WO2002095434A1 - Capteur magnetique reposant sur la magnetoresistance balistique, faisant intervenir un systeme multicouche a trous ponctuels - Google Patents

Capteur magnetique reposant sur la magnetoresistance balistique, faisant intervenir un systeme multicouche a trous ponctuels Download PDF

Info

Publication number
WO2002095434A1
WO2002095434A1 PCT/ES2002/000222 ES0200222W WO02095434A1 WO 2002095434 A1 WO2002095434 A1 WO 2002095434A1 ES 0200222 W ES0200222 W ES 0200222W WO 02095434 A1 WO02095434 A1 WO 02095434A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
method based
deposited
combination
conductive
Prior art date
Application number
PCT/ES2002/000222
Other languages
English (en)
Spanish (es)
Inventor
Nicolas GARCÍA GARCÍA
Manuel MUÑOZ SANCHEZ
Original Assignee
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas filed Critical Consejo Superior De Investigaciones Científicas
Publication of WO2002095434A1 publication Critical patent/WO2002095434A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/3227Exchange coupling via one or more magnetisable ultrathin or granular films

Definitions

  • the present invention describes a method for creating stable nanometer-sized electrical contacts and having a high magnetoresistance value (variation of the resistance to the passage of an electric current that an electric conductor presents before the application of a magnetic field external) before low intensity magnetic fields.
  • the magnetoresistive systems based on the ballistic magnetoresistance (BMRS) mentioned above mainly consist of two magnetic reservoirs joined by an electrical contact of nanometric size (fig. 1), of being smaller or similar in size to the wavelength of the electron.
  • This invention describes a system in which it is possible to make said contact between two magnetic reservoirs that meets the desired size and stability requirements.
  • the use of conductive multilayers is proposed (a in fig. 2), covered by a layer of non-conductive or insulating material (b in fig. 2).
  • the thickness of this layer can be of similar or smaller dimensions to the wavelength of the electron.
  • Said insulating layer has defects (pinholes) in the sense that at a certain point (c in fig. 2) (or points) said layer is conductive. These defects may be intrinsic to the form of preparation of the insulating layer or may be induced subsequently.
  • conductive material (d) On this defect is deposited (by evaporation of metal or electrochemically, to name some of the possible methods) conductive material (d), so that it is possible to circulate an electric current between the conductive layers and this material deposited through the defect of the insulating layer.
  • the dimensions of the insulation layer defect are determined by the conditions in which the device is to be used, or by the electrical resistance that this has to have, but in general it can be said that they must be such that the conduction between the multilayers and the material deposited on said defect must be ballistic.
  • This configuration has all the elements required by a BMRS sensor (the two reservoirs and the constriction) and provides a rigidity such that the system is indefinitely stable and therefore can be applied in any type of device.
  • FIGURES The simplest configuration is shown as well as the necessary elements of a BMRS sensor (magnetic sensor based on ballistic magnetoresistance). These elements are two magnetic reservoir (R) joined by a constriction (C) that can be magnetic or not and of conductive properties to be determined depending on the application.
  • Figure 2 Scheme of the system proposed in the present invention.
  • the samples used consist of a multilayer system described below: a silicon substrate so as to provide rigidity to the sample; a silicon thermal oxide layer that electrically insulates the silicon substrate from the following conductive layers; a combination of layers of magnetic and non-magnetic conductive materials, these layers make the electrical resistance of this combination of layers considerably less than the pinhole resistance as well as help determine the magnetization of the layer immediately before the oxide layer; Finally a layer of nickel. An aluminum layer is deposited on this last layer of nickel. It has been experimented with different thicknesses of aluminum, ranging from a few tenths of nanometers to several nanometers.
  • the sample is immersed in an electrolyte, usually a solution of nickel sulfate.
  • a voltage is applied between the layers conductors and an electrode immersed in the solution.
  • the nickel ions migrate to the places that occupy these defects and an electrodeposition of nickel occurs in those places.
  • the surface of the aluminum oxide exposed to the electrolyte is usually limited so that it is possible to control the number of defects (usually one).
  • Figure 4 shows the results of the experiments performed in the aforementioned laboratory.
  • Figure (a) shows how there is a relaxation of the electrical resistance of the sample as well as a dependence on the applied magnetic field.
  • Figure (b) shows the dependence with the magnetic field after normalizing the data in figure (a).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Hall/Mr Elements (AREA)

Abstract

L'invention concerne un procédé de fabrication de capteurs magnétiques reposant sur la magnétorésistance balistique, faisant intervenir des systèmes multicouche à trous ponctuels. Le multicouche utilisé peut être formé par une combinaison de couches de matériaux possédant différentes propriétés conductrices et magnétiques. Les trous ponctuels utilisés comme éléments d'étranglement peuvent être intégrés dans le système multicouche ou peuvent être intégrés ultérieurement par différents procédés. L'invention se caractérise en ce qu'elle permet d'obtenir des contacts électriques nanométriques entre des systèmes nanométriques : groupes et couches minces magnétiques. Ce procédé permet d'obtenir des capteurs ayant une stabilité et une rigidité donnée, pouvant être utilisés dans des dispositifs, ainsi que des capteurs ayant une résistance et une sensibilité souhaitée, en fonction de leur application.
PCT/ES2002/000222 2001-05-21 2002-05-10 Capteur magnetique reposant sur la magnetoresistance balistique, faisant intervenir un systeme multicouche a trous ponctuels WO2002095434A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200101152 2001-05-21
ES200101152 2001-05-21

Publications (1)

Publication Number Publication Date
WO2002095434A1 true WO2002095434A1 (fr) 2002-11-28

Family

ID=8497779

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2002/000222 WO2002095434A1 (fr) 2001-05-21 2002-05-10 Capteur magnetique reposant sur la magnetoresistance balistique, faisant intervenir un systeme multicouche a trous ponctuels

Country Status (1)

Country Link
WO (1) WO2002095434A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004010442A1 (fr) * 2002-07-19 2004-01-29 Consejo Superior De Investigaciones Científicas Materiau solide pourvu d'une structure d'orbites electroniques presque totalement polarises, son procede de fabrication et son utilisation electronique et nanoelectronique
US6933042B2 (en) 2003-07-30 2005-08-23 Hitachi Global Storage Technologies Netherlands B.V. Ballistic GMR structure using nanoconstruction in self pinned layers
US7180714B2 (en) 2003-09-30 2007-02-20 Hitachi Global Storage Technolgies Netherlands B.V. Apparatus for providing a ballistic magnetoresistive sensor in a current perpendicular-to-plane mode
US7204013B2 (en) 2003-07-29 2007-04-17 Seagate Technology Llc Method of manufacturing a magnetoresistive sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997047982A2 (fr) * 1996-06-12 1997-12-18 Philips Electronics N.V. Detecteur de champ magnetique magneto-resistif
US6011674A (en) * 1990-06-08 2000-01-04 Hitachi, Ltd. Magnetoresistance effect multilayer film with ferromagnetic film sublayers of different ferromagnetic material compositions

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6011674A (en) * 1990-06-08 2000-01-04 Hitachi, Ltd. Magnetoresistance effect multilayer film with ferromagnetic film sublayers of different ferromagnetic material compositions
WO1997047982A2 (fr) * 1996-06-12 1997-12-18 Philips Electronics N.V. Detecteur de champ magnetique magneto-resistif

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GARCIA: "Conducting ballistic magnetoresistance and tunneling magnetoresistance: Pinholes and tunnel barriers", APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS, vol. 77, no. 9, 28 August 2000 (2000-08-28), pages 1351 - 1353 *
MUNOZ ET AL.: "Ballistic magnetoresistance in a nanocontact between a Ni cluster and a magnetic thin film", APPLIED PHYSICS LETTERS, AMERICAN INSTITUTE OF PHYSICS, vol. 79, no. 18, 29 October 2001 (2001-10-29), pages 2946 - 2948 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004010442A1 (fr) * 2002-07-19 2004-01-29 Consejo Superior De Investigaciones Científicas Materiau solide pourvu d'une structure d'orbites electroniques presque totalement polarises, son procede de fabrication et son utilisation electronique et nanoelectronique
US7204013B2 (en) 2003-07-29 2007-04-17 Seagate Technology Llc Method of manufacturing a magnetoresistive sensor
US7567411B2 (en) 2003-07-29 2009-07-28 Seagate Technology Llc Magnetoresistive sensor
US6933042B2 (en) 2003-07-30 2005-08-23 Hitachi Global Storage Technologies Netherlands B.V. Ballistic GMR structure using nanoconstruction in self pinned layers
US7180714B2 (en) 2003-09-30 2007-02-20 Hitachi Global Storage Technolgies Netherlands B.V. Apparatus for providing a ballistic magnetoresistive sensor in a current perpendicular-to-plane mode

Similar Documents

Publication Publication Date Title
KR100878281B1 (ko) 나노 제조
Fink et al. High energy ion beam irradiation of polymers for electronic applications
JP2004502554A (ja) ナノシリンダー・アレイ
Valladares et al. Controlled electroplating and electromigration in nickel electrodes for nanogap formation
Piraux et al. Magnetic and superconducting nanowires
US20110101477A1 (en) Method for manufacturing magnetic field detection devices and devices therefrom
WO2002095434A1 (fr) Capteur magnetique reposant sur la magnetoresistance balistique, faisant intervenir un systeme multicouche a trous ponctuels
US20160057859A1 (en) Electron spin filter
Lei et al. The composition and magnetic property of Co/Cu alloy microwires prepared using meniscus-confined electrodeposition: effect of [Co2+],[Cu2+] concentration at the tip of the meniscus
Song et al. Two-Dimensional Conductive Metal–Organic Framework Reinforced Spinterface in Organic Spin Valves
Sanz-Hernández et al. Nanofabrication of three-dimensional magnetic structures
Dolgyi et al. Electrochemical deposition of Ni into mesoporous silicon
Daub et al. Ni nanowires electrodeposited in single ion track templates
CN108807211A (zh) 一种用于测量二维半导体材料的磁阻的装置及其制作方法
Rylkov et al. Magnetic Metal-Nonstoichiometric Oxide Nanocomposites: Structure, Transport, and Memristive Properties
Arita et al. In situ transmission electron microscopy for electronics
Hernández et al. Template-Directed Electrodeposition of Iron-Palladium Nanowires and Their Electrical Transport and Sensing Properties
Aryal Hall measurement-based study of ferromagnetic thin films stimulated by the idea of spin-orbit torque
Strukov et al. An experimental setup for obtaining metallic multilayer coatings with layers of nanometer thickness
KR100656930B1 (ko) 박막 플럭스게이트의 하부 도체 두께의 균일화 방법
Marjaneh et al. A comparison between CPP-GMR in multilayer nanowires and CIP-GMR in multilayer thin films in electrochemically growth Ni-Cu/Cu Systems
Gatiyatov et al. Magnetoresistance of electrochemically produced nickel nanocontacts with quantized conductance
Podlaha et al. Fabrication of rare earth-transition metal alloy nanowires and nanotubes
PAZZOCCO Accessing antiferromagnetism in metallic thin films through anomalous Hall effect
US20050191829A1 (en) Solid material comprising a structure of almost-completely-polarised electronic orbitals, method of obtaining same and use thereof in electronics and nanoelectronics

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP