WO2002095090A1 - Apparatus for generating mixed gas and boiler system using the mixed gas - Google Patents

Apparatus for generating mixed gas and boiler system using the mixed gas Download PDF

Info

Publication number
WO2002095090A1
WO2002095090A1 PCT/JP2001/010327 JP0110327W WO02095090A1 WO 2002095090 A1 WO2002095090 A1 WO 2002095090A1 JP 0110327 W JP0110327 W JP 0110327W WO 02095090 A1 WO02095090 A1 WO 02095090A1
Authority
WO
WIPO (PCT)
Prior art keywords
boiler
water
mixed gas
gas
pipe
Prior art date
Application number
PCT/JP2001/010327
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Yamada
Original Assignee
Zet Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001154356A external-priority patent/JP2002155387A/en
Application filed by Zet Co., Ltd. filed Critical Zet Co., Ltd.
Publication of WO2002095090A1 publication Critical patent/WO2002095090A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof

Definitions

  • the present invention relates to a mixed gas generator and a boiler device using the mixed gas.
  • the present invention relates to a mixed gas generation device and a boiler device, and more particularly, to a mixed gas generation device that supplies a large amount of mixed combustible gas to a metal cutting and welding device or a boiler device, and a mixed gas generation device.
  • Boiler equipment that uses mixed gas. Background art
  • An electrolytic cell of a conventional mixed gas generator houses an electrode unit formed by a plurality of electrode tubes insulated and arranged concentrically, an electrode rod disposed at the center of the electrode unit, and an electrode unit. And a cylindrical main body.
  • An electrolytic solution composed of water and an electrolyte is stored in an electrolytic chamber formed between the electrode cylinders. Water is electrolyzed by applying a positive voltage to the electrode rod and applying a negative voltage to the electrode unit.
  • Oxygen gas is generated from the electrode unit (anode), and hydrogen gas is generated from the electrode rod (cathode).
  • Conventional mixed gas generators have relatively high electrolysis efficiency and generate large amounts of mixed gas of hydrogen and oxygen.
  • the mixed gas is supplied to the metal cutting and welding equipment or the poiler through piping.
  • the conventional mixed gas generator supplies hydrogen and oxygen gas directly from the electrolytic cell to a supply destination device via a pipe. That is, hydrogen and oxygen gas are mixed in the pipe. For this reason, in the conventional mixed gas generator, the composition of the mixed gas was uneven, and the combustion of the mixed gas was unstable, and the desired combustion heat could not be obtained. Disclosure of the invention
  • An object of the present invention is to provide a mixed gas generator that stably generates a large amount of mixed gas, and a boiler device that uses a large amount of mixed gas.
  • the electrolysis of water is used.
  • a mixed gas generator that generates hydrogen gas and oxygen gas is provided.
  • the mixed gas generator includes: an electrolytic cell having a force electrode rod and at least three electrode cylinders disposed around the electrode rod; and a plurality of electrolytic cells containing an electrolytic solution containing water and an electrolyte. And a mixer connected to the plurality of electrolytic cells via a gas supply pipe to uniformly mix the hydrogen gas and the oxygen gas.
  • a boiler device using the mixed gas generated by the mixed gas generator as a fuel.
  • a boiler device for storing the boiler water, a boiler attached to the boiler body, and a combustion device for burning the mixed gas; and A heat exchange element for transmitting combustion heat of the mixed gas to the boiler water to generate high-pressure steam.
  • a boiler device using a mixed gas generated by a mixed gas generator as a fuel.
  • a boiler device having a cylindrical boiler body having a bottom, a combustion device that burns the mixed gas and heats the inside of the boiler body to a predetermined temperature, and an evaporator that is heated by combustion heat of the mixed gas.
  • a boiler device using a mixed gas generated by a mixed gas generator as a fuel.
  • a boiler device having a cylindrical poirer body having a bottom, a combustion device that burns the mixed gas and heats the inside of the boiler body to a predetermined temperature, and an evaporator that is heated by combustion heat of the mixed gas.
  • a cooling pipe for supplying a cooling gas to the inside of the boiler main body so as to maintain the inside of the boiler main body at a predetermined temperature; and a water pipe for supplying boiler water to the heated evaporating section.
  • the boiler water evaporates in the evaporator to generate low-pressure steam.
  • FIG. 1 is a schematic diagram of a mixed gas generator according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view of a main body of the mixed gas generator of FIG.
  • FIG. 3A is a longitudinal sectional view of the electrolytic cell of the mixed gas generator of FIG.
  • FIG. 3B is a cross-sectional view of the electrolytic cell in FIG. 3A.
  • FIG. 4 is a cross-sectional view of the poiling device of the first embodiment.
  • FIG. 5 is a sectional view of a boiler device according to a second embodiment.
  • FIG. 6A is a sectional view of a boiler device according to a third embodiment.
  • FIG. 6B is a cross-sectional view of the boiler device of the fourth embodiment.
  • FIG. 7A is a cross-sectional view of a modification of the electrolytic cell.
  • FIG. 7B is a partially enlarged cross-sectional view of the electrolytic cell of FIG. 7A.
  • FIG. 7C is a perspective view of the spacer of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the mixed gas generator 10 is composed of a main unit (main unit) 11, a dehumidifier 42, a gas mixer 43, and a mixed gas distributor 41.
  • the main body 11 includes a case 1 2, a plurality of electrolytic cells 13 contained in the case 12, a power supply unit 14 for supplying electric power for electrolysis to the plurality of electrolytic cells 13, and an electrolytic cell 1.
  • 3 includes a water supply device (pump) 15 that supplies water. Electrolyte water is electrolyzed in the electrolyzer 13.
  • the electrolyte is preferably a hydration power lime.
  • Electrolyzer 13 is preferably cylindrical. As shown in FIG. 3, a round pillar-shaped electrode rod 21 and an electrolytic cell 16 are arranged in an electrolytic cell 13. The upper opening of the electrolytic cell 13 is closed by a disk-shaped lid 17. The bottom wall 13 a of the electrolytic cell 13 is formed such that the lower end of the electrode rod 21 is exposed to the outside of the electrolytic cell 13.
  • the first, second and third communication pipes 18, 19, 20 are connected to the lower end, the middle, and the upper end of the plurality of electrolytic cells 13, respectively.
  • the first, second and third communication pipes 18, 19, 20 integrate the internal space of the plurality of electrolytic cells 13.
  • Electrolysis cell 16 is fixed to the lower part of electrode rod 21.
  • the electrolytic cell 16 includes a circular support plate 22 made of an insulating material such as a synthetic resin, and a plurality of electrode tubes 2 supported by the support plate 22. With 3.
  • the plurality of electrode cylinders 23 are arranged concentrically with respect to the electrode rod 21 so as to be spaced from each other by an equal distance in the shape direction.
  • the electrode rod 21 and each electrode tube 23 are preferably made of mild steel having a nickel (Ni) plated surface.
  • the upper end of the electrolytic cell 16 is closed by a lid (not shown).
  • a plurality of electrolysis chambers 24 are defined between the adjacent electrode tubes 23 and between the electrode rod 21 and the innermost electrode tube 23.
  • the outer peripheral surface of the electrolytic cell 16 is separated from the inner peripheral surface of the electrolytic cell 13.
  • a water passage 27 is formed between the outer peripheral surface of the electrolytic cell 16 and the inner peripheral surface of the electrolytic cell 13.
  • the first communication pipe 18 is connected to the pump 15 via a water pipe 28.
  • the pump 15 supplies water from the lower part of the electrolytic cell 13. Water flows through the water channel 27 and is supplied until the water level reaches almost half of the electrolysis cell 13. Therefore, the entire electrolytic cell 16 is submerged.
  • each electrode tube 23 has two passage holes 29 formed at the same level.
  • all the passage holes 29 are formed on a straight line orthogonal to 21. Water flows into all the electrolysis chambers 24 through the passage holes 29.
  • the electrolytic cell 13 is provided with a water amount detector 15a for detecting the amount of water.
  • the pump 15 automatically adjusts the water supply amount according to the detection signal of the water amount detector 15a so that the water amount in the electrolytic cell 13 falls within a predetermined range.
  • the power supply unit 14 is connected to the lower end of the electrode rod 21 and the electrolytic cell 16 via a cable 30.
  • the power supply unit 14 has a polarity converter 14a that inverts the polarity of the voltage applied to the electrode rod 21 and the polarity of the voltage applied to the electrolytic cell 13 at predetermined time intervals.
  • the polarity converter supplies a positive voltage to the electrode rod 21, it supplies a negative voltage to the electrolytic cell 13.
  • the polarity converter supplies a positive voltage to the electrolytic cell 13 when supplying a negative voltage to the electrode rod 21.
  • the power supply unit 14 is driven by a DC power supply, and reverses the polarity of the voltage applied every six hours.
  • the electrode rod 21 and the electrolytic cell 16 serve as an anode or a cathode depending on the polarity of the applied voltage.
  • Oxygen gas is generated from the anode by electrolysis of water, and hydrogen gas is generated from the cathode Gas is generated.
  • the oxygen gas and the hydrogen gas generated in the plurality of electrolytic cells 13 are joined to the gas transfer pipe 31 via the third communication pipe 20.
  • a plurality of radiating fins 32 are provided on the outer peripheral wall of each electrolytic cell 13 so as to protrude in the radial direction.
  • the radiation fins 32 efficiently release the heat generated by the electrolysis.
  • the power supply unit 14 has an electrolysis controller 14b.
  • the electrolysis controller 14b stops the voltage supply to at least one of the plurality of electrolyzers 13 at predetermined time intervals. In the first embodiment, power transmission to one electrolytic cell 13 is stopped every 24 hours.
  • the electrodes (electrode rods 21 and electrolytic cells 16) of the electrolytic cell 13 whose power transmission has been stopped are stopped to reduce deterioration over time such as oxidation.
  • an operation of removing impurities such as nickel oxide that is oxidized mainly at the anode and deposited in water during electrolysis is performed.
  • the electrolysis controller 14b stops power transmission to the electrolyzer 13 when the air pressure in the electrolyzer 13 exceeds 3 kgf Z cm 2 and restarts power transmission when the air pressure falls below 2 kgf / cm 2 I do. In this way, the production amounts of hydrogen and oxygen gas are adjusted.
  • the inner surface 33 of the bottom wall 13a of the electrolytic cell 13 is formed in a tapered shape.
  • the tapered inner surface (discharge portion) 3 3 facilitates discharging the deposited impurities to the outside. Specifically, when the electrolytic cell 13 is at rest, the impurities precipitate on the tapered surface 33 and are collected at the center of the bottom wall 13a.
  • the drain pipe 34 is connected to the center of the bottom wall 13a. By opening the drain valve 35, the impurities are discharged from the electrolysis tank 13 via the drain pipe 34 together with the water.
  • the coating material 36 covers a lower portion of the electrode rod 21, that is, a portion between the circular support plate 22 and the lower end of the drain tube 34. The coating material 36 prevents impurities from adhering to the electrode rod 21.
  • a water separator 37 and a backflow prevention tank 38 are sequentially connected to the gas transfer pipe 31. Water vapor flowing with the hydrogen and oxygen gas is removed by the water drop separator 37. The backflow prevention tank 38 prevents gas from flowing back in the direction of the electrolytic cell 13.
  • a plurality of electrolytic cells 13, a power supply unit 14, a pump 15, a gas transfer pipe 31, a water drop separator 37, and a backflow prevention tank 38 be assembled in the main body 11.
  • six electrolytic cells 13, a power supply unit 14, The separator 37 and the backflow prevention tank 38 are packaged integrally in the case 12. Since six pairs of electrolyzers 13 have three pairs arranged in two rows, the case 12 is space-saving.
  • the main body 11 is movable by casters 39 provided at the bottom of the case 12.
  • the end of the gas transfer pipe 31 is exposed outside the main body 11 and is connected to the gas supply pipe 40.
  • the gas supply pipe 40 connects the dehumidifier 42, the gas mixer 43, and the mixed gas distributor 41.
  • a plurality of barriers are formed in the dehumidifier 42 so as to intersect the traveling directions of the hydrogen and oxygen gases.
  • the hydrogen and oxygen gas travel through the dehumidifier 42 while colliding with the obstacle, so that moisture in the hydrogen and oxygen gas is condensed on the surface of the barrier and removed. Since the water content of hydrogen and oxygen gas is removed by the water droplet separator 37 and the dehumidifier 42, high-purity hydrogen and oxygen gas can be obtained.
  • a mixing fan 44 is provided in the gas mixer 43. The mixing fan 44 is disposed so as to be orthogonal to the traveling direction of the hydrogen and oxygen gases.
  • the rotation axis of the mixing fan 44 matches the flow direction of the hydrogen and oxygen gas.
  • the mixing fan 44 is rotated by the flow of hydrogen and oxygen gas. Therefore, a driving device such as a motor for driving the mixing fan 44 is unnecessary.
  • a driving device such as a motor for driving the mixing fan 44 is unnecessary.
  • the hydrogen and oxygen gases are swirled in the gas mixer 43, agitated, and uniformly mixed.
  • a mixed gas of hydrogen and oxygen (Brown gas) having a hydrogen: oxygen volume ratio of 2: 1 is obtained.
  • the mixed gas distributor 41 has a case 45, a backflow preventer 46, and a plurality of branch pipes 47.
  • the backflow preventer 46 prevents backflow of the mixed gas from the mixed gas distributor 41 to the gas mixer 43.
  • the plurality of branch pipes 47 distribute the mixed gas to a plurality of devices to be supplied.
  • the burner 48 of the boiler apparatus 100 (FIG. 4) is connected to one branch pipe 47.
  • another branch pipe 47 may be connected to a welding machine, a melting furnace, or the like.
  • the plurality of branch pipes 47 eliminates the need to replace the burner 48 with another device (welding machine or melting furnace).
  • the mixture is dehumidified by a dehumidifier 42, uniformly mixed by a gas mixer 43, and supplied from the mixed gas distributor 1 to a plurality of devices.
  • Boiler apparatus 100 includes a boiler body 49 and a combustion furnace.
  • the combustion furnace includes a pair of stainless steel heat exchange elements (smoke tubes) 50 housed in the boiler body 49, and a pair of combustion devices (burners) 48 arranged below the heat exchange elements 50. including.
  • the boiler body 49 has a cylindrical shape, and its upper end and lower end are sealed by an upper wall 52 and a bottom wall 53.
  • the interior of the boiler body 49 is partitioned into a heating chamber 55 and an exhaust chamber 56 by a partition wall 54.
  • the lower part of the boiler body 49 is surrounded by a cylindrical boiler water supply part 49a.
  • a boiler water supply pipe 57 is connected to a lower portion of the boiler water supply section 49a. The boiler water is supplied into the boiler water supply section 49a through the boiler water supply pipe 57.
  • the supply hose 49 b connects the upper part of the boiler water supply part 49 a to the upper part of the boiler body 49. Thereby, the boiler water is supplied from the boiler water supply section 49a to the heating chamber 55 via the supply hose 49b. Boiler water in an amount of about 1 Z 3 of the volume of the heating chamber 55 is stored in the heating chamber 55. In the heating chamber 55, the space above the water surface of the boiler water is a steam chamber 58 filled with steam, and the boiler water is a water section 59.
  • the smoke tube 50 is supported by a bottom wall 53 and a partition wall 54 of the boiler body 49.
  • the burner burns the mixed gas supplied from the branch pipe 47 of the mixed gas generator 10 and sends a flame into the smoke pipe 50.
  • each burner 4 8 is surrounded by a shield wall 60.
