WO2002094712A1 - Material for storing hydrogen - Google Patents

Material for storing hydrogen Download PDF

Info

Publication number
WO2002094712A1
WO2002094712A1 PCT/EP2002/004691 EP0204691W WO02094712A1 WO 2002094712 A1 WO2002094712 A1 WO 2002094712A1 EP 0204691 W EP0204691 W EP 0204691W WO 02094712 A1 WO02094712 A1 WO 02094712A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
storing hydrogen
fibers
hydrogen according
inert phase
Prior art date
Application number
PCT/EP2002/004691
Other languages
German (de)
French (fr)
Inventor
Jörg WEISSMÜLLER
Jin-Chun Kim
Original Assignee
Forschungszentrum Karlsruhe Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Karlsruhe Gmbh filed Critical Forschungszentrum Karlsruhe Gmbh
Publication of WO2002094712A1 publication Critical patent/WO2002094712A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04216Reactant storage and supply, e.g. means for feeding, pipes characterised by the choice for a specific material, e.g. carbon, hydride, absorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0078Composite solid storage mediums, i.e. coherent or loose mixtures of different solid constituents, chemically or structurally heterogeneous solid masses, coated solids or solids having a chemically modified surface region
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/02Alloys containing metallic or non-metallic fibres or filaments characterised by the matrix material
    • C22C49/04Light metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C49/00Alloys containing metallic or non-metallic fibres or filaments
    • C22C49/14Alloys containing metallic or non-metallic fibres or filaments characterised by the fibres or filaments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a material for storing hydrogen.
  • the disadvantage of metal hydride storage systems is that high temperatures are required for hydrogen recovery.
  • the object of the invention is to provide a storage material for hydrogen, in which hydrogen recovery is possible at lower temperatures.
  • the invention is based on the fact that metals experience an expansion (volume increase) when they absorb hydrogen. If this expansion is hindered by mechanical forces, then the energetics of the hydrogen structure change.
  • the invention uses this effect to change the enthalpy of binding of the metal for hydrogen towards a more positive value, that is, the interaction between the metal and make hydrogen less attractive.
  • Stiff fibers or particles of a second phase are finely divided into a conventional metal with a tendency to form hydrides, which is in principle suitable as a storage material (matrix).
  • the fibers or particles are inert, ie the hydrogen content in the inert phase does not change significantly in the interval of temperature and hydrogen partial pressure near the phase transition of the matrix, in general it is vanishing. As a result, the matrix exerts forces on the fibers or particles of the inert phase during the hydrogenation.
  • the fibers or - Z particles suitably finely divided, so they become mechanical
  • the enthalpy of binding of the hydrogen in the composite material is then the sum of the (negative, i.e. binding) chemical bond enthalpy of the conventional matrix material and the (positive, ie repulsive) mechanical deformation energy that occurs when the matrix is deformed (as a result of the hydrogen absorption) in the fibers or particles of the inert phase are stored. Overall, the enthalpy of binding is reduced.
  • An example of a material according to the invention is magnesium with a reinforcement made of statistically oriented carbon fibers with a diameter in the sub-micrometer range.
  • metal alloys e.g. Mg-Cu
  • intermetallic compounds e.g. Mg 2 Ni or LaNis
  • metallic or mineral substances e.g. Al, B, or SiC
  • Such a composite can be produced by infiltration of the molten metal into a felt or a woven fabric made of fibers.
  • An alternative method is to extrude a mixture of fibers and metal powder. The final material can be ground by ball milling and refined in the microstructure to improve the kinetics of absorption and desorption.
  • the fundamentally new aspect of the approach proposed here is to use the knowledge gained from the investigations on grain boundaries in a targeted manner in order to produce optimal material combinations and geometries that maximize the effect.
  • Dense layers of carbon nanotubes can be prepared using the method described in the literature (MM Kappes, 'Carbon based nanotechnology?', barken Anlagenstechnik Düsseldorf 32 (1999), 64. S. Bandow, S. Asaka, Y. Saito, AM Rao, L. Grigorian, E. Richter, and PC Eklund, 'Effect of the Growth Temperature on the Diameter-Distribution of Single-Wall Carbon Nanotubes', Phys. Rev. Lett. 80 ( 1998), 3779. S. Bandow, AM Rao, K.-A. Williams, A.
  • the porous body thus formed is coated with a melt of Mg (the subscripts denote the mole fraction of the components) according to the method of 'squeeze casting' (S.-Y. Chang, H. Tezuka, and A. Kamino, 'Mechanical Properties and Fracture Process of SiC / Mg Composites by Squeeze Casting and Extrusion ', Mater. Trans., JIM 38 (1997), 18).
  • the composite material can be crushed by high-energy ball milling up to a particle size of between 1 ⁇ and 100 ⁇ m (in the case of nanotubes) or by approximately 100 ⁇ m (in the case of conventional fibers).
  • the respective substances can be finely dispersed on the composite particles by adding 1 to 10 at% of powdery metals (V, Nb, Ti, Pd) or metal oxides (VO, NbO); this improves due to the catalytic acceleration of the dissociation of H2 in a known manner (G. Liang, J. Huot, S. Boily, and R.
  • carbon nanotubes As an alternative to the nanotubes, carbon fibers with a high modulus and a diameter of a few ⁇ m can be used (for example, to be obtained from Goodfellow, quality P100, diameter 10 ⁇ m, Young module 720 GPa, or quality F500, diameter 9 ⁇ m, Young's module 500 GPa), as well as metallic or mineral fibers (e.g. AI, B, or SiC). Since the shear stress at the interface between fiber and matrix increases almost linearly with the diameter of the fiber, thin fibers with diameters between 1 nm (carbon nanotubes) and 10 ⁇ m (commercial carbon fibers) are used to prevent slipping at the interface.
  • carbon fibers with a high modulus and a diameter of a few ⁇ m can be used (for example, to be obtained from Goodfellow, quality P100, diameter 10 ⁇ m, Young module 720 GPa, or quality F500, diameter 9 ⁇ m, Young's module 500 GPa), as well as metallic or mineral fibers (e.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Powder Metallurgy (AREA)

Abstract

The invention relates to a material for storing hydrogen. The aim of the invention is to provide a storage material which enables hydrogen to be recovered at low temperatures. To this end, a composite of a hydride-forming metal or a hydride-forming metal alloy in the form of a matrix and an inert phase is used, said inert phase being finely distributed in the matrix.

Description

Material zum Speichern von WasserstoffMaterial for storing hydrogen
Die Erfindung betrifft ein Material zum Speichern von Wasserstoff.The invention relates to a material for storing hydrogen.
Der Nachteil von Metallhydrid-Speichern besteht darin, dass zur Wasserstoff-Rückgewinnung hohe Temperaturen nötig sind. Aufgabe der Erfindung ist es, ein Speichermaterial für Wasserstoff zur Verfügung zu stellen, bei dem die Wasserstoff-Rückgewinnung bei niedrigeren Temperaturen möglich ist.The disadvantage of metal hydride storage systems is that high temperatures are required for hydrogen recovery. The object of the invention is to provide a storage material for hydrogen, in which hydrogen recovery is possible at lower temperatures.
Gelöst wird diese Aufgabe durch die Merkmale des Patentanspruchs 1. Die Unteransprüche beschreiben vorteilhafte Ausgestaltungen der Erfindung.This object is achieved by the features of patent claim 1. The subclaims describe advantageous embodiments of the invention.
Die Erfindung beruht auf der Tatsache, dass Metalle bei der Aufnahme von Wasserstoff eine Dehnung (Volumenvergrößerung) erfahren. Wenn diese Dehnung durch mechanische Kräfte behindert wird, dann ändert sich die Energetik des Wassersto feinbaus Die Erfindung nutzt diesen Effekt aus, um die Bindungsenthalpie des Metalls für Wasserstoff in Richtung auf einen stärker positiven Wert zu ändern, das heißt, um die Wechselwirkung zwischen dem Metall und Wasserstoff weniger anziehend zu machen.The invention is based on the fact that metals experience an expansion (volume increase) when they absorb hydrogen. If this expansion is hindered by mechanical forces, then the energetics of the hydrogen structure change. The invention uses this effect to change the enthalpy of binding of the metal for hydrogen towards a more positive value, that is, the interaction between the metal and make hydrogen less attractive.
In ein konventionelles Metall mit Tendenz zur Hydridbildung, welches prinzipiell als Speichermaterial geeignet ist (Matrix) , werden steife Fasern oder Partikel einer zweiten Phase (inerte Phase) fein verteilt eingebracht. Die Fasern oder Partikel sind dabei inert, d. h. im Intervall von Temperatur und Wasserstoffpartialdruck nahe des Phasenübergang der Matrix ändert sich der Wasserstoffgehalt in der inerten Phase nicht wesentlich, im Allgemeinen ist er verschwindend. Dies hat zur Folge, dass die Matrix beim hydrieren Kräfte auf die Fasern oder Partikel der inerte Phase ausübt. Sind die Fasern oder - Z - Partikel geeignet fein verteilt, so werden sie die mechanischeStiff fibers or particles of a second phase (inert phase) are finely divided into a conventional metal with a tendency to form hydrides, which is in principle suitable as a storage material (matrix). The fibers or particles are inert, ie the hydrogen content in the inert phase does not change significantly in the interval of temperature and hydrogen partial pressure near the phase transition of the matrix, in general it is vanishing. As a result, the matrix exerts forces on the fibers or particles of the inert phase during the hydrogenation. Are the fibers or - Z particles suitably finely divided, so they become mechanical
Koherenz zur Matrix beibehalten, das heißt, sie werden elastisch gedehnt. Die Bindungsenthalpie des Wasserstoff im Kompositmaterial ist dann die Summe aus der (negativen, d.h. bindenden) chemischen Bindungsnethalpie des konventionellen Matrixmaterials und aus der (positiven, d.h. abstoßenden) mechanischen Verformungsenergie, die bei der Verformung der Matrix (in Folge der Wasserstoffaufnahme) in den Fasern oder Partikeln der inerten Pahse gespeichert wird. Insgesamt ist damit die Bindungsenthalpie erniedrigt.Maintain coherence with the matrix, that is, they are stretched elastically. The enthalpy of binding of the hydrogen in the composite material is then the sum of the (negative, i.e. binding) chemical bond enthalpy of the conventional matrix material and the (positive, ie repulsive) mechanical deformation energy that occurs when the matrix is deformed (as a result of the hydrogen absorption) in the fibers or particles of the inert phase are stored. Overall, the enthalpy of binding is reduced.
Ein Beispiel für ein erfindungsgemäßes Material ist Magnesium mit einer Verstärkung aus statistisch orientierten Kohlenstof- fasern mit Druchmesser im sub-micrometer Berreich. Alternativ sind Metallegierungen (z. B. Mg-Cu) und intermetallische Verbindungen (z. B. Mg2Ni oder LaNis) mögliche Matrixmaterialien; für die Fasern kommen metallische oder mineralische Substanzen in Betracht (z. B. AI, B, oder SiC) . Ein derartiger Komposit kann durch Infiltration der Metallschmelze in einen Filz oder ein Gewebe aus Fasern hergestellt werden. Ein alternatives , Verfahren ist das Extrudieren eines Gemisches aus Fasern und Metallpulver. Das Endmaterial kann durch Kugelmahlen zerkleinert und in der MikroStruktur verfeinert werden, um die Kinetik der Absorption und Desorption zu verbessern.An example of a material according to the invention is magnesium with a reinforcement made of statistically oriented carbon fibers with a diameter in the sub-micrometer range. Alternatively, metal alloys (e.g. Mg-Cu) and intermetallic compounds (e.g. Mg 2 Ni or LaNis) are possible matrix materials; metallic or mineral substances (e.g. Al, B, or SiC) are suitable for the fibers. Such a composite can be produced by infiltration of the molten metal into a felt or a woven fabric made of fibers. An alternative method is to extrude a mixture of fibers and metal powder. The final material can be ground by ball milling and refined in the microstructure to improve the kinetics of absorption and desorption.
Wir betrachten als Beispiel einen Volumenanteil f der Fasern von 10 %, und einen Elastizitätsmodul Y der Kohlenstofffasern von 700 GPa; die lineare Dehnung E der Matrix bei der Bildung des Hydrids sei 10%. Die bei der Dehnung der Fasern gespeicherte Arbeit pro Volumen ist w = E2 f Y, im Beispiel w = 0.35 * 109 J/m3. Bei einem Molvolumen von 0.7 * 10~5 m3/mol (H in MgH2) ergibt dies, umgerechnet auf 1 mol H, eine Reduktion der molaren Bindungsenthalpie ΔH um 2.5 kJ/mol. Dies entspricht, bei einer Arbeitstemperatur von T = 373 K (100 °C) , einer Erhöhung des Desorptionsdruckes um den Faktor exp(2 ΔH/ RT) = 5.0. Entsprechend kann natürlich auch, bei vorgegebenem Desorptionsdruck, die Arbeitstemperatur gesenkt werden.As an example we consider a volume fraction f of the fibers of 10% and an elastic modulus Y of the carbon fibers of 700 GPa; the linear elongation E of the matrix when the hydride is formed is 10%. The work per volume stored in the stretching of the fibers is w = E 2 f Y, in the example w = 0.35 * 10 9 J / m 3 . With a molar volume of 0.7 * 10 ~ 5 m 3 / mol (H in MgH 2 ), this results in a conversion of the molar enthalpy of binding ΔH by 2.5 kJ / mol, converted to 1 mol H. At a working temperature of T = 373 K (100 ° C), this corresponds to an increase in the desorption pressure by the factor exp (2nd ΔH / RT) = 5.0. Correspondingly, the working temperature can of course also be reduced at a given desorption pressure.
Der prinzipiell neue Aspekt des hier vorgeschlagenen Ansatzes besteht darin, die aus den Untersuchungen an Korngrenzen gewonnene Erkenntnis gezielt in einzusetzen, um optimale Materialkombinationen und Geometrien herzustellen, welche den Effekt maximieren.The fundamentally new aspect of the approach proposed here is to use the knowledge gained from the investigations on grain boundaries in a targeted manner in order to produce optimal material combinations and geometries that maximize the effect.
Die Erfindung wird im Folgenden anhand eines Ausführungsbeispiels näher erläutert.The invention is explained in more detail below using an exemplary embodiment.
Dichte Lagen aus Kohlenstoff-Nanoröhrchen ( 'Nanotube-Paper ' ) können nach der in der Literatur beschriebenen Methode präpariert werden (M.M. Kappes, 'Carbon based nanotechnology? ' , Nachrichten Forschungszentrum Karlsruhe 32 (1999), 64. S. Ban- dow, S. Asaka, Y. Saito, A.M. Rao, L. Grigorian, E. Richter, und P.C. Eklund, 'Effect of the Growth Temperature on the Diameter-Distribution of Single-Wall Carbon Nanotubes ' , Phys . Rev. Lett. 80 (1998), 3779. S. Bandow, A.M. Rao, K.-A. Williams, A. Thess, R.E. Smalley, und P.C. Eklund, ' Purification of Single-Walled Nanotubes by Microfiltration', J. Phys. Chem. B 101 (1997), 8839.). Für unsere Anwendung kommen sowohl einwandige als auch mehrwandige Nanoröhrchen in Betracht. Mehrere derartige Lagen werden gestapelt und komprimiert, so daß die Nanoröhrchen einen Volumenanteil von 10 % - 30 % einnehmen.Dense layers of carbon nanotubes ('nanotube paper') can be prepared using the method described in the literature (MM Kappes, 'Carbon based nanotechnology?', Nachrichten Forschungszentrum Karlsruhe 32 (1999), 64. S. Bandow, S. Asaka, Y. Saito, AM Rao, L. Grigorian, E. Richter, and PC Eklund, 'Effect of the Growth Temperature on the Diameter-Distribution of Single-Wall Carbon Nanotubes', Phys. Rev. Lett. 80 ( 1998), 3779. S. Bandow, AM Rao, K.-A. Williams, A. Thess, RE Smalley, and PC Eklund, 'Purification of Single-Walled Nanotubes by Microfiltration', J. Phys. Chem. B 101 ( 1997), 8839.). Both single-walled and multi-walled nanotubes come into consideration for our application. Several such layers are stacked and compressed so that the nanotubes have a volume fraction of 10% - 30%.
Der so geformte poröse Körper wird mit einer Schmelze aus Mg (die tiefgestellten Ziffern bezeichnen den Molenbruch der Komponenten) nach der Methode des ' Squeeze-Casting' (S.-Y. Chang, H. Tezuka, and A. Kamino, 'Mechanical Properties and Fracture Process of SiC/Mg Composites by Squeeze Casting and Extrusi- on', Mater. Trans., JIM 38 (1997), 18.) infiltriert. Als Matrix kommen neben Mg die folgenden Speichermaterialien in Frage: reine Metalle (Pd, Mg), Legierungen (Mg-Cu, Pd-X wobei X = Ag, Au, Ni, Y, Sn, Pb) , intermetallische Verbindungen (Mg2Ni, LaNi5, TiFe, ZrV2) sowie Phasengemische (Na/Al oder NaH/Al) .The porous body thus formed is coated with a melt of Mg (the subscripts denote the mole fraction of the components) according to the method of 'squeeze casting' (S.-Y. Chang, H. Tezuka, and A. Kamino, 'Mechanical Properties and Fracture Process of SiC / Mg Composites by Squeeze Casting and Extrusion ', Mater. Trans., JIM 38 (1997), 18). In addition to Mg, the following storage materials can be used as a matrix: pure metals (Pd, Mg), alloys (Mg-Cu, Pd-X where X = Ag, Au, Ni, Y, Sn, Pb), intermetallic compounds (Mg2Ni, LaNi5 , TiFe, ZrV2) and phase mixtures (Na / Al or NaH / Al).
Zur Verbesserung der Adsorptions- und Desorptionskinetik kann das Kompositmaterial durch Hochenergie-Kugelmahlen bis zu einer Partikelgröße von zwischen 1 μ und 100 μm (im Fall der Nanoröhrchen) bzw. um etwa 100 μm (im Fall der konventionellen Fasern) zerkleinert werden. Bei diesem Prozeß können durch Zugabe 1 bis 10 at-% von pul erförmigen Metallen (V, Nb, Ti, Pd) oder Metalloxiden (VO, NbO) die jeweiligen Substanzen feindispers auf den Kompositpartikeln verteilt werden; dies verbessert aufgrund de katalytischen Beschleunigung der Dissoziation von H2 in bekannter Weise (G. Liang, J. Huot, S. Boily, and R. Schulz, 'Hydrogen Desorption Kinetics of a Mechanically Milled MgH2 + 5 at . % V Nanocomposite ' , J. Alloys Comp. 305 (2999), 239.) die Adsorptions-bzw. Desorptionskinetik.To improve the adsorption and desorption kinetics, the composite material can be crushed by high-energy ball milling up to a particle size of between 1 μ and 100 μm (in the case of nanotubes) or by approximately 100 μm (in the case of conventional fibers). In this process, the respective substances can be finely dispersed on the composite particles by adding 1 to 10 at% of powdery metals (V, Nb, Ti, Pd) or metal oxides (VO, NbO); this improves due to the catalytic acceleration of the dissociation of H2 in a known manner (G. Liang, J. Huot, S. Boily, and R. Schulz, 'Hydrogen Desorption Kinetics of a Mechanically Milled MgH2 + 5 at.% V Nanocomposite', J Alloys Comp. 305 (2999), 239.) the adsorption or. Desorption kinetics.
Bei der Ausführung ist es wesentlich, dass zwischen Speichermaterial ('Matrix') und Verstärkung ('Fasern') bei der Beladung mit H mechanische Kohärenz erhalten bleibt. Die Kohärenz führt dazu, dass sich bei der Absorption von H im Speichermaterial, aufgrund der damit einhergehenden Volumendehnung, mechanische Spannungen unterschiedlichen Vorzeichens in Matrix und Fasern aufbauen. Es ist erforderlich, dass:In the implementation, it is essential that mechanical coherence is maintained between the storage material ('matrix') and the reinforcement ('fibers') when loaded with H. The coherence means that the absorption of H in the storage material, due to the associated volume expansion, creates mechanical stresses of different signs in the matrix and fibers. It is required that:
(i) in der Matrix ein hoher Druck aufgebaut wird; dazu müssen die Fasern einen hohen Youngmodul in Faserrichtung besitzen.(i) high pressure is built up in the matrix; the fibers must have a high Young's modulus in the direction of the fibers.
(ii) die Fasern nicht reißen; dazu uss die Festigkeit hoch sein.(ii) do not tear the fibers; in addition, the strength must be high.
(iii) die Fasern nicht an der Grenzfläche zur Matrix abgleiten .(iii) the fibers are not at the matrix interface slide off.
Die Anforderungen an den Modul und an die Festigkeit werden von Kohlenstoff-Nanoröhrchen erfüllt. Alternativ zu den Nanoröhrchen können Kohlenstofffasern mit hohem Modul und mit einem Durchmesser von wenigen μm zum Einsatz kommen (zum Beispiel zu beziehen von der Firma Goodfellow, Qualität P100, Durchmesser 10 μm, Young-Modul 720 GPa, oder Qualität F500, Durchmesser 9 μm, Young-Modul 500 GPa) , sowie metallische oder mineralische Fasern in Betracht (z. B. AI, B, oder SiC) . Da die Schubspannung an der Grenzfläche zwischen Faser und Matrix annähernd linear mit dem Durchmesser der Faser anwächst werden dünne Fasern mit Durchmessern zwischen 1 nm (Kohlenstoff- Nanoröhrchen) und 10 μm (kommerzielle Kohlenstofffasern) eingesetzt um das Abgleiten an der Grenzfläche zu verhindern. The requirements for the module and the strength are met by carbon nanotubes. As an alternative to the nanotubes, carbon fibers with a high modulus and a diameter of a few μm can be used (for example, to be obtained from Goodfellow, quality P100, diameter 10 μm, Young module 720 GPa, or quality F500, diameter 9 μm, Young's module 500 GPa), as well as metallic or mineral fibers (e.g. AI, B, or SiC). Since the shear stress at the interface between fiber and matrix increases almost linearly with the diameter of the fiber, thin fibers with diameters between 1 nm (carbon nanotubes) and 10 μm (commercial carbon fibers) are used to prevent slipping at the interface.

Claims

Patentansprüche: claims:
1. Material zum Speichern von Wasserstoff bestehend aus einem hydridbildenden Metall oder einer hydridbildenden Metalllegierung als Matrix und einer inerten Phase, wobei die inerte Phase in der Matrix fein verteilt ist.1. Material for storing hydrogen consisting of a hydride-forming metal or a hydride-forming metal alloy as a matrix and an inert phase, the inert phase being finely distributed in the matrix.
2. Material zum Speichern von Wasserstoff nach Anspruch 1, dadurch gekennzeichnet, dass die Matrix Magnesium ist.2. Material for storing hydrogen according to claim 1, characterized in that the matrix is magnesium.
3. Material zum Speichern von Wasserstoff nach Anspruch 1, dadurch gekennzeichnet, dass die Matrix eine Magnesiumlegierung ist.3. Material for storing hydrogen according to claim 1, characterized in that the matrix is a magnesium alloy.
4. Material zum Speichern von Wasserstoff nach Anspruch 1, dadurch gekennzeichnet, dass die Matrix eine intermetallische Verbindung ist.4. Material for storing hydrogen according to claim 1, characterized in that the matrix is an intermetallic compound.
5. Material zum Speichern von Wasserstoff nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die inerte Phase aus mineralischen oder metallischen Fasern besteht.5. Material for storing hydrogen according to one of claims 1 to 4, characterized in that the inert phase consists of mineral or metallic fibers.
6. Material zum Speichern von Wasserstoff nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die inerte Phase aus Kohlenstoff-Fasern besteht.6. Material for storing hydrogen according to one of claims 1 to 4, characterized in that the inert phase consists of carbon fibers.
7. Material zum Speichern von Wasserstoff nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die inerte Phase aus Nanoröhren besteht. 7. Material for storing hydrogen according to one of claims 1 to 4, characterized in that the inert phase consists of nanotubes.
8. Material zum Speichern von Wasserstoff nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die inerte Phase aus einem Gemisch von Fasern und Röhren besteht.8. Material for storing hydrogen according to one of claims 1 to 4, characterized in that the inert phase consists of a mixture of fibers and tubes.
9. Material zum Speichern von Wasserstoff nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass es zu Nano- Teilchen zerkleinert ist. 9. Material for storing hydrogen according to one of claims 1 to 8, characterized in that it is crushed into nano-particles.
PCT/EP2002/004691 2001-05-21 2002-04-27 Material for storing hydrogen WO2002094712A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10124963A DE10124963A1 (en) 2001-05-21 2001-05-21 Material for storing hydrogen
DE10124963.2 2001-05-21

Publications (1)

Publication Number Publication Date
WO2002094712A1 true WO2002094712A1 (en) 2002-11-28

Family

ID=7685754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/004691 WO2002094712A1 (en) 2001-05-21 2002-04-27 Material for storing hydrogen

Country Status (2)

Country Link
DE (1) DE10124963A1 (en)
WO (1) WO2002094712A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2924707A1 (en) * 2007-12-10 2009-06-12 Centre Nat Rech Scient HYDROGEN STORAGE MATERIAL BASED ON MAGNESIUM HYDRIDE

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19826681A1 (en) * 1998-06-16 1999-12-23 Niels Marquardt Gas-absorbent nonvolatile getter material thin films for high vacuum production or gas storage
EP1010770A1 (en) * 1998-12-16 2000-06-21 Bayerische Motoren Werke Aktiengesellschaft Method of making carbon fibre reinforced metal-matrix composites
CN1259584A (en) * 2000-01-20 2000-07-12 南开大学 Hydrogen storage alloy/carbon nanometer tube composite hydrogen storage material
WO2000040509A1 (en) * 1998-12-28 2000-07-13 Osaka Gas Company Limited Amorphous nano-scale carbon tube and production method therefor
EP1022763A1 (en) * 1999-01-25 2000-07-26 Lucent Technologies Inc. Article comprising aligned, truncated carbon nanotubes and process for fabricating article
CN1270422A (en) * 2000-05-12 2000-10-18 南开大学 Composite hydrogen-storing electrode material of hydrogen-storing alloy/nm carbon material and its preparing process

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2550584A1 (en) * 1975-11-11 1977-05-12 Deutsche Automobilgesellsch SHAPE-RESISTANT HYDROGEN STORAGE MATERIAL
DE2855476A1 (en) * 1978-12-22 1980-07-03 Daimler Benz Ag METAL HYDRIDE STORAGE AND METHOD FOR THE PRODUCTION THEREOF
DE3144913A1 (en) * 1981-11-12 1983-05-19 Thyssen Edelstahlwerke AG, 4000 Düsseldorf METHOD FOR COMPRESSING SPROEDER COARSE GRAIN METAL ALLOY POWDER TO MOLDED PRESSELS AND THE USE THEREOF FOR HYDROGEN STORAGE
DE3205723C1 (en) * 1982-02-18 1983-05-05 Daimler-Benz Ag, 7000 Stuttgart Process for phlegmatising the filling of metal hydride stores
JPS61132501A (en) * 1984-11-30 1986-06-20 Agency Of Ind Science & Technol Formed hydrogen storage alloy
DE4439782B4 (en) * 1993-11-05 2005-07-28 Sanyo Electric Co., Ltd., Moriguchi A container packed with a number of powders of hydrogen-absorbing alloys, and shaped articles
CA2220503A1 (en) * 1997-11-07 1999-05-07 Leszek Zaluski Hydrogen storage composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19826681A1 (en) * 1998-06-16 1999-12-23 Niels Marquardt Gas-absorbent nonvolatile getter material thin films for high vacuum production or gas storage
EP1010770A1 (en) * 1998-12-16 2000-06-21 Bayerische Motoren Werke Aktiengesellschaft Method of making carbon fibre reinforced metal-matrix composites
WO2000040509A1 (en) * 1998-12-28 2000-07-13 Osaka Gas Company Limited Amorphous nano-scale carbon tube and production method therefor
EP1146013A1 (en) * 1998-12-28 2001-10-17 Osaka Gas Company Limited Amorphous nano-scale carbon tube and production method therefor
EP1022763A1 (en) * 1999-01-25 2000-07-26 Lucent Technologies Inc. Article comprising aligned, truncated carbon nanotubes and process for fabricating article
CN1259584A (en) * 2000-01-20 2000-07-12 南开大学 Hydrogen storage alloy/carbon nanometer tube composite hydrogen storage material
CN1270422A (en) * 2000-05-12 2000-10-18 南开大学 Composite hydrogen-storing electrode material of hydrogen-storing alloy/nm carbon material and its preparing process

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 200054, Derwent World Patents Index; Class E36, AN 2000-572910, XP002213477 *
DATABASE WPI Section Ch Week 200108, Derwent World Patents Index; Class L03, AN 2001-062298, XP002213476 *
KAGAWA Y ET AL: "Some mechanical properties of carbon fibre-reinforced magnesium-matrix composite fabricated by squeeze casting", JOURNAL OF MATERIALS SCIENCE LETTERS, 1 FEB. 1992, UK, vol. 11, no. 3, pages 176 - 178, XP002213475, ISSN: 0261-8028 *
ZALUSKA A ET AL: "Nanocrystalline magnesium for hydrogen storage", JOURNAL OF ALLOYS AND COMPOUNDS, ELSEVIER SEQUOIA, LAUSANNE, CH, vol. 288, no. 1-2, 29 June 1999 (1999-06-29), pages 217 - 225, XP004364461, ISSN: 0925-8388 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2924707A1 (en) * 2007-12-10 2009-06-12 Centre Nat Rech Scient HYDROGEN STORAGE MATERIAL BASED ON MAGNESIUM HYDRIDE
WO2009080986A2 (en) * 2007-12-10 2009-07-02 Centre National De La Recherche Scientifique (C.N.R.S) Hydrogen storage material made from magnesium hydride
WO2009080986A3 (en) * 2007-12-10 2009-09-03 Centre National De La Recherche Scientifique (C.N.R.S) Hydrogen storage material made from magnesium hydride

Also Published As

Publication number Publication date
DE10124963A1 (en) 2002-12-05

Similar Documents

Publication Publication Date Title
DE60122456T2 (en) Hydrogen storage using carbon-metal hybrid compositions
DE60106149T2 (en) Hydrogen-absorbing alloy powder and method for producing the same and fuel tank for storing hydrogen
DE102009026655B3 (en) Method of making a metal matrix composite, metal matrix composite and its use
DE3329245C2 (en)
DE19916614B4 (en) Hydrogen-absorbing alloy
DE3210381C1 (en) Alloy for storing hydrogen
DE19882794B4 (en) Hydrogen storage composition
DE19822663A1 (en) Sintered metal and alloy powders for powder metallurgical applications and processes for their production and their use
EP1901995A2 (en) Carbon nanoparticles, production and use thereof
EP1248744B1 (en) Catalysis of the hydrogen sorption kinetics of hydrides by using nitrides and carbides
WO1999033747A1 (en) Process for preparing nanocrystalline metal hydrides
US10370744B2 (en) Reinforced magnesium composite and a method of producing thereof
DE3130139A1 (en) COMPOSITES BASED ON A METAL OR ALLOY AS A BASE AND INORGANIC FIBERS AS A REINFORCING AGENT
WO2015169753A1 (en) Hydrogen store comprising a hydrogenable material and a polymer matrix
DE69929782T2 (en) MECHANICAL MAGNESIUM ALLOY FOR HYDROGEN HEAT STORAGE
WO2009141100A1 (en) Method for producing a component from a composite material
WO2002094712A1 (en) Material for storing hydrogen
DE2523249A1 (en) METHOD OF MANUFACTURING A BODY WITH INCORPORATED PARTICLES
DE102004061286A1 (en) Hydrogen-storing composite material and a device for the reversible storage of hydrogen
DE3743167A1 (en) Filler wire for producing fusion-joined layers
WO2000058206A1 (en) Metalliferous storage material for hydrogen and method for producing same
DE102019000361A1 (en) Wear-resistant lightweight construction alloy made of a metal-matrix composite material with a metallic matrix and a ceramic hard phase, method for producing such a wear-resistant lightweight construction alloy, and brake disc mating with such a wear-resistant lightweight construction alloy
WO1997036015A1 (en) Process for producing a composite material
DE2111372A1 (en) Brittle, oxidn resisting titanium nickelide - for use as powder in batteries
DE8716743U1 (en) Flux-cored wire for producing fused composite layers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP