WO2002090917A2 - Test-leakage device - Google Patents

Test-leakage device Download PDF

Info

Publication number
WO2002090917A2
WO2002090917A2 PCT/EP2002/004902 EP0204902W WO02090917A2 WO 2002090917 A2 WO2002090917 A2 WO 2002090917A2 EP 0204902 W EP0204902 W EP 0204902W WO 02090917 A2 WO02090917 A2 WO 02090917A2
Authority
WO
WIPO (PCT)
Prior art keywords
silicon oxide
test
membrane
test gas
leak
Prior art date
Application number
PCT/EP2002/004902
Other languages
German (de)
French (fr)
Other versions
WO2002090917A3 (en
Inventor
Ludolf Gerdau
Rudi Widt
Original Assignee
Inficon Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inficon Gmbh filed Critical Inficon Gmbh
Publication of WO2002090917A2 publication Critical patent/WO2002090917A2/en
Publication of WO2002090917A3 publication Critical patent/WO2002090917A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/207Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material calibration arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/007Leak detector calibration, standard leaks

Definitions

  • the invention relates to a test leak device with a test gas storage and a test gas outlet.
  • Test leak devices generate a flow of a test gas, the size of which is known as precisely as possible, the size of which is called the leak rate.
  • Test leak devices are used to check and adjust leak detectors. Mass spectrometers, for example, serve as leak detection devices for detecting the test gas.
  • the test leak device supplies the leak detector with a known test leakage current, the leak rate measurement value output by the leak detector being compared and compared with the known leak rate of the test leak device.
  • a known test leak device is the diffusion test leak device, in which the test gas flows through a gas-permeable membrane with a constant leak rate due to a pressure drop. The leak rate can only be changed by changing the gas pressure difference, which is slow and time-consuming.
  • test leak device which uses a capillary for the defined test gas delivery through which the test gas coexists constant leak rate flows through.
  • the leak rate is largely fixed, whereby there is always the risk that the sensitive capillary clogs and then allows no or only a greatly reduced test gas flow to pass.
  • the object of the invention is to improve the controllability of the test gas flow in a test leak device.
  • the test leak device has a test gas storage and a test gas outlet.
  • the test gas outlet is closed by a membrane • made of silicon oxide, which can be heated by a heating device.
  • Silicon oxide is permeable to small molecular gases, but the gas permeability depends on the temperature of the silicon oxide. While the silicon oxide is almost impermeable to a small molecular test gas at room temperature, it is more ten decades more permeable to such a gas at a temperature of approx. 700 ° C.
  • a test gas flow with a leak rate of 10 -11 to 10 ⁇ 4 mbar'l's -1 can be set over a temperature range of approx. 700 K. When the temperature of the silicon oxide membrane is constant, the test gas flow is also very constant.
  • test gas zero flow can be realized as well as very small constant test gas flows.
  • rapid heating and / or cooling of the silicon oxide membrane can also produce a test gas stream modulated with 1 to 2 Hz.
  • Pure helium is preferably used as the test gas, but other small molecular gases can also be used.
  • the flow rate of the test gas through the silicon oxide membrane depends on the test gas pressure in the test gas storage. finally depends on the temperature of the silicon oxide membrane.
  • the test gas flow rate or the leak rate can thus be controlled and reproduced exactly over a wide range via the temperature of the silicon oxide membrane.
  • the membrane is a silicon oxide wafer which, for reasons of stability, has a basic thickness of 1 to 2 mm and which has a plurality of windows with a material thickness of less than 20 ⁇ m.
  • the gas permeability of silicon oxide with a material thickness of 1 to 2 mm is low, so that the thin-walled windows. must be seen through which the test gas can pass.
  • the supporting structure is formed by the areas with a material thickness of 1 to 2 mm. In this way, by providing a large number of windows, a very large gas-permeable surface can be formed in the mechanically nevertheless stable silicon oxide pane.
  • the window panes are preferably approximately round and have a diameter of less than 2.0 mm.
  • the heating device is preferably an electrical heating coil on the silicon membrane or wafer.
  • the heating coil can be, for example, a heating wire applied to the silicon oxide wafer in a meandering manner. With the electric heating coil, the silicon membrane or disk can be heated up very quickly, so that high temperatures and rapid changes in the test gas flow rate and possibly modulations of the test gas flow can be realized with such a heating device.
  • the heating device can also be in the form of an infrared radiator directed onto the silicon oxide membrane or wafer or as an electron source directed towards the silicon oxide wafer.
  • the formation of the heater as Infrared emitters or as an electron source allow the silicon oxide disk or membrane to be heated evenly and over a large area.
  • a temperature sensor which is connected to a control device and / or a display device for displaying the measured temperature, is preferably arranged on the silicon oxide membrane or wafer.
  • the temperature of the silicon oxide membrane or wafer can be precisely controlled and maintained by the control device, whereby an exactly reproducible and constant test gas leak rate can be realized.
  • FIG. 1 shows a test leak device with a test gas storage and a test gas outlet in longitudinal section
  • Fig. 2 shows the silicon oxide membrane of the test leak device of Fig. 1 in longitudinal section.
  • test leak device 10 which is used to generate a defined gas flow for checking and adjusting highly sensitive leak detection devices, for example sector field mass spectrometers.
  • the test leak device 10 essentially consists of a test gas reservoir 12, a base 14 with a test gas outlet 16 and a control device 18.
  • the test gas storage 12 is formed by a gas-tight cup-shaped storage container 20 which, with its opening pointing downwards, is inserted gas-tight into the upper end of the base 14. sets is.
  • a manometer 22 for displaying the test gas pressure is arranged on the ceiling wall of the storage container 20. 100 to 200 cubic centimeters of helium with an overpressure of 2 to 7 bar are stored as test gas in the storage container 20. However, the gas overpressure can generally be between 0.3 and 100 bar.
  • a closable fill valve 24 is provided on the base 14 for filling the test gas reservoir 12.
  • the metal base body of the base 14 15 has an axially vertical outlet channel 17 which forms the test gas outlet 16. At the end of the outlet channel 17 on the storage container side, an annular step-like shoulder 26 is embedded in the base body 15, in which a membrane 30 made of silicon oxide is supported on an annular insulating body 28.
  • the membrane 30 is a circular disk 32, which consists of silicon oxide and is shown in more detail in FIG. 2.
  • the silicon oxide disc has a diameter of approximately 10 mm and a material thickness of 0.5 mm.
  • the silicon oxide pane 32 has 200 small windows 34 with an average diameter of 0.4 mm, in the area of which the silicon oxide has a thickness of only 5 to 6 ⁇ m. The gas passage of the helium test gas occurs practically exclusively in the area of the windows 34.
  • a meandering electrical heating coil 36 is arranged as a heating device, which is supplied with electrical energy from a control device 18 via supply lines 38 leading to the outside.
  • the heating coil 36 is designed such that the entire surface of the silicon oxide wafer 32 is always heated approximately uniformly.
  • the heating power of the heater can be controlled in a range between 3 to 30 watts.
  • the temperature of the silicon oxide wafer 32 can be up to 700 ° C. at Good thermal conductivity of the insulating body 28, modulation rates of 1 to 2 Hz can be achieved.
  • a temperature sensor 40 is also arranged on the underside of the silicon oxide wafer 32 and continuously measures the intrinsic temperature of the silicon oxide wafer 32.
  • the temperature sensor 40 is also connected to the control device 18 via electrical lines 42.
  • a filter disk 43 with a locking ring 44 is arranged as mechanical protection, which prevents particles from penetrating into the sensitive downstream analysis device, for example silicon oxide bodies if the silicon oxide disk 32 breaks.
  • a fastening flange 46 is provided, which serves to easily mount the test leak device 10 to a subsequent element.
  • the insulation body 28 consists of a good heat-insulating, heat and gas-resistant material and thermally insulates the silicon oxide membrane 30 from the base body 15. As a result, the heat dissipation from the silicon oxide membrane into the base 14 is reduced to a minimum, so that the heating energy required to maintain a certain temperature of the silicon oxide membrane is also kept as low as possible. To achieve high modulation frequencies, however, the insulation body 28 can also consist of a material that is a good conductor of heat.
  • a pressure sensor can be provided within the test gas reservoir 12 or on the inside of the base body 15, which pressure sensor can also be connected to the control device 18. With another pressure sensor connected to the control device 18 in the loading rich of the outlet channel 17, the control device can realize a test gas flow of constant leak rate even with changing pressure conditions by appropriate control of the heating device.
  • leak rates of 10 ⁇ n to 10 "4 mbar"1's _1 can be achieved.
  • test leak device 10 represents, on the one hand, a test gas source that can be precisely adjusted and controlled over a wide leak rate range and is at the same time very reliable since blockages in the outlet channel 17 or the membrane 30 are practically impossible.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

The invention relates to a test-leakage device comprising a tracer gas reservoir (12) and a tracer gas outlet (16), which is sealed by a membrane (30) consisting of silicon oxide. A heating device for heating the silicon oxide disc (32) is also provided. The permeability of silicon oxide to low-molecular gases is essentially dependent on its temperature, so that the leak rate of the test-leakage device can be modified and controlled by heating the silicon oxide membrane.

Description

Testleckvorrichtung Test leak device
Die Erfindung bezieht sich auf eine Testleckvorrichtung mit einem Testgasspeicher und einem Testgasauslass .The invention relates to a test leak device with a test gas storage and a test gas outlet.
Testleckvorrichtungen erzeugen einen- in der Größe möglichst genau bekannten Strom eines Testgases, dessen Größe Leckrate genannt wird. Testleckvorrichtungen werden zur Kontrolle und zum Abgleich von Lecksuchgeräten eingesetzt. Als Lecksuchgeräte zum Nachweis des Testgases dienen beispielsweise Massenspektro- eter. Dem Lecksuchgerät wird von der Testleckvorrichtung ein in der Höhe bekannter Testleckstrom zugeführt, wobei der-- von dem Lecksuchgerät ausgegebene Leckraten-Messwert mit der bekannten Leckrate des Testleckgeräts verglichen und abgeglichen wird. Eine bekannte Testleckvorrichtung ist die Diffusions- Testleckvorrichtung, bei der das Testgas aufgrund eines Druckgefälles durch eine gasdurchlässige Membran mit einer konstanten Leckrate hindurchströmt. Eine Veränderung der Leckrate kann nur über die Veränderung der Gasdruckdifferenz erfolgen, was langsam und aufwendig ist. Aus DE-A-199 06 941 ist eine Testleckvorrichtung bekannt, die sich zur definierten Testgasabgabe einer Kapillare bedient, durch die das Testgas mit konstanter Leckrate hindurchströmt. Die Leckrate ist weitgehend festgelegt, wobei stets die Gefahr besteht, dass die empfindliche Kapillare verstopft und dann keinen oder nur einen stark verringerten Testgasstrom passieren lässt.Test leak devices generate a flow of a test gas, the size of which is known as precisely as possible, the size of which is called the leak rate. Test leak devices are used to check and adjust leak detectors. Mass spectrometers, for example, serve as leak detection devices for detecting the test gas. The test leak device supplies the leak detector with a known test leakage current, the leak rate measurement value output by the leak detector being compared and compared with the known leak rate of the test leak device. A known test leak device is the diffusion test leak device, in which the test gas flows through a gas-permeable membrane with a constant leak rate due to a pressure drop. The leak rate can only be changed by changing the gas pressure difference, which is slow and time-consuming. From DE-A-199 06 941 a test leak device is known which uses a capillary for the defined test gas delivery through which the test gas coexists constant leak rate flows through. The leak rate is largely fixed, whereby there is always the risk that the sensitive capillary clogs and then allows no or only a greatly reduced test gas flow to pass.
Aufgabe der Erfindung ist es, die Steuerbarkeit des Testgasstromes bei einer Testleckvorrichtung zu verbessern.The object of the invention is to improve the controllability of the test gas flow in a test leak device.
Diese Aufgabe wird erfindungsgemäß mit den Merkmalen des Anspruchs 1 gelöst.This object is achieved with the features of claim 1.
Die erfindungsgemäße Testleckvorrichtung weist einen Testgasspeicher und einen Testgasauslass auf. Der Testgasauslass wird von einer Membran aus Silizium-Oxid verschlossen, die durch eine Heizvorrichtung beheizbar ist. Silizium-Oxid ist für kleinmolekulare Gase durchlässig, jedoch ist die Gasdurchlässigkeit abhängig von der Temperatur des Silizium-Oxides. Während das Silizium-Oxid bei Zimmertemperatur nahezu undurchlässig für ein kleinmolekulares Testgas ist, ist es bei einer Temperatur von ca. 700°C um mehrere Zehnerdekaden durchlässiger für ein derartiges Gas. Über einen Temperaturbereich von ca. 700 K lässt sich ein Testgasstrom einer .Leckrate von 10-11 bis 10~4 mbar'l's-1 einstellen. Bei konstanter Temperatur der Silizium-Oxid-Membran ist der Testgasstrom ebenfalls sehr konstant. Durch Verwendung einer Silizium-Oxid-Membran als Verschluss des Testgasauslasses lässt sich sowohl ein Testgas-Nullstrom realisieren, als auch sehr kleine konstante Testgas-Ströme realisieren. Je nach thermischer Situation lässt sich- durch ein schnelles Aufheizen und/oder Abkühlen der Silizium-Oxid-Membran auch ein mit 1 bis 2 Hz modulierter Testgasstrom realisieren. Als Testgas wird vorzugsweise reines Helium verwendet, können aber auch andere kleinmolekulare Gase eingesetzt werden.The test leak device according to the invention has a test gas storage and a test gas outlet. The test gas outlet is closed by a membrane made of silicon oxide, which can be heated by a heating device. Silicon oxide is permeable to small molecular gases, but the gas permeability depends on the temperature of the silicon oxide. While the silicon oxide is almost impermeable to a small molecular test gas at room temperature, it is more ten decades more permeable to such a gas at a temperature of approx. 700 ° C. A test gas flow with a leak rate of 10 -11 to 10 ~ 4 mbar'l's -1 can be set over a temperature range of approx. 700 K. When the temperature of the silicon oxide membrane is constant, the test gas flow is also very constant. By using a silicon oxide membrane as a closure of the test gas outlet, a test gas zero flow can be realized as well as very small constant test gas flows. Depending on the thermal situation, rapid heating and / or cooling of the silicon oxide membrane can also produce a test gas stream modulated with 1 to 2 Hz. Pure helium is preferably used as the test gas, but other small molecular gases can also be used.
Die Flussrate des Testgases durch die Silizium-Oxid-Membran hängt bei konstantem Testgasdruck in dem Testgasspeicher aus- schließlich von der Temperatur der Silizium-Oxid-Membran ab. Damit ist die Testgasflussrate bzw. die Leckrate über die Temperatur der Silizium-Oxid-Membran exakt über einen weiten Bereich steuerbar und reproduzierbar.The flow rate of the test gas through the silicon oxide membrane depends on the test gas pressure in the test gas storage. finally depends on the temperature of the silicon oxide membrane. The test gas flow rate or the leak rate can thus be controlled and reproduced exactly over a wide range via the temperature of the silicon oxide membrane.
Gemäß einer bevorzugten Ausgestaltung ist die Membran eine Silizium-Oxid-Scheibe, die aus Stabilitätsgründen eine Grundstärke von 1 bis 2 mm aufweist und die mehrere Fenster mit einer Materialstärke von weniger als 20 um aufweist. Die Gasdurchlässigkeit von Silizium-Oxid bei einer Materialstärke von 1 bis 2 mm ist gering, so dass die dünnwandigen Fenster . orgesehen werden müssen, durch die das Testgas hindurchtreten kann. Da eine Silizium-Oxid-Scheibe von 20 μm Stärke jedoch keine ausreichende mechanische Stabilität aufweisen würde, wird die 'tragende Struktur von den Bereichen mit einer Materialstärke, von 1 bis 2 mm gebildet. Auf diese Weise lässt sich durch Vorsehen einer Vielzahl von Fenstern eine sehr große gasdurchlässige Fläche in der mechanisch dennoch stabilen Silizium-Oxid- Scheibe bilden. Die Scheibenfenster sind vorzugsweise annähernd rund und haben einen Durchmesser von weniger als 2,0 mm.According to a preferred embodiment, the membrane is a silicon oxide wafer which, for reasons of stability, has a basic thickness of 1 to 2 mm and which has a plurality of windows with a material thickness of less than 20 μm. The gas permeability of silicon oxide with a material thickness of 1 to 2 mm is low, so that the thin-walled windows. must be seen through which the test gas can pass. However, since a silicon oxide wafer 20 μm thick would not have sufficient mechanical stability, the supporting structure is formed by the areas with a material thickness of 1 to 2 mm. In this way, by providing a large number of windows, a very large gas-permeable surface can be formed in the mechanically nevertheless stable silicon oxide pane. The window panes are preferably approximately round and have a diameter of less than 2.0 mm.
Vorzugsweise ist die Heizvorrichtung eine elektrische Heizschlange auf der Silizium-Membran bzw. -Scheibe. Die Heizschlange kann beispielsweise ein mäanderartig auf der Silizium- Oxid-Scheibe aufgebrachter Heizdraht sein. Mit der elektrischen Heizschlange lässt sich die Silizium-Membran bzw. Scheibe sehr schnell aufheizen, so dass sich mit einer derartigen Heizvor-' .richtung hohe Temperaturen und schnelle Änderungen der Testgas- Durchflussrate und ggf. eine- Modulationen des- Testgasstromes realisieren lassen.The heating device is preferably an electrical heating coil on the silicon membrane or wafer. The heating coil can be, for example, a heating wire applied to the silicon oxide wafer in a meandering manner. With the electric heating coil, the silicon membrane or disk can be heated up very quickly, so that high temperatures and rapid changes in the test gas flow rate and possibly modulations of the test gas flow can be realized with such a heating device.
Alternativ oder ergänzend kann die Heizvorrichtung auch als ein auf die Silizium-Oxid-Membran bzw. -Scheibe gerichteter Infrarotstrahler oder eine auf die Silizium-Oxid-Scheibe gerichtete Elektronenquelle sein. Die Ausbildung der Heizvorrichtung als Infrarotstrahler oder als Elektronenquelle erlaubt eine gleichmäßige und großflächige Erwärmung der Silizium-Oxid-Scheibe bzw. -Membran.As an alternative or in addition, the heating device can also be in the form of an infrared radiator directed onto the silicon oxide membrane or wafer or as an electron source directed towards the silicon oxide wafer. The formation of the heater as Infrared emitters or as an electron source allow the silicon oxide disk or membrane to be heated evenly and over a large area.
Vorzugsweise ist auf der Silizium-Oxid-Membran bzw. -Scheibe ein Temperatursensor angeordnet, der mit einer Steuervorrichtung und/oder einem Anzeigegerät zum Anzeigen der gemessenen Temperatur verbunden ist. Durch die Steuervorrichtung kann die Temperatur der Silizium-Oxid-Membran bzw. -Scheibe genau angesteuert und eingehalten werden, wodurch eine exakt reproduzierbare und konstante Testgas-Leckrate realisiert werden kann.A temperature sensor, which is connected to a control device and / or a display device for displaying the measured temperature, is preferably arranged on the silicon oxide membrane or wafer. The temperature of the silicon oxide membrane or wafer can be precisely controlled and maintained by the control device, whereby an exactly reproducible and constant test gas leak rate can be realized.
Im folgenden wird unter Bezugnahme auf die Figuren ein Ausführungsbeispiel der Erfindung näher erläutert.An exemplary embodiment of the invention is explained in more detail below with reference to the figures.
Es zeigen:Show it:
Fig. 1 eine Testleckvorrichtung mit einem Testgasspeicher und einem Testgasauslass im Längsschnitt, und1 shows a test leak device with a test gas storage and a test gas outlet in longitudinal section, and
Fig. 2 die Silizium-Oxid-Membran der Testleckvorrichtung der Fig. 1 im Längsschnitt.Fig. 2 shows the silicon oxide membrane of the test leak device of Fig. 1 in longitudinal section.
In Fig. 1 ist eine Testleckvorrichtung 10 dargestellt, die der Erzeugung eines definierten Gasstromes zur Kontrolle und zum Abgleich von hochempfindlichen Lecksuchgeräten, beispielsweise von Sektorfeld-Massenspektrometern dient.1 shows a test leak device 10 which is used to generate a defined gas flow for checking and adjusting highly sensitive leak detection devices, for example sector field mass spectrometers.
Die Testleckvorrichtung 10 besteht im Wesentlichen aus einem Testgasspeicher 12, einem Sockel 14 mit einem Testgasauslass 16 und einer Steuervorrichtung 18.The test leak device 10 essentially consists of a test gas reservoir 12, a base 14 with a test gas outlet 16 and a control device 18.
Der Testgasspeicher 12 wird von einem gasdichten topfförmigen Speicherbehälter 20 gebildet, der mit seiner nach unten weisenden Öffnung gasdicht in das obere Ende des Sockels 14 einge- setzt ist. An der Deckenwand des Speicherbehälters 20 ist ein Manometer 22 zur Anzeige des Testgasdruckes angeordnet. In dem Speicherbehälter 20 sind als Testgas 100 bis 200 Kubikzentimeter Helium mit einem Überdruck von 2 bis 7 bar gespeichert. Der Gasüberdruck kann generell jedoch zwischen 0,3 und 100 bar betragen. Zum Befüllen des Testgasspeichers 12 ist an dem Sockel 14 ein verschließbares Füllventil 24 vorgesehen.The test gas storage 12 is formed by a gas-tight cup-shaped storage container 20 which, with its opening pointing downwards, is inserted gas-tight into the upper end of the base 14. sets is. A manometer 22 for displaying the test gas pressure is arranged on the ceiling wall of the storage container 20. 100 to 200 cubic centimeters of helium with an overpressure of 2 to 7 bar are stored as test gas in the storage container 20. However, the gas overpressure can generally be between 0.3 and 100 bar. A closable fill valve 24 is provided on the base 14 for filling the test gas reservoir 12.
Der Metall-Sockelkörper des Sockels 14 15 weist einen axial vertikal verlaufenden Auslasskanal 17 auf, der den Testgasauslass 16 bildet. Am speicherbehälterseitigen Ende des Auslass- kanales 17 ist ein ringförmiger stufenartiger Absatz 26 in den Sockelkörper 15 eingelassen, in dem auf einem ringförmigen Isolationskörper 28 eine Membran 30 aus Silizium-Oxid lagert.The metal base body of the base 14 15 has an axially vertical outlet channel 17 which forms the test gas outlet 16. At the end of the outlet channel 17 on the storage container side, an annular step-like shoulder 26 is embedded in the base body 15, in which a membrane 30 made of silicon oxide is supported on an annular insulating body 28.
Die Membran 30 ist eine kreisrunde Scheibe 32, die aus Silizium-Oxid besteht und genauer in Fig. 2 dargestellt ist. Die Silizium-Oxid-Scheibe hat einen Durchmesser von ungefähr 10 mm und eine Materialstärke von 0,5 mm. Die Silizium-Oxid-Scheibe 32 weist 200 kleine Fenster.34 mit einem mittleren Durchmesser von 0,4 mm auf, in deren Bereich das Silizium-Oxid eine Stärke von nur 5 bis 6 μm hat. Der Gasdurchtritt des Helium-Testgases erfolgt praktisch ausschließlich im Bereich der Fenster 34.The membrane 30 is a circular disk 32, which consists of silicon oxide and is shown in more detail in FIG. 2. The silicon oxide disc has a diameter of approximately 10 mm and a material thickness of 0.5 mm. The silicon oxide pane 32 has 200 small windows 34 with an average diameter of 0.4 mm, in the area of which the silicon oxide has a thickness of only 5 to 6 μm. The gas passage of the helium test gas occurs practically exclusively in the area of the windows 34.
Auf der glatten und ebenen auslassseitigen Unterseite der Silizium-Oxid-Scheibe 32 ist als Heizvorrichtung eine mäanderartig verlaufende elektrische Heizschlange 36 angeordnet, die über nach außen geführte Versorgungsleitungen 38 von einer Steuervorrichtung 18 aus mit elektrischer Energie versorgt wird. Die Heizschlange 36 ist so ausgelegt, dass die gesamte Fläche der Silizium-Oxid-Scheibe 32 stets ungefähr gleichmäßig beheizt wird. Die Heizleistung der Heizvorrichtung kann in einem Bereich zwischen 3 bis 30 Watt gesteuert werden. Die Temperatur der Silizium-Oxid-Scheibe 32 kann bis zu 700 °C betragen. Bei guter Wärmeleitung des Isolationskörpers 28 können Modulationsraten von 1 bis 2 Hz realisiert werden.On the smooth and flat outlet-side underside of the silicon oxide wafer 32, a meandering electrical heating coil 36 is arranged as a heating device, which is supplied with electrical energy from a control device 18 via supply lines 38 leading to the outside. The heating coil 36 is designed such that the entire surface of the silicon oxide wafer 32 is always heated approximately uniformly. The heating power of the heater can be controlled in a range between 3 to 30 watts. The temperature of the silicon oxide wafer 32 can be up to 700 ° C. at Good thermal conductivity of the insulating body 28, modulation rates of 1 to 2 Hz can be achieved.
An der Unterseite der Silizium-Oxid-Scheibe 32 ist ferner ein Temperatursensor 40 angeordnet, der ständig die Eigentemperatur der Silizium-Oxid-Scheibe 32 misst. Auch der Temperatursensor 40 ist über elektrische Leitungen 42 mit der Steuervorrichtung 18 verbunden.A temperature sensor 40 is also arranged on the underside of the silicon oxide wafer 32 and continuously measures the intrinsic temperature of the silicon oxide wafer 32. The temperature sensor 40 is also connected to the control device 18 via electrical lines 42.
Im axial mittleren Bereich des Auslasskanales 17 ist als mechanischer Schutz eine Filterscheibe 43 mit einem Sicherungsring 44 angeordnet, die das Eindringen von Partikeln in das empfindliche nachfolgende Analysegerät vermeidet, beispielsweise von Silizium-Oxid-Körpern beim Bruch der Silizium-Oxid-Scheibe 32.In the axially central area of the outlet channel 17, a filter disk 43 with a locking ring 44 is arranged as mechanical protection, which prevents particles from penetrating into the sensitive downstream analysis device, for example silicon oxide bodies if the silicon oxide disk 32 breaks.
Am auslassseitigen Ende des Sockels 14 ist ein Befestigungsflansch 46 vorgesehen, der der einfachen Montierbarkeit der Testleckvorrichtung 10 an ein nachfolgendes Element dient.At the outlet-side end of the base 14, a fastening flange 46 is provided, which serves to easily mount the test leak device 10 to a subsequent element.
Der Isolationskörper 28 besteht aus einem gut wärmeisolierenden hitze- und gasbeständigem Material und isoliert die Silizium- Oxid-Membran 30 thermisch gegenüber dem Sockelkörper 15. Hierdurch wird die Wärmeabfuhr von der Silizium-Oxid-Membran in den Sockel 14 auf ein Minimum reduziert, so dass auch die zum Halten einer bestimmten Temperatur der Silizium-Oxid-Membran erforderliche Heizenergie so gering wie möglich gehalten wird. Zur Realisierung hoher Modulationsfrequenzen kann der Isolationskörper 28 jedoch auch aus gut wärmeleitendem Material bestehen.The insulation body 28 consists of a good heat-insulating, heat and gas-resistant material and thermally insulates the silicon oxide membrane 30 from the base body 15. As a result, the heat dissipation from the silicon oxide membrane into the base 14 is reduced to a minimum, so that the heating energy required to maintain a certain temperature of the silicon oxide membrane is also kept as low as possible. To achieve high modulation frequencies, however, the insulation body 28 can also consist of a material that is a good conductor of heat.
Alternativ oder ergänzend zu dem Manometer 22 kann innerhalb des Testgasspeichers 12 bzw. an der Innenseite des Sockelkörpers 15 ein Drucksensor vorgesehen sein, der ebenfalls mit der Steuervorrichtung 18 verbunden sein kann. Mit einem weiteren der Steuervorrichtung 18 verbundenen Drucksensor im Be- reich des Auslasskanales 17 kann die Steuervorrichtung auch bei sich verändernden Druckverhältnissen einen Testgasstrom konstanter Leckrate durch entsprechende Steuerung der Heizvorrichtung realisieren.As an alternative or in addition to the manometer 22, a pressure sensor can be provided within the test gas reservoir 12 or on the inside of the base body 15, which pressure sensor can also be connected to the control device 18. With another pressure sensor connected to the control device 18 in the loading rich of the outlet channel 17, the control device can realize a test gas flow of constant leak rate even with changing pressure conditions by appropriate control of the heating device.
Mit der beschriebenen Testleckvorrichtung lassen sich Leckraten von 10~n bis 10"4 mbar " 1 ' s_1 realisieren.With the test leak device described, leak rates of 10 ~ n to 10 "4 mbar"1's _1 can be achieved.
Die beschriebene Testleckvorrichtung 10 stellt zum einen eine über einen weiten Leckratenbereich genau einstellbare und steuerbare Testgasquelle dar und ist gleichzeitig sehr zuverlässig, da Verstopfungen des Auslasskanales 17 oder der Membran 30 praktisch ausgeschlossen sind. The test leak device 10 described represents, on the one hand, a test gas source that can be precisely adjusted and controlled over a wide leak rate range and is at the same time very reliable since blockages in the outlet channel 17 or the membrane 30 are practically impossible.

Claims

PATENTANSPRÜCHE
1. Testleckvorrichtung mit einem Testgasspeicher (12) und einem Testgasauslass (16),1. test leak device with a test gas reservoir (12) and a test gas outlet (16),
d a d u r c h g e k e n n z e i c h n e t ,characterized ,
dass der Testgasauslass (16) von einer Membran (30) aus Silizium-Oxid verschlossen ist, undthat the test gas outlet (16) is closed by a membrane (30) made of silicon oxide, and
dass eine Heizvorrichtung zum Beheizen der Silizium-Oxid- Membran (30) vorgesehen ist.that a heating device is provided for heating the silicon oxide membrane (30).
2. Testleckvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Membran (30) eine Silizium-Oxid-Scheibe (32) ist, die mehrere Fenster (34) mit einer Materialstärke von weniger als 20 μm aufweist.2. Test leak device according to claim 1, characterized in that the membrane (30) is a silicon oxide disc (32) which has a plurality of windows (34) with a material thickness of less than 20 microns.
3. Testleckvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Heizvorrichtung eine elektrische Heizschlange (36) auf der Silizium-Oxid-Membran (30) ist.3. Test leak device according to claim 1 or 2, characterized in that the heating device is an electrical heating coil (36) on the silicon oxide membrane (30).
4. Testleckvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Heizvorrichtung ein auf die Silizium- Oxid-Membran (30) gerichteter Infrarotstrahler ist.4. Test leak device according to claim 1 or 2, characterized in that the heating device is an infrared radiator directed onto the silicon oxide membrane (30).
5. Testleckvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Heizvorrichtung eine auf die Silizium- Oxid-Membran (30) gerichtete Elektronenquelle st.5. Test leak device according to claim 1 or 2, characterized in that the heating device is an electron source directed to the silicon oxide membrane (30).
6. Testleckvorrichtung nach einem der Ansprüche 1-5, dadurch gekennzeichnet, dass auf der Silizium-Oxid-Membran (30) ein Temperatursensor (40) angeordnet ist, der mit einer die ge- messene Temperatur verarbeitenden Steuervorrichtung (18) gekoppelt ist.6. Test leak device according to one of claims 1-5, characterized in that a temperature sensor (40) is arranged on the silicon oxide membrane (30), which with a measured temperature processing control device (18) is coupled.
Testleckvorrichtung nach einem der Ansprüche 2-6, dadurch gekennzeichnet, dass die Stärke der Silizium-Oxid-Scheibe (32) geringer als 2,0 mm ist.Test leak device according to one of claims 2-6, characterized in that the thickness of the silicon oxide disc (32) is less than 2.0 mm.
Testleckvorrichtung nach einem der Ansprüche 1-7, dadurch gekennzeichnet, dass das Testgas in dem Testgasspeicher (12) Helium ist. Test leak device according to one of claims 1-7, characterized in that the test gas in the test gas storage (12) is helium.
PCT/EP2002/004902 2001-05-10 2002-05-04 Test-leakage device WO2002090917A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10122733.7 2001-05-10
DE2001122733 DE10122733A1 (en) 2001-05-10 2001-05-10 Test leak device

Publications (2)

Publication Number Publication Date
WO2002090917A2 true WO2002090917A2 (en) 2002-11-14
WO2002090917A3 WO2002090917A3 (en) 2003-03-20

Family

ID=7684290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/004902 WO2002090917A2 (en) 2001-05-10 2002-05-04 Test-leakage device

Country Status (2)

Country Link
DE (1) DE10122733A1 (en)
WO (1) WO2002090917A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011124618A1 (en) * 2010-04-09 2011-10-13 Inficon Gmbh A gas-selective membrane and method of its production