  • the shield wall 60 Prior to ignition, the shield wall 60 is removed, as in the burner 48 on the right in FIG. After the ignition, the shield wall 60 closes the gap between the burner 48 and the smoke tube 50 as shown in the left burner 48 in FIG. 4, and shuts off the air.
  • the shield wall 60 prevents impurities in the air from being mixed into the mixed gas, and prevents a decrease in combustion temperature.
  • the jig 48 a supports the burner 48 so that the distance between the burner 48 and the smoke tube 50 can be changed. By changing the position of the jig 48a, the position of the flame in the smoke tube 50 can be adjusted.
  • Each smoke pipe 50 is formed by connecting the first divided pipe 61, the second divided pipe 62, and the third divided pipe 63.
  • a first combustion chamber 64a, a second combustion chamber 64b, and a third combustion chamber 64c are formed in the first to third divided pipes 62, 62, 63, respectively.
  • the peripheral walls of the first divided pipe 61, the second divided pipe 62, and the third divided pipe 63 are heat transfer partitions. The heat of combustion of the mixed gas is transferred to the boiler water in the boiler body 49 through each heat transfer partition.
  • the first split tube 61 has a reduced diameter portion 65 having an inner diameter smaller than the inner diameters of the upper and lower portions. The burning core and the internal flame are in the first combustion chamber 64a. The reduced diameter portion 65 narrows the internal flame so that the external flame of the flame reaches the second dividing pipe 62.
  • the first split pipe 61 is heated by the relatively low temperature of the flame core and the internal flame to preheat the boiler water.
  • the relatively hot outer flame is in the second combustion chamber 64b.
  • the preheated boiler water is calo-heated by the second dividing pipe 62 to become saturated steam.
  • the second dividing pipe 62 thermally contracts due to the temperature difference between the outer flame and the boiler water (saturated steam). Since the bellows 66 formed in the middle part of the second divided pipe 62 absorbs the heat shrinkage, the length of the smoke pipe 50 is maintained at a constant value.
  • the inner diameter of the third divided pipe 63 is smaller than the inner diameter of the first divided pipe 61 and the second divided pipe 62.
  • the high-temperature exhaust gas generated by the combustion of the mixed gas passes through the third combustion chamber 64c.
  • the third split tube 63 heats the external saturated steam to generate dry high-pressure steam.
  • Plate-shaped heat transfer fins 67 are provided on the outer surfaces of the first divided pipe 61 and the third divided pipe 63. The heat transfer fins 67 improve the heat transfer coefficient from the first divided pipe 61 and the third divided pipe 63 to the boiler water.
  • a main steam pipe 68 is provided above the boiler body 49.
  • the main steam pipe 68 passes through the exhaust chamber 56 and is connected to the partition wall 54.
  • the high-pressure steam in the steam chamber 58 is sent to a steam utilization facility such as a turbine through a main steam pipe 68.
  • An exhaust pipe 69 is provided on an upper wall 52 of the boiler body 49. Exhaust gas exhausted from the third split pipe 63 is exhausted through the exhaust chamber 56 and the exhaust pipe 69.
  • the exhaust gas passing through the exhaust chamber 56 keeps high-pressure steam passing through the main steam pipe 68. Since the main component of the exhaust gas is water vapor, the exhaust gas may be collected and reused as boiler water or electrolyte.
  • water is supplied to each electrolytic cell 13 by a pump 15.
  • water is electrolyzed in the electrolytic cell 13 to generate hydrogen gas and oxygen gas.
  • the hydrogen and oxygen gases generated in all the electrolytic cells 13 are collected in a gas transfer pipe 31, pass through a water drop separator 37 and a backflow prevention tank 38, and flow through a gas supply pipe 40.
  • the hydrogen and oxygen gases impinge on a plurality of barriers in the dehumidifier 42, removing moisture from the hydrogen and oxygen gases. By passing through the dehumidifier 42, the purity of hydrogen and oxygen gas is improved.
  • the dehumidified hydrogen and oxygen gases pass through a gas mixer 43.
  • the mixing fan 44 in the gas mixer 43 is rotated by the flow of hydrogen and oxygen gas, and swirls, stirs, and uniformly mixes the hydrogen and oxygen gas.
  • the mixed gas is distributed by the mixed gas distributor 41 into a plurality of mixed gas streams.
  • One mixed gas stream is supplied to a burner 48 connected to one branch pipe 47.
  • the mixed gas is ejected from the burner 48 to ignite the mixed gas. After ignition, the gap between the burner 48 and the smoke tube 50 is sealed with a shield wall 60.
  • the flame core and the internal flame heat the inner peripheral surface of the first split pipe 61 and indirectly preheat the boiler water.
  • the preheated boiler water convects and diffuses into the water section 59. As a result, the entire boiler water is preheated. Since the heat of the first split pipe 61 is also conducted to the boiler water supply unit 49a, the boiler water in the boiler water supply unit 49a is also preheated.
  • the boiler water near the water surface is heated by the second divided pipe 62 heated by the relatively high temperature outer flame.
  • the steam is heated until the temperature of the boiler water exceeds the boiling point, generating saturated steam.
  • the saturated steam is further heated and dried by the third dividing pipe 63 to become high-pressure steam.
  • the high-pressure steam is supplied to the steam utilization facility via the steam room 58 and the main steam pipe 68.
  • the power supply unit 14 includes a polarity converter for inverting the polarity of the electrode rod 21 and the electrolytic cell 13 at predetermined time intervals. Therefore, the electrode rod 21 and the electrolytic cell 13 are prevented from being acidified by oxygen generated at the anode, and the electrode rod 21 and the electrolytic cell 13 can be used for a long time.
  • the impurities are discharged from the electrolytic cell 13 by the tapered surface 33 provided at the bottom of the electrolytic cell 13. Therefore, there is no need to discharge the electrolytic solution and disassemble the electrolytic cell 13 in order to remove impurities, so that maintenance work is easy.
  • the plurality of electrolyzers 13 are connected by first, second and third communication pipes 18, 19, and 20. Therefore, a large amount of gas generated in all the electrolytic cells 13 can be easily collected. In addition, there is no need to check the amount of water and the amount of gas generated for each electrolytic cell 13.
  • the mixed gas distributor 41 eliminates the need for complicated work of switching devices that use mixed gas.
  • the shield wall 60 blocks the space between the burner 48 and the combustion chamber 64a, so that only the mixed gas is combusted and the lowering of the combustion temperature due to contamination by impurities is suppressed.
  • the boiler water is efficiently heated because the flame, internal flame, and external flame are burned so as to be located in the split pipes 61, 62, 63, respectively.
  • FIG. 5 shows the boiler body 49 of the boiler apparatus 100.
  • the boiler body 49 has a cylindrical shape having an upper wall 52 and a bottom wall 53.
  • a communication hole 52 a communicating with the main steam pipe 68 is formed in the upper wall 52.
  • a valve (not shown) is provided at the upper end of the main steam pipe 68. By closing the valve, the boiler body 49 and the main steam pipe 68 are sealed.
  • On the lower surface of the upper wall 52 an arc-shaped trap groove 52b is formed so as to surround the communication hole 52a.
  • the boiler body 49 and the main steam pipe 68 are made of copper plated with nickel (Ni).
  • a spiral water pipe 71 is disposed so as to surround the boiler body 49 and the main steam pipe 68.
  • a discharge pipe 72 connected to the water pipe 71 is disposed below the boiler body 49.
  • One end of the discharge pipe 72 penetrates the peripheral wall of the boiler body 49 and is located inside the boiler body 49.
  • the discharge pipe 72 has a discharge port (not shown) that opens toward the bottom wall 53.
  • Boiler water is supplied to the upper end of the water pipe 71 by a pump (not shown), and is supplied from the discharge port of the discharge pipe 72 to the inside of the boiler body 49 (the upper surface of the bottom wall 53).
  • a valve not shown
  • Pure water or tap water is used as the poiler water.
  • the plurality of burners 48 are arranged so as to face the lower side surface and the bottom wall 53 of the boiler body 49.
  • the plurality of burners 48 are connected to the branch pipe 47 of the mixed gas generator 10.
  • the burner 48 burns the mixed gas supplied from the branch pipe 47 and heats the lower part of the boiler body 49, particularly the bottom wall 53, by the flame.
  • the heat of combustion of the mixed gas is transmitted to the boiler water in the boiler body 49 via the bottom wall 53. Therefore, the bottom wall 53 functions as a heat transfer partition, that is, an evaporator.
  • the brown gas flame is at a temperature of 150-200 ° C.
  • Boiler body 4 9 The distance between the burner 48 and the boiler body 49 is adjusted so that the temperature inside the furnace is 800 to 900 ° C. If the temperature inside the boiler body 49 is below 800 ° C, the steam explosion of the boiler water is insufficient and the high-pressure steam contains a relatively large amount of moisture. On the other hand, if the temperature inside the boiler body 49 is higher than 900 ° C., the boiler body 49 tends to deteriorate.
  • the boiler apparatus 100 includes a boiler body 49, a main steam pipe 68, a water pipe 71, and a burner 48. Since the heat insulating wall 73 covers the boiler body 49, the water pipe 1 and the burner 48, the release of combustion heat is suppressed, and the boiler body 49 is efficiently heated. Next, the operation of the boiler apparatus 100 will be described.
  • the pump is operated with the valve between the water pipe 71 and the discharge pipe 72 closed to supply boiler water from the upper end of the water pipe 71.
  • the mixed gas is supplied to the panner 48, ignited, and the inside of the boiler body 49 is heated to 800 to 900 ° C.
  • the surplus heat of the flame heats the air inside the heat insulating wall 73.
  • the boiler water in the water pipe 71 is preheated until it reaches about 100 to 200 ° C.
  • the valve is opened and boiler water is supplied from the discharge pipe 72 into the boiler body 49. Since the inside of the boiler body 49 is heated to 800 to 900 ° C., the boiler water discharged toward the bottom wall 53 explodes with steam, and expands rapidly. As a result, high-pressure steam of 10 to 30 atm is generated.
  • the high-pressure steam is supplied from the boiler body 49 to the steam utilization facility via the main steam pipe 68.
  • High pressure steam is dry steam. However, if some of the boiler water does not explode in steam, saturated steam containing water is generated. Such moisture is removed by condensation in the trap groove 52b of the upper wall 52 of the boiler body 49. Thus, the boiler apparatus 100 generates dry high-pressure steam.
  • the boiler device 100 of the second embodiment has a relatively simple structure, it can be easily reduced in size. In addition, since high-heat brown gas is burned, high-pressure steam can be efficiently generated from boiler water.
  • -Moisture can be removed from the high-pressure steam by the trap groove 52 provided in the upper wall 52 of the boiler body 49.
  • FIG. 6A shows a boiler apparatus 100 of the third embodiment.
  • the boiler apparatus 100 of the third embodiment is suitable for obtaining low-pressure steam.
  • a plurality of burner sleeves 48 b are formed on the peripheral wall of the boiler body 49.
  • the parner sleeve 48b is inclined, and its inner end is higher than its outer end.
  • Pana sleep 48 b is preferably inclined by about 45 ° with respect to boiler body 49.
  • a burner 48 is disposed inside each of the parner sleeves 48b.
  • the spiral water pipe 71 is disposed so as to surround the poirer body 49.
  • the discharge pipe 72 is connected to the lower end of the water pipe 71.
  • the distal end of the discharge pipe 72 is disposed inside the burner sleeve 48b. Therefore, the boiler water is discharged from the discharge pipe 72 to the vicinity of the burner 48, and is directly heated by the flame of the panner 48.
  • Knob sleeve 48 b and burner 48 function as an evaporator.
  • a cooling pipe 74 is connected to the bottom wall 53 of the boiler body 49.
  • a cooling gas such as nitrogen or dry air
  • the temperature inside the boiler body 49 is maintained at 200 to 300 ° C. . If the temperature in the boiler body 49 is less than 200 ° C., the efficiency of evaporation of the boiler water decreases. If the temperature in the boiler body 49 is higher than 300 ° C., high-pressure steam having a pressure higher than a desired pressure is generated. The temperature of the flame is reduced by the cooling gas.
  • the boiler water discharged near the burner 48 lowers the temperature around the burner 48. Therefore, the boiler water evaporates without causing a steam explosion and becomes low-pressure saturated steam of 3 to 5 atmospheres at 100 to 300 ° C.
  • FIG. 6B shows a boiler apparatus 100 of the fourth embodiment.
  • the boiler apparatus 10 ° of the fourth embodiment is suitable for obtaining a large amount of steam.
  • the discharge pipe 7 2. is connected to the bottom wall 53 of the boiler body 49.
  • Boiler water is discharged upward from discharge pipe 72.
  • a cooling pipe 74 is connected to the bottom wall 53 of the boiler body 49. Cooling gas is supplied from the cooling pipe 74, and the temperature in the boiler body 49 is maintained at 200 to 250 ° C.
  • the boiler water evaporates on the inner wall (evaporator) of the boiler body 49 and becomes steam at about 120 ° C.
  • the steam is supplied from the boiler body 49 to the steam utilization facility via the main steam pipe 68 by an ascending current. Therefore, according to the boiler apparatus 100 of the fourth embodiment, a large amount of steam can be easily obtained with a simple structure.
  • FIG. 7A shows a modification of the electrolytic cell 16 of the mixed gas generator 10.
  • spacers 75 are fitted to the ends of the plurality of electrode tubes 23. Thereby, the plurality of electrode tubes 23 are arranged concentrically.
  • the spacer 5 is U-shaped, and has a pair of holding pieces 75a and a connecting portion 75b connecting the holding pieces 75a.
  • the spacer 5 is preferably made of an insulating material such as a synthetic resin.
  • FIG. 7B the peripheral wall end of the electrode tube 23 is sandwiched between the sandwiching pieces 75a.
  • the electrolytic cell 16 can be assembled easily and quickly.
  • the first to fourth embodiments may be changed as follows.
  • a filter 15 such as an ion exchange membrane
  • a water purification device 15b such as a distillation device, a filtration device, a pure water generation device, and an ion exchange resin
  • organic components such as industrial wastewater, rainwater, seawater and wastewater
  • Water containing inorganic components is supplied to a water purification device.
  • the water purifier removes impurities in the water by filtration, distillation or ion exchange to produce distilled water, pure water or ion-exchanged water. Distilled water, pure water or ion-exchanged water is supplied to the electrolytic cell 13.
  • the purity of the purified water is preferably 90% or more.
  • the water purifier allows industrial wastewater, which is normally discarded, and rainwater, seawater, and sewage, which are treated at water treatment plants, to be reused as electrolyte water.
  • a power generating turbine When a power generating turbine is connected to the boiler 100 of the first and second embodiments, a part of the generated power is supplied to the mixed gas generator 10 to generate power for electrolysis of water. It may be used for.
  • the steam utilization equipment connected to the boiler apparatus 100 of the third and fourth embodiments is, for example, an industrial drier, a heating device, a public bath, a sauna, and the like.
  • the fire tube boiler device 100 of the first embodiment may be changed to, for example, a water tube boiler device.
  • a water tube type boiler boiler water is stored in a plurality of pipe-shaped boiler bodies. The boiler is directly heated by the burner. In this case, preheating of the boiler water is omitted, and high-pressure steam is generated in a shorter time.
  • the mixed gas distributor 41 may be omitted.
  • the gas mixer 43 instead of the mixing fan 44.
  • the hydrogen and the oxygen gas are swirled and flow along the spiral path, so that the hydrogen and the oxygen gas are mixed.

Abstract

An apparatus (10) for generating a hydrogen-oxygen mixed gas, wherein water is electrolyzed in an electrolysis tank (13) to form a hydrogen gas and an oxygen gas, the moisture contained in the hydrogen gas and the oxygen gas is removed by a dehumidifier (42), the hydrogen gas and the oxygen gas are mixed uniformly in a gas mixer (43) into the brown gas containing hydrogen and oxygen in a hydrogen : oxygen volume ratio of 2 : 1, the brown gas is branched into a plurality of streams by a mixed gas distributor (41), and one of the plurality of streams is supplied to a burner (48) of a boiler system (100). The apparatus (10) can be used for generating a hydrogen-oxygen mixed gas which is homogeneously admixed.

Description

混合ガス発生装置及びその混合ガスを使用するボイラ装置 技術分野  TECHNICAL FIELD The present invention relates to a mixed gas generator and a boiler device using the mixed gas.
本発明は、 混合ガス発生装置及びボイラ装置に関し、 詳しくは、 金属の切断及 び溶接装置またはボイラ装置に大量の混合可燃性ガスを供給する混合ガス発生装 置、 及び混合ガス発生装置により生成された混合ガスを使用するボイラ装置に関 する。 背景技術  The present invention relates to a mixed gas generation device and a boiler device, and more particularly, to a mixed gas generation device that supplies a large amount of mixed combustible gas to a metal cutting and welding device or a boiler device, and a mixed gas generation device. Boiler equipment that uses mixed gas. Background art
従来の混合ガス発生装置の電解槽は、 互いに絶縁されかつ同心状に配置された 複数の電極筒により形成される電極ュニットと、 電極ュニットの中心に配置され た電極棒と、 電極ユニットを収容する筒状本体とを有する。 水及ぴ電解質からな る電解液は電極筒間に形成された電解室に貯留される。 電極棒に正電圧を印加し 、 電極ユニットに負電圧を印加して水が電気分解される。 電極ユニット (陽極) からは酸素ガスが生成され、 電極棒 (陰極) からは水素ガスが生成される。 従来 の混合ガス発生装置は、 電解効率が'比較的高く、 大量の水素と酸素の混合ガスを 生成する。 混合ガスは、 配管を介して、 金属の切断及び溶接装置またはポイラ装 置に供給される。  An electrolytic cell of a conventional mixed gas generator houses an electrode unit formed by a plurality of electrode tubes insulated and arranged concentrically, an electrode rod disposed at the center of the electrode unit, and an electrode unit. And a cylindrical main body. An electrolytic solution composed of water and an electrolyte is stored in an electrolytic chamber formed between the electrode cylinders. Water is electrolyzed by applying a positive voltage to the electrode rod and applying a negative voltage to the electrode unit. Oxygen gas is generated from the electrode unit (anode), and hydrogen gas is generated from the electrode rod (cathode). Conventional mixed gas generators have relatively high electrolysis efficiency and generate large amounts of mixed gas of hydrogen and oxygen. The mixed gas is supplied to the metal cutting and welding equipment or the poiler through piping.
ところが、 従来の混合ガス発生装置は、 水素及び酸素ガスを、 電解槽から配管 を介して供給先の装置に直接に供給する。 すなわち、 水素及び酸素ガスは配管内 で混合される。 このため、 従来の混合ガス発生装置では、 混合ガスの組成は不均 —であり、 混合ガスの燃焼は不安定であり、 所望の燃焼熱が得られなかった。 発明の開示  However, the conventional mixed gas generator supplies hydrogen and oxygen gas directly from the electrolytic cell to a supply destination device via a pipe. That is, hydrogen and oxygen gas are mixed in the pipe. For this reason, in the conventional mixed gas generator, the composition of the mixed gas was uneven, and the combustion of the mixed gas was unstable, and the desired combustion heat could not be obtained. Disclosure of the invention
本発明の目的は、 大量の混合ガスを安定に生成する混合ガス発生装置、 及び大 量の混合ガスを使用するボイラー装置を提供することにある。  An object of the present invention is to provide a mixed gas generator that stably generates a large amount of mixed gas, and a boiler device that uses a large amount of mixed gas.
上記の目的を達成するために、 本発明の第 1の態様では、 水の電気分解により 水素ガス及び酸素ガスを発生する混合ガス発生装置が提供される。 混合ガス発生 装置は、 各々力 電極棒と前記電極棒の周囲に配置された少なくとも一^ 3の電極 筒とを有する電解セルと、 水と電解質とを含む電解液とを収容する複数の電解槽 と、 ガス供給管を介して前記複数の電解槽に接続され、 前記水素ガス及び酸素ガ スを均一に混合する混合器とを備える。 In order to achieve the above object, in a first aspect of the present invention, the electrolysis of water is used. A mixed gas generator that generates hydrogen gas and oxygen gas is provided. The mixed gas generator includes: an electrolytic cell having a force electrode rod and at least three electrode cylinders disposed around the electrode rod; and a plurality of electrolytic cells containing an electrolytic solution containing water and an electrolyte. And a mixer connected to the plurality of electrolytic cells via a gas supply pipe to uniformly mix the hydrogen gas and the oxygen gas.
本発明の第 2の態様では、 混合ガス発生装置で生成された混合ガスを燃科とし て使用するボイラ装置が提供される。 ボイラ装置はボイラ水を収容するボイラ本 体と、 前記ポイラ本体に取りつけられ、 前記混合ガスを燃焼する燃焼装置と、 前 記ボイラ本体の内部おいて、 前記ボイラ水に接触するように配置され、 前記混合 ガスの燃焼熱を前記ボイラ水に伝達して、 高圧蒸気を発生する熱交換要素とを備 える。  According to a second aspect of the present invention, there is provided a boiler device using the mixed gas generated by the mixed gas generator as a fuel. A boiler device for storing the boiler water, a boiler attached to the boiler body, and a combustion device for burning the mixed gas; and A heat exchange element for transmitting combustion heat of the mixed gas to the boiler water to generate high-pressure steam.
本発明の第 3の態様では、 混合ガス発生装置で生成された混合ガスを燃料とし て使用するボイラ装置が提供される。 ボイラ装置は底を有する筒状のボイラ本体 と、 前記混合ガスを燃焼し、 前記ボイラ本体の内部を所定の温度にまで加熱する 燃焼装置と、 前記混合ガスの燃焼熱で加熱される蒸発部と、 加熱された前記蒸発 部にボイラ水を供給する水管とを備え、 前記ボイラ水が前記蒸発部で水蒸気爆発 を起こすことで高圧蒸気を発生させる。  According to a third aspect of the present invention, there is provided a boiler device using a mixed gas generated by a mixed gas generator as a fuel. A boiler device having a cylindrical boiler body having a bottom, a combustion device that burns the mixed gas and heats the inside of the boiler body to a predetermined temperature, and an evaporator that is heated by combustion heat of the mixed gas. A water pipe for supplying boiler water to the heated evaporator, wherein the boiler water causes steam explosion in the evaporator to generate high-pressure steam.
本発明の第 4の態様では、 混合ガス発生装置で生成された混合ガスを燃料とし て使用するボイラ装置が提供される。 ボイラ装置は底を有する筒状のポイラ本体 と、 前記混合ガスを燃焼し、 前記ボイラ本体の内部を所定の温度にまで加熱する 燃焼装置と、 前記混合ガスの燃焼熱で加熱される蒸発部と、 前記ボイラ本体の内 部を所定温度に維持するために前記ポイラ本体の内部に冷却用気体を供給する冷 却管と、 加熱された前記蒸発部にボイラ水を供給する水管とを備え、 前記ボイラ 水が前記蒸発部で蒸発することで低圧蒸気を発生させる。 図面の簡単な説明  According to a fourth aspect of the present invention, there is provided a boiler device using a mixed gas generated by a mixed gas generator as a fuel. A boiler device having a cylindrical poirer body having a bottom, a combustion device that burns the mixed gas and heats the inside of the boiler body to a predetermined temperature, and an evaporator that is heated by combustion heat of the mixed gas. A cooling pipe for supplying a cooling gas to the inside of the boiler main body so as to maintain the inside of the boiler main body at a predetermined temperature; and a water pipe for supplying boiler water to the heated evaporating section. The boiler water evaporates in the evaporator to generate low-pressure steam. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の第 1実施形態に従う混合ガス発生装置の概略図。  FIG. 1 is a schematic diagram of a mixed gas generator according to a first embodiment of the present invention.
図 2は図 1の混合ガス発生装置の本体の斜視図。 図 3 Aは図 1の混合ガス発生装置の電解槽の縦断面図。 FIG. 2 is a perspective view of a main body of the mixed gas generator of FIG. FIG. 3A is a longitudinal sectional view of the electrolytic cell of the mixed gas generator of FIG.
図 3 Bは図 3 Aの電解槽の横断面図。  FIG. 3B is a cross-sectional view of the electrolytic cell in FIG. 3A.
図 4は第 1実施形態のポイラ装置の断面図。  FIG. 4 is a cross-sectional view of the poiling device of the first embodiment.
図 5は第 2実施形態のボイラ装置の断面図。  FIG. 5 is a sectional view of a boiler device according to a second embodiment.
図 6 Aは第 3実施形態のボイラ装置の断面図。  FIG. 6A is a sectional view of a boiler device according to a third embodiment.
図 6 Bは第 4実施形態のボイラ装置の断面図。  FIG. 6B is a cross-sectional view of the boiler device of the fourth embodiment.
図 7 Aは電解セルの変更例の横断面図。  FIG. 7A is a cross-sectional view of a modification of the electrolytic cell.
図 7 Bは図 7 Aの電解セルの部分拡大断面図。  FIG. 7B is a partially enlarged cross-sectional view of the electrolytic cell of FIG. 7A.
図 7 Cは図 Ί Aのスぺーサの斜視図。 発明を実施するための最良の形態  FIG. 7C is a perspective view of the spacer of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
(第 1実施形態)  (First Embodiment)
以下、 本発明の第 1実施形態に従う混合ガス発生装置 1 0について説明する。 図 1、 図 3 A及び 3 Bに示すように、 混合ガス発生装置 1 0は、 本体 (メイン ユニット) 1 1と、 除湿器 4 2と、 ガス混合器 4 3と、 混合ガス分配器 4 1とを 含む。 本体 1 1は、 ケース 1 2と、 ケース 1 2内に収容された複数の電解槽 1 3 と、 電気分解用の電力を複数の電解槽 1 3に供給する電源ュニット 1 4と、 電解 槽 1 3内に水を供給する給水装置 (ポンプ) 1 5とを含む。 電解槽 1 3内では電 解質水が電気分解される。 電解質は好ましくは水酸化力リゥムである。  Hereinafter, the mixed gas generator 10 according to the first embodiment of the present invention will be described. As shown in FIGS. 1, 3A and 3B, the mixed gas generator 10 is composed of a main unit (main unit) 11, a dehumidifier 42, a gas mixer 43, and a mixed gas distributor 41. And The main body 11 includes a case 1 2, a plurality of electrolytic cells 13 contained in the case 12, a power supply unit 14 for supplying electric power for electrolysis to the plurality of electrolytic cells 13, and an electrolytic cell 1. 3 includes a water supply device (pump) 15 that supplies water. Electrolyte water is electrolyzed in the electrolyzer 13. The electrolyte is preferably a hydration power lime.
電解槽 1 3は好ましくは円筒形である。 図 3に示すように、 丸柱状の電極棒 2 1及び電解セル 1 6が電解槽 1 3内に配置される。 電解槽 1 3の上部開口は円板 形の蓋 1 7により閉塞される。 電解槽 1 3の底壁 1 3 aは、 電極棒 2 1の下端が 電解槽 1 3の外部へ露出されるように、 形成されている。 第 1、 第 2及び第 3連 通管 1 8 , 1 9, 2 0は、 複数の電解槽 1 3の下端部、 中間部及び上端部にそれ ぞれ接続されている。 第 1、 第 2及び第 3連通管 1 8, 1 9, 2 0により、 複数 の電解槽 1 3の内部空間が一体となっている。  Electrolyzer 13 is preferably cylindrical. As shown in FIG. 3, a round pillar-shaped electrode rod 21 and an electrolytic cell 16 are arranged in an electrolytic cell 13. The upper opening of the electrolytic cell 13 is closed by a disk-shaped lid 17. The bottom wall 13 a of the electrolytic cell 13 is formed such that the lower end of the electrode rod 21 is exposed to the outside of the electrolytic cell 13. The first, second and third communication pipes 18, 19, 20 are connected to the lower end, the middle, and the upper end of the plurality of electrolytic cells 13, respectively. The first, second and third communication pipes 18, 19, 20 integrate the internal space of the plurality of electrolytic cells 13.
電解セル 1 6は電極棒 2 1の下部に固定されている。 電解セル 1 6は、 合成樹 脂等の絶縁材料性の円形支持板 2 2と、 支持板 2 2に支持された複数の電極筒 2 3とを有する。 複数の電極筒 2 3は互いに形方向に等間隔だけ離間して、 電極棒 2 1に対して同心状に配置されている。 電極棒 2 1及び各電極筒 2 3はニッケル (N i ) メツキされた表面を有する軟鋼製であるのが好ましい。 電解セル 1 6の 上端は図示しない蓋により閉塞されている。 複数の電解室 2 4が、 隣接する電極 筒 2 3間、 及び電極棒 2 1と最も内側に配置された電極筒 2 3との間に区画され る。 Electrolysis cell 16 is fixed to the lower part of electrode rod 21. The electrolytic cell 16 includes a circular support plate 22 made of an insulating material such as a synthetic resin, and a plurality of electrode tubes 2 supported by the support plate 22. With 3. The plurality of electrode cylinders 23 are arranged concentrically with respect to the electrode rod 21 so as to be spaced from each other by an equal distance in the shape direction. The electrode rod 21 and each electrode tube 23 are preferably made of mild steel having a nickel (Ni) plated surface. The upper end of the electrolytic cell 16 is closed by a lid (not shown). A plurality of electrolysis chambers 24 are defined between the adjacent electrode tubes 23 and between the electrode rod 21 and the innermost electrode tube 23.
電解セル 1 6の外周面は電解槽 1 3の内周面から離間している。 電解セル 1 6 の外周面と電解槽 1 3の内周面との間に通水路 2 7が形成される。 第 1連通管 1 8は水配管 2 8を介してポンプ 1 5に接続される。 ポンプ 1 5により、 電解槽 1 3の下部から水が供給される。 水は通水路 2 7を流れ、 水位が電解槽 1 3のほぼ 半分に達するまで供給される。 従って、 電解セル 1 6の全体が水没している。 図 3 Aに示すように、 各電極筒 2 3は同一レベルに形成された 2つの通過孔 2 9を有する。 図 3 Bに示すように、 全ての通過孔 2 9は 2 1と直交する一直線上 に形成されている。 水は通過孔 2 9を通って全ての電解室 2 4に流入する。 水は第 2連通管 1 9を通って隣接する電解槽 1 3へ移動できるので、 全ての電 解槽 1 3内の水位 (水量) は等しく調整される。 電解槽 1 3内には水量を検知す る水量検知機 1 5 aが設けられている。 ポンプ 1 5は、 電解槽 1 3内の水量が所 定の範囲内になるように、 水量検知機 1 5 aの検知信号に従って水の供給量を自 -動的に調整する。  The outer peripheral surface of the electrolytic cell 16 is separated from the inner peripheral surface of the electrolytic cell 13. A water passage 27 is formed between the outer peripheral surface of the electrolytic cell 16 and the inner peripheral surface of the electrolytic cell 13. The first communication pipe 18 is connected to the pump 15 via a water pipe 28. The pump 15 supplies water from the lower part of the electrolytic cell 13. Water flows through the water channel 27 and is supplied until the water level reaches almost half of the electrolysis cell 13. Therefore, the entire electrolytic cell 16 is submerged. As shown in FIG. 3A, each electrode tube 23 has two passage holes 29 formed at the same level. As shown in FIG. 3B, all the passage holes 29 are formed on a straight line orthogonal to 21. Water flows into all the electrolysis chambers 24 through the passage holes 29. Since water can move to the adjacent electrolytic cell 13 through the second communication pipe 19, the water level (water amount) in all the electrolytic cells 13 is adjusted equally. The electrolytic cell 13 is provided with a water amount detector 15a for detecting the amount of water. The pump 15 automatically adjusts the water supply amount according to the detection signal of the water amount detector 15a so that the water amount in the electrolytic cell 13 falls within a predetermined range.
電源ュニット 1 4はケーブル 3 0を介して電極棒 2 1の下端及び電解セル 1 6 に接続されている。 電源ュニット 1 4は、 電極棒 2 1に印加する電圧の極性と.、 電解槽 1 3に印加する電圧の極性とを所定時間毎に反転する極性変換器 1 4 aを 有している。 極性変換器は電極棒 2 1に正電圧を供給する時には、 電解槽 1 3に 負電圧を供給する。 他方、 極性変換器は電極棒 2 1に負電圧を供給する時には、 電解槽 1 3に正電圧を供給する。 第 1実施形態では電源ュニット 1 4は直流電源 により駆動され、 6時間おきに印加する電圧の極性を反転する。  The power supply unit 14 is connected to the lower end of the electrode rod 21 and the electrolytic cell 16 via a cable 30. The power supply unit 14 has a polarity converter 14a that inverts the polarity of the voltage applied to the electrode rod 21 and the polarity of the voltage applied to the electrolytic cell 13 at predetermined time intervals. When the polarity converter supplies a positive voltage to the electrode rod 21, it supplies a negative voltage to the electrolytic cell 13. On the other hand, the polarity converter supplies a positive voltage to the electrolytic cell 13 when supplying a negative voltage to the electrode rod 21. In the first embodiment, the power supply unit 14 is driven by a DC power supply, and reverses the polarity of the voltage applied every six hours.
電極棒 2 1及び電解セル 1 6は、 印加される電圧の極性に応じて、 陽極または 陰極となる。 水の電気分解により陽極からは酸素ガスが生成し、 陰極からは水素 ガスが生成する。 複数の電解槽 1 3で生成された酸素ガス及び水素ガスは第 3連 通管 2 0を介してガス移送管 3 1に合流される。 The electrode rod 21 and the electrolytic cell 16 serve as an anode or a cathode depending on the polarity of the applied voltage. Oxygen gas is generated from the anode by electrolysis of water, and hydrogen gas is generated from the cathode Gas is generated. The oxygen gas and the hydrogen gas generated in the plurality of electrolytic cells 13 are joined to the gas transfer pipe 31 via the third communication pipe 20.
各電解槽 1 3の外周壁には複数の放熱フィン 3 2が径方向に突出するように設 けられている。 放熱フィン 3 2は電気分解で発生した熱を効率的に放出する。 電源ュニット 1 4は電解コントローラ 1 4 bを有する。 電解コントローラ 1 4 bは複数の電解槽 1 3のうち少なくとも 1つの電解槽 1 3への電圧供給を所定時 間毎に停止させる。 第 1実施形態では、 2 4時間おきに 1つの電解槽 1 3への送 電が停止される。 送電を停止された電解槽 1 3の電極 (電極棒 2 1及び電解セル 1 6 ) は、 休止されることにより、 酸化等といった経時劣化が低減される。 また 、 送電の停止期間中に、 電気分解時に主に陽極で酸化されて水中に堆積するニッ ケル酸化物等の不純物の除去作業が行われる。  A plurality of radiating fins 32 are provided on the outer peripheral wall of each electrolytic cell 13 so as to protrude in the radial direction. The radiation fins 32 efficiently release the heat generated by the electrolysis. The power supply unit 14 has an electrolysis controller 14b. The electrolysis controller 14b stops the voltage supply to at least one of the plurality of electrolyzers 13 at predetermined time intervals. In the first embodiment, power transmission to one electrolytic cell 13 is stopped every 24 hours. The electrodes (electrode rods 21 and electrolytic cells 16) of the electrolytic cell 13 whose power transmission has been stopped are stopped to reduce deterioration over time such as oxidation. In addition, during a period during which power transmission is stopped, an operation of removing impurities such as nickel oxide that is oxidized mainly at the anode and deposited in water during electrolysis is performed.
電解コントローラ 1 4 bは、 電解槽 1 3内の気圧が 3 k g f Z c m2を越えた時 に、 電解槽 1 3への送電を停止し、 気圧が 2 k g f / c m2より低くなると送電を 再開する。 このようにして、 水素及び酸素ガスの生成量は調整される。 The electrolysis controller 14b stops power transmission to the electrolyzer 13 when the air pressure in the electrolyzer 13 exceeds 3 kgf Z cm 2 and restarts power transmission when the air pressure falls below 2 kgf / cm 2 I do. In this way, the production amounts of hydrogen and oxygen gas are adjusted.
電解槽 1 3の底壁 1 3 aの内面 3 3はテーパ状に形成されている。 テーパ内面 (排出部) 3 3は、 堆積した不純物を外部に排出されやすくする。 詳しくは、 電 解槽 1 3が休止されている時、 不純物はテーパ面 3 3上に沈殿し、 底壁 1 3 aの 中央へと集められる。 ドレン管 3 4は底壁 1 3 aの中央に接続されている。 ドレ ンバルブ 3 5を開くことにより、 不純物は水とともにドレン管 3 4を介して電角军 槽 1 3から排出される。 被覆材 3 6は、 電極棒 2 1の下部、 すなわち、 円形支持 板 2 2とドレン管 3 4の下端との間の部分を被覆する。 被覆材 3 6により、 不純 物が電極棒 2 1に付着することが防止される。  The inner surface 33 of the bottom wall 13a of the electrolytic cell 13 is formed in a tapered shape. The tapered inner surface (discharge portion) 3 3 facilitates discharging the deposited impurities to the outside. Specifically, when the electrolytic cell 13 is at rest, the impurities precipitate on the tapered surface 33 and are collected at the center of the bottom wall 13a. The drain pipe 34 is connected to the center of the bottom wall 13a. By opening the drain valve 35, the impurities are discharged from the electrolysis tank 13 via the drain pipe 34 together with the water. The coating material 36 covers a lower portion of the electrode rod 21, that is, a portion between the circular support plate 22 and the lower end of the drain tube 34. The coating material 36 prevents impurities from adhering to the electrode rod 21.
ガス移送管 3 1には、 水滴分離器 3 7及ぴ逆流防止タンク 3 8が順に接続され る。 水素及び酸素ガスとともに流れる水蒸気は水滴分離器 3 7で除去される。 逆 流防止タンク 3 8はガスが電解槽 1 3方向へ逆流することを防止する。  A water separator 37 and a backflow prevention tank 38 are sequentially connected to the gas transfer pipe 31. Water vapor flowing with the hydrogen and oxygen gas is removed by the water drop separator 37. The backflow prevention tank 38 prevents gas from flowing back in the direction of the electrolytic cell 13.
本体 1 1には、 複数の電解槽 1 3、 電源ュニット 1 4、 ポンプ 1 5、 ガス移送 管 3 1、 水滴分離器 3 7及び逆流防止タンク 3 8がアセンブリ化されているのが 好ましい。 図 2の実施形態では、 6本の電解槽 1 3、 電源ユニット 1 4、 水滴分 離器 3 7、 逆流防止タンク 3 8がケース 1 2内で一体的にパッケージ化されてい る。 6本の電解槽 1 3は 3つの対が 2列に配置されているので、 ケース 1 2は省 スペース化されている。 本体 1 1はケース 1 2の底部に設けられたキャスター 3 9により、 移動可能である。 ガス移送管 3 1の端部は本体 1 1の外部に露出して おり、 ガス供給管 4 0に接続される。 It is preferable that a plurality of electrolytic cells 13, a power supply unit 14, a pump 15, a gas transfer pipe 31, a water drop separator 37, and a backflow prevention tank 38 be assembled in the main body 11. In the embodiment of FIG. 2, six electrolytic cells 13, a power supply unit 14, The separator 37 and the backflow prevention tank 38 are packaged integrally in the case 12. Since six pairs of electrolyzers 13 have three pairs arranged in two rows, the case 12 is space-saving. The main body 11 is movable by casters 39 provided at the bottom of the case 12. The end of the gas transfer pipe 31 is exposed outside the main body 11 and is connected to the gas supply pipe 40.
図 1に示すように、 ガス供給管 4 0は、 除湿器 4 2、 ガス混合器 4 3及び混合 ガス分配器 4 1を接続する。 除湿器 4 2内には、 図示しない複数の障壁が水素及 ぴ酸素ガスの進行方向と交差するように形成されている。 水素及び酸素ガスは障 壁に衝突しながら除湿器 4 2内を進むことにより、 水素及び酸素ガス中の水分が 障壁の表面に結露して除去される。 水素及び酸素ガスの水分は水滴分離器 3 7及 び除湿器 4 2で除去されるので、 純度の高い水素及び酸素ガスが得られる。 ガス混合器 4 3内には混合用ファン 4 4が設けられている。 混合用ファン 4 4 は水素及び酸素ガスの進行方向と直交するように配置されている。 言い換えると 、 混合用ファン 4 4の回転軸は水素及ぴ酸素ガスの流れの方向と一致している。 混合用ファン 4 4は水素及び酸素ガスの流れによって回転される。 従って、 混合 用ファン 4 4を駆動するモータ等の駆動装置は不要である。 混合用ファン 4 4の 回転により、 水素及び酸素ガスはガス混合器 4 3内で旋回され、 攪拌され、 均一 に混合される。 これにより、 水素:酸素の体積比率が 2 : 1である水素及び酸素 混合ガス (ブラウンガス) が得られる。  As shown in FIG. 1, the gas supply pipe 40 connects the dehumidifier 42, the gas mixer 43, and the mixed gas distributor 41. A plurality of barriers (not shown) are formed in the dehumidifier 42 so as to intersect the traveling directions of the hydrogen and oxygen gases. The hydrogen and oxygen gas travel through the dehumidifier 42 while colliding with the obstacle, so that moisture in the hydrogen and oxygen gas is condensed on the surface of the barrier and removed. Since the water content of hydrogen and oxygen gas is removed by the water droplet separator 37 and the dehumidifier 42, high-purity hydrogen and oxygen gas can be obtained. A mixing fan 44 is provided in the gas mixer 43. The mixing fan 44 is disposed so as to be orthogonal to the traveling direction of the hydrogen and oxygen gases. In other words, the rotation axis of the mixing fan 44 matches the flow direction of the hydrogen and oxygen gas. The mixing fan 44 is rotated by the flow of hydrogen and oxygen gas. Therefore, a driving device such as a motor for driving the mixing fan 44 is unnecessary. By the rotation of the mixing fan 44, the hydrogen and oxygen gases are swirled in the gas mixer 43, agitated, and uniformly mixed. As a result, a mixed gas of hydrogen and oxygen (Brown gas) having a hydrogen: oxygen volume ratio of 2: 1 is obtained.
混合ガス分配器 4 1はケース 4 5と、 逆流防止器 4 6と、 複数の分岐管 4 7と を有する。 逆流防止器 4 6は混合ガス分配器 4 1からガス混合器 4 3への混合ガ スの逆流を防止する。 複数の分岐管 4 7は混合ガスを供給先の複数の装置に分配 する。 ボイラ装置 1 0 0 (図 4 ) のバーナー 4 8が 1つの分岐管 4 7に接続され ている。 同時に、 他の分岐管 4 7を溶接機や溶融炉等に接続してもよい。 複数の 分岐管 4 7により、 バーナー 4 8と他の装置 (溶接機や溶融炉) との交換作業が 不要となる。  The mixed gas distributor 41 has a case 45, a backflow preventer 46, and a plurality of branch pipes 47. The backflow preventer 46 prevents backflow of the mixed gas from the mixed gas distributor 41 to the gas mixer 43. The plurality of branch pipes 47 distribute the mixed gas to a plurality of devices to be supplied. The burner 48 of the boiler apparatus 100 (FIG. 4) is connected to one branch pipe 47. At the same time, another branch pipe 47 may be connected to a welding machine, a melting furnace, or the like. The plurality of branch pipes 47 eliminates the need to replace the burner 48 with another device (welding machine or melting furnace).
本体 1 1、 ガス供給管 4 0、 除湿器 4 2、 ガス混合器 4 3、 分配器 4 1により 混合ガス発生装置 1 0が形成される。 本体 1 1で生成された水素及ぴ酸素ガスは 、 除湿器 4 2で除湿され、 ガス混合器 4 3で均一に混合されて、 混合ガス分配器 1から複数の装置に供給される。 The main body 11, the gas supply pipe 40, the dehumidifier 42, the gas mixer 43, and the distributor 41 form a mixed gas generator 10. Hydrogen and oxygen gas generated in the main body 11 The mixture is dehumidified by a dehumidifier 42, uniformly mixed by a gas mixer 43, and supplied from the mixed gas distributor 1 to a plurality of devices.
次に、 図 4を参照してポイラ装置 1 0 0について説明する。  Next, the poil device 100 will be described with reference to FIG.
ボイラ装置 1 0 0はボイラ本体 4 9と、 燃焼炉とを含む。 燃焼炉は、 ボイラ本 体 4 9に収容されたステンレス鋼製の一対の熱交換要素 (煙管) 5 0と、 熱交換 要素 5 0の下方に配置された一対の燃焼装置 (バーナー) 4 8とを含む。  Boiler apparatus 100 includes a boiler body 49 and a combustion furnace. The combustion furnace includes a pair of stainless steel heat exchange elements (smoke tubes) 50 housed in the boiler body 49, and a pair of combustion devices (burners) 48 arranged below the heat exchange elements 50. including.
ボイラ本体 4 9は円筒形であり、 その上端及び下端は上壁 5 2及び底壁 5 3に より密閉されている。 ボイラ本体 4 9の内部は区画壁 5 4により加熱室 5 5と排 気室 5 6とに仕切られている。 ポイラ本体 4 9の下部は円筒形のボイラ水供給部 4 9 aに囲まれている。 ボイラ水供給部 4 9 aの下部にはボイラ水供給配管 5 7 が接続されている。 ポイラ水はボイラ水供給配管 5 7を通してポイラ水供給部 4 9 a内に供給される。'  The boiler body 49 has a cylindrical shape, and its upper end and lower end are sealed by an upper wall 52 and a bottom wall 53. The interior of the boiler body 49 is partitioned into a heating chamber 55 and an exhaust chamber 56 by a partition wall 54. The lower part of the boiler body 49 is surrounded by a cylindrical boiler water supply part 49a. A boiler water supply pipe 57 is connected to a lower portion of the boiler water supply section 49a. The boiler water is supplied into the boiler water supply section 49a through the boiler water supply pipe 57. '
供給ホース 4 9 bはボイラ水供給部 4 9 aの上部とボイラ本体 4 9の上部とを 接続する。 これにより、 ボイラ水はボイラ水供給部 4 9 aから供給ホース 4 9 b を介して加熱室 5 5に供給される。 加熱室 5 5の容積の 1 Z 3程度の量のボイラ 水が加熱室 5 5に収容される。 加熱室 5 5内において、 ボイラ水の水面上の空間 が水蒸気で満たきれる蒸気室 5 8であり、 ボイラ水が水部 5 9である。  The supply hose 49 b connects the upper part of the boiler water supply part 49 a to the upper part of the boiler body 49. Thereby, the boiler water is supplied from the boiler water supply section 49a to the heating chamber 55 via the supply hose 49b. Boiler water in an amount of about 1 Z 3 of the volume of the heating chamber 55 is stored in the heating chamber 55. In the heating chamber 55, the space above the water surface of the boiler water is a steam chamber 58 filled with steam, and the boiler water is a water section 59.
煙管 5 0はボイラ本体 4 9の底壁 5 3と区画壁 5 4により支持される。 パーナ 一 4 8は混合ガス発生装置 1 0の分岐管 4 7から供給された混合ガスを燃焼して 煙管 5 0内に炎を送り込む。  The smoke tube 50 is supported by a bottom wall 53 and a partition wall 54 of the boiler body 49. The burner burns the mixed gas supplied from the branch pipe 47 of the mixed gas generator 10 and sends a flame into the smoke pipe 50.
' 各バーナー 4 8はシールド壁 6 0により囲まれている。 着火される前には、 図 4の右側のバーナー 4 8のように、 シールド壁 6 0は取り外される。 着火後には 、 図 4の左側のバーナー 4 8のように、 シールド壁 6 0はバーナー 4 8と煙管 5 0との間の隙間を閉塞し、 空気を遮断する。 シールド壁 6 0により、 混合ガス中 に空気中の不純物が混入するのが防止され、 燃焼温度の低下が防止される。 治具 4 8 aは、 バーナー 4 8と煙管 5 0との距離を変更可能にバーナー 4 8を 支持する。 治具 4 8 aの位置を変更することにより、 煙管 5 0内の炎の位置を調 節することができる。 各煙管 5 0は第 1分割管 6 1、 第 2分割管 6 2及び第 3分割管 6 3を連結する ことにより形成される。 第 1〜第 3分割管 6 2, 6 2, 6 3の内部に第 1燃焼室 6 4 a , 第 2燃焼室 6 4 b, 第 3燃焼室 6 4 cがそれぞれ形成される。 第 1分割 管 6 1、 第 2分割管 6 2及び第 3分割管 6 3の周壁は伝熱隔壁である。 混合ガス の燃焼熱は各伝熱隔壁を介してボイラ本体 4 9内のボイラ水に伝達される。 第 1分割管 6 1は、 上部及び下部の内径よりも小さい内径を有する縮径部 6 5 を有する。 燃焼中の炎心及び内炎は第 1燃焼室 6 4 aにある。 縮径部 6 5は、 炎 の外炎を第 2分割管 6 2に到達するように、 内炎を絞る。 第 1分割管 6 1は比較 的温度の低い炎心及び内炎により加熱され、 ボイラ水を予熱する。 'Each burner 4 8 is surrounded by a shield wall 60. Prior to ignition, the shield wall 60 is removed, as in the burner 48 on the right in FIG. After the ignition, the shield wall 60 closes the gap between the burner 48 and the smoke tube 50 as shown in the left burner 48 in FIG. 4, and shuts off the air. The shield wall 60 prevents impurities in the air from being mixed into the mixed gas, and prevents a decrease in combustion temperature. The jig 48 a supports the burner 48 so that the distance between the burner 48 and the smoke tube 50 can be changed. By changing the position of the jig 48a, the position of the flame in the smoke tube 50 can be adjusted. Each smoke pipe 50 is formed by connecting the first divided pipe 61, the second divided pipe 62, and the third divided pipe 63. A first combustion chamber 64a, a second combustion chamber 64b, and a third combustion chamber 64c are formed in the first to third divided pipes 62, 62, 63, respectively. The peripheral walls of the first divided pipe 61, the second divided pipe 62, and the third divided pipe 63 are heat transfer partitions. The heat of combustion of the mixed gas is transferred to the boiler water in the boiler body 49 through each heat transfer partition. The first split tube 61 has a reduced diameter portion 65 having an inner diameter smaller than the inner diameters of the upper and lower portions. The burning core and the internal flame are in the first combustion chamber 64a. The reduced diameter portion 65 narrows the internal flame so that the external flame of the flame reaches the second dividing pipe 62. The first split pipe 61 is heated by the relatively low temperature of the flame core and the internal flame to preheat the boiler water.
比較的温度の高い外炎は第 2燃焼室 6 4 bにある。 予熱されたボイラ水は第 2 分割管 6 2によりカロ熱されて飽和水蒸気となる。 第 2分割管 6 2は、 外炎とボイ ラ水 (飽和水蒸気) との温度差により熱収縮する。 第 2分割管 6 2の中間部に形 成されたベローズ 6 6が熱収縮を吸収するので、 煙管 5 0の長さは一定値に保持 される。  The relatively hot outer flame is in the second combustion chamber 64b. The preheated boiler water is calo-heated by the second dividing pipe 62 to become saturated steam. The second dividing pipe 62 thermally contracts due to the temperature difference between the outer flame and the boiler water (saturated steam). Since the bellows 66 formed in the middle part of the second divided pipe 62 absorbs the heat shrinkage, the length of the smoke pipe 50 is maintained at a constant value.
第 3分割管 6 3の内径は第 1分割管 6 1及び第 2分割管 6 2の内径より小さい 。 混合ガスの燃焼により生成される高温度の排気ガスは第 3燃焼室 6 4 cを通過 する。 第 3分割管 6 3は外部の飽和水蒸気を加熱し、 乾燥した高圧の蒸気を生成 する。 第 1分割管 6 1及び第 3分割管 6 3の外面には板状の伝熱フイン 6 7が設 けられている。 伝熱フィン 6 7は第 1分割管 6 1及び第 3分割管 6 3からボイラ 水への熱伝達率を向上させる。  The inner diameter of the third divided pipe 63 is smaller than the inner diameter of the first divided pipe 61 and the second divided pipe 62. The high-temperature exhaust gas generated by the combustion of the mixed gas passes through the third combustion chamber 64c. The third split tube 63 heats the external saturated steam to generate dry high-pressure steam. Plate-shaped heat transfer fins 67 are provided on the outer surfaces of the first divided pipe 61 and the third divided pipe 63. The heat transfer fins 67 improve the heat transfer coefficient from the first divided pipe 61 and the third divided pipe 63 to the boiler water.
ボイラ本体 4 9の上部には主蒸気管 6 8が設けられる。 主蒸気管 6 8は排気室 5 6を貫通して区画壁 5 4に接続されている。 蒸気室 5 8内の高圧蒸気は主蒸気 管 6 8を通ってタービン等の蒸気利用設備へ送られる。 ボイラ本体 4 9の上壁 5 2に排気管 6 9が設けられている。 第 3分割管 6 3から排気される排気ガスは排 気室 5 6及び排気管 6 9を通って排気される。 排気室 5 6を通過する排気ガスは 主蒸気管 6 8内を通る高圧蒸気を保温する。 尚、 排気ガスの主成分は水蒸気であ るため、 排気ガスを回収し、 ボイラ水または電解液として再利用してもよい。 次に、 混合ガス発生装置 1 0及びボイラ装置 1 0 0の作用について説明する。 はじめに、 ポンプ 1 5により各電解槽 1 3に水を供給する。 電源ュニット 1 4 の作動により、 電解槽 1 3内で水が電気分解され、 水素ガス及ぴ酸素ガスが生成 する。 全ての電解槽 1 3で生成された水素及び酸素ガスは、 ガス移送管 3 1に集 約され、 水滴分離器 3 7及び逆流防止タンク 3 8を通過し、 ガス供給管 4 0を流 れる。 水素及び酸素ガスは除湿器 4 2内の複数の障壁に衝突し、 水素及び酸素ガ スから水分が除かれる。 除湿器 4 2の通過によって、 水素及び酸素ガスの純度は 向上する。 A main steam pipe 68 is provided above the boiler body 49. The main steam pipe 68 passes through the exhaust chamber 56 and is connected to the partition wall 54. The high-pressure steam in the steam chamber 58 is sent to a steam utilization facility such as a turbine through a main steam pipe 68. An exhaust pipe 69 is provided on an upper wall 52 of the boiler body 49. Exhaust gas exhausted from the third split pipe 63 is exhausted through the exhaust chamber 56 and the exhaust pipe 69. The exhaust gas passing through the exhaust chamber 56 keeps high-pressure steam passing through the main steam pipe 68. Since the main component of the exhaust gas is water vapor, the exhaust gas may be collected and reused as boiler water or electrolyte. Next, the operation of the mixed gas generator 100 and the boiler 100 will be described. First, water is supplied to each electrolytic cell 13 by a pump 15. By the operation of the power supply unit 14, water is electrolyzed in the electrolytic cell 13 to generate hydrogen gas and oxygen gas. The hydrogen and oxygen gases generated in all the electrolytic cells 13 are collected in a gas transfer pipe 31, pass through a water drop separator 37 and a backflow prevention tank 38, and flow through a gas supply pipe 40. The hydrogen and oxygen gases impinge on a plurality of barriers in the dehumidifier 42, removing moisture from the hydrogen and oxygen gases. By passing through the dehumidifier 42, the purity of hydrogen and oxygen gas is improved.
この後、 除湿された水素及び酸素ガスはガス混合器 4 3を通過する。 ガス混合 器 4 3内の混合用ファン 4 4は水素及び酸素ガスの流れにより回転され、 水素及 び酸素ガスを旋回させ、 攪拌させ、 均一に混合する。 混合ガスは混合ガス分配器 4 1で複数の混合ガス流に分配される。 1つの混合ガス流が 1つの分岐管 4 7に 接続されたバーナー 4 8に供給される。  Thereafter, the dehumidified hydrogen and oxygen gases pass through a gas mixer 43. The mixing fan 44 in the gas mixer 43 is rotated by the flow of hydrogen and oxygen gas, and swirls, stirs, and uniformly mixes the hydrogen and oxygen gas. The mixed gas is distributed by the mixed gas distributor 41 into a plurality of mixed gas streams. One mixed gas stream is supplied to a burner 48 connected to one branch pipe 47.
ボイラ装置 1 0 0を作動する時には、 まず、 バーナー 4 8から混合ガスを噴出 させて、 混合ガスに点火する。 着火後、 バーナー 4 8と煙管 5 0との間の隙間を シールド壁 6 0で密閉する。 炎心及び内炎は第 1分割管 6 1の内周面を加熱し、 間接的にボイラ水を予熱する。 予熱されたボイラ水は対流を起こして水部 5 9内 に拡散する。 その結果、 ボイラ水の全体が予熱される。 なお、 第 1分割管 6 1の 熱はボイラ水供給部 4 9 aにも伝導されるので、 ボイラ水供給部 4 9 a内のボイ ラ水も予熱される。  When operating the boiler apparatus 100, first, the mixed gas is ejected from the burner 48 to ignite the mixed gas. After ignition, the gap between the burner 48 and the smoke tube 50 is sealed with a shield wall 60. The flame core and the internal flame heat the inner peripheral surface of the first split pipe 61 and indirectly preheat the boiler water. The preheated boiler water convects and diffuses into the water section 59. As a result, the entire boiler water is preheated. Since the heat of the first split pipe 61 is also conducted to the boiler water supply unit 49a, the boiler water in the boiler water supply unit 49a is also preheated.
比較的高温の外炎により加熱された第 2分割管 6 2により、 水面近傍のボイラ 水が加熱される。 ボイラ水の温度が沸点を超えるまで加熱されて、 飽和水蒸気が 発生する。 飽和水蒸気は、 第 3分割管 6 3によりさらに加熱乾燥されて高圧蒸気 となる。 高圧蒸気は蒸気室 5 8、 主蒸気管 6 8を介して蒸気利用設備に供給され る。  The boiler water near the water surface is heated by the second divided pipe 62 heated by the relatively high temperature outer flame. The steam is heated until the temperature of the boiler water exceeds the boiling point, generating saturated steam. The saturated steam is further heated and dried by the third dividing pipe 63 to become high-pressure steam. The high-pressure steam is supplied to the steam utilization facility via the steam room 58 and the main steam pipe 68.
第 1実施形態の混合ガス発生装置 1 0及びボイラによれば、 以下の利点が得ら れる。  According to the mixed gas generator 10 and the boiler of the first embodiment, the following advantages can be obtained.
• 本体 1 1に接続された除湿器 4 2により、 水素及び酸素ガスから水分が除 かれるので、 水素及ぴ酸素ガスの純度が向上する。 ガス混合器 4 3により、 水素 及ぴ酸素ガスが均一に混合される。 • Moisture is removed from the hydrogen and oxygen gas by the dehumidifier 42 connected to the main body 11, thereby improving the purity of the hydrogen and oxygen gas. Hydrogen by gas mixer 43 The oxygen gas is uniformly mixed.
• 混合用ファン 4 4は水素及び酸素ガスの流れにより回転されるため、 モー タ等の駆動装置は不要である。 従って、 水素及ぴ酸素ガスは効率よく省エネルギ 一で混合される。  • Since the mixing fan 44 is rotated by the flow of hydrogen and oxygen gas, no driving device such as a motor is required. Therefore, the hydrogen and oxygen gases are efficiently mixed with energy saving.
• 水素及び酸素ガスが除湿器 4 2の複数の障壁に衝突することで、 水素及び 酸素ガス中の水分が複数の障壁の表面で結露し、 水素及び酸素ガスから水分が除 去される。 従って、 省エネルギーで効率よく水素及ぴ酸素ガスは除湿される。  • When the hydrogen and oxygen gas collide with the multiple barriers of the dehumidifier 42, moisture in the hydrogen and oxygen gas is condensed on the surfaces of the multiple barriers, and moisture is removed from the hydrogen and oxygen gas. Therefore, hydrogen and oxygen gases are efficiently dehumidified with energy saving.
. 電源ュニット 1 4は、 電極棒 2 1及び電解槽 1 3の極性を所定時間間隔で 反転させる極性変換器を備える。 従って、 電極棒 2 1及び電解槽 1 3が陽極で発 生する酸素により酸ィヒされることが抑制され、 電極棒 2 1及び電解槽 1 3は長期 間に渡って使用することができる。  The power supply unit 14 includes a polarity converter for inverting the polarity of the electrode rod 21 and the electrolytic cell 13 at predetermined time intervals. Therefore, the electrode rod 21 and the electrolytic cell 13 are prevented from being acidified by oxygen generated at the anode, and the electrode rod 21 and the electrolytic cell 13 can be used for a long time.
- 電解槽 1 3の底部に設けられたテーパ面 3 3により、 不純物が電解槽 1 3 から排出される。 従って、 不純物を取り除くために、 電解液を排出して電解槽 1 3を解体する必要がないので、 メンテナンス作業は容易である。  -The impurities are discharged from the electrolytic cell 13 by the tapered surface 33 provided at the bottom of the electrolytic cell 13. Therefore, there is no need to discharge the electrolytic solution and disassemble the electrolytic cell 13 in order to remove impurities, so that maintenance work is easy.
• 電解槽 1 3内に所定量の水が常時貯留されるので、 水量の点検作業が省略 され、 作業効率が向上する。  • Since a predetermined amount of water is constantly stored in the electrolytic cell 13, the work of checking the amount of water is omitted, and work efficiency is improved.
• 複数の電解槽 1 3は第 1、 第 2及ぴ第 3連通管 1 8, 1 9, 2 0で連通さ れている。 従って、 全ての電解槽 1 3で発生した大量のガスを容易に集めること ができる。 また、 電解槽 1 3毎の水量の点検及びガス発生量の点検は不要となる  • The plurality of electrolyzers 13 are connected by first, second and third communication pipes 18, 19, and 20. Therefore, a large amount of gas generated in all the electrolytic cells 13 can be easily collected. In addition, there is no need to check the amount of water and the amount of gas generated for each electrolytic cell 13.
• 混合ガス分配器 4 1により、 混合ガスを利用する機器を繋ぎ代える煩雑な 作業が省略できる。 • The mixed gas distributor 41 eliminates the need for complicated work of switching devices that use mixed gas.
- 混合ガスの燃焼中には、 シールド壁 6 0がバーナー 4 8と燃焼室 6 4 aと の間を塞するので、 混合ガスのみが燃焼され、 不純物の混入による燃焼温度の低 下が抑制される。  -During the combustion of the mixed gas, the shield wall 60 blocks the space between the burner 48 and the combustion chamber 64a, so that only the mixed gas is combusted and the lowering of the combustion temperature due to contamination by impurities is suppressed. You.
- 炎心、 内炎及び外炎が分割管 6 1, 6 2, 6 3にそれぞれ位置するように 燃焼されるので、 ボイラ水は効率よく加熱される。  -The boiler water is efficiently heated because the flame, internal flame, and external flame are burned so as to be located in the split pipes 61, 62, 63, respectively.
• 第 2分割管 6 2はべローズ 6 6を有するので、 煙管 5 0の内部と外部との 温度差で煙管 5 0の全長が変化することが抑制される。 (第 2実施形態) • Since the second dividing pipe 62 has the bellows 66, the inside and outside of the smoke pipe 50 A change in the overall length of the smoke tube 50 due to a temperature difference is suppressed. (Second embodiment)
以下、 本発明の第 2実施形態に従うボイラ装置 1 0 0について説明する。 なお 、 第 2実施形態の混合ガス発生装置 1 0は第 1実施形態のものと同一である。 図 5はポイラ装置 1 0 0のボイラ本体 4 9を示す。 ボイラ本体 4 9は上壁 5 2 と底壁 5 3を有する円筒形である。 上壁 5 2には主蒸気管 6 8に連通する連通穴 5 2 aが形成されている。 主蒸気管 6 8の上端には図示しないバルブが設けられ ている。 バルブを閉塞することで、 ボイラ本体 4 9及び主蒸気管 6 8は密閉され る。 上壁 5 2の下面には、 連通穴 5 2 aを囲むように円弧状のトラップ溝 5 2 b が形成されている。 ポイラ本体 4 9及ぴ主蒸気管 6 8はニッケル (N i ) メツキ された銅製であることが好ましい。  Hereinafter, a boiler apparatus 100 according to the second embodiment of the present invention will be described. The mixed gas generator 10 of the second embodiment is the same as that of the first embodiment. FIG. 5 shows the boiler body 49 of the boiler apparatus 100. The boiler body 49 has a cylindrical shape having an upper wall 52 and a bottom wall 53. A communication hole 52 a communicating with the main steam pipe 68 is formed in the upper wall 52. A valve (not shown) is provided at the upper end of the main steam pipe 68. By closing the valve, the boiler body 49 and the main steam pipe 68 are sealed. On the lower surface of the upper wall 52, an arc-shaped trap groove 52b is formed so as to surround the communication hole 52a. It is preferable that the boiler body 49 and the main steam pipe 68 are made of copper plated with nickel (Ni).
螺旋状の水管 7 1がボイラ本体 4 9及び主蒸気管 6 8を囲むように配置されて いる。 水管 7 1に接続された吐出管 7 2がボイラ本体 4 9の下部に配置されてい る。 吐出管 7 2の一端はボイラ本体 4 9の周壁を貫通してボイラ本体 4 9の内部 に位置する。 吐出管 7 2は底壁 5 3に向かって開口する図示しない吐出口を有す る。 ボイラ水は、 図示しないポンプによって水管 7 1の上端に供給され、 吐出管 7 2の吐出口からボイラ本体 4 9の内部 (底壁 5 3の上面) に供給される。 水管 7 1と吐出管 7 2との間に設けられた図示しないバルブを操作することで、 ボイ ラ本体 4 9へのボイラ水の供給及び停止は調整される。 ポイラ水としては純水ま たは水道水が使用される。  A spiral water pipe 71 is disposed so as to surround the boiler body 49 and the main steam pipe 68. A discharge pipe 72 connected to the water pipe 71 is disposed below the boiler body 49. One end of the discharge pipe 72 penetrates the peripheral wall of the boiler body 49 and is located inside the boiler body 49. The discharge pipe 72 has a discharge port (not shown) that opens toward the bottom wall 53. Boiler water is supplied to the upper end of the water pipe 71 by a pump (not shown), and is supplied from the discharge port of the discharge pipe 72 to the inside of the boiler body 49 (the upper surface of the bottom wall 53). By operating a valve (not shown) provided between the water pipe 71 and the discharge pipe 72, the supply and stop of the boiler water to the boiler body 49 are adjusted. Pure water or tap water is used as the poiler water.
複数のバーナー 4 8はボイラ本体 4 9の下部側面及び底壁 5 3に対面するよう に配置される。 複数のバーナー 4 8は混合ガス発生装置 1 0の分岐管 4 7に接続 される。 バーナー 4 8は分岐管 4 7から供給される混合ガスを燃焼して、 その炎 により、 ボイラ本体 4 9の下部、 特に底壁 5 3を加熱する。 混合ガスの燃焼熱は 底壁 5 3を介してボイラ本体 4 9内のボイラ水に伝達される。 従って、 底壁 5 3 は伝熱隔壁つまり蒸発部として機能する。  The plurality of burners 48 are arranged so as to face the lower side surface and the bottom wall 53 of the boiler body 49. The plurality of burners 48 are connected to the branch pipe 47 of the mixed gas generator 10. The burner 48 burns the mixed gas supplied from the branch pipe 47 and heats the lower part of the boiler body 49, particularly the bottom wall 53, by the flame. The heat of combustion of the mixed gas is transmitted to the boiler water in the boiler body 49 via the bottom wall 53. Therefore, the bottom wall 53 functions as a heat transfer partition, that is, an evaporator.
ブラウンガスの炎は 1 5 0 0〜2 0 0 0 °Cという温度である。 ボイラ本体 4 9 の内部の温度が 8 0 0〜9 0 0 °Cになるように、 バーナー 4 8とボイラ本体 4 9 との距離は調整される。 ボイラ本体 4 9の内部の温度が 8 0 0 °C未満の場合、 ボ ィラ水の水蒸気爆発が不十分であり、 高圧蒸気が比較的多くの水分を含んでしま す。 他方、 ボイラ本体 4 9の内部の温度が 9 0 0 °Cより高い場合、 ボイラ本体 4 9は劣化しやすくなる。 The brown gas flame is at a temperature of 150-200 ° C. Boiler body 4 9 The distance between the burner 48 and the boiler body 49 is adjusted so that the temperature inside the furnace is 800 to 900 ° C. If the temperature inside the boiler body 49 is below 800 ° C, the steam explosion of the boiler water is insufficient and the high-pressure steam contains a relatively large amount of moisture. On the other hand, if the temperature inside the boiler body 49 is higher than 900 ° C., the boiler body 49 tends to deteriorate.
ボイラ装置 1 0 0は、 ボイラ本体 4 9、 主蒸気管 6 8、 水管 7 1、 バーナー 4 8を含む。 断熱壁 7 3がボイラ本体 4 9、 水管 Ί 1及びバーナー 4 8を覆うこと により、 燃焼熱の放出が抑制され、 ボイラ本体 4 9は効率的に加熱される。 次に、 ボイラ装置 1 0 0の作用について説明する。  The boiler apparatus 100 includes a boiler body 49, a main steam pipe 68, a water pipe 71, and a burner 48. Since the heat insulating wall 73 covers the boiler body 49, the water pipe 1 and the burner 48, the release of combustion heat is suppressed, and the boiler body 49 is efficiently heated. Next, the operation of the boiler apparatus 100 will be described.
まず、 水管 7 1と吐出管 7 2の間のバルブを閉じた状態でポンプを作動して水 管 7 1の上端部からボイラ水を供給する。 次いで、 混合ガスをパーナ一 4 8に供 給し、 着火し、 ボイラ本体 4 9の内部を 8 0 0〜9 0 0 °Cまで加熱する。 また、 炎の余剰熱は断熱壁 7 3の内側の空気を加熱する。 これにより、 水管 7 1内のボ イラ水が 1 0 0〜2 0 0 °C程度となるまで予熱される。  First, the pump is operated with the valve between the water pipe 71 and the discharge pipe 72 closed to supply boiler water from the upper end of the water pipe 71. Next, the mixed gas is supplied to the panner 48, ignited, and the inside of the boiler body 49 is heated to 800 to 900 ° C. The surplus heat of the flame heats the air inside the heat insulating wall 73. As a result, the boiler water in the water pipe 71 is preheated until it reaches about 100 to 200 ° C.
その後、 バルブを開放して吐出管 7 2からボイラ本体 4 9内にボイラ水を供給 する。 ボイラ本体 4 9の内部が 8 0 0〜9 0 0 °Cとなるまで加熱されているので 、 底壁 5 3に向かって吐出されたボイラ水は水蒸気爆発し、 急激に膨張する。 そ の結果、 1 0〜 3 0気圧の高圧蒸気が生成される。 高圧蒸気は、 ポイラ本体 4 9 から主蒸気管 6 8を経由して蒸気利用設備へと供給される。  After that, the valve is opened and boiler water is supplied from the discharge pipe 72 into the boiler body 49. Since the inside of the boiler body 49 is heated to 800 to 900 ° C., the boiler water discharged toward the bottom wall 53 explodes with steam, and expands rapidly. As a result, high-pressure steam of 10 to 30 atm is generated. The high-pressure steam is supplied from the boiler body 49 to the steam utilization facility via the main steam pipe 68.
高圧蒸気は乾燥蒸気である。 しカゝし、 一部のボイラ水が水蒸気爆発しなかった 場合、 水分を含む飽和水蒸気が生成される。 このような水分は、 ボイラ本体 4 9 の上壁 5 2のトラップ溝 5 2 bで結露することにより取り除かれる。 このように して、 ボイラ装置 1 0 0は乾燥した高圧蒸気を生成する。  High pressure steam is dry steam. However, if some of the boiler water does not explode in steam, saturated steam containing water is generated. Such moisture is removed by condensation in the trap groove 52b of the upper wall 52 of the boiler body 49. Thus, the boiler apparatus 100 generates dry high-pressure steam.
第 2実施形態のボイラ装置 1 0 0によれば、 以下の利点が得られる。  According to the boiler apparatus 100 of the second embodiment, the following advantages can be obtained.
• 第 2実施形態のボイラ装置 1 0 0は比較的簡単な構造を有するので、 容易 に小型化される。 また、 燃焼熱の大きなブラウンガスを燃焼するので、 ボイラ水 から高圧蒸気を効率よく生成することができる。  • Since the boiler device 100 of the second embodiment has a relatively simple structure, it can be easily reduced in size. In addition, since high-heat brown gas is burned, high-pressure steam can be efficiently generated from boiler water.
• バーナー 4 8の余剰熱はボイラ本体 4 9を取り囲む水管 7 1の加熱に利用 される。 従って、 ボイラ水は効率的に予熱される。 • Excess heat from the burner 4 8 is used to heat the water pipe 7 1 surrounding the boiler body 49 Is done. Therefore, the boiler water is preheated efficiently.
- ボイラ本体 4 9の上壁 5 2に設けられたトラップ溝 5 2 により、 高圧蒸 気から水分を取り除くことができる。  -Moisture can be removed from the high-pressure steam by the trap groove 52 provided in the upper wall 52 of the boiler body 49.
(第 3実施形態) (Third embodiment)
図 6 Aは第 3実施形態のボイラ装置 1 0 0を示す。 第 3実施形態のボイラ装置 1 0 0は低圧蒸気を得るのに好適である。  FIG. 6A shows a boiler apparatus 100 of the third embodiment. The boiler apparatus 100 of the third embodiment is suitable for obtaining low-pressure steam.
ボイラ本体 4 9の周壁には、 複数のバーナースリーブ 4 8 bが形成されている 。 パーナースリーブ 4 8 bは傾斜しており、 その内端が外端よりも高い位置にな つている。 パーナ一スリープ 4 8 bはボイラ本体 4 9に対して約 4 5 ° 傾斜して いることが好ましい。 各パーナースリーブ 4 8 bの内部には、 バーナー 4 8がそ れぞれ配設されている。  A plurality of burner sleeves 48 b are formed on the peripheral wall of the boiler body 49. The parner sleeve 48b is inclined, and its inner end is higher than its outer end. Pana sleep 48 b is preferably inclined by about 45 ° with respect to boiler body 49. A burner 48 is disposed inside each of the parner sleeves 48b.
螺旋状の水管 7 1はポイラ本体 4 9を囲ように配置されている。 パーナ一 4 8 によってボイラ本体 4 9内部を加熱する際、 余剰熱で水管 7 1内部のボイラ水が 予熱される。 水管 7 1の下端に吐出管 7 2が接続される。 吐出管 7 2の先端はバ 一ナースリーブ 4 8 bの内部に配置される。 このため、 ボイラ水は吐出管 7 2か らバーナー 4 8の近傍に吐出され、 パーナ一 4 8の炎で直接的に加熱される。 ノく 一ナースリーブ 4 8 b及ぴバーナー 4 8が蒸発部として機能する。  The spiral water pipe 71 is disposed so as to surround the poirer body 49. When the inside of the boiler body 49 is heated by the panner 48, the excess heat preheats the boiler water inside the water pipe 71. The discharge pipe 72 is connected to the lower end of the water pipe 71. The distal end of the discharge pipe 72 is disposed inside the burner sleeve 48b. Therefore, the boiler water is discharged from the discharge pipe 72 to the vicinity of the burner 48, and is directly heated by the flame of the panner 48. Knob sleeve 48 b and burner 48 function as an evaporator.
ボイラ本体 4 9の底壁 5 3には冷却管 7 4が接続される。 窒素や乾燥空気等の 冷却用気体が冷却管 7 4を介してボイラ本体 4 9内に供給されることで、 ボイラ 本体 4 9内の温度は 2 0 0〜3 0 0 °Cに維持される。 ボイラ本体 4 9内の温度が 2 0 0 °C未満の場合、 ボイラ水の蒸発の効率が低下する。 ボイラ本体 4 9内の温 度が 3 0 0 °Cより高いと、 所望とする圧力以上の高圧蒸気が生成されてしまう。 冷却用気体により炎の温度は低下される。 バーナー 4 8の近傍に吐出されたポ イラ水は、 バーナー 4 8の周囲の温度を低下させる。 従って、 ボイラ水は水蒸気 爆発を起こすことなく蒸発し、 1 0 0〜3 0 0 °Cで 3〜 5気圧の低圧飽和蒸気と なる。 バーナー 4 8の炎が斜め上方に向かって噴き出されるので、 上昇気流が形 成される。 飽和蒸気は上昇気流によってバーナースリーブ 4 8 bの内部力 らボイ ラ本体 4 9内へ送られ、 主蒸気管 6 8を経由して蒸気利用設備へと供給される。 第 3実施形態のボイラ装置 1 0 0によれば、 1 0 0〜 3 0 0 °Cで 3〜 5気圧の 低圧蒸気を簡易な構成で容易に得ることができる。 また、 バーナースリーブ 4 8 bが傾斜されていることから、 飽和蒸気はバーナースリーブ 4 8 bへ逆流するこ となく主蒸気管 6 8へ送られる。 A cooling pipe 74 is connected to the bottom wall 53 of the boiler body 49. By supplying a cooling gas such as nitrogen or dry air into the boiler body 49 via the cooling pipe 74, the temperature inside the boiler body 49 is maintained at 200 to 300 ° C. . If the temperature in the boiler body 49 is less than 200 ° C., the efficiency of evaporation of the boiler water decreases. If the temperature in the boiler body 49 is higher than 300 ° C., high-pressure steam having a pressure higher than a desired pressure is generated. The temperature of the flame is reduced by the cooling gas. The boiler water discharged near the burner 48 lowers the temperature around the burner 48. Therefore, the boiler water evaporates without causing a steam explosion and becomes low-pressure saturated steam of 3 to 5 atmospheres at 100 to 300 ° C. As the flame of the burner 48 is blown obliquely upward, an updraft is formed. Internal forces et Boi saturated steam burner sleeve 4 8 b by updrafts And sent to the steam utilization facility via the main steam pipe 68. According to the boiler apparatus 100 of the third embodiment, low-pressure steam of 3 to 5 atm at 100 to 300 ° C. can be easily obtained with a simple configuration. Further, since the burner sleeve 48 b is inclined, the saturated steam is sent to the main steam pipe 68 without flowing back to the burner sleeve 48 b.
図 6 Bは第 4実施形態のボイラ装置 1 0 0を示す。 第 4実施形態のボイラ装置 1 0◦は大量の水蒸気を得るのに好適である。 詳しくは、 吐出管 7 2.はボイラ本 体 4 9の底壁 5 3に接続されている。 ボイラ水は吐出管 7 2から上向きに吐出さ れる。 また、 ボイラ本体 4 9の底壁 5 3には冷却管 7 4が接続されている。 冷却 管 7 4から冷却用気体が供給され、 ボイラ本体 4 9内の温度が 2 0 0〜 2 5 0 °C に維持される。 ボイラ水はポイラ本体 4 9の内壁 (蒸発部) で蒸発し、 1 2 0 °C 程度の水蒸気となる。 その水蒸気は上昇気流により、 ボイラ本体 4 9から主蒸気 管 6 8を経由して蒸気利用設備へと供給される。 従って、 第 4実施形態のボイラ 装置 1 0 0によれば、 簡易な構造で、 大量の水蒸気を容易に得ることができる。 図 7 Aは混合ガス発生装置 1 0の電解セル 1 6の変更例を示す。  FIG. 6B shows a boiler apparatus 100 of the fourth embodiment. The boiler apparatus 10 ° of the fourth embodiment is suitable for obtaining a large amount of steam. Specifically, the discharge pipe 7 2. is connected to the bottom wall 53 of the boiler body 49. Boiler water is discharged upward from discharge pipe 72. A cooling pipe 74 is connected to the bottom wall 53 of the boiler body 49. Cooling gas is supplied from the cooling pipe 74, and the temperature in the boiler body 49 is maintained at 200 to 250 ° C. The boiler water evaporates on the inner wall (evaporator) of the boiler body 49 and becomes steam at about 120 ° C. The steam is supplied from the boiler body 49 to the steam utilization facility via the main steam pipe 68 by an ascending current. Therefore, according to the boiler apparatus 100 of the fourth embodiment, a large amount of steam can be easily obtained with a simple structure. FIG. 7A shows a modification of the electrolytic cell 16 of the mixed gas generator 10.
図 7 Aに示すように、 複数の電極筒 2 3の端部にスぺーサ 7 5が嵌着される。 これにより、 複数の電極筒 2 3は同心状に配置される。 図 7 Cに示すように、 ス ぺーサ Ί 5は、 U字状であり、 一対の挟持片 7 5 aと、 挟持片 7 5 aを連結する 連結部 7 5 bとを有する。 スぺーサ Ί 5は好ましくは合成樹脂のような絶縁性材 料製である。 図 7 Bに示すように、 両挟持片 7 5 aの間に電極筒 2 3の周壁端部 が挟み込まれる。 スぺーサ 7 5を取着した複数の電極筒 2 3を同心状に配置する と、 隣接する電極筒 2 3の間隔が挟持片 7 5 aにより等しくなる。  As shown in FIG. 7A, spacers 75 are fitted to the ends of the plurality of electrode tubes 23. Thereby, the plurality of electrode tubes 23 are arranged concentrically. As shown in FIG. 7C, the spacer 5 is U-shaped, and has a pair of holding pieces 75a and a connecting portion 75b connecting the holding pieces 75a. The spacer 5 is preferably made of an insulating material such as a synthetic resin. As shown in FIG. 7B, the peripheral wall end of the electrode tube 23 is sandwiched between the sandwiching pieces 75a. When a plurality of electrode tubes 23 to which the spacers 75 are attached are arranged concentrically, the distance between the adjacent electrode tubes 23 becomes equal to the holding piece 75a.
スぺーサ 7 5は複数の電極筒 2 3を同心状に配置するのを容易にするので、 電 解セル 1 6は簡易かつ迅速に組み立てられる。  Since the spacer 75 facilitates concentric arrangement of the plurality of electrode tubes 23, the electrolytic cell 16 can be assembled easily and quickly.
第 1〜第 4実施形態を次のように変更してもよい。  The first to fourth embodiments may be changed as follows.
- 混合ガス発生装置 1 0のポンプ 1 5に、 例えばイオン交換膜等のフィルタ 一、 蒸留装置、 濾過装置、 純水生成装置、 イオン交換樹脂等の浄水装置 1 5 bを 接続してもよい。 この場合、 工業廃水、 雨水、 海水及び汚水のような有機成分や 無機成分を含む水が浄水装置に供給される。 浄水装置は濾過、 蒸留またはイオン 交換等の方法で水中の不純物を除去し、 蒸留水、 純水またはイオン交換水を製造 する。 蒸留水、 純水またはイオン交換水が電解槽 1 3に供給される。 なお、 所定 量のブラウンガスの発生量を維持するために、 精製された水の純度は 9 0 %以上 であることが好ましい。 浄水装置により、 通常は廃棄される工業廃水や、 浄水場 で処理される雨水、 海水及び汚水が電解液の水として再利用することができる。 -For example, a filter 15 such as an ion exchange membrane, a water purification device 15b such as a distillation device, a filtration device, a pure water generation device, and an ion exchange resin may be connected to the pump 15 of the mixed gas generation device 10. In this case, organic components such as industrial wastewater, rainwater, seawater and wastewater, Water containing inorganic components is supplied to a water purification device. The water purifier removes impurities in the water by filtration, distillation or ion exchange to produce distilled water, pure water or ion-exchanged water. Distilled water, pure water or ion-exchanged water is supplied to the electrolytic cell 13. In order to maintain a predetermined amount of generated brown gas, the purity of the purified water is preferably 90% or more. The water purifier allows industrial wastewater, which is normally discarded, and rainwater, seawater, and sewage, which are treated at water treatment plants, to be reused as electrolyte water.
• 第 1及び第 2実施形態のボイラ装置 1 0 0に発電用タービンを接続した場 合、 発電された電力の一部を混合ガス発生装置 1 0に供給して、 水の電気分解用 の電力に利用してもよい。 第 3及び第 4実施形態のボイラ装置 1 0 0に接続され る蒸気利用設備は、 例えば工業用のドライヤー、 暖房装置、 銭湯及びサウナ等で ある。  • When a power generating turbine is connected to the boiler 100 of the first and second embodiments, a part of the generated power is supplied to the mixed gas generator 10 to generate power for electrolysis of water. It may be used for. The steam utilization equipment connected to the boiler apparatus 100 of the third and fourth embodiments is, for example, an industrial drier, a heating device, a public bath, a sauna, and the like.
• 第 1実施形態の煙管式のボイラ装置 1 0 0を、 例えば水管式のボイラ装置 に変更してもよレ、。 水管式のボイラ装置では、 ボイラ水は複数のパイプ状のボイ ラ本体に収容される。 ポイラ本体をバーナーで直接加熱される。 この場合、 ボイ ラ水の予熱は省略され、 より短時間で高圧蒸気が生成される。  • The fire tube boiler device 100 of the first embodiment may be changed to, for example, a water tube boiler device. In a water tube type boiler, boiler water is stored in a plurality of pipe-shaped boiler bodies. The boiler is directly heated by the burner. In this case, preheating of the boiler water is omitted, and high-pressure steam is generated in a shorter time.
• 混合ガス分配器 4 1を省略してもよい。  • The mixed gas distributor 41 may be omitted.
- 混合用ファン 4 4の代わりに、 螺旋状の通路をガス混合器 4 3に形成して もよレ、。 この場合、 水素及び酸素ガスが螺旋状の通路に沿って旋回されて流れる ことで、 水素及び酸素ガスは混合される。  -A spiral passage may be formed in the gas mixer 43 instead of the mixing fan 44. In this case, the hydrogen and the oxygen gas are swirled and flow along the spiral path, so that the hydrogen and the oxygen gas are mixed.

Claims

請求の範囲 The scope of the claims
1 . 水の電気分解により水素ガス及び酸素ガスを発生する混合ガス発生装置(10) であって、 1. A mixed gas generator (10) for generating hydrogen gas and oxygen gas by electrolysis of water,
各々が、 電極棒(21)と前記電極棒の周囲に配置された少なくとも一つの電極筒 (23)とを有する電解セル(16)と、 水と電解質とを含む電解液とを収容する複数の 電解槽 (13)と、  An electrolytic cell (16) each having an electrode rod (21) and at least one electrode tube (23) arranged around the electrode rod; and a plurality of electrolytic cells containing water and an electrolyte. An electrolytic cell (13),
ガス供給管(40)を介して前記複数の電解槽に接続され、 前記水素ガス及び酸素 ガスを均一に混合する混合器 (43)とを備える混合ガス発生装置。  A mixed gas generator comprising: a mixer (43) connected to the plurality of electrolytic cells via a gas supply pipe (40) to uniformly mix the hydrogen gas and the oxygen gas.
2 . 前記混合器は前記水素ガス及ぴ酸素ガスの流れにより回転可能に支持された 混合用ファンを含み、 前記混合用ファンの回転により前記水素ガス及び酸素ガス が混合させる請求項 1に記載の混合ガス発生装置。 2. The mixer according to claim 1, wherein the mixer includes a mixing fan rotatably supported by the flow of the hydrogen gas and the oxygen gas, and the hydrogen gas and the oxygen gas are mixed by rotation of the mixing fan. Mixed gas generator.
3 . 前記混合ガス発生装置はさらに、 前記ガス供給管内を流れる前記水素ガス及 び酸素ガスから水分を除去する除湿器 (42)を備え、 前記除湿器は前記水素ガス及 び酸素ガスの流れる方向に交差して配置された障壁を有し、 前記水素ガス及び酸 素ガスが前記除湿器内を通過する時に前記障壁に衝突し、 前記水分は前記障壁の 表面に結露される請求項 1又は請求項 2に記載の混合ガス発生装置。 3. The mixed gas generator further includes a dehumidifier (42) for removing moisture from the hydrogen gas and the oxygen gas flowing in the gas supply pipe, and the dehumidifier is configured to flow in a direction in which the hydrogen gas and the oxygen gas flow. The hydrogen gas and the oxygen gas collide with the barrier when the hydrogen gas and the oxygen gas pass through the dehumidifier, and the moisture is condensed on the surface of the barrier. Item 3. The mixed gas generator according to Item 2.
4 . 前記水を電気分解して水素ガス及び酸素ガスを生成するために、 前記電極棒 及び前記電解セルに正又は負の電圧を印加する電源ュニット(14)を更に備え、 前 記電源ユニットは、 前記電極棒及び電解セルに印加する電圧の極性を、 所定時間 毎に反転する極性変換器(14a)を有する請求項 1から請求項 3のいずれかに記載 の混合ガスの発生装置。 4. The power supply unit further includes a power supply unit (14) for applying a positive or negative voltage to the electrode rod and the electrolytic cell in order to generate hydrogen gas and oxygen gas by electrolyzing the water. The mixed gas generator according to any one of claims 1 to 3, further comprising a polarity converter (14a) for inverting the polarity of a voltage applied to the electrode rod and the electrolytic cell at predetermined time intervals.
5 . 前記電源ュニットは、 前記複数の電解槽のうち少なくとも 1つへの送電を所 定時間毎に停止する電解コントローラ(14b)を有する請求項 4に記載の混合ガス 5. The mixed gas according to claim 4, wherein the power supply unit has an electrolysis controller (14b) for stopping power transmission to at least one of the plurality of electrolyzers at predetermined time intervals.
6 . 前記各電解槽は、 前記電解槽の底部に形成され、 電気分解時に生成される不 純物を前記電解槽から排出するための排出部(33)を有する請求項 1から請求項 5 のいずれかに記載の混合ガス発生装置。 6. The electrolytic cell according to claim 1, wherein each of the electrolytic cells has a discharge part (33) formed at the bottom of the electrolytic cell to discharge impurities generated during electrolysis from the electrolytic cell. The mixed gas generator according to any one of the above.
7 . 少なくとも一つの前記電解槽内に配置され、 前記電解槽内の水量を検出する 水量検知機(15a)と、 7. a water amount detector (15a) disposed in at least one of the electrolytic cells, for detecting a water amount in the electrolytic cell;
前記水量検知機の信号を受け取り、 前記電解槽内の水量が所定量以下となった とき、 前記複数の電解槽に前記水を補給する給水装置(15)とをさらに備える請求 項 1から請求項 6のいずれかに記載の混合ガス発生装置。  The water supply device (15) for receiving a signal from the water amount detector and replenishing the water to the plurality of electrolytic cells when the amount of water in the electrolytic cell becomes equal to or less than a predetermined amount. 7. The mixed gas generator according to any one of 6.
8 . 前記複数の電解槽を互いに連通させる連通管(18, 19, 20)をさらに備える請求 項 1から請求項 7のいずれかに記載の混合ガス発生装置。 8. The mixed gas generator according to any one of claims 1 to 7, further comprising a communication pipe (18, 19, 20) for communicating the plurality of electrolytic cells with each other.
9 . 前記ガス供給管に接続され、 前記混合ガスの流れを複数の混合ガスの流れに 分配する分配器 (41)をさらに備える請求項 1から請求項 8のいずれかに記載の混 合ガス発生装置。 9. The mixed gas generation according to any one of claims 1 to 8, further comprising a distributor (41) connected to the gas supply pipe to distribute the mixed gas flow into a plurality of mixed gas flows. apparatus.
1 0 . 前記本体に接続され、 工業廃水、 雨水、 海水及び汚水から選ばれる少なく とも 1つを浄化する浄水装置(15b)をさらに備え、 浄ィ匕された水が前記複数の電 解槽に供給されることを特徴とする請求項 1から請求項 9のいずれかに記載の混 合ガス発生装置。 10. A water purification device (15b) connected to the main body and purifying at least one selected from industrial wastewater, rainwater, seawater and sewage, wherein the purified water is supplied to the plurality of electrolyzers. 10. The mixed gas generator according to claim 1, wherein the mixed gas generator is supplied.
1 1 . 前記少なくとも一つの電極筒は、 同心状に配置された複数の電極筒であり 、 前記複数の電極筒を等間隔で配置するために、 前記複数の電極筒の端部に取り つけられたスぺーサ(75)をさらに備える請求項 1から請求項 1 0のいずれかに記 載の混合ガス発生装置。 11. The at least one electrode tube is a plurality of electrode tubes arranged concentrically, and is attached to an end of the plurality of electrode tubes in order to arrange the plurality of electrode tubes at equal intervals. The mixed gas generator according to any one of claims 1 to 10, further comprising a spacer (75).
1 2 . 水の電気分解により水素ガス及び酸素ガスを発生する混合ガス発生装置 (10)であって、 1 2. A mixed gas generator (10) for generating hydrogen gas and oxygen gas by electrolysis of water,
各々が、 電極棒 (21)と前記電極棒の周囲に配置された少なくとも一つの電極筒 (23)とを有する電解セル(16)と、,水と電解質とを含む電解液とを収容する複数の 電解槽 (13)と、  An electrolytic cell (16) each having an electrode rod (21) and at least one electrode tube (23) arranged around the electrode rod; and a plurality of cells each containing an electrolyte containing water and an electrolyte. An electrolytic cell (13),
前記複数の電解槽に前記水を補給する給水装置 (15)と、  A water supply device (15) for supplying the water to the plurality of electrolytic cells,
前記水を電気分解して水素ガス及び酸素ガスを生成するために、 前記電極棒及 ぴ前記電解セルに正又は負の電圧を印加する電源ュニット(14)と、  A power supply unit (14) for applying a positive or negative voltage to the electrode rod and the electrolytic cell to electrolyze the water to generate hydrogen gas and oxygen gas;
ガス供給管 (40)を介して前記複数の電解槽に接続され、 前記水素ガス及び酸素 ガスを均一に混合する混合器 (43)とを備える混合ガス発生装置。  A mixed gas generator comprising: a mixer (43) connected to the plurality of electrolytic cells via a gas supply pipe (40) to uniformly mix the hydrogen gas and the oxygen gas.
1 3 . 前記複数の電解槽、 前記電源ユニット及び前記給水装置はアセンブリ化ざ れている請求項 1 2に記載の混合ガス発生装置。 13. The mixed gas generator according to claim 12, wherein the plurality of electrolytic cells, the power supply unit, and the water supply device are assembled.
1 4 . 請求項 1から請求項 1 3のいずれかに記載の混合ガス発生装置に接続され 、 前記混合ガスを燃料として使用するボイラ装置(100)であって、 14. A boiler device (100) connected to the mixed gas generator according to any one of claims 1 to 13 and using the mixed gas as fuel,
ボイラ水を収容するボイラ本体 (49)と、  A boiler body (49) for storing boiler water,
前記ボイラ本体に取りつけられ、 前記混合ガスを燃焼する燃焼装置 (48)と、 前記ボイラ本体の内部おいて、 前記ボイラ水に接触するように配置され、 前記 混合ガスの燃焼熱を前記ボイラ水に伝達して、 高圧蒸気を発生する熱交換要素 A combustion device (48) attached to the boiler main body and burning the mixed gas; disposed inside the boiler main body so as to be in contact with the boiler water; A heat exchange element that transmits and generates high-pressure steam
(50)とを備えるボイラ装置。 (50).
1 5 . 前記熱交換要素は、 前記ボイラ本体内において前記燃焼装置の上方に配置 され、 複数の分割管(61, 62, 63)を連結することにより形成された煙管 (50)であり 、 前記混合ガスの燃焼炎は前記煙管の内部を通過し、 前記煙管を介して前記ボイ ラ水を加熱することと、 15. The heat exchange element is a smoke pipe (50) which is disposed in the boiler main body above the combustion device, and is formed by connecting a plurality of divided pipes (61, 62, 63). The combustion flame of the mixed gas passes through the interior of the smoke tube, and heats the boiler water through the smoke tube;
前記複数の分割管は、 前記燃焼炎炎の炎心、 内炎及ぴ外炎とそれぞれ接触する第 1、 第 2及び第 3の分割管を含む請求項 1 4に記載のボイラ装置。 The plurality of divided pipes are in contact with a flame core of the combustion flame, an inner flame and an outer flame, respectively. The boiler apparatus according to claim 14, further comprising: a first, a second, and a third split pipe.
1 6 . 前記複数の分割管の少なくとも一つは蛇腹状に形成される請求項 1 5に記 载のボイラ装置。 16. The boiler device according to claim 15, wherein at least one of the plurality of divided pipes is formed in a bellows shape.
1 7 . 前記燃焼装置は前記ボイラ本体から離間して配置されたバーナー (48)と、 前記混合ガスの燃焼中に、 前記バーナーと前記ボイラ本体との間の空間を塞ぐよ うに前記バーナーの周りに配置されるシールド壁 (60)とを含む請求項 1 4から請 求項 1 6に記載のボイラ装置。 17. The combustion device is provided with a burner (48) arranged at a distance from the boiler body, and around the burner so as to close a space between the burner and the boiler body during combustion of the mixed gas. Boiler apparatus according to claims 14 to 16, including a shield wall (60) arranged in the boiler.
1 8 . 請求項 1から請求項 1 3のいずれかに記載の混合ガス発生装置に接続され 、 前記混合ガスを燃料として使用するボイラ装置(100)であって、 18. A boiler device (100) connected to the mixed gas generator according to any one of claims 1 to 13 and using the mixed gas as fuel,
底を有する筒状のボイラ本体 (73)と、  A tubular boiler body (73) having a bottom,
前記混合ガスを燃焼し、 前記ボイラ本体の内部を所定の温度にまで加熱する燃 焼装置 (48)と、  A combustion device (48) that burns the mixed gas and heats the inside of the boiler body to a predetermined temperature;
前記混合ガスの燃焼熱で加熱される蒸発部(53; 48; 48b; 49)と、  An evaporator (53; 48; 48b; 49) heated by the heat of combustion of the mixed gas;
加熱された前記蒸発部にボイラ水を供給する水管(71)とを備え、 前記ボイラ水 が前記蒸発部で水蒸気爆発を起こすことで高圧蒸気を発生させるボイラ装置。  A boiler device comprising: a water pipe (71) for supplying boiler water to the heated evaporator; wherein the boiler water generates steam explosion in the evaporator to generate high-pressure steam.
1 9 . 請求項 1から請求項 1 3のいずれかに記載の混合ガス発生装置で生成され た混合ガスを燃料として使用するボイラ装置であって、 19. A boiler device using a mixed gas generated by the mixed gas generator according to any one of claims 1 to 13 as fuel,
底を有する筒状のボイラ本体と、  A tubular boiler body having a bottom,
前記混合ガスを燃焼し、 前記ボイラ本体の内部を所定の温度にまで加熱する燃 焼装置 (48)と、  A combustion device (48) that burns the mixed gas and heats the inside of the boiler body to a predetermined temperature;
前記混合ガスの燃焼熱で加熱される蒸発部(53; 48; 48b; 49)と、  An evaporator (53; 48; 48b; 49) heated by the heat of combustion of the mixed gas;
前記ボイラ本体の内部を所定温度に維持するために前記ボイラ本体の内部に冷 却用気体を供給する冷却管(74)と、  A cooling pipe (74) for supplying a cooling gas into the boiler body to maintain the inside of the boiler body at a predetermined temperature;
加熱された前記蒸発部にボイラ水を供給する水管(71)とを備え、 前記ボイラ水 が前記蒸発部で蒸発することで低圧蒸気を発生させるボイラ装置。 A water pipe (71) for supplying boiler water to the heated evaporating section; Is a boiler device that generates low-pressure steam by evaporating in the evaporator.
2 0 . 前記水管内のボイラ水が前記熱交換要素により予熱されるように、 前記水 管は前記ボイラ本体を螺旋状に取り囲むように配置されている請求項 1 8又は請 求項 1 9に記載のボイラ装置。 20. The method according to claim 18 or claim 19, wherein the water tube is arranged to spirally surround the boiler body so that boiler water in the water tube is preheated by the heat exchange element. The boiler device as described.
2 1 . 前記ボイラ本体は、 前記ボイラ水が水蒸気爆発を起こすのに足りる 8 0◦ °C以上に加熱される請求項 1 8に記載のボイラ装置。 21. The boiler apparatus according to claim 18, wherein the boiler main body is heated to 80 ° C or more, which is sufficient for causing the boiler water to cause a steam explosion.
2 2 . 前記蒸発部は前記ボイラ本体の底部であり、 前記水管は前記ボイラ水を前 記底部に向けて噴射することを特徴とする請求項 1 8に記載のボイラ装置。 22. The boiler apparatus according to claim 18, wherein the evaporating section is a bottom section of the boiler main body, and the water pipe injects the boiler water toward the bottom section.
2 3 . 前記ボイラ本体の内部は 2 0 0〜 3 0 0 °Cに加熱される請求項 1 9に記載 のボイラ装置。 23. The boiler apparatus according to claim 19, wherein the inside of the boiler body is heated to 200 to 300 ° C.
PCT/JP2001/010327 2001-05-23 2001-11-27 Apparatus for generating mixed gas and boiler system using the mixed gas WO2002095090A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-154356 2001-05-23
JP2001154356A JP2002155387A (en) 2000-05-30 2001-05-23 Gaseous mixture generator and boiler using the gaseous mixture

Publications (1)

Publication Number Publication Date
WO2002095090A1 true WO2002095090A1 (en) 2002-11-28

Family

ID=18998707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010327 WO2002095090A1 (en) 2001-05-23 2001-11-27 Apparatus for generating mixed gas and boiler system using the mixed gas

Country Status (1)

Country Link
WO (1) WO2002095090A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088206A1 (en) * 2004-03-17 2005-09-22 E & E Corporation Industrial boiler by using brown gas
WO2007132035A1 (en) * 2006-05-16 2007-11-22 Diewersol, S.L. Equipment and method for obtaining gases by means of the electrolysis of water
WO2009032190A2 (en) * 2007-08-28 2009-03-12 Transphorm, Inc. Compact electric appliance for providing gas for combustion
CN110382742A (en) * 2017-02-23 2019-10-25 翁贝托·德·卢卡 It is electrolysed heating system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124101A (en) * 1982-01-20 1983-07-23 三菱重工業株式会社 Fire-tube type waste heat boiler
JPH0437228U (en) * 1990-07-27 1992-03-30
JPH04346685A (en) * 1991-05-20 1992-12-02 Hanatetsuku Kk Device for forming gaseous mixture composed of hydrogen and oxygen by hydroelectrolysis
JPH04371226A (en) * 1991-06-20 1992-12-24 Spartan Korea Co Ltd Device for producing oxygen, hydrogen and mixed gas
JPH06192868A (en) * 1992-06-29 1994-07-12 Seiwa Kogyo Kk Hydrogen-oxygen mixture generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124101A (en) * 1982-01-20 1983-07-23 三菱重工業株式会社 Fire-tube type waste heat boiler
JPH0437228U (en) * 1990-07-27 1992-03-30
JPH04346685A (en) * 1991-05-20 1992-12-02 Hanatetsuku Kk Device for forming gaseous mixture composed of hydrogen and oxygen by hydroelectrolysis
JPH04371226A (en) * 1991-06-20 1992-12-24 Spartan Korea Co Ltd Device for producing oxygen, hydrogen and mixed gas
JPH06192868A (en) * 1992-06-29 1994-07-12 Seiwa Kogyo Kk Hydrogen-oxygen mixture generator

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005088206A1 (en) * 2004-03-17 2005-09-22 E & E Corporation Industrial boiler by using brown gas
WO2007132035A1 (en) * 2006-05-16 2007-11-22 Diewersol, S.L. Equipment and method for obtaining gases by means of the electrolysis of water
ES2286939A1 (en) * 2006-05-16 2007-12-01 Diewersol, S.L. Equipment to obtain gases via electrolysis of water
WO2009032190A2 (en) * 2007-08-28 2009-03-12 Transphorm, Inc. Compact electric appliance for providing gas for combustion
WO2009032190A3 (en) * 2007-08-28 2009-06-25 Transphorm Inc Compact electric appliance for providing gas for combustion
CN110382742A (en) * 2017-02-23 2019-10-25 翁贝托·德·卢卡 It is electrolysed heating system
US11105004B2 (en) * 2017-02-23 2021-08-31 Aurelio PUCCI Electrolysis heating system

Similar Documents

Publication Publication Date Title
KR100350578B1 (en) Electrolysis device
US7394041B2 (en) Apparatus for treating a waste gas using plasma torch
FI75923B (en) FOERFARANDE OCH ANORDNING FOER PYROLYTISK DESTRUKTION AV AVFALL.
JP2002155387A (en) Gaseous mixture generator and boiler using the gaseous mixture
US20090166191A1 (en) Apparatus for Generating Water Electrolytic Gas
BRPI0814032B1 (en) device and method for producing hydrogen and oxygen
KR20090077777A (en) System for generating brown gas and uses thereof
US6443725B1 (en) Apparatus for generating energy using cyclic combustion of brown gas
JP3110756B2 (en) Equipment for heat generation
JP2010153063A (en) Fuel battery device
WO2002095090A1 (en) Apparatus for generating mixed gas and boiler system using the mixed gas
KR100522168B1 (en) Plasma reaction apparatus having heating means
JP2009543995A (en) Oxidation apparatus and method using sliding electric arc
JP3267592B2 (en) Combined gas treatment system
JP2010277760A (en) Fuel cell device
CN107282589A (en) House refuse cryogenic treatment process
KR101566648B1 (en) Method and a device for production of plasma
WO2017139906A1 (en) Plasma heater
KR200380178Y1 (en) Brown gas generator
KR200210591Y1 (en) Boiler using Brown gas
JPS62202805A (en) Medical oxygen generator
JPH06151386A (en) Semiconductor manufacturing device
RU96107779A (en) IMPROVEMENTS IN ELECTROLYSIS SYSTEMS
JP2005308373A (en) Combustion furnace exhaust heat transporting system and method
JP2003206706A (en) Power generation system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase