WO2002092811A1 - Method of expressing long-chain prenyl diphosphate synthase - Google Patents

Method of expressing long-chain prenyl diphosphate synthase Download PDF

Info

Publication number
WO2002092811A1
WO2002092811A1 PCT/JP2002/004566 JP0204566W WO02092811A1 WO 2002092811 A1 WO2002092811 A1 WO 2002092811A1 JP 0204566 W JP0204566 W JP 0204566W WO 02092811 A1 WO02092811 A1 WO 02092811A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformant
dna
expression vector
diphosphate synthase
coli
Prior art date
Application number
PCT/JP2002/004566
Other languages
English (en)
French (fr)
Inventor
Hideyuki Matsuda
Makoto Kawamukai
Kazuyoshi Yajima
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to CA002444977A priority Critical patent/CA2444977A1/en
Priority to JP2002589678A priority patent/JP4271948B2/ja
Priority to EP02769565A priority patent/EP1386964A4/en
Priority to US10/477,269 priority patent/US7402413B2/en
Publication of WO2002092811A1 publication Critical patent/WO2002092811A1/ja
Priority to NO20034994A priority patent/NO20034994D0/no
Priority to US12/139,175 priority patent/US8163525B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/66Preparation of oxygen-containing organic compounds containing the quinoid structure

Definitions

  • the present invention relates to a protein involved in the expression of eukaryotic long-chain prenyl diphosphate synthase, a gene encoding the enzyme, a vector containing the enzyme gene, the vector and a long-chain prenyl diphosphate synthase gene. And a transformant transformed with an expression vector containing long-chain pluryl diphosphate synthase (particularly, decapreninole diphosphate synthase, solanesyl diphosphate synthase) and long-chain isoprenoid in the side chain.
  • Koenzaimu Q (among others Koenzaimu Q 9, Koenzaimu Q 1 0) with a method for the preparation of. Background art
  • Isoprenoid is a general term for a diverse group of compounds, including sterols, carotenoids, terpenes and the like.
  • One such group is the prenyl diphosphate compound group containing the side chain of Coenzym Q, the synthesis of which is determined by the polymerization condensation reaction of isopentenyl diphosphate, a carbon number 5 isoprene unit, with prenyl diphosphate synthase.
  • Each prenyl diphosphate synthase is roughly classified into four types.
  • short-chain prenyl diphosphate synthase having 3 to 4 isoprene units has a catalytic function as a homodimer.
  • pharynesyl diphosphate synthase Eberthardt. NL, (1975) J. Biol. Chem. 250, 863-866
  • geranylgeranyl diphosphate synthase Sagami. H., (1994) J. Biol. Chem. 269, 20561-20566
  • medium-chain prenyl diphosphate synthases having 6 to 7 isoprene units are heterodimeric enzymes formed from two types of proteins that have no catalytic activity by themselves.
  • Hexabrayl diphosphate synthase (Fujii. H., (1982) J. Biol. Chem. 257, 14610) s Heptaprenyl diphosphate synthase (Takahash i. I., (1980) J. Biol. Chem. 255, 4539).
  • Prokaryotic enzymes are non-dissociable homodimers and are activated by polyprenyl diphosphate carrier protein (0hnuma, S., (1991) J. Biol. Chem., 266, 237 06-23713). Has been made. However, eukaryotic long-chain prephosphate diphosphate synthase has not been reported so far.
  • Coenzym Q is composed of a quinone skeleton and isoprenoid side chains, and is widely found in a very wide range of organisms, from microorganisms such as bacteria and yeast to higher plants and animals.
  • prokaryotes it is present in the plasma membrane and functions as an electron acceptor for stabilizing cell membranes and forming disulfide bonds in periplasmic membrane proteins.
  • eukaryotes it is present in mitochondrial and cytoplasmic membranes and mitochondrial respiration It is an essential factor in chain electron transport and oxidative oxidation, and also functions as an antioxidant and stabilizes biological membranes.
  • Coenzyme Q having an isoprenide side chain in which 8 to 10 isoprene units are condensed has attracted attention as a material for health foods and the like.
  • Koenzaimu Q 1 0 isoprene emission units is 1 0 is particularly useful because human are those inherent, have also been used as a cardiac agent. .
  • This Coenzym Is produced industrially by isolating coenzyme Q derived from plants such as tobacco and adjusting the side chain length by a synthetic method.
  • Koenzim. Is known to be produced by a very wide range of organisms, from microorganisms such as bacteria and yeasts to higher plants and animals, but the most effective method is to cultivate microorganisms and extract this substance from the cells. It is considered to be one of the production methods, and is also used in actual industrial production. However, with these methods, the productivity is hardly good because the production amount is small or the operation is complicated.
  • Koenzim The genes involved in the biosynthesis is isolated, amplified the gene by genetic recombination technology, attempts have been made to utilize the increased production of Koenzaimu Q 1 0. In vivo, Koenzaimu Q 1 0 is generated by a complex multi-stage reaction in which many enzymes are involved.
  • prokaryotic organisms such as Escherichia coli
  • Escherichia coli As the gene source for decaprenyl diphosphate synthase, eukaryotes have relatively large amounts produced Koenzaimu Q 10 also available, for example, fungi are strong candidates.
  • decapreyl diphosphate synthase belonging to fungi is recombined into microorganisms belonging to prokaryotes such as Escherichia coli, the enzyme is used. Did not produce or did not see a sufficient amount.
  • the present invention relates to a protein involved in the expression of eukaryotic long-chain prenyl diphosphate synthase, a gene encoding the enzyme, a vector containing the enzyme gene, the vector and a long-chain prenyl diphosphate synthase.
  • a transformant transformed with an expression vector containing the gene, and a long-chain prele diphosphate synthase (among others, decaprenyl diphosphate synthase, solanesyl diphosphate synthase) and a long-chain isoprenoid.
  • Koenzaimu Q (among others Koenzaimu Q 9, Koenzaimu Q 10) having an object to provide a method of manufacturing.
  • the present inventors anticipate that there are two forms of prenyl diphosphate synthase in the eukaryote group that biosynthesizes long-chain prenyl diphosphate synthase, and they are prokaryotes.
  • Enzyme such as S aitoe 11a genus which has been confirmed to be recombinantly expressed in Escherichia coli is expressed in a homozygous form, while heterozygous expression is not recognized in Escherichia coli such as Schizosacchar omyces, which is expressed in a hetero-type. I thought it might be.
  • the present invention relates to the following DNA (a), (b) or (c).
  • nucleotide sequence shown in SEQ ID NO: 1, 3 or 5 in which one or several nucleotides are deleted, added, inserted and Z-substituted or have a substituted nucleotide sequence, and have a long-chain sequence derived from a eukaryote; DNA encoding a protein that enables or enhances the expression of diphosphate synthase in a host microorganism:
  • (c) hybridizes with a DNA consisting of the nucleotide sequence shown in SEQ ID NO: 1, 3 or 5 under stringent conditions, and enables the expression of eukaryotic long prenyl diphosphate synthase derived from eukaryotes in a host microorganism. DNA that encodes or enhances a protein. Further, the present invention relates to the following protein (d) or (e).
  • a long chain derived from a eukaryote comprising an amino acid sequence in which one or several amino acids have been deleted, added, inserted, and / or substituted in the amino acid sequence shown in SEQ ID NO: 2, 4, or 6.
  • the present invention relates to a DNA encoding the above-mentioned protein (d) or (e).
  • the present invention also provides an expression vector comprising the above DNA incorporated into an expression vector; the above expression vector wherein the expression vector is pSTV28; the above expression vector wherein the expression vector is pSTVDLP1; -the above expression vector, which is mDLP1; the above expression vector, wherein the expression vector is pSTV28-hDLP1.
  • the present invention provides a transformant obtained by transforming a host microorganism with the above-mentioned DNA; a transformant obtained by transforming the host microorganism with the above-mentioned expression vector;
  • the transformant wherein the transformant is E. coli DH5a (p STVDL Pl) (FERM BP—7433); the transformant is E. coli DH5 ⁇ (p S TVK28 -mD LP 1); the above-mentioned transformant, wherein the transformant is E.co 1 iDH5 ⁇ (p S TVK 28 -hD LP 1).
  • the present invention also relates to the above-mentioned transformant, into which a eukaryotic long-chain prenyl diphosphate synthase gene has been further introduced;
  • the above-mentioned transformant which is a gene derived from a microorganism belonging to the genus, Rhodotorul a L, Leucosporidium, Asperugi ⁇ lus, Bui 1 eomyces, a human-derived gene, or a mouse-derived gene;
  • the body is E. co 1 i DH5 a (p S TVD LP 1, p B SDP S) (FERM BP— 7 54 8)
  • the above transformant, wherein the transformant is E.
  • coli DH5a (pSTV DLP1, pUhDPS1) (FERMBP-8250) The above transformant, wherein the transformant is E. coli DH5 (pSTVDLP1, BmSDS1); the transformant is E. coli DH5a (pSTVK28-mDLP1, pUhD The above transformant, which is PS 1); The above transformant, which is E. coli DH5a (pS TVK28-mDLP1, BmSDSl) (F ERM BP-82027) The above transformant, wherein the transformant is E. coli DH5a (p S TVK28-hDLP1, UhDPSl) (F ERM BP-82026); And E.
  • the present invention relates to a method for producing Coenzyme Q, which comprises culturing the above transformant in a medium, producing and accumulating Coenzyme Q in the culture, and collecting this.
  • the DNA of the present invention was isolated as follows.
  • Homology search was performed using the chromosome arterial force of the genus Schizos acacharomomeces, et al., And the sequence of the decaprenyl diphosphate synthase gene of the genus Schizosacacharomyces, and genes having relatively high homology were found. Further, based on the gene sequence, a gene having relatively high homology was found from mouse and human chromosome databases.
  • PCR primers N-d1p1 SEQ ID NO: 7 and C-dlpl (SEQ ID NO: 8) were synthesized and separated from the human chromosome.
  • hDLP1-N SEQ ID NO: 9
  • hDLP1-C SEQ ID NO: 10
  • mDLP1-N SEQ ID NO: 11
  • mD LP1-C SEQ ID NO: 12
  • the DNA of the present invention is a DNA encoding a protein that enables or enhances the expression of a long-chain prenyl diphosphate synthase derived from a eukaryote in a host microorganism.
  • SEQ ID NO: 1, 3, or 5 Or a nucleotide sequence shown in SEQ ID NO: 1, 3 or 5 in which one or several bases have been deleted, added, inserted and / or substituted.
  • the DNA may be a DNA having a nucleotide sequence, or may be a DNA that hybridizes under stringent conditions with a DNA consisting of the nucleotide sequence shown in SEQ ID NO: 1, 3 or 5.
  • DNA encoding a protein consisting of the amino acid sequence shown in SEQ ID NO: 2, 4, or 6 has the sequence There are many other than DNA having the nucleotide sequence shown in No. 1, 3 or 5. Therefore, the DNA of the present invention also includes a DNA encoding a protein consisting of the amino acid sequence represented by SEQ ID NO: 2, 4, or 6.
  • a base sequence in which one or several bases have been deleted, added, introduced, or substituted with Z refers to a protein nucleic acid enzyme extra gene amplification PCR method T.AKKAJ 35 (17), 295 1-31 78 (1990) or Henry A. Er 1 ich, edited by Ikuyuki Kato Translation PCR technology (1990), etc., by deletion, addition, insertion and / or It means a nucleotide sequence in which the number of bases that can be substituted is deleted, added, inserted, and Z or substituted.
  • ⁇ DNA that hybridizes under stringent conditions with a DNA consisting of the nucleotide sequence shown in SEQ ID NO: 1, 3 or 5 '' refers to a DNA consisting of the nucleotide sequence shown in SEQ ID NO: 1, 3 or 5 as a probe.
  • CoroEye's hybridization method, plaque ⁇ Hybridization method, or Southern hybridization Refers to DNA obtained by the use of a method such as A person skilled in the art can carry out the hybridization according to the method described in Molecular Cloning 2nd Edt. (Cold Spring Harbor Laboratry Press, 1989). The desired DNA can be easily obtained. For example, at a temperature of 50 ° C. or higher, the target DNA is obtained by hybridization at a salt concentration of SSC not containing urea of 0.5 M or lower.
  • a protein that enables or enhances the expression of the activity of eukaryotic long-chain prenyl diphosphate synthase in a host microorganism refers to a gene in which a eukaryotic long-chain prenyl diphosphate synthase gene is introduced.
  • Whether or not such a protein is used can be determined by transforming the transformant with only the long-chain prenyl diphosphate synthase gene and transforming with the DNA encoding the protein together with the long-chain prenyl diphosphate synthase gene. This can be confirmed by preparing the obtained transformant, measuring the amount of Coenzyme Q produced by both transformants under the same conditions, and comparing them. That is, in the transformant transformed with only the long-chain prenyl diphosphate synthase gene, there is no or almost no production of koenzyme Q, but DNA encoding the protein together with the long-chain prenyl diphosphate synthase gene is obtained. In the transformant transformed with the above, when a significant amount of Coenzyme Q is produced, it corresponds to the above-mentioned protein.
  • the protein of the present invention is a protein that enables or enhances (highly activates) the activity of eukaryotic long-chain prenyl diphosphate synthase in host microorganisms.
  • a protein having the amino acid sequence shown in SEQ ID NO: 6, or one or several amino acids are deleted, added, inserted and / or substituted in the amino acid sequence shown in SEQ ID NO: 2, 4 or 6. It may be a protein consisting of an amino acid sequence.
  • amino acid sequence can be obtained by deletion, addition, insertion, insertion, or deletion of a sufficient number of amino acids by a method known to those skilled in the art, such as partial mutagenesis. It can be obtained by Z or substitution. Specifically, it is described in literatures such as Nucl eic Acid Res. 10, 6487 (1 982) and Methodsin Enzymo 1 ogy 100, 448 (1983).
  • a DNA fragment containing the gene is excised with a restriction enzyme, or only the gene portion encoding the enzyme is amplified by PCR, and then inserted into an expression vector having a promoter to obtain an expression vector. can do.
  • the expression vector of the present invention is obtained by incorporating the above DNA into an expression vector.
  • the expression vector is not particularly limited, and examples thereof include a vector obtained by incorporating an appropriate promoter into a plasmid derived from Escherichia coli.
  • plasmids derived from Escherichia coli include pSTV28, pBR322, pBR325, pUC19, pUC119 and the like.
  • the promoter include a T7 promoter, a 'trp promoter, a tac promoter, a 1ac promoter, a ⁇ PL promoter and the like.
  • pGEX-2T pGEX-3T
  • pGEX-3X all manufactured by Pharmacia
  • Bluescript II pUC19 (manufactured by Toyobo)
  • pMALC2 p ET-3T
  • pUCNT described in WO 94/03613
  • STV 28 is preferably used.
  • the expression vector pSTVDLLP1 a DNA consisting of the nucleotide sequence shown in SEQ ID NO: 3 Insert an expression vector!
  • Expression vector p STVK28-mDLP1 can be prepared by inserting STVK28-hDLP1; and a DNA consisting of the base sequence shown in SEQ ID NO: 5.
  • the transformant of the present invention may be a transformant obtained by transforming a host microorganism with the above-mentioned DNA; or a transformant obtained by transforming a host microorganism with the above-mentioned expression vector. And a transformant obtained by further transforming a host microorganism with a long-chain prenyl diphosphate synthase gene derived from a eukaryote together with the DNA or the expression vector. You may.
  • Eukaryotes that serve as long-chain prenyl diphosphate synthase gene sources are not particularly limited.
  • genus S chizosaccharomyces that produces decaprenyl diphosphate synthase S aitoe 11 a, Rhodotorula no U, L eucosporidium ⁇ And microorganisms belonging to the genus Asperugi 11 us, the genus Bullomyces, and the like, and mice that produce solanesyl diphosphate synthase.
  • the host microorganism is not particularly limited, but Escherichchiacco1i and the like are preferably used. Further, Escherierchaiacoli is not particularly limited, and examples thereof include XL1-Blue, BL-21, JM109, NM522, DNM5 ⁇ , HB101, DH5, and the like. Among them, EscherirchiaciacoliDH5 is preferably used.
  • transformant of the present invention examples include the following.
  • E. coli strain E. coli DH5a transformed with pSTVDLP1;
  • E. coli strain E. coli DH5a transformed with pSTVDLP1 and pBSDPS (pSTVDLP1, pBSDPS);
  • E. coli DH5a (pSTVDLP1, UhDPSl) transformed with E. coli strain UhDPS1;
  • E. coli strain E. coli DH5a (pSTVDLP1, pBmSDSl) transformed with pSTVDLP1 and BmSDS1;
  • E. coli DH5a (pSTVK28-mDLP1, UhDPSl) transformed with pSTVK28-mDLP1 and pUhDPS1; pSTVK28-mDLP1 and E. coli strain transformed with pBmSD S1 E. coli DH5a (pSTV28-mDLP1, BmSDSl); pSTVK28-hDLP1 and E. coli strain transformed with pUhDPS1 E. coli DH5a (pS TVK28-hDLP1, UhDPSl); E. coli strain transformed with pSTVK28-hDLP1 and pBmSDS1 S TVK 2 8 — hD LP l, p BmS DS l).
  • E.coli i DH5a (p S TVD L Pl) was approved on January 18, 2001 as accession number F ERM B P— 743
  • E. coli DH5a (p S TVD L P 1, p B SD P S) was obtained on April 17, 2001 under the accession number F ERM B P—7548.
  • E.coli DH5a (p S TVD L P 1, UhD ⁇ S 1) was obtained on April 19, 1992, under the accession number F ERM B P—
  • E. coli DH5a (p S TVK 28 -mD LP 1, BmSD Sl) was obtained on April 19, 1992, under the accession number F ERM BP—820, E. coli DH 5a. 5 a (p S TVK 2 8 -hD LP 1, U hDP S l) was obtained on April 19, 1992, under the accession number FE RM BP—80 26, Tsukuba, Ibaraki, Japan It has been deposited at the National Institute of Advanced Industrial Science and Technology, Patent Organism Depositary, located at 1-Chome, 1-Chome, Chuo No. 6.
  • the DNA of the present invention is used in conjunction with an expression vector for a long-chain prenyl diphosphate synthase gene derived from a eukaryote, and also includes other genes involved in the biosynthesis of coenzyme Q. Even better effects can be expected by sometimes introducing them into microorganisms and expressing them.
  • Other genes include, for example, polypure diphosphotransferase gene and the like.
  • Coenzym Q can be produced by culturing the transformant obtained in the present invention in a medium according to a conventional method and collecting Coenzym Q from the culture.
  • the host microorganism is Escherichia chiacoli
  • an LB medium or an M9 medium containing glucose or casamino acid can be used as the medium.
  • an agent such as, for example, isopropylthiogalactosidinyldol-3-acrylic acid may be added to the medium.
  • the cultivation is performed, for example, at 20 to 40 ° C., preferably 30 to 37 ° C., more preferably 37 ° C. for 17 to 24 hours. At this time, if necessary, aeration and stirring may be performed.
  • the obtained Coenzyme Q may be purified or used as a crudely purified product, and can be appropriately selected depending on the application.
  • known separation and purification methods can be appropriately combined.
  • Known separation / purification methods include methods using charge differences such as ion-exchange chromatography, methods using specific affinity such as affinity chromatography, and hydrophobic methods such as reversed-phase high-performance liquid chromatography. And the like utilizing the difference between the two.
  • Coenzym Q obtained in the present invention is not particularly limited, and it can be suitably used for medicines, foods and the like. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a restriction map of the expression vector pSTVDLP1.
  • FIG. 2 is a restriction map of the expression vector pSTV28-hDLP1.
  • FIG. 3 is a restriction map of the expression vector pSTVK28-mDLP1.
  • FIG. 4 to FIG. 8 are HP LC analysis charts of host and transformant products. BEST MODE FOR CARRYING OUT THE INVENTION
  • the obtained fragment of about 900 bp was excised from the gel and purified using a DNA extraction kit (Sephaglas (trademark) B and Prep Kit, manufactured by Amersham Pharmacia Biotech).
  • the vector was cloned into an E. coli expression vector using a cloning kit ( ⁇ T7B1ue TVector Kit, NOVAGEN) to obtain pT7-DLLP.
  • a DNA sequencer Type 377, manufactured by PerkinElmer
  • a DNA sequence was prepared using a DNA sequence kit (manufactured by PerkinElmer, AB IPRISM (TM) Big Dye (TM) Te).
  • the reaction was determined by carrying out the reaction according to the instruction manual using the RM inator Cycle Sequence Sequence Reaction Kit Kit With Am1iTaq (registered trademark) DNA po1ymerase, FS). As a result, all sequences existing on the database were obtained.
  • pT7-DLP1 is digested with restriction enzymes EcoRI and EcoRV (Takara Shuzo), 0.8% agarose gel electrophoresis is performed, a fragment of about 900 bp is cut out from the gel, and a DNA extraction kit (S ephaglas (trademark) B an dP repit, After purification using Amersham Pharmacia Biotech), this DNA fragment was inserted into the EscoR I—Sma I site of PSTV28 (Takara Shuzo).
  • FIG. 1 shows a restriction enzyme map of the expression vector pSTVDLP1.
  • a homologous search of the Genbank database using the DLP1 gene base sequence of Schizosacchar omy cespombe in Example 1 revealed that GENETYX (Software Development Co., Ltd.) had a homology of 27%.
  • a gene was found.
  • PCR primers, hDL P 1—N (SEQ ID NO: 9) and hDLP 1—C (SEQ ID NO: 10), for obtaining this gene were prepared.
  • a human liver cDNA library (cDNA Library, Human Liver, plasmid type (Takara Shuzo)) was subjected to heat treatment at 94 ° C for 2 minutes. . 1 minute at 56 ° C for 1 minute ⁇ 72. .
  • PCR was carried out by repeating the 2-minute cycle 35 times with, and the amplified DNA was analyzed by 0.7% agarose electrophoresis. The obtained approximately 1,200 bp fragment was excised from the gel and purified using a DNA extraction kit (Sephaglas (trademark) BandPrep Kit, manufactured by Amersham Pharmacia Biotech), followed by PCR products. Direct Closing Kit (pT7Blue T—Vector Kit, NOV AG EN) was used to clone into an E. coli expression vector to obtain pT7-hDLPl.
  • a DNA extraction kit Sephaglas (trademark) BandPrep Kit, manufactured by Amersham Pharmacia Biotech
  • a DNA sequence kit was prepared using a DNA sequence kit (manufactured by PerkinElmer, AB IPR ISM (trademark) Big Dye (trademark) Terminator Cy). The reaction was determined by performing the reaction according to the instruction manual using cle Sequence R e ady R eaction Kit Wit Am Am i Taq (registered trademark) DNA pol ymerase, FS). As a result, it was possible to obtain all sequences existing on the database.
  • a DNA sequence kit was prepared using a DNA sequence kit (manufactured by PerkinElmer, AB IPR ISM (trademark) Big Dye (trademark) Terminator Cycle). The reaction was determined by carrying out the reaction according to the instruction manual using the Sequence Ready Reaction Kit With Am 1 i Taq (registered trademark) DNA polymerase, FS). As a result, an expression vector — p STVK28-hDLP1 was obtained.
  • FIG. 2 shows a restriction map of the expression vector pSTVK28-hDLP1. Also, an E. coli strain E.co1iDH5a (pSTVK28-hDLP1) transformed with pSTVK28-hDLP1 was obtained. (Example 3)
  • Kura cDNA library (cDNA Library ⁇ Mouse Liver, plasmid type (Takara Shuzo)) type ⁇ , heat treatment at 94 ° C for 2 minutes, 94 ° C for 1 minute ⁇ 56 ° PCR was performed by repeating the cycle of 1 minute at ⁇ ⁇ 2 minutes at 72 ° C 35 times, and the amplified DNA was analyzed by 0.7% agarose electrophoresis.
  • the obtained fragment of about 1200 b was excised from Genoire and purified using a DNA extraction kit (Sephaglas (trademark) BandPrep Kit, manufactured by Amersham Pharmacia Biotech), followed by PCR products. It was cloned into an E. coli expression vector using a direct cloning kit (pT7B1ueT—Vector Kit, NOVAGEN) to obtain pT7-mDLP1.
  • a DNA extraction kit Sephaglas (trademark) BandPrep Kit, manufactured by Amersham Pharmacia Biotech
  • the DNA base sequence was determined using a DNA sequence kit (manufactured by PerkinElmer, AB IPR ISM (trademark) BigDye (trademark) Terminator Cy)
  • the reaction was determined by performing the reaction in accordance with the instruction manual using cle Sequence Ready Reaction Kit With AmIiTaq (registered trademark) DNA polymerase, FS). As a result, it was possible to obtain all sequences existing on the database.
  • pT7-mDLP1 is digested with restriction enzymes EcoRI and BamHI (manufactured by Takara Shuzo), 0.8% agarose gel electrophoresis is performed, and a fragment of about 1,200 bp is cut out from the gel, and DNA is obtained. After purification using an extraction kit (Sephaglas (trademark) B and Prep Kit, manufactured by Amersham Pharmacia Biotech), this DNA fragment was subjected to EcoRI—BamHI site of pSTV28 (Takara Shuzo). Purchased.
  • EcoRI and BamHI manufactured by Takara Shuzo
  • FIG. 3 shows a restriction map of the expression vector pSTVK28-mDLP1.
  • E. coli strain E. coli DH5 pSTV28-mDLP1 transformed with pSTVK28-mDLP1 was obtained.
  • P KS 18 (Suzuki K., J. ⁇ ioch em. 12 1, 4 96 6— 505 (1) containing the acap capablee 2-phosphate synthase gene derived from cDNA of S chizosacchar omy cespomb e. 9 9 7))
  • primers ⁇ — dps (SEQ ID NO: 13) and C—dps (SEQ ID NO: 14) heat-treat at 94 ° C for 2 minutes, then 94 ° (1 minute at ⁇ PCR was performed by repeating the cycle of 1 minute ⁇ 72 ° C for 2 minutes 25 times, and the amplified DNA was analyzed by 0.7% agarose electrophoresis.
  • the obtained approximately 110 bp fragment was excised from the gel, purified using a DNA extraction kit (Sephaglas (trademark) B and Prep Kit, manufactured by Amersham Pharmacia Biotech), and then subjected to E. coli.
  • the expression vector pBSDPS was obtained by inserting into the Sail-PstI site of the expression vector B1uescriptn. Escherichia coli DH5 ⁇ was transformed with this vector to obtain E. coli DH5a (pBSDPS).
  • this transformant was transformed with pSTVDL P1, screened with chloramfucole 30 ⁇ g Zm1 and ampicillin 50 Xg / m1 to obtain E. coli DH5a (both vectors).
  • p STVDLP 1, p B SDP S) were obtained.
  • the obtained fragment of about 125 bp was excised from the gel and purified using a DNA extraction kit (Sephaglas (trademark) B and Prep Kit, manufactured by Amersham Pharmacia Biotech). It was cloned into an E. coli expression vector using a PCR product direct cloning kit (pT7B1ue TVector Kit, NOVAGEN) to obtain pT7-hDPSl.
  • a DNA extraction kit Sephaglas (trademark) B and Prep Kit, manufactured by Amersham Pharmacia Biotech.
  • pT7B1ue TVector Kit, NOVAGEN PCR product direct cloning kit
  • DNA sequencer (Model 377, manufactured by PerkinElmer Inc.), the DNA base sequence was analyzed using a DNA sequence kit (manufactured by PerkinElmer Inc., AB IPR ISM (trademark) Big Dye (trademark) Term) The reaction was determined by performing the reaction using an inator Cycle Sequence Length Reaction Kit Kit (Amplification Taq (registered trademark) DNA polymerase, FS) according to the instruction manual. As a result, it was possible to obtain all sequences existing on the database.
  • a DNA sequence kit manufactured by PerkinElmer Inc., AB IPR ISM (trademark) Big Dye (trademark) Term
  • the reaction was determined by performing the reaction using an inator Cycle Sequence Length Reaction Kit Kit (Amplification Taq (registered trademark) DNA polymerase, FS) according to the instruction manual. As a result, it was possible to obtain all sequences existing on the database.
  • pT7-hDPS1 was digested with restriction enzymes Sa1I and BamHI (manufactured by Takara Shuzo), 0.8% agarose electrophoresis was performed, and a fragment of about 1250 bp was cut out from the gel. After purification using a DNA extraction kit (Sephaglas (trademark) B and Prep Kit, manufactured by Amersham Fa ⁇ Macia Biotech), this DNA fragment was purified from pUC119 (manufactured by Takara Shuzo) using Sal I—B inserted into the amHI site.
  • PCR primers mSDS-N (SEQ ID NO: 17) and mSDS-C (SEQ ID NO: 18), were prepared based on the nucleotide sequence of mouse solanesinole diphosphate synthase in the GenBank database.
  • mouse liver cDNA library cDNA Library, Mouse Lever, plasmid type (Takara Shuzo)
  • heat treatment at 94 ° C for 2 minutes
  • 1 minute at 94 ⁇ 1 at 56 ° C PCR was performed by repeating the cycle of 2 minutes for 35 minutes from minute to 72, and the amplified DNA was analyzed by 0.7% agarose electrophoresis.
  • the obtained fragment of about 1230 bp was cut out from the gel, purified using a DNA extraction kit (Sephaglas (trademark) BandP repit, manufactured by Amersham Pharmacia Biotech), and then a PCR product direct cloning kit. ( ⁇ T7B1ue TVector Kit, manufactured by NOVAGEN) was used to clone into an E. coli expression vector to obtain: T7-mSDS.
  • a DNA sequencer Type 377, manufactured by PerkinElmer
  • the DNA base sequence was converted to a DNA sequence kit (manufactured by PerkinElmer, AB IPRISM (TM) Big Dye (TM) Te).
  • the reaction was determined by performing the reaction according to the instruction manual using RM inator Cycle Sequence Sequence Reaction Kit With Am1iTaq (registered trademark) DNA po1ymerase, FS). As a result, all sequences existing in the database were obtained.
  • pT7—mSDS was cut with restriction enzymes EcoRI and Sa1I (Takara Shuzo) and 0.8 ° /. After agarose electrophoresis, a fragment of about 1230 bp was excised from the gel and purified using a DNA extraction kit (Sephaglas (trademark) BandPrep Kit, manufactured by Amersham Pharmacia Biotech). The fragment was inserted into the EcoRI-Sa1I site of pBluescript luSK (+) (manufactured by Toyobo).
  • E. co 1 i DH 5 a (p B SD PS) a P ST VD LP 1 was transformed into transformants, transformant E. coli DH with both vectors 5 a (p S TVDL P 1, B SD PS) was obtained. Similarly, the following transformants were obtained.
  • E. coli strain E. coli DH5a (pSTVDLP1, BmSDS1) transformed with pSTVDLP1 and pBmSDS1;
  • E.co 1 i DH5a (p S TVK 28 -mD LP 1, U h DPS 1); p S TVK 28 -mD LP 1 and E. coli strain E.co 1 i DH5a (pST VK 28 -mD LP 1, B m SDS 1) transformed with BmSD S 1; p S TVK 28 -hD LP 1 as well as! ) E. coli strain E. coli DH5a (pSTVK28-hDLP1, UhDPSl) transformed with UhDPS1; pSTVK28-hDLP1 and! E. coli strain E.co1iDH5a (pSTVK28-hDLP1, BmSDS1) transformed with BmSDS1.
  • E. coli DH5a (p S TVD LP 1, B SD PS) was obtained on April 17, 2001 under the accession number F ERM BP—7548.
  • E. co 1 i DH5a (p S TVD LP 1, UhD PS 1) was approved on April 19, 1992 as accession number FE RM BP—800
  • E.coli DH5a (p S TVK 28-mD L P 1, BmSD S 1) was obtained on April 19, 1992, under the accession number F ERM B P—80 27.
  • E.coli i DH5a (pBSDPS), E.coli created in the above example
  • DH5a (p UhDPS1) and E.coli DH5a (pBmSDS1) are 200 ml of LB medium containing 50 ⁇ g / m1 of ampicillin,
  • E. coli DH5a (p S TVD L Pl) is a 200 ml LB medium containing 30 ⁇ g / ml of chloramphenicol,
  • E.coli DH5a (pS TVK28-hDLP1) and E.coliDH5a (pSTVK28-mDLP1) contain 50 ⁇ g / m1 kanamycin
  • E. coli DH5a (pS TVD LP1, BSDPS), E. coli DH5a (pSTVDLP1, pUhDPS1) and E. coli DH5 (pSTVDLP1, BmSDS1) ) Is 200 ml of LB medium containing 30 ⁇ g / m1 of chloramphenicol and 50 ⁇ g / m1 of ampicillin.
  • E. coli DH5a (pS TV28-hD LP1, UhDP Sl), E. coli DH5a (pSTVK28-hDLP1, BmSDS1), E. coli DH5a ( p S TVK 28 -mD LP 1, p UhD PS l) and E.co 1 i DH 5a (p S TVK 28 -mD LP 1, BmSD S 1) are kana mycin 50 / xg / m 1 Incubate overnight at 37 ° C in 200 ml LB medium containing 50 g / ml of ampicillin, and collect the cells by centrifugation (300 rpm, 20 minutes). Was.
  • the cells were added with 3 ml of acetone-methanol (7: 2), sonicated for 30 seconds, and then placed on ice for 30 seconds to perform extraction six times.
  • An extract was obtained by centrifugation (300000 rotations, 5 minutes). After the extract was dried in vacuo, an aqueous solution of 0.7% aqueous sodium chloride with an equivalent volume of lm 1 of chloroform 'methanol (1: 1) was added, and the mixture was stirred well and dissolved. Centrifugation was performed at 0 rpm for 1 minute. The lower layer was extracted, dried, and dissolved in 50 ⁇ l of black-mouthed form'methanol (2: 1). The sample was spotted on a TLC plate and developed with 100% benzene.
  • Koenzaimu Q (among others Koenzaimu Q 9, Koenzaimu Q 10) manufacturing method having the is provided.
  • a eukaryotic origin of enzyme production ⁇ Pi Koe Nzaimu Q 9 it is possible to produce such Koenzaimu Q 10.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

明細書
長鎖プレニル 2燐酸合成酵素の発現方法 技術分野
本発明は、 真核生物由来の長鎖プレニル 2燐酸合成酵素の発現に関与するタン パク質、 該酵素をコードする遺伝子、 該酵素遺伝子を含むベクター、 該ベクター と長鎖プレニル 2燐酸合成酵素遺伝子を含む発現べクターとによつて形質転換さ れた形質転換体、 並びに、 長鎖プレュル 2燐酸合成酵素 (なかでもデカプレニノレ 2燐酸合成酵素、 ソラネシル 2燐酸合成酵素) 及び長鎖イソプレノイドを側鎖に 有するコェンザィム Q (なかでもコェンザィム Q 9、 コェンザィム Q 1 0) の製造 方法に関する。 背景技術
イソプレノイドは多様な化合物群の総称であり、 ステロール、 カロチノイド、 テルペン等が含まれる。 この一群にコェンザィム Qの側鎖を含むプレニル 2燐酸 化合物群があり、 その合成は炭素数 5のィソプレン単位であるィソペンテニル 2 燐酸のプレニル 2燐酸合成酵素による重合的縮合反応により決定される。
それぞれのプレニル 2燐酸合成酵素は大きく 4種類に分類される。
ィソプレン単位 3— 4個の短鎖プレニル 2燐酸合成酵素は、 ホモダイマーとし て触媒機能を有していることが知られている。 例えば、 フアルネシル 2燐酸合成 酵素(Eberthardt. N. L., (1975) J. Biol. Chem. 250, 863-866)、 ゲラニルゲラ二 ル 2燐酸合成酵素(Sagami. H., (1994) J. Biol. Chem. 269, 20561- 20566)等がそ うである。
また、 イソプレン単位 6— 7個の中鎖プレニル 2燐酸合成酵素は、 互いに単独 では触媒活性を持たない 2種類のタンパク質より形成されるへテロ 2量体の酵素 であることが知られている。 例えば、 へキサブレ-ル 2燐酸合成酵素 (Fujii. H. , (1982) J. Biol. Chem. 257, 14610) s ヘプタプレニル 2燐酸合成酵素(Takahash i. I. , (1980) J. Biol. Chem. 255, 4539)がそうである。
さらに、 イソプレン単位 8— 1 0個の長鎖プレ-ル 2燐酸合成酵素については、 原核生物由来の酵素は、 非解離性のホモダイマーでポリプレニル 2燐酸キヤリァ 一タンパク質により活性化される(0hnuma, S., (1991) J. Biol. Chem. , 266, 237 06- 23713)との報告がなされている。 しかしながら、 真核生物由来の長鎖プレエ ル 2燐酸合成酵素については、 現在のところ報告はない。
また、 コェンザィム Qは、 キノン骨格とイソプレノイド側鎖から成り、 細菌や 酵母等の微生物から高等動植物に至るきわめて幅広い生物に広く存在する。 原核 生物では原形質膜に存在し、 細胞膜の安定化やペリプラズマ膜タンパク質のジス ルフィド結合形成の電子受容体として機能し、 真核生物ではミ トコンドリア膜や 細胞質膜に存在し、 ミ トコンドリアの呼吸鎖の電子伝達系及び酸化的憐酸化の必 須因子として、 また抗酸化剤としての機能や生体膜の安定化に寄与している。 このうちイソプレン単位が 8— 1 0個縮合したイソプレノィド側鎖を有するコ ェンザィム Qは、 健康食品等の素材として注目されている。 なかでも、 イソプレ ン単位が 1 0個であるコェンザィム Q 1 0は、 ヒ トが本来有するものであること から特に有用であり、 心臓薬としても使用されている。 .
このコェンザィム 。の製造法は、 タバコ等の植物由来のコェンザィム Qを 単離して、 その側鎖長を合成法により調整する等によって工業的には生産されて いる。
また、 コェンザィム 。は、 細菌や酵母等の微生物から高等動植物に至るき わめて幅広い生物により生産されることが知られているが、 微生物を培養してそ の菌体より本物質を抽出する方法が最も有効な一つの製造法であると考えられ、 実際の工業的な生産にも用いられている。 しかしながら、 これらの方法では、 生 成量が少なかったり操作が煩雑であったりする等、 その生産性は良好とは言い難 レ、。
また、 コェンザィム 。の生合成に関わる遺伝子を単離し、 遺伝子組換え技 術により当該遺伝子を増幅し、 コェンザィム Q 1 0の生産増強に利用する試みも なされている。 生体内において、 コェンザィム Q 1 0は、 多くの酵素が関与した 多段階の複雑な反応によって生成されている。 その生合成経路は、 原核生物と真 核生物では一部異なっているが、 いずれも基本的には大きく 3つのステップ、 す なわち、 コェンザィム Q 1 0のデカプレニル側鎖のもとになるデカプレニル 2燐 酸を合成するステップ、 キノン環のもとになるパラヒドロキシ安息香酸を合成す るステップ、 そして、 これらの 2つの化合物を結合させて置換基を順次変換して コェンザィム 。を完成させるステップよりなっている。 これらの反応の中で、 生合成反応全体の律速であると言われ、 コェンザィム 。の側鎖の長さを決定 している反応、 すなわちデカプレニル 2燐酸合成酵素の反応は最も重要な反応で あると考えられる。
コェンザィム 。を効率よく生産させる為には、 生合成のキー遺伝子である デカプレニル 2燐酸合成酵素の遺伝子を単離して生産増強に利用することが有効 でめると考 られ、 これまでに S c h i z o s a c c h a r omy c e s p o mb e (特開平 9一 1 7 30 76 ) や G 1 u c o n o b a c t e r s u b o x y d a n s (特開平 1 0— 5 707 2) 等いくつかの種類の微生物より、 デカプ レニル 2燐酸合成酵素の遺伝子が分離されて、 コェンザィム Q i。生産に用いる 研究がなされている。 このコェンザィム 。生産の宿主微生物としては、 生産 性、 安全性、 組換え系の整備等から大腸菌等の原核生物を用いることが望まれる。 また、 デカプレニル 2燐酸合成酵素の遺伝子源としては、 コェンザィム Q10 を比較的多量に生産している真核生物も利用可能で、 例えば真菌類が有力な候補 となる。 し力 し、 真菌類に属するデカプレ-ル 2燐酸合成酵素を、 大腸菌等の原 核生物に属する微生物に組み換えたときに、 コェンザィム 。を生成しないか、 又は、 十分な量の生成を見なかった。 この原因としては、 長鎖プレニル 2燐酸合 成酵素の発現が十分でないためと考えられている。 従って、 コェンザィム Q10 を比較的多量に生産している真菌類由来のデカプレニル 2燐酸合成酵素遺伝子を、 原核生物で効率的に発現させる方法の開発が望まれていた。 発明の要約
本宪明は、 真核生物由来の長鎖プレニル 2燐酸合成酵素の発現に関与するタン パク質、 該酵素をコードする遺伝子、 該酵素遺伝子を含むベクター、 該ベクター と長鎮プレニル 2燐酸合成酵素遺伝子を含む発現べクターとによつて形質転換さ れた形質転換体、 並びに、 長鎖プレ-ル 2燐酸合成酵素 (なかでもデカプレニル 2燐酸合成酵素、 ソラネシル 2燐酸合成酵素) 及び長鎖イソプレノイドを側鎖に 有するコェンザィム Q (なかでもコェンザィム Q9、 コェンザィム Q10) の製造 方法を提供することを目的とする。
本発明者らは、 長鎖のプレニル 2燐酸合成酵素を生合成している真核生物群に は、 2種類の形態のプレニル 2燐酸合成酵素が存在していると予想し、 原核生物 である大腸菌で遺伝子組み換え発現が確認された S a i t o e 1 1 a属のような 酵素ではホモ型で発現し、 大腸菌で遺伝子組み換え発現が確認できない S c h i z o s a c c h a r omy c e s属のような酵素ではへテロ型で発現するのでは ないかと考えた。 すなわち、 これら遺伝子組み換え非発現長鎖プレエル 2燐酸合 成酵素遺伝子の発現にかかわる別の遺伝子が存在し、 それと協同することによつ て長鎖プレエル 2燐酸合成酵素遺伝子が発現されるため、 大腸菌のような原核生 物の宿主に、 長鎖プレニル 2燐酸合成酵素遺伝子のみを形質転換するだけでは、 十分な活性が得られないと考えた。
そこで、 真核生物の長鎖プレニル 2燐酸合成酵素遺伝子の活性発現に関わる遺 伝子を単離するための検討を重ね、 S c h i z o s a c c h a r omy c e s属 の微生物、 高等動物のマウス及びヒトから、 真核生物由来の長鎖プレニル 2燐酸 合成酵素遺伝子の大腸菌での発現を増強する遺伝子を単離することに成功し、 本 発明を完成するに至った。
すなわち、 本発明は、 以下の (a) 、 (b) 又は (c) の DNAに関する。 (a) 配列番号 1, 3又は 5に示す塩基配列を有し、 かつ真核生物由来の長鎖プ レニル 2燐酸合成酵素の宿主微生物での活性発現を可能とする或いは増強するタ ンパク質をコードする DN A :
( b ) 配列番号 1, 3又は 5に示す塩基配列において 1若しくは数個の塩基が欠 失、 追加、 揷入及び Z又は置換された塩基配列を有し、 かつ真核生物由来の長鎖 プレ-ル 2燐酸合成酵素の宿主微生物での活性発現を可能とする或いは増強する タンパク質をコードする DNA :
( c ) 配列番号 1, 3又は 5に示す塩基配列からなる DNAとストリンジェント な条件下でハイブリダィズし、 かつ真核生物由来の長鎮プレニル 2燐酸合成酵素 の宿主微生物での活性発現を可能とする或いは増強するタンパク質をコードする DNA。 また、 本発明は、 以下の (d) 又は (e) のタンパク質に関する。
(d) 配列番号 2, 4又は 6に示すアミノ酸配列を有し、 かつ真核生物由来の長 鎖プレニル 2燐酸合成酵素の宿主微生物での活性発現を可能とする或いは増強す るタンパク質:
(e) 配列番号 2, 4又は 6に示すアミノ酸配列において 1若しくは数個のアミ ノ酸が欠失、 追加、 揷入及び/又は置換されたアミノ酸配列からなり、 かつ真核 生物由来の長鎖プレニル 2燐酸合成酵素の宿主微生物での活性発現を可能とする 或いは増強するタンパク質。
さらに、 本発明は、 上記 (d) 又は (e) のタンパク質をコードする DNAに 関する。
また、 本発明は、 発現用ベクターに上記 DNAを組み込んでなる発現ベクター ;発現用ベクターが p STV 28である上記発現ベクター;発現ベクターが p S TVDLP 1である上記発現ベクター;発現ベクターが p STVK28 -mDL P 1である上記発現ベクター;発現ベクターが p STV 28— hDLP 1であ る上記発現ベクターに関する。
さらに、 本発明は、 宿主微生物を上記 DN Aにて形質転換してなる形質転換体 ;宿主微生物を上記発現ベクターにて形質転換してなる形質転換体;宿主微生物 力 E s c h e r i c h i a c o 1 iである上記形質転換体;形質転換体が、 E. c o l i DH5 a (p STVDL P l) (FERM B P— 743 3) で ある上記形質転換体;形質転換体が、 E. c o 1 i DH5 α (p S TVK28 -mD LP 1) である上記形質転換体;形質転換体が、 E. c o 1 i DH 5 α (p S TVK 2 8 -hD L P 1) である上記形質転換体に関する。
また、 本発明は、 真核生物由来の長鎖プレニル 2燐酸合成酵素遺伝子がさらに 導入された上記形質転換体;真核生物由来のプレニル 2燐酸合成酵素遺伝子が、 S c h i z o s a c c h a r omy c e s属ヽ S a i t o e l l a属、 R h o d o t o r u l a¾、 L e u c o s p o r i d i u m 、 A s p e r u g i 丄 l u s属、 B u i 1 e omy c e s属に属する微生物由来の遺伝子、 ヒト由来の遺伝 子、 又は、 マウス由来の遺伝子である上記形質転換体;形質転換体が、 E. c o 1 i DH5 a (p S TVD L P 1 , p B SDP S) (FERM B P— 7 54 8) である上記形質転換体;形質転換体が、 E. c o l i DH 5 a (p S TV D L P 1 , pUhD P S 1) (F ERM B P— 8 0 2 5 ) である上記形質転換 体;形質転換体が、 E. c o l i DH 5 (p S TVD L P 1 , BmSD S 1) である上記形質転換体;形質転換体が、 E. c o l i DH 5 a (p S TV K 2 8 -mD L P 1 , pUhD P S 1) である上記形質転換体;形質転換体が、 E. c o l i DH 5 a (p S TVK 2 8 -mD L P 1 , BmSD S l ) (F ERM B P— 8 0 2 7) である上記形質転換体;形質転換体が、 E. c o l i DH 5 a (p S TVK 2 8 -hD L P 1 , UhD P S l) (F ERM B P - 8 0 2 6) である上記形質転換体;形質転換体が、 E. c o 1 i DH 5 α ( p S TVK 2 8 -hD L P 1 , p Bm S D S 1 ) である上記形質転換体に関する。 さらに、 本発明は、 上記形質転換体を培地中で培養し、 培養物中にコェンザィ ム Qを生成蓄積し、 これを採取することを特徴とするコェンザィム Qの製造方法 に関する。 発明の詳細な開示
以下に、 本発明を詳述する。
本発明の DN Aは、 以下のようにして単離した。
S c h i z o s a c c h a r omy c e s属の染色体ァーターべース力、ら、 S c h i z o s a c c h a r omy c e s属のデカプレニル 2燐酸合成酵素遺伝子 配列を用いて相同性検索を行い、 比較的相同性の高い遺伝子を見いだした。 また、 該遺伝子配列を基に、 マウス及びヒトの染色体データーベースからも比較的相同 性の高い遺伝子を見いだした。
この遺伝子を、 S c h i z o s a c c h a r omy c e s属の染色体から分離 するため、 P CRプライマー N— d 1 p 1 (配列番号 7) と C一 d l p l (配列 番号 8) を合成し、 また、 ヒ ト染色体から分離するため、 hD L P l _N (配列 番号 9) と hD L P l— C (配列番号 1 0) を合成し、 さらに、 マウス染色体か ら分離するため、 mD L P l—N (配列番号 1 1) と mD L P l— C (配列番号 1 2) を合成した。
そしてこれらのプライマーを用いて、 P CRの条件を検討し、 94°Cで 2分間 の熱処理の後、 94 °Cで 1分→ 56 °Cで 1分→ 72でで 2分のサイクルを 25回 繰り返して PCR 行うことにより、 S c h i z o s a c c h a r omy c e s p omb e I F O 1628の染色体遺伝子から約 900 b pの D N Aが、 ヒ ト染色体から約 1 200 b pの DNAが、 マウス染色体から約 1200 b pの D N Aが、 それぞれ増幅してくることを、 その遺伝子の塩基配列を解析することに より明ら力、にした。 得られた DNAの塩基配列を決定したところ、 それぞれ配列 表の配列番号 1、 3及ぴ 5に示した配列を持つことが明らかとなった。
本発明の DN Aは、 真核生物由来の長鎖プレニル 2燐酸合成酵素の宿主微生物 での活性発現を可能とする或いは増強するタンパク質をコードする DN Aであつ て、 配列番号 1、 3又は 5に示す塩基配列を有する DN Aであってもよいし、 ま た、 配列番号 1、 3又は 5に示す塩基配列において 1若しくは数個の塩基が欠失、 追加、 揷入及びノ又は置換された塩基配列を有する DN Aであってもよいし、 さ らに、 配列番号 1、 3又は 5に示す塩基配列からなる DNAとストリンジェント な条件下でハイブリダィズする DN Aであってもよい。
なお、 多くのアミノ酸は 1種以上のコドンで規定される (遺伝暗号の縮重) こ とから、 配列番号 2、 4又は 6に示すァミノ酸配列からなるタンパク質をコード する DN Aとしては、 配列番号 1、 3又は 5に示す塩基配列からなる DN A以外 にも多数存在する。 従って、 本発明の DN Aには、 配列番号 2、 4及び 6で示す アミノ酸配列からなるタンパク質をコードする DNAも含まれる。
ここで、 「1若しくは数個の塩基が欠失、 追加、 揷入及ぴ Z又は置換された塩 基配列」 とは、 蛋白核酸酵素 増刊 遺伝子増幅 PC R法 T.AKKAJ 35 (17) , 295 1-31 78 (1990) 又は H e n r y A. E r 1 i c h 編 加藤郁之進鑑訳 PCRテクノロジー (1990) 等に記載の当業者に周知 の方法により、 欠失、 追加、 揷入及び/又は置換できる程度の数の塩基が、 欠失、 追加、 揷入及ぴ Z又は置換されてなる塩基配列を意味する。
また、 「配列番号 1、 3又は 5に示す塩基配列からなる DNAとストリンジェ ントな条件下でハイブリダィズする DNA」 とは、 配列番号 1、 3又は 5に示す 塩基配列からなる DN Aをプローブとして、 コロエー 'ハイブリダィゼーシヨン 法、 プラーク ■ハイプリダイゼーション法、 又はサザン ·ハイブリダイゼーショ ン法等を用いることにより得られる DNAのことをいう。 当業者であれば、 Mo l e c u l a r C l o n i n g 2 n d E d t. (Co l d S p r i n g Ha r b o r L a b o r a t r y P r e s s, 1 989) に記載されてい る方法に準じて、 該ハイプリダイゼーシヨンを実施して、 目的とする DNAを容 易に取得できる。 例えば、 50°C以上の温度にて、 尿素を含まない S SCの塩濃 度が 0. 5M以下で、 ハイブリダィズすることにより、 目的とする DN Aが得ら れる。
さらに、 「真核生物由来の長鎖プレニル 2燐酸合成酵素の宿主微生物での活性 発現を可能とする或いは増強するタンパク質」 とは、 真核生物由来の長鎖プレニ ル 2燐酸合成酵素遺伝子を導入された宿主微生物内で発現させることによって、 長鎖プレニル 2燐酸合成酵素活性を発現可能とする或いは増強する (高活性化す る) 事により、 該宿主微生物のコェンザィム Q生産量を増加させるタンパク質を 表す。 , このようなタンパク質であるか否かは、 長鎖プレニル 2燐酸合成酵素遺伝子の みで形質転換された形質転換体と、 長鎖プレニル 2燐酸合成酵素遺伝子とともに 該タンパク質をコードする D N Aで形質転換された形質転換体とを調製し、 両形 質転換体の同一条件下でのコェンザィム Q生産量を測定、 比較することにより確 認できる。 つまり、 長鎖プレニル 2燐酸合成酵素遺伝子のみで形質転換された形 質転換体では、 コェンザィム Q生産量は全く或いはほとんどないが、 長鎮プレニ ル 2燐酸合成酵素遺伝子とともに該タンパク質をコードする DN Aで形質転換さ れた形質転換体では、 著量のコェンザィム Qが生産される場合は、 上記タンパク 質に相当するものである。
本宪明のタンパク質は、 真核生物由来の長鎮プレニル 2燐酸合成酵素の宿主微 生物での活性発現を可能とする或いは増強する (高活性化する) タンパク質であ つて、 配列番号 2、 4又は 6に示すアミノ酸配列を有するタンパク質であっても よいし、 また、 配列番号 2、 4又は 6に示すアミノ酸配列において 1若しくは数 個のアミノ酸が欠失、 追加、 揷入及び/又は置換されたアミノ酸配列からなるタ ンパク質であってもよい。
ここで、 「1若しくは数個のアミノ酸が欠失、 追加、 挿入及び/又は置換され たアミノ酸配列」 は、 部分特異的突然変異誘発法等の当業者に周知の方法により、 欠失、 追加、 揷入及び Z又は置換できる程度の数のアミノ酸を、 欠失、 追加、 揷 入及び Z又は置換することにより取得可能である。 具体的には、 Nu c 1 e i c Ac i d R e s. 10, 6487 (1 982) 、 Me t h o d s i n En z ymo 1 o g y 100, 448 (1983) 等の文献に記載されて いる。
本発明のタンパク質を発現させるためには、 適当なプロモーターの下流に該タ ンパク質の遺伝子を接続することが必要である。 例えば該遺伝子を含む DN A断 片を制限酵素によって切り出したり、 PCRによって酵素をコードする遺伝子部 分のみを増幅させたりした後、 これをプロモーターを持つ発現用ベクターに揷入 することにより発現ベクターとすることができる。
本発明の発現べクターは、 発現用べクタ一に上記 D N Aを組み込んでなるもの である。
発現用ベクターとしては特に限定されず、 例えば、 大腸菌由来のプラスミドに、 適当なプロモーターを組み込んだもの等が挙げられる。 大腸菌由来のプラスミド としては、 例えば、 p STV28、 pBR 322、 p B R 325, pUC 1 9、 pUC 1 19等が挙げられる。 また、 プロモーターとしては、 例えば、 T 7プロ モーター、' t r pプロモーター、 t a cプロモーター、 1 a cプロモーター、 λ P Lプロモーター等が挙げられる。
また、 本発明においては、 発現用ベクターとして、 pGEX— 2T、 p GEX — 3T、 p GEX- 3 X (以上、 フアルマシア社製) 、 B l u e s c r i p t I I、 pUC 19 (東洋紡社製) 、 pMALC 2, p ET— 3T、 pUCNT ( WO 94/0361 3に記載) 等を用いることもできる。
このうち、 : STV 28が好適に用いられる。 具体的な例としては、 発現用べ クタ一 p STV28に、 配列番号 1に示す塩基配列からなる D N Aを揷入すれば、 発現べクター p STVDLP lを;配列番号 3に示す塩基配列からなる D N Aを 挿入すれば、 発現ベクター!) STVK28-hDLP 1を;配列番号 5に示す塩 基配列からなる DN Aを揷入すれば、 発現ベクター p STVK28-mDLP 1 を、 それぞれ作製することができる。 本発明の形質転換体は、 宿主微生物を上記 DN Aにて形質転換してなる形質転 換体であってもよいし;また、 宿主微生物を上記発現ベクターにて形質転換して なる形質転換体であってもよいし; さらに、 宿主微生物を、 上記 DNA又は上記 発現べクタ一と共に、 真核生物由来の長鎖プレニル 2燐酸合成酵素遺伝子をさら に用いて形質転換してなる形質転換体であってもよい。
上記の発現ベクターを、 真核生物由来の長鎮プレエル 2燐酸合成酵素遺伝子を 含む発現ベクターと共に適当な宿主微生物に導入することにより、 コェンザィム Qの生産に利用することが可能となる。
長鎖プレニル 2燐酸合成酵素遺伝子源となる真核生物は、 特に制限されないが、 例えば、 デカプレニル 2燐酸合成酵素を生産する S c h i z o s a c c h a r o m y c e s属、 S a i t o e 1 1 a晨、 R h o d o t o r u l aノ禹、 L e u c o s p o r i d i u m厲、 A s p e r u g i 1 1 u s属、 B u l l e omy c e s 属等に属する微生物或いはヒ ト、 又は、 ソラネシル 2燐酸合成酵素を生産するマ ウス等が挙げられる。
宿主微生物としては特に限定されないが、 E s c h e r i c h i a c o 1 i 等が好適に用いられる。 また、 E s c h e r i c h i a c o l iとしては特に 限定されないが、 XL 1— B l u e、 B L— 2 1、 JM1 09、 NM 5 2 2、 D Η5 α、 HB 1 0 1、 DH 5等が挙げられる。 このうち E s c h e r i c h i a c o l i DH 5 が好適に用いられる。
例えば、 S c h i z o s a c c h a r omy c e s属由来のデカプレニノレ 2燐 酸合成酵素遺伝子の発現ベクターと共に、 上記発現ベクター p STVDL P 1を 大腸菌に導入した場合には、 大腸菌が本来は生産しないコェンザィム 。を著 量生産するように変換できる。
本発明の形質転換体としては、 例えば以下に示すもの等が挙げられる。
p STVDLP 1で形質転換した大腸菌株 E. c o l i DH 5 a (p S TVD L P 1) ;
p S TVK28— mDLP 1で形質転換した大腸菌株 E. c o l i ΌΗ5 a ( p S T VK 2 8 -mD L P 1 ) ;
p STVK28— hDLP 1で形質転換した大腸菌株 E. c o l i DH 5 α ( p S TVK 2 8 - hD L P l ) ;
p S TVD L P 1及び p B SD P Sで形質転換した大腸菌株 E. c o l i DH 5 a (p S TVD L P 1 , p B SD P S) ;
p S TVD L P 1及び!) UhD P S 1で形質転換した大腸菌株 E. c o l i D H 5 a (p S T VD L P 1 , UhD P S l ) ;
p S TVD L P 1及ぴ BmSD S 1で形質転換した大腸菌株 E. c o l i D H 5 a (p S T VD L P 1 , p BmSD S l ) ;
p S TVK 2 8 -mD L P 1及び pUhD P S 1で形質転換した大腸菌株 E . c o l i DH 5 a ( p S T V K 2 8— mD L P 1, UhD P S l) ; p S TVK 2 8— mD L P 1及び p BmSD S 1で形質転換した大腸菌株 E. c o l i DH 5 a (p S T V 2 8 -mD L P 1 , BmS D S l) ; p S TVK 2 8— hD L P 1及び pUhD P S 1で形質転換した大腸菌株 E . c o l i DH 5 a (p S TVK 2 8 - hD L P 1 , UhD P S l) ; p S TVK 2 8 -hD L P 1及び p BmSD S 1で形質転換した大腸菌株 E . c o l i DH 5 a (p S TVK 2 8— hD L P l , p BmS D S l) 。
このうち、 E. c o l i DH 5 a (p S TVD L P l) は、 平成 1 3年 1月 1 8日に、 受託番号 F ERM B P— 7 4 3 3として、
E. c o l i DH 5 a (p S TVD L P 1 , p B SD P S) は、 平成 1 3年 4 月 1 7日に、 受託番号 F E RM B P— 7 5 4 8として、
E. c o l i DH 5 a (p S TVD L P 1 , UhD Ρ S 1) は、 平成 1 4年 4月 1 9日に、 受託番号 F ERM B P— 8 0 2 5として、
E. c o l i DH 5 a (p S TVK 2 8 -mD L P 1 , BmSD S l) は、 平成 1 4年 4月 1 9日に、 受託番号 F ERM B P— 8 0 2 7として、 E. c o l i DH 5 a (p S TVK 2 8 -hD L P 1 , U hDP S l) は、 平成 1 4年 4月 1 9日に、 受託番号 F E RM B P— 8 0 2 6として、 それぞれ、 日本国茨城県つくば市東 1丁目 1番地 1中央第 6にある独立行政法人 産業技術総合研究所特許生物寄託センターに寄託されている。
本発明の D N Aは、 真核生物由来の長鎮プレニル 2燐酸合成酵素遺伝子の発現 ベクターと共に用いるほか、 コェンザィム Qの生合成に関与する他の遺伝子も同 時に微生物に導入して発現させることにより、 さらに良い効果が期待できる。 他の遺伝子としては、 例えば、 ポリプレュル 2燐酸転移酵素遺伝子等が挙げら れる。
本発明で得られた形質転換体を、 常法に従い、 培地中で培養し、 培養物中から コェンザィム Qを採取することにより、 コェンザィム Qを製造することができる。 宿主微生物が E s c h e r i c h i a c o l iである場合は、 培地として、 LB培地や、 グルコースやカザミノ酸を含む M 9培地等を用いることができる。 プロモーターを効率よく働かせるために、 例えば、 イソプロピルチオガラクトシ ドゃィンドリル一 3—ァクリル酸のような薬剤を培地に加えてもよい。 培養は、 例えば、 20〜40°C、 好ましくは 30〜 37°C、 より好ましくは 37 °Cで、 1 7〜24時間行い、 この際必要により通気や攪拌等を行ってもよい。
本発明において、 得られたコェンザィム Qは精製を行ってもよく、 粗精製物と して用いてもよく、 用途により適宜選択することができる。
得られた培養物からコェンザィム Qを単離するには、 公知の分離'精製法を適 宜組み合わせることができる。 公知の分離'精製法としては、 イオン交換クロマ トグラフィ一等の荷電の差を利用する方法、 ァフィユティークロマトグラフィー 等の特異的親和性を利用する方法、 逆相高速液体クロマトグラフィー等の疎水性 の差を利用する方法等が挙げられる。
本発明において得られたコェンザィム Qの用途は特に限定されず、 医薬、 食品 等に好適に用いることができる。 図面の簡単な説明
図 1は、 発現ベクター p STVDLP 1の制限酵素地図である。
図 2は、 発現ベクター p STV 28-hDLP 1の制限酵素地図である。 図 3は、 発現ベクター p S T VK 28—mD L P 1の制限酵素地図である。 図 4 _図 8は、 宿主及ぴ形質転換体生産物の HP LC分析チャートである。 発明を実施するための最良の形態
以下に、 実施例を用いて本発明をより詳細に説明するが、 本発明はこれら実施 例に限定されるものではない。 (実施例 1)
S c h i z o s a c c h a r omy c e s p o mb eのデカプレニノレ 2燐酸 合成酵素遺伝子塩基配列を用いて、 S a n g e r C e n t e rのデーターベー スを相同検索した結果、 GENETYX (ソフトウェア開発株式会社) で 26% の相同性のある遺伝子を見いだした。 この遺伝子を取得するための P CRプライ マー、 N— d 1 p 1 (配列番号 7) と C_d 1 p 1 (配列番号 8) を作成した。 また、 S c h i z o s a c c h a r omy c e s p o m b e I FOlり 28 の染色体 DNAを、 C. S. Ho f f ma nらの方法 (Ge n e、 57 (1 98 7) 267- 272) で調製した。 これらを用いて、 94 °Cで 2分間の熱処理の 後、 94。Cで 1分→ 56 °Cで 1分→ 72 °Cで 2分のサイクルを 25回繰り返すこ とにより PCRを行い、 増幅した DNAを 0. 7%ァガロース電気泳動により分 析した。
そして得られた約 900 b pの断片をゲルより切り出して、 DN A抽出キット (S e p h a g l a s (商標) B a n d P r e p K i t、 アマシャムフアル マシアバイオテク社製) を用いて精製した後、 PCR産物ダイレクトクローェン グキット (ρ T 7 B 1 u e T-V e c t o r K i t, NOVAGEN社製) を 用いて大腸菌発現用ベクターにクローユングし、 pT 7—DLP lを得た。 DN A塩基配列を、 DNAシークェンサ一 (377型、 パーキンエルマ一社製) を用 い、 DNAシークェンスキット (パーキンエルマ一社製、 AB I PR I SM ( 商標) B i g D y e (商標) T e rm i n a t o r Cy c l e S e q u e n c e R e a d y Re a c t i o n K i t Wi t h Am 1 i T a q (登録商標) DNA p o 1 yme r a s e、 F S) を使用して、 その取り 扱い説明書に従って反応を行うことにより決定した。 その結果、 データーベース 上に存在する全配列を得ることが出来た。
p T 7-DLP 1を制限酵素 E c o R I及び E c o RV (宝酒造製) で切断し、 0. 8%ァガロース電気泳動を行い、 約 900 b pの断片をゲルより切り出して、 DNA抽出キット (S e p h a g l a s (商標) B a n dP r e p i t, アマシャムフアルマシアバイオテク社製) を用いて精製した後、 この DNA断片 を P STV28 (宝酒造製) の E c oR I— Sma I部位に挿入した。 : DNA塩 基配列を、 DNAシークェンサ一 (377型、 パーキンエルマ一社製) を用い、 DNAシークェンスキット (パーキンエルマ一社製、 AB I PR I SM (商標 ) B i g D y e 、 標) T e rm i n a t o r Cy c l e S e q u e n c e Re a d y R e a c t i o n K i t Wi t h Am 1 i T a q ( 登録商標) DNA p o 1 y me r a s e、 F S) を使用して、 その取り扱い 説明書に従って反応を行うことにより決定した。 その結果、 発現ベクター p ST VDLP 1を得ることが出来た。 図 1に、 発現ベクター p STVDLP 1の制限 酵素地図を示す。
得られた: STVDLP 1で形質転換した大腸菌株 E. c o 1 i DH5 α ( p STVDLP 1) は、 平成 1 3年 1月 18日に、 受託番号 FERM BP— 7 433として、 日本国茨城県つくば市東 1丁目 1番地 1中央第 6にある独立行政 法人産業技術総合研究所特許生物寄託センターに寄託した。
(実施例 2)
実施例 1で取待しァこ S c h i z o s a c c h a r omy c e s p omb eの DLP 1遺伝子塩基配列を用いて、 G e n b a n kのデーターベースを相同検索 した結果、 GENETYX (ソフトウェア開発株式会社) で 27%の相同性のあ る遺伝子を見いだした。 この遺伝子を取得するための PCRプライマー、 hDL P 1— N (配列番号 9) と hDLP l— C (配列番号 10) を作成した。 ヒト肝 臓 c DNAライブラリー (c DNA L i b r a r y, Hum a n L i v e r, プラスミド型 (宝酒造製) ) を錶型として、 94 °Cで 2分間の熱処理の後、 94 。。で 1分→ 56 °Cで 1分→ 72。。で 2分のサイクルを 35回繰り返すことにより PCRを行い、 増幅した DNAを 0. 7 %ァガロース電気泳動により分析した。 そして得られた約 1 200 b pの断片をゲルより切り出して、 DNA抽出キッ ト (S e p h a g l a s (商標) B a n dP r e p K i t、 アマシャムファ ルマシアバイオテク社製) を用いて精製した後、 PCR産物ダイレクトクロー- ングキット (pT7B l u e T— Ve c t o r K i t、 NOV AG EN社製) を用いて大腸菌発現用ベクターにクローユングし、 pT 7— hDLP lを得た。 DNA塩基配列を、 DNAシークェンサ一 (377型、 パーキンエルマ一社製) を用い、 DNAシークェンスキット (パーキンエルマ一社製、 AB I PR I S M (商標) B i g D y e (商標) T e rm i n a t o r Cy c l e S e q u e n c e R e a d y R e a c t i o n K i t W i t h Am 1 i T a q (登録商標) DNA p o l yme r a s e、 F S) を使用して、 その 取り扱い説明書に従って反応を行うことにより決定した。 その結果、 データーべ ース上に存在する全配列を得ることが出来た。
p T 7-hDLP 1を制限酵素 B a mH I及ぴ H i n d DI (宝酒造製) で切断 し、 0. 8%ァガロース電気泳動を行い、 約 1200 b pの断片をゲルより切り 出して、 DNA抽出キット (S e p h a g l a s (商標) B a n d P r e p K i t、 アマシャムフアルマシアバイオテク社製) を用いて精製した後、 この D NA断片を p STV28 (宝酒造製) の B amH I— H i n dll [部位に挿入した。 DNA塩基配列を、 DNAシークェンサ一 (377型、 パーキンエルマ一社製) を用い、 DNAシークェンスキット (パーキンエルマ一社製、 AB I PR I S M (商標) B i g D y e (商標) Te rm i n a t o r Cy c l e S e q u e n c e Re a d y R e a c t i o n K i t Wi t h Am 1 i T a q (登録商標) DNA p o l yme r a s e, F S) を使用して、 その 取り扱い説明書に従って反応を行うことにより決定した。 その結果、 発現べクタ — p STVK28-hDLP 1を得ることが出来た。 図 2に、 発現ベクター p S TVK28— hDLP 1の制限酵素地図を示す。 また、 p STVK28— hDL P 1で形質転換した大腸菌株 E. c o 1 i DH5 a (p STVK28-hDL P 1 ) を得た。 (実施例 3 )
実方也例 1で取得した S c h i z o s a c c h a r omy c e s p omb eの D L P 1遺伝子塩基配列を用いて G e n b a n kのデーターベースを相同検索し た結果、 GENETYX (ソフトウェア開発株式会社) で 31%の相同性のある 遺伝子を見いだした。 この遺伝子を取得するための PC Rプライマー、 mDLP 1— N (配列番号 1 1) と mDLP l— C (配列番号 1 2) を作成した。 マウス 肝)!蔵 c DNAライブラリー (cDNA L i b r a r y^ Mo u s e L i v e r、 プラスミド型 (宝酒造製) ) を铸型として、 94 °Cで 2分間の熱処理の後、 94でで1分→56°〇で1分→72 °Cで 2分のサイクルを 35回繰り返すことに より PCRを行い、 增幅した DNAを 0. 7%ァガロース電気泳動により分析し た。
そして得られた約 1200 b: の断片をゲノレより切り出して、 DNA抽出キッ ト (S e p h a g l a s (商標) B a n dP r e p K i t, アマシャムファ ルマシアバイオテク社製) を用いて精製した後、 PCR産物ダイレクトクローェ ングキット (p T 7 B 1 u e T— V e c t o r K i t, NOVAGEN社製) を用いて大腸菌発現用ベクターにクローニングし、 p T 7-mDLP 1を得た。 DNA塩基配列を、 DNAシークェンサ一 (377型、 パーキンエルマ一社製) を用い、 DNAシークェンスキット (パーキンエルマ一社製、 AB I PR I S M (商標) B i gD y e (商標) T e rm i n a t o r Cy c l e S e q u e n c e Re a d y Re a c t i o n K i t Wi t h Am 1 i T a q (登録商標) DNA p o l yme r a s e, FS) を使用して、 その 取り扱い説明書に従って反応を行うことにより決定した。 その結果、 データーべ ース上に存在する全配列を得ることが出来た。
p T 7 -mD L P 1を制限酵素 E c o R I及び B a mH I (宝酒造製) で切断 し、 0. 8%ァガロース電気泳動を行い、 約 1 200 b pの断片をゲルより切り 出して、 DNA抽出キット (S e p h a g l a s (商標) B a n d P r e p K i t、 アマシャムフアルマシアバイオテク社製) を用いて精製した後、 この D NA断片をp STV28 (宝酒造製) の E c o R I— B amH I部位に揷入した。 DNA塩基配列を、 DNAシークェンサ一 (377型、 パーキンエルマ一社製) を用い、 DNAシークェンスキット (パーキンエルマ一社製、 AB I PR I S M (商標) B i g D y e (商標) Te rm i n a t o r Cy c l e S e q u e n c e Re a d y Re a c t i o n K i t Wi t h Am 1 i T a q (登録商標) DNA p o 1 y m e r a s e、 F S ) を使用して、 その 取り扱い説明書に従って反応を行うことにより決定した。 その結果、 発現べクタ - STVK28 -mD L P 1を得ることが出来た。 図 3に、 発現べクター p S TVK2 8— mDLP 1の制限酵素地図を示す。 また、 p STVK28— mDL P 1で形質転換した大腸菌株 E. c o l i DH5 (p STV 28 -mDL P 1 ) を得た。
(実施例 4)
S c h i z o s a c c h a r omy c e s p omb eの c D N A由来のァカ プレ-ル 2燐酸合成酵素遺伝子を持つ p KS 1 8 (S u z u k i K. , J . Β i o c h em. 1 2 1, 4 9 6— 505 (1 9 9 7) ) から、 プライマー Ν— d p s (配列番号 1 3) と C— d p s (配列番号 1 4) を用い、 94 °Cで 2分間の 熱処理の後、 94°( で1分→5 6 で1分→72 °Cで 2分のサイクルを 2 5回繰 り返すことにより PCRを行い、 増幅した DNAを 0. 7%ァガロース電気泳動 により分析した。
そして得られた約 1 1 00 b pの断片をゲルより切り出して、 DNA抽出キッ ト (S e p h a g l a s (商標) B a n d P r e p K i t、 アマシャムファ ルマシアバイオテク社製) を用いて精製した後、 大腸菌発現ベクター B 1 u e s c r i p t nの S a i l— P s t I部位に揷入し、 発現ベクター p B SD P S を得た。 このベクターで大腸菌 DH 5 αを形質転換し、 E. c o l i DH 5 a (p B SD P S) を得た。
さらに、 この形質転換体に p STVDL P 1を形質転換し、 クロラムフエュコ ール 30 μ gZm 1かつアンピシリン 50 X g/m 1でスクリ一二ングして、 両 ベクターを持つ E. c o l i DH 5 a (p STVDLP 1 , p B SDP S) を 得た。 (実施例 5 )
G e n b a n kのデーターベース上のヒ トのデカプレニル 2燐酸合成酵素の塩 基配列を基に、 PCRプライマー、 hDP S l—N (配列番号 1 5) と hDP S 1— C (配列番号 1 6) を作成した。 ヒト肝臓 c DNAライブラリー (c DNA
L i b r a r y、 Huma n L i v e r、 プラスミ ド型 (宝酒造製) ) を铸 型として、 94。Cで 2分間の熱処理の後、 94 °Cで 1分→ 5 6でで 1分→ 7 2°C で 2分のサイクルを 3 5回繰り返すことにより P CRを行い、 増幅した DN Aを 0. 7%ァガロース電気泳動により分析した。
そして得られた約 1 2 5 0 b pの断片をゲルより切り出して、 DNA抽出キッ ト (S e p h a g l a s (商標) B a n d P r e p K i t、 アマシャムファ ルマシアバイオテク社製) を用いて精製した後、 PCR産物ダイレクトクローニ ングキット (p T 7 B 1 u e T-V e c t o r K i t, NOVAGEN社製) を用いて大腸菌発現用ベクターにクローニングし、 p T 7— hDP S lを得た。 DNA塩基配列を、 DNAシークェンサ一 (3 7 7型、 パーキンエルマ一社製) を用い、 DNAシークェンスキット (パーキンエルマ一社製、 AB I PR I S M (商標) B i g D y e (商標) T e rm i n a t o r Cy c l e S e q u e n c e R e a d y R e a c t i o n K i t W i t h Amp l i T a q (登録商標) DNA p o l yme r a s e, F S) を使用して、 その 取り扱い説明書に従って反応を行うことにより決定した。 その結果、 データーべ ース上に存在する全配列を得ることが出来た。
p T 7-hDP S 1を制限酵素 S a 1 I及び B a mH I (宝酒造製) で切断し、 0. 8%ァガロース電気泳動を行い、 約 1 25 0 b pの断片をゲルより切り出し て、 DNA抽出キット (S e p h a g l a s (商標) B a n d P r e p K i t、 アマシャムファ ^ ^マシアバイオテク社製) を用いて精製した後、 この DNA 断片を pUC 1 1 9 (宝酒造製) の S a l I— B a mH I部位に挿入した。 DN A塩基配列を、 DNAシークェンサ一 (3 77型、 パーキンエルマ一社製) を用 い、 DNAシークェンスキット (パーキンエルマ一社製、 AB I PR I SM ( 商標) B i g D y e (商標) T e rm i n a t o r Cy c l e S e q u e n c e R e a d y R e a c t i o n K i t W i t h Am 1 i T a q (登録商標) DNA p o 1 yme r a s e、 F S) を使用して、 その取り 扱い説明書に従って反応を行うことにより決定した。 その結果、 発現ベクター P UhDP S 1を得ることが出来た。 このベクターで大腸菌 DH 5 αを形質転換し、 E. c o l i DH 5 a (pUhDP S 1) を得た。 (実施例 6 )
G e n b a n kのデーターベース上のマウスのソラネシノレ 2燐酸合成酵素の塩 基配列を基に、 PCRプライマー、 mSDS— N (配列番号 1 7) と mSDS— C (配列番号 18) を作成した。 マウス肝臓 c DNAライブラリー (cDNA L i b r a r y、 Mo u s e L i v e r、 プラスミド型 (宝酒造製) ) を铸型 として、 94 °Cで 2分間の熱処理の後、 94でで 1分→ 56 °Cで 1分→ 72でで 2分のサイクルを 35回繰り返すことにより PCRを行い、 增幅した DNAを 0. 7%ァガロース電気泳動により分析した。
そして得られた約 1230 b pの断片をゲルより切り出して、 DNA抽出キッ ト (S e p h a g l a s (商標) B a n dP r e p i t, アマシャムファ ルマシアバイオテク社製) を用いて精製した後、 PCR産物ダイレクトクローニ ングキット (ρ T 7 B 1 u e T-V e c t o r K i t, NOVAGEN社製) を用いて大腸菌発現用ベクターにクローユングし、 : T 7—mSDSを得た。 D NA塩基配列を、 DNAシークェンサ一 (377型、 パーキンエルマ一社製) を 用い、 DNAシークェンスキッ ト (パーキンエルマ一社製、 AB I PR I SM (商標) B i g D y e (商標) T e rm i n a t o r Cy c l e S e q u e n c e Re a d y R e a c t i o n K i t Wi t h Am 1 i T a q (登録商標) DNA p o 1 y m e r a s e、 F S ) を使用して、 その取 り扱い説明書に従って反応を行うことにより決定した。 その結果、 データーベー ス上に存在する全配列を得ることが出来た。
pT 7— mSDSを制限酵素 E c oR I及び S a 1 I (宝酒造製) で切断し、 0. 8°/。ァガロース電気泳動を行い、 約 1230 b pの断片をゲルより切り出し て、 DNA抽出キット (S e p h a g l a s (商標) B a n dP r e p K i t、 アマシャムフアルマシアバイオテク社製) を用いて精製した後、 この DNA 断片を pB l u e s c r i p t Π SK ( + ) (東洋紡製) の E c o R I— S a 1 I部位に挿入した。 DNA塩基配列を、 DNAシークェンサ一 (377型、 パー キンエルマ一社製) を用い、 DN.Aシークェンスキット (パーキンエルマ一社製、 AB I PR I SM (商標) B i gDy e (商標) T e rm i n a t o r Cy c l e S e n u e n c e R e a d y R e a c t i o n K i t W i t h Am p i i T a q (登録商標) DNA p o l ym e r a s e , F S) を使用して、 その取り扱い説明書に従って反応を行うことにより決定した。 その 結果、 発現ベクター p BmSD S 1を得ることが出来た。 このベクターで大腸菌 DH 5 αを形質転換し、 E. c o l i D H 5 α ( p B m S D S 1 ) を得た。
(実施例 7)
実施例 4力 ら 6で構築した長鎖プレニル 2燐酸合成酵素発現べクタ一を形質転 換した E. c o l i DH 5 (p B S D P S) , Ε. c o l i DH 5 a (p
UhD P S 1) 、 E. c o l i DH 5 a (p BmSD S l) 形質転換体に、 実 施例 1から 3で構築した活性増強タンパク質を発現する発現ベクターをいろいろ 組み合わせて、 さらに形質転換した。
例えば、 実施例 4に記載のように、 E. c o 1 i DH 5 a (p B SD P S) 形質転換体に P S T VD L P 1を形質転換し、 両ベクターを持つ形質転換体 E. c o l i DH 5 a (p S TVDL P 1 , B SD P S) を得た。 これと同様に して、 さらに以下に示す形質転換体を得た。
p S TVD L P 1及ぴ pUhD P S 1で形質転換した大腸菌株 E. c o l i D
H 5 a (p S T VD L P 1 , U h D P S 1 ) ;
p S TVDL P 1及び p BmSD S 1で形質転換した大腸菌株 E. c o l i D H 5 a (p S T VD L P 1 , BmSD S 1 ) ;
p S TVK 2 8— mD L P 1及ぴ pUhD P S 1で形質転換した大腸菌株 E. c o 1 i DH 5 a (p S TVK 2 8 -mD L P 1 , U h D P S 1 ) ; p S TVK 2 8 -mD L P 1及ぴ] BmSD S 1で形質転換した大腸菌株 E . c o 1 i DH 5 a (p S T VK 2 8 -mD L P 1 , B m S D S 1 ) ; p S TVK 2 8 -hD L P 1及び!) UhD P S 1で形質転換した大腸菌株 E . c o l i DH 5 a ( p S T V K 2 8 - h D L P 1 , U hD P S l ) ; p S TVK 2 8 -hDL P 1及び!) BmSD S 1で形質転換した大腸菌株 E . c o 1 i DH 5 a (p S TVK 2 8 - hD L P 1 , BmS D S 1 ) 。
このうち、 E. c o l i DH5 a (p S TVD L P 1 , B SD P S) は、 平成 1 3年 4月 1 7日に、 受託番号 F ERM B P— 7 5 4 8として、 E. c o 1 i DH5 a (p S TVD L P 1, UhD P S 1 ) は、 平成 1 4年 4月 1 9日に、 受託番号 F E RM B P— 8 0 2 5として、
E. c o l i DH5 a (p S TVK 2 8— mD L P 1 , BmSD S 1) は、 平成 1 4年 4月 1 9日に、 受託番号 F E RM B P— 8 0 2 7として、
E. c o l i DH 5 o; (r) S TVK 2 8—hD L P l , p UhD P S l ) は、 平成 1 4年 4月 1 9日に、 受託番号 F ERM B P— 8 0 2 6として、 それぞれ、 日本国茨城県つくば市東 1丁目 1番地 1中央第 6にある独立行政法人 産業技術総合研究所特許生物寄託センターに寄託した。 (実施例 8)
上記実施例で作成した E. c o l i DH 5 a (p B SD P S) 、 E. c o l
1 DH 5 a (p UhD P S 1) 及び E. c o l i DH 5 a (p BmSD S 1 ) は、 アンピシリン 5 0 μ g/m 1を含む 2 0 0 m lの L B培地で、
E. c o l i DH5 a (p S TVD L P l) は、 クロラムフエ二コール 3 0 μ g/m 1を含む 2 0 0m 1の L B培地で、
E. c o l i DH 5 a (p S TVK 2 8 -hD L P 1) 及び E. c o l i D H 5 a (p S TVK 2 8 -mD LP 1 ) は、 カナマイシン 5 0 μ g/m 1を含む
2 0 0m lの L B培地で、
E. c o l i DH5 a (p S TVD L P 1 , B SD P S) 、 E. c o l i DH 5 a (p S TVD L P l , pUhD P S 1 ) 及び E. c o l i DH 5 ( p S TVD L P l , BmSD S 1) は、 クロラムフエ二コール 30 μ g /m 1 及びアンピシリン 5 0 μ g/m 1を含む 2 0 0 m lの L B培地で、
E. c o l i DH 5 a (p S TV 2 8 -hD L P 1 , UhDP S l ) 、 E. c o l i DH 5 a (p S TVK2 8 -hDL P 1 , BmSD S 1) 、 E. c o l i DH 5 a (p S TVK 2 8 -mD L P 1, p UhD P S l) 及び E. c o 1 i DH 5 a (p S TVK 2 8 -mD L P 1 , BmSD S 1) は、 カナマ イシン 5 0 /x g /m 1及ぴァンピシリン 5 0 g /m 1を含む 200 m 1の L B 培地で、 それぞれ 3 7 °Cで一晩振とう培養し、 菌体を遠心分離 (3 0 0 0回転、 2 0分間) で集めた。 この菌体に 3m 1のアセトン 'メタノール (7 : 2) を添カ卩して、 3 0秒間超 音波破砕をした後、 3 0秒間氷中に置く処理を 6回繰り返すことにより抽出を行 い、 遠心分離 (3 00 0回転、 5分間) して抽出液を得た。 この抽出液を真空乾 燥させた後、 l m 1のクロ口ホルム 'メタノール (1 : 1 ) と等量の 0. 7%塩 化ナトリゥム水溶液を加えて、 よく攪拌して溶解させ、 1 4 0 0 0回転で 1分間 遠心分離した。 下層を抜き出して乾燥させ、 5 0 μ Iのクロ口ホルム 'メタノー ル (2 : 1 ) に溶解させた。 この試料を T LCプレートにスポット後、 ベンゼン 1 0 0 %で展開した。 標準としてコェンザィム Q10を展開したスポットと同じ くらいの位置のシリカゲルをかき取り、 400 μ 1のクロロホルム .メタノール (1 : 1) で抽出した。 この内の 2 0 μ 1を高速液体クロマトグラフィー (島津 製作所製、 L C - 1 0 Α) により分析した。 分離には逆相カラム (YMC— p a c k OD S-A 2 5 0 X 4. 6 mmN S— 5 μπι、 1 2 0 A) を用い、 エタ ノール 1 0 0%を移動相の溶媒として使用して分離させ、 2 7 5 nmの波長の吸 光度で、 生成したコェンザィム Q 9及びコェンザィム 。を検出した。 結果を図 4— 8に示す。 図 4— 8に示すように、 各 DL P 1遺伝子をプレニル 2燐酸合成 酵素遺伝子と共に導入して発現させることによって、 プレエル 2憐酸合成酵素遺 伝子単独で形質転換した大腸菌では発現しないコェンザィム Q 9或いはコェンザ ィム Q10を、 生産するようになったことが分かった。 産業上の利用可能性
本発明により、 真核生物由来の長鎖プレニル 2燐酸合成酵素の発現に関与する タンパク質、 該酵素をコードする遺伝子、 該酵素遺伝子を含むベクター、 該べク ターと長鎮プレニル 2燐酸合成酵素遺伝子を含む発現べクターとによつて形質転 換された形質転換体、 並びに、 長鎖プレニル 2燐酸合成酵素 (なかでもデカプレ ニル 2燐酸合成酵素、 ソラネシル 2燐酸合成酵素) 及び長鎖ィソプレノイドを側 鎖に有するコェンザィム Q (なかでもコェンザィム Q9、 コェンザィム Q10) の 製造方法が提供される。 また、 本発明により、 真核生物由来の酵素生産及ぴコェ ンザィム Q 9、 コェンザィム Q10等の生産をすることができる。

Claims

請求の範囲
1. 以下の (a) 、 (b) 又は (c) の DNA:
(a) 配列番号 1, 3又は 5に示す塩基配列を有し、 かつ真核生物由来の長鎖プ レニル 2燐酸合成酵素の宿主微生物での活性発現を可能とする或いは増強するタ ンパク質をコードする DNA:
(b) 配列番号 1, 3又は 5に示す塩基配列において 1若しくは数個の塩基が欠 失、 追加、 挿入及び Z又は置換された塩基配列を有し、 かつ真核生物由来の長鎖 プレュル 2燐酸合成酵素の宿主微生物での活性発現を可能とする或いは増強する タンパク質をコードする DNA :
( c ) 配列番号 1, 3又は 5に示す塩基配列からなる DNAとス トリンジェント な条件下でハイブリダィズし、 かつ真核生物由来の長鎖プレニル 2燐酸合成酵素 の宿主微生物での活性発現を可能とする或いは増強するタンパク質をコードする DNA。
2. 以下の (d) 又は (e) のタンパク質:
(d) 配列番号 2, 4又は 6に示すアミノ酸配列を有し、 かつ真核生物由来の長 鎖プレニル 2燐酸合成酵素の宿主微生物での活性発現を可能とする或いは増強す るタンパク質:
( e ) 配列番号 2, 4又は 6に示すァミノ酸配列において 1若しくは数個のァミ ノ酸が欠失、 追加、 揷入及び/又は置換されたアミノ酸配列からなり、 かつ真核 生物由来の長鎖プレニル 2燐酸合成酵素の宿主微生物での活性発現を可能とする 或いは増強-
3. 請求の範囲 2記載のタンパク質をコードする DNA。
4. 発現用ベクターに請求の範囲 1又は 3記載の DN Aを組み込んでなる発現 ベクター。
5. 発現用ベクターが p S TV 2 8である請求の範囲 4記載の発現ベクター。
6. 発現ベクターが!) S TVD L P 1である請求の範囲 5記載の発現ベクター。
7. 発現ベクターが p S TVK2 8—mD L P 1である請求の範囲 5記載の発 現ベクター。
8. 発現ベクターが p S TVK2 8 -hD L P 1である請求の範囲 5記載の発 現ベクター。
9. 宿主微生物を請求の範囲 1又は 3記載の DNAにて形質転換してなる形質 転換体。
1 0. 宿主微生物を請求の範囲 4、 5、 6、 7又は 8記載の発現ベクターにて 形質転換してなる形質転換体。
1 1. 宿主微生物が、 E s c h e r i c h i a c o l iである請求の範囲 9 又は 1 0記載の形質転換体。
1 2. 形質転換体が、 E. c o l i DH 5 a (p S TVD LP 1 ) (F ER M B P— 7 4 3 3) である請求の範囲 1 1記載の形質転換体。
1 3. 形質転換体が、 E. c o l i DH5 a (p S TVK 28 -mD L P 1 ) である請求の範囲 1 1記載の形質転換体。
1 4. 形質転換体が、 E. c o l i DH5ひ (p S TVK 28 - DL P 1 ) である請求の範囲 1 1記載の形質転換体。
1 5. 真核生物由来の長鎮プレニル 2燐酸合成酵素遺伝子がさらに導入された 請求の範囲 9, 1 0, 1 1、 1 2、 1 3又は 1 4記載の形質転換体。
1 6. 真核生物由来のプレ-ル 2燐酸合成酵素遺伝子が、 S c h i z o s a c c h a r omy c e s属、 S a i t o e l l a j¾N Rh o d o t o r u l a fes L e u c o s p o r i d i um 、 A s p e r u g i 丄 l u s厲ヽ B u i 1 e o my c e s属に属する微生物由来の遺伝子、 ヒト由来の遺伝子、 又は、 マウス由 来の遺伝子である請求の範囲 1 5記載の形質転換体。
1 7. 形質転換体が、 E. c o 1 i DH5 a (p S TVDLP l , p B SD P S) (FERM B P— 7548) である請求の範囲 1 5記載の形質転換体。
1 8. 形質転換体が、 E. c o l i DH5ひ (p S TVDLP l, pUhD P S 1) (FERM B P— 802 5) である請求の範囲 1 5記載の形質転換体。
1 9. 形質転換体が、 E. c o l i DH5 t¾ (p STVDLP l , p BmS D S 1) である請求の範囲 1 5記載の形質転換体。
20. 形質転換体が、 E. c o l i DH5 a (p S TVK 28 -mD L P 1 , p UhD P S 1) である請求の範囲 1 5記載の形質転換体。
2 1. 形質転換体が、 E. c o l i DH5 a (p STVK28-mDL P 1 , p BmSD S 1) (FERM B P— 8027 ) である請求の範囲 1 5記載の形 質転換体。
2 2. 形質転換体が、 E. c o l i DH5 a (p STVK28-hDL P 1 , pUhDP S 1) (FERM B P— 8◦ 26 ) である請求の範囲 1 5記載の形 質転換体。
2 3. 形質転換体が、 E. c o l i DH 5 a (p S TVK 28-hDL P 1 , p BmSD S 1) である請求の範囲 1 5記載の形質転換体。
24. 請求の範囲 1 5〜 23のいずれかに記載の形質転換体を培地中で培養し、 培養物中にコェンザィム Qを生成蓄積し、 これを採取することを特徴とするコェ ンザィム Qの製造方法。
PCT/JP2002/004566 2001-05-11 2002-05-10 Method of expressing long-chain prenyl diphosphate synthase WO2002092811A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA002444977A CA2444977A1 (en) 2001-05-11 2002-05-10 Method of expressing long-chain prenyl diphosphate synthase
JP2002589678A JP4271948B2 (ja) 2001-05-11 2002-05-10 長鎖プレニル2燐酸合成酵素の発現方法
EP02769565A EP1386964A4 (en) 2001-05-11 2002-05-10 EXPRESSION PROCESS FOR LONG-TERM PRENYL DIPHOSPHATE SYNTHASE
US10/477,269 US7402413B2 (en) 2001-05-11 2002-05-10 Method of expressing long-chain prenyl diphosphate synthase
NO20034994A NO20034994D0 (no) 2001-05-11 2003-11-10 Fremgangsmåte for å uttrykke langkjedet prenyldifosfatsyntese
US12/139,175 US8163525B2 (en) 2001-05-11 2008-06-13 Method of expressing long-chain prenyl diphosphate synthase

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001140977 2001-05-11
JP2001-140977 2001-05-11

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US10477269 A-371-Of-International 2002-05-10
US12/139,175 Division US8163525B2 (en) 2001-05-11 2008-06-13 Method of expressing long-chain prenyl diphosphate synthase

Publications (1)

Publication Number Publication Date
WO2002092811A1 true WO2002092811A1 (en) 2002-11-21

Family

ID=18987493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/004566 WO2002092811A1 (en) 2001-05-11 2002-05-10 Method of expressing long-chain prenyl diphosphate synthase

Country Status (7)

Country Link
US (2) US7402413B2 (ja)
EP (1) EP1386964A4 (ja)
JP (1) JP4271948B2 (ja)
CA (1) CA2444977A1 (ja)
CZ (1) CZ20033381A3 (ja)
NO (1) NO20034994D0 (ja)
WO (1) WO2002092811A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9127286B2 (en) 2009-02-25 2015-09-08 Hitachi Zosen Corporation Long-chain trans-prenyl diphosphate synthase gene

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002191367A (ja) * 2000-12-27 2002-07-09 Kanegafuchi Chem Ind Co Ltd コエンザイムq10の製造法
WO2009114939A1 (en) 2008-03-17 2009-09-24 National Research Council Of Canada Aromatic prenyltransferase from hop
US11471426B2 (en) 2019-10-16 2022-10-18 American River Nutrition, Llc Compositions comprising quinone and/or quinol and methods of preparations and use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001014567A1 (fr) * 1999-08-24 2001-03-01 Kaneka Corporation Processus de production de coenzymes q¿10?
US6225097B1 (en) * 1997-09-17 2001-05-01 Toyota Jidosha Kabushiki Kaisha Decaprenyl diphosphate synthetase gene
JP2002191367A (ja) * 2000-12-27 2002-07-09 Kanegafuchi Chem Ind Co Ltd コエンザイムq10の製造法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09173076A (ja) 1995-12-27 1997-07-08 Alpha- Shokuhin Kk 異種ユビキノンの生成方法
JPH1057072A (ja) 1996-08-22 1998-03-03 Alpha- Shokuhin Kk ユビキノン−10の生成方法
JPH11178590A (ja) 1997-09-17 1999-07-06 Toyota Motor Corp デカプレニル二リン酸合成酵素遺伝子
DE60134567D1 (de) * 2000-11-20 2008-08-07 Kaneka Corp Verfahren zur herstellung von coenzym q 10
US6783969B1 (en) * 2001-03-05 2004-08-31 Nuvelo, Inc. Cathepsin V-like polypeptides
JP2002345469A (ja) * 2001-04-25 2002-12-03 Kanegafuchi Chem Ind Co Ltd コエンザイムq10の製造法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6225097B1 (en) * 1997-09-17 2001-05-01 Toyota Jidosha Kabushiki Kaisha Decaprenyl diphosphate synthetase gene
WO2001014567A1 (fr) * 1999-08-24 2001-03-01 Kaneka Corporation Processus de production de coenzymes q¿10?
JP2002191367A (ja) * 2000-12-27 2002-07-09 Kanegafuchi Chem Ind Co Ltd コエンザイムq10の製造法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
OKADA K. ET AL.: "Cloning of the sdsA gene encoding solanesyl diphosphate synthase from phodobacter capsulatus and its functional expression in escherichia coli and saccharomyces cerevisiae", J. BACTERIOL., vol. 179, no. 19, October 1997 (1997-10-01), pages 5992 - 5998, XP002957170 *
OKADA K. ET AL.: "Molecular cloning and mutational analysis of the ddsA gene encoding decaprenyl diphosphate synthase from gluconobacter suboxydans", EUR. J. BIOCHEM., vol. 255, April 1998 (1998-04-01), pages 52 - 59, XP002928524 *
See also references of EP1386964A4 *
SUZUKI K. ET AL.: "Analysis of the decaprenyl diphosphate synthase (dps) gene in fission yeast suggests a role of ubiquinone as an antioxidant", J. BIOCHEM., vol. 121, no. 3, March 1997 (1997-03-01), pages 496 - 505, XP002935174 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9127286B2 (en) 2009-02-25 2015-09-08 Hitachi Zosen Corporation Long-chain trans-prenyl diphosphate synthase gene

Also Published As

Publication number Publication date
CZ20033381A3 (cs) 2004-04-14
US8163525B2 (en) 2012-04-24
EP1386964A4 (en) 2005-05-04
US7402413B2 (en) 2008-07-22
JP4271948B2 (ja) 2009-06-03
CA2444977A1 (en) 2002-11-21
US20040137567A1 (en) 2004-07-15
JPWO2002092811A1 (ja) 2004-09-02
NO20034994D0 (no) 2003-11-10
US20090130727A1 (en) 2009-05-21
EP1386964A1 (en) 2004-02-04

Similar Documents

Publication Publication Date Title
EP1778843B1 (en) Production of isoprenoids
KR101983115B1 (ko) 사프란 화합물의 재조합 생성을 위한 방법 및 물질
JP3979678B2 (ja) 新規糖転移酵素及びそれをコードする遺伝子並びに該酵素の製造方法
Okada et al. Molecular cloning and mutational analysis of the ddsA gene encoding decaprenyl diphosphate synthase from Gluconobacter suboxydans
JP4606419B2 (ja) ウリジン5’−ジリン酸−n−アセチルガラクトサミンの製造法
US20090226986A1 (en) Production of Coenzyme Q-10
US8163525B2 (en) Method of expressing long-chain prenyl diphosphate synthase
US20080064074A1 (en) Process for producing coenzyme q10
Toraya et al. Diol dehydratase-reactivase is essential for recycling of coenzyme B12 in diol dehydratase
JP4307609B2 (ja) コエンザイムq10の製造法
JP3941998B2 (ja) コエンザイムq10の製造法
KR20240032944A (ko) 람노스가 고도로 특이적인 글리코실트랜스퍼라제 및 이의 응용
KR20190097250A (ko) 신규한 효소를 사용한 메틸글리옥살의 히드록시아세톤으로의 전환 및 그의 적용
JPH11178590A (ja) デカプレニル二リン酸合成酵素遺伝子
WO2002088365A1 (fr) Procede de production de coenzyme q¿10?
US20040157286A1 (en) Process for producing coenzymes q10
JP3335287B2 (ja) ヘキソキナーゼ遺伝子
JPH10309193A (ja) 哺乳類セレノシステイン含有タンパク質の大腸菌での製造法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CZ JP NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002589678

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2444977

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002769565

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PV2003-3381

Country of ref document: CZ

WWP Wipo information: published in national office

Ref document number: 2002769565

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10477269

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: PV2003-3381

Country of ref document: CZ

WWR Wipo information: refused in national office

Ref document number: PV2003-3381

Country of ref document: CZ