such as 3o the histidine kinase, PP2C phosphatase, GGDEF (a predicted diguanylate cyclase), HD-GYP (a predicted phosphodiesterase) or adenylyl cyclase domain, or to a noncatalytic domain, like the methyl-accepting, DNA binding winged helix-turn-helix, GAF, PAS or HAMP
(domain found in istidine kiuases, denylyl cyclases, ethyl-binding proteins and phosphatases).
Small molecules are bound via the Cache domain and this signal is converted into diverse outputs depending on the intracellular domains (Anantharaman, V, and Aravind, L.(2000) Trends Biochem. Sci. 25:535-537).
The transient receptor family (Trp) of calcium ion channels are thought to mediate capacitative calcium entry (CCE). CCE is the Ca2+ influx into cells to resupply Ca2+ stores depleted by the action of inositol triphosphate (IP3) and other agents iu response to numerous hormones and growth factors. Trp and Trp-like were first cloned from Drosophila and have similarity to voltage gated Ca2+ channels in the S3 through S6 regions. This suggests that Trp and/or related proteins may foam mammalian CCC entry channels (Zhu, X. et al. (1996) Cell 85:661-671;
Boulay, G. et al. (1997) J. Biol. Chem. 272:29672-29680). Melastatin is a gene isolated in both the mouse and human, and whose expression in melanoma cells is inversely correlated with melanoma aggressiveness in vivo.
The human cDNA transcript corresponds to a 1533-amino acid protein having homology to members of the Trp family. It has been proposed that the combined use of malastatin mRNA expression status and tumor thickness might allow for the determination of subgroups of patients at both low and high risk for developing metastatic disease (Duncan, L.M. et al (2001) J. Clip.
Oncol. 19:568-576).
Chloride channels are necessary in endocrine secretion and in regulation of cytosolic and . .. . ., organelle pH. In secretory epithelial cells, Cl- enters the cell across a basolateral membrane through r . an Na+, I~~/Cl- cotxansporter, accumulating in the cell above its electrochemical equilibrium. .
. ~ concentration. Secretion of Cl- from the apical surface, in response to hormonal stimulation, leads to flow of Na * and water into the secretory lumen. The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride channel encoded by the gene for cystic fibrosis, a common fatal genetic disorder in humans. CFTR is a member of the ABC transporter family, and is composed of two domains each consisting of six transmembrane domains followed by a nucleotide binding site. Loss of CFIR function decreases transepithelial water secretion and, as a result, the layers of mucus that coat the respiratory tree, pancreatic ducts, and intestine are dehydrated and difficult to clear. The resulting blockage of these sites leads to pancreatic insufficiency, "meconium ileus", and devastating "chronic obstructive pulmonary disease" (Al-Awqati, ~. et al. (1992) J. Exp. Biol.
172:245-266).
The voltage-gated chloride channels (CLC) are characterized by 10-12 transmembrane domains, as well as two small globular domains known as CBS domains. The CLC
subunits probably function as homotetramers. CLC proteins are involved in regulation of cell volume, membrane potential stabilization, signal transduction, and transepithelial transport.
Mutations in CLC-1, expressed predominantly in skeletal muscle, are responsible for autosomal recessive generalized myotonia and autosomal dominant myotonia congenita, while mutations in the kidney channel CLC-5 lead to kidney stones (Jentsch, T.J. (1996) C~rr. Opin. Neurobiol. 6:303-310).
Ligand-gated channels open their pores when an extracellular or intracellular mediator binds to the channel. Neurotransmitter-gated channels are channels that open when a neurotransmitter binds to their extracellular domain. These channels exist in the postsynaptic membrane of nerve or muscle cells. There are two types of neurotransmitter-gated channels. Sodium channels open in response to excitatory neurotransmitters, such as acetylcholine, glutamate, and serotonin.
This opening causes an influx of Na+ and produces the initial localized depolarization that activates the voltage-gated channels and starts the action potential. Chloride channels open in response to inhibitory neurotransmitters, such as y-aminobutyric acid (GABA) and glycine, leading to hyperpolarization of the membrane and the subsequent generation of an action potential. Neurotransmitter-gated ion channels have four transmembrane domains and probably function as pentamers (Jentsch, s_upra).
Amino acids in the second transmembrane domain appear to be important in determining channel permeation and selectivity (Sather, W.A. et al. (1994) Curr. Opin. Neurobiol. 4:313-323).
Ligand-gated channels can be regulated by intracellular second messengers. For example, calcium-activated K+ channels are gated by internal calcium ions. In nerve cells, an influx of calcium during depolarization opens K+ channels to modulate the magnitude of the action potential (Ishi et al., ., supra). The large conductance (BK) channel has been purified from brain and its subunit~composition determined. The et subunit of the BK channel has seven rather than six transmembrane domains in'.
contrast to .voltage-gated K+ channels. The extra transmembrane domain is located at the,subunit N-terminus. A 28-amino-acid stretch in the C-terminal region of the subunit (the "calcium bowl" region) contains many negatively charged residues and is thought to be the region responsible for calcium binding. The (3 subunit consists of two transmembrane domains connected by a glycosylated extracellular loop, with intracellular N- and C-termini (Kaczorowski, supra;
Vergara, C. et al. (1998) C~rr. Opin. Neurobiol. 8:321-329).
Cyclic nucleotide-gated (CNG) channels are gated by cytosolic cyclic nucleotides. The best examples of these are the CAMP-gated Na+ channels involved in olfaction and the cGMP-gated canon channels involved in vision. Both systems involve ligand-mediated activation of a G-protein coupled receptor which then alters the level of cyclic nucleotide within the cell. CNG channels also represent a major pathway for Ca2+ entry into neurons; and play roles in neuronal development and plasticity. CNG channels are tetramers contain'tug at least two types of subunits, an a subunit which can form functional homomeric channels, and a (3 subunit, which modulates the channel properties.
All CNG subunits have six transmembrane domains and a pore forming region between the fifth and sixth transmembrane domains, similar to voltage-gated K+ channels. A large C-terminal domain contains a cyclic nucleotide binding domain, while the N-terminal domain confers variation among channel subtypes (Zufall, F. et al. (1997) Curr. Opin. Neurobiol. 7:404-412).
The activity of other types of ion channel proteins may also be modulated by a variety of intracellular signalling proteins. Many channels have sites for phosphorylation by one or more protein kinases including protein kinase A, protein kinase C, tyrosine kinase, and casein kinase II, all of which regulate ion channel activity in cells. Kir channels are activated by the binding of the G(3~y subunits of heterotrimeric G-proteins (Reimann, F. and F.M. Ashcroft (1999) Curr. Opin.
Cell.,Biol. 11:503-508).
Other proteins are involved in the localization of ion channels to specific sites in the cell membrane.
Such proteins include the PDZ domain proteins known as MAGUKs (membrane-associated guanylate kinases) which regulate the clustering of ion channels at neuronal synapses (Craven, S.E. and D.S.
1o Bredt (1998) Cell 93:495-498).
Disease Correlation The etiology of numerous human diseases and disorders can be attributed to defects in the transport of molecules across membranes. Defects in the trafficking of membrane-bound transporters and ion channels are associated with several disorders, e.g., cystic fibrosis, glucose-galactose malabsorption syndrome, hypercholesterolemia, von Gierke disease, and certain forms of diabetes mellitus. Single-gene defect diseases resulting in an inability to transport small molecules across membranes include, e.g., cystinuria, iminoglycinuria, Hartup disease, and Fanconi disease.(van't Hoff, .,.
W.G.~ (1996) Exp. Nephrol. 4:253-262; Talente, G.M. et al. (1994) Ann. Intern.
Med. 120:218-226; - .
and Chillon, M. et al. (1995) New Engl. J. Med. 332:1475-1480).
Human diseases caused by mutations in ion channel genes include disorders of skeletal muscle, cardiac muscle, and the central nervous system. Mutations in the pore-forming subunits of sodium and chloride channels cause myotonia, a muscle disorder in which relaxation after voluntary contraction is delayed. Sodium channel myotonias have been treated with channel blockers.
Mutations in muscle sodium and calcium channels cause forms of periodic paralysis, while mutations in the sarcoplasmic calcium release channel, T-tubule calcium channel, and muscle sodium channel cause malignant hyperthermia. Cardiac arrythmia disorders such as the long QT
syndromes and idiopathic ventricular fibrillation are caused by mutations in potassium and sodium channels (Cooper, E.C. and L.Y. Jan (1998) Proc. Natl. Acad. Sci. USA 96:4759-4766). All four known human idiopathic epilepsy genes code for ion channel proteins (Berkovic, S.F. and LE. Scheffer (1999) Curr.
Opin. Neurology 12:177-182). Other neurological disorders such as ataxias, hemiplegic migraine and hereditary deafness can also result from mutations in ion channel genes (Jen, J. (1999) Curr. Opin.
Neurobiol. 9:274-280; Cooper, su ra).
Ion channels have been the target for many drug therapies. Neurotransmitter-gated channels have been targeted in therapies for treatment of insomnia, anxiety, depression, and schizophrenia.
Voltage-gated chancels have been targeted in therapies for arrhythmia, ischemic stroke, head trauma, and neurodegenerative disease (Taylor, C.P. and L.S. Narasimhan (1997) Adv.
Pharmacol. 39:47-98).
Various classes of ion channels also play an important role in the perception of pain, and thus are potential targets for new analgesics. These include the vanilloid-gated ion channels, which are activated by the vanilloid capsaicin, as well as by noxious heat. Local anesthetics such as lidocaine and mexiletine which blockade voltage-gated Na+ channels have been useful in the treatment of neuropathic pain (Eglen, su ra).
Ion channels in the immune system have recently been suggested as targets for immunomodulation. T-cell activation depends upon calcium signaling, and a diverse set of T-cell specific ion channels has been characterized that affect this signaling process. Channel blocking agents can inhibit secretion of lymphokines, cell proliferation, and killing of target cells. A peptide antagonist of the T-cell potassium channel Kvl.3 was found to suppress delayed-type hypersensitivity and allogenic responses in pigs, validating the idea of channel blockers as safe and efficacious immunosuppressants (Cahalan, M.D. and K.G. Chandy (1997) Curr. Opin.
Biotechnol. 8:749-756).
In addition, several SLC26 gene family (solute carrier family 26) ion trausporters have been associated with human disease. Defects in the sulfate transporter encoded by the DTDST gene . . .
cause diastrophic dysplasia, atelosteogenesis type It, or achondrogenesis type IB. Defects in the chloride transporter encoded by the CLD (formerly known as DRA) gene causes congenital chloride diarrhea. Defects in the iodide transporter encoded by the PDS gene is associated with Pendred syndrome (PS) and nonsyndromic deafness type DFNB4. A fourth member of the family transports anions such as sulfate, oxalate, and bicarbonate. A fifth member functions as a motor protein of the cochlear outer hair cells. A sixth member, SLC26A6, has recently been identified as a sulfate transporter (Waldegger, S. et al. (2001) Genomics 72:43-50 and references within).
Expression profiling Array technology can provide a simple way to explore the expression of a single polymorphic gene or the expression profile of a large number of related or unrelated genes. When the expression of a single gene is examined, arrays are employed to detect the expression of a specific gene or its variants. When an expression profile is examined, arrays provide a platform for identifying genes that are tissue specific, are affected by a scbstance being tested in a toxicology assay, are part of a signaling cascade, carry out housekeeping functions, or are specifically related to a particular genetic predisposition, condition, disease, or disorder.
The potential application of gene expression profiling is particularly relevant to improving diagnosis, prognosis, and treatment of disease that affect the immune response. Jurkat is an acute T
cell leukemia cell line that grows actively in the absence of external stimuli. Jurkat has been extensively used to study signaling in human T cells.
PMA is a broad activator of the protein kinase C-dependent pathways. Ionomycin is a calcium ionophore that permits entry of calcium into the cell, hence increasing the cytosolic calcium concentration. The combination of PMA and ionomycin activates two of the major signaling pathways used by mammalian cells to interact with their environment. In T cells, the combination of PMA and ionomycin mimics the type of secondary signaling events elicited during optimal B cell activation.
The discovery of new transporters and ion channels, and the polynucleotides encoding them, satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of transport, neurological, muscular, immunological, and cell proliferative disorders, as well as disorders of iron metabolism, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of transporters and ion channels.
SUMMARY OF THE INVENTION
The invention features purified polypeptides, transporters and ion channels, referred to collectively as "TRICIT' and individually as "TRICH-1," "TRICH-2," "TRICH-3,"
"TRICH-4,"
"TRICH-5," "TRICH-6,'.' "TRICH-7," "TRICH-8," and "TRICH-9." In one aspect, the invention provides an isolated polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID N0:1-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-9. In one alternative, the invention provides an isolated polypeptide comprising the amino acid sequence of SEQ ID NO:1-9.
The invention further provides an isolated polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID N0:1-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID N0:1-9, e) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID N0:1-9, and d) an irnmunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID N0:1-9. In one alternative, the polynucleotide encodes a polypeptide selected from the group consisting of SEQ
m N0:1-9. In another alternative, the polynucleotide is selected from the group consisting of SEQ ID N0:10-18.
Additionally, the invention provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ m N0:1-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ m N0:1-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ m N0:1-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ m N0:1-9. In one alternative, the invention provides a cell transformed with the recombinant polynucleotide. In another alternative, the invention provides a transgenic organism comprising the recombinant polynucleotide.
The invention also provides a method for producing a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ m N0:1-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ m N0:1-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ m N0:1-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ m N0:1-9. The method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.
Additionally, the invention provides an isolated antibody which specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ m N0:1-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ m NO:I-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ m N0:1-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ
3o m N0:1-9.
The invention further provides an isolated polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ
m N0:10-I8, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ m N0:10-18, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). In one alternative, the polynucleotide comprises at least 60 contiguous nucleotides.
Additionally, the invention provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ
ID N0:10-18, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ )D N0:10-18, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). The method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and optionally, if present, .the amount thereof.
In one alternative, the probe comprises at least 60 contiguous nucleotides. . . .
The invention further provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ll~
N0:10-18, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90%
identical to a polynucleotide sequence selected from the group consisting of SEQ ~ NO:10-18, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). The method comprises a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.
The invention further provides a composition comprising an effective amount of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ )D NO:1-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ m NO:1-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ m N0:1-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ m NO:1-9, and a pharmaceutically acceptable excipient. In one embodiment, the composition comprises an amino acid sequence selected from the group consisting of SEQ m N0:1-9. The invention additionally provides a method of treating a disease or condition associated with decreased expression of functional TRICH, comprising administering to a patient in need of such treatment the composition.
The invention also provides a method for screening a compound for effectiveness as an agonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ m N0:1-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90°Io identical to an amino acid sequence selected from the group consisting of SEQ a7 N0:1-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ m N0:1-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ m N0:1-9. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity in the sample. In one alternative, the invention provides a composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with decreased expression of functional T1RICH, comprising .
administering to a patient in need of such treatment the composition. .:
Additionally, the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ m N0:1-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ a7 NO:1-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ m N0:1-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ m NO:1-9. °The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagonist activity in the sample.
In one alternative, the invention provides a composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with overexpression of functional TRICH, comprising adnvnistering to a patient in need of such treatment the composition.
The invention further provides a method of screening fox a compound that specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ l~ N0:1-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ m N0:1-9, c) a biologically active fragment of a polypeptide having au amino acid sequence selected from the group consisting of SEQ m N0:1-9, and d) an irnmunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ m N0:1-9. The method comprises a) combining the polypeptide with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide to the test compound, thereby identifying a compound that specifically binds to the polypeptide.
The invention further provides a method of screening for a compound that modulates the activity of a polypeptide selected from the group consisting of a) a polypeptide comprising au amino acid sequence selected from the group consisting of SEQ m N0:1-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ~ N0:1-9, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ll7 N0:1-9, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ m NO:1-9. The method comprises a) combining. the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound, and c) comparing the .activity of the polypeptide in the presence of the test compound with the activity of the polypeptide in the absence of the test compound, wherein a change in the activity of the polypeptide in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide.
The invention further provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a polynucleotide sequence selected from the group consisting of SEQ m N0:10-18, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, b) detecting altered expression of the target polynucleotide, and c) comparing the expression of the target polynucleotide in the presence of varying amounts of the compound and in the absence of the compound.
The invention further provides a method for assessing toxicity of a test compound, said method comprising a) treating a biological sample containing nucleic acids with the test compound; b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ
ll~ NO:10-18, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID N0:10-18, iii) a polynucleotide having a sequence complementary to i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv). Hybridization occuxs under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID N0:10-18, ii) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:10-18, iii) a polynucleotide complementary to the polynucleotide of i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv). Alternatively, the target polynucleotide comprises a fragment of a polynucleotide sequence selected from the group consisting of i)-v) above; c) quantifying the amount of hybridization complex; and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of - toxicity of the test compound.
BRIEF DESCRIPTION OF THE TABLES
Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the present invention.
Table 2 shows the GenBank identification number and annotation of the nearest GenBank homolog for polypeptides of the invention. The probability scores for the matches between each polypeptide and its homolog(s) are also shown.
Table 3 shows structural features of polypeptide sequences of the invention, including predicted motifs and domains, along with the methods, algorithms, and searchable databases used for analysis of the polypeptides.
Table 4 lists the cDNA and/or genomic DNA fragments which were used to assemble polynucleotide sequences of the invention, along with selected fragments of the polynucleotide sequences.
Table 5 shows the representative cDNA library for polynucleotides of the invention.
Table 6 provides an appendix which describes the tissues and vectors used for construction of the cDNA libraries shown in Table 5.
Table 7 shows the tools, programs, and algorithms used to analyze the polynucleotides and polypeptides of the invention, along with applicable descriptions, references, and threshold parameters.
DESCRIPTION OF THE INVENTION
Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.
It must be noted that as used herein and in the appended claims, the singular forms "a," "an,"
and "the" include pluxal reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.
Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs.
Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.
DEFINITIONS
"TRICK' refers to the amino acid sequences of substantially purified TRICH
obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.
The term "agonist" refers to a molecule which intensifies or mimics the biological activity of TRICH. Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of TRICH either by directly interacting with TRICH or by acting on components of the biological pathway in which TRICH
participates.
An "allelic variant" is an alternative form of the gene encoding TRICH.
Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides.
Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.
"Altered" nucleic acid sequences encoding TRICH include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as TRICH or a polypeptide with at least one functional characteristic of TRICH. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oIigonucleotide probe of the polynucleotide encoding TRICH, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding TRICH.
The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and xesult in a functionally equivalent TRICH.
Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of TRICH is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, and positively charged amino acids may include lysine and arginine. Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine. Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine;
and phenylalanine and tyrosine.
The terms "amino acid" and "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where "amino acid sequence" is recited to refer to a sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.
"Amplification" relates to the production of additional copies of a nucleic acid sequence.
Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.
The term "antagonist" refers to a molecule which inhibits or attenuates the biological activity of TRICH. Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of TRICH either by directly interacting with TRICH or by acting on components of the biological pathway in which TRICH participates.
The term "antibody" refers to intact i_m_m__unoglobulin molecules as well as to fragments thereof, such as Fab, Flab' )2, and Fv fragments, which are capable of binding an epitopic determinant.
Antibodies that bind TRICH polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize au animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.
The term "antigenic determinant" refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (particular regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.
The term "aptamer" refers to a nucleic acid or oligonucleotide molecule that binds to a specific molecular target. Aptamers are derived from an iw vitro evolutionary process (e.g., SELEX
(Systematic Evolution of Ligands by EXponential Enrichment), described in U.S.
Patent No.
5,270,163), which selects for target-specific aptamer sequences from large combinatorial libraries.
Aptamer compositions may be double-stranded or single-stranded, and may include deoxyribonucleotides, ribonucleotides, nucleotide derivatives, or other nucleotide-like molecules. The nucleotide components of an aptamer may have modified sugar groups (e.g., the 2'-OH group of a ribonucleotide may be replaced by 2'-F or 2'-NHZ), which may improve a desired property, e.g., resistance to nucleases or longer lifetime in blood. Aptamers may be conjugated to other molecules, e.g., a high molecular weight carrier to slow clearance of the aptamer from the circulatory system.
Aptamers may be specifically cross-licked to their cognate ligands, e.g., by photo-activation of a cross-linker. (See, e.g., Brody, E.N. and L. Gold (2000) J. Biotechnol. 74:5-13.) The term "intramer" xefers to an aptamer which is expressed in vivo. For example, a vaccinia virus-based RNA expression system has been used to express specific RNA
aptamers at high levels in the cytoplasm of leukocytes (Blind, M. et al. (1999) Proc. Natl. Acad. Sci.
USA 96:3606-3610).
The term "spiegeliner" refers to an aptamer which includes L-DNA, L-RNA, or other left handed nucleotide derivatives or nucleotide-like molecules. Aptamers containing left-handed nucleotides are resistant to degradation by naturally occurring enzymes, which normally act on substrates containing right handed nucleotides.
The term "antisense" refers to any composition capable of base-pairing with the "sense"
(coding) strand of a specific nucleic acid sequence. Antisense compositions may include DNA; RNA;
peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorotluoates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified sugar groups such as 2 =methoxyethyl sugars or 2'-methoxyethoxy sugars; or oligonucleotides having modified bases such as 5-methyl cytosine, 2'-deoxyuracil, or 7-deaza-2'-deoxyguanosine. Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation. The designation "negative" or "minus" can refer to the antisense strand, and the designation "positive" or "plus" can refer to the sense strand of a reference DNA molecule.
The term "biologically active" refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" or "immunogenic"
refers to the capability of the natural, recombinant, or synthetic TRICH, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.
"Complementary" describes the relationship between two single-stranded nucleic acid sequences that anneal by base-pairing. For example, 5'-AGT-3' pairs with its complement,
3'-TCA-5'.
A "composition comprising a given polynucleotide sequence" and a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution.
Compositions comprising polynucleotide sequences encoding TRICH or fragments of TRICH may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate;
SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).
"Consensus sequence" refers to a nucleic acid sequence which has been subjected to repeated DNA sequence analysis to resolve uncalled bases, extended using the XL-PCR kit (Applied Biosystems, Foster City CA) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from one or moxe overlapping cDNA, EST, or genomic DNA fragments using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (GCG, Madison WI) or Phrap (University of Washington, Seattle WA). Some sequences have been both extended and assembled to produce the consensus sequence.
"Conservative amino acid substitutions" are those substitutions that are predicted to least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions. The table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions.
Original Residue Conservative Substitution Ala Gly, Ser Arg His, Lys Asn Asp, Gln, His Asp Asn, Glu Cys Ala, Ser Gln Asn, Glu, His Glu Asp, Gln, His Gly Ala His Asn, Arg, Gln, Glu Ile Leu, Val Leu Ile, Val Lys Arg, Gln, Glu Met Leu, Ile Phe His, Met, Leu, Trp, Tyr Ser . Cys, Thr Thr Ser, Val Trp ' Phe, Tyr Tyr His, Phe, Trp Val Ile, Leu, Thr Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chain.
A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.
The term "derivative" refers to a chemically modified polynucleotide or polypeptide.
Chemical modifications of a polynucleotide can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A
derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.
A "detectable label" refers to a reporter molecule or enzyme that is capable of generating a measurable signal and is covalently or noncovalently joined to a polynucleotide or polypeptide.
"Differential expression" refers to increased or upregulated; or decreased, downregulated, or absent gene or protein expression, determined by comparing at least two different samples. Such comparisons may be carried out between, for example, a treated and an untreated sample, or a diseased and a normal sample.
"Exon shuffling" refers to the recombination of different coding regions (exons). Since an exon may represent a structural or functional domain of the encoded protein, new proteins may be assembled through the novel reassortment of stable substructures, thus allowing acceleration of the evolution of new protein functions.
A "fragment" is a unique portion of TRICH or the polynucleotide encoding TRICH
which is identical in sequence to but shorter in length than the parent sequence. A
fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues. A fragment used as a probe, primer, antigen, therapeutic molecule, or fox other purposes, may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule. For example, a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 2S% or 50%) of a polypeptide as shown in a certain defined sequence. Clearly these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.
A fragment of SEQ ID N0:10-18 comprises a region of unique polynucleotide sequence that specifically identifies SEQ m N0:10-18, for example, as distinct from any other sequence in the genome from which the fragment was obtained. A fragment of SEQ m N0:10-18 is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ
D7 NO:10-18 from related polynucleotide sequences. The precise length of a fragment of SEQ >D
N0:10-18 and the region of SEQ 1D N0:10-18 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.
A fragment of SEQ m N0:1-9 is encoded by a fragment of SEQ m N0:10-18. A
fragment of SEQ >I7 NO:1-9 comprises a region of unique amino acid sequence that specifically identifies SEQ
JD N0:1-9. Fox example, a fragment of SEQ m N0:1-9 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ m N0:1-9. The precise length of a fragment of SEQ m NO:1-9 and the region of SEQ ll~ NO:1-9 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.
A "full length" polynucleotide sequence is one containing at least a translation initiation codon (e.g., methionine) followed by an open reading frame and a translation termination codon. A "full length" polynucleotide sequence encodes a "full length" polypeptide sequence.
"Homology' refers to sequence similarity or, interchangeably, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences.
The terms "percent identity" and "% identity," as applied to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.
Percent identity between polynucleotide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN
version 3.12e sequence alignment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison WI). CLUSTAL V is described in Higgins, D.G. and P.M. Sharp (1989) CABIOS 5:151-153 and in Iliggins, D.G. et al. (1992) CABIOS
8:189-191. For pairwise alignments of polynucleotide sequences, the default parameters are set as follows: Ktuple=2, gap penalty=5, window=4, and "diagonals saved"=4. The "weighted" residue weight table is selected as the default. Percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polynucleotide sequences.
Alternatively, a suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410), which is available from several sources, including the NCBI, Bethesda, MD, and on the Internet at http://www.ncbi.nlm.nih.gov/BLASTI. The BLAST software suite includes various sequence analysis programs including "blastn," that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called "BLAST 2 Sequences" that is used for direct pairwise comparison of two nucleotide sequences. "BLAST 2 Sequences" can be accessed and used interactively at http://www.ncbi.nlm.nih.gov/gorf/bl2.html. The "BLAST 2 Sequences" tool can be used for both blastn and blastp (discussed below). BLAST
programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool Version 2Ø12 (April-21-2000) set at default parameters. Such default parameters may be, for example:
Matrix: BLOSUM62 Reward for' match: 1 Penalty for' mismatch: -2 Open Gap: 5 arid Extension Gap: 2 penalties Gap x drop-off.' S0 Expect: 10 Word Size: ~11 r' filter': OIZ
Percent identity may be measured over the length of an. entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.
The phrases "percent identity" and "% identity," as applied to polypeptide sequences, refer to the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge and hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.
Percent identity between polypeptide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN
version 3.12e sequence alignment pxogram (described and referenced above). For pairwise alignments of polypeptide sequences using CLUSTAL V, the default parameters are set as follows: Ktuple=1, gap penalty=3, window=5, and "diagonals saved"=5. The PAM250 matrix is selected as the default residue weight table. As with polynucleotide alignments, the percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polypeptide sequence pairs.
Alternatively the NCBI BLAST software suite may be used. For example, for a pairwise comparison of two polypeptide sequences, one may use the "BLAST 2 Sequences"
tool Version 2Ø12 (April-21-2000) with blastp set at default parameters. Such default parameters may be, for example:
Matrix: BLOSUM62 Opeft Gap: 11 and Extension Gap: 1 penalties Gap x drop-off. 50 Expect: 10 Word Size: 3 Filter: ort Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
"Human artificial chromosomes" (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size and which contain all of the elements required for chromosome replication, segregation and maintenance.
2o The term "humanized antibody" refers to an antibody molecule in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.
"Hybridization" refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of complementarity.
Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the "washing" step(s). The washing steps) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched. Pernussive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity.
Permissive annealing conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 1% (w/v) SDS, and about 100 ~,g/ml sheared, denatured salmon sperm DNA.
Generally, stringency of hybridization is expressed, in part, with reference to the temperature under which the wash step is carried out. Such wash temperatures are typically selected to be about 5°C to 20°C lower than the thermal melting point (T"~ for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. An equation for calculating Tin and conditions for nucleic acid hybridization are well known and can be found in Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, 2"d ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY;
specifically see volume 2, chapter 9.
High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour.
Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%.
Typically, blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 ,ug/ml. Organic solvent, such as formamide at a concentration of about 35-SO% v/v, may~also be used under particular circumstances, such as for P,NA:DNA hybridizations. Useful variations on these wash conditions will be readily ' apparent to those of ordinary skill in the art. Hybridization, particularly under high stringency conditions, may be suggestive of evolutionary similaritybetween the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.
The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A
hybridization complex may be formed in solution (e.g., Cot or Rot analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).
The words "insertion" and "addition" refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.
"hnmune response" can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.
An "immunogenic fragment" is a polypeptide or oligopeptide fragment of TRICH
which is capable of eliciting an immune response when introduced into a living organism, for example, a mammal. The term "immunogenic fragment" also includes any polypeptide or oligopeptide fragment of TRICH which is useful in any of the antibody production methods disclosed herein or known in the art.
The term "microarray" refers to an arrangement of a plurality of polynucleotides, polypeptides, or other chemical compounds on a substrate.
The terms "element" and "array element" refer to a polynucleotide, polypeptide, or other chemical compound having a unique and defined position on a microarray.
The term "modulate" refers to a change in the activity of TRICH. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of TRICH.
The phrases "nucleic acid" and "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.
"Operably linked" refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.
"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their Iifespan in the cell.
"Post-translational modification" of an TRICH may involve lipidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cell type depending on the enzymatic milieu of TRICH.
"Probe" refers to nucleic acid sequences encoding TRICH, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences. Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule.
Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. "Primers"
are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR).
Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In. order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the 20 specification, including the tables, figures, and Sequence Listing, may be used.
Methods for preparing and using probes and primers are described in the references, for example Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, 2"d ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; Ausubel, F.M. et al. (1987) Current Protocols in Molecular Bioloev, Greene Publ. Assoc. & Wiley-Intersciences, New York NY; Innis, M. et al. (1990) PCR
15 Protocols, A Guide to Methods and Applications, Academic Press, San Diego CA. PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).
Oligonucleotides for use as primers are selected using software known in the art for such 20 purpose. For example, OLIGO 4.06 software is useful fox the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases.
Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU
primer selection program (available to the public from the Genome Center at University of Texas 25 South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope. The Primer3 primer selection pxogram (available to the public from the Whitehead Institute/MIT
Center for Genome Research, Cambridge MA) allows the user to input a "mispriming library," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of 30 oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.) The PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments. The oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.
A "recombinant nucleic acid" is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence.
This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, supf-a. The term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid. Frequently, a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence.
Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.
Alternatively, such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be use to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.
A "regulatory element" refers to a nucleic acid sequence usually derived from untranslated regions of a gene and includes enhancers, promoters, introns, and 5' and 3' untranslated regions (UTRs). Regulatory elements interact with host or viral proteins which control transcription, translation, or RNA stability.
"Reporter molecules" are chemical or biochemical moieties used for labeling a nucleic acid, amino acid, or antibody. Reporter molecules include radionuclides; enzymes;
fluorescent, chemiluminescent, or chromogenic agents; substrates; cofactors; inhibitors;
magnetic particles; and other moieties known in the art.
An "RNA equivalent," in reference to a DNA sequence, is composed of the same linear sequence of nucleotides as the reference DNA sequence with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
The term "sample" is used in its broadest sense. A sample suspected of containing TRICH, nucleic acids encoding TRICH, or fragments thereof may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.
The terms "specific binding" anal "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide comprising the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.
The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which they are naturally associated.
A "substitution" refers to the replacement of one or more amino acid residues or nucleotides by different amino acid residues or nucleotides, respectively.
"Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.
A "transcript image" or "expression profile" refers to the collective pattern of gene expression by a particular cell type or tissue under given conditions at a given time.
"Transformation" describes a process by which exogenous DNA is introduced into a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, bacteriophage or viral infection, electroporation, heat shock, lipofection, and particle bombardment.
The term "transformed cells" includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.
A "transgenic organism," as used herein, is any organism, including but not limited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus. In one alternative, the nucleic acid can be introduced by infection with a recombinant viral vector, such as a lentiviral vector (Lois, C. et al. (2002) Science 295:868-872). The term genetic manipulation does not include classical cross breeding, or in vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule. The transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, plants and animals.
The isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation.
Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook et al. (1989), su ra.
A "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2Ø9 (May-07-1999) set at default parameters. Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least-98%, or at least 99% or greater sequence identity over a certain defined length. A variant may be described as, for example, an "allelic" (as defined above), "splice," "species," or "polymorphic" variant. A
splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides will generally have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.
A "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2Ø9 (May-07 1999) set at default parameters. Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%
or greater sequence identity over a certain defined length of one of the polypeptides.
THE INVENTION
The invention is based on the discovery of new human transporters and ion channels (TRICH), the polynucleotides encoding TRICH, and the use of these compositions for the diagnosis, prevention, and treatment of transport, neurological, muscular, immunological, and cell proliferative disorders, as well as disorders of iron metabolism.
Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the invention. Each polynucleotide and its corresponding polypeptide are correlated to a single Incyte project identification number (Incyte Project ID). Each polypeptide sequence is denoted by both a polypeptide sequence identification number (Polypeptide SEQ ID NO:) and an Incyte polypeptide sequence number (Incyte Polypeptide ID) as shown. Each polynucleotide sequence is denoted by both a polynucleotide sequence identification number (Polynucleotide SEQ 11? NO:) and an Incyte polynucleotide consensus sequence number (Incyte Polynucleotide ID) as shown.
Table 2 shows sequences with homology to the polypeptides of the invention as identified by BLAST analysis against the GenBank protein (genpept) database. Columns 1 and 2 show the polypeptide sequence identification number (Polypeptide SEQ ID NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for polypeptides of the invention. Column 3 shows the GenBank identification number (GenBank lD NO:) of the nearest GenBankhomolog.
Column 4 shows the probability scores for the matches between each polypeptide and its homolog(s).
Column 5 shows the annotation of the GenBank homolog(s) along with relevant citations where applicable, all of which are expressly incorporated by reference herein.
Table 3 shows various structural features of the polypeptides of the invention. Columns 1 and 2 show the polypeptide sequence identification number (SEQ 117 NO:) and the corresponding Incyte polypeptide sequence number (Iucyte Polypeptide ID) for each polypeptide of the invention. Column 3 shows the number of amino acid residues in each polypeptide. Column 4 shows potential phosphorylation sites, and column 5 shows potential glycosylation sites, as determined by the MOTIFS
program of the GCG sequence analysis software package (Genetics Computer Group, Madison WI):
Column 6 shows amino acid residues comprising signature sequences, domains, and motifs. Column 7 shows analytical methods for protein structure/function analysis and in some cases, searchable databases to which the analytical methods were applied.
Together, Tables 2 and 3 summarize the properties of polypeptides of the invention, and these properties establish that the claimed polypeptides are transporters and ion channels. For example, SEQ ~ N0:3 is 50% identical, from residue A14 to residue 8236, to Caulobacter crescentus MotA/TolQ/ExbB proton channel family protein (GenBank m g13424917) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 6.2e-53, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance.
SEQ m N0:3 also contains a MotA/TolQ/ExbB proton channel family domain as determined by searching for statistically significant matches in the hidden Markov model (I~~IM) based PFAM
database of conserved protein family domains. (See Table 3.) Data from further BLAST analyses pxovide further corroborative evidence that SEQ ll~ N0:3 is a pxoton channel.
In an alternative example, SEQ m N0:4 is 99% identical, from residue G88 to residue 8947, to human calcium channel to alpha-2-delta3 subunit (GenBank B7 g7105926) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 0.0, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ m N0:4 also contains a cache domain as determined by searching for statistically significant matches in the hidden Markov model (I~VVIM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLM'S amd MOTIFS analyses provide further corroborative evidence that SEQ
m N0:4 is a calcium channel alpha-2-delta3 subunit. In an alternative example, SEQ m NO:S
is 81% identical, from residue E8 to residue E461, to the murine urea transporter UTA-3 (GenBank D7 g11177180) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST
probability score is 4.0e-207, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. In an alternative example, SEQ m N0:6 is 40%
identical, from residue E43 to residue L443, to the human solute carrier family 26 member 6 protein (SLC26A6), an anion transporter (GenBank m g13344999), as determined by BLAST analysis with a probability score of 4.0e-93. SEQ m NO:6 also contains a sulfate transporter domain as determined by searching for statistically significant matches in the hidden Markov model (I~VIM)-based PFAM
database of conserved protein family domains. (See Table 3.) Data from BLIMPS
analysis provide further corroborative evidence that SEQ ll~ N0:6 is a sulfate transporter. In an alternative example, SEQ ID N0:7 is 96% identical, from residue M1 to residue E323, to human GT
mitochondrial solute carrier protein (GenBank m g386960) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 6.2e-167, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ m N0:7 also contains mitochondrial carrier protein domains as determined by searching for statistically significant matches in the hidden Markov model (I~~IM) based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS, MOTIFS, and PROF1LESCAN analyses provide further corroborative evidence that SEQ ID N0:7 is a mitochondrial carrier protein.
SEQ ll~ N0:1-2 and SEQ U~ N0:8-9 were analyzed and annotated in a similar manner. The algorithms and parameters for the analysis of SEQ ID N0:1-9 are described in Table 7.
As shown in Table 4, the full length polynucleotide sequences of the pxesent invention were assembled using cDNA sequences or coding (exon) sequences derived from genomic DNA, or any combination of these two types of sequences. Column 1 lists the polynucleotide sequence identification number (Polynucleotide SEQ ID NO:), the corresponding Incyte polynucleotide consensus sequence number (Incyte ID) for each polynucleotide of the invention, and the length of each polynucleotide sequence iu basepairs. Column 2 shows the nucleotide start (5') and stop (3') positions of the cDNA and/or genomic sequences used to assemble the full length polynucleotide .
sequences of the invention, and of fragments of the polynucleotide sequences which are useful, for example, in hybridization or amplification technologies that identify SEQ 117 N0:10-18 or that distinguish between SEQ ID NO:10-18 and related polynucleotide sequences.
The-polynucleotide fragments described in Column 2 of Table 4 may refer specifically, for example, to Incyte cDNAs derived from tissue-specific cDNA libraries or from pooled cDNA
libraries. Alternatively, the polynucleotide fragments described in column 2 may refer to GenBank cDNAs or. ESTs vcrhich contributed to the assembly of the full length polynucleotide sequences. In addition, the polynucleotide fragments described in column 2 may identify sequences derived from the ENSEMBL (The Sanger Centre, Cambridge, UK) database (i.e., those sequences including the w designation "ENST"). Alternatively, the polynucleotide fragments described in column 2 may be derived from the NCBI RefSeq Nucleotide Sequence Records Database (i.e., those sequences including the designation "NM" or "NT") or the NCBI RefSeq Protein Sequence Records (i.e., those sequences including the designation "NP"). Alternatively, the polynucleotide fragments described in column 2 may refer to assemblages of both eDNA and Genscan-predicted exons brought together by an "exon stitching" algorithm. For example, a polynucleotide sequence identified as FL_XXXXXX~ NI 1V2 YYYYY N3 Nø represents a "stitched" sequence in which XXXXXX
is the identification number of the cluster of sequences to which the algorithm was applied, and YYYYY is the number of the prediction generated by the algorithm, and N1,2~3..., if present, represent specific exons that may have been manually edited during analysis (See Example V).
Alternatively, the polynucleotide fragments in column 2 may refer to assemblages of exons brought together by an "exon-stretching" algorithm. For example, a polynucleotide sequence identified as FL~.'XXXXX_g<4AAAA~BBBBB_1 N is a "stretched" sequence, with X~'~~XXX being the Iucyte project identification number, gAAAAA being the GenBank identification number of the human genomic sequence to which the "exon-stretching" algorithm was applied, gBBBBB
being the GenBank identification number or NCBI RefSeq identification number of the nearest GenBank protein homolog, and N referring to specific exons (See Example V). In instances where a RefSeq sequence was used as a protein homolog for the "exon-stretching" algorithm, a RefSeq identifier (denoted by "NM,"
"NP," or "NT") may be used in place of the GenBank identifier (i. e., gBBBBB).
Alternatively, a prefix identifies component sequences that were hand-edited, predicted from genomic DNA sequences, or derived from a combination of sequence analysis methods. The following Table lists examples of component sequence prefixes and corresponding sequence analysis methods associated with the prefixes (see Example IV and Example V).
1o Prefix Type of analysis andlor examples of programs GNN, GFG, Exon prediction from genomic sequences using, for example, ENST GENSCAN (Stanford University, CA, USA) or FGENES
(Computer Genomics Group, The Sanger Centre, Cambridge, UK) GBI Hand-edited analysis of genomic sequences.
FL Stitched or stretched genomic sequences (see Example V).
INCY . Fall length transcript and exon prediction from mapping of EST
sequences to the genome. Genomic location and EST composition data are combined to predict the exons and resulting transcript.
In some cases, Incyte cDNA coverage redundant with the sequence coverage shown in Table 4 was obtained to confirm the final consensus polynucleotide sequence, but the relevant Tncyte cDNA identification numbers are not shown.
Table 5 shows the representative cDNA libraries for those full length polynucleotide sequences which were assembled using Incyte cDNA sequences. The representative cDNA library is the Incyte cDNA library which is most frequently represented by the Incyte cDNA sequences which were used to assemble and confrtm the above polynucleotide sequences.
The tissues and vectors which were used to construct the cDNA libraries shown in Table 5 are described in Table 6.
The invention also encompasses TRICH variants. A preferred TRICH variant is one which has at least about ~0%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the TRICH amino acid sequence, and which contains at least one functional or structural characteristic of TRICH.
The invention also encompasses polynucleotides which encode TRICH. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID N0:10-18, which encodes TRICH. The polynucleotide sequences of SEQ 117 N0:10-18, as presented in the Sequence Listing, embrace the equivalent RNA
sequences, wherein occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
The invention also encompasses a variant of a polynucleotide sequence encoding TRICH. In particular, such a variant polynucleotide sequence will have at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding TRICH. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID N0:10-18 which has at least about 70%, or alternatively at least about 85%, or even at least about 95%
polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ
ID N0:10-18. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of TRICH.
In addition, or in the alternative, a polynucleotide variant of the invention is a splice variant of a polynucleotide sequence encoding TRICH. A splice variant may have portions which have significant sequence identity to the polynucleotide sequence encoding TRICH, but will generally have a greater or lesser number of polynucleotides due to additions or deletions of blocks of sequence arising from alternate splicing of exons during mRNA processing. A splice variant may have less than about 70%, or alternatively less than about 60%, or alternatively less than about 50%
polynucleotide sequence identity to the polynucleotide sequence encoding TRICH over its entire length;
however, portions of the splice variant will have at least about 70%, or alternatively at least about 85%, or alternatively at least about 95%, or alternatively 100% polynucleotide sequence identity to portions of the polynucleotide sequence encoding TRICH. Any one of the splice variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of TRICH.
It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding TRICH, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring TRICH, and all such variations are to be considered as being specifically disclosed.
Although nucleotide sequences which encode TRICH and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring TRICH under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding TRICH or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding TRICH and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half life, than transcripts produced from the naturally occurring sequence.
The invention also encompasses production of DNA sequences which encode TRICH
and TRICH derivatives, or fragments thereof, entirely by synthetic chemistry.
After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding TRICH or any fragment thereof.
Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID
NO:10-18 and fragments thereof undex various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kim_m__el, A.R. (1987) Methods Enzymol. 152:507-511.) Hybridization conditions, including annealing and wash conditions, are described in "Definitions."
Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Applied Biosystems), thermostable T7 polymerase (Amersham Biosciences, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Invitrogen, Carlsbad CA). Preferably, sequence preparation is automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (Applied Biosystems).
Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (Applied Biosystems), the MEGABACE 1000 DNA sequencing system (Amersham Biosciences), or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biolo~y, John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnolo~y, Wiley VCH, New York NY, pp. 856-853.) The nucleic acid sequences encoding TRICH may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic.
2:318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA
fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-3060).
Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 primer analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50%o or more, and to anneal to the template at temperatures of about 68°C to 72°C.
When screening for full length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.
Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Applied Biosystems); and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.
In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode TRICH may be cloned in recombinant DNA molecules that direct expression of TRICH, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express TRICH.
The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter TRICH-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA
shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.
The nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULARBREEDING (Maxygen Inc.; Santa Clara CA; described in U.S. Patent No.
5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C. et al. (1999) Nat.
Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or improve the biological properties of TRICH, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds. DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These preferred variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection/screening. Thus, genetic diversity is created through "artificial"
breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively, fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.
In another embodiment, sequences encoding TRICH may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; and Horn, T. et al. (1980) Nucleic Acids Symp. Ser.
7:225-232.) Alternatively, 44.
TRICH itself or a fragment thereof may be synthesized using chemical methods.
For example, peptide synthesis can be performed using various solution-phase or solid-phase techniques. (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH
Freeman, New York NY, pp.
55-60; and Robexge, J.Y, et al. (1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI 431A peptide synthesizer (Applied Biosystems). Additionally, the amino acid sequence of TRICH, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide or a polypeptide having a sequence of a naturally occurring polypeptide.
The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Cliiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing.
(See, e.g., Creighton, supra, pp. 28-53.) In order to express a biologically active TRICH, the nucleotide sequences encoding TRICH or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and trauslational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in.
polynucleotide sequences encoding TRICH. Such elements may vary in their strength and specificity.
Specific initiation signals may also be used to achieve more efficient translation of sequences encoding TRICH. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding TRICH and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D.
et al. (1994) Results Probl.
Cell Differ. 20:125-162.) Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding TRICH and appxopriate transcriptional and translational control elements. These methods include if2 vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) Current Protocols in Molecular Biolo~y, John Wiley ~z Sons, New York NY, ch.
9, 13, and 16.) A variety of expression vector/host systems may be utilized to contain and express sequences encoding TRICH. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors;
yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus);
plant cell systems taransformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. (See, e.g., Sambrook, supra; Ausubel, supf~a; Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509; Engelhard, E.K. et al. (1994) Proc. Natl.
Acad. Sci. USA
91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945; Takamatsu, N. (1987) EMBO
J. 6:307-311; The McGraw Hill Yearbook of Science and Technolo~y (1992) McGraw Hill, New York NY, pp. 191-196; Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA
81:3655-3659; and Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355.) Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. (See, e.g., Di Nicola, M. et al. (1998) Cancer Gen. Ther. 5(6):350-356; Yu, M. et al. (1993) Proc.
Natl. Acad. Sci. USA
90(13):6340-6344; Buller, R.M. et al. (1985) Nature 317(6040):813-815;
McGregor, D.P. et al. (1994) Mol. linrmunol. 31(3):219-226; and Verma, LM. and N. Somia (1997) Nature 389:239-242.) The invention is not limited by the host cell employed.
In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding TRICH. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding TRICH can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Invitrogen). Ligation of sequences encoding TRICH into the vector's multiple cloning site disrupts the lacZ gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem.
264:5503-5509.) When large quantities of TRICH are needed, e.g. for the production of antibodies, vectors which direct high level expression of TRICH may be used. For example, vectors containing the strong, inducible SP6 or T7 bacteriophage promoter may be used.
Yeast expression systems may be used for production of TRICH. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH
promoters, may be used in the yeast Saccharomyces cer~evisiae or Pichia pastor~is. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, su ra;
Bitter, G.A. et al. (1987) Methods Enzymol. 153:516-544; and Scorer, C.A. et al. (1994) Bio/Technology 12:181-184.) Plant systems may also be used for expression of TRICH. Transcription of sequences encoding TR1CH may be driven by viral promoters, e.g., the 35S and 19S
promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N.
(1987) EMBO J.
6:307-311). Alternatively, plant promoters such as the small subunit of RUBTSCO or heat shock promoters rnay be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Brogue, R. et al.
(1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, e.g., The McGraw Hill Yearbook of Science and Techuolo~y (1992) McGraw Hill, New York NY, pp. 191-196.) In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an~ adenovirus is used as an expression vector, sequences encoding TRICH
may be ugated into an adenovirus transcription/translation complex consisting of the late promoter and tizpartite leader sequence. .Insertion in a non-essential E1 or E3 region of the viral genome maybe used to obtain infective virus which expresses TRTCH in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc.
Natl. Acad. Sci. USA 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalan host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.
Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (uposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al.
(1997) Nat. Genet. 15:345-355.) For long term production of recombinant proteins in mammalan systems, stable expression of TRICH in cell lines is preferred. For example, sequences encoding TRICH can be transformed into cell ones using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.
Any number of selection systems may be used to recover transformed cell lines.
These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in tk and Apr. cells, respectively.
(See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection: For example, dhfr-confers resistance to methotrexate; taeo confers resistance to the aminoglycosides neomycin and G-418; and als and pat confer resistance to chlorsulfuron and phosphinotricin acetyltrausferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. USA 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., trpB and hisD, which alter cellular requirements for metabolites. (See, e.g., Hat~tmau, S.C. and R.C. Mulligan (1988) Proc.
Natl. Acad. Sci. USA 85:8047-8051.) Visible markers, e.g., authocyanins, green fluorescent proteins (GFP; Clontech), J3 glucuronidase and its substrate !3-glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. , (See, e.g.; Rhodes, C.A. (1995) Methods Mol. Biol. 55:121-131.) Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence anal expression of the gene may need to be confirmed. For example, if the sequence encoding TRICH is inserted within a marker gene sequence, transformed cells containing sequences encoding TRICH can be identified by the absence of marker gene function.
Alternatively, a marker gene can be placed in tandem with a sequence encoding TRICH under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.
In general, host cells that contain the nucleic acid sequence encoding TRICH
and that express TRICH may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR
amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.
T_m_m__unologlcal methods for detecting and measuring the expression of TRICH
using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on TRICH is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS
Press, St. Paul MN, Sect. IV; Coligau, J.E. et al. (1997) Current Protocols in hxununolo~y, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) Tmmunochemical Protocols, Humana Press, Totowa NJ.) A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding TRICH ixtclude oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide.
Alternatively, the sequences encoding TRICH, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes i~t vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Biosciences, Promega (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic patfiicles, and the like.
2o Host cells transformed with nucleotide sequences encoding TRICH may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode TRICH may be designed to contain signal sequences which direct secretion of TRICH through a prokaryotic or eukaryotic cell membrane.
In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion.
Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" or "pro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCI~, HEI~293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and may be chosen to ensure the correct modification and processing of the foreign protein.
In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding TRICH may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric TR1CH protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of TRICH
activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, c-myc, and to hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, c-rnyc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the TRICH encoding sequence and the heterologous protein sequence, so that TRICH may be cleaved away from the heterologous moiety following purification.
Methods for fusion protein expression and purification are discussed in Ausubel (1995, supra, ch. 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.
In a further embodiment of the invention, synthesis of radiolabeled TRICH may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, 35S-methionine.
TRICH of the present invention or fragments thereof may be used to screen for compounds that specifically bind to TRICH. At least one and up to a plurality of test compounds may be screened for specific binding to TRICH. Examples of test compounds include antibodies, oligonucleotides, proteins (e.g., ligands or receptors), or small molecules. In one embodiment, the compound thus identified is closely related to the natural ligand of TRICH, e.g., a ligand or fragment thereof, a natural substrate, a structural or functional mimetic, or a natural binding partner.
(See, e.g., Coligan, J.E. et al.
(1991) Current Protocols in Immunology 1(2):Chapter 5.) In another embodiment, the compound thus identified is a natural ligand of a receptor TRICH. (See, e.g., Howard, A.D.
et al. (2001) Trends Pharmacol. Sci.22:132-140; Wise, A. et al. (2002) Drug Discovery Today 7:235-246.) In other embodiments, the compound can be closely related to the natural receptor to which TRICH binds, at least a fragment of the receptor, or a fragment of the receptor including all or a portion of the ligand binding site or binding pocket. For example, the compound may be a receptor for TRICH which is capable of propagating a signal, or a decoy receptor for TRICH
which is not capable of propagating a signal (Ashkenazi, A. and V.M. Divit (1999) Curr. Opin. Cell Biol. 11:255-260;
Mantovani, A. et al. (2001) Trends Tmmunol. 22:328-336). The compound can be rationally designed using known techniques. Examples of such techniques include those used to construct the compound etanercept (ENBREL; Tm_m__unex Corp., Seattle WA), which is efficacious for treating rheumatoid arthritis in humans. Etanercept is an engineered p75 tumor necrosis factor (TNF) receptor dimer linked to the Fc portion of human IgGl (Taylor, P.C. et al. (2001) Curr. Opin.
Trrmmunol. 13:611-616).
In one embodiment, screening for compounds which specifically bind to, stimulate, or inhibit TRICH involves producing appropriate cells which express T1ZICH, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, Drosophila, or E. coli. Cells expressing TRICH or cell membrane fractions which contain TRICH are then contacted with a test compound and binding, stimulation, or inhibition of activity of either TRICH
or the compound is analyzed.
An assay may simply test binding of a test compound to the polypeptide, wherein binding is detected by a fluorophore, radioisotope, enzyme conjugate, or other detectable label. For example, the assay may comprise the steps of combining at least one test compound with TRICH, either in solution or affixed to a solid support, and detecting the binding of TRICH to the compound. Alternatively, the assay may detect or measure binding of a test compound in the presence of a labeled competitor.
Additionally, the assay may be carried out using cell-free preparations, chemical libraries, or natural product mixtures, and the test compounds) may be free in solution or affixed to a solid support.
An assay can be used to assess the ability of a compound to bind to its natural ligand and/or to inhibit the binding of its natural ligand to its natural receptors. Examples of such assays include radio labeling assays such as those described in U.S. Patent No. 5,914,236 and U.S.
Patent No. 6,372,724.
In a related embodiment, one or more amino acid substitutions can be introduced into a polypeptide compound (such as a receptor) to improve or alter its ability to bind to its natural ligands. (See, e.g., Matthews, D.J. and J.A. WelIs. (1994) Chem. Biol. 1:25-30.) In another related embodiment, one or more amino acid substitutions can be introduced into a polypeptide compound (such as a ligand) to improve or alter its ability to bind to its natural receptors. (See, e.g., Cunningham, B.C. and J.A. Wells (1991) Proc. Natl. Acad. Sci. USA 88:3407-3411; Lowman, H.B. et al. (1991) J.
Biol. Chem.
266:10982-10988.) TRICH of the present invention or fragments thereof may be used to screen for compounds that modulate the activity of TRICH. Such compounds may include agonists, antagonists, or partial or inverse agonists. In one embodiment, an assay is performed under conditions permissive for TRICH
activity, wherein TRICH is combined with at least one test compound, and the activity of TRICH in the presence of a test compound is compared with the activity of TRICH in the absence of the test compound. A change in the activity of TRICH in the presence of the test compound is indicative of a compound that modulates the activity of TRICH. Alternatively, a test compound is combined with an in vitro or cell-free system comprising TRICH under conditions suitable for TRICH activity, and the assay is performed. In either of these assays, a test compound which modulates the activity of TRICH may do so indirectly and need not come in direct contact with the test compound. At least one and up to a plurality of test compounds may be screened.
In another embodiment, polynucleotides encoding TRICH or their mammalian homologs may be "knocked out" in an animal model system using homologous recombination in embryonic stem (ES) cells. Such techniques are well known in the art and are useful for the generation of animal models of human disease. (See, e.g., U.S. Patent No. 5,175,383 and U.S. Patent No.
5,767,337.) For example, mouse ES cells, such as the mouse 129/SvJ cell line, are derived from the early mouse embryo and grown in culture. The ES cells are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotrausferase gene (neo; Capeccbi, M.R. (1989) Science 244:1288-1292). The vector integrates .into the corresponding region of the host genome by homologous recombination. Alternatively, homologous recombination takes place using the Cre-loxP
system to knockout a gene of interest in a tissue- or developmental stage-specific manner (Marth, J.D.
(1996) Cliu. Iuvest. 97:1999-2002; Wagner, K.U. et al. (1997) Nucleic Acids Res. 25:4323-4330).
Transformed ES cells are identified and micxoinjected into mouse cell blastocysts such as those from the C57BL/6 mouse strain. The blastocysts are surgically transferred to pseudopregnant dams, and the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains. Trausgenic animals thus generated may be tested with potential therapeutic or toxic agents.
Polynucleotides encoding TRICH may also be manipulated in vitro in ES cells derived from human blastocysts. Human ES cells have the potential to differentiate into at least eight separate cell lineages including endoderm, mesoderm, and ectodermal cell types. These cell lineages differentiate into, for example, neural cells, hematopoietic lineages, and cardiomyocytes (Thomson, J.A. et al.
(1998) Science 282:1145-1147).
Polynucleotides encoding TRTCH can also be used to create "knockin" humanized animals (pigs) or transgenic animals (mice or rats) to model human disease. With knockin technology, a region of a polynucleotide encoding TRICH is injected into animal ES cells, and the injected sequence integrates into the animal cell genome. Transformed cells are injected into blastulae, and the blastulae are implanted as described above. Transgenic progeny or inbred Hues are studied and treated with potential pharmaceutical agents to obtain information on treatment of a human disease. Alternatively, a mammal inbred to overexpress TRICH, e.g., by secreting TRICH in its milk, may also serve as a convenient source of that protein (Janne, J. et al. (1998) Biotechnol. Annu.
Rev. 4:55-74).
THERAPEUTICS
Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of TRICH and transporters and ion channels. In addition, examples of tissues expressing TRICH can be found in Table 6 and can also be found in Example XI. Therefore, TRICH appears to play a role in transport, neurological, muscular, immunological, and cell proliferative disorders, as well as disorders of iron metabolism. In the treatment of disorders associated with increased TRICH
expression or activity, it is desirable to decrease the expression or activity of TRICH. In the treatment of disorders associated with decreased TRICH expression or activity, it is desirable to increase the expression or activity of TRICH.
Therefore, in one embodiment, TRICH or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TRICH. Examples of such disorders include, but are not limited to, a transport disorder such as akinesia, amyotrophic lateral sclerosis, ataxia telaugiectasia, cystic fibrosis, Becker's muscular dystrophy, Bell's palsy, Charcot-Marie Tooth disease, diabetes mellitus, diabetes insipidus, diabetic neuropathy, Duchenne muscular dystrophy, hyperkalemic periodic paralysis, normokalemic periodic paralysis, Parkinson's disease, malignant hyperthermia, multidrug resistance, myasthenia gravis, myotonic dystrophy, catatonia, tardive dyskiuesia, dystonias, peripheral neuropathy, cerebral neoplasms, prostate cancer, cardiac disorders associated with transport, e.g., angina, bradyarrythmia, tachyarrythmia, hypertension, Long QT syndrome, myocarditis, cardiomyopathy, nemaline myopathy, centronuclear myopathy, lipid myopathy, mitochondrial myopathy, thyrotoxic myopathy, ethanol myopathy, dermatomyositis, inclusion body myositis, infectious myositis, polymyositis, neurological disorders associated with trausport, e.g., Alzheimer's disease, amnesia, bipolar disorder, dementia, depression, epilepsy, Tourette's disorder, paranoid psychoses, and schizophrenia, and other disorders associated with transport, e.g., neurofibromatosis, postherpetic neuralgia, trigeminal neuropathy, sarcoidosis, sickle cell anemia, Wilson's disease, cataracts, infertility, pulmonary artery stenosis, sensorineural autosomal deafness, hyperglycemia, hypoglycemia, Grave's disease, goiter, Cushing's disease, Addison's disease, glucose-galactose malabsorption syndrome, hypercholesterolemia, adrenoleukodystrophy, Zellweger syndrome, Menkes disease, occipital horn syndrome, von Gierke disease, cystinuria, iminoglycinuria, Hartup disease, and Fanconi disease; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral centaral nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Stxaussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous 1o sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system including Down syndrome, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, Tourette's disorder, progressive supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia; a muscle .disorder such as cardiomyopathy, myocarditis, Duchenne's muscular dystrophy, Beckex's muscular dystrophy, myotonic dystrophy, central core disease, nemaline myopathy, centronuclear myopathy, lipid myopathy, mitochondrial myopathy, infectious myositis, polymyositis, dermatomyositis, inclusion body myositis, thyrotoxic myopathy, ethanol myopathy, angina, anaphylactic shock, arrhythmias, asthma, cardiovascular shock, Cushing's syndxome, hypertension, hypoglycemia, myocardial infarction, migraine, pheochromocytoma, and myopathies including encephalopathy, epilepsy, Kearns-Sayre syndrome, lactic acidosis, myoclonic disorder, ophthahnoplegia, and acid maltase deficiency (AMD, also known as Pompe's disease); an immunological disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohu's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjogren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and hehninthic infections, and trauma; and a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myeloflbrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; and a disorder of iron metabolism such as hypotransferrinaemia, acaeruloplasminaemia, adult, juvenile, and neonatal haemochromatosis.
In another embodiment, a vector capable of expressing TRICH or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TRICH including, but.not limited to, those described above.
In a further embodiment, a composition comprising a substantially purified TRICH in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TRICH
including, but. not limited to, those provided above.
In still another embodiment, an agonist which modulates the activity of TRICH
may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TRICH including, but not limited toy those listed above.
In a further embodiment, an antagonist of TRICH may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of TRICH.
Examples of such disorders include, but are not limited to, transport, neurological, muscular, immunological, and cell proliferative disorders, as well as disorders of iron metabolism described above. In one aspect, an antibody which specifically binds TRICH may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express 3o TRICH.
In an additional embodiment, a vector expressing the complement of the polynucleotide encoding TRICH may be administexed to a subject to treat ox prevent a disorder associated with increased expression or activity of TRICH including, but not limited to, those described above.
In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.
An antagonist of TRICH may be produced using methods which are generally known in the art. In particular, purified TRICH may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind TRICH.
Antibodies to TRICH may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are generally preferred for therapeutic use. Single chain antibodies (e.g., from 15. camels or llamas) may be potent enzyme inhibitors and may have advantages in the design of peptide mimetics, and in the development of immuno-adsorbents and biosensors (Muyldermans, S. (2001) J. .
Biotechnol. 74:277-302).
For the production of antibodies, various hosts including goats, rabbits, rats, mice, camels, dromedaries, llamas, humans, and others may be immunized by injection with TRICH or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.
It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to TRICH have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein. Short stretches of TRICH amino acids may be fused with those of another protein, such as I~LH, and antibodies to the chimeric molecule may be produced.
Monoclonal antibodies to TRICH may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohlex, G. et al. (1975) Nature 256:495-497; Kozbor, D.
et al. (1985) J.
Tmmunol. Methods 81:31-42; Cote, R.J. et al. (1983) Proc. Natl. Acad. Sci. USA
80:2026-2030; and Cole, S.P. et al. (1984) Mol. Cell Biol. 62:109-120.) In addition, techniques developed for the production of "chimeric antibodies,"
such as the splicing of mouse antibody genes to human antibody genes to obtain. a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) Proc.
Natl. Acad. Sci. USA 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; and Takeda, S. et al. (1985) Nature 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce TRICH-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton, D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137.) Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci.
USA 86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299.) Antibody fragments which contain specific binding sites for TRICH may also be generated.
For example, such fragments include, but are not limited to, F(ab')2 fragments produced.by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity.
(See, e.g., Huse, W.D.
et al. (1989) Science 246:1275-1281.) Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between TRICH and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering TRICH epitopes is generally used, but a competitive binding assay may also be 3o employed (Pound, supja).
Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for TRTCH. Affinity is expressed as an association constant, Ka, which is defined as the molar concentration of TRICH-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The Ka determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple TRICH epitopes, represents the average affinity, or avidity, of the antibodies for TRICH.
The Ka determined for a preparation of monoclonal antibodies, which are monospecific for a particular TRICH epitope, represents a true measure of affinity. High-affinity antibody preparations with Ka ranging from about 109 to 1012 L/mole axe preferred for use in immunoassays in which the TRICH-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with Ka ranging from about 106 to 10' L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of TRICH, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL
Press, Washington DC;
Liddell, J.E. and A. Cryer (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).
The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is generally employed in procedures requiring precipitation of TRICH-antibody complexes: Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody qualityand usage in various applications, are generally available.
(See, e.g., Catty, supra, and Coligan et al. supra.) 2o In another embodiment of the invention, the polynucleotides encoding TRICH, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, modifications of gene expression can be achieved by designing complementary sequences or antisense molecules (DNA, RNA, PNA, or modified oligonucleotides) to the coding or regulatory regions of the gene encoding TRICH. Such technology is well known in the art, and antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding TRICH. (See, e.g., Agrawal, S., ed. (1996) Antisense Therapeutics, Humana Press Inc., Totawa NJ.) In therapeutic use, any gene delivery system suitable for introduction of the antisense sequences into appropriate target cells can be used. Antisense sequences can be delivered intracellularly in the form of an expression plasmid which, upon transcription, produces a sequence complementary to at least a portion of the cellular sequence encoding the target protein. (See, e.g., Slater, J.E. et al. (1998) J. Allergy Clip. Tm_m__unol. 102(3):469-475; and Scanlon, K.J. et al. (1995) 9(13):1288-1296.) Antisense sequences can also be introduced intracellularly through the use of viral vectors, such as retrovirus and adeno-associated virus vectors. (See, e.g., Miller, A.D. (1990) Blood 76:271; Ausubel, supf-a; Uckert, W. and W. Walther (1994) Pharmacol. Ther.
63(3):323-347.) Other gene delivery mechanisms include liposome-derived systems, artificial viral envelopes, and other systems known in the art. (See, e.g., Rossi,, J.J. (1995) Br. Med. Bull.
51(1):217-225; Boado, R.J. et al. (1998) J. Pharm. Sci. 87(11):1308-1315; and Morris, M.C. et al. (1997) Nucleic Acids Res.
25(14):2730-2736.) In another embodiment of the invention, polynucleotides encoding TRICH may be used for somatic or germline gene therapy. Gene therapy may be performed to (i) correct a genetic deficiency (e.g., in the cases of severe combined immunodeficiency (SCID)-X1 disease characterized by X-linked inheritance (Cavazzana-Calvo, M. et al. (2000) Science 288:669-672), severe combined immunodeficiency syndrome associated with an inherited adenosine deaminase (ADA) deficiency (Blaese, R.M. et al. (1995) Science 270:475-480; Bordignon, C. et al. (1995) Science 270:470-475), cystic fibrosis (Zabner, J. et al. (1993) Cell 75:207-216; Crystal, R.G. et al. (1995) Hum. Gene Therapy 6:643-666; Crystal, R.G. et al. (1995) Hum. Gene Therapy 6:667-703), thalassamias, familial hypexcholesterolemia, and hemophilia resulting from Factor VIII or Factor IX
deficiencies (Crystal, R.G. (1995) Science 270:404-410; Verma, LM. and N. Somia (1997) Nature 389:239-242)), (ii) express a conditionally lethal gene product (e.g., in the case of cancers which result from unregulated cell proliferation), or (iii) express a protein which affords protection against intracellular parasites (e.g., against human retroviruses, such as human immunodeficiency virus (HIV) (Baltimore, D. (1988) 2o Nature 335:395-396; Poeschla, E. et al. (1996) Proc. Natl. Acad. Sci. USA
93:11395-11399), hepatitis B or C virus (HBV, HCV); fungal parasites, such as Candida albicans and Paracoccidioides brasiliensis; and protozoan parasites such as Plasmodium falciparwm and Trypanosoma cruzi). In the case where a genetic deficiency in TRICH expression or regulation causes disease, the expression of TRICH from an appropriate population of transduced cells may alleviate the clinical manifestations caused by the genetic deficiency.
In a further embodiment of the invention, diseases or disorders caused by deficiencies in TRICH are treated by constructing mammalian expression vectors encoding TRICH
and introducing these vectors by mechanical means into TRICH-deficient cells. Mechanical transfer technologies for use with cells in vivo or ex vitro include (i) direct DNA microinjection into individual cells, (ii) ballistic gold particle delivery, (iii) liposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the use of DNA transposons (Morgan, R.A. and W.F. Anderson (1993) Anna.
Rev. Biochem.
62:191-217; Ivies, Z. (1997) Cell 91:501-510; Boulay, J-L. and H. Recipon (1998) Curr. Opin.
Biotechnol. 9:445-450).
Expression vectors that may be effective for the expression of TRICH include, but are not limited to, the PCDNA 3.1, EPITAG, PRCCMV2, PREP, PVAX, PCR2-TOPOTA vectors (Iuvitrogen, Carlsbad CA), PCMV-SCRIPT, PCMV-TAG, PEGSH/PERV (Stratagene, La Jolla CA), and PTET-OFF, PTET-ON, PTRE2, PTRE2-LUC, PTK-HYG (Clontech, Palo Alto CA).
TRICH
may be expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TIC), or (3-actin genes), (ii) an inducible promoter (e.g., the tetracycline-regulated promoter (Gossen, M. and H. Bujard (1992) Proc. Natl. Acad. Sci.
USA 89:5547-5551; Gossen, M. et al. (1995) Science 268:1766-1769; Rossi, F.M.V. and H.M. Blau (1998) Curr. Opin. Biotechnol. 9:451-456), commercially available in the T-REX
plasmid (Invitrogen));
the ecdysone-inducible promoter (available in the plasmids PVGRXR and PIIVD;
Invitrogen); the FK506/rapamycin inducible promoter; or the RU486/mifepristone inducible promoter (Rossi, F.M.V.
and H.M. Blau, supra)), or (iii) a tissue-specific promoter or the native promoter of the endogenous gene encoding TRICH from a normal individual.
Commercially available liposome transformation kits (e.g., the PERFECT LIPID
TRANSFECTION KIT, available from Invitrogen) allow one with ordinary skill in the art to deliver polynucleotides to target cells in culture and require minimal effort to optimize experimental parameters. In the alternative, transformation is performed using the calcium phosphate method (Graham, F.L. and A.J. Eb (1973) Virology 52:456-467), or by electroporation (Neumann, E. et al.
(1982) EMBO J. 1:841-845). The introduction of DNA to primary cells requires modification of these standardized mammalian transfection protocols.
In another embodiment of the invention, diseases or disorders caused by genetic defects with respect to TRICH expression are treated by constructing a retrovirus vector consisting of (i) the polynucleotide encoding TRICH under the control of an independent promoter or the retrovirus long terminal repeat (LTR) promoter, (ii) appropriate RNA packaging signals, and (iii) a Rev-responsive element (RRE) along with additional retrovirus cis-acting RNA sequences and coding sequences required for efficient vector propagation. Retrovirus vectors (e.g., PFB and PFBNEO) are commercially available (Stratagene) and are based on published data (Riviere, I. et al. (1995) Proc.
Natl. Acad. Sci. USA 92:6733-6737), incorporated by reference herein. The vector is propagated in an appropriate vector producing cell Line (VPCL) that expresses an envelope gene with a tropism for receptors on the target cells or a promiscuous envelope protein such as VSVg (Armentano, D. et al.
(1987) J. Virol. 61:1647-1650; Bender, M.A. et al. (1987) J. Virol. 61:1639-1646; Adam, M.A. and A.D. Miller (1988) J. Virol. 62:3802-3806; Dull, T. et al. (1998) J. Virol.
72:8463-8471; 2ufferey, R. et al. (1998) J. Virol. 72:9873-9880). U.S. Patent No. 5,910,434 to Rigg ("Method for obtaining retrovirus packaging cell lines producing high transducing efficiency retroviral supernatant") discloses a method for obtaining retrovirus packaging cell lines and is hereby incorporated by reference.
Propagation of retrovirus vectors, transduction of a population of cells (e.g., CD4+ T-cells), and the return of transduced cells to a patient are procedures well known to persons skilled in the art of gene therapy and have been well documented (Ranga, U. et al. (1997) J. Virol.
71:7020-7029; Bauer, G. et al. (1997) Blood 89:2259-2267; Bonyhadi, M.L. (1997) J. Virol. 71:4707-4716;
Ranga, U. et al. (1998) Proc. Natl. Acad. Sci. USA 95:1201-1206; Su, L. (1997) Blood 89:2283-2290).
In the alternative, an adenovirus-based gene therapy delivery system is used to deliver polynucleotides encoding TRICH to cells which have one or more genetic abnormalities with respect to the expression of TRICH. The construction and packaging of adenovirus-based vectors are well known to those with ordinary skill in the art. Replication defective adenovirus vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas (Csete, M.E. et al. (1995) Transplantation 27:263-268). Potentially useful adenoviral vectors are described in U.S. Patent No. 5,707,618 to Armentano ("Adenovirus vectors for gene therapy"), hereby incorporated by reference. For adenoviral vectors, see also Antinozzi, P.A. et al. (1999) Annu. Rev. Nutr. 19:511-544 and Verma, LM. and N. Somia (1997) Nature 18:389:239-242, both incorporated by reference herein.
In another alternative, a herpes-based, gene therapy delivery system is used to deliver polynucleotides encoding TRICH to target cells which have one or more genetic abnormalities with respect to the expression of TRICH. The use of herpes simplex virus (HSV) based vectors may be especially valuable for introducing TRICH to cells of the central nervous system, for which HSV has a tropism. The construction and packaging of herpes-based vectors are well known to those with ordinary skill in the art. A replication-competent herpes simplex virus (HSV) type 1 based vector has been used to deliver a reporter gene to the eyes of primates (Liu, X. et al.
(1999) Exp. Eye Res.
169:385-39S). The construction of a HSV-1 virus vector has also been disclosed in detail in U.S.
Patent No. 5,804,413 to DeLuca ("Herpes simplex virus strains for gene transfer"), which is hereby incorporated by reference. U.S. Patent No. 5,804,413 teaches the use of recombinant HSV d92 which consists of a genome containing at least one exogenous gene to be transferred to a cell under the control of the appropriate promoter for purposes including human gene therapy. Also taught by this patent are the construction and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22. For HSV vectors, see also Goins, W.F. et al. (1999) J. Virol. 73:519-532 and Xu, H. et al.
(1994) Dev. Biol. 163:152-161, hereby incorporated by reference. The manipulation of cloned herpesvirus sequences, the generation of recombinant virus following the transfection of multiple plasmids containing different segments of the large herpesvirus genomes, the growth and propagation of herpesvirus, and the infection of cells with herpesvirus are techniques well known to those of ordinary skill in the art.
In another alternative, an alphavirus (positive, single-stranded RNA virus) vector is used to deliver polynucleotides encoding TRICH to target cells. The biology of the prototypic alphavirus, Semliki Forest Virus (SFV), has been studied extensively and gene transfer vectors have been based on the SFV genome (Garoff, H. and K.-J. Li (1998) Curr. Opin. Biotechnol.
9:464-469). During alphavirus RNA replication, a subgenomic RNA is generated that normally encodes the viral capsid proteins. This subgenomic RNA replicates to higher levels than the full length genomic RNA, resulting in the overproduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase). Similarly, inserting the coding sequence for TRICH into the alphavirus genome in place of the capsid-coding region results in the production of a large number of TRICH-coding RNAs and the synthesis of high levels of TRICH in vector transduced cells. While alphavirus infection is typically associated with cell lysis within a few days, the ability to establish a persistent infection in hamster normal kidney cells (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic replication of alphaviruses can be altered.~to suit the needs of the gene therapy application (Dryga, S.A. et al. (1997) Virology 228:74-83). The wide host range of alphaviruses will allow the introduction of TRICH into a variety of cell types. The specific transduction of a subset of cells in a population may require the sorting of cells prior to transduction.
The methods of manipulating infectious cDNA clones of alphaviruses, performing alphavirus cDNA and RNA
transfections, and performing alphavirus infections, are well known to those with ordinary skill in the art.
Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, may also be employed to inhibit gene expression.
Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Itnmunolo~ic Approaches, Futura Publishing, Mt. Kisco NY, pp.
163-177.) A
complementary sequence or antisense molecule may also be designed to block translation of mRNA
by preventing the transcript from binding to ribosomes.
Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage.
For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding TRICH.
Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable.
The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.
Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules.
These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis.
Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA
sequences encoding TRICH. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6.
Alternatively, these cDNA
constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues. ' RNA molecules may be modified to increase intracellular stability and half life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, tbio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.
An additional embodiment of the invention encompasses a method for screening for a compound which is effective in altering expression of a polynucleotide encoding TRICH. Compounds which may be effective in altering expression of a specific polynucleotide may include, but are not limited to, oligonucleotides, antisense oligonucleotides, triple helix-forming oligonucleotides, transcription factors and other polypeptide transcriptional regulators, and non-macromolecular chemical entities which are capable of interacting with specific polynucleotide sequences. Effective compounds may alter polynucleotide expression by acting as either inhibitors or promoters of polynucleotide expression. 'Thus, in the treatment of disorders associated with increased TRICH
expression or activity, a compound which specifically inhibits expression of the polynucleotide encoding TRICH may be therapeutically useful, and in the treatment of disorders associated with decreased TRICH expression or activity, a compound which specifically promotes expression of the polynucleotide encoding TRICH may be therapeutically useful.
At least one, and up to a plurality, of test compounds may be screened for effectiveness in altering expression of a specific polynucleotide. A test compound may be obtained by any method commonly known in the art, including chemical modification of a compound known to be effective in altering polynucleotide expression; selection from an existing, commercially-available or proprietary library of naturally-occurring or non-natural chemical compounds; rational design of a compound based on chemical and/or structural properties of the target polynucleotide;
and selection from a library of chemical compounds created combinatorially or randomly. A sample comprising a polynucleotide encoding TRICH is exposed to at least one test compound thus obtained. The sample may comprise, for example, an intact or permeabilized cell, or an i~2 vitro cell-free or reconstituted biochemical system. Alterations in the expression of a polynucleotide encoding TRICH are assayed by any method commonly known in the art. Typically, the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence of the polynucleotide encoding TRICH. The amount of hybridization may be quantified, thus forming the basis for a comparison of the expression of the polynucleotide both with and without.exposure to one or more test compounds. Detection of a change in the expression of a polynucleotide exposed to a test compound indicates that the test compound is effective in altering the expression of the polynucleotide. A screen for a compound effective in altering expression of a specific polynucleotide can be carried out, for example, using a Schizosacchar-omyces pombe gene expression system (Atkins, D. et al. (1999) U.S. Patent No. 5,932,435; Arndt, G.M. et al. (2000) Nucleic Acids Res.
28:815) or a human cell line such as HeLa cell (Clarke, M.L. et al. (2000) Biochem. Biophys. Res.
Commun. 268:8-13). A particular embodiment of the present invention involves screening a combinatorial library of oligonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides) for antisense activity against a specific polynucleotide sequence (Bruice, T.W. et al. (1997) U.S. Patent No. 5,686,242; Bruice, T.W. et al.
(2000) U.S. Patent No.
6,022,691 ).
Many methods for introducing vectors into cells or tissues are available and equally suitable for use iyi vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient.
Delivery by transfection, by liposorne injections, or by polycationic amino polymers may be achieved 64.
using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nat.
Biotechnol. 15:462-466.) Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.
An additional embodiment of the invention relates to the administration of a composition which generally comprises an active ingredient formulated with a pharmaceutically acceptable excipient.
Excipients may include, for example, sugars, starches, celluloses, gums, and proteins. Various formulations are commonly known and are thoroughly discussed in the latest edition of Remin tg on's Pharmaceutical Sciences (Maack Publishing, Easton PA). Such compositions may consist of TRICH, antibodies to TRICH, and mimetics, agonists, antagonists, or inhibitors of TRICH.
The compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.
Compositions for pulmonary administration may be prepared in liquid or dry powder form.
. ~. These compositions are generally aerosolized immediately prior to inhalation by the patient. In the case of small molecules (e.g. traditional low molecular weight organic drugs), aerosol delivery of fast-acting formulations is well-known in the art. In the case of macromolecules (e.g. larger peptides and proteins), recent developments in the field of pulmonary delivery via the alveolar region of the lung have enabled the practical delivery of drugs such as insulin to blood circulation (see, e.g., Patton, J.S.
et al., U.S. Patent No. 5,997,848). Pulmonary delivery has the advantage of administration without needle injection, and obviates the need for potentially toxic penetration enhancers.
Compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.
Specialized forms of compositions may be prepared for direct intracellular delivery of macromolecules comprising TRICH or fragments thereof. For example, liposome preparations containing a cell-impermeable macromolecule may promote cell fusion and intracellular delivery of the macromolecule. Alternatively, TRICH or a fragment thereof may be joined to a short cationic N-terminal portion from the H1V Tat-1 protein. Fusion proteins thus generated have been found to transduce into the cells of all tissues, including the brain, in a mouse model system (Schwarze, S.R. et al. (1999) Science 285:1569-1572).
For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, monkeys, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.
A therapeutically effective dose refers to that amount of active ingredient, for example TRICH or fragments thereof, antibodies of TRICH, and agonists, antagonists or inhibitors of TRICH, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the EDso (the dose therapeutically effective in 50°Io of the population) or LDSO (the dose lethal to 50°Io of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LDSO/EDso ratio. Compositions which exhibit large therapeutic indices are preferred. °The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the EDso with little or no toxicity.
The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.
The exact.dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half life and clearance rate of the particular formulation.
Normal dosage amounts may vary from about 0.1,ug to 100,000 ,ug, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art.
Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.
DIAGNOSTICS
In another embodiment, antibodies which specifically bind TRICH may be used for the diagnosis of disorders characterized by expression of TRICH, or in assays to monitor patients being treated with TRICH or agonists, antagonists, or inhibitors of TRICH.
Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for TRICH include methods which utilize the antibody and a label to detect TRICH in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.
A variety of protocols for measuring TRICH, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of TRICH expression. Normal or standard values for TRICH expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, for example, human subjects, with antibodies to TRICH under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, such as photometric means. Quantities of TRICH
expressed in subject, control, and disease samples frombiopsied tissues are compared with the standard values.
Deviation between standard and subject values establishes the parameters for diagnosing disease.
In another embodiment of the invention, the polynucleotides encoding TRICH may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of TRICH
may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of TRICH, and to monitor regulation of TRICH levels during therapeutic intervention.
In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding TRICH or closely related molecules may be used to identify nucleic acid sequences which encode TRICH. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5'regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will determine whether the probe identifies only naturally occurring sequences encoding TRICH, allelic variants, or related sequences.
Probes may also be used for the detection of related sequences, and may have at least 50%
sequence identity to any of the TRICH encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ lD
N0:10-18 or from genomic sequences including promoters, enhancers, and introns of the TRICH
gene.
Means for producing specific hybridization probes for DNAs encoding TRICH
include the cloning of polynucleotide sequences encoding TRICH or TRICH derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA
polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as 32P or 355, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.
Polynucleotide sequences encoding TRICH may be used for the diagnosis of disorders associated with expression of TRICH. Examples of such disorders include, but are not limited to, a transport disorder such as akinesia, amyotrophic lateral sclerosis, ataxia telangiectasia, cystic fibrosis, Becker's muscular dystrophy, Bell's palsy, Charcot-Marie Tooth disease, diabetes mellitus, diabetes insipidus, diabetic neuropathy, Duchenne muscular dystrophy, hyperkalemic periodic paralysis, normokalemic periodic paralysis, Parkinson's disease, malignant hyperthermia, multidrug resistance, myasthenia gravis, myotonic dystrophy, catatonia, tardive dyskinesia, dystonias, peripheral neuropathy, cerebral neoplasms, prostate cancer, cardiac disorders associated with transport, e.g., angina, bradyarlytlnnia, tachyarrythmia, hypertension, Long QT syndrome, myocarditis, cardiomyopathy, nemaline myopathy, centronuclear myopathy, lipid myopathy, mitochondria) myopathy, thyrotoxic rnyopathy, ethanol myopathy, dermatomyositis, inclusion body myositis, infectious myositis, polymyositis, neurological disorders associated with transport, e.g., Alzheimer's disease, amnesia, bipolar disorder, dementia, depression, epilepsy, Tourette's disorder, paranoid psychoses, and schizophrenia, and other disorders associated with transport, e.g., neurofibromatosis, postherpetic neuralgia, trigeminal neuropathy, sarcoidosis, sickle cell anemia, Wilson's disease, cataracts, infertility, pulmonary artery stenosis, sensorineural autosomal deafness, hyperglycemia, hypoglycemia, Grave's disease, goiter, Cushing's disease, Addison's disease, glucose-galactose malabsorption syndrome, hypercholesterolemia, adrenoleukodystrophy, Zellweger syndrome, Menkes disease, occipital horn syndrome, von Gierke disease, eystinuria, iminoglycinuria, Hartup disease, and Fanconi disease; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extxapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system including Down syndrome, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia; dystonias, paranoid psychoses, postherpetic neuralgia, Tourette's disorder, progressive supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia; a muscle disorder such as cardiomyopathy, myocarditis, Duchenne's muscular dystrophy, Becker's muscular dystrophy, myotonic dystrophy, central core disease, nemaline myopathy, centronuclear myopathy, lipid myopathy, mitochondrial myopathy, infectious myositis, polymyositis, dermatomyositis, inclusion body myositis, thyrotoxic myopathy, ethanol myopathy, angina, anaphylactic shock, arrhythmias, asthma, cardiovascular shock, Cushing's syndrome, hypertension, hypoglycemia, myocardial infarction, migraine, pheochromocytoma, and myopathies including encephalopathy, epilepsy, Kearns-Sayre syndrome, lactic acidosis, myoclonic disorder, ophthahnoplegia, and acid maltase deficiency (AMD, also known as Pompe's disease); an immunological disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoirnmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopen2a with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjogren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; and a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; and a disorder of iron metabolism such as hypotransferrinaemia, acaeruloplasminaemia, adult, juvenile, and neonatal haemochromatosis. The polynucleotide sequences encoding TRICH may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered TRICH
expxession. Such qualitative or quantitative methods are well known in the art.
In a particular aspect, the nucleotide sequences encoding TRICH may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding TRICH may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding TRICH in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the ef~.cacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.
In order to provide a basis for the diagnosis of a disorder associated with expression of TRICH, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding TRICH, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder.
Deviation from standard values is used to establish the presence of a disorder.
Once the presence of a disorder is established and. a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject.
The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.
With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.
Additional diagnostic uses for oligonucleotides designed from the sequences encoding TRICH
may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding TRICH, or a fragment of a polynucleotide complementary to the polynucleotide encoding TRICH, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.
In a particular aspect, oligonucleotide primers derived from the polynucleotide sequences encoding TRICH may be used to detect single nucleotide polymorphisms (SNPs).
SNPs are substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease in humans. Methods of SNP detection include, but are not limited to, single-stranded conformation polymorphism (SSCP) and fluorescent SSCP (fSSCP) methods. In SSCP, oligonucleotide primers derived from the polynucleotide sequences encoding TRICH are used to amplify DNA using the polymerase chain reaction (PCR). The DNA may be derived, for example, from diseased or normal tissue, biopsy samples, bodily fluids, and the like. SNPs in the DNA cause differences in the secondary and tertiary structures of PCR products in single-stranded form, and these differences are detectable using gel electrophoresis in non-denaturing gels. In fSCCP, the oligonucleotide primers are fluorescently labeled, which allows detection of the amplimers in high-throughput equipment such as DNA sequencing machines. Additionally, sequence database analysis methods, termed in silico SNP
(isSNP), are capable of identifying polymorphisms by comparing the sequence of individual overlapping DNA fragments which assemble into a common consensus sequence.
These computer-based methods filter out sequence variations due to laboratory preparation of DNA and sequencing errors using statistical models and automated analyses of DNA sequence chromatograms. In the alternative, SNPs may be detected and characterized by mass spectrometry using, for example, the high throughput MASSARRAY system (Sequenom, Inc., San Diego CA).
SNPs may be used to study the genetic basis of human disease. For example, at least 16 common SNPs have been associated with non-insulin-dependent diabetes mellitus.
SNPs are also useful for examining differences in disease outcomes in monogenic disorders, such as cystic fibxosis, sickle cell anemia, or chronic granulomatous disease. For example, variants in the mannose-binding lectin, MBL2, have been shown to be correlated with deleterious pulmonary outcomes in cystic fibrosis. SNPs also have utility in pharmacogenomics, the identification of genetic variants that influence a patient's response to a drug, such as life-threatening toxicity.
For example, a variation in N-acetyl txansferase is associated with a high incidence of peripheral neuropathy in response to the anti-tuberculosis drug isoniazid, while a variation in the coxe promoter of the ALOXS gene results in diminished clinical response to treatment with an anti-asthma drug that targets the 5-lipoxygenase pathway. Analysis of the distribution of SNPs in different populations is useful for investigating genetic drift, mutation, recombination, and selection, as well as for tracing the origins of populations and their migrations. (Taylor, J.G. et al. (2001) Trends Mol. Med. 7:507-512;
Kwok, P.-Y, and Z. Gu (1999) Mol. Med. Today 5:538-543; Nowotny, P. et al. (2001) C~rr. Opin.
Neurobiol. 11:637-641.) Methods which may also be used to quantify the expression of TRICH include radiolabeling or biotinylatiug nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Tmrnunol. Methods 159:235-244; Duplaa, C.
et al. (1993) Anal. Biochem. 212:229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in a high-throughput format where the oligomer or polynucleotide of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.
In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as elements on a microarray. The microarray can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described below. The microarray may also be used to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, to monitor progression/regression of disease as a function of gene expression, and to develop and monitor the activities of therapeutic agents in the treatment of disease. In particular, this information may be used to develop a pharmacogenomic profile of a patient in order to select the most appropriate and effective treatment regimen for that patient. For example, therapeutic agents which are highly effective and display the fewest side effects may be selected for a patient based on his/her pharmacogenomic profile.
In another embodiment, TRICH, fragments of TRICH, or antibodies specific for TRICH may be used as elements on a microarray. The microarray may be used to monitor or measure protein-protein interactions, drug-target interactions, and gene expression profiles, as described above.
A particular embodiment relates to the use of the polynucleotides of the present invention to generate a transcript image of a tissue or cell type. A transcript image represents the global pattern of gene expression by a particular tissue or cell type. Global gene expression patterns are analyzed by quantifying the number of expressed genes and their relative abundance under given conditions and at a given time. (See Seilhamer et al., "Comparative Gene Transcript Analysis,"
U.S. Patent No.
5,840,484, expressly incorporated by reference herein.) Thus a transcript image may be generated by hybridizing the polynucleotides of the present invention or their complements to the totality of transcripts or reverse transcripts of a particular tissue or cell type. In one embodiment, the hybridization takes place in high-throughput format, wherein the polynucleotides of the present invention or their complements comprise a subset of a plurality of elements on a microarray. The resultant transcript image would provide a profile of gene activity.
Transcript images may be generated using transcripts isolated from tissues, cell lines, biopsies, or other biological samples. The transcript image may thus reflect gene expression in vivo, as in the case of a tissue or biopsy sample, or in vitro, as in the case of a cell line.
Transcript images which profile the expression of the polynucleotides of the present invention may also .be used in conjunction with in vitro model systems and preclinical evaluation of pharmaceuticals, as well as toxicological testing of industrial and naturally-occurring environmental compounds. All compounds induce characteristic gene expression patterns, frequently termed molecular fingerprints or toxicant signatures, which are indicative of mechanisms of action and toxicity (Nuwaysir, E.F. et al. (1999) Mol. Carcinog. 24:153-159; Steiner, S. and N.L.
Anderson (2000) Toxicol. Lett. 112-113:467-471, expressly incorporated by reference herein).
If a test compound has a signature similar to that of a compound with known toxicity, it is likely to share those toxic properties.
These fingerprints or signatures are most useful and refined when they contain expression information from a large number of genes and gene families. Ideally, a genome-wide measurement of expression provides the highest quality signature. Even genes whose expression is not altered by any tested compounds are important as well, as the levels of expression of these genes are used to normalize the rest of the expression data. The normalization procedure is useful for comparison of expression data after treatment with different compounds. While the assignment of gene function to elements of a toxicant signature aids in interpretation of toxicity mechanisms, knowledge of gene function is not necessary for the statistical matching of signatures which leads to prediction of toxicity. (See, for example, Press Release 00-02 from the National Institute of Environmental Health Sciences, released February 29, 2000, available at http://www.niehs.nih.gov/oc/news/toxchip.htm.) Therefore, it is important and desirable in toxicological screening using toxicant signatures to include all expressed gene sequences.
In one embodiment, the toxicity of a test compound is assessed by treating a biological sample containing nucleic acids with the test compound. Nucleic acids that are expressed in the treated biological sample are hybridized with one or more probes specific to the polynucleotides of the present invention, so that transcript levels corresponding to the polynucleotides of the present invention may be quantified. The transcript levels in the treated biological sample are compared with levels in an untreated biological sample. Differences in the transcript levels between the two samples are indicative of a toxic response caused by the test compound in the treated sample.
Another particular embodiment relates to the use of the polypeptide sequences of the present invention to analyze the proteome of a tissue or cell type. The term proteome refers to the global pattern of protein expression in a particular tissue or cell type. Each protein component of a proteome can be subjected individually to further analysis. Proteome expression patterns, or profiles, are analyzed by quantifying the number of expressed proteins and their relative abundance under given conditions and at a given time. A profile of a cell's proteome may thus be generated by separating and analyzing the polypeptides of a particular tissue or cell type. In one embodiment, the separation is achieved using two-dimensional gel electrophoresis, in which proteins from a sample are separated by isoelectric focusing in the first dimension, and then according to molecular weight by sodium dodecyl .
sulfate slab gel electrophoresis in the second dimension (Steiner and Anderson, su ra). The proteins are visualized in the gel as discrete and uniquely positioned spots, typically by staining the gel with an agent such as Coomassie Blue or silver or fluorescent stains. The optical density of each protein spot is generally proportional to the level of the protein in the sample. The optical densities of equivalently positioned protein spots from different samples, for example, from biological samples either treated or untreated with a test compound or therapeutic agent, are compared to identify any changes in protein spot density related to the treatment. The proteins in the spots are partially sequenced using, for example, standard methods employing chemical or enzymatic cleavage followed by mass spectrometry. The identity of the protein in a spot may be determined by comparing its partial sequence, preferably of at.least 5 contiguous amino acid residues, to the polypeptide sequences of the present invention. In some cases, further sequence data may be obtained for definitive protein identification.
A proteomic profile may also be generated using antibodies specific for TRICH
to quantify the levels of TRICH expression. In one embodiment, the antibodies are used as elements on a microarray, and protein expression levels are quantified by exposing the microarray to the sample and detecting the levels of protein bound to each array element (Lueking, A. et al. (1999) Anal. Biochem.
270:103-111; Mendoze, L.G. et al. (1999) Biotechniques 27:778-788). Detection may be performed by a variety of methods known in the art, for example, by reacting the proteins in the sample with a thiol-or amino-reactive fluorescent compound and detecting the amount of fluorescence bound at each array element.
Toxicant signatures at the proteome level axe also useful for toxicological screening, and should be analyzed in parallel with toxicant signatures at the transcript level. There is a poor correlation between transcript and protein abundances for some proteins in some tissues (Anderson, N.L. and J. Seilhamer (1997) Electrophoresis 18:533-537), so proteome toxicant signatures maybe useful in the analysis of compounds which do not significantly affect the transcript image, but which alter the proteomic profile. In addition, the analysis of transcripts in body fluids is difficult, due to rapid degradation of mRNA, so proteomic pxohling may be more reliable and informative in such cases.
In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins that are expressed in the treated biological sample are separated so that the amount of each protein can be quantified. The amount of each protein is compared to the amount of the corresponding protein in an untreated biological sample.
A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample. Individual proteins are identified by sequencing the amino acid residues of the individual proteins and comparing these partial sequences to the polypeptides of the present invention.
In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins from the biological sample are incubated with antibodies specific to the polypeptides of the present invention. The amount of protein recognized by the antibodies is quantified. The amount of protein in the treated biological sample is compared with the amount in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.
Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al.
(1996) Proc. Natl. Acad.
Sci. USA 93:10614-10619; Baldeschweiler et al. (1995) PCT application W095/251116; Shalom D. et al. (1995) PCT application WO95/35505; Heller, R.A. et a1. (1997) Proc. Natl.
Acad. Sci. USA
94:2150-2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.) Various types of microarxays are well known and thoroughly described in DNA Microarrays: A
Practical Appxoach, M. Schena, ed. (1999) Oxford University Press, London, hereby expressly incorporated by reference.
In another embodiment of the invention, nucleic acid sequences encoding TRICH
may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence.
Either coding or noncoding sequences may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentially cause undesired cross hybridization during chromosomal mapping. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) Nat.
Genet. 15:345-355; Price, C.M. (1993) Blood Rev. 7:127-134; and Trask, B.J.
(1991) Trends Genet.
7:149-154.) Once mapped, the nucleic acid sequences of the invention may be used to develop genetic linkage maps, for example, which correlate the inheritance of a disease state with the inheritance of a particular chromosome region or restriction fragment length polymorphism (RFLP).
(See, for example, Larder, E.S. and D. Botstein (1986) Proc. Natl. Acad. Sci.
USA 83:7353-7357.) Fluorescent in situ hybridization (FISH) may be correlated with other physical and genetic map data. (See, e.g., Heinz-UJrich, et al. (1995) in Meyers, s-upra, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OM1M) World Wide Web site. Correlation between the location of the gene encoding TRICH on a physical map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder and thus may further positional cloning efforts.
2o In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps.
Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the exact chromosomal locus is not known. This information is valuable to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the gene or genes responsible for a disease or syndrome have been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation.
(See, e.g., Gatti, R.A. et a1. (1988) Nature 336:577-580.) The nucleotide sequence of the instant invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.
In another embodiment of the invention, TRICH, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between TRICH and the agent being tested may be measured.
Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT
application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with TRICH, or fragments thereof, and washed. Bound TRICH is then detected by methods well known in the art.
Purified TRICH can also be coated directly onto plates for use in the aforementioned drug screening techniques.
Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.
In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding TRICH specifically compete with a test compound for binding TRICH.
Tn this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with TRICH.
In additional embodiments, the nucleotide sequences which encode TRICH may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.
Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.
The disclosures of all patents, applications and publications, mentioned above and below, including U.S. Ser. No. 60/296,881, U.S. Ser. No. 60/305,105, U.S. Ser No.
60/293,722, and U.S. Ser No. 60/304,593, are expressly incorporated by reference herein.
EXAMPLES
I. Construction of cDNA Libraries Incyte cDNAs were derived from cDNA libraries described in the LIFESBQ GOLD
database (Incyte Genomics, Palo Alto CA). Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Invitrogen), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.
Phenol extraction and precipitation of RNA were~repeated as necessary to increase RNA
purity. In some cases, RNA was treated with DNase. For most libraries, poly(A)+ RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX
latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN).
Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).
Iu some cases, Stratagene was provided with RNA and constructed the corresponding cDNA
20 libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Invitrogen), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, sera, units 5.1-6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA
was digested with the appropriate restriction enzyme or enzymes. For most libraries, the°cDNA
was size-selected (300-1000 bp) using SEPHACRYL 51000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Biosciences) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCR1P'T plasmid (Stratagene), PSPORT1 plasmid (Invitrogen), PCDNA2.1 plasmid (Invitrogen, Carlsbad CA), PBK-CMV plasmid (Stratagene), PCR2-TOPOTA plasmid (Invitrogen), PCMV-ICIS plasmid (Stratagene), pIGEN (Incyte Genomics, Palo Alto CA), pRARE
(Incyte Genomics), or pINCY (Incyte Genomics), or derivatives thereof. Recombinant plasmids were transformed into competent E. coli cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DHSa, DH10B, or ElectroMAX DH10B from Invitrogen.
II. Isolation of cDNA Clones Plasmids obtained as described in Example I were recovered from host cells by in vivo excision using the UNIZAP vector system (Stratagene) or by cell lysis.
Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL
8 Plasmid, QIA,WELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP
96 plasmid purification kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at
A "composition comprising a given polynucleotide sequence" and a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution.
Compositions comprising polynucleotide sequences encoding TRICH or fragments of TRICH may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate;
SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).
"Consensus sequence" refers to a nucleic acid sequence which has been subjected to repeated DNA sequence analysis to resolve uncalled bases, extended using the XL-PCR kit (Applied Biosystems, Foster City CA) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from one or moxe overlapping cDNA, EST, or genomic DNA fragments using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (GCG, Madison WI) or Phrap (University of Washington, Seattle WA). Some sequences have been both extended and assembled to produce the consensus sequence.
"Conservative amino acid substitutions" are those substitutions that are predicted to least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions. The table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions.
Original Residue Conservative Substitution Ala Gly, Ser Arg His, Lys Asn Asp, Gln, His Asp Asn, Glu Cys Ala, Ser Gln Asn, Glu, His Glu Asp, Gln, His Gly Ala His Asn, Arg, Gln, Glu Ile Leu, Val Leu Ile, Val Lys Arg, Gln, Glu Met Leu, Ile Phe His, Met, Leu, Trp, Tyr Ser . Cys, Thr Thr Ser, Val Trp ' Phe, Tyr Tyr His, Phe, Trp Val Ile, Leu, Thr Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chain.
A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.
The term "derivative" refers to a chemically modified polynucleotide or polypeptide.
Chemical modifications of a polynucleotide can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A
derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.
A "detectable label" refers to a reporter molecule or enzyme that is capable of generating a measurable signal and is covalently or noncovalently joined to a polynucleotide or polypeptide.
"Differential expression" refers to increased or upregulated; or decreased, downregulated, or absent gene or protein expression, determined by comparing at least two different samples. Such comparisons may be carried out between, for example, a treated and an untreated sample, or a diseased and a normal sample.
"Exon shuffling" refers to the recombination of different coding regions (exons). Since an exon may represent a structural or functional domain of the encoded protein, new proteins may be assembled through the novel reassortment of stable substructures, thus allowing acceleration of the evolution of new protein functions.
A "fragment" is a unique portion of TRICH or the polynucleotide encoding TRICH
which is identical in sequence to but shorter in length than the parent sequence. A
fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues. A fragment used as a probe, primer, antigen, therapeutic molecule, or fox other purposes, may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule. For example, a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 2S% or 50%) of a polypeptide as shown in a certain defined sequence. Clearly these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.
A fragment of SEQ ID N0:10-18 comprises a region of unique polynucleotide sequence that specifically identifies SEQ m N0:10-18, for example, as distinct from any other sequence in the genome from which the fragment was obtained. A fragment of SEQ m N0:10-18 is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ
D7 NO:10-18 from related polynucleotide sequences. The precise length of a fragment of SEQ >D
N0:10-18 and the region of SEQ 1D N0:10-18 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.
A fragment of SEQ m N0:1-9 is encoded by a fragment of SEQ m N0:10-18. A
fragment of SEQ >I7 NO:1-9 comprises a region of unique amino acid sequence that specifically identifies SEQ
JD N0:1-9. Fox example, a fragment of SEQ m N0:1-9 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ m N0:1-9. The precise length of a fragment of SEQ m NO:1-9 and the region of SEQ ll~ NO:1-9 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.
A "full length" polynucleotide sequence is one containing at least a translation initiation codon (e.g., methionine) followed by an open reading frame and a translation termination codon. A "full length" polynucleotide sequence encodes a "full length" polypeptide sequence.
"Homology' refers to sequence similarity or, interchangeably, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences.
The terms "percent identity" and "% identity," as applied to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.
Percent identity between polynucleotide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN
version 3.12e sequence alignment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison WI). CLUSTAL V is described in Higgins, D.G. and P.M. Sharp (1989) CABIOS 5:151-153 and in Iliggins, D.G. et al. (1992) CABIOS
8:189-191. For pairwise alignments of polynucleotide sequences, the default parameters are set as follows: Ktuple=2, gap penalty=5, window=4, and "diagonals saved"=4. The "weighted" residue weight table is selected as the default. Percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polynucleotide sequences.
Alternatively, a suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment Search Tool (BLAST) (Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410), which is available from several sources, including the NCBI, Bethesda, MD, and on the Internet at http://www.ncbi.nlm.nih.gov/BLASTI. The BLAST software suite includes various sequence analysis programs including "blastn," that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called "BLAST 2 Sequences" that is used for direct pairwise comparison of two nucleotide sequences. "BLAST 2 Sequences" can be accessed and used interactively at http://www.ncbi.nlm.nih.gov/gorf/bl2.html. The "BLAST 2 Sequences" tool can be used for both blastn and blastp (discussed below). BLAST
programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool Version 2Ø12 (April-21-2000) set at default parameters. Such default parameters may be, for example:
Matrix: BLOSUM62 Reward for' match: 1 Penalty for' mismatch: -2 Open Gap: 5 arid Extension Gap: 2 penalties Gap x drop-off.' S0 Expect: 10 Word Size: ~11 r' filter': OIZ
Percent identity may be measured over the length of an. entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.
The phrases "percent identity" and "% identity," as applied to polypeptide sequences, refer to the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge and hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.
Percent identity between polypeptide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN
version 3.12e sequence alignment pxogram (described and referenced above). For pairwise alignments of polypeptide sequences using CLUSTAL V, the default parameters are set as follows: Ktuple=1, gap penalty=3, window=5, and "diagonals saved"=5. The PAM250 matrix is selected as the default residue weight table. As with polynucleotide alignments, the percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polypeptide sequence pairs.
Alternatively the NCBI BLAST software suite may be used. For example, for a pairwise comparison of two polypeptide sequences, one may use the "BLAST 2 Sequences"
tool Version 2Ø12 (April-21-2000) with blastp set at default parameters. Such default parameters may be, for example:
Matrix: BLOSUM62 Opeft Gap: 11 and Extension Gap: 1 penalties Gap x drop-off. 50 Expect: 10 Word Size: 3 Filter: ort Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.
"Human artificial chromosomes" (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size and which contain all of the elements required for chromosome replication, segregation and maintenance.
2o The term "humanized antibody" refers to an antibody molecule in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely resembles a human antibody, and still retains its original binding ability.
"Hybridization" refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of complementarity.
Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the "washing" step(s). The washing steps) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched. Pernussive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity.
Permissive annealing conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 1% (w/v) SDS, and about 100 ~,g/ml sheared, denatured salmon sperm DNA.
Generally, stringency of hybridization is expressed, in part, with reference to the temperature under which the wash step is carried out. Such wash temperatures are typically selected to be about 5°C to 20°C lower than the thermal melting point (T"~ for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. An equation for calculating Tin and conditions for nucleic acid hybridization are well known and can be found in Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, 2"d ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY;
specifically see volume 2, chapter 9.
High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour.
Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%.
Typically, blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 ,ug/ml. Organic solvent, such as formamide at a concentration of about 35-SO% v/v, may~also be used under particular circumstances, such as for P,NA:DNA hybridizations. Useful variations on these wash conditions will be readily ' apparent to those of ordinary skill in the art. Hybridization, particularly under high stringency conditions, may be suggestive of evolutionary similaritybetween the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.
The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A
hybridization complex may be formed in solution (e.g., Cot or Rot analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).
The words "insertion" and "addition" refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.
"hnmune response" can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.
An "immunogenic fragment" is a polypeptide or oligopeptide fragment of TRICH
which is capable of eliciting an immune response when introduced into a living organism, for example, a mammal. The term "immunogenic fragment" also includes any polypeptide or oligopeptide fragment of TRICH which is useful in any of the antibody production methods disclosed herein or known in the art.
The term "microarray" refers to an arrangement of a plurality of polynucleotides, polypeptides, or other chemical compounds on a substrate.
The terms "element" and "array element" refer to a polynucleotide, polypeptide, or other chemical compound having a unique and defined position on a microarray.
The term "modulate" refers to a change in the activity of TRICH. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of TRICH.
The phrases "nucleic acid" and "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.
"Operably linked" refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.
"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their Iifespan in the cell.
"Post-translational modification" of an TRICH may involve lipidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cell type depending on the enzymatic milieu of TRICH.
"Probe" refers to nucleic acid sequences encoding TRICH, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences. Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule.
Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. "Primers"
are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR).
Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In. order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the 20 specification, including the tables, figures, and Sequence Listing, may be used.
Methods for preparing and using probes and primers are described in the references, for example Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, 2"d ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; Ausubel, F.M. et al. (1987) Current Protocols in Molecular Bioloev, Greene Publ. Assoc. & Wiley-Intersciences, New York NY; Innis, M. et al. (1990) PCR
15 Protocols, A Guide to Methods and Applications, Academic Press, San Diego CA. PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).
Oligonucleotides for use as primers are selected using software known in the art for such 20 purpose. For example, OLIGO 4.06 software is useful fox the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases.
Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU
primer selection program (available to the public from the Genome Center at University of Texas 25 South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope. The Primer3 primer selection pxogram (available to the public from the Whitehead Institute/MIT
Center for Genome Research, Cambridge MA) allows the user to input a "mispriming library," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of 30 oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.) The PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments. The oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.
A "recombinant nucleic acid" is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence.
This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, supf-a. The term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid. Frequently, a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence.
Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.
Alternatively, such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be use to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.
A "regulatory element" refers to a nucleic acid sequence usually derived from untranslated regions of a gene and includes enhancers, promoters, introns, and 5' and 3' untranslated regions (UTRs). Regulatory elements interact with host or viral proteins which control transcription, translation, or RNA stability.
"Reporter molecules" are chemical or biochemical moieties used for labeling a nucleic acid, amino acid, or antibody. Reporter molecules include radionuclides; enzymes;
fluorescent, chemiluminescent, or chromogenic agents; substrates; cofactors; inhibitors;
magnetic particles; and other moieties known in the art.
An "RNA equivalent," in reference to a DNA sequence, is composed of the same linear sequence of nucleotides as the reference DNA sequence with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
The term "sample" is used in its broadest sense. A sample suspected of containing TRICH, nucleic acids encoding TRICH, or fragments thereof may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.
The terms "specific binding" anal "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide comprising the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.
The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which they are naturally associated.
A "substitution" refers to the replacement of one or more amino acid residues or nucleotides by different amino acid residues or nucleotides, respectively.
"Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.
A "transcript image" or "expression profile" refers to the collective pattern of gene expression by a particular cell type or tissue under given conditions at a given time.
"Transformation" describes a process by which exogenous DNA is introduced into a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, bacteriophage or viral infection, electroporation, heat shock, lipofection, and particle bombardment.
The term "transformed cells" includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.
A "transgenic organism," as used herein, is any organism, including but not limited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus. In one alternative, the nucleic acid can be introduced by infection with a recombinant viral vector, such as a lentiviral vector (Lois, C. et al. (2002) Science 295:868-872). The term genetic manipulation does not include classical cross breeding, or in vitro fertilization, but rather is directed to the introduction of a recombinant DNA molecule. The transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, plants and animals.
The isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation.
Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook et al. (1989), su ra.
A "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2Ø9 (May-07-1999) set at default parameters. Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least-98%, or at least 99% or greater sequence identity over a certain defined length. A variant may be described as, for example, an "allelic" (as defined above), "splice," "species," or "polymorphic" variant. A
splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternate splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides will generally have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.
A "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2Ø9 (May-07 1999) set at default parameters. Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99%
or greater sequence identity over a certain defined length of one of the polypeptides.
THE INVENTION
The invention is based on the discovery of new human transporters and ion channels (TRICH), the polynucleotides encoding TRICH, and the use of these compositions for the diagnosis, prevention, and treatment of transport, neurological, muscular, immunological, and cell proliferative disorders, as well as disorders of iron metabolism.
Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the invention. Each polynucleotide and its corresponding polypeptide are correlated to a single Incyte project identification number (Incyte Project ID). Each polypeptide sequence is denoted by both a polypeptide sequence identification number (Polypeptide SEQ ID NO:) and an Incyte polypeptide sequence number (Incyte Polypeptide ID) as shown. Each polynucleotide sequence is denoted by both a polynucleotide sequence identification number (Polynucleotide SEQ 11? NO:) and an Incyte polynucleotide consensus sequence number (Incyte Polynucleotide ID) as shown.
Table 2 shows sequences with homology to the polypeptides of the invention as identified by BLAST analysis against the GenBank protein (genpept) database. Columns 1 and 2 show the polypeptide sequence identification number (Polypeptide SEQ ID NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for polypeptides of the invention. Column 3 shows the GenBank identification number (GenBank lD NO:) of the nearest GenBankhomolog.
Column 4 shows the probability scores for the matches between each polypeptide and its homolog(s).
Column 5 shows the annotation of the GenBank homolog(s) along with relevant citations where applicable, all of which are expressly incorporated by reference herein.
Table 3 shows various structural features of the polypeptides of the invention. Columns 1 and 2 show the polypeptide sequence identification number (SEQ 117 NO:) and the corresponding Incyte polypeptide sequence number (Iucyte Polypeptide ID) for each polypeptide of the invention. Column 3 shows the number of amino acid residues in each polypeptide. Column 4 shows potential phosphorylation sites, and column 5 shows potential glycosylation sites, as determined by the MOTIFS
program of the GCG sequence analysis software package (Genetics Computer Group, Madison WI):
Column 6 shows amino acid residues comprising signature sequences, domains, and motifs. Column 7 shows analytical methods for protein structure/function analysis and in some cases, searchable databases to which the analytical methods were applied.
Together, Tables 2 and 3 summarize the properties of polypeptides of the invention, and these properties establish that the claimed polypeptides are transporters and ion channels. For example, SEQ ~ N0:3 is 50% identical, from residue A14 to residue 8236, to Caulobacter crescentus MotA/TolQ/ExbB proton channel family protein (GenBank m g13424917) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 6.2e-53, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance.
SEQ m N0:3 also contains a MotA/TolQ/ExbB proton channel family domain as determined by searching for statistically significant matches in the hidden Markov model (I~~IM) based PFAM
database of conserved protein family domains. (See Table 3.) Data from further BLAST analyses pxovide further corroborative evidence that SEQ ll~ N0:3 is a pxoton channel.
In an alternative example, SEQ m N0:4 is 99% identical, from residue G88 to residue 8947, to human calcium channel to alpha-2-delta3 subunit (GenBank B7 g7105926) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 0.0, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ m N0:4 also contains a cache domain as determined by searching for statistically significant matches in the hidden Markov model (I~VVIM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLM'S amd MOTIFS analyses provide further corroborative evidence that SEQ
m N0:4 is a calcium channel alpha-2-delta3 subunit. In an alternative example, SEQ m NO:S
is 81% identical, from residue E8 to residue E461, to the murine urea transporter UTA-3 (GenBank D7 g11177180) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST
probability score is 4.0e-207, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. In an alternative example, SEQ m N0:6 is 40%
identical, from residue E43 to residue L443, to the human solute carrier family 26 member 6 protein (SLC26A6), an anion transporter (GenBank m g13344999), as determined by BLAST analysis with a probability score of 4.0e-93. SEQ m NO:6 also contains a sulfate transporter domain as determined by searching for statistically significant matches in the hidden Markov model (I~VIM)-based PFAM
database of conserved protein family domains. (See Table 3.) Data from BLIMPS
analysis provide further corroborative evidence that SEQ ll~ N0:6 is a sulfate transporter. In an alternative example, SEQ ID N0:7 is 96% identical, from residue M1 to residue E323, to human GT
mitochondrial solute carrier protein (GenBank m g386960) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 6.2e-167, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ m N0:7 also contains mitochondrial carrier protein domains as determined by searching for statistically significant matches in the hidden Markov model (I~~IM) based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS, MOTIFS, and PROF1LESCAN analyses provide further corroborative evidence that SEQ ID N0:7 is a mitochondrial carrier protein.
SEQ ll~ N0:1-2 and SEQ U~ N0:8-9 were analyzed and annotated in a similar manner. The algorithms and parameters for the analysis of SEQ ID N0:1-9 are described in Table 7.
As shown in Table 4, the full length polynucleotide sequences of the pxesent invention were assembled using cDNA sequences or coding (exon) sequences derived from genomic DNA, or any combination of these two types of sequences. Column 1 lists the polynucleotide sequence identification number (Polynucleotide SEQ ID NO:), the corresponding Incyte polynucleotide consensus sequence number (Incyte ID) for each polynucleotide of the invention, and the length of each polynucleotide sequence iu basepairs. Column 2 shows the nucleotide start (5') and stop (3') positions of the cDNA and/or genomic sequences used to assemble the full length polynucleotide .
sequences of the invention, and of fragments of the polynucleotide sequences which are useful, for example, in hybridization or amplification technologies that identify SEQ 117 N0:10-18 or that distinguish between SEQ ID NO:10-18 and related polynucleotide sequences.
The-polynucleotide fragments described in Column 2 of Table 4 may refer specifically, for example, to Incyte cDNAs derived from tissue-specific cDNA libraries or from pooled cDNA
libraries. Alternatively, the polynucleotide fragments described in column 2 may refer to GenBank cDNAs or. ESTs vcrhich contributed to the assembly of the full length polynucleotide sequences. In addition, the polynucleotide fragments described in column 2 may identify sequences derived from the ENSEMBL (The Sanger Centre, Cambridge, UK) database (i.e., those sequences including the w designation "ENST"). Alternatively, the polynucleotide fragments described in column 2 may be derived from the NCBI RefSeq Nucleotide Sequence Records Database (i.e., those sequences including the designation "NM" or "NT") or the NCBI RefSeq Protein Sequence Records (i.e., those sequences including the designation "NP"). Alternatively, the polynucleotide fragments described in column 2 may refer to assemblages of both eDNA and Genscan-predicted exons brought together by an "exon stitching" algorithm. For example, a polynucleotide sequence identified as FL_XXXXXX~ NI 1V2 YYYYY N3 Nø represents a "stitched" sequence in which XXXXXX
is the identification number of the cluster of sequences to which the algorithm was applied, and YYYYY is the number of the prediction generated by the algorithm, and N1,2~3..., if present, represent specific exons that may have been manually edited during analysis (See Example V).
Alternatively, the polynucleotide fragments in column 2 may refer to assemblages of exons brought together by an "exon-stretching" algorithm. For example, a polynucleotide sequence identified as FL~.'XXXXX_g<4AAAA~BBBBB_1 N is a "stretched" sequence, with X~'~~XXX being the Iucyte project identification number, gAAAAA being the GenBank identification number of the human genomic sequence to which the "exon-stretching" algorithm was applied, gBBBBB
being the GenBank identification number or NCBI RefSeq identification number of the nearest GenBank protein homolog, and N referring to specific exons (See Example V). In instances where a RefSeq sequence was used as a protein homolog for the "exon-stretching" algorithm, a RefSeq identifier (denoted by "NM,"
"NP," or "NT") may be used in place of the GenBank identifier (i. e., gBBBBB).
Alternatively, a prefix identifies component sequences that were hand-edited, predicted from genomic DNA sequences, or derived from a combination of sequence analysis methods. The following Table lists examples of component sequence prefixes and corresponding sequence analysis methods associated with the prefixes (see Example IV and Example V).
1o Prefix Type of analysis andlor examples of programs GNN, GFG, Exon prediction from genomic sequences using, for example, ENST GENSCAN (Stanford University, CA, USA) or FGENES
(Computer Genomics Group, The Sanger Centre, Cambridge, UK) GBI Hand-edited analysis of genomic sequences.
FL Stitched or stretched genomic sequences (see Example V).
INCY . Fall length transcript and exon prediction from mapping of EST
sequences to the genome. Genomic location and EST composition data are combined to predict the exons and resulting transcript.
In some cases, Incyte cDNA coverage redundant with the sequence coverage shown in Table 4 was obtained to confirm the final consensus polynucleotide sequence, but the relevant Tncyte cDNA identification numbers are not shown.
Table 5 shows the representative cDNA libraries for those full length polynucleotide sequences which were assembled using Incyte cDNA sequences. The representative cDNA library is the Incyte cDNA library which is most frequently represented by the Incyte cDNA sequences which were used to assemble and confrtm the above polynucleotide sequences.
The tissues and vectors which were used to construct the cDNA libraries shown in Table 5 are described in Table 6.
The invention also encompasses TRICH variants. A preferred TRICH variant is one which has at least about ~0%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the TRICH amino acid sequence, and which contains at least one functional or structural characteristic of TRICH.
The invention also encompasses polynucleotides which encode TRICH. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID N0:10-18, which encodes TRICH. The polynucleotide sequences of SEQ 117 N0:10-18, as presented in the Sequence Listing, embrace the equivalent RNA
sequences, wherein occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.
The invention also encompasses a variant of a polynucleotide sequence encoding TRICH. In particular, such a variant polynucleotide sequence will have at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding TRICH. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID N0:10-18 which has at least about 70%, or alternatively at least about 85%, or even at least about 95%
polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ
ID N0:10-18. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of TRICH.
In addition, or in the alternative, a polynucleotide variant of the invention is a splice variant of a polynucleotide sequence encoding TRICH. A splice variant may have portions which have significant sequence identity to the polynucleotide sequence encoding TRICH, but will generally have a greater or lesser number of polynucleotides due to additions or deletions of blocks of sequence arising from alternate splicing of exons during mRNA processing. A splice variant may have less than about 70%, or alternatively less than about 60%, or alternatively less than about 50%
polynucleotide sequence identity to the polynucleotide sequence encoding TRICH over its entire length;
however, portions of the splice variant will have at least about 70%, or alternatively at least about 85%, or alternatively at least about 95%, or alternatively 100% polynucleotide sequence identity to portions of the polynucleotide sequence encoding TRICH. Any one of the splice variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of TRICH.
It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding TRICH, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring TRICH, and all such variations are to be considered as being specifically disclosed.
Although nucleotide sequences which encode TRICH and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring TRICH under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding TRICH or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding TRICH and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half life, than transcripts produced from the naturally occurring sequence.
The invention also encompasses production of DNA sequences which encode TRICH
and TRICH derivatives, or fragments thereof, entirely by synthetic chemistry.
After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding TRICH or any fragment thereof.
Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID
NO:10-18 and fragments thereof undex various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kim_m__el, A.R. (1987) Methods Enzymol. 152:507-511.) Hybridization conditions, including annealing and wash conditions, are described in "Definitions."
Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Applied Biosystems), thermostable T7 polymerase (Amersham Biosciences, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Invitrogen, Carlsbad CA). Preferably, sequence preparation is automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (Applied Biosystems).
Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (Applied Biosystems), the MEGABACE 1000 DNA sequencing system (Amersham Biosciences), or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biolo~y, John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnolo~y, Wiley VCH, New York NY, pp. 856-853.) The nucleic acid sequences encoding TRICH may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic.
2:318-322.) Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA
fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al. (1991) PCR Methods Applic. 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-3060).
Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 primer analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50%o or more, and to anneal to the template at temperatures of about 68°C to 72°C.
When screening for full length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.
Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Applied Biosystems); and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.
In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode TRICH may be cloned in recombinant DNA molecules that direct expression of TRICH, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express TRICH.
The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter TRICH-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA
shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotide mediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.
The nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULARBREEDING (Maxygen Inc.; Santa Clara CA; described in U.S. Patent No.
5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C. et al. (1999) Nat.
Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or improve the biological properties of TRICH, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds. DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These preferred variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection/screening. Thus, genetic diversity is created through "artificial"
breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively, fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.
In another embodiment, sequences encoding TRICH may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; and Horn, T. et al. (1980) Nucleic Acids Symp. Ser.
7:225-232.) Alternatively, 44.
TRICH itself or a fragment thereof may be synthesized using chemical methods.
For example, peptide synthesis can be performed using various solution-phase or solid-phase techniques. (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH
Freeman, New York NY, pp.
55-60; and Robexge, J.Y, et al. (1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI 431A peptide synthesizer (Applied Biosystems). Additionally, the amino acid sequence of TRICH, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide or a polypeptide having a sequence of a naturally occurring polypeptide.
The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Cliiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing.
(See, e.g., Creighton, supra, pp. 28-53.) In order to express a biologically active TRICH, the nucleotide sequences encoding TRICH or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and trauslational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in.
polynucleotide sequences encoding TRICH. Such elements may vary in their strength and specificity.
Specific initiation signals may also be used to achieve more efficient translation of sequences encoding TRICH. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding TRICH and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D.
et al. (1994) Results Probl.
Cell Differ. 20:125-162.) Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding TRICH and appxopriate transcriptional and translational control elements. These methods include if2 vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. (See, e.g., Sambrook, J. et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) Current Protocols in Molecular Biolo~y, John Wiley ~z Sons, New York NY, ch.
9, 13, and 16.) A variety of expression vector/host systems may be utilized to contain and express sequences encoding TRICH. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors;
yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus);
plant cell systems taransformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. (See, e.g., Sambrook, supra; Ausubel, supf~a; Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509; Engelhard, E.K. et al. (1994) Proc. Natl.
Acad. Sci. USA
91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945; Takamatsu, N. (1987) EMBO
J. 6:307-311; The McGraw Hill Yearbook of Science and Technolo~y (1992) McGraw Hill, New York NY, pp. 191-196; Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA
81:3655-3659; and Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355.) Expression vectors derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. (See, e.g., Di Nicola, M. et al. (1998) Cancer Gen. Ther. 5(6):350-356; Yu, M. et al. (1993) Proc.
Natl. Acad. Sci. USA
90(13):6340-6344; Buller, R.M. et al. (1985) Nature 317(6040):813-815;
McGregor, D.P. et al. (1994) Mol. linrmunol. 31(3):219-226; and Verma, LM. and N. Somia (1997) Nature 389:239-242.) The invention is not limited by the host cell employed.
In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding TRICH. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding TRICH can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Invitrogen). Ligation of sequences encoding TRICH into the vector's multiple cloning site disrupts the lacZ gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem.
264:5503-5509.) When large quantities of TRICH are needed, e.g. for the production of antibodies, vectors which direct high level expression of TRICH may be used. For example, vectors containing the strong, inducible SP6 or T7 bacteriophage promoter may be used.
Yeast expression systems may be used for production of TRICH. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH
promoters, may be used in the yeast Saccharomyces cer~evisiae or Pichia pastor~is. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, su ra;
Bitter, G.A. et al. (1987) Methods Enzymol. 153:516-544; and Scorer, C.A. et al. (1994) Bio/Technology 12:181-184.) Plant systems may also be used for expression of TRICH. Transcription of sequences encoding TR1CH may be driven by viral promoters, e.g., the 35S and 19S
promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N.
(1987) EMBO J.
6:307-311). Alternatively, plant promoters such as the small subunit of RUBTSCO or heat shock promoters rnay be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Brogue, R. et al.
(1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, e.g., The McGraw Hill Yearbook of Science and Techuolo~y (1992) McGraw Hill, New York NY, pp. 191-196.) In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an~ adenovirus is used as an expression vector, sequences encoding TRICH
may be ugated into an adenovirus transcription/translation complex consisting of the late promoter and tizpartite leader sequence. .Insertion in a non-essential E1 or E3 region of the viral genome maybe used to obtain infective virus which expresses TRTCH in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc.
Natl. Acad. Sci. USA 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalan host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.
Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (uposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al.
(1997) Nat. Genet. 15:345-355.) For long term production of recombinant proteins in mammalan systems, stable expression of TRICH in cell lines is preferred. For example, sequences encoding TRICH can be transformed into cell ones using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.
Any number of selection systems may be used to recover transformed cell lines.
These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in tk and Apr. cells, respectively.
(See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection: For example, dhfr-confers resistance to methotrexate; taeo confers resistance to the aminoglycosides neomycin and G-418; and als and pat confer resistance to chlorsulfuron and phosphinotricin acetyltrausferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. USA 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., trpB and hisD, which alter cellular requirements for metabolites. (See, e.g., Hat~tmau, S.C. and R.C. Mulligan (1988) Proc.
Natl. Acad. Sci. USA 85:8047-8051.) Visible markers, e.g., authocyanins, green fluorescent proteins (GFP; Clontech), J3 glucuronidase and its substrate !3-glucuronide, or luciferase and its substrate luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. , (See, e.g.; Rhodes, C.A. (1995) Methods Mol. Biol. 55:121-131.) Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence anal expression of the gene may need to be confirmed. For example, if the sequence encoding TRICH is inserted within a marker gene sequence, transformed cells containing sequences encoding TRICH can be identified by the absence of marker gene function.
Alternatively, a marker gene can be placed in tandem with a sequence encoding TRICH under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.
In general, host cells that contain the nucleic acid sequence encoding TRICH
and that express TRICH may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR
amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.
T_m_m__unologlcal methods for detecting and measuring the expression of TRICH
using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on TRICH is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS
Press, St. Paul MN, Sect. IV; Coligau, J.E. et al. (1997) Current Protocols in hxununolo~y, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) Tmmunochemical Protocols, Humana Press, Totowa NJ.) A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding TRICH ixtclude oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide.
Alternatively, the sequences encoding TRICH, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes i~t vitro by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Biosciences, Promega (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic patfiicles, and the like.
2o Host cells transformed with nucleotide sequences encoding TRICH may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode TRICH may be designed to contain signal sequences which direct secretion of TRICH through a prokaryotic or eukaryotic cell membrane.
In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion.
Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" or "pro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCI~, HEI~293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and may be chosen to ensure the correct modification and processing of the foreign protein.
In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding TRICH may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric TR1CH protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of TRICH
activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, c-myc, and to hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, c-rnyc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the TRICH encoding sequence and the heterologous protein sequence, so that TRICH may be cleaved away from the heterologous moiety following purification.
Methods for fusion protein expression and purification are discussed in Ausubel (1995, supra, ch. 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.
In a further embodiment of the invention, synthesis of radiolabeled TRICH may be achieved in vitro using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, 35S-methionine.
TRICH of the present invention or fragments thereof may be used to screen for compounds that specifically bind to TRICH. At least one and up to a plurality of test compounds may be screened for specific binding to TRICH. Examples of test compounds include antibodies, oligonucleotides, proteins (e.g., ligands or receptors), or small molecules. In one embodiment, the compound thus identified is closely related to the natural ligand of TRICH, e.g., a ligand or fragment thereof, a natural substrate, a structural or functional mimetic, or a natural binding partner.
(See, e.g., Coligan, J.E. et al.
(1991) Current Protocols in Immunology 1(2):Chapter 5.) In another embodiment, the compound thus identified is a natural ligand of a receptor TRICH. (See, e.g., Howard, A.D.
et al. (2001) Trends Pharmacol. Sci.22:132-140; Wise, A. et al. (2002) Drug Discovery Today 7:235-246.) In other embodiments, the compound can be closely related to the natural receptor to which TRICH binds, at least a fragment of the receptor, or a fragment of the receptor including all or a portion of the ligand binding site or binding pocket. For example, the compound may be a receptor for TRICH which is capable of propagating a signal, or a decoy receptor for TRICH
which is not capable of propagating a signal (Ashkenazi, A. and V.M. Divit (1999) Curr. Opin. Cell Biol. 11:255-260;
Mantovani, A. et al. (2001) Trends Tmmunol. 22:328-336). The compound can be rationally designed using known techniques. Examples of such techniques include those used to construct the compound etanercept (ENBREL; Tm_m__unex Corp., Seattle WA), which is efficacious for treating rheumatoid arthritis in humans. Etanercept is an engineered p75 tumor necrosis factor (TNF) receptor dimer linked to the Fc portion of human IgGl (Taylor, P.C. et al. (2001) Curr. Opin.
Trrmmunol. 13:611-616).
In one embodiment, screening for compounds which specifically bind to, stimulate, or inhibit TRICH involves producing appropriate cells which express T1ZICH, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, Drosophila, or E. coli. Cells expressing TRICH or cell membrane fractions which contain TRICH are then contacted with a test compound and binding, stimulation, or inhibition of activity of either TRICH
or the compound is analyzed.
An assay may simply test binding of a test compound to the polypeptide, wherein binding is detected by a fluorophore, radioisotope, enzyme conjugate, or other detectable label. For example, the assay may comprise the steps of combining at least one test compound with TRICH, either in solution or affixed to a solid support, and detecting the binding of TRICH to the compound. Alternatively, the assay may detect or measure binding of a test compound in the presence of a labeled competitor.
Additionally, the assay may be carried out using cell-free preparations, chemical libraries, or natural product mixtures, and the test compounds) may be free in solution or affixed to a solid support.
An assay can be used to assess the ability of a compound to bind to its natural ligand and/or to inhibit the binding of its natural ligand to its natural receptors. Examples of such assays include radio labeling assays such as those described in U.S. Patent No. 5,914,236 and U.S.
Patent No. 6,372,724.
In a related embodiment, one or more amino acid substitutions can be introduced into a polypeptide compound (such as a receptor) to improve or alter its ability to bind to its natural ligands. (See, e.g., Matthews, D.J. and J.A. WelIs. (1994) Chem. Biol. 1:25-30.) In another related embodiment, one or more amino acid substitutions can be introduced into a polypeptide compound (such as a ligand) to improve or alter its ability to bind to its natural receptors. (See, e.g., Cunningham, B.C. and J.A. Wells (1991) Proc. Natl. Acad. Sci. USA 88:3407-3411; Lowman, H.B. et al. (1991) J.
Biol. Chem.
266:10982-10988.) TRICH of the present invention or fragments thereof may be used to screen for compounds that modulate the activity of TRICH. Such compounds may include agonists, antagonists, or partial or inverse agonists. In one embodiment, an assay is performed under conditions permissive for TRICH
activity, wherein TRICH is combined with at least one test compound, and the activity of TRICH in the presence of a test compound is compared with the activity of TRICH in the absence of the test compound. A change in the activity of TRICH in the presence of the test compound is indicative of a compound that modulates the activity of TRICH. Alternatively, a test compound is combined with an in vitro or cell-free system comprising TRICH under conditions suitable for TRICH activity, and the assay is performed. In either of these assays, a test compound which modulates the activity of TRICH may do so indirectly and need not come in direct contact with the test compound. At least one and up to a plurality of test compounds may be screened.
In another embodiment, polynucleotides encoding TRICH or their mammalian homologs may be "knocked out" in an animal model system using homologous recombination in embryonic stem (ES) cells. Such techniques are well known in the art and are useful for the generation of animal models of human disease. (See, e.g., U.S. Patent No. 5,175,383 and U.S. Patent No.
5,767,337.) For example, mouse ES cells, such as the mouse 129/SvJ cell line, are derived from the early mouse embryo and grown in culture. The ES cells are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotrausferase gene (neo; Capeccbi, M.R. (1989) Science 244:1288-1292). The vector integrates .into the corresponding region of the host genome by homologous recombination. Alternatively, homologous recombination takes place using the Cre-loxP
system to knockout a gene of interest in a tissue- or developmental stage-specific manner (Marth, J.D.
(1996) Cliu. Iuvest. 97:1999-2002; Wagner, K.U. et al. (1997) Nucleic Acids Res. 25:4323-4330).
Transformed ES cells are identified and micxoinjected into mouse cell blastocysts such as those from the C57BL/6 mouse strain. The blastocysts are surgically transferred to pseudopregnant dams, and the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains. Trausgenic animals thus generated may be tested with potential therapeutic or toxic agents.
Polynucleotides encoding TRICH may also be manipulated in vitro in ES cells derived from human blastocysts. Human ES cells have the potential to differentiate into at least eight separate cell lineages including endoderm, mesoderm, and ectodermal cell types. These cell lineages differentiate into, for example, neural cells, hematopoietic lineages, and cardiomyocytes (Thomson, J.A. et al.
(1998) Science 282:1145-1147).
Polynucleotides encoding TRTCH can also be used to create "knockin" humanized animals (pigs) or transgenic animals (mice or rats) to model human disease. With knockin technology, a region of a polynucleotide encoding TRICH is injected into animal ES cells, and the injected sequence integrates into the animal cell genome. Transformed cells are injected into blastulae, and the blastulae are implanted as described above. Transgenic progeny or inbred Hues are studied and treated with potential pharmaceutical agents to obtain information on treatment of a human disease. Alternatively, a mammal inbred to overexpress TRICH, e.g., by secreting TRICH in its milk, may also serve as a convenient source of that protein (Janne, J. et al. (1998) Biotechnol. Annu.
Rev. 4:55-74).
THERAPEUTICS
Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of TRICH and transporters and ion channels. In addition, examples of tissues expressing TRICH can be found in Table 6 and can also be found in Example XI. Therefore, TRICH appears to play a role in transport, neurological, muscular, immunological, and cell proliferative disorders, as well as disorders of iron metabolism. In the treatment of disorders associated with increased TRICH
expression or activity, it is desirable to decrease the expression or activity of TRICH. In the treatment of disorders associated with decreased TRICH expression or activity, it is desirable to increase the expression or activity of TRICH.
Therefore, in one embodiment, TRICH or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TRICH. Examples of such disorders include, but are not limited to, a transport disorder such as akinesia, amyotrophic lateral sclerosis, ataxia telaugiectasia, cystic fibrosis, Becker's muscular dystrophy, Bell's palsy, Charcot-Marie Tooth disease, diabetes mellitus, diabetes insipidus, diabetic neuropathy, Duchenne muscular dystrophy, hyperkalemic periodic paralysis, normokalemic periodic paralysis, Parkinson's disease, malignant hyperthermia, multidrug resistance, myasthenia gravis, myotonic dystrophy, catatonia, tardive dyskiuesia, dystonias, peripheral neuropathy, cerebral neoplasms, prostate cancer, cardiac disorders associated with transport, e.g., angina, bradyarrythmia, tachyarrythmia, hypertension, Long QT syndrome, myocarditis, cardiomyopathy, nemaline myopathy, centronuclear myopathy, lipid myopathy, mitochondrial myopathy, thyrotoxic myopathy, ethanol myopathy, dermatomyositis, inclusion body myositis, infectious myositis, polymyositis, neurological disorders associated with trausport, e.g., Alzheimer's disease, amnesia, bipolar disorder, dementia, depression, epilepsy, Tourette's disorder, paranoid psychoses, and schizophrenia, and other disorders associated with transport, e.g., neurofibromatosis, postherpetic neuralgia, trigeminal neuropathy, sarcoidosis, sickle cell anemia, Wilson's disease, cataracts, infertility, pulmonary artery stenosis, sensorineural autosomal deafness, hyperglycemia, hypoglycemia, Grave's disease, goiter, Cushing's disease, Addison's disease, glucose-galactose malabsorption syndrome, hypercholesterolemia, adrenoleukodystrophy, Zellweger syndrome, Menkes disease, occipital horn syndrome, von Gierke disease, cystinuria, iminoglycinuria, Hartup disease, and Fanconi disease; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extrapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral centaral nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Stxaussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous 1o sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system including Down syndrome, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia, dystonias, paranoid psychoses, postherpetic neuralgia, Tourette's disorder, progressive supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia; a muscle .disorder such as cardiomyopathy, myocarditis, Duchenne's muscular dystrophy, Beckex's muscular dystrophy, myotonic dystrophy, central core disease, nemaline myopathy, centronuclear myopathy, lipid myopathy, mitochondrial myopathy, infectious myositis, polymyositis, dermatomyositis, inclusion body myositis, thyrotoxic myopathy, ethanol myopathy, angina, anaphylactic shock, arrhythmias, asthma, cardiovascular shock, Cushing's syndxome, hypertension, hypoglycemia, myocardial infarction, migraine, pheochromocytoma, and myopathies including encephalopathy, epilepsy, Kearns-Sayre syndrome, lactic acidosis, myoclonic disorder, ophthahnoplegia, and acid maltase deficiency (AMD, also known as Pompe's disease); an immunological disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohu's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjogren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and hehninthic infections, and trauma; and a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myeloflbrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; and a disorder of iron metabolism such as hypotransferrinaemia, acaeruloplasminaemia, adult, juvenile, and neonatal haemochromatosis.
In another embodiment, a vector capable of expressing TRICH or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TRICH including, but.not limited to, those described above.
In a further embodiment, a composition comprising a substantially purified TRICH in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TRICH
including, but. not limited to, those provided above.
In still another embodiment, an agonist which modulates the activity of TRICH
may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of TRICH including, but not limited toy those listed above.
In a further embodiment, an antagonist of TRICH may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of TRICH.
Examples of such disorders include, but are not limited to, transport, neurological, muscular, immunological, and cell proliferative disorders, as well as disorders of iron metabolism described above. In one aspect, an antibody which specifically binds TRICH may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express 3o TRICH.
In an additional embodiment, a vector expressing the complement of the polynucleotide encoding TRICH may be administexed to a subject to treat ox prevent a disorder associated with increased expression or activity of TRICH including, but not limited to, those described above.
In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.
An antagonist of TRICH may be produced using methods which are generally known in the art. In particular, purified TRICH may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind TRICH.
Antibodies to TRICH may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are generally preferred for therapeutic use. Single chain antibodies (e.g., from 15. camels or llamas) may be potent enzyme inhibitors and may have advantages in the design of peptide mimetics, and in the development of immuno-adsorbents and biosensors (Muyldermans, S. (2001) J. .
Biotechnol. 74:277-302).
For the production of antibodies, various hosts including goats, rabbits, rats, mice, camels, dromedaries, llamas, humans, and others may be immunized by injection with TRICH or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.
It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to TRICH have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein. Short stretches of TRICH amino acids may be fused with those of another protein, such as I~LH, and antibodies to the chimeric molecule may be produced.
Monoclonal antibodies to TRICH may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohlex, G. et al. (1975) Nature 256:495-497; Kozbor, D.
et al. (1985) J.
Tmmunol. Methods 81:31-42; Cote, R.J. et al. (1983) Proc. Natl. Acad. Sci. USA
80:2026-2030; and Cole, S.P. et al. (1984) Mol. Cell Biol. 62:109-120.) In addition, techniques developed for the production of "chimeric antibodies,"
such as the splicing of mouse antibody genes to human antibody genes to obtain. a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) Proc.
Natl. Acad. Sci. USA 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; and Takeda, S. et al. (1985) Nature 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce TRICH-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton, D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137.) Antibodies may also be produced by inducing in vivo production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci.
USA 86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299.) Antibody fragments which contain specific binding sites for TRICH may also be generated.
For example, such fragments include, but are not limited to, F(ab')2 fragments produced.by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the F(ab')2 fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity.
(See, e.g., Huse, W.D.
et al. (1989) Science 246:1275-1281.) Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between TRICH and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering TRICH epitopes is generally used, but a competitive binding assay may also be 3o employed (Pound, supja).
Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques may be used to assess the affinity of antibodies for TRTCH. Affinity is expressed as an association constant, Ka, which is defined as the molar concentration of TRICH-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The Ka determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple TRICH epitopes, represents the average affinity, or avidity, of the antibodies for TRICH.
The Ka determined for a preparation of monoclonal antibodies, which are monospecific for a particular TRICH epitope, represents a true measure of affinity. High-affinity antibody preparations with Ka ranging from about 109 to 1012 L/mole axe preferred for use in immunoassays in which the TRICH-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with Ka ranging from about 106 to 10' L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of TRICH, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL
Press, Washington DC;
Liddell, J.E. and A. Cryer (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).
The titer and avidity of polyclonal antibody preparations may be further evaluated to determine the quality and suitability of such preparations for certain downstream applications. For example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably 5-10 mg specific antibody/ml, is generally employed in procedures requiring precipitation of TRICH-antibody complexes: Procedures for evaluating antibody specificity, titer, and avidity, and guidelines for antibody qualityand usage in various applications, are generally available.
(See, e.g., Catty, supra, and Coligan et al. supra.) 2o In another embodiment of the invention, the polynucleotides encoding TRICH, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, modifications of gene expression can be achieved by designing complementary sequences or antisense molecules (DNA, RNA, PNA, or modified oligonucleotides) to the coding or regulatory regions of the gene encoding TRICH. Such technology is well known in the art, and antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding TRICH. (See, e.g., Agrawal, S., ed. (1996) Antisense Therapeutics, Humana Press Inc., Totawa NJ.) In therapeutic use, any gene delivery system suitable for introduction of the antisense sequences into appropriate target cells can be used. Antisense sequences can be delivered intracellularly in the form of an expression plasmid which, upon transcription, produces a sequence complementary to at least a portion of the cellular sequence encoding the target protein. (See, e.g., Slater, J.E. et al. (1998) J. Allergy Clip. Tm_m__unol. 102(3):469-475; and Scanlon, K.J. et al. (1995) 9(13):1288-1296.) Antisense sequences can also be introduced intracellularly through the use of viral vectors, such as retrovirus and adeno-associated virus vectors. (See, e.g., Miller, A.D. (1990) Blood 76:271; Ausubel, supf-a; Uckert, W. and W. Walther (1994) Pharmacol. Ther.
63(3):323-347.) Other gene delivery mechanisms include liposome-derived systems, artificial viral envelopes, and other systems known in the art. (See, e.g., Rossi,, J.J. (1995) Br. Med. Bull.
51(1):217-225; Boado, R.J. et al. (1998) J. Pharm. Sci. 87(11):1308-1315; and Morris, M.C. et al. (1997) Nucleic Acids Res.
25(14):2730-2736.) In another embodiment of the invention, polynucleotides encoding TRICH may be used for somatic or germline gene therapy. Gene therapy may be performed to (i) correct a genetic deficiency (e.g., in the cases of severe combined immunodeficiency (SCID)-X1 disease characterized by X-linked inheritance (Cavazzana-Calvo, M. et al. (2000) Science 288:669-672), severe combined immunodeficiency syndrome associated with an inherited adenosine deaminase (ADA) deficiency (Blaese, R.M. et al. (1995) Science 270:475-480; Bordignon, C. et al. (1995) Science 270:470-475), cystic fibrosis (Zabner, J. et al. (1993) Cell 75:207-216; Crystal, R.G. et al. (1995) Hum. Gene Therapy 6:643-666; Crystal, R.G. et al. (1995) Hum. Gene Therapy 6:667-703), thalassamias, familial hypexcholesterolemia, and hemophilia resulting from Factor VIII or Factor IX
deficiencies (Crystal, R.G. (1995) Science 270:404-410; Verma, LM. and N. Somia (1997) Nature 389:239-242)), (ii) express a conditionally lethal gene product (e.g., in the case of cancers which result from unregulated cell proliferation), or (iii) express a protein which affords protection against intracellular parasites (e.g., against human retroviruses, such as human immunodeficiency virus (HIV) (Baltimore, D. (1988) 2o Nature 335:395-396; Poeschla, E. et al. (1996) Proc. Natl. Acad. Sci. USA
93:11395-11399), hepatitis B or C virus (HBV, HCV); fungal parasites, such as Candida albicans and Paracoccidioides brasiliensis; and protozoan parasites such as Plasmodium falciparwm and Trypanosoma cruzi). In the case where a genetic deficiency in TRICH expression or regulation causes disease, the expression of TRICH from an appropriate population of transduced cells may alleviate the clinical manifestations caused by the genetic deficiency.
In a further embodiment of the invention, diseases or disorders caused by deficiencies in TRICH are treated by constructing mammalian expression vectors encoding TRICH
and introducing these vectors by mechanical means into TRICH-deficient cells. Mechanical transfer technologies for use with cells in vivo or ex vitro include (i) direct DNA microinjection into individual cells, (ii) ballistic gold particle delivery, (iii) liposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the use of DNA transposons (Morgan, R.A. and W.F. Anderson (1993) Anna.
Rev. Biochem.
62:191-217; Ivies, Z. (1997) Cell 91:501-510; Boulay, J-L. and H. Recipon (1998) Curr. Opin.
Biotechnol. 9:445-450).
Expression vectors that may be effective for the expression of TRICH include, but are not limited to, the PCDNA 3.1, EPITAG, PRCCMV2, PREP, PVAX, PCR2-TOPOTA vectors (Iuvitrogen, Carlsbad CA), PCMV-SCRIPT, PCMV-TAG, PEGSH/PERV (Stratagene, La Jolla CA), and PTET-OFF, PTET-ON, PTRE2, PTRE2-LUC, PTK-HYG (Clontech, Palo Alto CA).
TRICH
may be expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TIC), or (3-actin genes), (ii) an inducible promoter (e.g., the tetracycline-regulated promoter (Gossen, M. and H. Bujard (1992) Proc. Natl. Acad. Sci.
USA 89:5547-5551; Gossen, M. et al. (1995) Science 268:1766-1769; Rossi, F.M.V. and H.M. Blau (1998) Curr. Opin. Biotechnol. 9:451-456), commercially available in the T-REX
plasmid (Invitrogen));
the ecdysone-inducible promoter (available in the plasmids PVGRXR and PIIVD;
Invitrogen); the FK506/rapamycin inducible promoter; or the RU486/mifepristone inducible promoter (Rossi, F.M.V.
and H.M. Blau, supra)), or (iii) a tissue-specific promoter or the native promoter of the endogenous gene encoding TRICH from a normal individual.
Commercially available liposome transformation kits (e.g., the PERFECT LIPID
TRANSFECTION KIT, available from Invitrogen) allow one with ordinary skill in the art to deliver polynucleotides to target cells in culture and require minimal effort to optimize experimental parameters. In the alternative, transformation is performed using the calcium phosphate method (Graham, F.L. and A.J. Eb (1973) Virology 52:456-467), or by electroporation (Neumann, E. et al.
(1982) EMBO J. 1:841-845). The introduction of DNA to primary cells requires modification of these standardized mammalian transfection protocols.
In another embodiment of the invention, diseases or disorders caused by genetic defects with respect to TRICH expression are treated by constructing a retrovirus vector consisting of (i) the polynucleotide encoding TRICH under the control of an independent promoter or the retrovirus long terminal repeat (LTR) promoter, (ii) appropriate RNA packaging signals, and (iii) a Rev-responsive element (RRE) along with additional retrovirus cis-acting RNA sequences and coding sequences required for efficient vector propagation. Retrovirus vectors (e.g., PFB and PFBNEO) are commercially available (Stratagene) and are based on published data (Riviere, I. et al. (1995) Proc.
Natl. Acad. Sci. USA 92:6733-6737), incorporated by reference herein. The vector is propagated in an appropriate vector producing cell Line (VPCL) that expresses an envelope gene with a tropism for receptors on the target cells or a promiscuous envelope protein such as VSVg (Armentano, D. et al.
(1987) J. Virol. 61:1647-1650; Bender, M.A. et al. (1987) J. Virol. 61:1639-1646; Adam, M.A. and A.D. Miller (1988) J. Virol. 62:3802-3806; Dull, T. et al. (1998) J. Virol.
72:8463-8471; 2ufferey, R. et al. (1998) J. Virol. 72:9873-9880). U.S. Patent No. 5,910,434 to Rigg ("Method for obtaining retrovirus packaging cell lines producing high transducing efficiency retroviral supernatant") discloses a method for obtaining retrovirus packaging cell lines and is hereby incorporated by reference.
Propagation of retrovirus vectors, transduction of a population of cells (e.g., CD4+ T-cells), and the return of transduced cells to a patient are procedures well known to persons skilled in the art of gene therapy and have been well documented (Ranga, U. et al. (1997) J. Virol.
71:7020-7029; Bauer, G. et al. (1997) Blood 89:2259-2267; Bonyhadi, M.L. (1997) J. Virol. 71:4707-4716;
Ranga, U. et al. (1998) Proc. Natl. Acad. Sci. USA 95:1201-1206; Su, L. (1997) Blood 89:2283-2290).
In the alternative, an adenovirus-based gene therapy delivery system is used to deliver polynucleotides encoding TRICH to cells which have one or more genetic abnormalities with respect to the expression of TRICH. The construction and packaging of adenovirus-based vectors are well known to those with ordinary skill in the art. Replication defective adenovirus vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas (Csete, M.E. et al. (1995) Transplantation 27:263-268). Potentially useful adenoviral vectors are described in U.S. Patent No. 5,707,618 to Armentano ("Adenovirus vectors for gene therapy"), hereby incorporated by reference. For adenoviral vectors, see also Antinozzi, P.A. et al. (1999) Annu. Rev. Nutr. 19:511-544 and Verma, LM. and N. Somia (1997) Nature 18:389:239-242, both incorporated by reference herein.
In another alternative, a herpes-based, gene therapy delivery system is used to deliver polynucleotides encoding TRICH to target cells which have one or more genetic abnormalities with respect to the expression of TRICH. The use of herpes simplex virus (HSV) based vectors may be especially valuable for introducing TRICH to cells of the central nervous system, for which HSV has a tropism. The construction and packaging of herpes-based vectors are well known to those with ordinary skill in the art. A replication-competent herpes simplex virus (HSV) type 1 based vector has been used to deliver a reporter gene to the eyes of primates (Liu, X. et al.
(1999) Exp. Eye Res.
169:385-39S). The construction of a HSV-1 virus vector has also been disclosed in detail in U.S.
Patent No. 5,804,413 to DeLuca ("Herpes simplex virus strains for gene transfer"), which is hereby incorporated by reference. U.S. Patent No. 5,804,413 teaches the use of recombinant HSV d92 which consists of a genome containing at least one exogenous gene to be transferred to a cell under the control of the appropriate promoter for purposes including human gene therapy. Also taught by this patent are the construction and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22. For HSV vectors, see also Goins, W.F. et al. (1999) J. Virol. 73:519-532 and Xu, H. et al.
(1994) Dev. Biol. 163:152-161, hereby incorporated by reference. The manipulation of cloned herpesvirus sequences, the generation of recombinant virus following the transfection of multiple plasmids containing different segments of the large herpesvirus genomes, the growth and propagation of herpesvirus, and the infection of cells with herpesvirus are techniques well known to those of ordinary skill in the art.
In another alternative, an alphavirus (positive, single-stranded RNA virus) vector is used to deliver polynucleotides encoding TRICH to target cells. The biology of the prototypic alphavirus, Semliki Forest Virus (SFV), has been studied extensively and gene transfer vectors have been based on the SFV genome (Garoff, H. and K.-J. Li (1998) Curr. Opin. Biotechnol.
9:464-469). During alphavirus RNA replication, a subgenomic RNA is generated that normally encodes the viral capsid proteins. This subgenomic RNA replicates to higher levels than the full length genomic RNA, resulting in the overproduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase). Similarly, inserting the coding sequence for TRICH into the alphavirus genome in place of the capsid-coding region results in the production of a large number of TRICH-coding RNAs and the synthesis of high levels of TRICH in vector transduced cells. While alphavirus infection is typically associated with cell lysis within a few days, the ability to establish a persistent infection in hamster normal kidney cells (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic replication of alphaviruses can be altered.~to suit the needs of the gene therapy application (Dryga, S.A. et al. (1997) Virology 228:74-83). The wide host range of alphaviruses will allow the introduction of TRICH into a variety of cell types. The specific transduction of a subset of cells in a population may require the sorting of cells prior to transduction.
The methods of manipulating infectious cDNA clones of alphaviruses, performing alphavirus cDNA and RNA
transfections, and performing alphavirus infections, are well known to those with ordinary skill in the art.
Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, may also be employed to inhibit gene expression.
Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Itnmunolo~ic Approaches, Futura Publishing, Mt. Kisco NY, pp.
163-177.) A
complementary sequence or antisense molecule may also be designed to block translation of mRNA
by preventing the transcript from binding to ribosomes.
Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage.
For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding TRICH.
Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides, corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable.
The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.
Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules.
These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis.
Alternatively, RNA molecules may be generated by in vitro and in vivo transcription of DNA
sequences encoding TRICH. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6.
Alternatively, these cDNA
constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues. ' RNA molecules may be modified to increase intracellular stability and half life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, tbio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.
An additional embodiment of the invention encompasses a method for screening for a compound which is effective in altering expression of a polynucleotide encoding TRICH. Compounds which may be effective in altering expression of a specific polynucleotide may include, but are not limited to, oligonucleotides, antisense oligonucleotides, triple helix-forming oligonucleotides, transcription factors and other polypeptide transcriptional regulators, and non-macromolecular chemical entities which are capable of interacting with specific polynucleotide sequences. Effective compounds may alter polynucleotide expression by acting as either inhibitors or promoters of polynucleotide expression. 'Thus, in the treatment of disorders associated with increased TRICH
expression or activity, a compound which specifically inhibits expression of the polynucleotide encoding TRICH may be therapeutically useful, and in the treatment of disorders associated with decreased TRICH expression or activity, a compound which specifically promotes expression of the polynucleotide encoding TRICH may be therapeutically useful.
At least one, and up to a plurality, of test compounds may be screened for effectiveness in altering expression of a specific polynucleotide. A test compound may be obtained by any method commonly known in the art, including chemical modification of a compound known to be effective in altering polynucleotide expression; selection from an existing, commercially-available or proprietary library of naturally-occurring or non-natural chemical compounds; rational design of a compound based on chemical and/or structural properties of the target polynucleotide;
and selection from a library of chemical compounds created combinatorially or randomly. A sample comprising a polynucleotide encoding TRICH is exposed to at least one test compound thus obtained. The sample may comprise, for example, an intact or permeabilized cell, or an i~2 vitro cell-free or reconstituted biochemical system. Alterations in the expression of a polynucleotide encoding TRICH are assayed by any method commonly known in the art. Typically, the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence of the polynucleotide encoding TRICH. The amount of hybridization may be quantified, thus forming the basis for a comparison of the expression of the polynucleotide both with and without.exposure to one or more test compounds. Detection of a change in the expression of a polynucleotide exposed to a test compound indicates that the test compound is effective in altering the expression of the polynucleotide. A screen for a compound effective in altering expression of a specific polynucleotide can be carried out, for example, using a Schizosacchar-omyces pombe gene expression system (Atkins, D. et al. (1999) U.S. Patent No. 5,932,435; Arndt, G.M. et al. (2000) Nucleic Acids Res.
28:815) or a human cell line such as HeLa cell (Clarke, M.L. et al. (2000) Biochem. Biophys. Res.
Commun. 268:8-13). A particular embodiment of the present invention involves screening a combinatorial library of oligonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides) for antisense activity against a specific polynucleotide sequence (Bruice, T.W. et al. (1997) U.S. Patent No. 5,686,242; Bruice, T.W. et al.
(2000) U.S. Patent No.
6,022,691 ).
Many methods for introducing vectors into cells or tissues are available and equally suitable for use iyi vivo, in vitro, and ex vivo. For ex vivo therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient.
Delivery by transfection, by liposorne injections, or by polycationic amino polymers may be achieved 64.
using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nat.
Biotechnol. 15:462-466.) Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.
An additional embodiment of the invention relates to the administration of a composition which generally comprises an active ingredient formulated with a pharmaceutically acceptable excipient.
Excipients may include, for example, sugars, starches, celluloses, gums, and proteins. Various formulations are commonly known and are thoroughly discussed in the latest edition of Remin tg on's Pharmaceutical Sciences (Maack Publishing, Easton PA). Such compositions may consist of TRICH, antibodies to TRICH, and mimetics, agonists, antagonists, or inhibitors of TRICH.
The compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.
Compositions for pulmonary administration may be prepared in liquid or dry powder form.
. ~. These compositions are generally aerosolized immediately prior to inhalation by the patient. In the case of small molecules (e.g. traditional low molecular weight organic drugs), aerosol delivery of fast-acting formulations is well-known in the art. In the case of macromolecules (e.g. larger peptides and proteins), recent developments in the field of pulmonary delivery via the alveolar region of the lung have enabled the practical delivery of drugs such as insulin to blood circulation (see, e.g., Patton, J.S.
et al., U.S. Patent No. 5,997,848). Pulmonary delivery has the advantage of administration without needle injection, and obviates the need for potentially toxic penetration enhancers.
Compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.
Specialized forms of compositions may be prepared for direct intracellular delivery of macromolecules comprising TRICH or fragments thereof. For example, liposome preparations containing a cell-impermeable macromolecule may promote cell fusion and intracellular delivery of the macromolecule. Alternatively, TRICH or a fragment thereof may be joined to a short cationic N-terminal portion from the H1V Tat-1 protein. Fusion proteins thus generated have been found to transduce into the cells of all tissues, including the brain, in a mouse model system (Schwarze, S.R. et al. (1999) Science 285:1569-1572).
For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, monkeys, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.
A therapeutically effective dose refers to that amount of active ingredient, for example TRICH or fragments thereof, antibodies of TRICH, and agonists, antagonists or inhibitors of TRICH, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by calculating the EDso (the dose therapeutically effective in 50°Io of the population) or LDSO (the dose lethal to 50°Io of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LDSO/EDso ratio. Compositions which exhibit large therapeutic indices are preferred. °The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the EDso with little or no toxicity.
The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.
The exact.dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half life and clearance rate of the particular formulation.
Normal dosage amounts may vary from about 0.1,ug to 100,000 ,ug, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art.
Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.
DIAGNOSTICS
In another embodiment, antibodies which specifically bind TRICH may be used for the diagnosis of disorders characterized by expression of TRICH, or in assays to monitor patients being treated with TRICH or agonists, antagonists, or inhibitors of TRICH.
Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for TRICH include methods which utilize the antibody and a label to detect TRICH in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.
A variety of protocols for measuring TRICH, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of TRICH expression. Normal or standard values for TRICH expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, for example, human subjects, with antibodies to TRICH under conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, such as photometric means. Quantities of TRICH
expressed in subject, control, and disease samples frombiopsied tissues are compared with the standard values.
Deviation between standard and subject values establishes the parameters for diagnosing disease.
In another embodiment of the invention, the polynucleotides encoding TRICH may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of TRICH
may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of TRICH, and to monitor regulation of TRICH levels during therapeutic intervention.
In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding TRICH or closely related molecules may be used to identify nucleic acid sequences which encode TRICH. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5'regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will determine whether the probe identifies only naturally occurring sequences encoding TRICH, allelic variants, or related sequences.
Probes may also be used for the detection of related sequences, and may have at least 50%
sequence identity to any of the TRICH encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ lD
N0:10-18 or from genomic sequences including promoters, enhancers, and introns of the TRICH
gene.
Means for producing specific hybridization probes for DNAs encoding TRICH
include the cloning of polynucleotide sequences encoding TRICH or TRICH derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes in vitro by means of the addition of the appropriate RNA
polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as 32P or 355, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.
Polynucleotide sequences encoding TRICH may be used for the diagnosis of disorders associated with expression of TRICH. Examples of such disorders include, but are not limited to, a transport disorder such as akinesia, amyotrophic lateral sclerosis, ataxia telangiectasia, cystic fibrosis, Becker's muscular dystrophy, Bell's palsy, Charcot-Marie Tooth disease, diabetes mellitus, diabetes insipidus, diabetic neuropathy, Duchenne muscular dystrophy, hyperkalemic periodic paralysis, normokalemic periodic paralysis, Parkinson's disease, malignant hyperthermia, multidrug resistance, myasthenia gravis, myotonic dystrophy, catatonia, tardive dyskinesia, dystonias, peripheral neuropathy, cerebral neoplasms, prostate cancer, cardiac disorders associated with transport, e.g., angina, bradyarlytlnnia, tachyarrythmia, hypertension, Long QT syndrome, myocarditis, cardiomyopathy, nemaline myopathy, centronuclear myopathy, lipid myopathy, mitochondria) myopathy, thyrotoxic rnyopathy, ethanol myopathy, dermatomyositis, inclusion body myositis, infectious myositis, polymyositis, neurological disorders associated with transport, e.g., Alzheimer's disease, amnesia, bipolar disorder, dementia, depression, epilepsy, Tourette's disorder, paranoid psychoses, and schizophrenia, and other disorders associated with transport, e.g., neurofibromatosis, postherpetic neuralgia, trigeminal neuropathy, sarcoidosis, sickle cell anemia, Wilson's disease, cataracts, infertility, pulmonary artery stenosis, sensorineural autosomal deafness, hyperglycemia, hypoglycemia, Grave's disease, goiter, Cushing's disease, Addison's disease, glucose-galactose malabsorption syndrome, hypercholesterolemia, adrenoleukodystrophy, Zellweger syndrome, Menkes disease, occipital horn syndrome, von Gierke disease, eystinuria, iminoglycinuria, Hartup disease, and Fanconi disease; a neurological disorder such as epilepsy, ischemic cerebrovascular disease, stroke, cerebral neoplasms, Alzheimer's disease, Pick's disease, Huntington's disease, dementia, Parkinson's disease and other extxapyramidal disorders, amyotrophic lateral sclerosis and other motor neuron disorders, progressive neural muscular atrophy, retinitis pigmentosa, hereditary ataxias, multiple sclerosis and other demyelinating diseases, bacterial and viral meningitis, brain abscess, subdural empyema, epidural abscess, suppurative intracranial thrombophlebitis, myelitis and radiculitis, viral central nervous system disease, prion diseases including kuru, Creutzfeldt-Jakob disease, and Gerstmann-Straussler-Scheinker syndrome, fatal familial insomnia, nutritional and metabolic diseases of the nervous system, neurofibromatosis, tuberous sclerosis, cerebelloretinal hemangioblastomatosis, encephalotrigeminal syndrome, mental retardation and other developmental disorders of the central nervous system including Down syndrome, cerebral palsy, neuroskeletal disorders, autonomic nervous system disorders, cranial nerve disorders, spinal cord diseases, muscular dystrophy and other neuromuscular disorders, peripheral nervous system disorders, dermatomyositis and polymyositis, inherited, metabolic, endocrine, and toxic myopathies, myasthenia gravis, periodic paralysis, mental disorders including mood, anxiety, and schizophrenic disorders, seasonal affective disorder (SAD), akathesia, amnesia, catatonia, diabetic neuropathy, tardive dyskinesia; dystonias, paranoid psychoses, postherpetic neuralgia, Tourette's disorder, progressive supranuclear palsy, corticobasal degeneration, and familial frontotemporal dementia; a muscle disorder such as cardiomyopathy, myocarditis, Duchenne's muscular dystrophy, Becker's muscular dystrophy, myotonic dystrophy, central core disease, nemaline myopathy, centronuclear myopathy, lipid myopathy, mitochondrial myopathy, infectious myositis, polymyositis, dermatomyositis, inclusion body myositis, thyrotoxic myopathy, ethanol myopathy, angina, anaphylactic shock, arrhythmias, asthma, cardiovascular shock, Cushing's syndrome, hypertension, hypoglycemia, myocardial infarction, migraine, pheochromocytoma, and myopathies including encephalopathy, epilepsy, Kearns-Sayre syndrome, lactic acidosis, myoclonic disorder, ophthahnoplegia, and acid maltase deficiency (AMD, also known as Pompe's disease); an immunological disorder such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoirnmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopen2a with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjogren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; and a cell proliferative disorder such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; and a disorder of iron metabolism such as hypotransferrinaemia, acaeruloplasminaemia, adult, juvenile, and neonatal haemochromatosis. The polynucleotide sequences encoding TRICH may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered TRICH
expxession. Such qualitative or quantitative methods are well known in the art.
In a particular aspect, the nucleotide sequences encoding TRICH may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding TRICH may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding TRICH in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the ef~.cacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.
In order to provide a basis for the diagnosis of a disorder associated with expression of TRICH, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding TRICH, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder.
Deviation from standard values is used to establish the presence of a disorder.
Once the presence of a disorder is established and. a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject.
The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.
With respect to cancer, the presence of an abnormal amount of transcript (either under- or overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.
Additional diagnostic uses for oligonucleotides designed from the sequences encoding TRICH
may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding TRICH, or a fragment of a polynucleotide complementary to the polynucleotide encoding TRICH, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.
In a particular aspect, oligonucleotide primers derived from the polynucleotide sequences encoding TRICH may be used to detect single nucleotide polymorphisms (SNPs).
SNPs are substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease in humans. Methods of SNP detection include, but are not limited to, single-stranded conformation polymorphism (SSCP) and fluorescent SSCP (fSSCP) methods. In SSCP, oligonucleotide primers derived from the polynucleotide sequences encoding TRICH are used to amplify DNA using the polymerase chain reaction (PCR). The DNA may be derived, for example, from diseased or normal tissue, biopsy samples, bodily fluids, and the like. SNPs in the DNA cause differences in the secondary and tertiary structures of PCR products in single-stranded form, and these differences are detectable using gel electrophoresis in non-denaturing gels. In fSCCP, the oligonucleotide primers are fluorescently labeled, which allows detection of the amplimers in high-throughput equipment such as DNA sequencing machines. Additionally, sequence database analysis methods, termed in silico SNP
(isSNP), are capable of identifying polymorphisms by comparing the sequence of individual overlapping DNA fragments which assemble into a common consensus sequence.
These computer-based methods filter out sequence variations due to laboratory preparation of DNA and sequencing errors using statistical models and automated analyses of DNA sequence chromatograms. In the alternative, SNPs may be detected and characterized by mass spectrometry using, for example, the high throughput MASSARRAY system (Sequenom, Inc., San Diego CA).
SNPs may be used to study the genetic basis of human disease. For example, at least 16 common SNPs have been associated with non-insulin-dependent diabetes mellitus.
SNPs are also useful for examining differences in disease outcomes in monogenic disorders, such as cystic fibxosis, sickle cell anemia, or chronic granulomatous disease. For example, variants in the mannose-binding lectin, MBL2, have been shown to be correlated with deleterious pulmonary outcomes in cystic fibrosis. SNPs also have utility in pharmacogenomics, the identification of genetic variants that influence a patient's response to a drug, such as life-threatening toxicity.
For example, a variation in N-acetyl txansferase is associated with a high incidence of peripheral neuropathy in response to the anti-tuberculosis drug isoniazid, while a variation in the coxe promoter of the ALOXS gene results in diminished clinical response to treatment with an anti-asthma drug that targets the 5-lipoxygenase pathway. Analysis of the distribution of SNPs in different populations is useful for investigating genetic drift, mutation, recombination, and selection, as well as for tracing the origins of populations and their migrations. (Taylor, J.G. et al. (2001) Trends Mol. Med. 7:507-512;
Kwok, P.-Y, and Z. Gu (1999) Mol. Med. Today 5:538-543; Nowotny, P. et al. (2001) C~rr. Opin.
Neurobiol. 11:637-641.) Methods which may also be used to quantify the expression of TRICH include radiolabeling or biotinylatiug nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Tmrnunol. Methods 159:235-244; Duplaa, C.
et al. (1993) Anal. Biochem. 212:229-236.) The speed of quantitation of multiple samples may be accelerated by running the assay in a high-throughput format where the oligomer or polynucleotide of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.
In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as elements on a microarray. The microarray can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described below. The microarray may also be used to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, to monitor progression/regression of disease as a function of gene expression, and to develop and monitor the activities of therapeutic agents in the treatment of disease. In particular, this information may be used to develop a pharmacogenomic profile of a patient in order to select the most appropriate and effective treatment regimen for that patient. For example, therapeutic agents which are highly effective and display the fewest side effects may be selected for a patient based on his/her pharmacogenomic profile.
In another embodiment, TRICH, fragments of TRICH, or antibodies specific for TRICH may be used as elements on a microarray. The microarray may be used to monitor or measure protein-protein interactions, drug-target interactions, and gene expression profiles, as described above.
A particular embodiment relates to the use of the polynucleotides of the present invention to generate a transcript image of a tissue or cell type. A transcript image represents the global pattern of gene expression by a particular tissue or cell type. Global gene expression patterns are analyzed by quantifying the number of expressed genes and their relative abundance under given conditions and at a given time. (See Seilhamer et al., "Comparative Gene Transcript Analysis,"
U.S. Patent No.
5,840,484, expressly incorporated by reference herein.) Thus a transcript image may be generated by hybridizing the polynucleotides of the present invention or their complements to the totality of transcripts or reverse transcripts of a particular tissue or cell type. In one embodiment, the hybridization takes place in high-throughput format, wherein the polynucleotides of the present invention or their complements comprise a subset of a plurality of elements on a microarray. The resultant transcript image would provide a profile of gene activity.
Transcript images may be generated using transcripts isolated from tissues, cell lines, biopsies, or other biological samples. The transcript image may thus reflect gene expression in vivo, as in the case of a tissue or biopsy sample, or in vitro, as in the case of a cell line.
Transcript images which profile the expression of the polynucleotides of the present invention may also .be used in conjunction with in vitro model systems and preclinical evaluation of pharmaceuticals, as well as toxicological testing of industrial and naturally-occurring environmental compounds. All compounds induce characteristic gene expression patterns, frequently termed molecular fingerprints or toxicant signatures, which are indicative of mechanisms of action and toxicity (Nuwaysir, E.F. et al. (1999) Mol. Carcinog. 24:153-159; Steiner, S. and N.L.
Anderson (2000) Toxicol. Lett. 112-113:467-471, expressly incorporated by reference herein).
If a test compound has a signature similar to that of a compound with known toxicity, it is likely to share those toxic properties.
These fingerprints or signatures are most useful and refined when they contain expression information from a large number of genes and gene families. Ideally, a genome-wide measurement of expression provides the highest quality signature. Even genes whose expression is not altered by any tested compounds are important as well, as the levels of expression of these genes are used to normalize the rest of the expression data. The normalization procedure is useful for comparison of expression data after treatment with different compounds. While the assignment of gene function to elements of a toxicant signature aids in interpretation of toxicity mechanisms, knowledge of gene function is not necessary for the statistical matching of signatures which leads to prediction of toxicity. (See, for example, Press Release 00-02 from the National Institute of Environmental Health Sciences, released February 29, 2000, available at http://www.niehs.nih.gov/oc/news/toxchip.htm.) Therefore, it is important and desirable in toxicological screening using toxicant signatures to include all expressed gene sequences.
In one embodiment, the toxicity of a test compound is assessed by treating a biological sample containing nucleic acids with the test compound. Nucleic acids that are expressed in the treated biological sample are hybridized with one or more probes specific to the polynucleotides of the present invention, so that transcript levels corresponding to the polynucleotides of the present invention may be quantified. The transcript levels in the treated biological sample are compared with levels in an untreated biological sample. Differences in the transcript levels between the two samples are indicative of a toxic response caused by the test compound in the treated sample.
Another particular embodiment relates to the use of the polypeptide sequences of the present invention to analyze the proteome of a tissue or cell type. The term proteome refers to the global pattern of protein expression in a particular tissue or cell type. Each protein component of a proteome can be subjected individually to further analysis. Proteome expression patterns, or profiles, are analyzed by quantifying the number of expressed proteins and their relative abundance under given conditions and at a given time. A profile of a cell's proteome may thus be generated by separating and analyzing the polypeptides of a particular tissue or cell type. In one embodiment, the separation is achieved using two-dimensional gel electrophoresis, in which proteins from a sample are separated by isoelectric focusing in the first dimension, and then according to molecular weight by sodium dodecyl .
sulfate slab gel electrophoresis in the second dimension (Steiner and Anderson, su ra). The proteins are visualized in the gel as discrete and uniquely positioned spots, typically by staining the gel with an agent such as Coomassie Blue or silver or fluorescent stains. The optical density of each protein spot is generally proportional to the level of the protein in the sample. The optical densities of equivalently positioned protein spots from different samples, for example, from biological samples either treated or untreated with a test compound or therapeutic agent, are compared to identify any changes in protein spot density related to the treatment. The proteins in the spots are partially sequenced using, for example, standard methods employing chemical or enzymatic cleavage followed by mass spectrometry. The identity of the protein in a spot may be determined by comparing its partial sequence, preferably of at.least 5 contiguous amino acid residues, to the polypeptide sequences of the present invention. In some cases, further sequence data may be obtained for definitive protein identification.
A proteomic profile may also be generated using antibodies specific for TRICH
to quantify the levels of TRICH expression. In one embodiment, the antibodies are used as elements on a microarray, and protein expression levels are quantified by exposing the microarray to the sample and detecting the levels of protein bound to each array element (Lueking, A. et al. (1999) Anal. Biochem.
270:103-111; Mendoze, L.G. et al. (1999) Biotechniques 27:778-788). Detection may be performed by a variety of methods known in the art, for example, by reacting the proteins in the sample with a thiol-or amino-reactive fluorescent compound and detecting the amount of fluorescence bound at each array element.
Toxicant signatures at the proteome level axe also useful for toxicological screening, and should be analyzed in parallel with toxicant signatures at the transcript level. There is a poor correlation between transcript and protein abundances for some proteins in some tissues (Anderson, N.L. and J. Seilhamer (1997) Electrophoresis 18:533-537), so proteome toxicant signatures maybe useful in the analysis of compounds which do not significantly affect the transcript image, but which alter the proteomic profile. In addition, the analysis of transcripts in body fluids is difficult, due to rapid degradation of mRNA, so proteomic pxohling may be more reliable and informative in such cases.
In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins that are expressed in the treated biological sample are separated so that the amount of each protein can be quantified. The amount of each protein is compared to the amount of the corresponding protein in an untreated biological sample.
A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample. Individual proteins are identified by sequencing the amino acid residues of the individual proteins and comparing these partial sequences to the polypeptides of the present invention.
In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins from the biological sample are incubated with antibodies specific to the polypeptides of the present invention. The amount of protein recognized by the antibodies is quantified. The amount of protein in the treated biological sample is compared with the amount in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.
Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al.
(1996) Proc. Natl. Acad.
Sci. USA 93:10614-10619; Baldeschweiler et al. (1995) PCT application W095/251116; Shalom D. et al. (1995) PCT application WO95/35505; Heller, R.A. et a1. (1997) Proc. Natl.
Acad. Sci. USA
94:2150-2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.) Various types of microarxays are well known and thoroughly described in DNA Microarrays: A
Practical Appxoach, M. Schena, ed. (1999) Oxford University Press, London, hereby expressly incorporated by reference.
In another embodiment of the invention, nucleic acid sequences encoding TRICH
may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence.
Either coding or noncoding sequences may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentially cause undesired cross hybridization during chromosomal mapping. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) Nat.
Genet. 15:345-355; Price, C.M. (1993) Blood Rev. 7:127-134; and Trask, B.J.
(1991) Trends Genet.
7:149-154.) Once mapped, the nucleic acid sequences of the invention may be used to develop genetic linkage maps, for example, which correlate the inheritance of a disease state with the inheritance of a particular chromosome region or restriction fragment length polymorphism (RFLP).
(See, for example, Larder, E.S. and D. Botstein (1986) Proc. Natl. Acad. Sci.
USA 83:7353-7357.) Fluorescent in situ hybridization (FISH) may be correlated with other physical and genetic map data. (See, e.g., Heinz-UJrich, et al. (1995) in Meyers, s-upra, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OM1M) World Wide Web site. Correlation between the location of the gene encoding TRICH on a physical map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder and thus may further positional cloning efforts.
2o In situ hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps.
Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the exact chromosomal locus is not known. This information is valuable to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the gene or genes responsible for a disease or syndrome have been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation.
(See, e.g., Gatti, R.A. et a1. (1988) Nature 336:577-580.) The nucleotide sequence of the instant invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.
In another embodiment of the invention, TRICH, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between TRICH and the agent being tested may be measured.
Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT
application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with TRICH, or fragments thereof, and washed. Bound TRICH is then detected by methods well known in the art.
Purified TRICH can also be coated directly onto plates for use in the aforementioned drug screening techniques.
Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.
In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding TRICH specifically compete with a test compound for binding TRICH.
Tn this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with TRICH.
In additional embodiments, the nucleotide sequences which encode TRICH may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.
Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.
The disclosures of all patents, applications and publications, mentioned above and below, including U.S. Ser. No. 60/296,881, U.S. Ser. No. 60/305,105, U.S. Ser No.
60/293,722, and U.S. Ser No. 60/304,593, are expressly incorporated by reference herein.
EXAMPLES
I. Construction of cDNA Libraries Incyte cDNAs were derived from cDNA libraries described in the LIFESBQ GOLD
database (Incyte Genomics, Palo Alto CA). Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Invitrogen), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.
Phenol extraction and precipitation of RNA were~repeated as necessary to increase RNA
purity. In some cases, RNA was treated with DNase. For most libraries, poly(A)+ RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX
latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN).
Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).
Iu some cases, Stratagene was provided with RNA and constructed the corresponding cDNA
20 libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Invitrogen), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, sera, units 5.1-6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA
was digested with the appropriate restriction enzyme or enzymes. For most libraries, the°cDNA
was size-selected (300-1000 bp) using SEPHACRYL 51000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Biosciences) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCR1P'T plasmid (Stratagene), PSPORT1 plasmid (Invitrogen), PCDNA2.1 plasmid (Invitrogen, Carlsbad CA), PBK-CMV plasmid (Stratagene), PCR2-TOPOTA plasmid (Invitrogen), PCMV-ICIS plasmid (Stratagene), pIGEN (Incyte Genomics, Palo Alto CA), pRARE
(Incyte Genomics), or pINCY (Incyte Genomics), or derivatives thereof. Recombinant plasmids were transformed into competent E. coli cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DHSa, DH10B, or ElectroMAX DH10B from Invitrogen.
II. Isolation of cDNA Clones Plasmids obtained as described in Example I were recovered from host cells by in vivo excision using the UNIZAP vector system (Stratagene) or by cell lysis.
Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL
8 Plasmid, QIA,WELL 8 Plus Plasmid, QIAWELL 8 Ultra Plasmid purification systems or the R.E.A.L. PREP
96 plasmid purification kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at
4°C.
Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSKAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland).
III. Sequencing and Analysis Incyte cDNA recovered in plasmids as described in Example II were sequenced as follows.
Sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Applied Biosystems) thermal cycler or the PTC-200 thermal cyclex (MJ Research) in conjunction with the HYDRA rnicrodispenser (Bobbins Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Biosciences or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems).
Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Amersham Biosciences);
the ABI PRISM 373 or 377 sequencing system (Applied Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art.
Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example V1R.
The polynucleotide sequences derived from Incyte cDNAs were validated by removing vector, linker, and poly(A) sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis. 'The Incyte cDNA sequences or translations thereof were then queried against a selection of public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM; PROTEOME databases with sequences from Homo Sapiens, Rattus fiofvegicus, Mus musculus, Caenorhabditis elegans, Sacchaf-omyces cer-evisiae, Scl2iz~sacchar-omyces porvbe, and Carvdida albicaris (Incyte Genomics, Palo Alto CA); hidden Markov model (HMM)-based protein family databases such as PFAM,1NCY, and TIGRFAM (Haft, D.H. et al. (2001) Nucleic Acids Res. 29:41-43); and H1VIIVI-based protein domain databases such as SMART (Schultz et al. (1998) Proc. Natl. Acad. Sci. USA 95:5857-5864; Letunic, I. et al. (2002) Nucleic Acids Res. 30:242-244). (HMM is a probabilistic approach which analyzes consensus primary structures of gene families. See, for example, Eddy, S.R. (1996) C~rr.
Opin. Struct. Biol.
6:361-365.) The queries were performed using programs based on BLAST, FASTA, BLIZVVIPS, and ~R. The Incyte cDNA sequences were assembled to produce full length polynucleotide sequences. Alternatively, GenBank cDNAs, GenBank ESTs, stitched sequences, stretched sequences, or Genscan-predicted coding sequences (see Examples IV and V) were used to extend Incyte cDNA assemblages to full length. Assembly was performed using programs based on Phred, Phrap, and Consed, and cDNA assemblages were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length polypeptide sequences. Alternatively, a polypeptide of the invention may begin at any of the methionine residues of the full length translated polypeptide. Full 20 length polypeptide sequences were subsequently analyzed by querying against databases such as the GenBank protein databases (genpept), SwissProt, the PROTEOME databases, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, hidden Markov model (ITVIM)-based protein family databases such as PFAM, INCY, and TIGRFAM; and HNINI based protein domain databases such as SMART. Full length polynucleotide sequences are also analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR).
Polynucleotide and polypeptide sequence alignments are generated using default parameters specified , by the CLUSTAL algorithm as incorporated into the MEGALIGN multisequence alignment program (DNASTAR), which also calculates the percent identity between aligned sequences.
Table 7 summarizes the tools, programs, and algorithms used for the analysis and assembly of Incyte cDNA and full length sequences and provides applicable descriptions, references, and threshold parameters. The first column of Table 7 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in. their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score or the lower the probability value, the greater the identity between two sequences).
The programs described above for the assembly and analysis of full length polynucleotide and polypeptide sequences wexe also used to identify polynucleotide sequence fragments from SEQ ID
N0:10-18. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies are described in Table 4, column 2.
IV. Identification and Editing of Coding Sequences from Genomic DNA
Putative transporters and ion channels were initially identified by running the Genscan gene identification program against public genomic sequence databases (e.g., gbpri and gbhtg). Genscan is ~0 a general-purpose gene identification program which analyzes genomic DNA
sequences from a variety of organisms (See Burge, C. and S. Karlin (1997) J. Mol. Biol. 268:78-94, and Burge, C. and S. Karlin (1998) C~rr. Opin. Struct. Biol. 8:346-354). The program concatenates predicted exons to form an assembled cDNA sequence extending from a metllionine to a stop codon.
The output of Genscan is a FASTA database of polynucleotide and polypeptide sequences. The maximum range of sequence for Genscan to analyze at once was set to 30 kb. To determine which of these Genscan predicted cDNA sequences encode transporters and ion channels, the encoded polypeptides were aualyzed by quexying against PFAM models for trausporters and ion channels.
Potential transporters and ion channels were also identified by homology to Incyte cDNA sequences that had been annotated as transporters and ion channels. These selected Genscan-predicted sequences were then compared by BLAST analysis to the genpept and gbpri public databases. Where necessary, the Genscan-predicted sequences were then edited by comparison to the top BLAST
hit from genpept to correct errors in the sequence predicted by Genscan, such as extra or omitted exons. BLAST
analysis was also used to find any Iucyte cDNA or public cDNA coverage of the Genscan-predicted sequences, thus providing evidence for transcription. When Incyte cDNA
coverage was available, this information was used to correct or confirm the Genscan predicted sequence. Full length polynucleotide sequences were obtained by assembling Genscan-predicted coding sequences with Incyte cDNA sequences andlor public cDNA sequences using the assembly process described in Example III. Alternatively, full length polynucleotide sequences were derived entirely from edited or unedited Genscan-predicted coding sequences.
Y. Assembly of Genomic Sequence Data with cDNA Sequence Data "Stitched" Sequences Partial cDNA sequences were extended with exons predicted by the Genscan gene identification program described in Example IV. Partial cDNAs assembled as described in Example III were mapped to genomic DNA and parsed into clusters containing related cDNAs and Genscan exon predictions from one or more genomic sequences. Each cluster was analyzed using an algorithm based on graph theory and dynamic programming to integrate cDNA and genomic information, generating possible splice variants that were subsequently confirmed, edited, or extended to create a full length sequence. Sequence intervals in which the entire length of the interval was present on more than one sequence in the cluster were identified, and intervals thus identified wexe considered to be equivalent by transitivity. For example, if an interval was present on a cDNA and two genomic sequences, then all three intervals were considered to be equivalent. This process allows unrelated but consecutive genomic sequences to be brought together, bridged by cDNA
sequence. Intervals thus identified were then "stitched" together by the stitching algorithm in the order that they appear along their parent sequences to generate the longest possible sequence, as well as sequence variants.
Linkages between intervals which proceed along one type of parent sequence (cDNA to cDNA or genomic sequence to genomic sequence) were given preference over linkages which change parent type (cDNA to genomic sequence). The resultant stitched sequences were translated and compared by BLAST analysis to the genpept and gbpri public databases. Incorrect exons predicted by Genscan were corrected by comparison to the top BLAST hit from genpept. Sequences were further extended with additional cDNA sequences, or by inspection of genomic DNA, when necessary.
"Stretched" Sequences Partial DNA sequences were extended to full length with an algorithm based on BLAST
analysis. First, partial cDNAs assembled as described in Example III were queried against public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases using the BLAST program. The nearest GenBank protein homolog was then compared by BLAST
analysis to either Incyte cDNA sequences or GenScan exon predicted sequences described in Example IV. A chimeric protein was generated by using the resultant high-scoring segment pairs (HSPs) to map the translated sequences onto the GenBank protein homolog.
Insertions or deletions may occur in the chimeric protein with respect to the original GenBank protein homolog. The .
GenBank protein homolog, the chimexic protein, or both were used as probes to search for homologous genomic sequences from the public human genome databases. Partial DNA
sequences were therefore "stretched" or extended by the addition of homologous genomic sequences. The resultant stretched sequences were examined to determine whether it contained a complete gene.
VI. Chromosomal Mapping of TRICH Encoding Polynucleotides The sequences which were used to assemble SEQ ID N0:10-18 were compared with sequences from the Incyte LIFESEQ database and public domain databases using BLAST and other implementations of the Smith-Waterman algorithm. Sequences from these databases that matched SEQ ID NO:10-18 were assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 7). Radiation hybrid and genetic mapping data available from public resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Genethon were used to determine if any of the clustered sequences had been previously mapped. Inclusion of a mapped sequence m a cluster resulted in the assignment of all sequences of that cluster, including its particular SEQ ID NO:, to that map location.
Map locations are represented by ranges, or intervals, of human chromosomes.
The map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p-arm. (The centiMorgan (cM) is a unit of measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly equivalent to I megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.) The cM distances are based on genetic markers mapped by Genethon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters. Human genome maps and other resources available to the public, such as the NCBI "GeneMap'99" World Wide Web site (http://www.ncbi.nlm.nih.gov/genemap~, can be employed to determine if previously identified disease genes map within. or in proximity to the intervals indicated above.
VII. Analysis of Polynucleotide Expression Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, supra, ch. 7; Ausubel (1995) sera, ch. 4 and 16.) Analogous computer techniques applying BLAST were used to search for identical or related molecules in cDNA databases such as GenBank or L1FESEQ (Iucyte Genomics). This analysis is much faster than multiple membrane based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar.
The basis of the search is the product score, which is defined as:
BLAST Score x Percent Identity
Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSKAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland).
III. Sequencing and Analysis Incyte cDNA recovered in plasmids as described in Example II were sequenced as follows.
Sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Applied Biosystems) thermal cycler or the PTC-200 thermal cyclex (MJ Research) in conjunction with the HYDRA rnicrodispenser (Bobbins Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Biosciences or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems).
Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Amersham Biosciences);
the ABI PRISM 373 or 377 sequencing system (Applied Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art.
Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example V1R.
The polynucleotide sequences derived from Incyte cDNAs were validated by removing vector, linker, and poly(A) sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis. 'The Incyte cDNA sequences or translations thereof were then queried against a selection of public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM; PROTEOME databases with sequences from Homo Sapiens, Rattus fiofvegicus, Mus musculus, Caenorhabditis elegans, Sacchaf-omyces cer-evisiae, Scl2iz~sacchar-omyces porvbe, and Carvdida albicaris (Incyte Genomics, Palo Alto CA); hidden Markov model (HMM)-based protein family databases such as PFAM,1NCY, and TIGRFAM (Haft, D.H. et al. (2001) Nucleic Acids Res. 29:41-43); and H1VIIVI-based protein domain databases such as SMART (Schultz et al. (1998) Proc. Natl. Acad. Sci. USA 95:5857-5864; Letunic, I. et al. (2002) Nucleic Acids Res. 30:242-244). (HMM is a probabilistic approach which analyzes consensus primary structures of gene families. See, for example, Eddy, S.R. (1996) C~rr.
Opin. Struct. Biol.
6:361-365.) The queries were performed using programs based on BLAST, FASTA, BLIZVVIPS, and ~R. The Incyte cDNA sequences were assembled to produce full length polynucleotide sequences. Alternatively, GenBank cDNAs, GenBank ESTs, stitched sequences, stretched sequences, or Genscan-predicted coding sequences (see Examples IV and V) were used to extend Incyte cDNA assemblages to full length. Assembly was performed using programs based on Phred, Phrap, and Consed, and cDNA assemblages were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length polypeptide sequences. Alternatively, a polypeptide of the invention may begin at any of the methionine residues of the full length translated polypeptide. Full 20 length polypeptide sequences were subsequently analyzed by querying against databases such as the GenBank protein databases (genpept), SwissProt, the PROTEOME databases, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, hidden Markov model (ITVIM)-based protein family databases such as PFAM, INCY, and TIGRFAM; and HNINI based protein domain databases such as SMART. Full length polynucleotide sequences are also analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco CA) and LASERGENE software (DNASTAR).
Polynucleotide and polypeptide sequence alignments are generated using default parameters specified , by the CLUSTAL algorithm as incorporated into the MEGALIGN multisequence alignment program (DNASTAR), which also calculates the percent identity between aligned sequences.
Table 7 summarizes the tools, programs, and algorithms used for the analysis and assembly of Incyte cDNA and full length sequences and provides applicable descriptions, references, and threshold parameters. The first column of Table 7 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in. their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score or the lower the probability value, the greater the identity between two sequences).
The programs described above for the assembly and analysis of full length polynucleotide and polypeptide sequences wexe also used to identify polynucleotide sequence fragments from SEQ ID
N0:10-18. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies are described in Table 4, column 2.
IV. Identification and Editing of Coding Sequences from Genomic DNA
Putative transporters and ion channels were initially identified by running the Genscan gene identification program against public genomic sequence databases (e.g., gbpri and gbhtg). Genscan is ~0 a general-purpose gene identification program which analyzes genomic DNA
sequences from a variety of organisms (See Burge, C. and S. Karlin (1997) J. Mol. Biol. 268:78-94, and Burge, C. and S. Karlin (1998) C~rr. Opin. Struct. Biol. 8:346-354). The program concatenates predicted exons to form an assembled cDNA sequence extending from a metllionine to a stop codon.
The output of Genscan is a FASTA database of polynucleotide and polypeptide sequences. The maximum range of sequence for Genscan to analyze at once was set to 30 kb. To determine which of these Genscan predicted cDNA sequences encode transporters and ion channels, the encoded polypeptides were aualyzed by quexying against PFAM models for trausporters and ion channels.
Potential transporters and ion channels were also identified by homology to Incyte cDNA sequences that had been annotated as transporters and ion channels. These selected Genscan-predicted sequences were then compared by BLAST analysis to the genpept and gbpri public databases. Where necessary, the Genscan-predicted sequences were then edited by comparison to the top BLAST
hit from genpept to correct errors in the sequence predicted by Genscan, such as extra or omitted exons. BLAST
analysis was also used to find any Iucyte cDNA or public cDNA coverage of the Genscan-predicted sequences, thus providing evidence for transcription. When Incyte cDNA
coverage was available, this information was used to correct or confirm the Genscan predicted sequence. Full length polynucleotide sequences were obtained by assembling Genscan-predicted coding sequences with Incyte cDNA sequences andlor public cDNA sequences using the assembly process described in Example III. Alternatively, full length polynucleotide sequences were derived entirely from edited or unedited Genscan-predicted coding sequences.
Y. Assembly of Genomic Sequence Data with cDNA Sequence Data "Stitched" Sequences Partial cDNA sequences were extended with exons predicted by the Genscan gene identification program described in Example IV. Partial cDNAs assembled as described in Example III were mapped to genomic DNA and parsed into clusters containing related cDNAs and Genscan exon predictions from one or more genomic sequences. Each cluster was analyzed using an algorithm based on graph theory and dynamic programming to integrate cDNA and genomic information, generating possible splice variants that were subsequently confirmed, edited, or extended to create a full length sequence. Sequence intervals in which the entire length of the interval was present on more than one sequence in the cluster were identified, and intervals thus identified wexe considered to be equivalent by transitivity. For example, if an interval was present on a cDNA and two genomic sequences, then all three intervals were considered to be equivalent. This process allows unrelated but consecutive genomic sequences to be brought together, bridged by cDNA
sequence. Intervals thus identified were then "stitched" together by the stitching algorithm in the order that they appear along their parent sequences to generate the longest possible sequence, as well as sequence variants.
Linkages between intervals which proceed along one type of parent sequence (cDNA to cDNA or genomic sequence to genomic sequence) were given preference over linkages which change parent type (cDNA to genomic sequence). The resultant stitched sequences were translated and compared by BLAST analysis to the genpept and gbpri public databases. Incorrect exons predicted by Genscan were corrected by comparison to the top BLAST hit from genpept. Sequences were further extended with additional cDNA sequences, or by inspection of genomic DNA, when necessary.
"Stretched" Sequences Partial DNA sequences were extended to full length with an algorithm based on BLAST
analysis. First, partial cDNAs assembled as described in Example III were queried against public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases using the BLAST program. The nearest GenBank protein homolog was then compared by BLAST
analysis to either Incyte cDNA sequences or GenScan exon predicted sequences described in Example IV. A chimeric protein was generated by using the resultant high-scoring segment pairs (HSPs) to map the translated sequences onto the GenBank protein homolog.
Insertions or deletions may occur in the chimeric protein with respect to the original GenBank protein homolog. The .
GenBank protein homolog, the chimexic protein, or both were used as probes to search for homologous genomic sequences from the public human genome databases. Partial DNA
sequences were therefore "stretched" or extended by the addition of homologous genomic sequences. The resultant stretched sequences were examined to determine whether it contained a complete gene.
VI. Chromosomal Mapping of TRICH Encoding Polynucleotides The sequences which were used to assemble SEQ ID N0:10-18 were compared with sequences from the Incyte LIFESEQ database and public domain databases using BLAST and other implementations of the Smith-Waterman algorithm. Sequences from these databases that matched SEQ ID NO:10-18 were assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 7). Radiation hybrid and genetic mapping data available from public resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Genethon were used to determine if any of the clustered sequences had been previously mapped. Inclusion of a mapped sequence m a cluster resulted in the assignment of all sequences of that cluster, including its particular SEQ ID NO:, to that map location.
Map locations are represented by ranges, or intervals, of human chromosomes.
The map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's p-arm. (The centiMorgan (cM) is a unit of measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly equivalent to I megabase (Mb) of DNA in humans, although this can vary widely due to hot and cold spots of recombination.) The cM distances are based on genetic markers mapped by Genethon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters. Human genome maps and other resources available to the public, such as the NCBI "GeneMap'99" World Wide Web site (http://www.ncbi.nlm.nih.gov/genemap~, can be employed to determine if previously identified disease genes map within. or in proximity to the intervals indicated above.
VII. Analysis of Polynucleotide Expression Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, supra, ch. 7; Ausubel (1995) sera, ch. 4 and 16.) Analogous computer techniques applying BLAST were used to search for identical or related molecules in cDNA databases such as GenBank or L1FESEQ (Iucyte Genomics). This analysis is much faster than multiple membrane based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar.
The basis of the search is the product score, which is defined as:
BLAST Score x Percent Identity
5 x minimum {length(Seq. 1), length(Seq. 2)}
The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. The product score is a normalized value between 0 and 100, and is calculated as follows: the BLAST score is multiplied by the percent nucleotide identity and the product is divided by (5 times the length of the shorter of the two sequences). The BLAST score is calculated by assigning a score of +5 for every base that matches in a high-scoring segment pair (HSP), and -4 for every mismatch. Two sequences may share more than one HSP
(separated by gaps). If there is more than one HSP, then the pair with the highest BLAST
score is used to calculate the product score. The product score represents a balance between fractional overlap and quality in a BLAST alignment. For example, a pxoduct score of 100 is produced only for I00%
identity over the entire length of the shorter of the two sequences being compared. A product score of 70 is produced either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other. A product score of 50 is produced either by 100% identity, and 50%
overlap at one end, or 79%
identity and 100% overlap.
Alternatively, polynucleotide sequences encoding TRICH are analyzed with respect to the tissue sources from which they were derived. For example, some fall length sequences are assembled, at least in part, with overlapping Incyte cDNA sequences (see Example llI). Each cDNA
sequence is derived from a cDNA library constructed from a human tissue. Each human tissue is classified into one of the following organ/tissue categories: cardiovascular system; connective tissue;
digestive system; embryonic structures; endocrine system; exocrine glands;
genitalia, female; genitalia, male; germ cells; heroic and immune system; liver; musculoskeletal system;
nervous system;
pancreas; respiratory system; sense organs; skin; stomatognathic system;
unclassi~ed/mixed; or urinary tract. The number of libraries in each category is counted and divided by the total number of libraries across all categories. Similarly, each human tissue is classified into one of the following disease/condition categories: cancer, cell line, developmental, inflammation, neurological, trauma, cardiovascular, pooled, and other, and the number of libraries in each category is counted and divided by the total number of libraries acxoss all categories. The resulting percentages reflect the tissue- and disease-specific expression of cDNA encoding TRICH.
VIII. Extension of TRICH Encoding Polynucleotides Full length polynucleotide sequences were also produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer was synthesized to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.
Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.
High fidelity amplification was obtained by PCR using methods well known in the art. PCR
was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mgz+, (NH4)ZSO4, and 2-mercaptoethanol, Taq DNA polymerase (Amersham Biosciences), ELONGASE
enzyme (Invitrogen), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 ??m?n; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68 °C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SI~+ were as follows: Step 1: 94°C, 3 min; Step 2:
94 °C, 15 sec; Step 3: 57 °C, 1 min; Step 4: 68 °C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times;
Step 6: 68°C, 5 min; Step 7: storage at 4°C.
The concentration of DNA in each well was determined by dispensing 100 ~tl PICOGREEN
quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1X TE
and 0.5 ~tl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II
(Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 ~1 to 10 ,u1 aliquot of the xeaction mixture was analyzed by electrophoresis on a 1 % agarose gel to determine which reactions were successful in extending the sequence.
The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Biosciences). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Biosciences), treated with Pfu DNA polymerase (Stxatagene) to fill-in restriction site overhangs, and transfected into competent E. coli cells. Transformed cells were selected on antibiotic-containing media, and individual colonies were picked and cultured overnight at 37 °C in 384-well plates in LB/2x carb liquid media.
The cells were lysed, and DNA was amplibed by PCR using Taq DNA polymerase (Amersham Biosciences) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA
recoveries were reamplified using the same conditions as described above. Samples were diluted with 20%
dimethysulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Biosciences) or the ABI PRISM BIGDYE
Terminator cycle sequencing ready reaction kit (Applied Biosystems).
In like manner, full length polynucleotide sequences are verified using the above procedure or are used to obtain 5' regulatory sequences using the above procedure along with oligonucleotides designed for such extension, and an appropriate genomic library.
IX. Identification of Single Nucleotide Polymorphisms in TRICH Encoding PoIynucleotides Common DNA sequence variants known as single nucleotide polymorphisms (SNPs) were identified in SEQ ID N0:10-18 using the LIFESEQ database (Iucyte Genomics).
Sequences from the same gene were clustered together and assembled as described in Example III, allowing the identification of all sequence variants in the gene. An algorithm consisting of a series of filters was used to distinguish SNPs from other sequence variants. Preliminary filters removed the majority of basecall errors by requiring a minimum Phred quality score of 15, and removed sequence alignment errors and errors resulting from improper trimming of vector sequences, chimeras, and splice variants.
An automated procedure of advanced chromosome analysis analysed the original chromatogram files in the vicinity of the putative SNP. Clone error filters used statistically generated algorithms to identify errors introduced during laboratory processing, such as those caused by reverse transcriptase, polymerase, or somatic mutation. Clustering error filters used statistically generated algorithms to identify errors resulting from clustering of close homologs or pseudogenes, or due to contamination by non human sequences. A final set of filters removed duplicates and SNPs found in immunoglobulins or T-cell receptors.
Certain SNPs were selected for further characterization by mass spectrometry using the high throughput MASSARRAY system (Sequenom, Inc.) to analyze allele frequencies at the SNP sites in four different human populations. The Caucasian population comprised 92 individuals (46 male, 46 female), including 83 from Utah, four French, three Venezualan, and two Amish individuals. The African population comprised 194 individuals (97 male, 97 female), all African Americans. The I3ispanic population comprised 324 individuals (162 male, 162 female), all Mexican Hispanic. The Asian population comprised 126 individuals (64 male, 62 female) with a reported parental breakdown of 43% Chinese, 31% Japanese, 13% Korean, 5% Vietnamese, and 8% other Asian.
Allele frequencies were first analyzed in the Caucasian population; in some cases those SNPs which showed no allelic variance in this population were not further tested in the other three populations.
X. Labeling and Use of Individual Hybridization Probes Hybridization probes derived from SEQ ID N0:10-18 are employed to screen cDNAs, genomic DNAs, ox mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 /.cCi of [Y 32P] adenosine- triphosphate (Amersham Biosciences), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a superfine size exclusion dextran bead column (Amersham Biosciences). An aliquot containing 10' counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, BgllI, Eco RI, Pst I, Xba I, or Pvu lI (DuPont NEN).
The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40 °C. To remove nonspecific signals, blots are sequentially washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5%a sodium dodecyl sulfate.
Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared.
XI. Microarrays The linkage or synthesis of array elements upon a microarray can be achieved utilizing photolithography, piezoelectric printing (ink jet printing, See, e.g., Baldeschweiler, supra.), mechanical microspotting technologies, and derivatives thereof. The substrate in each of the aforementioned technologies should be uniform and solid with a non-porous surface (Schena (1999), so ra).
Suggested substrates include silicon, silica, glass slides, glass clops, and silicon wafers. Alternatively, a procedure analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, W, chemical, or mechanical bonding procedures. A
typical array may be produced using available methods and machines well known to those of ordinary skill in the art and may contain any appropriate number of elements. (See, e.g., Schena, M. et al.
(1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645; Marshall, A. and J. Hodgson (1998) Nat. Biotechnol. 16:27-31.) Full length cDNAs, Expressed Sequence Tags (ESTs), or fragments or oligomers thereof may comprise the elements of the microarray. Fragments or oligomers suitable for hybridization canbe selected using software well known in the art such as LASERGENE software (DNASTAR). The array elements are hybridized with polynucleotides in a biological sample. The polynucleotides in the biological sample are conjugated to a fluorescent label or other molecular tag for ease of detection.
After hybridization, nonhybridized nucleotides from the biological sample are removed, and a fluorescence scanner is used to detect hybridization at each array element.
Alternatively, laser desorbtion and mass spectrometry may be used for detection of hybridization.
The degree of complementarity and the relative abundance of each polynucleotide which hybridizes to an element on the microarray may be assessed. Iu one embodiment, microarray preparation and usage is described in detail below.
Tissue or Cell Sample Preparation Total RNA is isolated from tissue samples using the guanidinium thiocyanate method and poly(A)+ RNA is purified using the oligo-(dT) cellulose method. Each poly(A)+
RNA sample is reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/pl oligo-(dT) primer (2lmer), 1X first strand buffer, 0.03 units/~.1 RNase inhibitor, 500 ~.M dATP, 500 p.M dGTP, 500 ~.M dTTP, 40 ~.M
dCTP, 40 ACM dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Biosciences). The reverse transcription reaction is performed in a 25 ml volume containing 200 ng poly(A)+ RNA with GEMBR.IGHT kits (Incyte). Specific control poly(A)+ RNAs are synthesized by in vitro transcription from non-coding yeast genomic DNA. After incubation at 37° C for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeling) is treated with 2.5 ml of 0.5M sodium hydroxide and incubated for 20 minutes at 85° C to the stop the reaction and degrade the RNA. Samples are purified using two successive CHROMA SPIN 30 gel filtration spin columns (CLONTECH Laboratories, Inc.
(CLONTECH), Palo Alto CA) and after combining, both reaction samples are ethanol precipitated using 1 ml of glycogen (1 mg/ml), 60 ml sodium acetate, and 300 ml of 100%
ethanol. The sample is then dried to completion using a SpeedVAC (Savant Instruments Inc., Holbrook NY) and resuspended in 14 ~15X SSC/0.2% SDS.
Microarra~paration Sequences of the present invention are used to generate array elements. Each array element is amplified from bacterial cells containing vectors with cloned cDNA inserts.
PCR amplification uses primers complementary to the vector sequences flanking the cDNA insert. Array elements are amplified in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5 ~tg.
Amplified array elements are then purified using SEPHACRYL-400 (Amersham Biosciences).
Purified array elements are immobilized on polymer-coated glass slides. Glass microscope slides (Corning) are cleaned by ultrasound in 0.1 % SDS and acetone, with extensive distilled water washes between and after treatments. Glass slides are etched in 4%
hydrofluoric acid (VWR
Scientific Products Corporation (VWR), West Chester PA), washed extensively in distilled water, and coated with 0.05% amiuopropyl silane (Sigma) in 95% ethanol. Coated slides are cured in a 110°C
oven.
Array elements are applied to the coated glass substrate using a procedure described in U.S.
Patent No. 5,807,522, incorporated herein by reference. 1 ~,l of the array element DNA, at an average concentration of 100 ng/pl, is loaded into the open capillary printing element by a high-speed robotic apparatus. The apparatus then deposits about 5 n1 of array element sample per slide.
Microarrays are W-crosslinked using a STRATALINI~R W-crosslinker (Stratagene).
Microarrays are washed at room temperature once in 0.2% SDS and three times in distilled water.
Non-specific binding sites are blocked by incubation of microarrays in 0.2%
casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford MA) for 30 minutes at 60°
C followed by washes in 0.2%
SDS and distilled water as before.
Hybridization Hybridization reactions contain 9 ~Cl of sample mixture consisting of 0.2 ~tg each of Cy3 and Cy5 labeled cDNA synthesis products in SX SSC, 0.2% SDS hybridization buffer.
The sample mixture is heated to 65° C for 5 minutes and is aliquoted onto the microarray surface and covered with an 1.8 cmz coverslip. The arrays are transferred to a waterproof chamber having a cavity just slightly larger than a microscope slide. The chamber is kept at 100% humidity internally by the addition of 140 ~,1 of SX SSC in a corner of the chamber. The chamber containing the arrays is incubated for about
The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. The product score is a normalized value between 0 and 100, and is calculated as follows: the BLAST score is multiplied by the percent nucleotide identity and the product is divided by (5 times the length of the shorter of the two sequences). The BLAST score is calculated by assigning a score of +5 for every base that matches in a high-scoring segment pair (HSP), and -4 for every mismatch. Two sequences may share more than one HSP
(separated by gaps). If there is more than one HSP, then the pair with the highest BLAST
score is used to calculate the product score. The product score represents a balance between fractional overlap and quality in a BLAST alignment. For example, a pxoduct score of 100 is produced only for I00%
identity over the entire length of the shorter of the two sequences being compared. A product score of 70 is produced either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other. A product score of 50 is produced either by 100% identity, and 50%
overlap at one end, or 79%
identity and 100% overlap.
Alternatively, polynucleotide sequences encoding TRICH are analyzed with respect to the tissue sources from which they were derived. For example, some fall length sequences are assembled, at least in part, with overlapping Incyte cDNA sequences (see Example llI). Each cDNA
sequence is derived from a cDNA library constructed from a human tissue. Each human tissue is classified into one of the following organ/tissue categories: cardiovascular system; connective tissue;
digestive system; embryonic structures; endocrine system; exocrine glands;
genitalia, female; genitalia, male; germ cells; heroic and immune system; liver; musculoskeletal system;
nervous system;
pancreas; respiratory system; sense organs; skin; stomatognathic system;
unclassi~ed/mixed; or urinary tract. The number of libraries in each category is counted and divided by the total number of libraries across all categories. Similarly, each human tissue is classified into one of the following disease/condition categories: cancer, cell line, developmental, inflammation, neurological, trauma, cardiovascular, pooled, and other, and the number of libraries in each category is counted and divided by the total number of libraries acxoss all categories. The resulting percentages reflect the tissue- and disease-specific expression of cDNA encoding TRICH.
VIII. Extension of TRICH Encoding Polynucleotides Full length polynucleotide sequences were also produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer was synthesized to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.
Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.
High fidelity amplification was obtained by PCR using methods well known in the art. PCR
was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mgz+, (NH4)ZSO4, and 2-mercaptoethanol, Taq DNA polymerase (Amersham Biosciences), ELONGASE
enzyme (Invitrogen), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 ??m?n; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68 °C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SI~+ were as follows: Step 1: 94°C, 3 min; Step 2:
94 °C, 15 sec; Step 3: 57 °C, 1 min; Step 4: 68 °C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times;
Step 6: 68°C, 5 min; Step 7: storage at 4°C.
The concentration of DNA in each well was determined by dispensing 100 ~tl PICOGREEN
quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1X TE
and 0.5 ~tl of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II
(Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 ~1 to 10 ,u1 aliquot of the xeaction mixture was analyzed by electrophoresis on a 1 % agarose gel to determine which reactions were successful in extending the sequence.
The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Biosciences). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Biosciences), treated with Pfu DNA polymerase (Stxatagene) to fill-in restriction site overhangs, and transfected into competent E. coli cells. Transformed cells were selected on antibiotic-containing media, and individual colonies were picked and cultured overnight at 37 °C in 384-well plates in LB/2x carb liquid media.
The cells were lysed, and DNA was amplibed by PCR using Taq DNA polymerase (Amersham Biosciences) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA
recoveries were reamplified using the same conditions as described above. Samples were diluted with 20%
dimethysulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Biosciences) or the ABI PRISM BIGDYE
Terminator cycle sequencing ready reaction kit (Applied Biosystems).
In like manner, full length polynucleotide sequences are verified using the above procedure or are used to obtain 5' regulatory sequences using the above procedure along with oligonucleotides designed for such extension, and an appropriate genomic library.
IX. Identification of Single Nucleotide Polymorphisms in TRICH Encoding PoIynucleotides Common DNA sequence variants known as single nucleotide polymorphisms (SNPs) were identified in SEQ ID N0:10-18 using the LIFESEQ database (Iucyte Genomics).
Sequences from the same gene were clustered together and assembled as described in Example III, allowing the identification of all sequence variants in the gene. An algorithm consisting of a series of filters was used to distinguish SNPs from other sequence variants. Preliminary filters removed the majority of basecall errors by requiring a minimum Phred quality score of 15, and removed sequence alignment errors and errors resulting from improper trimming of vector sequences, chimeras, and splice variants.
An automated procedure of advanced chromosome analysis analysed the original chromatogram files in the vicinity of the putative SNP. Clone error filters used statistically generated algorithms to identify errors introduced during laboratory processing, such as those caused by reverse transcriptase, polymerase, or somatic mutation. Clustering error filters used statistically generated algorithms to identify errors resulting from clustering of close homologs or pseudogenes, or due to contamination by non human sequences. A final set of filters removed duplicates and SNPs found in immunoglobulins or T-cell receptors.
Certain SNPs were selected for further characterization by mass spectrometry using the high throughput MASSARRAY system (Sequenom, Inc.) to analyze allele frequencies at the SNP sites in four different human populations. The Caucasian population comprised 92 individuals (46 male, 46 female), including 83 from Utah, four French, three Venezualan, and two Amish individuals. The African population comprised 194 individuals (97 male, 97 female), all African Americans. The I3ispanic population comprised 324 individuals (162 male, 162 female), all Mexican Hispanic. The Asian population comprised 126 individuals (64 male, 62 female) with a reported parental breakdown of 43% Chinese, 31% Japanese, 13% Korean, 5% Vietnamese, and 8% other Asian.
Allele frequencies were first analyzed in the Caucasian population; in some cases those SNPs which showed no allelic variance in this population were not further tested in the other three populations.
X. Labeling and Use of Individual Hybridization Probes Hybridization probes derived from SEQ ID N0:10-18 are employed to screen cDNAs, genomic DNAs, ox mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 /.cCi of [Y 32P] adenosine- triphosphate (Amersham Biosciences), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a superfine size exclusion dextran bead column (Amersham Biosciences). An aliquot containing 10' counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, BgllI, Eco RI, Pst I, Xba I, or Pvu lI (DuPont NEN).
The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40 °C. To remove nonspecific signals, blots are sequentially washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5%a sodium dodecyl sulfate.
Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared.
XI. Microarrays The linkage or synthesis of array elements upon a microarray can be achieved utilizing photolithography, piezoelectric printing (ink jet printing, See, e.g., Baldeschweiler, supra.), mechanical microspotting technologies, and derivatives thereof. The substrate in each of the aforementioned technologies should be uniform and solid with a non-porous surface (Schena (1999), so ra).
Suggested substrates include silicon, silica, glass slides, glass clops, and silicon wafers. Alternatively, a procedure analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, W, chemical, or mechanical bonding procedures. A
typical array may be produced using available methods and machines well known to those of ordinary skill in the art and may contain any appropriate number of elements. (See, e.g., Schena, M. et al.
(1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645; Marshall, A. and J. Hodgson (1998) Nat. Biotechnol. 16:27-31.) Full length cDNAs, Expressed Sequence Tags (ESTs), or fragments or oligomers thereof may comprise the elements of the microarray. Fragments or oligomers suitable for hybridization canbe selected using software well known in the art such as LASERGENE software (DNASTAR). The array elements are hybridized with polynucleotides in a biological sample. The polynucleotides in the biological sample are conjugated to a fluorescent label or other molecular tag for ease of detection.
After hybridization, nonhybridized nucleotides from the biological sample are removed, and a fluorescence scanner is used to detect hybridization at each array element.
Alternatively, laser desorbtion and mass spectrometry may be used for detection of hybridization.
The degree of complementarity and the relative abundance of each polynucleotide which hybridizes to an element on the microarray may be assessed. Iu one embodiment, microarray preparation and usage is described in detail below.
Tissue or Cell Sample Preparation Total RNA is isolated from tissue samples using the guanidinium thiocyanate method and poly(A)+ RNA is purified using the oligo-(dT) cellulose method. Each poly(A)+
RNA sample is reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/pl oligo-(dT) primer (2lmer), 1X first strand buffer, 0.03 units/~.1 RNase inhibitor, 500 ~.M dATP, 500 p.M dGTP, 500 ~.M dTTP, 40 ~.M
dCTP, 40 ACM dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Biosciences). The reverse transcription reaction is performed in a 25 ml volume containing 200 ng poly(A)+ RNA with GEMBR.IGHT kits (Incyte). Specific control poly(A)+ RNAs are synthesized by in vitro transcription from non-coding yeast genomic DNA. After incubation at 37° C for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeling) is treated with 2.5 ml of 0.5M sodium hydroxide and incubated for 20 minutes at 85° C to the stop the reaction and degrade the RNA. Samples are purified using two successive CHROMA SPIN 30 gel filtration spin columns (CLONTECH Laboratories, Inc.
(CLONTECH), Palo Alto CA) and after combining, both reaction samples are ethanol precipitated using 1 ml of glycogen (1 mg/ml), 60 ml sodium acetate, and 300 ml of 100%
ethanol. The sample is then dried to completion using a SpeedVAC (Savant Instruments Inc., Holbrook NY) and resuspended in 14 ~15X SSC/0.2% SDS.
Microarra~paration Sequences of the present invention are used to generate array elements. Each array element is amplified from bacterial cells containing vectors with cloned cDNA inserts.
PCR amplification uses primers complementary to the vector sequences flanking the cDNA insert. Array elements are amplified in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5 ~tg.
Amplified array elements are then purified using SEPHACRYL-400 (Amersham Biosciences).
Purified array elements are immobilized on polymer-coated glass slides. Glass microscope slides (Corning) are cleaned by ultrasound in 0.1 % SDS and acetone, with extensive distilled water washes between and after treatments. Glass slides are etched in 4%
hydrofluoric acid (VWR
Scientific Products Corporation (VWR), West Chester PA), washed extensively in distilled water, and coated with 0.05% amiuopropyl silane (Sigma) in 95% ethanol. Coated slides are cured in a 110°C
oven.
Array elements are applied to the coated glass substrate using a procedure described in U.S.
Patent No. 5,807,522, incorporated herein by reference. 1 ~,l of the array element DNA, at an average concentration of 100 ng/pl, is loaded into the open capillary printing element by a high-speed robotic apparatus. The apparatus then deposits about 5 n1 of array element sample per slide.
Microarrays are W-crosslinked using a STRATALINI~R W-crosslinker (Stratagene).
Microarrays are washed at room temperature once in 0.2% SDS and three times in distilled water.
Non-specific binding sites are blocked by incubation of microarrays in 0.2%
casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford MA) for 30 minutes at 60°
C followed by washes in 0.2%
SDS and distilled water as before.
Hybridization Hybridization reactions contain 9 ~Cl of sample mixture consisting of 0.2 ~tg each of Cy3 and Cy5 labeled cDNA synthesis products in SX SSC, 0.2% SDS hybridization buffer.
The sample mixture is heated to 65° C for 5 minutes and is aliquoted onto the microarray surface and covered with an 1.8 cmz coverslip. The arrays are transferred to a waterproof chamber having a cavity just slightly larger than a microscope slide. The chamber is kept at 100% humidity internally by the addition of 140 ~,1 of SX SSC in a corner of the chamber. The chamber containing the arrays is incubated for about
6.5 hours at 60° C. The arrays are washed for 10 min at 45° C in a first wash buffer (1X SSC, 0.1%
SDS), three times for 10 minutes each at 45° C in a second wash buffer (0.1X SSC), and dried.
Detection Reportex-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of CyS. The excitation laser light is focused on the array using a 20X microscope objective (Nikon, Inc., Melville NY). The slide containing the array is placed on a computer-controlled X-Y stage on the microscope and raster-scanned past the objective. The 1.8 cm x 1.8 cm array used in the present example is scanned with a resolution of 20 micrometers.
In two separate scans, a mixed gas multiline laser excites the two fluorophores sequentially.
Emitted light is split, based on wavelength, into two photomultiplier tube detectors (PMT 82477, Hamamatsu Photonics Systems, Bridgewater NJ) corresponding to the two fluorophores. Appropriate filters positioned between the array and the photomultiplier tubes are used to filter the signals. The emission maxima of the fluorophores used are 565 nm for Cy3 and 650 nm for CyS. Each array is typically scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus is capable of recording the spectra from both fluorophores simultaneously.
The sensitivity of the scans is typically calibrated using the signal intensity generated by a cDNA control species added to the sample mixture at a known concentration. A
specific location on the array contains a complementary DNA sequence, allowing the intensity of the signal at that location to be correlated with a weight ratio of hybridizing species of 1:100,000. When two samples from different sources (e.g., representing test and control cells), each labeled with a different fluorophore, are hybridized to a single array for the purpose of identifying genes that are differentially expressed, the calibration is done by labeling samples of the calibrating cDNA with the two fluorophores and adding identical amounts of each to the hybridization mixture.
The output of the photomultiplier. tube is digitized using a 12-bit RTI-835H
analog-to-digital (A/D) conversion board (Analog Devices, Inc., Norwood MA) installed in an IBM-compatible PC
computer. The digitized data are displayed as an image where the signal intensity is mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal). The data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first corrected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore's emission spectrum.
A grid is superimposed over the fluorescence signal image such that the signal from each spot is centered in each element of the grid. The fluorescence signal within each element is then integrated to obtain a numerical value corresponding to the average intensity of the signal. The software used for signal analysis is the GEMTOOLS gene expression analysis program (Iucyte).
Array elements that exhibited at least about a two-fold change in expression, a signal-to-background ratio of at least 2.5, and an element spot size of at least 40°~o were identified as~differentially expressed using the GEMTOOLS program (Incyte Genomics).
2o Expression SEQ ID NO:10 showed differential expression in association with Jurkat cell lines treated with PMA and ionomycin as compared to untreated Jurkat cell lines, as determined by microarray analysis.
The expression of SEQ ID N0:10 was decreased by at least two fold in Jurkat cells treated with at least 100 nM PMA and at least 1 microgram/ml ionomycin for 1 hour, as compared to controls.
Therefore, in. an embodiment, SEQ ID NO:10 can be used in diagnostic assays for and/or monitoring treatment of immune response disorders.
XII. Complementary Polynucleotides Sequences complementary to the TRICH-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring TRICH.
Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of TRICH. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the TRICH-encoding transcript.
XIII. Expression of TRICH
Expression and purification of TRICH is achieved using bacterial or virus based expression systems. For expression of TRICH in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA
transcription. Examples of such promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3).
Antibiotic resistant bacteria express TRICH upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of TRICH in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Auto~raphica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding TRICH by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spotlo~tera fru~iperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases.
Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther.
SDS), three times for 10 minutes each at 45° C in a second wash buffer (0.1X SSC), and dried.
Detection Reportex-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of CyS. The excitation laser light is focused on the array using a 20X microscope objective (Nikon, Inc., Melville NY). The slide containing the array is placed on a computer-controlled X-Y stage on the microscope and raster-scanned past the objective. The 1.8 cm x 1.8 cm array used in the present example is scanned with a resolution of 20 micrometers.
In two separate scans, a mixed gas multiline laser excites the two fluorophores sequentially.
Emitted light is split, based on wavelength, into two photomultiplier tube detectors (PMT 82477, Hamamatsu Photonics Systems, Bridgewater NJ) corresponding to the two fluorophores. Appropriate filters positioned between the array and the photomultiplier tubes are used to filter the signals. The emission maxima of the fluorophores used are 565 nm for Cy3 and 650 nm for CyS. Each array is typically scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus is capable of recording the spectra from both fluorophores simultaneously.
The sensitivity of the scans is typically calibrated using the signal intensity generated by a cDNA control species added to the sample mixture at a known concentration. A
specific location on the array contains a complementary DNA sequence, allowing the intensity of the signal at that location to be correlated with a weight ratio of hybridizing species of 1:100,000. When two samples from different sources (e.g., representing test and control cells), each labeled with a different fluorophore, are hybridized to a single array for the purpose of identifying genes that are differentially expressed, the calibration is done by labeling samples of the calibrating cDNA with the two fluorophores and adding identical amounts of each to the hybridization mixture.
The output of the photomultiplier. tube is digitized using a 12-bit RTI-835H
analog-to-digital (A/D) conversion board (Analog Devices, Inc., Norwood MA) installed in an IBM-compatible PC
computer. The digitized data are displayed as an image where the signal intensity is mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal). The data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first corrected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore's emission spectrum.
A grid is superimposed over the fluorescence signal image such that the signal from each spot is centered in each element of the grid. The fluorescence signal within each element is then integrated to obtain a numerical value corresponding to the average intensity of the signal. The software used for signal analysis is the GEMTOOLS gene expression analysis program (Iucyte).
Array elements that exhibited at least about a two-fold change in expression, a signal-to-background ratio of at least 2.5, and an element spot size of at least 40°~o were identified as~differentially expressed using the GEMTOOLS program (Incyte Genomics).
2o Expression SEQ ID NO:10 showed differential expression in association with Jurkat cell lines treated with PMA and ionomycin as compared to untreated Jurkat cell lines, as determined by microarray analysis.
The expression of SEQ ID N0:10 was decreased by at least two fold in Jurkat cells treated with at least 100 nM PMA and at least 1 microgram/ml ionomycin for 1 hour, as compared to controls.
Therefore, in. an embodiment, SEQ ID NO:10 can be used in diagnostic assays for and/or monitoring treatment of immune response disorders.
XII. Complementary Polynucleotides Sequences complementary to the TRICH-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring TRICH.
Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of TRICH. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the TRICH-encoding transcript.
XIII. Expression of TRICH
Expression and purification of TRICH is achieved using bacterial or virus based expression systems. For expression of TRICH in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA
transcription. Examples of such promoters include, but are not limited to, the trp-lac (tac) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the lac operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3).
Antibiotic resistant bacteria express TRICH upon induction with isopropyl beta-D-thiogalactopyranoside (IPTG). Expression of TRICH in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Auto~raphica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding TRICH by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spotlo~tera fru~iperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases.
Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther.
7:1937-1945.) In most expression systems, TRICH is synthesized as a fusion protein with, e.g., glutathione S-transferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from Schistosoma iaponicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Biosciences).
Following purification, the GST moiety can be proteolytically cleaved from TRICH at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffmity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QLAGEN).
Methods for protein expression and purification are discussed in Ausubel (1995, su ra, eh. 10 and 16).
Purified TRICH obtained by these methods can be used directly in the assays shown in Examples XVII, XVIII, and XIK where applicable.
XIV. Functional Assays TRICH function is assessed by expressing the sequences encoding TRICH at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA
expression. Vectors of choice include PCMV SPORT plasmid (Invitrogen, Carlsbad CA) and PCR3.1 plasmid (Invitrogen), both of which contain the cytomegalovirus promoter. 5-10 ,ug of recombinant vector are transiently transfected into a human cell line, for example, an endothelial or hematopoietic cell line, using either liposome formulations or electroporation. 1-2 /,cg of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontrausfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify trausfected cells expressing GFP
or CD64-GFP and to evaluate the apoptotic state of the cells and other cellular properties. FCM
detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA
with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometxy are discussed in Ormerod, M.G. (1994) Flow C ometry, Oxford, New York NY.
The influence of TRICH on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding TRICH and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobuliu G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY). mRNA can be purified from the cells using methods well known by those of skill in the art.
Expression of mRNA encoding TRICH and other genes of interest can be analyzed by northern analysis or microarray techniques.
3o XV. Production of TRICH Specific Antibodies TRICH substantially purified using polyacrylamide gel electrophoresis (PAGE;
see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize animals (e.g., rabbits, mice, etc.) and to produce antibodies using standard protocols.
Alternatively, the TRICH amino acid sequence is analyzed using LASERGENE
software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, su ra, ch. 11.) Typically, oligopeptides of about 15 residues in length are synthesized using an ABI 431A
peptide synthesizer (Applied Biosystems) using FMOC chemistry and coupled to KLH (Sigma-Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, supra.) Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide and anti-TRICH activity by, for example, binding the peptide or TRICH to a substrate, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.
XVI. Purification of Naturally Occurring TRICH Using Specific Antibodies Naturally occurring or recombinant TRICH is substantially purified by i_m_m__unoafhnity chromatography using antibodies specific for TRICH. An immunoaffinity column is constructed by covalently coupling anti-TRICH antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Biosciences). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.
Media containing TRICH are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of TRICH (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/TRICH binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and TRICH is collected.
XVII. Identification of Molecules Which Interact with TRICH
Molecules that interact with TRICH may include transporter substrates, agonists or antagonists, modulatory proteins such as G(3~y proteins (Reimann, supra) or proteins involved in TRICH
localization or clustering such as MAGUKs (Craven, supra). TRICH, or biologically active fragments thereof, are labeled with luI Bolton-Hunter reagent. (See, e.g., Bolton A.E.
and W.M. Hunter (1973) Biochem. J. 133:529-539.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled TRICH, washed, and any wells with labeled TRICH
complex are assayed. Data obtained using different concentrations of TRICH are used to calculate values for the number, affinity, and association of TRICH with the candidate molecules.
Alternatively, molecules interacting with TRICH are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989) Nature 340:245-246, or using commercially available kits based on the two-hybrid system, such as the MATCHMAKER system (Clontech).
TRICH, or fragments thexeof, are expressed as fusion proteins with the DNA
binding domain of Gal4 or lexA, and potential interacting proteins are expressed as fusion proteins with an activation domain.
Interactions between the TRICH fusion protein and the TRICH interacting proteins (fusion proteins with an activation domain) reconstitute a transactivation function that is observed by expression of a reporter gene. Yeast 2-hybrid systems are commercially available, and methods fox use of the yeast 2-hybrid system with ion channel proteins are discussed in Niethammer, M. and M. Sheng (1998, Methods Enzymol. 293:104-122).
TRICH may also be used in the PATHCALLING process (C~traGen Corp., New Haven CT) which employs the yeast two-hybrid system in a high-throughput manner to determine all interactions between the proteins encoded by two large libraries of genes (Nandabalan, K, et al. (2000) U.S.
Patent No. 6,057,101).
Potential TRICH agonists or antagonists may be tested for activation or inhibition of TRICH
ion channel activity using the assays described in section XVIIZ.
XVIII. Demonstration of TRICH Activity Ion channel activity of TRIGH is demonstrated using an electrophysiological assay for ion conductance. TRICH can be expressed by transforming a mammalian cell line such as COS7, HeLa or CHO with a eukaryotic expression vector encoding TRICH. Eukaryotic expression vectors are commercially available, and the techniques to introduce them into cells are well known to those skilled in the art. A second plasmid which expresses any one of a number of marker genes, such as 13-galactosidase, is co-transformed into the cells to allow rapid identification of those cells which have taken up and expressed the foreign DNA. The cells are incubated for 48-72 hours after trausformation under conditions appropriate for the cell line to allow expression and accumulation of TRICH and 13-galactosidase.
Transformed cells expressing 13-galactosidase are stained blue when a suitable colorimetric substrate is added to the culture media under conditions that are well known i_n the art. Stained cells are tested for differences in membrane conductance by electrophysiological techniques that are well known in the art. Untransformed cells, and/or cells transformed with either vector sequences alone or !3-galactosidase sequences alone, are used as controls and tested in parallel.
Cells expressing TR1CH
will have higher cation conductance relative to control cells. The contribution of TRICH to conductance can be confirmed by incubating the cells using antibodies specific for TRICH. The antibodies will bind to the extracellular side of TRICH, thereby blocking the pore in the ion channel, and the associated conductance.
Alternatively, ion channel activity of TRICH is measured as current flow across a TRICH-containing Xenopus Iaevis oocyte membrane using the two-electrode voltage-clamp technique (Ishi et al., supra; Jegla, T. and L. Salkoff (1997) J. Neurosci. 17:32-44). TRICH is subcloned into an appropriate Xenopus oocyte expression vector, such as pBF, and 0.5-S ng of mRNA is injected into mature stage IV oocytes. Injected oocytes are incubated at 18 °C for 1-5 days. Inside-out macropatches are excised into an intracellular solution containing 116 mM K-gluconate, 4 mM KCl, and 10 mM Hepes (pH 7.2). The intracellular solution is supplemented with varying concentrations of the TRICH mediator, such as cAMP, cGMP, or Ca+2 (in the form of CaClz), where appropriate.
Electrode resistance is set at 2-S MSZ and electrodes are filled with the intracellular solution lacking mediator. Experiments are performed at room temperature from a holding potential of 0 mV. Voltage ramps (2.5 s) from -100 to 100 mV are acquired at a sampling frequency of 500 Hz. Current measured is proportional to the activity of TRICH in the assay.
For example, the activity of TRICH-3 is measured as proton conductance and the activity of TRICH-4 is measured as calcium conductance.
Transport activity of TRICH is assayed by measuring uptake of labeled substrates into Xenopus laevis oocytes. Oocytes at stages V and VI are injected with TRICH
mRNA (10 ng per oocyte) and incubated for 3 days at 18°C in OR2 medium (82.5mM NaCl, 2.5 mM KCI, 1mM CaCl2, 1mM MgCla, 1mM NaaHP04, 5 mM Hepes, 3.8 mM NaOH , 50~.g/ml gentamycin, pH 7.8) to allow expression of TRICH. Oocytes are then transferred to standard uptake medium (100mM NaCl, 2 mM KCl, 1mM CaCl2, 1mM MgCl2, 10 mM Hepes/Tris pH 7.5). Uptake of various substrates (e.g., amizto acids, sugars, drugs, ions, and neurotransmitters) is initiated by adding labeled substrate (e.g.
radiolabeled with 3H, fluorescently labeled with rhodamine, etc.) to the oocytes. After incubating for 30 minutes, uptake is terminated by washing the oocytes three times in Na+-free medium, measuring the incorporated label, and comparing with controls. TRICH activity is proportional to the level of internalized labeled substrate. Test substrates include, but are not limited to, melibiose or other carbohydrates for TRICH-1, uxea for TRICH-5, and sulphate for TRICH-6.
ATPase activity associated with TRICH can be measured by hydrolysis of radiolabeled ATP-[y-32P], separation of the hydrolysis products by chromatographic methods, and quantitation of the recovered 32P using a scintillation counter. The reaction mixture contains ATP-['y-32P] and varying amounts of TRICH in a suitable buffer incubated at 37 °C fox a suitable period of time. The reaction is terminated by acid precipitation with trichloroacetic acid and then neutralized with base, and an aliquot of the reaction mixture is subjected to membrane or filter paper-based chromatography to separate the reaction products. The amount of 32P liberated is counted in a scintillation counter. The amount of radioactivity recovered is propoxtional to the ATPase activity of TRICH in the assay.
Alternatively, iron uptake activity of TRTCH is assayed in 100 mM HEPES/NaOH
buffer (pH
7.0) with a Fe2+fI'RICH molar ratio of 1000:1 at room temperature. Iron incorporation is monitored by measuring the absorbance at 310 mn using a W spectrophotometer (Masuda, T. et al. (2001) J. Biol.
Chem. 276:19575-19579).
XIX. Identification of TRICH Agonists and Antagonists TRICH is expressed in a eukaryotic cell line such as CHO (Chinese Hamster Ovary) or HEK
(Human Embryonic Kidney) 293. Ion channel activity of the transformed cells is measured in the presence and absence of candidate agonists or antagonists. Ion channel activity is assayed using patch clamp methods well known. in the art or as described in Example XVII.
Alternatively, ion chancel activity is assayed using fluorescent techniques that measure ion flux across the cell membrane (Velicelebi, G. et al. (1999) Meth. Enzymol. 294:20-47; West, M.R.
and C.R. Molloy (1996) Anal. Biochem. 241:51-58). These assays may be adapted for high-throughput screening using microplates. Changes in internal ion concentration are measured using fluorescent dyes such as the Ca2+ indicator Fluo-4 AM (available from Molecular Probes) in combination with the FLIPR
fluorimetric plate reading system (Molecular Devices). In a more generic version of this assay, changes in membrane potential caused by ionic flux across the plasma membrane are measured using oxonyl dyes such as DiBAC4 (Molecular Probes). DiBAC4 equilibrates between the extracellular solution and cellular sites according to the cellular membrane potential. The dye's fluorescence intensity is 20-fold greater when bound to hydrophobic intracellular sites, allowing detection of DiBAC4 entry into the cell (Gonzalez, J.E. and P.A. Negulescu (1998) Curr.
Opin. Biotechnol. 9:624-631). Candidate agonists or antagonists may be selected from known ion channel agonists or antagonists, peptide libraries, or combinatorial chemical libraries.
Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in. the art without departing from the scope and spirit of the invention.
Although the invention has been described in connection with certain embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments.
Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.
,~,~p~,-,,~
U U U U U
a N ~ UU
~
00~nod-N tnU voa, d'N ooN Ovw 0 ~OM
p ~ ' N V1OO N o0d NM
,~O~,~Ovo0vOO O~~O
V \OM C~7~O00M d'NOO
~ ' ' O
W tnNd d N ~ oo~t H w h 1N I~I~d W0l~
~
N
z _~., ~d O O ~ NM d'W O I~00 W
b ~
oUo~ O~ N VU'~U ~
d'N ooc~~Ovw 0 ~DM
y N v7O~ON ood-cVM
~"
~ 01.~~ 00~OO O~~O
O 1DM N10c0M d'No0 W n Nd~d-N ~ ood' ~
r --~~ tN t~I~'dW0I~
-~
P-m d ,.
:~
z ~a ~a W
G-i ,~N Md~W O t~ooO~
C
/~
U
N
~O
00v Od'N V W OO
7 _ ~
~ ~ N ~ NM
N O oo ~ 01~~ 00~OO O~~
U ~OM N~O00M ~ N00 ~ ~ rN r W _ ~
t -o U . M ~ rw b M
z .b ~ ~ ..q ~ G ~O
bA O
'b .p ~ ~ _G1~
.C ~ O
y ~
U U ~ c N ~ .C
C U o ~ -~ ~ a M
_a~ U y ~s ~ '+ U
~ ~
N ' ~ " d 0 ~ '*" N
ar '~ ~ ~ p O ~ Wn n O c O Q~ ~-' , O U
~ "'' ~~~ ~~ ,~.
~
z ~. U N . ~ N <Y
G~ a\ O
~ ~ ~.
~O _ O U U N s:, ~ '~ U
~z P" N Gy .-."-'-I U
l~ ,.""O
v~
' o ~ N
U - ~ ~ '~, ~n a. ,-., ~ ~ ~ w ' ~ ..c >, O U ,'~~' ~ ~ Q,' by N c~i ~ U N ~ U N
~ ~ U on ~ P. v,~o ~' v o _o ~ ' ~ .~ ~ ~ o o ~ o o C7 ~ ' '~
w U
v ,~ ~ > p. '-' U '~
.~ p., ,~,~ U ~ .~
~ v ~
~ O O ~ ~ ~' N ~ U N
_ ~ ~ ~ _ ''.
' ' U ~ .
~ ~ M
~ 'd ''~
N O '-' N a , U O
~ O c~ ''~ 0 N ~
U
U
u O r, ~ ~a'N rn NC/
" 7 v~ ~ ~ vJ t. C.~ ' iA
~ a~ .
~ 'y ~
'G ~ ~ N ~ N p ~ N ~ w - ~ ~ ' ~'~., z ~ ,O
' N ~ ~ ~1 ~ ~ ~ a. ~ ~ ~, ~.
~ w yes" ~ N ~ U ~ V] bA can O ~ b!7 U V] ~ '~" '4' ,.~."
~
cC ~ ~ ~ fir"N U ~ ..""'y O cn O bA N
O ~ ~ ' N ~ 7 P~1 ~U ' O
U ~n U~Ud c U~ .r,x~O
d~
. . c~ r~ . x ~ .~ ~a ~ x 3 ~
~
Y1 v--~ M
00 [~ 00 U i w ~
l. O O O O
O
P-i ~ Ol M O O d' ~7 z N N t~ Ol N ONl oho O (~ oo ~n O
'~
z ~, N M ~ ~ M
b A
o A
N ~ O ~
~ N o o m N ~ ono M
N
b .~, z ' a o W
Pw V7 ~i N M d. ty p 9s ~ x a .
a\
>
~
cn >
, o ~
= U
t r U
O
W ~ U
O bA w .
v~
U
c n s. y O
., cG p, O
c O
N ~
O O
~
O
p .~ bA
O t-~ N ~
.
~L
O ~
i<
N o0 N N
U O . ~ -~
~
.
b . i cd by k ~ U
O c~G
. ~
~
c~ U U U ~~
..d U V
O
m N ~ Vj U
i, ~1~ Ga i.~ O~
i 00 . O N ~
O ~
N
O~ V U .~
U
~n ~ ~ ~ N
O
~ 4=n 4--n ',r O
~
o ~ o ~
'~ o0 ~ N ~7 o ~
x x ~
~
~ M
N n Wi N oWoO
P-i Vr M
C/]
z~
~
~
o ~xz b o U U
M
~D ~O
N
O O ~
H dw o t~
N
.' z ow A
' P~ ~1 ~ (x ~ f~ riW G~
_ ~
H m M d M d' M ~ ~ i ~
E-~ E-a w t~ O o~o '~-' N
N P~
. Q, v0 N ~ -~, ~ ?, M i:~
~h s O ; ~ h ~
a ,~ O ~ o ' O ' ~ o W
o C ,-i a N _ d ad M N d' ~' O~
~
c M y,., ~ ~ O ~ N
i C/1 q ~
r-lp ~t ~ p ~ ~ N O
~ 'n ' M ~
c~ N v0 ~ ~ 0 ~ V ~ ~L o0 O ~ ~
~nvi '~' ~L O ~ w '-' c0 0o N
~'i ~ ~ "'iO P ~ O G O ~ N N H
~ W y ~ N
,- ~ ~' U'~ . . d'O ~c~ ~., ~ Cr~ ~
~ ~ tp-. ~ N N r~
, cct ~ LO
C i p ' ~ 0 0~0 ~
~ "'~ .N-i ' :~ ~ c~ ~ ~ ~ (~ ~ ~ ~ Pr w ~ p n O ~ b ~, ~ p M
N N ~ V1 ,fir~ ,.D U U ~
~ V p N
b ~P~-iZ.~~O~ b G ~ :d~ ~ ~V~ N, ~ ,~ ~ a ~ y . M ~,~ '.~.'p .~ c~7 p N N N
-U ~ ~ ~ ~ ~ ' ' .Uu cue) h ~ ~ I~ 00 ~ ~ p~0 ~
~
U M ~' o ~ U ~,'~" [ f3O p N O Iy0 ~O
P.M o !3. ( N ~,~
o0 .~
.--~ p O O 'y . ~ ~ ~
t~ ~ ~s~ ~ Mp M ~
~ ~N~ 'G~ ~ N~ N y0 bp-0ON c~Cl~~O apV~M
~ n ~ '~' v H a ~ v te te w ~ ~ H H .V
~ ~ ~ ~ H w z te ~ , r ~ a a n a a z Ga ..... ,~ .. ~
x w N
o z O\ M
z z Y ~ M
~, z z z H
p ~
~ ~ ~,~
~.~
O ~ ~ N
,~
~
P, z~r~ E~ W
P~
rn p O
'b b M
y U ue ~
~ d N
P4 ' N
p.
O
Q.
U
~D M N
P-~ ~ d' a o ~~z ~ N M
o O
O A
O
~i Ai .>, ~ ~ ran O
H
O
o W ,-~ M
cn ,~ W ~ , ~ N ' M
W M .~ ~ W E'~ H ,-i M
~e ~N ~~~°
O oho ~ N ~ N
H ' H
. ~ v~ H Pq, W ~ ,.~ N
O ~ ~ Z z ~ ~ ~ O ~, ~ ccf ~~t~ '~~'~~ ~ d'C,a'~~~OO'~
~NN.~N~ E-~d~'N 'n U .-, v~ q o ~ ~ o z ~-l o a~
''~ ~ ~ ~ ~ R~ ono ~ ~ c.; cri ~ N o ~ ~' ~ ~ W ~ M_ :~
y ~.~ Up,W~~p~..,vz~~ ;~~C~7.~ ~~~~a0 .fl .~ '--~ oo .fl o ° a ° ~N ~ ° ~ ~ H N N °° "' ~ O ~ o0 of p., .b ~ °~ ~ ~ v~ ,~ A o wt ~ O M .~ ~ v~ y' ~ M o 0 O _O ~
V ~ P-i ~ ~ ~ ~ ~ N M ~ ~0 ~ N ~ ~ LJ ~ O ~~
~ O x'~' ~''~ ~~td' c~ooM.~~
v H ~ v ~ ~ ~ a fa v ° as a, H ~ c7 z H ~ ~ ~ w a.i ~
c~ ~ ~n ono ov v ~zz o z N V'~' ~ 000 zzz z v_o ~n d~ O ~' M t N d'~ oMO~ M~oMO ~~N
~ r~ rn v7 E-~ E-~ L-~ E-~ ~ ~ H
O t~ N O N ~ o0 Vi 00 O ~'~r~A1 ~H E~(~-~H N H H
~ v~ ~ M d' d' M ~ ~O ~ ~ ~ H ~f' l~
O N ~Y ~t O O O~ °o M ~n d' O N oo M
O ,.C :; t~ ,~ tn I~ oo N d' t~ N N ~ N
A, P, v~ r~ vm~ zn rn H E1 E~ W o H E-~ H
N
O
. Q" N
pNp p~ N
a ~~z~ ,~
U O O
O
Q, apa 0.~ ~., O
P.,' v~ C-W-y H
d rte' ~" M N O
N
Qi ~ d '" ~ o ~ ~ ~ ~ a U ~r x EW-~ ~ ~ ON N d ?
o ~ ~ N d C7 a o ~ H~~M w~~~
R~ ~ ~ ~ ~ U ~ ~' ~ ~ C7 E
y H ~ ~ w H ~ ~ o ~ ~n oo ri q ~ o ~ N ~ W ,°~ ~ ~ ° d~-~.
~. ° x~~' x~zH
O ~' ',.1- N ~ ~ Q'' ~ ~ G.~ ~ ~ ~ N N N O N
°? a>, a ~ W ~
d' C~ ~ ~ ~ ~ ~ ~ a W OP'., ~ W ~ ~ ~ ~ ~" ~ ~r ~
v~ crm ~ v~ G~, C7 A, P~ ~ A..~ Ca7 vW1 a ~ f-~ E~ C~
CCj z y o a, ~ z N oo t~
0o Vi ~ a\
~ M ~ 'd H
W wn M .--i o0 V'i O.C.."~.~Md~-Pr V~ C/~ U7 C!~ E-~
N
O
,b b U
M
U ~' H
~~°z.~
O
O ~ ~ ~ 0 ~
d E~ ~ ~ P ~ ~ 0.l ~ -~
V.1 N 'p N
~n N N ~ ~ ~ 00 ~
O
~ ~
w ~ N ~ b Ri ~ ~ ~ ~
~A ~ w .O M ~ ~ ~ U
~ a r % N N
C ' ~~ ~~ ~ as -i ~ te M ~
N
j ~M o o~ r o~n ~
., U
~F, x . c bz ~' ~~ .~ w~~ v ; ~z~~
a ~ ~ ~M ~ ~N ~ , xoo~
~~ .~,~N
N C ~ . y ~ H R~
N ~ ~ ~ M
W
O N ~ V) ,M-,, O ccS at O ~ ,~-, . ~ 'r~ ~ ' <t ~
A d Op, j~ j~ ~,, f~. R.i ~ . ~ > o ~ ,-.yn O ~
M ~;, N > U' w N ~
N
N pi~ ' ' t~ ~ I
O ~'J N bA bA N ~ p., . oho ~ ~ ~ ~ I~
~" -~s G ~ 'b N ~ ~ ~ i i ~ ~ ~ ~ U
~ ~'~ ~E;' a, ~ ~ M ~ o pi o~
N N N U N N U U '~, O O
'~ ~ ~ M ~ N
b ~ N
N
_ c~C~N~ ~oMOiC-iWCNO~~~~ ~, O~ ~~ 'U' Ri 'U
.p V7 > -~,. '~, 'i. ~ N P-i ,-O i., P~ I~ O~ H
O
N
th ~ ,.~-i U per.,O O O p .Ty ~ H
d~ ~ "'~ N ~ ~ N ,~ (Zi ~ N ~
O ~
o o, ~ ~ ~-' ~ ,.~ ..~ .c ,~ ~ w ~
C >, ,..a c~ ~v ,...a~ N ~ H ~
vmn ~ U i U U U U ' w '--~v i H
c '~ ~'~~ ~~ ~ c3'n M o ~.~ O
~ ~ o o p'' , v ~I.
~~~~aZw v rn~~ ~a ~~ ~~w 7~~ r ~
c ' c a , c~
H
.Y
' o ' a~
~
N
N N
N (~
~
d-O
.y M HH
~1 v ~ H
N ~ N
U ~ M
RH
O
Y ~ O
t1 U
M ~_h P.t ~ d' O
~ ~
z rn U
~
~o O ~ ~ O
°' ~ w a ~ O
~ O pi ~ ~ ~ O
~ ~ ~ ~~ a M
M
N ~ i O
R~ i in ~ ~ O
w b~A O a O
l 01 w N~,~N.Wn ~ C-i'~'~~~ N
~ N ,-, O ~ ~ ~ U H N ~ ~ O
N '~ r~ r~'~ O Gv ~ ~ ~ '~ ,-; C~ ,7 ~' ~ N
z P~ L7 ~ z ° '-' p. N a .~ ~ o ~ v, ~n V, ,on w E.., ~Y ~r ~' N dv o0 ~ ~ ~ ~ ~ ~ ~ O ~ ~ z ~. z ~~., ' i' ,N-i ~ Pr ~D ~ ~bA ~b0 G~ Pw ~ ~ l~ I~ l~ bA
O ~ ~ ~ ,~ ~ .-, O
V 00 00 00 N sue. ,~-, ~ ~ ~ C/~ C~ ~ ~ ~O l~ M
0o d' dwD
b z z ~ a~ o ~ ~ ~ M ~ O a O ~ ov o, vo ~~o~aaa~~~~ ~ ~~ ~~ ~~ ~~o~a,a a w N ,,~, ~ N N N N ~ ~ O ~ ~ Oy C/~ -~t ~t dwt O
UWoooo o~ ~ ~ y~ ~~z ~'~~ ~'~~d~-~ ' O ~ o o° o° o° ~ ~~ ~~ ~~ ~ ~~ . ~ o 0 0 0 o , o U o 0 0 0 N .~
~ ate.. ~ ~ ~ ~ ~ w ~~ w w ~ w i ~ w w ~ ~ A A ~
N
o '' w c~ z M N ~ N
~ C/~ ~ ~, ~
~ CN/~
~n n ~ 00 ~ N ~ l~
O ~ '~' ~ N M ~ N
P~ Pr ~ ~ v~ C~ E~ 'J~ v7 N
O
G ,~ ;b ~' P~ M N N
H ,--1 i1. ~ ~ M
O .-~ 00 d.
w.-a p., d' lfl ~~z~°
t~ O ' N ~ v1 N
_ N ~
~ ' ~O~
~
~
~
-ip ~
. Ov ~o ~ d' o ~ ~ Ov oo O Ov ~ h i i ~ ~ o ' o i i ~
; v0 ,-.yt ~ 1~ 0 O p~ '~
v0 v0 ~ '-' ~ d' ~ oo N
N ~ ~ N~~~'"M~~
O ~-i o0 ~t n M ;' p~ ,-~.wD
Ov o0 ~ O Q oho ~ o~O
N
m oo .d ~n '~ O~ op t~ ~ r'' ' y0 <Y
N
M O ~ ; O M N ~ M
O ,~ ~ ~ N
--~
00 ~ .-y, .--~ M ,' N ~
~
~ o~
NOy M
OM N
~ d' O o O~~ OO
t~ O Ov o0 W
co ~ W n !~
M O~
~p O .WO ~--~ ,~ N ~ ~ .-~ ,~
,-i ~ ,--i M O ~ M N ~ ~ M p~ O M ,.~-W~
o0 i~O~~r NN'-'~NNM
t'~'~
i t d." ' p p t~ O v~ N .--~
~ .-, ~
i W O ,-, ~p O M
O ~ O N v0 i ~
l~ op pp ~
l~ O
~~O~o~O ~~ ~~M~ '-' M
~ ~ ~O ~ ~--i .-~ N ~ ~ [~ ~ V7 ~ ~--W .--i " v0 ~
~ N M
~
h 0p -~
~j 1 ~ t o N ~ .
o 00 ~ N ~ ~ ~ O ~ ~' ~ ~ ~ M
N ~n ~
''-' M O 0o I~ op ~
0 ~
o O N
o N ~ p" vN0 , o ~ Ov ~~ N ~. M ,--, N oo v0 N
~
~ oo t~ ,~ ~ ~ N M ,-~ O
N ,~ ~ v0 O ~ ~ ~
~ M
p N ~ N
N ~ ~ N ~
M I~ , 00 ~ ,-a ,~ dyp ~t 1 ,.~ O
,~-~ N m ~ oNO O -N, N O ~ O yD
,-~ ~' ~ ~.'j ,~
l~ N 00 00 00 O v~ OD
~p O N o0 "~ ~ M N op ~ ~D N
'O O o0o ~n M
v0 ~
y~~~'r'Nr'' OWO~~N V~'7 ~ 00 01 ~o ~ i M
dN~MM~ , h N ,~0~00~
N ~
n ~
-~ N o ,- o o ~tl~~ o M Wn I~
~ 0 N
~
N 0 , 'd, M ~ ,-,- ~ rt V-~ O
~ a O ~
N ~n in i O ~
~
~ O O ~ O N ~ i ,_M.., N
O ~ O ~' N M M O v'~
'~ t ~
00 i --~
'' ' N
'' O
n " , t~
r N
" I~ t W
cal ~
~ N
I~ N' ~ (~l ~ ~
i v0 j v0 j 'd~
p ~f V~ t~ ,- v o0 7 0 v~ 0 l~
~ p cV
N I~ W O
~ h O ~ N v~ O
d ~
a ~ o o o ~ O -~ N ,--y~ l~ O~
O W j v~ Ov 00 I~
I~ ~O N O ~ ~
N I~ O dW0 ~ 00 N d M d~ ~ l~ .--~ O
O O o0 cn v1 O M o0 O~
v0 v0 O N ~ ~ O o0 M O~ 00 0o N .~ ~ ,-~ ,-i ,~ ~n ~ ,-i ,-i .~ N ~ ~
M ~ O
in ~ ~ .
~ ue' ~ ~O ~
~' ~ ~ ~ p~ o~ p O d O ~
O ~ ~ ~ M
~ ~
O
~
C ~ ~ ~
'~ ~
N
N N ~ ~ ~ ~ N ~ ,."~_, oo N M O d~ ~ O oo .-i ~
_ o~o ~N~i ~O~ON~~ ~
~~O
~~m 00 00 M N -~ ,--i o 0'J
.~ .~ N o ~
~ ,-i o0 M
~--i ..-i ,~ ~
~ N ~ !~ ~ Oy N
t~ oNo O G1 ,~ ,-i v0 ,-i N I\ N O I\ ' ~ ' i N O ~ 00 I yj ~h ~ y0 M ~t N O_ ~ 00 p~
N O ~ ~ ~ ~ ~ ~ H
~ ~ ~ M
O
y oN~ .. i ~ O ap~
NM~ ~ '-i i~
~ O d~ ~ wt O O ~ ~ ~ O v0 0p CT' I~ v'i d' pp ~ [~ 00 ~O 00 M N O ~ 10 N
W 'c/- M O~ N M ~
U i N 01 ~~ .-~ V7 ~ d' DO d' n U7 O M \O O 00 M I~ 00 .-i oo ~t -~ .~ ~ OW ~ ,~
.-i ,--~ ,~ ..~
N
N
U
w W
U
U U
z~ N ~ o ~ w M N
~
d O M
~ ~ ~ N N
N
, N ~
.-, ~
00 M W ~ V~
~
~M.- ~~~~ ~ ' ~ ~ ~No~o ~~~~
N N ~ N M OM ~ ~ N Ov ~ ~ ~ ~
~
, M d. i i y j i N I~ ~ ,~ M 00 N oo v0 O ~ i l~
n ~ ~ ~ N
ri ~ 1 d. ~ Wd N oMO ,-i M ~ ~ N
O ~ ~ ~ ~D ~ N
N v0 O y0 M O O\ ,-, O1 ~n N
N ~ M ,..., N
N '' ~
N
M
C'1 ~ ~ " v0 ~ ,-y,;~'-' M N ' M
O vO cV N d' '-' ~n O O W O ~ ' l~ v'i O ~
' N
~
I~ M o0 N v0 00 d1 ~ ~ ~
00 l~ t~ ,~ V~ ~t O
op t~ N M O oo ~ ~ o N ~ d- N
M O o yh a ,--i n ,~ -~~
N N o pp N
N N
N ~. M , ~ I\ M ~ "
~ ' N ~ oo ~ O ~ ,-i M M p~ ~ oo O
N M O M O ~ ,~ ,~ tn op ,-WO N O ~ ,~ ~ ~ O~
Ov i M
M ~~~ ~ SON
N~ N
~
~n ~ ,-~ ~ ,-~
op yh M O oo ao ,-w p,- N M
M O ~ ~p ~
O p~ N N M N M ~ N
M M
~ ~ rp ,-M-~cn ~''~
N 0~0 t!j Op _ N N r ~ ~ ~
N M N N N M N N
M
~ vp ~ M
M i M
I~ N I~ ~ l~ ~O M .
W v0 ~1 d' ~ O N dW0 p -as v~ l~ p M ~' ,~
l~
O~ d' d~ N ~ ~ Do I~ d' O ~ ~ 00 ~~
oo N O ~t 00 00 N M N M M . ' ~ . 0 ~ N t i ~
N O N ~ ~,~ ; ~
~ ~ N O ~ y n 0 o O ~ n ~
O N ""~
~ o ~
O~ N N M ~O ,-~ o l~ N O~ N
M N Ov " t~ , ,~ ~ M
N M .~ Oy , W M -i ~
op ~ c ~n ~ O oo vp D N N ~ o0 Ov ~ d ~ ' ' ~ ' O
N v0 ~ Ov ,~ ~ ~t t~
O oNo m O ~ ~ d ~
~
N N M N M M ~; ~ N N , ~, ~ , M N ~ ~, ,n ~ ~ ~ 0 ~j v t~ N ~ OWE ~ ~.,y v o ~
~
O
WD N
v0 ~ ~ N N M ~ N ~ ~ N v0 ~
N M. 01 ~ ,-i G v " n 0 N
vj t~ O .-~ O ~ ,.-~ ~ 1 WO o0 ~ cYj r, v1 ~ ~ ~ oho 00 Ov ~
l~ N O c0 1 N' ~ ~ t~ ~ ~ i ~ d.
l M N O d' V7 O~ O d' ~ 00 ~ O~ l~ p l~ N O M M d' .--~
d' ~ ~D (V N N N ~ ~ ~ ,~
cn M M N .~ .--i~ ~p d~ N
N .~
~ .~-i O ~ (~7 ~ ~ N I~ ~ ~t N
~p t~ ~j ~ d~ cn ~
O o0 I~ ml' t~ N N ,--y~ N O v0 N ~ t0 O t~ p~ d~ ~n .~
N M N M M ~ ~ N ~ p ,~ 00 t~
O O O 01 l~ ~ ~O 01 '~ ~ 01 ~ 01 ~ M l~ 01 VW~
~ co ~
N of ~n t ~ O ,~ M N OW ~ ,-~
,m0 O (~ ~ o~ 00 N r t ~ oo t~
( M
O t~ N O N
M 00 N N M N ~ ~ ~ ~ N I~
M M M (~I
~ N M M ~ V~ ,d M O~ W' ('n Op0 ~ l~ M 0 ~ N ~ I~ op O ~ y0 ~ ~ ~ op ,~ 0 ~. O N O_v ~ I
v ~ ~ t ~ ~
M
tn o0 N ~ ~ ~ ~ ~ p~
N N M N ,-M ~ ~ ,~ ~ l ~
""' ,--y~ M N ~ ~ ,-i I~ N p~ O ,-, d1 ~ Ov -i t~ p\ 01 V'i N 1 0 00 ~ O~ dwD ~ oo Ov ~, .d." ~ O~
,-~ ~ O~ I~ I~ ~t O N
t~ O wo t~ N N ~D M .
O N wi ~n ~ ~ N
N N N N M M M ~.(j ~ ~ ~
N ~ N ~ M ~O I~
~--y - ,!, ,~ O\ ~rj ~ ~ M N ~p p ,..~_,~ ,-, o0 ,-i v0 uj ~ ~ d' ~p p ,~
~O
N N N N ~ N ~ ~ ~
N O
~
M ~t d' O ~ 01 M ~ M ~ ~ ~ ~ O~
d' O~ ~--i V~ ~ l~
OIL
~ 00 M O M I~ ~ 00 O _ ~
N O M ~O ~ p" ~ M N "
d' V7 -; O N N N N ~ M N O ~ 00 M op M M M ~ N ~ .-~ ,-~
O~ O~ ,~ O
, ~ v~
O
~ N ~ ~p ~
~ M ~ O ~ ~ N ~
~ "'~
O N M
N v , -, v0 v ~
~ 00 ~n o0 ~
O~ , M
N o0 O ~
Ov o0 0 ~
M W t O
U r..~ M r ,-.mD
G ~p ~ ~y n I
N y0 ,~ ,~ y O
p N .-~ t~ OW-' ~
o0 r, N N M N w0 00 M M
M N O v0 ~F oo ~ ~ M dw0 ~p , O Vi O I~ , N l~
~ ~ i oo v~
d' t~ cn o0 ~ ~ V
~
~O~~NO~ i ~~N~N oc i ~M~
n ~~N~o N N N N M M M ~ .-~ .-t ~ N ~ ~ ~ ~
N ~ N ~ ~ N N
U
N
\ \ w \ \
ry --i --,,~ \ .
:b ~ U U U ~ U U
~
o p et N ~n U ~o o~
w z \ N d\ W O v0 M
N oo d' N M
U O~ oo ~O O O~ ~O
.
N .
- N ~O V7 O~ l~
~ N o0 ~ ~ p ~ I~ ~ N
~
O W M M t \ 10 00 l~ ~ 00 ~. d' In d' ~
N ~' ~ W -a M ,~ ,~ N ,~ ,~ ,~ ,-~ yp -7 ~
~
.
a o o o ~, H w N ~. ~ a ~ ~' ~ ~ za o H
U
U U U U U
~1 0om ~t~nU vo ~YN N WO v0 N D ao' N W d N
OvOWOO O~
O M ~OMd N
' v ueN ~_ ~
d d' ' w N
.b .Y
U
~z P1 O ~ M ~~Ol~
~
b 'b a~ o ~ >, ~ ~ ,n ~ ro ~
fl a. ~ .b ' U G > . U
'~ a' .~
' ~ b ~' ~ U v ~' ~
O O _a!
O ' 4-, ~
t-"
O ~
j ~
~
~~O
".d c C O
~ c V
t U O [s c~ -. ~' ..''"'.rU O ~ ~
U N
N ~ U ~.0 '"' ,.~'~'G ~ >
O C w ~ U ~ O O
~ O cC U a.a ' ~ N
.
b ~y.~ ~ rn b b ~
N ~ p ~ ~ ~ >' U ~ N
> 3 o c' ~ V' ..~.
~ o ' ~
~
3 ~
v >
o . >, U ~n U v~ d ' U s-. c ~ O .N
C ~ . p N
~ COOpU N
. ~~ .
G A
b 'C
,4; N ~
CL iti .
f~ ,~ O .~i N ~ .C b p ~' ~
~ :~ ~' Y G
c~ by O ~
~"'"' ~ ~ 0 .. c~
.- .C O ~ '~ ~ ~
O ~ .,., ai ~ ~ ~
~ .
'b bA 'b G
~ ~ bA ~ b c ' ~ cC
N
'" O
~
~ ' d aj~ .~ ~ O
N y ~ ~ i. ~
'b O ~ '~ .
U
~.rN ~c~~ct; ~,.
~~ONro cn ~ ~..' O '~,~ N
V ~ ~
ct3 O~-''O ~ rbU..9~
~ ~U,, O
' ~
can O ~ >o cG ~
p .u ~
~ ~
b0 ~i",-Cc ~ ~O.O~~
C ~ b U
O au ,~ 4-r ~'-'U
~ ~ N ~
' O U cn ~
~ 4. 4-n O w by > >1 ~ ~
~
b4. b ~C,~at'.'~fO~ b ' 'L7 N ,~V~ U
U ~ ' s"-~ y U
~ c c , U
~ ~G ~d P~-i '~ . by ~ O ~ ~
_ ~ ~ .
U ~ ~ ~ 3 ..~, 'o>,~~.~,C~p ~rUn ~ ~ ~ ~ ~ ~ cd ~
b ~
0 Q! ~ N ~ '~ o ~ >, fn y O 'C1 T 'G
~ y ~ ou ~ ~ ~ , ~ 3 b ., :~ ' o~n ~
~
., O ~ >, f cN
~
r" N
~ ~ ~ V ~ O
G ~ , .
O , i ~, . ~ w w ~ ' 'a a ~
. o ;n :~
w ~
o U
~ 'O
.y~,~ ~ ~ cd ~ O c~ ,,~ .
i~ y s.~. ~+U, ~
'G >, ~-'UO UO S c~ ~ ~ ~b ~ ~ ~ O'' F' ~" v' ~ ~ '~~ .C
'~
i~ ~ ~ ~ .c ~ ~ y ~ ~. ~
'~ '~ ro ~ 3 ~
f~3 3 3 W ~ 3 p V U U G b ~ ~ ~
T ~ >> T v~ .fl ~
~ >mn d U G ~ V ~ ~ N
i T . ~
~ n p a~ ~ ~ U ~
oo ~ . ~ ~ ~ ~ , o ~ ~ ~ .c ~
.
a~
,.. ~ . y b ~ c a~ ;~ ~
~
H
as ~U:.~~..7 ~~ ,..a>.~ E
o a, o ~.~.~ -~
N
~ ~ ~
~. . .
N
0 0 o H o z a ~ a z o aa ios ri N O W ~N V y ~ ~ O
N ~ W O "~U ~ N O ~+~, W
ri v~ O y ,~, by o0 v~
_~G ~ ,~ '~ II ~ 'LJ 0 ~ U ~ ri O ~ ~ II p ""' ~ m p G ~ II
N ~ ~ ~ ~ ~ ~ ~ pp O ~ a_ ~ ~ (/~ c''~C .fl E'' VV '~ ~ ~ W W °' O ~ ..~ O
y ,.~ O w ~ ~ ~ ~ N cC pp O
P~ ~ ~ w p ° II
~'' S ~ W ~ .fl ~ O ~ can ~ ~ OV11 ~ ~ ~ 0 O
P, ~ W oo P, °? W ~ II .4» ~ w ~ Q, °?
ti 0 0 00 ,-, ~ , a~
.-. ~ ~ Ov ~ ~ ,~, d;
001 O~O N~~ sv~ (~M
U U U W ~ ~ o0 oMO ~ ~ x o p ~p d- '-, ~ c~
_>; >; o ~u o " ~r . ~, C ~ 'Y
U U U ~~m ~dN'.~~ o~'~''~, i ~ ' ~ ~! o°'o c'.' d~ N ~ °° '~ ~ o ~ o O O ~ O ~ ~ M a N ~ C/) ~ ~ ~ ~ C
w u, ~ w ~ N ~-; 00 ~ ~ pp M ~ 01 cat N _ U ~ d' ~~4 ~ '~
~1 ~ o '~ N C7 ~ o 0 N N ~ N c~ ~' N ~ ,..~~ ~ ~ ~ ~' N x 0 0 ~ o fs! o ;b ~'~' rig ~ E--~ ~ '~ :y-'G' ~ U
V P~ Pa r~-yG UJ ~~ ~ ~ ~ 0~1 ~.,,.,C ~. ~+.; ~ C/~ N ~
,~ o ~~ o ~ ~ I~ ~ o .~ ~
N N V ~ ~ U ~t ,~ v~ (/~ .x N cd b ~ ~ ~ ~ ~ N
d' ~ Q, ~ ~ N Z G..i '~. L~ c~ d 'r~', ~ ~ W ~
'G N .Wn .
~--~ b ' U ~ ~ c~ cct ~ j, cad d" ~ ~d ~ ~' U c~G ~ c~ U O b4 N w r~-' V ~ ~ O
Y i~ .~.n y Ci U cn cd N m ~ 0 p" c~S cd U c~ O ~ ~ ~ ~ ~ N~ cC ~ ~ i~ .C
U v~
U
O U ~ ~ O ~ Y y ~" U O i., ~ ~ U o ~'"a > ~ ' ~ ,.., x pa ,.o on a~ ~ ~ p, ~o ~ ~ i ~ ~ ~ w O ccS ~ V ~ ~." U cC U O ~ ~ Q
~H
a~ O ~
G ~~ ~ ~ ~ ~ ~ ~ ~ ~ b ° .o ~'~ ~' o.~,:'o.fl ~~~~k ~.on~' U ~ ~~ ~ U U U ~ .r. ~ ~~ ~ ~ W U U
U O .
O" f~ ~ Ca, ~ Pa p~ ~ ~ ~' Q, ~~ ~ ~ ~ a °' U
øyy. U at y~ o ~ ~ pa a. ~ c~~C 'C
rUn ~ rUn .~~-~ ~ ~ ~ 4~ bA ~ w ~ ~ l~ ~ cad F.
N
U
U
d a~ ~ ~ ~ ~ w ~w CU7 y v ~'n l~ l o , o .~ ., ~, ~, '~.
'v~ o ~, a~ N
0 4:
~.,r ~r ~ ~.
0 0 ~ ~ ~ I
°p ~'u on H U '.~ M ~ a' ~ ~ ~ o ° o o ~ ~ x P, ~' ° vo ~n II II II
U 'O ~ w U N U ~ N
~4 E"~ 7 ~. Z ~ ~ Gr ~ Ul ~ Cf~
G3 ' ~ ~ t7p .
_. ~ ~ V1 ~." 'b O~ ~ ~ n O
c~ ~ ~ ' I~ O ~ ~ "', y.., y ~ 10 ~ . ~-y N ,-~-i 'C ~h CO ~ 01 _.
W N ~ ~ d' N N ~ C7 00 ~ ~~ ~ .~ a o O
M 'C v' ~ .G Q,' N U o0 ~ w O ~., ~ "' M
~ W ~ O ~ O ,~ ~ j ~ ~ ~ E-~ W ~, ~ ~ ~ ~ A., O N ~ ~ ~ U ~ ~ p ~ ~ ~ O ~ o ~ O~ .b ~--i N ~,> U~yN G N ~ ~~ ~" ~ OU1 ~ ~M
M
o°°, ~ ~ o°n c\°n .'d o, ;Zs v av ~ ~r .. ai o, o, ~ ~ o ~i~i 'J ai r, U ~ ~ N y '~ _. ,~; ~O ~ .i', Tr' ~ cCt c~ ~ .~. M 'C7 y/7 ~ M '4j .n-a ~ ~''~ ''y ~ G4 O~ ~ N ~ N a~ a.~ N
V N U ~' ~' co ~ ,~ ~ s. ~ v O ~ N ~ N
'C ,_, ~ 0 0 0 ~ ~ '~ °,~~° ~~', ~ ~ b ~ GA x ~j ~ W °~
~ '~W oo ~ a ~ ~ o ~ ~ ~ o ~ o N a~ oo -fl ~ .o ~ ~' o, .>~ :~ ~ '~ ,~ ~ a, r--i ~ ° M o, o Z ° ',~ ,~ ~ ov 3 ~ ~ ~ p~''" '~ ~ ~ o ri ~ ~ ~.
c~ ov x~N~~ ~Me~~w~ w~x~~~~~ c~Nz°.Ua~N~
N U ~ r3 N ~ bA rUn U 'O
S"" ~ ,.~~~ N ~ :a~.~ cYd ~ C/~ U U ~ '~ :C ~~ ~ ~ N 'Cy ~ ° y '~"' O" ~ N N U 4j ii r5'a ~ N O ~ ~ ~ ~ U ~ .~ ~ U a.~
o U ,~ a, ~ a~ ~ o ~. a~ ~ Z ~ w ~ ~ A, ~b ° ~ °° ~ ~ ~ 3 0.~ o ~ ~ ~ on ~
i . a ~ a~ a ø, o ~ ~ o o. ~. .c o ~ c'~'. ,~ R'" ~ p' N '' y ~n ~ .i~ ~ ~ ~y~" i o w W'-' 27 0 ~ w >~
o ~ O ,~ .C vW -~~ ~ ~ '~C ~ U c~ ~ ~ N ~ a:.
o ~,'~ ~ y ~ ~ a~
'i ~ '~ N 'i N ~ ~ ~ ~ ~ ~ '~ >' U . i ~ °~ .A.
en ~' ~ a~ ~s °on ~ ~ ~ °on ~ ~ a~'~ ~ o ~ H ~ ~ ~ p., -fl ~ ,o ø' bn °' ~ 'ai ~, ~ o ~ 'o ~ ~E ~ ~ ~ ~ ~ ~0."~~'~o one 3 °.~u'~
~ rn a~ ~ .~ d ~ ~ a. v~ d .l~ ~
U
N c~ v~ U
W P, P., .n'~, U ~ E-~i b Ei ~.
Y
~1 U
Cf~ ~
~ N ~ ~ ~
N
~ o L7 ~_ ~ ~ ~ vi U ~
U U
o, ~, Ei Q', ~ ~ ~n P~
~
:~ ~
_ d' 00 at G
N~ U ~ .-~-~ ~ N 7 cHi ~r G_ .C N ~ -.
cG O ['~ ~ ~
p..i Vii.
~ U o ~ ~
~ a.
_N r,~; ~ _t. N . ;. ..
~ ~ G' G' ~
p~~..,v~ ,~ f~ v 0.1 N
~ ~ ~ U
C~
d :
~
o a~
~ b a~
' ~~
:
.
~
t.
i .~ ~ .d 'c .a v' U U
N N
N
Y Y
~ n O ~ i~
~
VO 7.. _ ~ p ' i ., n O ~ w P, cue.
H
<110> INCYTE GENOMICS, INC.
RAUMANN, Brigette E.
Griffin, Jennifer A.
HAFALIA, April J.A.
BATRA, Sajeev YAO, Monique G.
FORSYTHE, Ian J, RAMKUMAR, Jayalaxmi DUGGAN, Brendan M.
BAUGHN, Mariah R.
AZTMZAI, Yalda WARREN, Bridget A.
LAL, PREETI G.
GIETZEN, Kimberly J.
WALIA, Narinder K.
BECHA, Shanya D.
TANG, Y. Tom YUE, Henry CHIN, Anna M.
<120> TRANSPORTERS AND ION CHANNELS
<130> PF-0980 PCT
<140> To Be Assigned <141> Herewith <150> 60/293,722; 60/296,881; 60/304,593; 60/305,105 <151> 2001-05-25; 2001-06-08; 2001-07-10; 2001-07-12 <160> 18 <170> PERL Program <210> 1 <211> 473 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 1561248CD1 <400> 1 Met Gly Pro Gly Pro Pro Ala Ala Gly Ala Ala Pro Ser Pro Arg Pro Leu Ser Leu Val Ala Arg Leu Ser Tyr Ala Val Gly His Phe Leu Asn Asp Leu Cys Ala Ser Met Trp Phe Thr Tyr Leu Leu Leu Tyr Leu His Ser Val Arg Ala Tyr Ser Ser Arg Gly Ala Gly Leu Leu Leu Leu Leu Gly Gln Val Ala Asp Gly Leu Cys Thr Pro Leu Val Gly Tyr Glu Ala Asp Arg Ala Ala Ser Cys Cys Ala Arg Tyr Gly Pro Arg Lys Ala Trp His Leu Val Gly Thr Val Cys Val Leu Leu Ser Phe Pro Phe Ile Phe Ser Pro Cys Leu Gly Cys Gly Ala Ala Thr Pro Glu Trp Ala Ala Leu Leu Tyr Tyr Gly Pro Phe Ile Val Ile Phe Gln Phe Gly Trp Ala Ser Thr Gln Ile Ser His Leu Ser Leu Ile Pro Glu Leu Val Thr Asn Asp His Glu Lys Val Glu Leu Thr Ala Leu Arg Tyr Ala Phe Thr Val Val Ala Asn Ile Thr Val Tyr Gly Ala Ala Trp Leu Leu Leu His Leu Gln Gly Ser Ser Arg Val Glu Pro Thr Gln Asp Ile Ser Ile Ser Asp Gln Leu Gly Gly Gln Asp Val Pro Val Phe Arg Asn Leu Ser Leu Leu Val Val Gly Val Gly Ala Val Phe Ser Leu Leu Phe His Leu Gly Thr Arg Glu Arg Arg Arg Pro His Ala Glu Glu Pro Gly Glu His Thr Pro Leu Leu Ala Pro Ala Thr Ala Gln Pro Leu Leu Leu Trp Lys His Trp Leu Arg Glu Pro Ala Phe Tyr Gln Val Gly Ile Leu Tyr Met Thr Thr Arg Leu Ile Val Asn Leu Ser Gln Thr Tyr Met Ala Met Tyr Leu Thr Tyr Ser Leu His Leu Pro'Lys Lys Phe Ile Ala Thr Ile Pro Leu Val Met Tyr Leu Ser Gly Phe Leu Ser Ser Phe Leu Met Lys Pro Ile Asn Lys Cys Ile Gly Arg Asn Met Thr Tyr Phe Ser Gly Leu Leu Val Ile Leu Ala Phe Ala Ala Trp Val Ala Leu Ala Glu Gly Leu Gly Val Ala Val Tyr Ala Ala Ala Val Leu Leu Gly Ala Gly Cys Ala Thr Ile Leu Val Thr Ser Leu Ala Met Thr Ala Asp Leu Ile Gly Pro His Thr Asn Ser Gly Ala Phe Val Tyr Gly Ser Met Ser Phe Leu Asp Lys Val Ala Asn Gly Leu Ala Val Met Ala Tle Gln Ser Leu His Pro Cys Pro Ser Glu Leu Cys Cys Arg Ala Cys Val Ser Phe Tyr His Trp Ala Met Val Ala Val Thr Gly GIy Val GIy Val Ala Ala Ala Leu Cys Leu Cys Ser Leu Leu Leu Trp Pro Thr Arg Leu Arg Arg <210> 2 <211> 201 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 4539525CD1 <400> 2 Met Gln Ala Gly Asp Arg Leu Val Ala Val Ala Gly Glu Ser Val Glu Gly Leu Gly His Glu Glu Thr Val Ser Arg Ile Gln Gly Gln Gly Ser Cys Val Ser Leu Thr Val Val Asp Pro Glu Ala Asp Arg Phe Phe Ser Met Val Arg Leu Ser Pro Leu Leu Phe Leu GIu Asn Thr Glu Ala Pra AIa Ser Pro Gln Gly Ser Ser Ser Ala Ser Leu Val Glu Thr Glu Asp Pro Ser Leu Glu Asp Thr Ser Val Pro Ser Val Pro Leu Gly Ser Arg Gln Cys Phe Leu Tyr Pro Gly Pxo Gly Gly Ser Tyr Gly Phe Arg Leu Ser Cys Val Ala Ser Gly Pro Arg Leu Phe Ile Ser Gln Val Thr Pro Gly Gly Ser Ala Ala Arg Ala Gly Leu Gln Val Gly Asp Val Ile Leu Glu Val Asn Gly Tyr Pro Val Gly Gly Gln Asn Asp Leu Glu Arg Leu Gln Gli1_Leu Pro Glu Ala Glu Pro Pro Leu Cys Leu Lys Leu Ala Ala Arg~Ser Leu Arg 170 175 1 ~ 180 Gly Leu Glu Ala Trp Ile Pro Pro Gly Ala Ala Glu Asp Trp Ala 185 190 ~' 195 Leu Ala Ser Asp Leu Leu <210> 3 <211> 237 <212> PRT
<213> Homo Sapiens <220>
<221> misc feature <223> Incyte ID No: 72210802CD1 <400> 3 Met Asn Pro Ala Asp Val AIa GIn Ser Thr Leu Pro Leu Ala Ser Ser Asp Val Ser Leu Ile Ala Leu Phe Trp Gln Ala His Trp VaI
Val Lys Cys Val Met Leu Gly Leu Leu Ser Cys Ser Val Trp Val Trp Ala Ile Ala Ile Asp Lys Ile Leu Leu Tyr Ala Arg Thr Lys Arg Ala Met Asp Lys Phe Glu Gln Ala Phe Trp Ser Gly Gln Ser Ile Glu Glu Leu Tyr Arg Ala Leu Ser Ala Lys Pro Thr Gln Ser 80 g5 90 3l19 Met Ala Ala Cys Phe Val Ala Ala Met Arg Glu Trp Lys Arg Ser 95 ~ 100 105 Phe Glu Ser Gln Ser Arg Ser Phe Ala Gly Leu Gln Ala Arg Ile Asp Lys Val Met Asn Val Ser Ile Ala Arg Glu Val G1u Arg Leu Glu Arg Arg Leu Leu Val Leu Ala Thr Val Gly Ser Ala Gly Pro Phe Val Gly Leu Phe Gly Thr Val Trp Gly Tle Met Ser Ser Phe Gln Ser IIe Ala Ala Ser Lys Asn Thr Ser Leu Ala Val VaI Ala Pro Gly Ile Ala Glu Ala Leu Phe Ala Thr Ala Ile Gly Leu Ile Ala Ala Ile Pro Ala Thr Ile Phe Tyr Asn Lys Phe Thr Ser Glu Val Asn Arg Gln Ala Ala Arg Leu Glu Gly Phe Ala Asp Glu Phe Ser Ala Ile Leu Ser Arg Gln IIe Asp GIu Arg Gly <210> 4 <211> 947 <212> PRT
<213> Homo sapiens <220>
<221> misc feature <223> Incyte ID No: 2469624CD1 <400> 4 Met Glu Glu Met Phe His Lys Lys Ser Glu Ala Val Arg Arg Leu Val Glu Ala Ala Glu Glu Ala His Leu Lys His Glu Phe Asp Ala Asp Leu Gln Tyr Glu Tyr Phe Asn Ala Val Leu Ile Asn Glu Arg Asp Lys Asp Gly Asn Phe Leu Glu Leu Gly Lys Glu Phe Ile Leu Ala Pro Asn Asp His Phe Asn Asn Leu Pro Val Asn Ile Ser Leu Ser Asp Val Gln Val Pro Thr Asn Met Tyr Asn Lys Gly Ile Lys Trp Glu Pro Asp Glu Asn Gly VaI Ile AIa Phe Asp Cys Arg Asn Arg Lys Trp Tyr Ile Gln Ala Ala Thr Ser Pro Lys;Asp Val Val Ile Leu Val Asp Val Ser Gly Ser Met Lys Gly Leu Arg Leu Thr Ile Ala Lys Gln Thr Val Ser Ser Ile Leu Asp Thr Leu Gly Asp Asp Asp Phe Phe Asn Ile Ile Ala Tyr Asn Glu Glu Leu His Tyr Val Glu Pro Cys Leu Asn Gly Thr Leu Val Gln Ala Asp Arg Thr Asn Lys Glu His Phe Arg Glu His Leu Asp Lys Leu Phe Ala Lys Gly Ile Gly Met Leu Asp Ile Ala Leu Asn Glu Ala Phe Asn Ile Leu Ser Asp Phe Asn His Thr Gly Gln Gly Ser Ile Cys Ser Gln Ala Ile Met Leu Ile Thr Asp Gly Ala Val Asp Thr Tyr Asp Thr Ile Phe Ala Lys Tyr Asn Trp Pro Asp Arg Lys Val Arg Ile Phe Thr Tyr Leu Ile Gly Arg Glu Ala Ala Phe Ala Asp Asn Leu Lys Trp Met Ala Cys Ala Asn Lys Gly Phe Phe Thr Gln Ile Ser Thr Leu Ala Asp Val Gln Glu Asn Val Met Glu Tyr Leu His Val Leu Ser Arg Pro Lys Val Ile Asp Gln GIu His Asp Val Val Trp Thr Glu Ala Tyr Ile Asp Ser Thr Leu Thr Asp Asp Gln Gly Pro Val Leu Met Thr Thr Val Ala Met Pro Val Phe Ser Lys Gln Asn Glu Thr Arg Ser Lys Gly Ile Leu Leu Gly Val Val Gly Thr Asp Val Pro Val Lys Glu Leu Leu Lys Thr Ile Pro Lys Tyr Lys Leu Gly Ile His Gly Tyr Ala Phe Ala Ile Thr Asn Asn Gly Tyr Ile Leu Thr His Pro Glu Leu Arg Leu Leu Tyr Glu Glu Gly Lys Lys Arg Arg Lys Pro Asn Tyr Ser Ser Val Asp Leu Ser Glu Val Glu Trp Glu Asp Arg Asp Asp VaI Leu Arg Asn Ala Met VaI Asn Arg Lys Thr Gly Lys Phe Ser Met Glu Val Lys Lys Thr Val Asp Lys Gly Lys Arg Val Leu Val Met Thr Asn Asp Tyr Tyr Tyr Thr Asp Ile Lys Gly Thr Pro Phe Ser Leu Gly Val Ala Leu Ser Arg Gly His GIy Lys Tyr Phe Phe Arg GIy Asn Val Thr IIe Glu Glu Gly Leu His Asp Leu Glu His Pro Asp Val Ser Leu Ala Asp Glu Trp Ser Tyr Cys Asn Thr Asp Leu His Pro GIu His Arg His Leu Ser Gln Leu Glu Ala Ile Lys Leu Tyr Leu Lys Gly Lys Glu Pro Leu Leu Gln Cys Asp Lys Glu Leu Ile Gln Glu Val Leu Phe Asp Ala Val Val Ser Ala Pro Ile Glu Ala Tyr Trp Thr Ser Leu Ala Leu Asn Lys Ser Glu Asn Ser Asp Lys Gly Val Glu Val Ala Phe Leu Gly Thr Arg Thr Gly Leu Ser Arg Ile Asn Leu Phe Val Gly Ala Glu Gln Leu Thr Asn Gln Asp Phe Leu Lys Ala Gly Asp Lys Glu Asn Ile Phe Asn Ala Asp His Phe Pro Leu Trp Tyr Arg Arg Ala Ala Glu Gln Ile Pro Gly Ser Phe VaI Tyr Ser Ile Pro Phe Ser Thr Gly Pro Val Asn Lys Ser Asn Val Val Thr Ala Ser Thr Ser Ile Gln Leu Leu Asp Glu Arg Lys Ser Pro Val Val Ala Ala Val Gly Ile Gln Met Lys Leu Glu Phe Phe Gln Arg Lys Phe Trp Thr Ala Ser Arg Gln Cys Ala Ser Leu Asp Gly Lys Cys Ser Ile Ser Cys Asp Asp Glu Thr Val Asn Cys Tyr Leu Ile Asp Asn Asn Gly Phe Ile Leu Val Ser Glu Asp Tyr Thr Gln Thr Gly Asp Phe Phe Gly Glu Ile Glu Gly Ala Val Met Asn Lys Leu Leu Thr Met Gly Ser Phe Lys Arg Ile Thr Leu Tyr Asp Tyr Gln Ala Met Cys Arg Ala Asn Lys Glu Ser Ser Asp Gly Ala His Gly Leu Leu Asp Pro Tyr Asn Ala Phe Leu Ser Ala Val Lys Trp Ile Met Thr Glu Leu Val Leu Phe Leu Val Glu Phe Asn Leu Cys Ser Trp Trp His Ser Asp Met Thr Ala Lys Ala Gln Lys Leu Lys Gln Thr Leu Glu Pro Cys Asp Thr Glu Tyr Pro Ala Phe Val Ser Glu Arg Thr Ile Lys Glu Thr Thr Gly Asn Ile Ala Cys Glu Asp Cys Ser Lys Ser Phe Val Ile Gln Gln Ile Pro Ser Ser Asn Leu Fhe Met Val Val Val Asp Ser Ser Cys Leu Cys Glu Ser Val Ala Pro Tle Thr Met Ala Pro Ile Glu Ile Arg Tyr Asn Glu Ser Leu Lys Cys Glu Arg Leu Lys Ala Gln Lys Ile Arg Arg Arg Pro Glu Ser Cys His Gly Phe His Pro Glu Glu Asn Ala Arg Glu Cys Gly Gly Ala Pro Ser Leu Gln Ala Gln Thr Val Leu Leu Leu Leu Pro Leu Leu Leu Met Leu Phe Ser Arg <210> 5 <211> 461 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 7488292CD1 <400> 5 Met Asp Ile Leu Leu Asp Ala Glu Glu Trp Glu Asp Phe Glu Ser Ser Pro Leu Leu Pro Glu Pro Leu Ser Ser Arg Tyr Lys Leu Tyr Glu Ala Glu Phe Thr Ser Pro Ser Trp Pro Ser Thr Ser Pro Asp Thr His Pro Ala Leu Pro Leu Leu Glu Met Pro Glu Glu Lys Asp Leu Arg Ser Ser Asn Glu Asp Ser His Ile Val Lys Ile Glu Lys Leu Asn Glu Arg Ser Lys Arg Lys Asp Asp Gly Val Ala His Arg Asp Ser Ala Gly Gln Arg Cys Ile Cys Leu Ser Lys Ala Val Gly Tyr Leu Thr Gly Asp Met Lys Glu Tyr Arg Ile Trp Leu Lys Asp Lys His Leu Ala Leu Gln Phe Ile Asp Trp Val Leu Arg Gly Thr Ala Gln Val Met Phe Ile Asn Asn Pro Leu Ser Gly Leu Ile Ile Phe Ile Gly Leu Leu Ile Gln Asn Pro Trp Trp Thr Ile Thr Gly Gly Leu Gly Thr Val Val Ser Thr Leu Thr Ala Leu Ala Leu Gly Gln Asp Arg Ser Ala.Ile Ala Ser Gly Leu His Gly Tyr Asn Gly Met Leu Val Gly Leu Leu Met Ala VaI Phe Ser Glu Lys Leu Asp Tyr Tyr Trp Trp Leu Leu Phe Pro Val Thr Phe Thr Ala Met Ser Cys Pro Val Leu Ser Ser Ala Leu Asn Ser Ile Phe Ser Lys Trp Asp Leu Pro Val Phe Thr Leu Pro Phe Asn IIe Ala Val Thr Leu Tyr Leu Ala Ala Thr Gly His Tyr Asn Leu Phe Fhe Pro Thr Thr Leu Val Glu Pro Val Ser Ser Val Pro Asn Ile Thr Trp Thr Glu 275 280 . 285 Met Glu Met Pro Leu Leu Leu Gln Ala Ile Pro Val Gly Val Gly Gln Val Tyr Gly Cys Asp Asn Pro Trp Thr Gly Gly Val Phe Leu Val Ala Leu Phe Ile Ser Ser Pro Leu Ile Cys Leu His Ala Ala 320 . 325 330 Ile Gly Ser Ile Val Gly Leu Leu Ala Ala Leu Ser Val Ala Thr Pro Phe Glu Thr Ile Tyr Thr Gly Leu Trp Ser Tyr Asn Cys Val Leu Sex Cys Ile Ala Ile Gly Gly Met Phe Tyr Ala Leu Thr Trp Gln Thr His Leu Leu Ala Leu Ile Cys Ala Leu Phe Cys Ala Tyr Met Glu Ala Ala Ile Ser Asn Ile Met Ser Val Val Gly Val Pro Pro Gly Thr Trp Ala Phe Cys Leu Ala Thr Ile Ile Phe Leu Leu Leu Thr Thr Asn Asn Pro Ala Ile Phe Arg Leu Pro Leu Ser Lys Val Thr Tyr Pro Glu Ala Asn Arg Ile Tyr Tyr Leu Thr Val Lys Ser Gly Glu Glu Glu Lys Ala Pro Ser Gly Glu <210> 6 <211> 555 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 7236815CD1 <400> 6 Met Ser Gly Ile Gln Gly Thr Arg Thr Tyr Pro Gly Ala Gly Asp Thr Ser Asp Leu Lys Tyr Pro Leu Ala Thr Arg Leu Arg Glu Ala Leu Thr Glu Ala Arg Phe His Gln Leu Phe Arg Gly Glu Glu Gln Glu Pro Glu Leu Pro Glu Glu Arg Gly Phe Pro Arg Leu Phe Gly Leu Trp Arg Leu Arg Ala Arg Ala Cys Ser Gly Thr Gly Ala Trp Arg Leu Leu Leu Ala Arg Leu Pro Ala Leu His Trp Leu Pro His Tyr Arg Trp Arg Ala Trp Leu Leu Gly Asp Ala Val Ala Gly Val Thr Val Gly Ile Val His Val Pro Gln Gly Met Ala Phe Ala Leu Leu Ala Ser Val Pro Pro VaI Phe Gly Leu Tyr Thr Ser Phe Phe Pro Val Leu Ile Tyr Ser Leu Leu Gly Thr Gly Arg His Leu Ser Thr Gly Thr Phe Ala Ile Leu Ser Leu Met Thr Gly Ser Ala Val Glu Arg Leu Val Pro Glu Pro Leu Val Gly Asn Leu Ser Gly Ile Glu Lys Glu Gln Leu Asp Ala Gln Arg Val Gly Val Ala Ala Ala Val Ala Phe Gly Ser Gly Ala Leu Met Leu Gly Met Phe Val Leu Gln Leu Gly Val Leu Ser Thr Phe Leu Ser Glu Pro Val Val Lys Ala Leu Thr Ser Gly Ala Ala Leu His Val Leu Leu Ser Gln Leu Pro Ser Leu Leu Gly Leu Ser Leu Pro Arg GIn Ile Gly Cys Phe Ser Leu Phe Lys Thr Leu Ala Ser Leu Leu Thr Thr Leu Pro Arg Ser Ser Pro Ala GIu Leu Thr Ile Ser Ala Leu Ser Leu Ala Leu
Following purification, the GST moiety can be proteolytically cleaved from TRICH at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffmity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QLAGEN).
Methods for protein expression and purification are discussed in Ausubel (1995, su ra, eh. 10 and 16).
Purified TRICH obtained by these methods can be used directly in the assays shown in Examples XVII, XVIII, and XIK where applicable.
XIV. Functional Assays TRICH function is assessed by expressing the sequences encoding TRICH at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA
expression. Vectors of choice include PCMV SPORT plasmid (Invitrogen, Carlsbad CA) and PCR3.1 plasmid (Invitrogen), both of which contain the cytomegalovirus promoter. 5-10 ,ug of recombinant vector are transiently transfected into a human cell line, for example, an endothelial or hematopoietic cell line, using either liposome formulations or electroporation. 1-2 /,cg of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontrausfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify trausfected cells expressing GFP
or CD64-GFP and to evaluate the apoptotic state of the cells and other cellular properties. FCM
detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA
with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometxy are discussed in Ormerod, M.G. (1994) Flow C ometry, Oxford, New York NY.
The influence of TRICH on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding TRICH and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobuliu G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY). mRNA can be purified from the cells using methods well known by those of skill in the art.
Expression of mRNA encoding TRICH and other genes of interest can be analyzed by northern analysis or microarray techniques.
3o XV. Production of TRICH Specific Antibodies TRICH substantially purified using polyacrylamide gel electrophoresis (PAGE;
see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize animals (e.g., rabbits, mice, etc.) and to produce antibodies using standard protocols.
Alternatively, the TRICH amino acid sequence is analyzed using LASERGENE
software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, su ra, ch. 11.) Typically, oligopeptides of about 15 residues in length are synthesized using an ABI 431A
peptide synthesizer (Applied Biosystems) using FMOC chemistry and coupled to KLH (Sigma-Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, supra.) Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide and anti-TRICH activity by, for example, binding the peptide or TRICH to a substrate, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.
XVI. Purification of Naturally Occurring TRICH Using Specific Antibodies Naturally occurring or recombinant TRICH is substantially purified by i_m_m__unoafhnity chromatography using antibodies specific for TRICH. An immunoaffinity column is constructed by covalently coupling anti-TRICH antibody to an activated chromatographic resin, such as CNBr-activated SEPHAROSE (Amersham Biosciences). After the coupling, the resin is blocked and washed according to the manufacturer's instructions.
Media containing TRICH are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of TRICH (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/TRICH binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and TRICH is collected.
XVII. Identification of Molecules Which Interact with TRICH
Molecules that interact with TRICH may include transporter substrates, agonists or antagonists, modulatory proteins such as G(3~y proteins (Reimann, supra) or proteins involved in TRICH
localization or clustering such as MAGUKs (Craven, supra). TRICH, or biologically active fragments thereof, are labeled with luI Bolton-Hunter reagent. (See, e.g., Bolton A.E.
and W.M. Hunter (1973) Biochem. J. 133:529-539.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled TRICH, washed, and any wells with labeled TRICH
complex are assayed. Data obtained using different concentrations of TRICH are used to calculate values for the number, affinity, and association of TRICH with the candidate molecules.
Alternatively, molecules interacting with TRICH are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989) Nature 340:245-246, or using commercially available kits based on the two-hybrid system, such as the MATCHMAKER system (Clontech).
TRICH, or fragments thexeof, are expressed as fusion proteins with the DNA
binding domain of Gal4 or lexA, and potential interacting proteins are expressed as fusion proteins with an activation domain.
Interactions between the TRICH fusion protein and the TRICH interacting proteins (fusion proteins with an activation domain) reconstitute a transactivation function that is observed by expression of a reporter gene. Yeast 2-hybrid systems are commercially available, and methods fox use of the yeast 2-hybrid system with ion channel proteins are discussed in Niethammer, M. and M. Sheng (1998, Methods Enzymol. 293:104-122).
TRICH may also be used in the PATHCALLING process (C~traGen Corp., New Haven CT) which employs the yeast two-hybrid system in a high-throughput manner to determine all interactions between the proteins encoded by two large libraries of genes (Nandabalan, K, et al. (2000) U.S.
Patent No. 6,057,101).
Potential TRICH agonists or antagonists may be tested for activation or inhibition of TRICH
ion channel activity using the assays described in section XVIIZ.
XVIII. Demonstration of TRICH Activity Ion channel activity of TRIGH is demonstrated using an electrophysiological assay for ion conductance. TRICH can be expressed by transforming a mammalian cell line such as COS7, HeLa or CHO with a eukaryotic expression vector encoding TRICH. Eukaryotic expression vectors are commercially available, and the techniques to introduce them into cells are well known to those skilled in the art. A second plasmid which expresses any one of a number of marker genes, such as 13-galactosidase, is co-transformed into the cells to allow rapid identification of those cells which have taken up and expressed the foreign DNA. The cells are incubated for 48-72 hours after trausformation under conditions appropriate for the cell line to allow expression and accumulation of TRICH and 13-galactosidase.
Transformed cells expressing 13-galactosidase are stained blue when a suitable colorimetric substrate is added to the culture media under conditions that are well known i_n the art. Stained cells are tested for differences in membrane conductance by electrophysiological techniques that are well known in the art. Untransformed cells, and/or cells transformed with either vector sequences alone or !3-galactosidase sequences alone, are used as controls and tested in parallel.
Cells expressing TR1CH
will have higher cation conductance relative to control cells. The contribution of TRICH to conductance can be confirmed by incubating the cells using antibodies specific for TRICH. The antibodies will bind to the extracellular side of TRICH, thereby blocking the pore in the ion channel, and the associated conductance.
Alternatively, ion channel activity of TRICH is measured as current flow across a TRICH-containing Xenopus Iaevis oocyte membrane using the two-electrode voltage-clamp technique (Ishi et al., supra; Jegla, T. and L. Salkoff (1997) J. Neurosci. 17:32-44). TRICH is subcloned into an appropriate Xenopus oocyte expression vector, such as pBF, and 0.5-S ng of mRNA is injected into mature stage IV oocytes. Injected oocytes are incubated at 18 °C for 1-5 days. Inside-out macropatches are excised into an intracellular solution containing 116 mM K-gluconate, 4 mM KCl, and 10 mM Hepes (pH 7.2). The intracellular solution is supplemented with varying concentrations of the TRICH mediator, such as cAMP, cGMP, or Ca+2 (in the form of CaClz), where appropriate.
Electrode resistance is set at 2-S MSZ and electrodes are filled with the intracellular solution lacking mediator. Experiments are performed at room temperature from a holding potential of 0 mV. Voltage ramps (2.5 s) from -100 to 100 mV are acquired at a sampling frequency of 500 Hz. Current measured is proportional to the activity of TRICH in the assay.
For example, the activity of TRICH-3 is measured as proton conductance and the activity of TRICH-4 is measured as calcium conductance.
Transport activity of TRICH is assayed by measuring uptake of labeled substrates into Xenopus laevis oocytes. Oocytes at stages V and VI are injected with TRICH
mRNA (10 ng per oocyte) and incubated for 3 days at 18°C in OR2 medium (82.5mM NaCl, 2.5 mM KCI, 1mM CaCl2, 1mM MgCla, 1mM NaaHP04, 5 mM Hepes, 3.8 mM NaOH , 50~.g/ml gentamycin, pH 7.8) to allow expression of TRICH. Oocytes are then transferred to standard uptake medium (100mM NaCl, 2 mM KCl, 1mM CaCl2, 1mM MgCl2, 10 mM Hepes/Tris pH 7.5). Uptake of various substrates (e.g., amizto acids, sugars, drugs, ions, and neurotransmitters) is initiated by adding labeled substrate (e.g.
radiolabeled with 3H, fluorescently labeled with rhodamine, etc.) to the oocytes. After incubating for 30 minutes, uptake is terminated by washing the oocytes three times in Na+-free medium, measuring the incorporated label, and comparing with controls. TRICH activity is proportional to the level of internalized labeled substrate. Test substrates include, but are not limited to, melibiose or other carbohydrates for TRICH-1, uxea for TRICH-5, and sulphate for TRICH-6.
ATPase activity associated with TRICH can be measured by hydrolysis of radiolabeled ATP-[y-32P], separation of the hydrolysis products by chromatographic methods, and quantitation of the recovered 32P using a scintillation counter. The reaction mixture contains ATP-['y-32P] and varying amounts of TRICH in a suitable buffer incubated at 37 °C fox a suitable period of time. The reaction is terminated by acid precipitation with trichloroacetic acid and then neutralized with base, and an aliquot of the reaction mixture is subjected to membrane or filter paper-based chromatography to separate the reaction products. The amount of 32P liberated is counted in a scintillation counter. The amount of radioactivity recovered is propoxtional to the ATPase activity of TRICH in the assay.
Alternatively, iron uptake activity of TRTCH is assayed in 100 mM HEPES/NaOH
buffer (pH
7.0) with a Fe2+fI'RICH molar ratio of 1000:1 at room temperature. Iron incorporation is monitored by measuring the absorbance at 310 mn using a W spectrophotometer (Masuda, T. et al. (2001) J. Biol.
Chem. 276:19575-19579).
XIX. Identification of TRICH Agonists and Antagonists TRICH is expressed in a eukaryotic cell line such as CHO (Chinese Hamster Ovary) or HEK
(Human Embryonic Kidney) 293. Ion channel activity of the transformed cells is measured in the presence and absence of candidate agonists or antagonists. Ion channel activity is assayed using patch clamp methods well known. in the art or as described in Example XVII.
Alternatively, ion chancel activity is assayed using fluorescent techniques that measure ion flux across the cell membrane (Velicelebi, G. et al. (1999) Meth. Enzymol. 294:20-47; West, M.R.
and C.R. Molloy (1996) Anal. Biochem. 241:51-58). These assays may be adapted for high-throughput screening using microplates. Changes in internal ion concentration are measured using fluorescent dyes such as the Ca2+ indicator Fluo-4 AM (available from Molecular Probes) in combination with the FLIPR
fluorimetric plate reading system (Molecular Devices). In a more generic version of this assay, changes in membrane potential caused by ionic flux across the plasma membrane are measured using oxonyl dyes such as DiBAC4 (Molecular Probes). DiBAC4 equilibrates between the extracellular solution and cellular sites according to the cellular membrane potential. The dye's fluorescence intensity is 20-fold greater when bound to hydrophobic intracellular sites, allowing detection of DiBAC4 entry into the cell (Gonzalez, J.E. and P.A. Negulescu (1998) Curr.
Opin. Biotechnol. 9:624-631). Candidate agonists or antagonists may be selected from known ion channel agonists or antagonists, peptide libraries, or combinatorial chemical libraries.
Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in. the art without departing from the scope and spirit of the invention.
Although the invention has been described in connection with certain embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments.
Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.
,~,~p~,-,,~
U U U U U
a N ~ UU
~
00~nod-N tnU voa, d'N ooN Ovw 0 ~OM
p ~ ' N V1OO N o0d NM
,~O~,~Ovo0vOO O~~O
V \OM C~7~O00M d'NOO
~ ' ' O
W tnNd d N ~ oo~t H w h 1N I~I~d W0l~
~
N
z _~., ~d O O ~ NM d'W O I~00 W
b ~
oUo~ O~ N VU'~U ~
d'N ooc~~Ovw 0 ~DM
y N v7O~ON ood-cVM
~"
~ 01.~~ 00~OO O~~O
O 1DM N10c0M d'No0 W n Nd~d-N ~ ood' ~
r --~~ tN t~I~'dW0I~
-~
P-m d ,.
:~
z ~a ~a W
G-i ,~N Md~W O t~ooO~
C
/~
U
N
~O
00v Od'N V W OO
7 _ ~
~ ~ N ~ NM
N O oo ~ 01~~ 00~OO O~~
U ~OM N~O00M ~ N00 ~ ~ rN r W _ ~
t -o U . M ~ rw b M
z .b ~ ~ ..q ~ G ~O
bA O
'b .p ~ ~ _G1~
.C ~ O
y ~
U U ~ c N ~ .C
C U o ~ -~ ~ a M
_a~ U y ~s ~ '+ U
~ ~
N ' ~ " d 0 ~ '*" N
ar '~ ~ ~ p O ~ Wn n O c O Q~ ~-' , O U
~ "'' ~~~ ~~ ,~.
~
z ~. U N . ~ N <Y
G~ a\ O
~ ~ ~.
~O _ O U U N s:, ~ '~ U
~z P" N Gy .-."-'-I U
l~ ,.""O
v~
' o ~ N
U - ~ ~ '~, ~n a. ,-., ~ ~ ~ w ' ~ ..c >, O U ,'~~' ~ ~ Q,' by N c~i ~ U N ~ U N
~ ~ U on ~ P. v,~o ~' v o _o ~ ' ~ .~ ~ ~ o o ~ o o C7 ~ ' '~
w U
v ,~ ~ > p. '-' U '~
.~ p., ,~,~ U ~ .~
~ v ~
~ O O ~ ~ ~' N ~ U N
_ ~ ~ ~ _ ''.
' ' U ~ .
~ ~ M
~ 'd ''~
N O '-' N a , U O
~ O c~ ''~ 0 N ~
U
U
u O r, ~ ~a'N rn NC/
" 7 v~ ~ ~ vJ t. C.~ ' iA
~ a~ .
~ 'y ~
'G ~ ~ N ~ N p ~ N ~ w - ~ ~ ' ~'~., z ~ ,O
' N ~ ~ ~1 ~ ~ ~ a. ~ ~ ~, ~.
~ w yes" ~ N ~ U ~ V] bA can O ~ b!7 U V] ~ '~" '4' ,.~."
~
cC ~ ~ ~ fir"N U ~ ..""'y O cn O bA N
O ~ ~ ' N ~ 7 P~1 ~U ' O
U ~n U~Ud c U~ .r,x~O
d~
. . c~ r~ . x ~ .~ ~a ~ x 3 ~
~
Y1 v--~ M
00 [~ 00 U i w ~
l. O O O O
O
P-i ~ Ol M O O d' ~7 z N N t~ Ol N ONl oho O (~ oo ~n O
'~
z ~, N M ~ ~ M
b A
o A
N ~ O ~
~ N o o m N ~ ono M
N
b .~, z ' a o W
Pw V7 ~i N M d. ty p 9s ~ x a .
a\
>
~
cn >
, o ~
= U
t r U
O
W ~ U
O bA w .
v~
U
c n s. y O
., cG p, O
c O
N ~
O O
~
O
p .~ bA
O t-~ N ~
.
~L
O ~
i<
N o0 N N
U O . ~ -~
~
.
b . i cd by k ~ U
O c~G
. ~
~
c~ U U U ~~
..d U V
O
m N ~ Vj U
i, ~1~ Ga i.~ O~
i 00 . O N ~
O ~
N
O~ V U .~
U
~n ~ ~ ~ N
O
~ 4=n 4--n ',r O
~
o ~ o ~
'~ o0 ~ N ~7 o ~
x x ~
~
~ M
N n Wi N oWoO
P-i Vr M
C/]
z~
~
~
o ~xz b o U U
M
~D ~O
N
O O ~
H dw o t~
N
.' z ow A
' P~ ~1 ~ (x ~ f~ riW G~
_ ~
H m M d M d' M ~ ~ i ~
E-~ E-a w t~ O o~o '~-' N
N P~
. Q, v0 N ~ -~, ~ ?, M i:~
~h s O ; ~ h ~
a ,~ O ~ o ' O ' ~ o W
o C ,-i a N _ d ad M N d' ~' O~
~
c M y,., ~ ~ O ~ N
i C/1 q ~
r-lp ~t ~ p ~ ~ N O
~ 'n ' M ~
c~ N v0 ~ ~ 0 ~ V ~ ~L o0 O ~ ~
~nvi '~' ~L O ~ w '-' c0 0o N
~'i ~ ~ "'iO P ~ O G O ~ N N H
~ W y ~ N
,- ~ ~' U'~ . . d'O ~c~ ~., ~ Cr~ ~
~ ~ tp-. ~ N N r~
, cct ~ LO
C i p ' ~ 0 0~0 ~
~ "'~ .N-i ' :~ ~ c~ ~ ~ ~ (~ ~ ~ ~ Pr w ~ p n O ~ b ~, ~ p M
N N ~ V1 ,fir~ ,.D U U ~
~ V p N
b ~P~-iZ.~~O~ b G ~ :d~ ~ ~V~ N, ~ ,~ ~ a ~ y . M ~,~ '.~.'p .~ c~7 p N N N
-U ~ ~ ~ ~ ~ ' ' .Uu cue) h ~ ~ I~ 00 ~ ~ p~0 ~
~
U M ~' o ~ U ~,'~" [ f3O p N O Iy0 ~O
P.M o !3. ( N ~,~
o0 .~
.--~ p O O 'y . ~ ~ ~
t~ ~ ~s~ ~ Mp M ~
~ ~N~ 'G~ ~ N~ N y0 bp-0ON c~Cl~~O apV~M
~ n ~ '~' v H a ~ v te te w ~ ~ H H .V
~ ~ ~ ~ H w z te ~ , r ~ a a n a a z Ga ..... ,~ .. ~
x w N
o z O\ M
z z Y ~ M
~, z z z H
p ~
~ ~ ~,~
~.~
O ~ ~ N
,~
~
P, z~r~ E~ W
P~
rn p O
'b b M
y U ue ~
~ d N
P4 ' N
p.
O
Q.
U
~D M N
P-~ ~ d' a o ~~z ~ N M
o O
O A
O
~i Ai .>, ~ ~ ran O
H
O
o W ,-~ M
cn ,~ W ~ , ~ N ' M
W M .~ ~ W E'~ H ,-i M
~e ~N ~~~°
O oho ~ N ~ N
H ' H
. ~ v~ H Pq, W ~ ,.~ N
O ~ ~ Z z ~ ~ ~ O ~, ~ ccf ~~t~ '~~'~~ ~ d'C,a'~~~OO'~
~NN.~N~ E-~d~'N 'n U .-, v~ q o ~ ~ o z ~-l o a~
''~ ~ ~ ~ ~ R~ ono ~ ~ c.; cri ~ N o ~ ~' ~ ~ W ~ M_ :~
y ~.~ Up,W~~p~..,vz~~ ;~~C~7.~ ~~~~a0 .fl .~ '--~ oo .fl o ° a ° ~N ~ ° ~ ~ H N N °° "' ~ O ~ o0 of p., .b ~ °~ ~ ~ v~ ,~ A o wt ~ O M .~ ~ v~ y' ~ M o 0 O _O ~
V ~ P-i ~ ~ ~ ~ ~ N M ~ ~0 ~ N ~ ~ LJ ~ O ~~
~ O x'~' ~''~ ~~td' c~ooM.~~
v H ~ v ~ ~ ~ a fa v ° as a, H ~ c7 z H ~ ~ ~ w a.i ~
c~ ~ ~n ono ov v ~zz o z N V'~' ~ 000 zzz z v_o ~n d~ O ~' M t N d'~ oMO~ M~oMO ~~N
~ r~ rn v7 E-~ E-~ L-~ E-~ ~ ~ H
O t~ N O N ~ o0 Vi 00 O ~'~r~A1 ~H E~(~-~H N H H
~ v~ ~ M d' d' M ~ ~O ~ ~ ~ H ~f' l~
O N ~Y ~t O O O~ °o M ~n d' O N oo M
O ,.C :; t~ ,~ tn I~ oo N d' t~ N N ~ N
A, P, v~ r~ vm~ zn rn H E1 E~ W o H E-~ H
N
O
. Q" N
pNp p~ N
a ~~z~ ,~
U O O
O
Q, apa 0.~ ~., O
P.,' v~ C-W-y H
d rte' ~" M N O
N
Qi ~ d '" ~ o ~ ~ ~ ~ a U ~r x EW-~ ~ ~ ON N d ?
o ~ ~ N d C7 a o ~ H~~M w~~~
R~ ~ ~ ~ ~ U ~ ~' ~ ~ C7 E
y H ~ ~ w H ~ ~ o ~ ~n oo ri q ~ o ~ N ~ W ,°~ ~ ~ ° d~-~.
~. ° x~~' x~zH
O ~' ',.1- N ~ ~ Q'' ~ ~ G.~ ~ ~ ~ N N N O N
°? a>, a ~ W ~
d' C~ ~ ~ ~ ~ ~ ~ a W OP'., ~ W ~ ~ ~ ~ ~" ~ ~r ~
v~ crm ~ v~ G~, C7 A, P~ ~ A..~ Ca7 vW1 a ~ f-~ E~ C~
CCj z y o a, ~ z N oo t~
0o Vi ~ a\
~ M ~ 'd H
W wn M .--i o0 V'i O.C.."~.~Md~-Pr V~ C/~ U7 C!~ E-~
N
O
,b b U
M
U ~' H
~~°z.~
O
O ~ ~ ~ 0 ~
d E~ ~ ~ P ~ ~ 0.l ~ -~
V.1 N 'p N
~n N N ~ ~ ~ 00 ~
O
~ ~
w ~ N ~ b Ri ~ ~ ~ ~
~A ~ w .O M ~ ~ ~ U
~ a r % N N
C ' ~~ ~~ ~ as -i ~ te M ~
N
j ~M o o~ r o~n ~
., U
~F, x . c bz ~' ~~ .~ w~~ v ; ~z~~
a ~ ~ ~M ~ ~N ~ , xoo~
~~ .~,~N
N C ~ . y ~ H R~
N ~ ~ ~ M
W
O N ~ V) ,M-,, O ccS at O ~ ,~-, . ~ 'r~ ~ ' <t ~
A d Op, j~ j~ ~,, f~. R.i ~ . ~ > o ~ ,-.yn O ~
M ~;, N > U' w N ~
N
N pi~ ' ' t~ ~ I
O ~'J N bA bA N ~ p., . oho ~ ~ ~ ~ I~
~" -~s G ~ 'b N ~ ~ ~ i i ~ ~ ~ ~ U
~ ~'~ ~E;' a, ~ ~ M ~ o pi o~
N N N U N N U U '~, O O
'~ ~ ~ M ~ N
b ~ N
N
_ c~C~N~ ~oMOiC-iWCNO~~~~ ~, O~ ~~ 'U' Ri 'U
.p V7 > -~,. '~, 'i. ~ N P-i ,-O i., P~ I~ O~ H
O
N
th ~ ,.~-i U per.,O O O p .Ty ~ H
d~ ~ "'~ N ~ ~ N ,~ (Zi ~ N ~
O ~
o o, ~ ~ ~-' ~ ,.~ ..~ .c ,~ ~ w ~
C >, ,..a c~ ~v ,...a~ N ~ H ~
vmn ~ U i U U U U ' w '--~v i H
c '~ ~'~~ ~~ ~ c3'n M o ~.~ O
~ ~ o o p'' , v ~I.
~~~~aZw v rn~~ ~a ~~ ~~w 7~~ r ~
c ' c a , c~
H
.Y
' o ' a~
~
N
N N
N (~
~
d-O
.y M HH
~1 v ~ H
N ~ N
U ~ M
RH
O
Y ~ O
t1 U
M ~_h P.t ~ d' O
~ ~
z rn U
~
~o O ~ ~ O
°' ~ w a ~ O
~ O pi ~ ~ ~ O
~ ~ ~ ~~ a M
M
N ~ i O
R~ i in ~ ~ O
w b~A O a O
l 01 w N~,~N.Wn ~ C-i'~'~~~ N
~ N ,-, O ~ ~ ~ U H N ~ ~ O
N '~ r~ r~'~ O Gv ~ ~ ~ '~ ,-; C~ ,7 ~' ~ N
z P~ L7 ~ z ° '-' p. N a .~ ~ o ~ v, ~n V, ,on w E.., ~Y ~r ~' N dv o0 ~ ~ ~ ~ ~ ~ ~ O ~ ~ z ~. z ~~., ' i' ,N-i ~ Pr ~D ~ ~bA ~b0 G~ Pw ~ ~ l~ I~ l~ bA
O ~ ~ ~ ,~ ~ .-, O
V 00 00 00 N sue. ,~-, ~ ~ ~ C/~ C~ ~ ~ ~O l~ M
0o d' dwD
b z z ~ a~ o ~ ~ ~ M ~ O a O ~ ov o, vo ~~o~aaa~~~~ ~ ~~ ~~ ~~ ~~o~a,a a w N ,,~, ~ N N N N ~ ~ O ~ ~ Oy C/~ -~t ~t dwt O
UWoooo o~ ~ ~ y~ ~~z ~'~~ ~'~~d~-~ ' O ~ o o° o° o° ~ ~~ ~~ ~~ ~ ~~ . ~ o 0 0 0 o , o U o 0 0 0 N .~
~ ate.. ~ ~ ~ ~ ~ w ~~ w w ~ w i ~ w w ~ ~ A A ~
N
o '' w c~ z M N ~ N
~ C/~ ~ ~, ~
~ CN/~
~n n ~ 00 ~ N ~ l~
O ~ '~' ~ N M ~ N
P~ Pr ~ ~ v~ C~ E~ 'J~ v7 N
O
G ,~ ;b ~' P~ M N N
H ,--1 i1. ~ ~ M
O .-~ 00 d.
w.-a p., d' lfl ~~z~°
t~ O ' N ~ v1 N
_ N ~
~ ' ~O~
~
~
~
-ip ~
. Ov ~o ~ d' o ~ ~ Ov oo O Ov ~ h i i ~ ~ o ' o i i ~
; v0 ,-.yt ~ 1~ 0 O p~ '~
v0 v0 ~ '-' ~ d' ~ oo N
N ~ ~ N~~~'"M~~
O ~-i o0 ~t n M ;' p~ ,-~.wD
Ov o0 ~ O Q oho ~ o~O
N
m oo .d ~n '~ O~ op t~ ~ r'' ' y0 <Y
N
M O ~ ; O M N ~ M
O ,~ ~ ~ N
--~
00 ~ .-y, .--~ M ,' N ~
~
~ o~
NOy M
OM N
~ d' O o O~~ OO
t~ O Ov o0 W
co ~ W n !~
M O~
~p O .WO ~--~ ,~ N ~ ~ .-~ ,~
,-i ~ ,--i M O ~ M N ~ ~ M p~ O M ,.~-W~
o0 i~O~~r NN'-'~NNM
t'~'~
i t d." ' p p t~ O v~ N .--~
~ .-, ~
i W O ,-, ~p O M
O ~ O N v0 i ~
l~ op pp ~
l~ O
~~O~o~O ~~ ~~M~ '-' M
~ ~ ~O ~ ~--i .-~ N ~ ~ [~ ~ V7 ~ ~--W .--i " v0 ~
~ N M
~
h 0p -~
~j 1 ~ t o N ~ .
o 00 ~ N ~ ~ ~ O ~ ~' ~ ~ ~ M
N ~n ~
''-' M O 0o I~ op ~
0 ~
o O N
o N ~ p" vN0 , o ~ Ov ~~ N ~. M ,--, N oo v0 N
~
~ oo t~ ,~ ~ ~ N M ,-~ O
N ,~ ~ v0 O ~ ~ ~
~ M
p N ~ N
N ~ ~ N ~
M I~ , 00 ~ ,-a ,~ dyp ~t 1 ,.~ O
,~-~ N m ~ oNO O -N, N O ~ O yD
,-~ ~' ~ ~.'j ,~
l~ N 00 00 00 O v~ OD
~p O N o0 "~ ~ M N op ~ ~D N
'O O o0o ~n M
v0 ~
y~~~'r'Nr'' OWO~~N V~'7 ~ 00 01 ~o ~ i M
dN~MM~ , h N ,~0~00~
N ~
n ~
-~ N o ,- o o ~tl~~ o M Wn I~
~ 0 N
~
N 0 , 'd, M ~ ,-,- ~ rt V-~ O
~ a O ~
N ~n in i O ~
~
~ O O ~ O N ~ i ,_M.., N
O ~ O ~' N M M O v'~
'~ t ~
00 i --~
'' ' N
'' O
n " , t~
r N
" I~ t W
cal ~
~ N
I~ N' ~ (~l ~ ~
i v0 j v0 j 'd~
p ~f V~ t~ ,- v o0 7 0 v~ 0 l~
~ p cV
N I~ W O
~ h O ~ N v~ O
d ~
a ~ o o o ~ O -~ N ,--y~ l~ O~
O W j v~ Ov 00 I~
I~ ~O N O ~ ~
N I~ O dW0 ~ 00 N d M d~ ~ l~ .--~ O
O O o0 cn v1 O M o0 O~
v0 v0 O N ~ ~ O o0 M O~ 00 0o N .~ ~ ,-~ ,-i ,~ ~n ~ ,-i ,-i .~ N ~ ~
M ~ O
in ~ ~ .
~ ue' ~ ~O ~
~' ~ ~ ~ p~ o~ p O d O ~
O ~ ~ ~ M
~ ~
O
~
C ~ ~ ~
'~ ~
N
N N ~ ~ ~ ~ N ~ ,."~_, oo N M O d~ ~ O oo .-i ~
_ o~o ~N~i ~O~ON~~ ~
~~O
~~m 00 00 M N -~ ,--i o 0'J
.~ .~ N o ~
~ ,-i o0 M
~--i ..-i ,~ ~
~ N ~ !~ ~ Oy N
t~ oNo O G1 ,~ ,-i v0 ,-i N I\ N O I\ ' ~ ' i N O ~ 00 I yj ~h ~ y0 M ~t N O_ ~ 00 p~
N O ~ ~ ~ ~ ~ ~ H
~ ~ ~ M
O
y oN~ .. i ~ O ap~
NM~ ~ '-i i~
~ O d~ ~ wt O O ~ ~ ~ O v0 0p CT' I~ v'i d' pp ~ [~ 00 ~O 00 M N O ~ 10 N
W 'c/- M O~ N M ~
U i N 01 ~~ .-~ V7 ~ d' DO d' n U7 O M \O O 00 M I~ 00 .-i oo ~t -~ .~ ~ OW ~ ,~
.-i ,--~ ,~ ..~
N
N
U
w W
U
U U
z~ N ~ o ~ w M N
~
d O M
~ ~ ~ N N
N
, N ~
.-, ~
00 M W ~ V~
~
~M.- ~~~~ ~ ' ~ ~ ~No~o ~~~~
N N ~ N M OM ~ ~ N Ov ~ ~ ~ ~
~
, M d. i i y j i N I~ ~ ,~ M 00 N oo v0 O ~ i l~
n ~ ~ ~ N
ri ~ 1 d. ~ Wd N oMO ,-i M ~ ~ N
O ~ ~ ~ ~D ~ N
N v0 O y0 M O O\ ,-, O1 ~n N
N ~ M ,..., N
N '' ~
N
M
C'1 ~ ~ " v0 ~ ,-y,;~'-' M N ' M
O vO cV N d' '-' ~n O O W O ~ ' l~ v'i O ~
' N
~
I~ M o0 N v0 00 d1 ~ ~ ~
00 l~ t~ ,~ V~ ~t O
op t~ N M O oo ~ ~ o N ~ d- N
M O o yh a ,--i n ,~ -~~
N N o pp N
N N
N ~. M , ~ I\ M ~ "
~ ' N ~ oo ~ O ~ ,-i M M p~ ~ oo O
N M O M O ~ ,~ ,~ tn op ,-WO N O ~ ,~ ~ ~ O~
Ov i M
M ~~~ ~ SON
N~ N
~
~n ~ ,-~ ~ ,-~
op yh M O oo ao ,-w p,- N M
M O ~ ~p ~
O p~ N N M N M ~ N
M M
~ ~ rp ,-M-~cn ~''~
N 0~0 t!j Op _ N N r ~ ~ ~
N M N N N M N N
M
~ vp ~ M
M i M
I~ N I~ ~ l~ ~O M .
W v0 ~1 d' ~ O N dW0 p -as v~ l~ p M ~' ,~
l~
O~ d' d~ N ~ ~ Do I~ d' O ~ ~ 00 ~~
oo N O ~t 00 00 N M N M M . ' ~ . 0 ~ N t i ~
N O N ~ ~,~ ; ~
~ ~ N O ~ y n 0 o O ~ n ~
O N ""~
~ o ~
O~ N N M ~O ,-~ o l~ N O~ N
M N Ov " t~ , ,~ ~ M
N M .~ Oy , W M -i ~
op ~ c ~n ~ O oo vp D N N ~ o0 Ov ~ d ~ ' ' ~ ' O
N v0 ~ Ov ,~ ~ ~t t~
O oNo m O ~ ~ d ~
~
N N M N M M ~; ~ N N , ~, ~ , M N ~ ~, ,n ~ ~ ~ 0 ~j v t~ N ~ OWE ~ ~.,y v o ~
~
O
WD N
v0 ~ ~ N N M ~ N ~ ~ N v0 ~
N M. 01 ~ ,-i G v " n 0 N
vj t~ O .-~ O ~ ,.-~ ~ 1 WO o0 ~ cYj r, v1 ~ ~ ~ oho 00 Ov ~
l~ N O c0 1 N' ~ ~ t~ ~ ~ i ~ d.
l M N O d' V7 O~ O d' ~ 00 ~ O~ l~ p l~ N O M M d' .--~
d' ~ ~D (V N N N ~ ~ ~ ,~
cn M M N .~ .--i~ ~p d~ N
N .~
~ .~-i O ~ (~7 ~ ~ N I~ ~ ~t N
~p t~ ~j ~ d~ cn ~
O o0 I~ ml' t~ N N ,--y~ N O v0 N ~ t0 O t~ p~ d~ ~n .~
N M N M M ~ ~ N ~ p ,~ 00 t~
O O O 01 l~ ~ ~O 01 '~ ~ 01 ~ 01 ~ M l~ 01 VW~
~ co ~
N of ~n t ~ O ,~ M N OW ~ ,-~
,m0 O (~ ~ o~ 00 N r t ~ oo t~
( M
O t~ N O N
M 00 N N M N ~ ~ ~ ~ N I~
M M M (~I
~ N M M ~ V~ ,d M O~ W' ('n Op0 ~ l~ M 0 ~ N ~ I~ op O ~ y0 ~ ~ ~ op ,~ 0 ~. O N O_v ~ I
v ~ ~ t ~ ~
M
tn o0 N ~ ~ ~ ~ ~ p~
N N M N ,-M ~ ~ ,~ ~ l ~
""' ,--y~ M N ~ ~ ,-i I~ N p~ O ,-, d1 ~ Ov -i t~ p\ 01 V'i N 1 0 00 ~ O~ dwD ~ oo Ov ~, .d." ~ O~
,-~ ~ O~ I~ I~ ~t O N
t~ O wo t~ N N ~D M .
O N wi ~n ~ ~ N
N N N N M M M ~.(j ~ ~ ~
N ~ N ~ M ~O I~
~--y - ,!, ,~ O\ ~rj ~ ~ M N ~p p ,..~_,~ ,-, o0 ,-i v0 uj ~ ~ d' ~p p ,~
~O
N N N N ~ N ~ ~ ~
N O
~
M ~t d' O ~ 01 M ~ M ~ ~ ~ ~ O~
d' O~ ~--i V~ ~ l~
OIL
~ 00 M O M I~ ~ 00 O _ ~
N O M ~O ~ p" ~ M N "
d' V7 -; O N N N N ~ M N O ~ 00 M op M M M ~ N ~ .-~ ,-~
O~ O~ ,~ O
, ~ v~
O
~ N ~ ~p ~
~ M ~ O ~ ~ N ~
~ "'~
O N M
N v , -, v0 v ~
~ 00 ~n o0 ~
O~ , M
N o0 O ~
Ov o0 0 ~
M W t O
U r..~ M r ,-.mD
G ~p ~ ~y n I
N y0 ,~ ,~ y O
p N .-~ t~ OW-' ~
o0 r, N N M N w0 00 M M
M N O v0 ~F oo ~ ~ M dw0 ~p , O Vi O I~ , N l~
~ ~ i oo v~
d' t~ cn o0 ~ ~ V
~
~O~~NO~ i ~~N~N oc i ~M~
n ~~N~o N N N N M M M ~ .-~ .-t ~ N ~ ~ ~ ~
N ~ N ~ ~ N N
U
N
\ \ w \ \
ry --i --,,~ \ .
:b ~ U U U ~ U U
~
o p et N ~n U ~o o~
w z \ N d\ W O v0 M
N oo d' N M
U O~ oo ~O O O~ ~O
.
N .
- N ~O V7 O~ l~
~ N o0 ~ ~ p ~ I~ ~ N
~
O W M M t \ 10 00 l~ ~ 00 ~. d' In d' ~
N ~' ~ W -a M ,~ ,~ N ,~ ,~ ,~ ,-~ yp -7 ~
~
.
a o o o ~, H w N ~. ~ a ~ ~' ~ ~ za o H
U
U U U U U
~1 0om ~t~nU vo ~YN N WO v0 N D ao' N W d N
OvOWOO O~
O M ~OMd N
' v ueN ~_ ~
d d' ' w N
.b .Y
U
~z P1 O ~ M ~~Ol~
~
b 'b a~ o ~ >, ~ ~ ,n ~ ro ~
fl a. ~ .b ' U G > . U
'~ a' .~
' ~ b ~' ~ U v ~' ~
O O _a!
O ' 4-, ~
t-"
O ~
j ~
~
~~O
".d c C O
~ c V
t U O [s c~ -. ~' ..''"'.rU O ~ ~
U N
N ~ U ~.0 '"' ,.~'~'G ~ >
O C w ~ U ~ O O
~ O cC U a.a ' ~ N
.
b ~y.~ ~ rn b b ~
N ~ p ~ ~ ~ >' U ~ N
> 3 o c' ~ V' ..~.
~ o ' ~
~
3 ~
v >
o . >, U ~n U v~ d ' U s-. c ~ O .N
C ~ . p N
~ COOpU N
. ~~ .
G A
b 'C
,4; N ~
CL iti .
f~ ,~ O .~i N ~ .C b p ~' ~
~ :~ ~' Y G
c~ by O ~
~"'"' ~ ~ 0 .. c~
.- .C O ~ '~ ~ ~
O ~ .,., ai ~ ~ ~
~ .
'b bA 'b G
~ ~ bA ~ b c ' ~ cC
N
'" O
~
~ ' d aj~ .~ ~ O
N y ~ ~ i. ~
'b O ~ '~ .
U
~.rN ~c~~ct; ~,.
~~ONro cn ~ ~..' O '~,~ N
V ~ ~
ct3 O~-''O ~ rbU..9~
~ ~U,, O
' ~
can O ~ >o cG ~
p .u ~
~ ~
b0 ~i",-Cc ~ ~O.O~~
C ~ b U
O au ,~ 4-r ~'-'U
~ ~ N ~
' O U cn ~
~ 4. 4-n O w by > >1 ~ ~
~
b4. b ~C,~at'.'~fO~ b ' 'L7 N ,~V~ U
U ~ ' s"-~ y U
~ c c , U
~ ~G ~d P~-i '~ . by ~ O ~ ~
_ ~ ~ .
U ~ ~ ~ 3 ..~, 'o>,~~.~,C~p ~rUn ~ ~ ~ ~ ~ ~ cd ~
b ~
0 Q! ~ N ~ '~ o ~ >, fn y O 'C1 T 'G
~ y ~ ou ~ ~ ~ , ~ 3 b ., :~ ' o~n ~
~
., O ~ >, f cN
~
r" N
~ ~ ~ V ~ O
G ~ , .
O , i ~, . ~ w w ~ ' 'a a ~
. o ;n :~
w ~
o U
~ 'O
.y~,~ ~ ~ cd ~ O c~ ,,~ .
i~ y s.~. ~+U, ~
'G >, ~-'UO UO S c~ ~ ~ ~b ~ ~ ~ O'' F' ~" v' ~ ~ '~~ .C
'~
i~ ~ ~ ~ .c ~ ~ y ~ ~. ~
'~ '~ ro ~ 3 ~
f~3 3 3 W ~ 3 p V U U G b ~ ~ ~
T ~ >> T v~ .fl ~
~ >mn d U G ~ V ~ ~ N
i T . ~
~ n p a~ ~ ~ U ~
oo ~ . ~ ~ ~ ~ , o ~ ~ ~ .c ~
.
a~
,.. ~ . y b ~ c a~ ;~ ~
~
H
as ~U:.~~..7 ~~ ,..a>.~ E
o a, o ~.~.~ -~
N
~ ~ ~
~. . .
N
0 0 o H o z a ~ a z o aa ios ri N O W ~N V y ~ ~ O
N ~ W O "~U ~ N O ~+~, W
ri v~ O y ,~, by o0 v~
_~G ~ ,~ '~ II ~ 'LJ 0 ~ U ~ ri O ~ ~ II p ""' ~ m p G ~ II
N ~ ~ ~ ~ ~ ~ ~ pp O ~ a_ ~ ~ (/~ c''~C .fl E'' VV '~ ~ ~ W W °' O ~ ..~ O
y ,.~ O w ~ ~ ~ ~ N cC pp O
P~ ~ ~ w p ° II
~'' S ~ W ~ .fl ~ O ~ can ~ ~ OV11 ~ ~ ~ 0 O
P, ~ W oo P, °? W ~ II .4» ~ w ~ Q, °?
ti 0 0 00 ,-, ~ , a~
.-. ~ ~ Ov ~ ~ ,~, d;
001 O~O N~~ sv~ (~M
U U U W ~ ~ o0 oMO ~ ~ x o p ~p d- '-, ~ c~
_>; >; o ~u o " ~r . ~, C ~ 'Y
U U U ~~m ~dN'.~~ o~'~''~, i ~ ' ~ ~! o°'o c'.' d~ N ~ °° '~ ~ o ~ o O O ~ O ~ ~ M a N ~ C/) ~ ~ ~ ~ C
w u, ~ w ~ N ~-; 00 ~ ~ pp M ~ 01 cat N _ U ~ d' ~~4 ~ '~
~1 ~ o '~ N C7 ~ o 0 N N ~ N c~ ~' N ~ ,..~~ ~ ~ ~ ~' N x 0 0 ~ o fs! o ;b ~'~' rig ~ E--~ ~ '~ :y-'G' ~ U
V P~ Pa r~-yG UJ ~~ ~ ~ ~ 0~1 ~.,,.,C ~. ~+.; ~ C/~ N ~
,~ o ~~ o ~ ~ I~ ~ o .~ ~
N N V ~ ~ U ~t ,~ v~ (/~ .x N cd b ~ ~ ~ ~ ~ N
d' ~ Q, ~ ~ N Z G..i '~. L~ c~ d 'r~', ~ ~ W ~
'G N .Wn .
~--~ b ' U ~ ~ c~ cct ~ j, cad d" ~ ~d ~ ~' U c~G ~ c~ U O b4 N w r~-' V ~ ~ O
Y i~ .~.n y Ci U cn cd N m ~ 0 p" c~S cd U c~ O ~ ~ ~ ~ ~ N~ cC ~ ~ i~ .C
U v~
U
O U ~ ~ O ~ Y y ~" U O i., ~ ~ U o ~'"a > ~ ' ~ ,.., x pa ,.o on a~ ~ ~ p, ~o ~ ~ i ~ ~ ~ w O ccS ~ V ~ ~." U cC U O ~ ~ Q
~H
a~ O ~
G ~~ ~ ~ ~ ~ ~ ~ ~ ~ b ° .o ~'~ ~' o.~,:'o.fl ~~~~k ~.on~' U ~ ~~ ~ U U U ~ .r. ~ ~~ ~ ~ W U U
U O .
O" f~ ~ Ca, ~ Pa p~ ~ ~ ~' Q, ~~ ~ ~ ~ a °' U
øyy. U at y~ o ~ ~ pa a. ~ c~~C 'C
rUn ~ rUn .~~-~ ~ ~ ~ 4~ bA ~ w ~ ~ l~ ~ cad F.
N
U
U
d a~ ~ ~ ~ ~ w ~w CU7 y v ~'n l~ l o , o .~ ., ~, ~, '~.
'v~ o ~, a~ N
0 4:
~.,r ~r ~ ~.
0 0 ~ ~ ~ I
°p ~'u on H U '.~ M ~ a' ~ ~ ~ o ° o o ~ ~ x P, ~' ° vo ~n II II II
U 'O ~ w U N U ~ N
~4 E"~ 7 ~. Z ~ ~ Gr ~ Ul ~ Cf~
G3 ' ~ ~ t7p .
_. ~ ~ V1 ~." 'b O~ ~ ~ n O
c~ ~ ~ ' I~ O ~ ~ "', y.., y ~ 10 ~ . ~-y N ,-~-i 'C ~h CO ~ 01 _.
W N ~ ~ d' N N ~ C7 00 ~ ~~ ~ .~ a o O
M 'C v' ~ .G Q,' N U o0 ~ w O ~., ~ "' M
~ W ~ O ~ O ,~ ~ j ~ ~ ~ E-~ W ~, ~ ~ ~ ~ A., O N ~ ~ ~ U ~ ~ p ~ ~ ~ O ~ o ~ O~ .b ~--i N ~,> U~yN G N ~ ~~ ~" ~ OU1 ~ ~M
M
o°°, ~ ~ o°n c\°n .'d o, ;Zs v av ~ ~r .. ai o, o, ~ ~ o ~i~i 'J ai r, U ~ ~ N y '~ _. ,~; ~O ~ .i', Tr' ~ cCt c~ ~ .~. M 'C7 y/7 ~ M '4j .n-a ~ ~''~ ''y ~ G4 O~ ~ N ~ N a~ a.~ N
V N U ~' ~' co ~ ,~ ~ s. ~ v O ~ N ~ N
'C ,_, ~ 0 0 0 ~ ~ '~ °,~~° ~~', ~ ~ b ~ GA x ~j ~ W °~
~ '~W oo ~ a ~ ~ o ~ ~ ~ o ~ o N a~ oo -fl ~ .o ~ ~' o, .>~ :~ ~ '~ ,~ ~ a, r--i ~ ° M o, o Z ° ',~ ,~ ~ ov 3 ~ ~ ~ p~''" '~ ~ ~ o ri ~ ~ ~.
c~ ov x~N~~ ~Me~~w~ w~x~~~~~ c~Nz°.Ua~N~
N U ~ r3 N ~ bA rUn U 'O
S"" ~ ,.~~~ N ~ :a~.~ cYd ~ C/~ U U ~ '~ :C ~~ ~ ~ N 'Cy ~ ° y '~"' O" ~ N N U 4j ii r5'a ~ N O ~ ~ ~ ~ U ~ .~ ~ U a.~
o U ,~ a, ~ a~ ~ o ~. a~ ~ Z ~ w ~ ~ A, ~b ° ~ °° ~ ~ ~ 3 0.~ o ~ ~ ~ on ~
i . a ~ a~ a ø, o ~ ~ o o. ~. .c o ~ c'~'. ,~ R'" ~ p' N '' y ~n ~ .i~ ~ ~ ~y~" i o w W'-' 27 0 ~ w >~
o ~ O ,~ .C vW -~~ ~ ~ '~C ~ U c~ ~ ~ N ~ a:.
o ~,'~ ~ y ~ ~ a~
'i ~ '~ N 'i N ~ ~ ~ ~ ~ ~ '~ >' U . i ~ °~ .A.
en ~' ~ a~ ~s °on ~ ~ ~ °on ~ ~ a~'~ ~ o ~ H ~ ~ ~ p., -fl ~ ,o ø' bn °' ~ 'ai ~, ~ o ~ 'o ~ ~E ~ ~ ~ ~ ~ ~0."~~'~o one 3 °.~u'~
~ rn a~ ~ .~ d ~ ~ a. v~ d .l~ ~
U
N c~ v~ U
W P, P., .n'~, U ~ E-~i b Ei ~.
Y
~1 U
Cf~ ~
~ N ~ ~ ~
N
~ o L7 ~_ ~ ~ ~ vi U ~
U U
o, ~, Ei Q', ~ ~ ~n P~
~
:~ ~
_ d' 00 at G
N~ U ~ .-~-~ ~ N 7 cHi ~r G_ .C N ~ -.
cG O ['~ ~ ~
p..i Vii.
~ U o ~ ~
~ a.
_N r,~; ~ _t. N . ;. ..
~ ~ G' G' ~
p~~..,v~ ,~ f~ v 0.1 N
~ ~ ~ U
C~
d :
~
o a~
~ b a~
' ~~
:
.
~
t.
i .~ ~ .d 'c .a v' U U
N N
N
Y Y
~ n O ~ i~
~
VO 7.. _ ~ p ' i ., n O ~ w P, cue.
H
<110> INCYTE GENOMICS, INC.
RAUMANN, Brigette E.
Griffin, Jennifer A.
HAFALIA, April J.A.
BATRA, Sajeev YAO, Monique G.
FORSYTHE, Ian J, RAMKUMAR, Jayalaxmi DUGGAN, Brendan M.
BAUGHN, Mariah R.
AZTMZAI, Yalda WARREN, Bridget A.
LAL, PREETI G.
GIETZEN, Kimberly J.
WALIA, Narinder K.
BECHA, Shanya D.
TANG, Y. Tom YUE, Henry CHIN, Anna M.
<120> TRANSPORTERS AND ION CHANNELS
<130> PF-0980 PCT
<140> To Be Assigned <141> Herewith <150> 60/293,722; 60/296,881; 60/304,593; 60/305,105 <151> 2001-05-25; 2001-06-08; 2001-07-10; 2001-07-12 <160> 18 <170> PERL Program <210> 1 <211> 473 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 1561248CD1 <400> 1 Met Gly Pro Gly Pro Pro Ala Ala Gly Ala Ala Pro Ser Pro Arg Pro Leu Ser Leu Val Ala Arg Leu Ser Tyr Ala Val Gly His Phe Leu Asn Asp Leu Cys Ala Ser Met Trp Phe Thr Tyr Leu Leu Leu Tyr Leu His Ser Val Arg Ala Tyr Ser Ser Arg Gly Ala Gly Leu Leu Leu Leu Leu Gly Gln Val Ala Asp Gly Leu Cys Thr Pro Leu Val Gly Tyr Glu Ala Asp Arg Ala Ala Ser Cys Cys Ala Arg Tyr Gly Pro Arg Lys Ala Trp His Leu Val Gly Thr Val Cys Val Leu Leu Ser Phe Pro Phe Ile Phe Ser Pro Cys Leu Gly Cys Gly Ala Ala Thr Pro Glu Trp Ala Ala Leu Leu Tyr Tyr Gly Pro Phe Ile Val Ile Phe Gln Phe Gly Trp Ala Ser Thr Gln Ile Ser His Leu Ser Leu Ile Pro Glu Leu Val Thr Asn Asp His Glu Lys Val Glu Leu Thr Ala Leu Arg Tyr Ala Phe Thr Val Val Ala Asn Ile Thr Val Tyr Gly Ala Ala Trp Leu Leu Leu His Leu Gln Gly Ser Ser Arg Val Glu Pro Thr Gln Asp Ile Ser Ile Ser Asp Gln Leu Gly Gly Gln Asp Val Pro Val Phe Arg Asn Leu Ser Leu Leu Val Val Gly Val Gly Ala Val Phe Ser Leu Leu Phe His Leu Gly Thr Arg Glu Arg Arg Arg Pro His Ala Glu Glu Pro Gly Glu His Thr Pro Leu Leu Ala Pro Ala Thr Ala Gln Pro Leu Leu Leu Trp Lys His Trp Leu Arg Glu Pro Ala Phe Tyr Gln Val Gly Ile Leu Tyr Met Thr Thr Arg Leu Ile Val Asn Leu Ser Gln Thr Tyr Met Ala Met Tyr Leu Thr Tyr Ser Leu His Leu Pro'Lys Lys Phe Ile Ala Thr Ile Pro Leu Val Met Tyr Leu Ser Gly Phe Leu Ser Ser Phe Leu Met Lys Pro Ile Asn Lys Cys Ile Gly Arg Asn Met Thr Tyr Phe Ser Gly Leu Leu Val Ile Leu Ala Phe Ala Ala Trp Val Ala Leu Ala Glu Gly Leu Gly Val Ala Val Tyr Ala Ala Ala Val Leu Leu Gly Ala Gly Cys Ala Thr Ile Leu Val Thr Ser Leu Ala Met Thr Ala Asp Leu Ile Gly Pro His Thr Asn Ser Gly Ala Phe Val Tyr Gly Ser Met Ser Phe Leu Asp Lys Val Ala Asn Gly Leu Ala Val Met Ala Tle Gln Ser Leu His Pro Cys Pro Ser Glu Leu Cys Cys Arg Ala Cys Val Ser Phe Tyr His Trp Ala Met Val Ala Val Thr Gly GIy Val GIy Val Ala Ala Ala Leu Cys Leu Cys Ser Leu Leu Leu Trp Pro Thr Arg Leu Arg Arg <210> 2 <211> 201 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 4539525CD1 <400> 2 Met Gln Ala Gly Asp Arg Leu Val Ala Val Ala Gly Glu Ser Val Glu Gly Leu Gly His Glu Glu Thr Val Ser Arg Ile Gln Gly Gln Gly Ser Cys Val Ser Leu Thr Val Val Asp Pro Glu Ala Asp Arg Phe Phe Ser Met Val Arg Leu Ser Pro Leu Leu Phe Leu GIu Asn Thr Glu Ala Pra AIa Ser Pro Gln Gly Ser Ser Ser Ala Ser Leu Val Glu Thr Glu Asp Pro Ser Leu Glu Asp Thr Ser Val Pro Ser Val Pro Leu Gly Ser Arg Gln Cys Phe Leu Tyr Pro Gly Pxo Gly Gly Ser Tyr Gly Phe Arg Leu Ser Cys Val Ala Ser Gly Pro Arg Leu Phe Ile Ser Gln Val Thr Pro Gly Gly Ser Ala Ala Arg Ala Gly Leu Gln Val Gly Asp Val Ile Leu Glu Val Asn Gly Tyr Pro Val Gly Gly Gln Asn Asp Leu Glu Arg Leu Gln Gli1_Leu Pro Glu Ala Glu Pro Pro Leu Cys Leu Lys Leu Ala Ala Arg~Ser Leu Arg 170 175 1 ~ 180 Gly Leu Glu Ala Trp Ile Pro Pro Gly Ala Ala Glu Asp Trp Ala 185 190 ~' 195 Leu Ala Ser Asp Leu Leu <210> 3 <211> 237 <212> PRT
<213> Homo Sapiens <220>
<221> misc feature <223> Incyte ID No: 72210802CD1 <400> 3 Met Asn Pro Ala Asp Val AIa GIn Ser Thr Leu Pro Leu Ala Ser Ser Asp Val Ser Leu Ile Ala Leu Phe Trp Gln Ala His Trp VaI
Val Lys Cys Val Met Leu Gly Leu Leu Ser Cys Ser Val Trp Val Trp Ala Ile Ala Ile Asp Lys Ile Leu Leu Tyr Ala Arg Thr Lys Arg Ala Met Asp Lys Phe Glu Gln Ala Phe Trp Ser Gly Gln Ser Ile Glu Glu Leu Tyr Arg Ala Leu Ser Ala Lys Pro Thr Gln Ser 80 g5 90 3l19 Met Ala Ala Cys Phe Val Ala Ala Met Arg Glu Trp Lys Arg Ser 95 ~ 100 105 Phe Glu Ser Gln Ser Arg Ser Phe Ala Gly Leu Gln Ala Arg Ile Asp Lys Val Met Asn Val Ser Ile Ala Arg Glu Val G1u Arg Leu Glu Arg Arg Leu Leu Val Leu Ala Thr Val Gly Ser Ala Gly Pro Phe Val Gly Leu Phe Gly Thr Val Trp Gly Tle Met Ser Ser Phe Gln Ser IIe Ala Ala Ser Lys Asn Thr Ser Leu Ala Val VaI Ala Pro Gly Ile Ala Glu Ala Leu Phe Ala Thr Ala Ile Gly Leu Ile Ala Ala Ile Pro Ala Thr Ile Phe Tyr Asn Lys Phe Thr Ser Glu Val Asn Arg Gln Ala Ala Arg Leu Glu Gly Phe Ala Asp Glu Phe Ser Ala Ile Leu Ser Arg Gln IIe Asp GIu Arg Gly <210> 4 <211> 947 <212> PRT
<213> Homo sapiens <220>
<221> misc feature <223> Incyte ID No: 2469624CD1 <400> 4 Met Glu Glu Met Phe His Lys Lys Ser Glu Ala Val Arg Arg Leu Val Glu Ala Ala Glu Glu Ala His Leu Lys His Glu Phe Asp Ala Asp Leu Gln Tyr Glu Tyr Phe Asn Ala Val Leu Ile Asn Glu Arg Asp Lys Asp Gly Asn Phe Leu Glu Leu Gly Lys Glu Phe Ile Leu Ala Pro Asn Asp His Phe Asn Asn Leu Pro Val Asn Ile Ser Leu Ser Asp Val Gln Val Pro Thr Asn Met Tyr Asn Lys Gly Ile Lys Trp Glu Pro Asp Glu Asn Gly VaI Ile AIa Phe Asp Cys Arg Asn Arg Lys Trp Tyr Ile Gln Ala Ala Thr Ser Pro Lys;Asp Val Val Ile Leu Val Asp Val Ser Gly Ser Met Lys Gly Leu Arg Leu Thr Ile Ala Lys Gln Thr Val Ser Ser Ile Leu Asp Thr Leu Gly Asp Asp Asp Phe Phe Asn Ile Ile Ala Tyr Asn Glu Glu Leu His Tyr Val Glu Pro Cys Leu Asn Gly Thr Leu Val Gln Ala Asp Arg Thr Asn Lys Glu His Phe Arg Glu His Leu Asp Lys Leu Phe Ala Lys Gly Ile Gly Met Leu Asp Ile Ala Leu Asn Glu Ala Phe Asn Ile Leu Ser Asp Phe Asn His Thr Gly Gln Gly Ser Ile Cys Ser Gln Ala Ile Met Leu Ile Thr Asp Gly Ala Val Asp Thr Tyr Asp Thr Ile Phe Ala Lys Tyr Asn Trp Pro Asp Arg Lys Val Arg Ile Phe Thr Tyr Leu Ile Gly Arg Glu Ala Ala Phe Ala Asp Asn Leu Lys Trp Met Ala Cys Ala Asn Lys Gly Phe Phe Thr Gln Ile Ser Thr Leu Ala Asp Val Gln Glu Asn Val Met Glu Tyr Leu His Val Leu Ser Arg Pro Lys Val Ile Asp Gln GIu His Asp Val Val Trp Thr Glu Ala Tyr Ile Asp Ser Thr Leu Thr Asp Asp Gln Gly Pro Val Leu Met Thr Thr Val Ala Met Pro Val Phe Ser Lys Gln Asn Glu Thr Arg Ser Lys Gly Ile Leu Leu Gly Val Val Gly Thr Asp Val Pro Val Lys Glu Leu Leu Lys Thr Ile Pro Lys Tyr Lys Leu Gly Ile His Gly Tyr Ala Phe Ala Ile Thr Asn Asn Gly Tyr Ile Leu Thr His Pro Glu Leu Arg Leu Leu Tyr Glu Glu Gly Lys Lys Arg Arg Lys Pro Asn Tyr Ser Ser Val Asp Leu Ser Glu Val Glu Trp Glu Asp Arg Asp Asp VaI Leu Arg Asn Ala Met VaI Asn Arg Lys Thr Gly Lys Phe Ser Met Glu Val Lys Lys Thr Val Asp Lys Gly Lys Arg Val Leu Val Met Thr Asn Asp Tyr Tyr Tyr Thr Asp Ile Lys Gly Thr Pro Phe Ser Leu Gly Val Ala Leu Ser Arg Gly His GIy Lys Tyr Phe Phe Arg GIy Asn Val Thr IIe Glu Glu Gly Leu His Asp Leu Glu His Pro Asp Val Ser Leu Ala Asp Glu Trp Ser Tyr Cys Asn Thr Asp Leu His Pro GIu His Arg His Leu Ser Gln Leu Glu Ala Ile Lys Leu Tyr Leu Lys Gly Lys Glu Pro Leu Leu Gln Cys Asp Lys Glu Leu Ile Gln Glu Val Leu Phe Asp Ala Val Val Ser Ala Pro Ile Glu Ala Tyr Trp Thr Ser Leu Ala Leu Asn Lys Ser Glu Asn Ser Asp Lys Gly Val Glu Val Ala Phe Leu Gly Thr Arg Thr Gly Leu Ser Arg Ile Asn Leu Phe Val Gly Ala Glu Gln Leu Thr Asn Gln Asp Phe Leu Lys Ala Gly Asp Lys Glu Asn Ile Phe Asn Ala Asp His Phe Pro Leu Trp Tyr Arg Arg Ala Ala Glu Gln Ile Pro Gly Ser Phe VaI Tyr Ser Ile Pro Phe Ser Thr Gly Pro Val Asn Lys Ser Asn Val Val Thr Ala Ser Thr Ser Ile Gln Leu Leu Asp Glu Arg Lys Ser Pro Val Val Ala Ala Val Gly Ile Gln Met Lys Leu Glu Phe Phe Gln Arg Lys Phe Trp Thr Ala Ser Arg Gln Cys Ala Ser Leu Asp Gly Lys Cys Ser Ile Ser Cys Asp Asp Glu Thr Val Asn Cys Tyr Leu Ile Asp Asn Asn Gly Phe Ile Leu Val Ser Glu Asp Tyr Thr Gln Thr Gly Asp Phe Phe Gly Glu Ile Glu Gly Ala Val Met Asn Lys Leu Leu Thr Met Gly Ser Phe Lys Arg Ile Thr Leu Tyr Asp Tyr Gln Ala Met Cys Arg Ala Asn Lys Glu Ser Ser Asp Gly Ala His Gly Leu Leu Asp Pro Tyr Asn Ala Phe Leu Ser Ala Val Lys Trp Ile Met Thr Glu Leu Val Leu Phe Leu Val Glu Phe Asn Leu Cys Ser Trp Trp His Ser Asp Met Thr Ala Lys Ala Gln Lys Leu Lys Gln Thr Leu Glu Pro Cys Asp Thr Glu Tyr Pro Ala Phe Val Ser Glu Arg Thr Ile Lys Glu Thr Thr Gly Asn Ile Ala Cys Glu Asp Cys Ser Lys Ser Phe Val Ile Gln Gln Ile Pro Ser Ser Asn Leu Fhe Met Val Val Val Asp Ser Ser Cys Leu Cys Glu Ser Val Ala Pro Tle Thr Met Ala Pro Ile Glu Ile Arg Tyr Asn Glu Ser Leu Lys Cys Glu Arg Leu Lys Ala Gln Lys Ile Arg Arg Arg Pro Glu Ser Cys His Gly Phe His Pro Glu Glu Asn Ala Arg Glu Cys Gly Gly Ala Pro Ser Leu Gln Ala Gln Thr Val Leu Leu Leu Leu Pro Leu Leu Leu Met Leu Phe Ser Arg <210> 5 <211> 461 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 7488292CD1 <400> 5 Met Asp Ile Leu Leu Asp Ala Glu Glu Trp Glu Asp Phe Glu Ser Ser Pro Leu Leu Pro Glu Pro Leu Ser Ser Arg Tyr Lys Leu Tyr Glu Ala Glu Phe Thr Ser Pro Ser Trp Pro Ser Thr Ser Pro Asp Thr His Pro Ala Leu Pro Leu Leu Glu Met Pro Glu Glu Lys Asp Leu Arg Ser Ser Asn Glu Asp Ser His Ile Val Lys Ile Glu Lys Leu Asn Glu Arg Ser Lys Arg Lys Asp Asp Gly Val Ala His Arg Asp Ser Ala Gly Gln Arg Cys Ile Cys Leu Ser Lys Ala Val Gly Tyr Leu Thr Gly Asp Met Lys Glu Tyr Arg Ile Trp Leu Lys Asp Lys His Leu Ala Leu Gln Phe Ile Asp Trp Val Leu Arg Gly Thr Ala Gln Val Met Phe Ile Asn Asn Pro Leu Ser Gly Leu Ile Ile Phe Ile Gly Leu Leu Ile Gln Asn Pro Trp Trp Thr Ile Thr Gly Gly Leu Gly Thr Val Val Ser Thr Leu Thr Ala Leu Ala Leu Gly Gln Asp Arg Ser Ala.Ile Ala Ser Gly Leu His Gly Tyr Asn Gly Met Leu Val Gly Leu Leu Met Ala VaI Phe Ser Glu Lys Leu Asp Tyr Tyr Trp Trp Leu Leu Phe Pro Val Thr Phe Thr Ala Met Ser Cys Pro Val Leu Ser Ser Ala Leu Asn Ser Ile Phe Ser Lys Trp Asp Leu Pro Val Phe Thr Leu Pro Phe Asn IIe Ala Val Thr Leu Tyr Leu Ala Ala Thr Gly His Tyr Asn Leu Phe Fhe Pro Thr Thr Leu Val Glu Pro Val Ser Ser Val Pro Asn Ile Thr Trp Thr Glu 275 280 . 285 Met Glu Met Pro Leu Leu Leu Gln Ala Ile Pro Val Gly Val Gly Gln Val Tyr Gly Cys Asp Asn Pro Trp Thr Gly Gly Val Phe Leu Val Ala Leu Phe Ile Ser Ser Pro Leu Ile Cys Leu His Ala Ala 320 . 325 330 Ile Gly Ser Ile Val Gly Leu Leu Ala Ala Leu Ser Val Ala Thr Pro Phe Glu Thr Ile Tyr Thr Gly Leu Trp Ser Tyr Asn Cys Val Leu Sex Cys Ile Ala Ile Gly Gly Met Phe Tyr Ala Leu Thr Trp Gln Thr His Leu Leu Ala Leu Ile Cys Ala Leu Phe Cys Ala Tyr Met Glu Ala Ala Ile Ser Asn Ile Met Ser Val Val Gly Val Pro Pro Gly Thr Trp Ala Phe Cys Leu Ala Thr Ile Ile Phe Leu Leu Leu Thr Thr Asn Asn Pro Ala Ile Phe Arg Leu Pro Leu Ser Lys Val Thr Tyr Pro Glu Ala Asn Arg Ile Tyr Tyr Leu Thr Val Lys Ser Gly Glu Glu Glu Lys Ala Pro Ser Gly Glu <210> 6 <211> 555 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 7236815CD1 <400> 6 Met Ser Gly Ile Gln Gly Thr Arg Thr Tyr Pro Gly Ala Gly Asp Thr Ser Asp Leu Lys Tyr Pro Leu Ala Thr Arg Leu Arg Glu Ala Leu Thr Glu Ala Arg Phe His Gln Leu Phe Arg Gly Glu Glu Gln Glu Pro Glu Leu Pro Glu Glu Arg Gly Phe Pro Arg Leu Phe Gly Leu Trp Arg Leu Arg Ala Arg Ala Cys Ser Gly Thr Gly Ala Trp Arg Leu Leu Leu Ala Arg Leu Pro Ala Leu His Trp Leu Pro His Tyr Arg Trp Arg Ala Trp Leu Leu Gly Asp Ala Val Ala Gly Val Thr Val Gly Ile Val His Val Pro Gln Gly Met Ala Phe Ala Leu Leu Ala Ser Val Pro Pro VaI Phe Gly Leu Tyr Thr Ser Phe Phe Pro Val Leu Ile Tyr Ser Leu Leu Gly Thr Gly Arg His Leu Ser Thr Gly Thr Phe Ala Ile Leu Ser Leu Met Thr Gly Ser Ala Val Glu Arg Leu Val Pro Glu Pro Leu Val Gly Asn Leu Ser Gly Ile Glu Lys Glu Gln Leu Asp Ala Gln Arg Val Gly Val Ala Ala Ala Val Ala Phe Gly Ser Gly Ala Leu Met Leu Gly Met Phe Val Leu Gln Leu Gly Val Leu Ser Thr Phe Leu Ser Glu Pro Val Val Lys Ala Leu Thr Ser Gly Ala Ala Leu His Val Leu Leu Ser Gln Leu Pro Ser Leu Leu Gly Leu Ser Leu Pro Arg GIn Ile Gly Cys Phe Ser Leu Phe Lys Thr Leu Ala Ser Leu Leu Thr Thr Leu Pro Arg Ser Ser Pro Ala GIu Leu Thr Ile Ser Ala Leu Ser Leu Ala Leu
8/19 Leu Val Pro VaI Lys Glu Leu Asn Val Arg Phe Arg Asp Arg Leu Pro Thr Pro Ile Pro Gly Glu Val Val Leu Val Leu Leu Ala Ser Val Leu Cys Phe Thr Ser Ser Val Asp Thr Arg Tyr Gln Val Gln Ile Val Gly Leu Leu Pro Gly Gly Phe Pro Gln Pro Leu Leu Pro Asn Leu Ala Glu Leu Pro Arg Ile Leu Ala Asp Ser Leu Pro Ile Ala Leu Val Ser Phe Ala Val Ser Ala Ser Leu Ala Ser Ile His Ala Asp Lys Tyr Ser Tyr Thr Ile Asp Ser Asn Gln Glu Phe Leu Ala His Gly Ala Ser Asn Leu Ile Ser Ser Leu Phe Ser Cys Phe Pro Asn Ser Ala Thr Leu Ala Thr Thr Asn Leu Leu Val Asp Ala Gly Gly Lys Thr Gln Gly Asn Pro Thr Val Ala Phe Lys Val Glu Val Gly Tyr Lys Thr Gly Glu Leu Glu Gln Trp Thr Ser Thr Arg Arg Leu Leu Ala Gly Leu Phe Ser Cys Thr Val' Val Leu Ser Val 455 460 ' 465 Leu Leu Trp Leu Gly Pro Phe Phe Tyr Tyr Leu Pro Lys Ala Val Leu Ala Cys Ile Asn Ile Ser Ser Met Arg Gln Val Phe Cys Gln Met Gln Glu Leu Pro Gln Leu Trp His Ile Ser Arg Val Asp Phe 500 505 . 510 Ala Val Trp Met Val Thr Trp Val Ala Val Val Thr Leu Ser Val Asp Leu Gly Leu Ala Val Gly Val Val Phe Ser Met Met Thr Val VaI Cys Arg Thr Arg Ser Ser Ser Arg Ser Arg Gly Ser Ala Ser <210> 7 <211> 332 <212> PRT
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 414046CD1 <400> 7 Met Ala Ala Ala Thr Ala Ala Ala Ala Leu Ala Ala Ala Asp Pro 1 5 l0 l5 Pro Pro Ala Met Pro Gln Ala Ala Gly Ala Gly Gly Pro Thr Thr Arg Arg Asp Phe Tyr Trp Leu Arg Ser Phe Leu Ala Gly Gly Ile Ala Gly Cys Cys Ala Lys Thr Thr Val Ala Pro Leu Asp Arg Val
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 414046CD1 <400> 7 Met Ala Ala Ala Thr Ala Ala Ala Ala Leu Ala Ala Ala Asp Pro 1 5 l0 l5 Pro Pro Ala Met Pro Gln Ala Ala Gly Ala Gly Gly Pro Thr Thr Arg Arg Asp Phe Tyr Trp Leu Arg Ser Phe Leu Ala Gly Gly Ile Ala Gly Cys Cys Ala Lys Thr Thr Val Ala Pro Leu Asp Arg Val
9/19 Lys Val Leu Leu Gln Ala His Asn His His Tyr Lys His Leu Gly Val Phe Ser Ala Leu Arg Ala Val Pro Gln Lys Glu Gly Phe Leu Gly Leu Tyr Lys Gly Asn Gly Ala Met Met Ile Arg Ile Phe Pro Tyr Gly Ala Ile Gln Phe Met Ala Phe Glu His Tyr Lys Thr Leu Ile Thr Thr Lys Leu Gly Ile Ser Gly His Val His Arg Leu Met Ala Gly Ser Met Ala Gly Met Thr Ala Val Ile Cys Thr Tyr Pro Leu Asp Met Val Arg Val Arg Leu Ala Phe Gln Val Lys Gly Glu His Ser Tyr Thr Gly Ile Ile His Ala Phe Lys Thr Ile Tyr Ala Lys Glu Gly Gly Phe Phe Gly Phe Tyr Arg Gly Leu Met Pro Thr Ile Leu Gly Met Ala Pro Tyr Ala Gly Val Ser Phe Phe Thr Phe Gly Thr Leu Lys Ser Val Gly Leu Ser His Ala Pro Thr Leu Leu Gly Arg Pro Ser Ser Asp Asn Pro Asn Val Leu Val Leu Lys Thr His Val Asn Leu Leu Cys Gly Gly Val Ala Gly Ala Ile Ala Gln Thr Ile Ser Tyr Pro Phe Asp Val Thr Arg Arg Arg Met Gln Leu Gly Thr Val Leu Pro Glu Phe Glu.Lys.Cys Leu Thr Met Arg Asp Thr Met Lys Tyr Val Tyr Gly His His Gly Ile Arg Lys Gly Leu Tyr Arg Gly Leu Ser Leu Asn Tyr Ile Arg Cys Ile Pro Ser Gln Ala Val Ala Phe Thr Thr Tyr Glu Leu Met Lys Gln Phe Phe His Leu Asn <210> 8 <211> 296 <212> PRT
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 6829266CD1 <400> 8 Met Ile Leu Arg Val Thr Leu Arg Asn Pro Gly Ser Ser Gly Arg Lys Glu His Pro Glu Ala Gly Thr Gly Ser Trp Leu Gly Arg Thr Arg Asn Gln Val Ile Asn Thr Leu Ala Asp His Arg His Arg Gly Thr Asp Phe Gly Gly Ser Pro Trp Leu Leu Ile Ile Thr Val Phe
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 6829266CD1 <400> 8 Met Ile Leu Arg Val Thr Leu Arg Asn Pro Gly Ser Ser Gly Arg Lys Glu His Pro Glu Ala Gly Thr Gly Ser Trp Leu Gly Arg Thr Arg Asn Gln Val Ile Asn Thr Leu Ala Asp His Arg His Arg Gly Thr Asp Phe Gly Gly Ser Pro Trp Leu Leu Ile Ile Thr Val Phe
10/19 Leu Arg Ser Tyr Lys Phe Ala Ile Ser Leu Cys Thr Ser Tyr Leu Cys Val Ser Phe Leu Lys Thr Ile Phe Pro Ser Gln Asn Gly His Asp Gly Ser Thr Asp Val Gln Gln Arg Ala Arg Arg Ser Asn Cys Arg Arg Gln Glu Gly Ile Lys Ile Val Leu Glu Asp Ile Phe Thr Leu Trp Arg Gln Val Glu Thr Lys Val Arg Ala Lys Ile Arg Lys Met Lys Val Thr Thr Lys Val Asn Arg His Asp Lys Ile Asn Gly Lys Arg Lys Thr Ala Lys Glu His Leu Arg Lys Leu Ser Met Lys Glu Arg Glu His Gly Glu Lys Glu Arg Gln Val Ser Glu Ala Glu Glu Asn Gly Lys Leu Asp Met Lys Glu Ile His Thr Tyr Met Glu Met Phe Gln Arg Ala Gln Ala Leu Arg Arg Arg Ala Glu Asp Tyr Tyr Arg Cys Lys Ile Thr Pro Ser Ala Arg Lys Pro Leu Cys Asn Arg Val Arg Met Ala Ala Val Glu His Arg His Ser Ser Gly Leu Pro Tyr Trp Pro Tyr Leu Thr Ala Glu Thr Leu Lys Asn Arg Met Gly His Gln Pro Pro Pro Pro Thr Gln Gln His Ser Ile Ile Asp Asn Ser Leu Ser Leu Lys Thr Pro Ser Glu Cys Val.Leu Tyr Pro Leu Pro Pro Gln Gly Met Ile Ile Ser Arg Asn <210> 9 <211> 204 <212> PRT
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 7486339CD1 <400> 9 Met Glu His Ile Ser Ala Pro Ala Glu Arg Asp Pro Pro Pro Arg Ser Gly Ser Thr Ala His Phe Arg Ser Cys His Arg Leu Ser Asp Cys Gln Arg Pro Leu Thr Ala Pro Leu Trp Gln Val Arg Gln Asn Tyr His Pro Asp Cys Asp Ala Ala Val Asn Ser His Val Asn Leu Glu Leu His Ala Ser Cys Val Tyr Leu Ser Met Ala Phe Tyr Leu Asp Arg Asp Asp Val Thr Leu Glu Arg Phe Ser Arg Cys Phe Leu
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 7486339CD1 <400> 9 Met Glu His Ile Ser Ala Pro Ala Glu Arg Asp Pro Pro Pro Arg Ser Gly Ser Thr Ala His Phe Arg Ser Cys His Arg Leu Ser Asp Cys Gln Arg Pro Leu Thr Ala Pro Leu Trp Gln Val Arg Gln Asn Tyr His Pro Asp Cys Asp Ala Ala Val Asn Ser His Val Asn Leu Glu Leu His Ala Ser Cys Val Tyr Leu Ser Met Ala Phe Tyr Leu Asp Arg Asp Asp Val Thr Leu Glu Arg Phe Ser Arg Cys Phe Leu
11/19 Ser Gln Ser Gln Glu Lys Arg Glu His Ala Gln Lys Leu Ile Met Leu Gln Asn Leu Arg Gly Gly Arg Ile Cys Leu Pro Asp Ile Trp Lys Pro Glu Arg Glu Tyr Trp Glu Ser Gly Leu Gln Ala Met Glu Cys Ala Phe His Leu Glu Glu Ser Val Asn Tyr Ser Leu Leu Glu Leu His Tyr Leu Ala Met Glu Lys Gly Asp Pro Gln Leu Cys Asp Phe Leu Glu Ser His Phe Leu Asn Gln Gln Val Lys Ala Ile Lys Glu Leu Ser Gly Tyr Leu Ser Asn Leu Arg Lys Met Trp Ala Thr Gly Asn Arg Pro Gly Arg Val Pro Val <210> 10 <211> 2104 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 2561248CB1 <400> 20 cggacgcggc ggacgtgggt gagggcgcgg ccgtaagaga gcgggacgcg gggtgcccgg 60 cgcgtggtgg gggtccccgg cgcctgcccc cacggcaccc aagaaggcct ggccagggta 120 ccctccgcgg agcccggggg tggggggcgc ggggccggcg ccgcgatggg cccgggaccc 180 ccagcggccg gagcggcgcc gtccccgcgg ccgctgtccc tggtggcgcg gctgagctac 240 gccgtgggcc acttcctcaa cgacctgtgc gcgtccatgt ggttcaccta cctgctgctc 300 tacctgcact cggtgcgcgc ctacagctcc cgcggcgcgg ggctgctgct gctgctgggc 360 caggtggccg acgggctgtg cacaccgctc gtgggctacg aggccgaccg cgccgccagc 420 tgctgcgccc gctacggccc gcgcaaggcc tggcacctgg tcggcaccgt ctgcgtcctg 480 ctgtccttcc ccttcatctt cagcccctgc ctgggctgtg gggcggccac gcccgagtgg 540 gctgccctcc tctactacgg cccgttcatc gtgatcttcc agtttggctg ggcctccaca 600 cagatctccc acctcagcct catcccggag ctcgtcacca acgaccatga gaaggtggag 660 ctcacggcac tcaggtatgc gttcaccgtg gtggccaaca tcaccgtcta cggcgccgcc 720 tggctcctgc tgcacctgca gggctcgtcg cgggtggagc ccacccaaga catcagcatc 780 agcgaccagc tggggggcca ggacgtgccc gtgttccgga acctgtccct gctggtggtg 840 ggtgtcggcg ccgtgttctc actgctattc cacctgggca cccgggagag gcgccggccg 900 catgcggagg agccaggcga gcacaccccc ctgttggccc ctgccacggc ccagcccctg 960 ctgctctgga agcactggct ccgggagccg gctttctacc aggtgggcat actgtacatg 1020 accaccaggc tcatcgtgaa cctgtcccag acctacatgg ccatgtacct cacctactcg 1080 ctccacctgc ccaagaagtt catcgcgacc attcccctgg tgatgtacct cagcggcttc 1140 ttgtcctcct tcctcatgaa gcccatcaac aagtgcattg ggaggaacat gacctacttc 1200 tcaggcctcc tggtgatcct ggcctttgcc gcctgggtgg cgctggcgga gggactgggt 1260 gtggccgtgt atgcagcggc tgtgctgctg ggtgctggct gtgccaccat cctcgtcacc 1320 tcgctggcca tgacggccga cctcatcggt ccccacacga acagcggagc gttcgtgtac 1380 ggctccatga gcttcttgga taaggtggcc aatgggctgg cagtcatggc catccagagc 1440 ctgcaccctt gcccctcaga gctctgctgc agggcctgcg tgagctttta ccactgggcg 1500 atggtggctg tgacgggcgg cgtgggcgtg gccgctgccc tgtgtctctg tagcctcctg 1560 ctgtggccga cccgcctgcg acgctgatga gacctgcacg cagtggctca cagcagcacg 1620 atttgtgaca gcccgaggcg gagaacaccg aacacccagt gaaggtgagg ggatcagcac 1680 ggcgcggcca cccacgcacc cacgcgctgg aatgagactc agccacaagg aggtgcgaag 1740
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 2561248CB1 <400> 20 cggacgcggc ggacgtgggt gagggcgcgg ccgtaagaga gcgggacgcg gggtgcccgg 60 cgcgtggtgg gggtccccgg cgcctgcccc cacggcaccc aagaaggcct ggccagggta 120 ccctccgcgg agcccggggg tggggggcgc ggggccggcg ccgcgatggg cccgggaccc 180 ccagcggccg gagcggcgcc gtccccgcgg ccgctgtccc tggtggcgcg gctgagctac 240 gccgtgggcc acttcctcaa cgacctgtgc gcgtccatgt ggttcaccta cctgctgctc 300 tacctgcact cggtgcgcgc ctacagctcc cgcggcgcgg ggctgctgct gctgctgggc 360 caggtggccg acgggctgtg cacaccgctc gtgggctacg aggccgaccg cgccgccagc 420 tgctgcgccc gctacggccc gcgcaaggcc tggcacctgg tcggcaccgt ctgcgtcctg 480 ctgtccttcc ccttcatctt cagcccctgc ctgggctgtg gggcggccac gcccgagtgg 540 gctgccctcc tctactacgg cccgttcatc gtgatcttcc agtttggctg ggcctccaca 600 cagatctccc acctcagcct catcccggag ctcgtcacca acgaccatga gaaggtggag 660 ctcacggcac tcaggtatgc gttcaccgtg gtggccaaca tcaccgtcta cggcgccgcc 720 tggctcctgc tgcacctgca gggctcgtcg cgggtggagc ccacccaaga catcagcatc 780 agcgaccagc tggggggcca ggacgtgccc gtgttccgga acctgtccct gctggtggtg 840 ggtgtcggcg ccgtgttctc actgctattc cacctgggca cccgggagag gcgccggccg 900 catgcggagg agccaggcga gcacaccccc ctgttggccc ctgccacggc ccagcccctg 960 ctgctctgga agcactggct ccgggagccg gctttctacc aggtgggcat actgtacatg 1020 accaccaggc tcatcgtgaa cctgtcccag acctacatgg ccatgtacct cacctactcg 1080 ctccacctgc ccaagaagtt catcgcgacc attcccctgg tgatgtacct cagcggcttc 1140 ttgtcctcct tcctcatgaa gcccatcaac aagtgcattg ggaggaacat gacctacttc 1200 tcaggcctcc tggtgatcct ggcctttgcc gcctgggtgg cgctggcgga gggactgggt 1260 gtggccgtgt atgcagcggc tgtgctgctg ggtgctggct gtgccaccat cctcgtcacc 1320 tcgctggcca tgacggccga cctcatcggt ccccacacga acagcggagc gttcgtgtac 1380 ggctccatga gcttcttgga taaggtggcc aatgggctgg cagtcatggc catccagagc 1440 ctgcaccctt gcccctcaga gctctgctgc agggcctgcg tgagctttta ccactgggcg 1500 atggtggctg tgacgggcgg cgtgggcgtg gccgctgccc tgtgtctctg tagcctcctg 1560 ctgtggccga cccgcctgcg acgctgatga gacctgcacg cagtggctca cagcagcacg 1620 atttgtgaca gcccgaggcg gagaacaccg aacacccagt gaaggtgagg ggatcagcac 1680 ggcgcggcca cccacgcacc cacgcgctgg aatgagactc agccacaagg aggtgcgaag 1740
12/19 ctctgaccca ggccacagtg cggatgcacc ttgaggatgt cacgctcagt gagagacacc 1800 agacacagaa gggtacgctg tgatcccact tctatgaaat gtccaggaca gaccaatcca 1860 cagaatcagg gagaggattc gtgggtgccg ggactgggga gggggacctg ggggtgacta 1920 ggtgacataa tggggacagg gctgccttct gggtgatgag aatgttctgg aatcagatgg 1980 gatggctgca cggcgtggtg aaggtactga acgccacctc actgtaagac ggtagatttt 2040 gtattttacc acaataaaca aaacaaaaca aaaccaaacc aaacccaaaa aaaaaaaaaa 2100 aaaa 2104 <210> 11 <211> 2050 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 4539525CB1 <400> 11 atgacgtggc ccgagctcag ctgggagaag atgcccacct ctgtcccacc ctaggcccag 60 gggtccggcc ccggctgtgc cacatagtga aagatgaggg tggttttggc ttcagtgtca 120 cccatggcaa tcagggtcct ttctggttgg tgctaagtac tggaggagca gctgagcggg 180 caggggtgcc ccccggggcc cggctgctgg aagtgaatgg ggtcagtgtg gagaagttca 240 ctcacaacca actcaccagg aagctttggc agagtggaca gcaggtgacc ttgctggtgg 300 cagggccaga ggtggaagaa cagtgtcgcc agctgggatt gcccctggct gcacccctgg 360 cagagggctg ggcactgccc accaagcccc gctgcctgca cctggagaaa gggccccagg 420 gttttgggtt cctgctccgg gaggaaaagg gccttgacgg tcgccctggt gagtgggagc 480 cctgggggcg gtgggggaag gtgggccttg gggtgggcac acaagcgtat atacaccttt 540 cagtgcaccg aagaggtgtc cctgtctgag ctctggccct gggccgcctc ttcccgttca 600 ctctggggtc agtcccctgg tgtgtacaca gtggcctagg atagctggag aggagcagtg 660 aggatgtcta tgccccagga cagttcctgt gggaggtgga cccgggactg ccagccaaga 720 aggctgggat gcaggctggg gaccggctgg tggctgtggc tggggagagc gtggaggggc 780 tgggccatga ggagacagtg tccaggatcc aggggcaggg ctcctgtgtc tccctcactg 840 tcgtcgaccc tgaggcggac cgcttcttca gcatggttcg cctgtcccca ctcctcttct 900 tggagaacac agaggctccc gcctcgcccc agggcagcag ctcagcctca ctggttgaga 960 cagaggaccc ttcacttgaa gacacaagcg tgccttctgt ccctcttggc tcccgacagt 1020 gcttcctgta ccctgggcct ggtggcagct atggcttccg actcagttgt gtggccagtg 1080-ggcctcgtct cttcatctcc caggtgactc caggaggctc agctgcccgg gctgggctgc 1140 aagtgggaga cgtgattctg gaagtgaacg ggtatcctgt tgggggacag aatgacctgg 1200 agaggcttca gcagctgcct gaggctgagc cacccctctg cctgaagctg gcagccaggt 1260 ctctgcgggg cttggaagcc tggattcccc ctggggctgc agaggactgg gctctggcct 1320 cggatctact gtagagcacc cctgcttggt acagacatac tcaggggcta ccgtgtcttc 1380 actctccagc ctgaggtggt gaaggcagga tgctctctct aagccagacc agagggactc 1440 agacaccacc gatcacaggc tggcccaggt gctccctccc ttcctgcagg cccacctgcc 1500 agcagagggt gtggttggag gcctcagaca ggtccctgaa ggagtctgag gctccagagg 1560 atgtcatatg ggagttttag agagctgtgt cccaaggatg aaggtgtggc tgtgggtctg 1620 gctaggattg aagccatctg gaccttttct agatatgact ccaggaccct tgagtgtaat 1680 gcaaaaattt ggagaccagc tatgcctgcc ctctgtgggt gccttagcat tgcgggaggg 1740 tggtgcttgg tcaccgttgc atttgttata gaaatggcca ttcgccataa atctgactgc 1800 ctgtgtttgt gttggtgggg gtaaggggca gtggtgtgaa gggaccaaaa gggcctcagg 1860 ctcaaggggt gggatgcggc tcctgcagga gagaggttga gacctggtca aatttatttc 1920 ctatcaatca ctgaatctca gggataatgg gtcaacccag aactgagatg tctgtatgac 1980 agccactcct aaaaataaac aacaacaaaa acaaaaaaag aagaaaacta aataaaaaaa 2040 aaaaaaaaaa 2050 <210> 12 <211> 1293
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 4539525CB1 <400> 11 atgacgtggc ccgagctcag ctgggagaag atgcccacct ctgtcccacc ctaggcccag 60 gggtccggcc ccggctgtgc cacatagtga aagatgaggg tggttttggc ttcagtgtca 120 cccatggcaa tcagggtcct ttctggttgg tgctaagtac tggaggagca gctgagcggg 180 caggggtgcc ccccggggcc cggctgctgg aagtgaatgg ggtcagtgtg gagaagttca 240 ctcacaacca actcaccagg aagctttggc agagtggaca gcaggtgacc ttgctggtgg 300 cagggccaga ggtggaagaa cagtgtcgcc agctgggatt gcccctggct gcacccctgg 360 cagagggctg ggcactgccc accaagcccc gctgcctgca cctggagaaa gggccccagg 420 gttttgggtt cctgctccgg gaggaaaagg gccttgacgg tcgccctggt gagtgggagc 480 cctgggggcg gtgggggaag gtgggccttg gggtgggcac acaagcgtat atacaccttt 540 cagtgcaccg aagaggtgtc cctgtctgag ctctggccct gggccgcctc ttcccgttca 600 ctctggggtc agtcccctgg tgtgtacaca gtggcctagg atagctggag aggagcagtg 660 aggatgtcta tgccccagga cagttcctgt gggaggtgga cccgggactg ccagccaaga 720 aggctgggat gcaggctggg gaccggctgg tggctgtggc tggggagagc gtggaggggc 780 tgggccatga ggagacagtg tccaggatcc aggggcaggg ctcctgtgtc tccctcactg 840 tcgtcgaccc tgaggcggac cgcttcttca gcatggttcg cctgtcccca ctcctcttct 900 tggagaacac agaggctccc gcctcgcccc agggcagcag ctcagcctca ctggttgaga 960 cagaggaccc ttcacttgaa gacacaagcg tgccttctgt ccctcttggc tcccgacagt 1020 gcttcctgta ccctgggcct ggtggcagct atggcttccg actcagttgt gtggccagtg 1080-ggcctcgtct cttcatctcc caggtgactc caggaggctc agctgcccgg gctgggctgc 1140 aagtgggaga cgtgattctg gaagtgaacg ggtatcctgt tgggggacag aatgacctgg 1200 agaggcttca gcagctgcct gaggctgagc cacccctctg cctgaagctg gcagccaggt 1260 ctctgcgggg cttggaagcc tggattcccc ctggggctgc agaggactgg gctctggcct 1320 cggatctact gtagagcacc cctgcttggt acagacatac tcaggggcta ccgtgtcttc 1380 actctccagc ctgaggtggt gaaggcagga tgctctctct aagccagacc agagggactc 1440 agacaccacc gatcacaggc tggcccaggt gctccctccc ttcctgcagg cccacctgcc 1500 agcagagggt gtggttggag gcctcagaca ggtccctgaa ggagtctgag gctccagagg 1560 atgtcatatg ggagttttag agagctgtgt cccaaggatg aaggtgtggc tgtgggtctg 1620 gctaggattg aagccatctg gaccttttct agatatgact ccaggaccct tgagtgtaat 1680 gcaaaaattt ggagaccagc tatgcctgcc ctctgtgggt gccttagcat tgcgggaggg 1740 tggtgcttgg tcaccgttgc atttgttata gaaatggcca ttcgccataa atctgactgc 1800 ctgtgtttgt gttggtgggg gtaaggggca gtggtgtgaa gggaccaaaa gggcctcagg 1860 ctcaaggggt gggatgcggc tcctgcagga gagaggttga gacctggtca aatttatttc 1920 ctatcaatca ctgaatctca gggataatgg gtcaacccag aactgagatg tctgtatgac 1980 agccactcct aaaaataaac aacaacaaaa acaaaaaaag aagaaaacta aataaaaaaa 2040 aaaaaaaaaa 2050 <210> 12 <211> 1293
13!29 <212> DNA
<213> Homo Sapiens <220>
<221> misc-feature <223> Incyte ID No: 72210802CB1 <400> 12 gtctgctctt agctcagtct agatccctcg ttgtgtgtcc cccatggtgt ggtcctacct 60 gtgttagccg cgttggcttg tcggtggctc gttgtgagtc aaccggttaa ctcgactttc 120 tccagtgcac caccacggta cgagagtacc agagccgagt agttagcgtt tcacaggagt 180 ttcttggaaa tgtggtgcgc taactacggc tacactagaa gctacagtat tttggtatct 240 gcggctcgtg ctgaagccag ttaggcgtcg gatgaagagt tggtagctct tgatccggcg 300 tactagacca ccgctgtatc gtggttttgt ttgtttgcaa gcagcagata cggcgcagta 360 tatagaagga tctcaagaag atcctttgga tcacagtgat gaagcccgct cattaggcgg 420 tgttaaattc ccgggtatct gctgccgaat tcattaatgc aggttaacct ggcttatcga 480 atgaggggat attgccgatg aatcccgccg atgtggccca gtcgactctg ccactggcat 540 cgagcgatgt gtcgctgatc gcattgtttt ggcaggccca ttgggtcgtc aagtgcgtga 600 tgttgggact tctgtcctgc tcggtgtggg tctgggcgat cgcgatcgac aagatcctgc 660 tctacgcccg caccaagcgt gcgatggaca agttcgagca ggcattctgg tccggccagt 720 cgatcgagga gctctaccgg gccctctcgg ccaagccgac ccagtcgatg gccgcctgtt 780 tcgtggcggc gatgcgggag tggaaacgct ccttcgagag ccagtcgcgg tcctttgccg 840 gcctgcaggc ccggatcgac aaggtcatga~acgtctcgat cgcccgcgag gtggagcggc 900 tggaacggcg gctgctggtg ctggccaccg tcggctcggc cggccccttc gtcggcctgt 960 tcggcaccgt ctggggcatc atgtcgagct tccagtcgat tgctgcctcg aaaaatacct 1020 ccctggccgt ggtggcgccg ggtatcgcgg aagcgctgtt tgccaccgcg atcggtctga 1080 ttgccgcaat tccggcgact attttctaca ataagttcac ttcggaggtg aaccggcagg 1140 ccgcgcgcct ggaggggttc gccgacgagt tctccgccat cctgtcgcgt cagatcgacg 1200 agcggggctg agaccgatga tgatcacgat ggtcactctt gtgagcgcac gatcatggcg 1260 atgagcatgg cagggtccgg tggcggcggc agg 1293 <210> 13 <211> 3382 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 2469624CB1 <400> 13 gggtgaagct ctgggcctcg gcttttggtg gggagataaa atccattgct gctaagtact 60 ccggttccca gcttctgcaa aagaaataca aagagtatga gaaagacgtt gccatagaag 120 aaatcgatgg cctccaactg gtaaagaagc tggcaaagaa catggaagag atgtttcaca 180 agaagtctga ggccgtcagg cgtctggtgg aggctgcaga agaagcacac ctgaaacatg 240 aatttgatgc agacttacag tatgaatact tcaatgctgt gctgataaat gaaagggaca 300 aagacgggaa ttttttggag ctgggaaagg aattcatctt agccccaaat gaccatttta 360 ataatttgcc tgtgaacatc agtctaagtg acgtccaagt accaacgaac atgtacaaca 420 aagggattaa atgggaacca gatgagaatg gagtcattgc cttegactgc aggaaccgaa 480 aatggtacat ccaggcagca acttctccga aagacgtggt cattttagtt gacgtcagtg 540 gcagcatgaa aggactccgt ctgactatcg cgaagcaaac agtctcatcc attttggata 600 cacttgggga tgatgacttc ttcaacataa ttgcttataa tgaggagctt cactatgtgg 660 aaccttgcct gaatggaact ttggtgcaag ccgacaggac aaacaaagag cacttcaggg 720 agcatctgga caaacttttc gccaaaggaa ttggaatgtt ggatatagct ctgaatgagg 780 ccttcaacat tctgagtgat ttcaaccaca cgggacaagg aagtatctgc agtcaggcca 840 tcatgctcat aactgatggg gcggtggaca cctatgatac aatctttgca aaatacaatt 900
<213> Homo Sapiens <220>
<221> misc-feature <223> Incyte ID No: 72210802CB1 <400> 12 gtctgctctt agctcagtct agatccctcg ttgtgtgtcc cccatggtgt ggtcctacct 60 gtgttagccg cgttggcttg tcggtggctc gttgtgagtc aaccggttaa ctcgactttc 120 tccagtgcac caccacggta cgagagtacc agagccgagt agttagcgtt tcacaggagt 180 ttcttggaaa tgtggtgcgc taactacggc tacactagaa gctacagtat tttggtatct 240 gcggctcgtg ctgaagccag ttaggcgtcg gatgaagagt tggtagctct tgatccggcg 300 tactagacca ccgctgtatc gtggttttgt ttgtttgcaa gcagcagata cggcgcagta 360 tatagaagga tctcaagaag atcctttgga tcacagtgat gaagcccgct cattaggcgg 420 tgttaaattc ccgggtatct gctgccgaat tcattaatgc aggttaacct ggcttatcga 480 atgaggggat attgccgatg aatcccgccg atgtggccca gtcgactctg ccactggcat 540 cgagcgatgt gtcgctgatc gcattgtttt ggcaggccca ttgggtcgtc aagtgcgtga 600 tgttgggact tctgtcctgc tcggtgtggg tctgggcgat cgcgatcgac aagatcctgc 660 tctacgcccg caccaagcgt gcgatggaca agttcgagca ggcattctgg tccggccagt 720 cgatcgagga gctctaccgg gccctctcgg ccaagccgac ccagtcgatg gccgcctgtt 780 tcgtggcggc gatgcgggag tggaaacgct ccttcgagag ccagtcgcgg tcctttgccg 840 gcctgcaggc ccggatcgac aaggtcatga~acgtctcgat cgcccgcgag gtggagcggc 900 tggaacggcg gctgctggtg ctggccaccg tcggctcggc cggccccttc gtcggcctgt 960 tcggcaccgt ctggggcatc atgtcgagct tccagtcgat tgctgcctcg aaaaatacct 1020 ccctggccgt ggtggcgccg ggtatcgcgg aagcgctgtt tgccaccgcg atcggtctga 1080 ttgccgcaat tccggcgact attttctaca ataagttcac ttcggaggtg aaccggcagg 1140 ccgcgcgcct ggaggggttc gccgacgagt tctccgccat cctgtcgcgt cagatcgacg 1200 agcggggctg agaccgatga tgatcacgat ggtcactctt gtgagcgcac gatcatggcg 1260 atgagcatgg cagggtccgg tggcggcggc agg 1293 <210> 13 <211> 3382 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 2469624CB1 <400> 13 gggtgaagct ctgggcctcg gcttttggtg gggagataaa atccattgct gctaagtact 60 ccggttccca gcttctgcaa aagaaataca aagagtatga gaaagacgtt gccatagaag 120 aaatcgatgg cctccaactg gtaaagaagc tggcaaagaa catggaagag atgtttcaca 180 agaagtctga ggccgtcagg cgtctggtgg aggctgcaga agaagcacac ctgaaacatg 240 aatttgatgc agacttacag tatgaatact tcaatgctgt gctgataaat gaaagggaca 300 aagacgggaa ttttttggag ctgggaaagg aattcatctt agccccaaat gaccatttta 360 ataatttgcc tgtgaacatc agtctaagtg acgtccaagt accaacgaac atgtacaaca 420 aagggattaa atgggaacca gatgagaatg gagtcattgc cttegactgc aggaaccgaa 480 aatggtacat ccaggcagca acttctccga aagacgtggt cattttagtt gacgtcagtg 540 gcagcatgaa aggactccgt ctgactatcg cgaagcaaac agtctcatcc attttggata 600 cacttgggga tgatgacttc ttcaacataa ttgcttataa tgaggagctt cactatgtgg 660 aaccttgcct gaatggaact ttggtgcaag ccgacaggac aaacaaagag cacttcaggg 720 agcatctgga caaacttttc gccaaaggaa ttggaatgtt ggatatagct ctgaatgagg 780 ccttcaacat tctgagtgat ttcaaccaca cgggacaagg aagtatctgc agtcaggcca 840 tcatgctcat aactgatggg gcggtggaca cctatgatac aatctttgca aaatacaatt 900
14/19 ggccagatcg aaaggttcgc atcttcacat acctcattgg acgagaggct gcgtttgcag 960 acaatctaaa gtggatggcc tgtgccaaca aaggattttt tacccagatc tccaccttgg 1020 ctgatgtgca ggagaatgtc atggaatacc ttcacgtgct tagccggccc aaagtcatcg 1080 accaggagca tgatgtggtg tggaccgaag cttacattga cagcactctg actgatgatc 1140 agggccccgt cctgatgacc actgtagcca tgcctgtgtt tagtaaacag aacgaaacca 1200 gatcgaaggg cattcttctg ggagtggttg gcacagatgt cccagtgaaa gaacttctga 1260 agaccatccc caaatacaag ttagggattc acggttatgc ctttgcaatc acaaataatg 1320 gatatatcct gacgcatccg gaactcaggc tgctgtacga agaaggaaaa aagcgaagga 1380 aacctaacta tagtagcgtt gacctctctg aggtggagtg ggaagaccga gatgacgtgt 1440 tgagaaatgc tatggtgaat cgaaagacgg ggaagttttc catggaggtg aagaagacag 1500 tggacaaagg gaaacgggtt ttggtgatga caaatgacta ctattataca gacatcaagg 1560 gtactccttt cagtttaggt gtggcgcttt ccagaggtca tgggaaatat ttcttccgag 1620 ggaatgtaac catcgaagaa ggcctgcatg acttagaaca tcccgatgtg tccttggcag 1680 atgaatggtc ctactgcaac actgacctac accctgagca ccgccatctg tctcagttag 1740 aagcgattaa gctctaccta aaaggcaaag aacctctgct ccagtgtgat aaagaattga 1800 tccaagaagt cctttttgac gcggtggtga gtgcccccat tgaagcgtat tggaccagcc 1860 tggccctcaa caaatctgaa aattctgaca agggcgtgga ggttgccttc ctcggcactc 1920 gcacgggcct ctccagaatc aacctgtttg tcggggctga gcagctcacc aatcaggact 1980 tcctgaaagc tggcgacaag gagaacattt ttaacgcaga ccatttccct ctctggtacc 2040 gaagagccgc tgagcagatt ccagggagct tcgtctactc gatcccattc agcactggac 2100 cagtcaataa aagcaatgtg gtgacagcaa gtacatccat ccagctcctg gatgaacgga 2260 aatctcctgt ggtggcagct gtaggcattc agatgaaact tgaatttttc caaaggaagt 2220 tctggactgc cagcagacag tgtgcttccc tggatggcaa atgctccatc agctgtgatg 2280 atgagactgt gaattgttac ctcatagaca ataatggatt tattttggtg tctgaagact 2340 acacacagac tggagacttt tttggtgaga tcgagggagc tgtgatgaac aaattgctaa 2400 caatgggctc ctttaaaaga 'attacccttt atgactacca agccatgtgt agagccaaca 2460 aggaaagcag cgatggcgcc catggcctcc tggatcctta taatgccttc ctctctgcag 2520 taaaatggat catgacagaa cttgtcttgt tcctggtgga atttaacctc tgcagttggt 2586 ggcactccga tatgacagct aaagcccaga aattgaaaca gaccctggag ccttgtgata 2640 ctgaatatcc agcattcgtc tctgagcgca ccatcaagga gactacaggg aatattgctt 2700 gtgaagactg ctccaagtcc tttgtcatcc agcaaatccc aagcagcaac ctgttcatgg 2760 tggtggtgga cagcagctgc ctctgtgaat ctgtggcccc catcaccatg gcacccattg 2820 aaatcaggta taatgaatcc cttaagtgtg aacgtctaaa ggcccagaag atcagaaggc 2880 gcccagaatc ttgtcatggc ttccatcctg aggagaatgc aagggagtgt gggggtgcgc 2940 cgagtctcca agcccagaca gtcctccttc tgctccctct gcttttgatg ctcttctcaa 3000 ggtgacactg actgagatgt tctcttactg actgagatgt tctcttggca tgctaaatca 3060 tggataaact gtgaaccaaa atatggtgca acatacgaga catgaatata gtccaaccat 3120 cagcatctca tcatgatttt aaactgtgcg tgatataaac tcttaaagat atgttgacaa 3180 aaagttatct atcatctttt tactttgcca gtcatgcaaa tgtgagtttg ccacatgata 3240 atcacccttc atcagaaatg ggaccgcaag tggtaggcag tgtcccttct gcttgaaacc 3300 tattgaaacc aatttaaaac tgtgtacttt ttaaataaag tatattaaaa tcataaaaaa 3360 aaaaaaaaaa aaaaaattgc tg 3382 <210> 14 <211> 1476 <212> DNA
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 7488292CB1 <400> 14 atgaaaggca gagaaaaaac actcagtgat caagagaaaa agagagactt ccattctgac 60 tcagtggtca gggatatctt catcggccaa atggacattc ttctggacgc ggaagaatgg 120 gaggattttg aaagcagtcc tctcctgcca gagccacttt ccagcagata caaactctac 180 gaggcagagt ttaccagccc gagctggccc tcgacatccc cggatactca cccagctctg 240 cccctcctgg aaatgcctga agaaaaggat ctccggtctt ccaatgaaga cagtcacatt 300 gtgaagatcg aaaagctcaa tgaaaggagt aaaaggaaag acgacggggt ggcccatcgg 360 gactcagcag gccaaaggtg catctgcctc tccaaagcag tgggctacct cacgggcgac 420 atgaaggagt acaggatctg gctgaaagac aagcaccttg ccctccagtt catagactgg 480 gtcctgagag ggaccgctca ggtgatgttc atcaacaatc ctctcagcgg cctcatcatc 540 ttcatagggc tgctgatcca gaatccctgg tggacaatca ctgggggcct ggggacagtg 600 gtctcgacct taacagctct cgccttgggc caagacaggt ctgccattgc ctcaggactc 660 catgggtaca acgggatgct ggtgggactg ctgatggceg tgttctcgga gaagttagac 720 tactactggt ggcttctgtt tcctgtgacc ttcacagcca tgtcctgccc agttctttct 780 agtgccttga attccatctt cagcaagtgg gacctcccgg tcttcactct gcccttcaac 840 attgcagtca ccttgtacct tgcagccaca ggccactaca acctcttctt ccccacaaca 900 ctggtagagc ctgtgtcttc agtgcccaat atcacctgga cagagatgga aatgcccctg 960 ctgttacaag ccatccctgt tggggtcggc caggtgtatg gctgtgacaa tccctggaca 1020 ggcggcgtgt tcctggtggc tctgttcatc tcctcgccac tcatctgctt gcatgcagcc 1080 attggctcaa tcgtggggct gctagcagcc ctgtcagtgg ccacaccctt cgagaccatc 1140 tacacaggcc tctggagcta caactgcgtc ctctcctgca tcgccatcgg aggcatgttc 1200 tatgccctca cctggcagac tcacctgctg gccctcatct gtgccctgtt ctgtgcatac 1260 atggaagcag ccatctccaa catcatgtca gtggtgggcg tgccaccagg cacctgggcc 1320 ttctgccttg ccaccatcat cttcctgctc ctgacgacaa acaacccagc catcttcaga 1380 ctcccactca gcaaagtcac ctaccccgag gccaaccgca tctactacct gacagtgaaa 1440 agcggtgaag aagagaaggc ccccagcggt gaatag 1476 <210> 15 <211> 2495 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 7236815CB1 <400> 15 catttccaca gccaccccag agccagcgat cagatccggc caaggatgtc tgcagaaacg 60 cctaacatag agactctccc tctccaagcc gcagctctcg ccagacccga gaaggtcctc 120 aagcgagggt gacctcaggg ccggattgga ccctgcttcg tgggaggcgg gactcagggc 180 ttagcgggcg gaggagtatt taagaccggg cggagttgga ggtggccaag ggcagaatga 240 gcgggattca gggcaccagg acctacccag gcgcggggga cacctctgac cttaagtacc 300 ccttggcgac caggctcagg gaagctctca ccgaggctcg gttccatcag ctcttcaggg 360 gcgaagagca ggaaccggag ctacctgaag agcgcggctt tccccggctc ttcgggctgt 420 ggaggctgcg ggctcgcgct tgttccggga caggggcgtg gcgcctgctg ctggctcggc 480 tgcccgcgct gcactggctg ccccattacc gctggcgggc ctggctgctc ggagatgcgg 540 tggccggagt gaccgtgggc atcgtgcacg tgccccaggg catggctttt gctctcctgg 600 cctccgtgcc cccggtgttt ggactctaca cttctttctt ccccgtcctc atctacagct 660 tgctaggtac tgggagacac ctgtccacag gaactttcgc catactcagc ctcatgacag 720 gctcggccgt cgagcggctg gtgccggaac ccctcgtggg gaatctgagc ggaatcgaga 780 aggagcagct ggacgctcaa cgggttgggg tagccgcggc cgtggccttc gggagcgggg 840 cgttgatgct ggggatgttc gtgctgcagc tcggcgtctt gtccaccttt ttgtccgagc 900 ctgtggtcaa ggcgctgacc agcggggccg cgctgcacgt gctcttgtcc cagctgccga 960 gcctcttggg gttgtccctc ccgcgccaga tcggctgctt ctctctcttc aagacgctgg 1020 cctccttgct gactacgctg cctcggagca gtccggccga actgaccatc tccgcgctca 1080 gcctggcgct gctcgtgccg gtcaaggaat tgaacgtgag attccgagac cggctaccca 1140 cgccgatccc gggggaagtc gtcttggtgc ttctggcctc cgtgctctgc ttcacctctt 1200 ctgtggacac aagataccaa gtccagatag tggggctgtt gcctggagga tttccccaac 1260 ccctcctccc caacctggct gagctgccca ggattctggc tgactcgctg cccattgcac 1320 tggttagttt tgcggtgtct gcctccctgg cctccatcca tgcagacaag tatagctaca 1380 ctattgactc caaccaggag ttcctggcac atggtgcctc caacctcatc tcctccctct 1440 tctcttgctt tcccaactcg gctacgctgg ccaccaccaa tctactggtg gatgctggtg 1500 ggaaaacaca gggtaaccca acagtggctt ttaaggtgga ggtgggctac aaaactgggg 1560 aacttgaaca atggacatct acaaggagac tgctggcagg cctcttctcc tgcacagtgg 1620 tcctgtcggt gctgctgtgg ctggggccct tcttttacta tctgcccaag gctgtcctgg 1680 cttgcatcaa catctccagc atgcgccagg tgttctgcca gatgcaggaa cttccacaac 1740 tatggcacat cagccgagtg gactttgctg tgtggatggt cacctgggtg gcagtagtga 1800 ccctgagtgt ggatttgggc ctggctgtgg gtgtggtctt ctccatgatg actgtggtct 1860 gccgcacccg gagctcctcc aggtcccggg gctctgcatc ctgagctatc caacaccact 1920 gtactttggg acccgtgggc agtttcgctg caacctggag tggcacctgg ggctcggaga 1980 aggagaaaag gagacttcaa agccagatgg cccaatggtt gcagttgctg agcctgtcag 2040 ggtggtggtc ctagacttca gtggtgtcac ctttgcagat gctgctgggg ccagagaagt 2100 ggtgcagctg gccagccgat gtcgagatgc taggatccgc ctcctcctgg ctcagtgtaa 2160 tgccttggtg caggggacac tgacccgggt aggactcctg gacagggtga ctccagatca 2220 gctgtttgtg agtgtgcagg atgcagctgc ttatgccctg gggagcctgg taaggggcag 2280 tagcaccagg agcgggagcc aggaggcact gggctgcggc aagtgaggca ggggagctca 2340 ctgacccaaa gatttgcacc gtgtgggtct gacctcatca tgtggagtgc agagggccct 2400 gatgacatgt gtgtgatgag gaccatgacc cttgaacccc cttacctaac gtaactaata 2460 aaatgaagct gagagctttg ggaaaaaaaa aaaaa 2495 <210> 16 <211> 1879 <212> bNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte TD No: 414046CB1 <400> 16 atcagccggc gccgcgccgc cgggtgttac tttgccccgc cggcggggcg gtcagcctcc 60 tgtcaccgcc tgttccggct atggtcccgt ccggtgttct gtaagttggc aacctaggct 220 cctgacgcga ccctggtcct gatggcggcg gcgacggccg cggcagccct ggcggcggcc 180 gatccccctc ccgcaatgcc gcaggcggca ggggccggag ggcccacaac ccgcagagac 240 ttctactggc tgcgctcctt tctggccgga ggtattgctg gatgctgtgc caaaacaaca 300 gttgctccat tggatcgagt aaaggtttta ttacaagctc acaatcacca ttacaagcat 360 ttaggagtat tttctgcatt gcgtgctgtt cctcaaaaag aaggattcct tggattgtat 420 aaaggaaatg gtgcaatgat gattcgaatc tttccctatg gtgcaatcca gtttatggca 480 tttgagcatt ataaaacgtt aattactacg aagctgggaa tttcaggtca tgtgcacaga 540 ttaatggctg gatccatggc aggtatgaca gcagttatct gtacttaccc tcttgacatg 600 gttagggtcc gcctagcatt ccaggtgaaa ggggaacaca gctatacagg aattattcat 660 gctttcaaaa caatttatgc aaaggaaggt ggtttctttg gattttacag aggtctgatg 720 cctactattt taggaatggc tccatatgca ggtgtttcat tttttacttt tggtaccttg 780 aagagtgttg ggctttccca tgctcctacc cttcttggca gaccttcatc agacaatcct 840 aatgtcttag ttttgaaaac tcatgtaaac ttactttgtg gtggtgttgc tggagcaata 900 gcgcagacaa tatcctaccc atttgatgtg actcgtcggc gaatgcaatt aggaactgtt 960 ctgccggaat ttgaaaagtg ccttaccatg cgggatacta tgaagtatgt ctatggacac 1020 catggaattc gaaaaggact ctatcgtggt ttatctctta attacattcg ctgtattccc 1080 tctcaagcag tggcttttac aacatacgaa cttatgaagc agttttttca cctcaactaa 1140 aaaaaaatta tggttggttt ttcttaatac attctcagag ggagaaatga aacattacta 1200 taattgtggg gggaacatta cttgaatggg gatatttacc ctgtcacaag agccactggt 1260 attttagtac ttgattattt tttctttagt cacaaatcag aactgcttac catacttttt 2320 gatgccaaac attatacctt agaacattga agaaaatatt cctaagctga tgctggctaa 1380 accgctttaa agttttattt ggaagtagaa ctagctttaa aacggggttc aagaggttgc 1440 cattagcttt gtcatgctgt tcaaagtttt taattgttat catggttttt aaaagactga 1500 cagtgtttat tattattaaa ataaacaggg ttggttatat tgcaatagaa taatgagaat 1560 tgaattttta agttctatga aacagccagc attgacattt tatttttgtt atctctcttc 1620 tcacaattat gctccactgg ataataggaa aaacacttct ttccttcatt ttttaaataa 1680 aattaatgtt gtatttaaaa agtagccatg tagagacaca aaaataaatg aagaagctgg 1740 acatggtggg atgggcatgt ggtcccagct actctggaag ctgaggtgag aggatcactt 1800 gagccctgga attccatgcc agcctatgca acatcatgaa accccactta ataaatgaat 1860 gaacgactaa aaaaaaaaa 1879 <210> 17 <211> 1127 <212> DNA
<213> Homo Sapiens <220>
<221> misc feature <223> Incyte ID No: 6829266CB1 <400> 17 ggggtcctgc cgccttggcg cagcttggac tcaagaccct gtgcacctct cagcaggcct 60 ttgctggaca gatgaagagt gacttgtttc tggatgattc taagagtgac cttgaggaac 120 cctgggagct caggaaggaa ggagcaccca gaagcaggga cagggagctg gttggggagg 180 accagaaatc aggttatcaa tactctggct gaccatcgtc atcgtgggac tgactttggt 240 ggaagtcctt ggttacttat cattactgtg tttctgagaa gttataaatt tgccatctcc 3o-0 ctctgcacaa gttacctttg tgtgtctttc ctgaagacta tcttcccgtc tcaaaatgga 360 catgatggat ccacggatgt acagcagaga gccaggaggt ccaactgccg tagacaggaa 420 ggaattaaaa ttgtcctgga agacatcttt actttatgga gacaggtgga aaccaaagtt 480 cgagctaaaa tccgtaagat gaaggtgaca acaaaagtca accgtcatga caaaatcaat 540 ggaaagagga agaccgccaa agaacatctg aggaaactaa gcatgaaaga acgtgagcac 600 ggagaaaagg agaggcaggt gtcagaggca gaggaaaatg ggaaattgga tatgaaagaa 660 atacacacct acatggaaat gtttcaacgt gcgcaagcgt tgcggcggcg ggcagaggac 720 tactacagat gcaaaatcac cccttctgca agaaagcctc tttgcaaccg ggtcagaatg 780 gcggcagtgg agcatcgtca ttcttcagga ttgccctact ggccctacct cacagctgaa 840 actttaaaaa acaggatggg ccaccagcca cctcctccaa ctcaacaaca tctataatt 900 gataactccc tgagcctcaa gacaccttcc gagtgtgtgc tctatcccct tccacctcag 960 gggatgataa tctcaagaaa ctaaggagga ataaataata tataaaataa aaaacaaaaa 1020 agggggggcg cgtaatgagt cgcgacccgg gaatattccg aacggtacgg ggcgtttccg 1080 gcagggggag aaaaaattgg gccccaaggg gatattcgaa gcagtag 1127 <210> 18 <211> 615 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte TD No: 7486339CB1 <400> 18 atggaacata tctcggcccc tgcggagcgc gacccacccc ccagaagcgg ttccactgcc 60 cacttccggt cctgtcacag actcagcgac tgccagcgac cgctgaccgc cccgctatgg 120 caagtgcgcc aaaactacca ccccgactgc gacgccgccg tcaacagcca cgtcaacctg 180 gagctccacg cctcctgtgt gtacctgtcc atggccttct acttagaccg ggacgacgtg 240 accctggagc gtttcagccg ctgcttcctg agccagtcgc aagagaagag ggagcacgcc 300 cagaagctga taatgctgca gaacctgcgc ggtggccgca tctgccttcc tgacatctgg 360 aaaccagagc gtgaatactg ggagagtggg ctccaggcca tggagtgtgc cttccacctg 420 gaggagagtg tcaactacag cctcctggag ctgcac~tacc tggccatgga gaagggtgac 480 ccccagctgt gcgacttcct ggagagccac ttcctgaacc agcaggtcaa ggccatcaaa 540 gagctgagtg gctacctgag caacctgcgc aagatgtggg ccacgggaaa ccggcctggc 600 agagtacctg tgtga 615
<213> Homo sapiens <220>
<221> misc_feature <223> Incyte ID No: 7488292CB1 <400> 14 atgaaaggca gagaaaaaac actcagtgat caagagaaaa agagagactt ccattctgac 60 tcagtggtca gggatatctt catcggccaa atggacattc ttctggacgc ggaagaatgg 120 gaggattttg aaagcagtcc tctcctgcca gagccacttt ccagcagata caaactctac 180 gaggcagagt ttaccagccc gagctggccc tcgacatccc cggatactca cccagctctg 240 cccctcctgg aaatgcctga agaaaaggat ctccggtctt ccaatgaaga cagtcacatt 300 gtgaagatcg aaaagctcaa tgaaaggagt aaaaggaaag acgacggggt ggcccatcgg 360 gactcagcag gccaaaggtg catctgcctc tccaaagcag tgggctacct cacgggcgac 420 atgaaggagt acaggatctg gctgaaagac aagcaccttg ccctccagtt catagactgg 480 gtcctgagag ggaccgctca ggtgatgttc atcaacaatc ctctcagcgg cctcatcatc 540 ttcatagggc tgctgatcca gaatccctgg tggacaatca ctgggggcct ggggacagtg 600 gtctcgacct taacagctct cgccttgggc caagacaggt ctgccattgc ctcaggactc 660 catgggtaca acgggatgct ggtgggactg ctgatggceg tgttctcgga gaagttagac 720 tactactggt ggcttctgtt tcctgtgacc ttcacagcca tgtcctgccc agttctttct 780 agtgccttga attccatctt cagcaagtgg gacctcccgg tcttcactct gcccttcaac 840 attgcagtca ccttgtacct tgcagccaca ggccactaca acctcttctt ccccacaaca 900 ctggtagagc ctgtgtcttc agtgcccaat atcacctgga cagagatgga aatgcccctg 960 ctgttacaag ccatccctgt tggggtcggc caggtgtatg gctgtgacaa tccctggaca 1020 ggcggcgtgt tcctggtggc tctgttcatc tcctcgccac tcatctgctt gcatgcagcc 1080 attggctcaa tcgtggggct gctagcagcc ctgtcagtgg ccacaccctt cgagaccatc 1140 tacacaggcc tctggagcta caactgcgtc ctctcctgca tcgccatcgg aggcatgttc 1200 tatgccctca cctggcagac tcacctgctg gccctcatct gtgccctgtt ctgtgcatac 1260 atggaagcag ccatctccaa catcatgtca gtggtgggcg tgccaccagg cacctgggcc 1320 ttctgccttg ccaccatcat cttcctgctc ctgacgacaa acaacccagc catcttcaga 1380 ctcccactca gcaaagtcac ctaccccgag gccaaccgca tctactacct gacagtgaaa 1440 agcggtgaag aagagaaggc ccccagcggt gaatag 1476 <210> 15 <211> 2495 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte ID No: 7236815CB1 <400> 15 catttccaca gccaccccag agccagcgat cagatccggc caaggatgtc tgcagaaacg 60 cctaacatag agactctccc tctccaagcc gcagctctcg ccagacccga gaaggtcctc 120 aagcgagggt gacctcaggg ccggattgga ccctgcttcg tgggaggcgg gactcagggc 180 ttagcgggcg gaggagtatt taagaccggg cggagttgga ggtggccaag ggcagaatga 240 gcgggattca gggcaccagg acctacccag gcgcggggga cacctctgac cttaagtacc 300 ccttggcgac caggctcagg gaagctctca ccgaggctcg gttccatcag ctcttcaggg 360 gcgaagagca ggaaccggag ctacctgaag agcgcggctt tccccggctc ttcgggctgt 420 ggaggctgcg ggctcgcgct tgttccggga caggggcgtg gcgcctgctg ctggctcggc 480 tgcccgcgct gcactggctg ccccattacc gctggcgggc ctggctgctc ggagatgcgg 540 tggccggagt gaccgtgggc atcgtgcacg tgccccaggg catggctttt gctctcctgg 600 cctccgtgcc cccggtgttt ggactctaca cttctttctt ccccgtcctc atctacagct 660 tgctaggtac tgggagacac ctgtccacag gaactttcgc catactcagc ctcatgacag 720 gctcggccgt cgagcggctg gtgccggaac ccctcgtggg gaatctgagc ggaatcgaga 780 aggagcagct ggacgctcaa cgggttgggg tagccgcggc cgtggccttc gggagcgggg 840 cgttgatgct ggggatgttc gtgctgcagc tcggcgtctt gtccaccttt ttgtccgagc 900 ctgtggtcaa ggcgctgacc agcggggccg cgctgcacgt gctcttgtcc cagctgccga 960 gcctcttggg gttgtccctc ccgcgccaga tcggctgctt ctctctcttc aagacgctgg 1020 cctccttgct gactacgctg cctcggagca gtccggccga actgaccatc tccgcgctca 1080 gcctggcgct gctcgtgccg gtcaaggaat tgaacgtgag attccgagac cggctaccca 1140 cgccgatccc gggggaagtc gtcttggtgc ttctggcctc cgtgctctgc ttcacctctt 1200 ctgtggacac aagataccaa gtccagatag tggggctgtt gcctggagga tttccccaac 1260 ccctcctccc caacctggct gagctgccca ggattctggc tgactcgctg cccattgcac 1320 tggttagttt tgcggtgtct gcctccctgg cctccatcca tgcagacaag tatagctaca 1380 ctattgactc caaccaggag ttcctggcac atggtgcctc caacctcatc tcctccctct 1440 tctcttgctt tcccaactcg gctacgctgg ccaccaccaa tctactggtg gatgctggtg 1500 ggaaaacaca gggtaaccca acagtggctt ttaaggtgga ggtgggctac aaaactgggg 1560 aacttgaaca atggacatct acaaggagac tgctggcagg cctcttctcc tgcacagtgg 1620 tcctgtcggt gctgctgtgg ctggggccct tcttttacta tctgcccaag gctgtcctgg 1680 cttgcatcaa catctccagc atgcgccagg tgttctgcca gatgcaggaa cttccacaac 1740 tatggcacat cagccgagtg gactttgctg tgtggatggt cacctgggtg gcagtagtga 1800 ccctgagtgt ggatttgggc ctggctgtgg gtgtggtctt ctccatgatg actgtggtct 1860 gccgcacccg gagctcctcc aggtcccggg gctctgcatc ctgagctatc caacaccact 1920 gtactttggg acccgtgggc agtttcgctg caacctggag tggcacctgg ggctcggaga 1980 aggagaaaag gagacttcaa agccagatgg cccaatggtt gcagttgctg agcctgtcag 2040 ggtggtggtc ctagacttca gtggtgtcac ctttgcagat gctgctgggg ccagagaagt 2100 ggtgcagctg gccagccgat gtcgagatgc taggatccgc ctcctcctgg ctcagtgtaa 2160 tgccttggtg caggggacac tgacccgggt aggactcctg gacagggtga ctccagatca 2220 gctgtttgtg agtgtgcagg atgcagctgc ttatgccctg gggagcctgg taaggggcag 2280 tagcaccagg agcgggagcc aggaggcact gggctgcggc aagtgaggca ggggagctca 2340 ctgacccaaa gatttgcacc gtgtgggtct gacctcatca tgtggagtgc agagggccct 2400 gatgacatgt gtgtgatgag gaccatgacc cttgaacccc cttacctaac gtaactaata 2460 aaatgaagct gagagctttg ggaaaaaaaa aaaaa 2495 <210> 16 <211> 1879 <212> bNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte TD No: 414046CB1 <400> 16 atcagccggc gccgcgccgc cgggtgttac tttgccccgc cggcggggcg gtcagcctcc 60 tgtcaccgcc tgttccggct atggtcccgt ccggtgttct gtaagttggc aacctaggct 220 cctgacgcga ccctggtcct gatggcggcg gcgacggccg cggcagccct ggcggcggcc 180 gatccccctc ccgcaatgcc gcaggcggca ggggccggag ggcccacaac ccgcagagac 240 ttctactggc tgcgctcctt tctggccgga ggtattgctg gatgctgtgc caaaacaaca 300 gttgctccat tggatcgagt aaaggtttta ttacaagctc acaatcacca ttacaagcat 360 ttaggagtat tttctgcatt gcgtgctgtt cctcaaaaag aaggattcct tggattgtat 420 aaaggaaatg gtgcaatgat gattcgaatc tttccctatg gtgcaatcca gtttatggca 480 tttgagcatt ataaaacgtt aattactacg aagctgggaa tttcaggtca tgtgcacaga 540 ttaatggctg gatccatggc aggtatgaca gcagttatct gtacttaccc tcttgacatg 600 gttagggtcc gcctagcatt ccaggtgaaa ggggaacaca gctatacagg aattattcat 660 gctttcaaaa caatttatgc aaaggaaggt ggtttctttg gattttacag aggtctgatg 720 cctactattt taggaatggc tccatatgca ggtgtttcat tttttacttt tggtaccttg 780 aagagtgttg ggctttccca tgctcctacc cttcttggca gaccttcatc agacaatcct 840 aatgtcttag ttttgaaaac tcatgtaaac ttactttgtg gtggtgttgc tggagcaata 900 gcgcagacaa tatcctaccc atttgatgtg actcgtcggc gaatgcaatt aggaactgtt 960 ctgccggaat ttgaaaagtg ccttaccatg cgggatacta tgaagtatgt ctatggacac 1020 catggaattc gaaaaggact ctatcgtggt ttatctctta attacattcg ctgtattccc 1080 tctcaagcag tggcttttac aacatacgaa cttatgaagc agttttttca cctcaactaa 1140 aaaaaaatta tggttggttt ttcttaatac attctcagag ggagaaatga aacattacta 1200 taattgtggg gggaacatta cttgaatggg gatatttacc ctgtcacaag agccactggt 1260 attttagtac ttgattattt tttctttagt cacaaatcag aactgcttac catacttttt 2320 gatgccaaac attatacctt agaacattga agaaaatatt cctaagctga tgctggctaa 1380 accgctttaa agttttattt ggaagtagaa ctagctttaa aacggggttc aagaggttgc 1440 cattagcttt gtcatgctgt tcaaagtttt taattgttat catggttttt aaaagactga 1500 cagtgtttat tattattaaa ataaacaggg ttggttatat tgcaatagaa taatgagaat 1560 tgaattttta agttctatga aacagccagc attgacattt tatttttgtt atctctcttc 1620 tcacaattat gctccactgg ataataggaa aaacacttct ttccttcatt ttttaaataa 1680 aattaatgtt gtatttaaaa agtagccatg tagagacaca aaaataaatg aagaagctgg 1740 acatggtggg atgggcatgt ggtcccagct actctggaag ctgaggtgag aggatcactt 1800 gagccctgga attccatgcc agcctatgca acatcatgaa accccactta ataaatgaat 1860 gaacgactaa aaaaaaaaa 1879 <210> 17 <211> 1127 <212> DNA
<213> Homo Sapiens <220>
<221> misc feature <223> Incyte ID No: 6829266CB1 <400> 17 ggggtcctgc cgccttggcg cagcttggac tcaagaccct gtgcacctct cagcaggcct 60 ttgctggaca gatgaagagt gacttgtttc tggatgattc taagagtgac cttgaggaac 120 cctgggagct caggaaggaa ggagcaccca gaagcaggga cagggagctg gttggggagg 180 accagaaatc aggttatcaa tactctggct gaccatcgtc atcgtgggac tgactttggt 240 ggaagtcctt ggttacttat cattactgtg tttctgagaa gttataaatt tgccatctcc 3o-0 ctctgcacaa gttacctttg tgtgtctttc ctgaagacta tcttcccgtc tcaaaatgga 360 catgatggat ccacggatgt acagcagaga gccaggaggt ccaactgccg tagacaggaa 420 ggaattaaaa ttgtcctgga agacatcttt actttatgga gacaggtgga aaccaaagtt 480 cgagctaaaa tccgtaagat gaaggtgaca acaaaagtca accgtcatga caaaatcaat 540 ggaaagagga agaccgccaa agaacatctg aggaaactaa gcatgaaaga acgtgagcac 600 ggagaaaagg agaggcaggt gtcagaggca gaggaaaatg ggaaattgga tatgaaagaa 660 atacacacct acatggaaat gtttcaacgt gcgcaagcgt tgcggcggcg ggcagaggac 720 tactacagat gcaaaatcac cccttctgca agaaagcctc tttgcaaccg ggtcagaatg 780 gcggcagtgg agcatcgtca ttcttcagga ttgccctact ggccctacct cacagctgaa 840 actttaaaaa acaggatggg ccaccagcca cctcctccaa ctcaacaaca tctataatt 900 gataactccc tgagcctcaa gacaccttcc gagtgtgtgc tctatcccct tccacctcag 960 gggatgataa tctcaagaaa ctaaggagga ataaataata tataaaataa aaaacaaaaa 1020 agggggggcg cgtaatgagt cgcgacccgg gaatattccg aacggtacgg ggcgtttccg 1080 gcagggggag aaaaaattgg gccccaaggg gatattcgaa gcagtag 1127 <210> 18 <211> 615 <212> DNA
<213> Homo Sapiens <220>
<221> misc_feature <223> Incyte TD No: 7486339CB1 <400> 18 atggaacata tctcggcccc tgcggagcgc gacccacccc ccagaagcgg ttccactgcc 60 cacttccggt cctgtcacag actcagcgac tgccagcgac cgctgaccgc cccgctatgg 120 caagtgcgcc aaaactacca ccccgactgc gacgccgccg tcaacagcca cgtcaacctg 180 gagctccacg cctcctgtgt gtacctgtcc atggccttct acttagaccg ggacgacgtg 240 accctggagc gtttcagccg ctgcttcctg agccagtcgc aagagaagag ggagcacgcc 300 cagaagctga taatgctgca gaacctgcgc ggtggccgca tctgccttcc tgacatctgg 360 aaaccagagc gtgaatactg ggagagtggg ctccaggcca tggagtgtgc cttccacctg 420 gaggagagtg tcaactacag cctcctggag ctgcac~tacc tggccatgga gaagggtgac 480 ccccagctgt gcgacttcct ggagagccac ttcctgaacc agcaggtcaa ggccatcaaa 540 gagctgagtg gctacctgag caacctgcgc aagatgtggg ccacgggaaa ccggcctggc 600 agagtacctg tgtga 615
Claims (73)
1. An isolated polypeptide selected from the group consisting of:
a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90%
identical to an amino acid sequence selected from the group consisting of SEQ
ID
NO:1-3, SEQ ID NO:5-6, and SEQ ID NO:8-9, c) a polypeptide comprising a naturally occurring amino acid sequence at least 91%
identical to the amino acid sequence of SEQ ID NO:4, d) a polypeptide comprising a naturally occurring amino acid sequence at least 95%
identical to the amino acid sequence of SEQ ID NO:7, e) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-9, and f) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-9.
a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-9, b) a polypeptide comprising a naturally occurring amino acid sequence at least 90%
identical to an amino acid sequence selected from the group consisting of SEQ
ID
NO:1-3, SEQ ID NO:5-6, and SEQ ID NO:8-9, c) a polypeptide comprising a naturally occurring amino acid sequence at least 91%
identical to the amino acid sequence of SEQ ID NO:4, d) a polypeptide comprising a naturally occurring amino acid sequence at least 95%
identical to the amino acid sequence of SEQ ID NO:7, e) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-9, and f) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-9.
2. An isolated polypeptide of claim 1 comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-9.
3. An isolated polynucleotide encoding a polypeptide of claim 1.
4. An isolated polynucleotide encoding a polypeptide of claim 2.
5. An isolated polynucleotide of claim 4 comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:10-18.
6. A recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide of claim 3.
7. A cell transformed with a recombinant polynucleotide of claim 6.
8. A transgenic organism comprising a recombinant polynucleotide of claim 6.
9. A method of producing a polypeptide of claim 1, the method comprising:
a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide, and said recombinant polynucleotide comprises a promoter sequence operably linked to a polynucleotide encoding the polypeptide of claim 1, and b) recovering the polypeptide so expressed.
a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide, and said recombinant polynucleotide comprises a promoter sequence operably linked to a polynucleotide encoding the polypeptide of claim 1, and b) recovering the polypeptide so expressed.
10. A method of claim 9, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1-9.
11. An isolated antibody which specifically binds to a polypeptide of claim 1.
12. An isolated polynucleotide selected from the group consisting of:
a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:10-18, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ
ID NO:10-18, c) a polynucleotide complementary to a polynucleotide of a), d) a polynucleotide complementary to a polynucleotide of b), and e) an RNA equivalent of a)-d).
a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:10-18, b) a polynucleotide comprising a naturally occurring polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ
ID NO:10-18, c) a polynucleotide complementary to a polynucleotide of a), d) a polynucleotide complementary to a polynucleotide of b), and e) an RNA equivalent of a)-d).
13. An isolated polynucleotide comprising at least 60 contiguous nucleotides of a polynucleotide of claim 12.
14. A method of detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 12, the method comprising:
a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and, optionally, if present, the amount thereof.
a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and, optionally, if present, the amount thereof.
15. A method of claim 14, wherein the probe comprises at least 60 contiguous nucleotides.
16. A method of detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 12, the method comprising:
a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.
a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.
17. A composition comprising a polypeptide of claim 1 and a pharmaceutically acceptable excipient.
18. A composition of claim 17, wherein the polypeptide comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1-9.
19. A method for treating a disease or condition associated with decreased expression of functional TRICH, comprising administering to a patient in need of such treatment the composition of claim 17.
20. A method of screening a compound for effectiveness as an agonist of a polypeptide of claim 1, the method comprising:
a) exposing a sample comprising a polypeptide of claim 1 to a compound, and b) detecting agonist activity in the sample.
a) exposing a sample comprising a polypeptide of claim 1 to a compound, and b) detecting agonist activity in the sample.
21. A composition comprising an agonist compound identified by a method of claim 20 and a pharmaceutically acceptable excipient.
22. A method for treating a disease or condition associated with decreased expression of functional TRICH, comprising administering to a patient in need of such treatment a composition of claim 21.
23. A method of screening a compound for effectiveness as an antagonist of a polypeptide of claim 1, the method comprising:
a) exposing a sample comprising a polypeptide of claim 1 to a compound, and b) detecting antagonist activity in the sample.
a) exposing a sample comprising a polypeptide of claim 1 to a compound, and b) detecting antagonist activity in the sample.
24. A composition comprising an antagonist compound identified by a method of claim 23 and a pharmaceutically acceptable excipient.
25. A method for treating a disease or condition associated with overexpression of functional TRICH, comprising administering to a patient in need of such treatment a composition of claim 24.
26. A method of screening for a compound that specifically binds to the polypeptide of claim 1, the method comprising:
a) combining the polypeptide of claim 1 with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide of claim 1 to the test compound, thereby identifying a compound that specifically binds to the polypeptide of claim 1.
a) combining the polypeptide of claim 1 with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide of claim 1 to the test compound, thereby identifying a compound that specifically binds to the polypeptide of claim 1.
27. A method of screening for a compound that modulates the activity of the polypeptide of claim 1, the method comprising:
a) combining the polypeptide of claim 1 with at least one test compound under conditions permissive for the activity of the polypeptide of claim 1, b) assessing the activity of the polypeptide of claim 1 in the presence of the test compound, and c) comparing the activity of the polypeptide of claim 1 in the presence of the test compound with the activity of the polypeptide of claim 1 in the absence of the test compound, wherein a change in the activity of the polypeptide of claim 1 in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide of claim 1.
a) combining the polypeptide of claim 1 with at least one test compound under conditions permissive for the activity of the polypeptide of claim 1, b) assessing the activity of the polypeptide of claim 1 in the presence of the test compound, and c) comparing the activity of the polypeptide of claim 1 in the presence of the test compound with the activity of the polypeptide of claim 1 in the absence of the test compound, wherein a change in the activity of the polypeptide of claim 1 in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide of claim 1.
28. A method of screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence of claim 5, the method comprising:
a) ~exposing a sample comprising the target polynucleotide to a compound, under conditions suitable for the expression of the target polynucleotide, b) ~detecting altered expression of the target polynucleotide, and c) ~comparing the expression of the target polynucleotide in the presence of varying amounts of the compound and in the absence of the compound.
a) ~exposing a sample comprising the target polynucleotide to a compound, under conditions suitable for the expression of the target polynucleotide, b) ~detecting altered expression of the target polynucleotide, and c) ~comparing the expression of the target polynucleotide in the presence of varying amounts of the compound and in the absence of the compound.
29. A method of assessing toxicity of a test compound, the method comprising:
a) treating a biological sample containing nucleic acids with the test compound, b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide of claim 12 under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide comprising a polynucleotide sequence of a polynucleotide of claim 12 or fragment thereof, c) quantifying the amount of hybridization complex, and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.
a) treating a biological sample containing nucleic acids with the test compound, b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide of claim 12 under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide comprising a polynucleotide sequence of a polynucleotide of claim 12 or fragment thereof, c) quantifying the amount of hybridization complex, and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.
30. A diagnostic test for a condition or disease associated with the expression of TRICH in a biological sample, the method comprising:
a) combining the biological sample with an antibody of claim 11, under conditions suitable for the antibody to bind the polypeptide and form an antibody:polypeptide complex, and b) detecting the complex, wherein the presence of the complex correlates with the presence of the polypeptide in the biological sample.
a) combining the biological sample with an antibody of claim 11, under conditions suitable for the antibody to bind the polypeptide and form an antibody:polypeptide complex, and b) detecting the complex, wherein the presence of the complex correlates with the presence of the polypeptide in the biological sample.
31. The antibody of claim 11, wherein the antibody is:
a) a chimeric antibody, b) a single chain antibody, c) a Fab fragment, d) a F(ab')2 fragment, or e) a humanized antibody.
a) a chimeric antibody, b) a single chain antibody, c) a Fab fragment, d) a F(ab')2 fragment, or e) a humanized antibody.
32. A composition comprising an antibody of claim 11 and an acceptable excipient.
33. A method of diagnosing a condition or disease associated with the expression of TRICH
in a subject, comprising administering to said subject an effective amount of the composition of claim 32.
in a subject, comprising administering to said subject an effective amount of the composition of claim 32.
34. A composition of claim 32, wherein the antibody is labeled.
35. A method of diagnosing a condition or disease associated with the expression of TRICH
in a subject, comprising administering to said subject an effective amount of the composition of claim 34.
in a subject, comprising administering to said subject an effective amount of the composition of claim 34.
36. A method of preparing a polyclonal antibody with the specificity of the antibody of claim 11, the method comprising:
a) immunizing an animal with a polypeptide consisting of an amino acid sequence selected from the group consisting of SEQ ID No:1-9; or an immunogenic fragment thereof, under conditions to elicit an antibody response, b) isolating antibodies from said animal, and c) screening the isolated antibodies with the polypeptide, thereby identifying a polyclonal antibody which specifically binds to a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-9.
a) immunizing an animal with a polypeptide consisting of an amino acid sequence selected from the group consisting of SEQ ID No:1-9; or an immunogenic fragment thereof, under conditions to elicit an antibody response, b) isolating antibodies from said animal, and c) screening the isolated antibodies with the polypeptide, thereby identifying a polyclonal antibody which specifically binds to a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-9.
37. A polyclonal antibody produced by a method of claim 36.
38. A composition comprising the polyclonal antibody of claim 37 anal a suitable carrier.
39. A method of making a monoclonal antibody with the specificity of the antibody of claim 11, the method comprising:
a) immunizing an animal with a polypeptide consisting of an amino acid sequence selected from the group consisting of SEQ ID NO:1-9, or an immunogenic fragment thereof, under conditions to elicit an antibody response, b) isolating antibody producing cells from the animal, c) fusing the antibody producing cells with immortalized cells to form monoclonal antibody-producing hybridoma cells, d) culturing the hybridoma cells, and e) isolating from the culture monoclonal antibody which specifically binds to a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-9.
a) immunizing an animal with a polypeptide consisting of an amino acid sequence selected from the group consisting of SEQ ID NO:1-9, or an immunogenic fragment thereof, under conditions to elicit an antibody response, b) isolating antibody producing cells from the animal, c) fusing the antibody producing cells with immortalized cells to form monoclonal antibody-producing hybridoma cells, d) culturing the hybridoma cells, and e) isolating from the culture monoclonal antibody which specifically binds to a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-9.
40. A monoclonal antibody produced by a method of claim 39.
41. A composition comprising the monoclonal antibody of claim 40 and a suitable carrier.
42. The antibody of claim 11, wherein the antibody is produced by screening a Fab expression library.
43. The antibody of claim 11, wherein the antibody is produced by screening a recombinant immunoglobulin library.
44. A method of detecting a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-9 in a sample, the method comprising:
a) incubating the antibody of claim 11 with a sample under conditions to allow specific binding of the antibody and the polypeptide, and b) detecting specific binding, wherein specific binding indicates the presence of a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-9 in the sample.
a) incubating the antibody of claim 11 with a sample under conditions to allow specific binding of the antibody and the polypeptide, and b) detecting specific binding, wherein specific binding indicates the presence of a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-9 in the sample.
45. A method of purifying a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-9 from a sample, the method comprising:
a) incubating the antibody of claim 11 with a sample under conditions to allow specific binding of the antibody and the polypeptide, and b) separating the antibody from the sample and obtaining the purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID
NO:1-9.
a) incubating the antibody of claim 11 with a sample under conditions to allow specific binding of the antibody and the polypeptide, and b) separating the antibody from the sample and obtaining the purified polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID
NO:1-9.
46. A microarray wherein at least one element of the microarray is a polynucleotide of claim 13.
47. A method of generating an expression profile of a sample which contains polynucleotides, the method comprising:
a) labeling the polynucleotides of the sample, b) contacting the elements of the microarray of claim 46 with the labeled polynucleotides of the sample under conditions suitable for the formation of a hybridization complex, and c) quantifying the expression of the polynucleotides in the sample.
a) labeling the polynucleotides of the sample, b) contacting the elements of the microarray of claim 46 with the labeled polynucleotides of the sample under conditions suitable for the formation of a hybridization complex, and c) quantifying the expression of the polynucleotides in the sample.
48. An array comprising different nucleotide molecules affixed in distinct physical locations on a solid substrate, wherein at least one of said nucleotide molecules comprises a first oligonucleotide or polynucleotide sequence specifically hybridizable with at least 30 contiguous nucleotides of a target polynucleotide, and wherein said target polynucleotide is a polynucleotide of claim 12.
49. An array of claim 48, wherein said first oligonucleotide or polynucleotide sequence is completely complementary to at least 30 contiguous nucleotides of said target polynucleotide.
50. An array of claim 48, wherein said first oligonucleotide or polynucleotide sequence is completely complementary to at least 60 contiguous nucleotides of said target polynucleotide.
51. An array of claim 48, wherein said first oligonucleotide or polynucleotide sequence is completely complementary to said target polynucleotide.
52. An array of claim 48, which is a microarray.
53. An array of claim 48, further comprising said target polynucleotide hybridized to a nucleotide molecule comprising said first oligonucleotide or polynucleotide sequence.
54. An array of claim 48, wherein a linker joins at least one of said nucleotide molecules to said solid substrate.
55. An array of claim 48, wherein each distinct physical location on the substrate contains multiple nucleotide molecules, and the multiple nucleotide molecules at any single distinct physical location have the same sequence, and each distinct physical location on the substrate contains nucleotide molecules having a sequence which differs from the sequence of nucleotide molecules at another distinct physical location on the substrate.
56. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:1.
NO:1.
57. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:2.
NO:2.
58. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:3.
NO:3.
59. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:4.
NO:4.
60. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:5.
NO:5.
61. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:6.
NO:6.
62. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:7.
NO:7.
63. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:8.
NO:8.
64. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID
NO:9.
NO:9.
65. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:10.
66. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:11.
67. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:12.
68. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:13.
69. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:14.
70. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:15.
72. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:16.
72. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:17.
73. A polynucleotide of claim 12, comprising the polynucleotide sequence of SEQ ID NO:18:
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US29372201P | 2001-05-25 | 2001-05-25 | |
US60/293,722 | 2001-05-25 | ||
US29688101P | 2001-06-08 | 2001-06-08 | |
US60/296,881 | 2001-06-08 | ||
US30459301P | 2001-07-10 | 2001-07-10 | |
US60/304,593 | 2001-07-10 | ||
US30510501P | 2001-07-12 | 2001-07-12 | |
US60/305,105 | 2001-07-12 | ||
PCT/US2002/016446 WO2002096932A1 (en) | 2001-05-25 | 2002-05-24 | Transporters and ion channels |
Publications (1)
Publication Number | Publication Date |
---|---|
CA2447662A1 true CA2447662A1 (en) | 2002-12-05 |
Family
ID=27501607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CA002447662A Abandoned CA2447662A1 (en) | 2001-05-25 | 2002-05-24 | Transporters and ion channels |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1390391A4 (en) |
JP (1) | JP2005507238A (en) |
CA (1) | CA2447662A1 (en) |
WO (1) | WO2002096932A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3879695B2 (en) * | 2003-04-25 | 2007-02-14 | チッソ株式会社 | Flame retardant polyolefin resin composition |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2284550A1 (en) * | 1997-03-21 | 1998-10-01 | Human Genome Sciences, Inc. | 87 human secreted proteins |
CA2331154A1 (en) * | 1998-06-16 | 1999-12-23 | Human Genome Sciences, Inc. | Polypeptides having sequence identity with acid labile subunit of insulin-like growth factor |
US20030017585A1 (en) * | 2000-02-25 | 2003-01-23 | Andro Hsu | Novel sodium/solute symporter-like protein and nucleic acids encoding same |
EP1326972A2 (en) * | 2000-09-15 | 2003-07-16 | Incyte Genomics, Inc. | Transporters and ion channels |
-
2002
- 2002-05-24 JP JP2003500111A patent/JP2005507238A/en active Pending
- 2002-05-24 WO PCT/US2002/016446 patent/WO2002096932A1/en not_active Application Discontinuation
- 2002-05-24 EP EP02731927A patent/EP1390391A4/en not_active Withdrawn
- 2002-05-24 CA CA002447662A patent/CA2447662A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
WO2002096932A1 (en) | 2002-12-05 |
JP2005507238A (en) | 2005-03-17 |
EP1390391A1 (en) | 2004-02-25 |
EP1390391A4 (en) | 2005-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2002004520A2 (en) | Transporters and ion channels | |
WO2001046258A2 (en) | Transporters and ion channels | |
EP1320600A1 (en) | Transporters and ion channels | |
WO2002046415A2 (en) | Polynucleotide and polypeptide sequences of putative transporters and ion channells | |
WO2002040541A2 (en) | Transporters and ion channels | |
EP1326972A2 (en) | Transporters and ion channels | |
EP1320548A2 (en) | Transporters and ion channels | |
US20060035315A1 (en) | Transporters and ion channels | |
CA2443897A1 (en) | Transporters and ion channels | |
WO2001077174A2 (en) | Human transporters and ion channels | |
EP1358330A2 (en) | Transporters and ion channels | |
WO2003083085A2 (en) | Transporters and ion channels | |
CA2413128A1 (en) | Transporters and ion channels | |
WO2004048599A2 (en) | Transporters and ion channels | |
CA2447662A1 (en) | Transporters and ion channels | |
US20030216310A1 (en) | Transporters and ion channels | |
US20040152874A1 (en) | Transporter and ion channels | |
US20040127683A1 (en) | Transporters and ion channels | |
WO2004035755A2 (en) | Transporters and ion channels | |
WO2004083395A2 (en) | Transporters and ion channels | |
WO2004013293A2 (en) | Transporters and ion channels |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FZDE | Dead |