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4567454B2 (en) 2002-09-26 2010-10-20 インフィコン ゲゼルシャフト ミット ベシュレンクテル ハフツング A test leak device for a sniffing leak probe.
DE10308687A1 (en) * 2002-09-26 2004-04-08 Inficon Gmbh Leak detection arrangement with a sniff tester has a sensor with the bottle neck of a test gas reservoir for detecting the approach of a sniff probe and transmitting a corresponding signal to the leak tester control unit
ITTO20030032A1 (en) * 2003-01-24 2004-07-25 Varian Spa SELECTIVELY GAS PERMEABLE MEMBRANE AND METHOD FOR ITS REALIZATION.
DE10353033A1 (en) * 2003-11-13 2005-06-09 Inficon Gmbh Method for operating a hydrogen test leak
DE102006026125A1 (en) * 2006-06-03 2007-12-06 Inficon Gmbh gas sensor
DE102006028778A1 (en) * 2006-06-23 2007-12-27 Inficon Gmbh Leak Detector
DE102007003290A1 (en) * 2007-01-23 2008-07-24 Bayerische Motoren Werke Aktiengesellschaft Gas damper or gas spring damper for wheel suspension of motor vehicle, has gas mixture as dampening medium, where dampening medium contains small molecular gas e.g. helium or hydrogen, proportionately
CN108844692B (en) * 2018-06-27 2020-07-28 山东拙诚智能科技有限公司 Method for detecting leakage in diaphragm gas meter by pressure difference method
DE102020100830A1 (en) * 2020-01-15 2021-07-15 Inficon Gmbh Test gas applicator
DE102020116939A1 (en) 2020-06-26 2021-12-30 Inficon Gmbh Test leak device
DE102021134647A1 (en) 2021-12-23 2023-06-29 Inficon Gmbh Vacuum leak detector with spray-on membrane test leak and method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2979937A (en) * 1956-01-03 1961-04-18 Chausson Usines Sa Device particularly for calibrating equipment for detecting leaks and similar purposes
DE19521275A1 (en) * 1995-06-10 1996-12-12 Leybold Ag Gas passage with a selectively acting passage area and method for producing the passage area

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2926112A1 (en) * 1979-06-28 1981-01-08 Bosch Gmbh Robert Test leak probe for seal testing etc. - samples permeation of test gas through membrane to mass spectrometer
DE4326265A1 (en) * 1993-08-05 1995-02-09 Leybold Ag Test gas detector, preferably for leak detection devices, and method for operating a test gas detector of this type
JP2850816B2 (en) * 1995-12-18 1999-01-27 日本電気株式会社 Bump bonding inspection apparatus and inspection method
DE19832833C2 (en) * 1998-07-21 2002-01-31 Fraunhofer Ges Forschung Process for thermographic examination of a workpiece and device therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2979937A (en) * 1956-01-03 1961-04-18 Chausson Usines Sa Device particularly for calibrating equipment for detecting leaks and similar purposes
DE19521275A1 (en) * 1995-06-10 1996-12-12 Leybold Ag Gas passage with a selectively acting passage area and method for producing the passage area

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011124618A1 (en) * 2010-04-09 2011-10-13 Inficon Gmbh A gas-selective membrane and method of its production
CN102884409A (en) * 2010-04-09 2013-01-16 英福康有限责任公司 A gas-selective membrane and method of its production
RU2558644C2 (en) * 2010-04-09 2015-08-10 Инфикон Гмбх Gas selective membrane and method of its production
EP3029446A1 (en) * 2010-04-09 2016-06-08 Inficon GmbH A gas-selective membrane and method of its production

Also Published As

Publication number Publication date
DE10122733A1 (en) 2002-11-14
WO2002090917A3 (en) 2003-03-20

Similar Documents

Publication Publication Date Title
WO2002090917A2 (en) Test-leakage device
US5736739A (en) Recirculating filtration system for use with a transportable ion mobility spectrometer in gas chromatography applications
EP2155926B1 (en) Device for the temperature control of the surface temperatures of substrates in a cvd reactor
WO2006074871A1 (en) Method for generation of a given internal pressure in a cavity of a semiconductor component
EP1456620B1 (en) Gas transmitter with selective gas permeable surfaces
EP2024723B1 (en) Gas sensor having a heatable, gas-selectively permeable membrane
US4781358A (en) Apparatus for monitoring an article in sintering furnace
AT524248B1 (en) Process for growing crystals
Schmutzler et al. The thermoelectric power of fluid mercury in the density range of the metal nonmetal transition
DE2521365A1 (en) PROBE FOR GAS DETECTOR, IN PARTICULAR FOR DETECTING SMOKE
US4719073A (en) Method of monitoring an article in sintering furnace
DE102021123991A1 (en) PVT method and apparatus for the reliable production of monocrystals
Geerken et al. Concentration and temperature dependence of the electrical resistivity of quenched PdHx
EP3523637B1 (en) Heat-insulating microsystem
DE1573263A1 (en) Method and device for determining the heat of reaction
DE1933128A1 (en) Arrangement for diffusing dopants into a semiconductor material
US4343176A (en) Long-life leak standard assembly
DE2340055C2 (en) Method and device for setting a temperature lying in the negative temperature range
DE3400458A1 (en) Cold-sample infeed system for capillary gas chromatography
Narayana et al. Effect of hydrogen chemisorption on the electrical conductivity of zinc oxide powder
DE3942664A1 (en) SENSOR ARRANGEMENT
EP0869353B1 (en) Method for manufacturing a sensor
Sembira et al. High temperature calibration of DTA and DSC apparatus using encapsulated samples
Flynn et al. Temperature gradients in horizontal tube furnaces
DE1615869A1 (en) Method for stabilizing the resistance of semiconductors

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP