WO2002089305A1 - Detection de palier moteur defectueux par analyse par ondelettes de l'onde mobile du courant de demarrage - Google Patents

Detection de palier moteur defectueux par analyse par ondelettes de l'onde mobile du courant de demarrage Download PDF

Info

Publication number
WO2002089305A1
WO2002089305A1 PCT/US2002/013626 US0213626W WO02089305A1 WO 2002089305 A1 WO2002089305 A1 WO 2002089305A1 US 0213626 W US0213626 W US 0213626W WO 02089305 A1 WO02089305 A1 WO 02089305A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
data
motor
analyzing
current transient
Prior art date
Application number
PCT/US2002/013626
Other languages
English (en)
Inventor
Michael J. Devaney
Levent Eren
Original Assignee
Square D Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Square D Company filed Critical Square D Company
Priority to DE60236668T priority Critical patent/DE60236668D1/de
Priority to EP02729075A priority patent/EP1421670B1/fr
Publication of WO2002089305A1 publication Critical patent/WO2002089305A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • G01M13/045Acoustic or vibration analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation

Definitions

  • Induction machines are called the workhorses of industry due to their widespread use in manufacturing. The heavy reliance of industry on these machines in critical applications makes catastrophic motor failures very expensive. Vibration, thermal, and acoustic analyses are some of the commonly used methods, for predictive maintenance, to monitor the health of the machine to prevent motor failures from causing expensive shutdowns. Preventive maintenance of induction motors plays an important role in avoiding expensive shut-downs due to motor failures. Vibration and thermal monitoring require additional sensors or transducers to be fitted on the machines. While some large motors may already come with vibration and thermal transducers, it is not economically or physically feasible to provide the same for smaller machines.
  • MCSA Motor current signature analysis
  • MCSA provides a non-intrusive way to obtain information about bearing health using already available line current.
  • MCSA gets bearing information by relating the current spectral frequencies to characteristic vibration frequencies. Vibration signals from a defective bearing often consist of a superposition of normal bearing noise and the impulse response due to the defects.
  • the characteristic vibration frequencies are calculated using rotor speed and the bearing geometry.
  • MCSA investigates steady state data and utilizes the Fourier Analysis as the primary frequency domain method in determining bearing related spectral components. Presently, motor current signature analysis techniques cannot detect bearing faults until the bearing fault reaches advanced stages. This increases the risk of a catastrophic failure.
  • a method for detecting motor bearing defects comprises obtaining motor current transient data during motor start-up, and analyzing the motor current transient data to detect changes in RMS levels due to bearing defect-induced resonance.
  • an apparatus for detecting motor bearing defects comprises means for obtaining motor current transient data during motor start-up, and means for analyzing the motor current transient data to detect changes in RMS levels due to bearing defect-induced resonance.
  • FIG. 1 shows a rolling element bearing geometry
  • FIG. 2 illustrates an analysis of part of a dyadic filter bank
  • FIG. 3 shows a two channel polyphase filter structure
  • FIG. 4 shows a motor start transient current under 1/2 hp load
  • FIG. 5 shows a normalized current rms values tor half load in the example of FIG.
  • FIG. 6 shows the difference of normalized current rms values in the example of
  • FIG. 4; FIG. 7 shows a motor start transient current under no load
  • FIG. 8 shows a normalized current rms values for no load
  • FIG. 9 shows the difference of normalized current rms values in the example of
  • the characteristic vibration frequencies can be calculated using equations 1-5.
  • is the contact angle in radians and f- m is the rotor speed in Hz.
  • Outer race defect frequency foo the ball passing frequency on the outer race, is given by
  • Inner race defect frequency / ID 7 2 / m (l- ⁇ £ 7 r ⁇ cos 0 [1]
  • the characteristic current frequencies / CF due to bearing characteristic vibration frequencies are calculated by [1] where / is the power line frequency.
  • the equations 1-5 can be used to calculate the current harmonics due to faulty bearings. These components are very small compared to harmonic multiples of the power frequency and are thus difficult to detect.
  • the analysis of the starting current transient signal is proposed.
  • This analysis is performed via the discrete wavelet transform.
  • the wavelet transform provides better performance in transient analysis than the Fourier transform.
  • the frequency sub-bands for bearing pre-fault and post-fault conditions are compared to identify the effects of bearing/machine resonant frequencies as the motor starts, As the motor starts, it will go through the whole range of speeds from stopped to its operating speed. This range includes critical speeds where the bearing induced vibrations are more pronounced because of mechanical resonances. The higher vibration magnitude at these speeds makes the detection of bearing faults easier.
  • the starting current transient of an induction machine is analyzed via discrete wavelet transform and the magnitudes of frequency subbands are compared to the baseline data collected with a healthy set of bearings to detect any changes in bearing condition.
  • the greatest magnitude deviation from the baseline data occurs at critical speeds when faulty bearing condition exists.
  • the motor starting current transient is captured using a conventional circuit or power monitor.
  • the current wave of a single phase is sampled at 512 points per cycle for 60 cycles using the Waveform CaptureTM feature of a Square D CM4000 series monitor.
  • Waveform Capture TM is triggered by a high speed overcurrent alarm.
  • the data is transferred to a PC where this data is analyzed by a matlab program to decompose the signal into its wavelet subbands. After the decomposition of signal into its subbands, the magnitudes of the selected subbands are compared to the baseline data to detect any changes in bearing condition.
  • One principal advantage of this approach is that is does not require access to the machine itself as the vibration based bearing monitors do.
  • FIG. 2 depicts the basic structure of the dyadic filter banks employed in discrete wavelet transform.
  • Digital Butterworth, Chebyshev and elliptic filters obtained from the classical analog filters via the bilinear transformation can be designed as two-channel filter banks composed of allpass filters.
  • the two channel polyphase filter structure used is shown in FIG. 3.
  • the allpass polyphase filter banks result in less computational complexity than that of the original Butterworth filter banks. Therefore, using the filter bank in FIG. 3 instead the one in FIG. 2 reduces the computational effort.
  • the IIR filters are chosen for their better frequency selectivity and lower computational complexity over their FIR counterparts.
  • a three phase, 1 hp, 200 V, 60 Hz, 1750 RPM, four-pole induction motor was used (US Motors Frame 143T).
  • the shaft end ball bearing is a 6205-2Z-J/C3 (9 balls) and the opposite end ball bearing is a 6203-2Z-J/C3 (9 balls).
  • a single 1.5 mm diameter hole was drilled in the outer race of the opposite end bearing.
  • FIG. 5 Indicates the results of the transient wavelet analysis for the pre-fault and post-fault conditions. In each case, three trials were average and the plotted values were normalized by 0-120 Hz frequency bands at each cycle. Because of the relative dominance of the 60 Hz fundamental, the lowest sub-band of 0-120 HZ is not depicted. A comparison of the two plots indicates a substantial difference at the 11 th cycle for the 240-480 Hz frequency band in FIG. 5. The motor reaches the critical speed in this cycle relative to the defect.
  • the difference of the normalized RMS values are plotted in FIG. 6. Basically, the normalized healthy bearing current RMS values are subtracted from the normalized faulty bearing current RMS values to obtain this plot.
  • the motor start transient current is plotted in FIG. 7. Comparing starting transients for half load and no load conditions, the motor reaches critical speed faster under no load condition. The point of critical speed can be assessed by examining the ratio of cycle RMS to steady state RMS under different loading conditions. This ratio is about 2X.
  • Figure 8 depicts the normalized RMS values for the first 16 cycles. A comparison of the two plots indicates a substantial difference at the 4 th cycle for the upper three frequency bands.
  • the difference of the normalized RMS values are plotted in FIG. 9. Basically, the normalized healthy bearing current RMS values are subtracted from the normalized faulty bearing current RMS values to obtain this plot.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

L'invention concerne un procédé permettant de détecter des défauts de palier moteur, consistant à obtenir des données concernant l'onde mobile du courant du moteur pendant le démarrage du moteur; puis, à analyser ces données afin de détecter des changements de niveaux de valeurs efficaces dus à la résonance provoquée par le défaut de palier.
PCT/US2002/013626 2001-05-01 2002-04-30 Detection de palier moteur defectueux par analyse par ondelettes de l'onde mobile du courant de demarrage WO2002089305A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE60236668T DE60236668D1 (de) 2001-05-01 2002-04-30 Erkennung von motorlagerschaden über wavelet analyse des einschaltstromimpulses
EP02729075A EP1421670B1 (fr) 2001-05-01 2002-04-30 Detection de palier moteur defectueux par analyse par ondelettes de l'onde mobile du courant de demarrage

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/846,865 US6727725B2 (en) 2001-05-01 2001-05-01 Motor bearing damage detection via wavelet analysis of the starting current transient
US09/846,865 2001-05-01

Publications (1)

Publication Number Publication Date
WO2002089305A1 true WO2002089305A1 (fr) 2002-11-07

Family

ID=25299159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2002/013626 WO2002089305A1 (fr) 2001-05-01 2002-04-30 Detection de palier moteur defectueux par analyse par ondelettes de l'onde mobile du courant de demarrage

Country Status (4)

Country Link
US (1) US6727725B2 (fr)
EP (1) EP1421670B1 (fr)
DE (1) DE60236668D1 (fr)
WO (1) WO2002089305A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6727725B2 (en) 2001-05-01 2004-04-27 Square D Company Motor bearing damage detection via wavelet analysis of the starting current transient
EP1970691A1 (fr) * 2007-03-12 2008-09-17 Snecma Procédé de détection d'un endommagement d'un roulement de palier d'un moteur
WO2009063118A1 (fr) * 2007-11-14 2009-05-22 Universitat Politècnica De Catalunya Système pour le diagnostic de pannes dans des moteurs électriques
EP2156159A1 (fr) * 2007-06-04 2010-02-24 Eaton Corporation Système et procédé pour porter une détection de défaut en utilisant une annulation de bruit de courant de stator
ES2336875A1 (es) * 2007-11-14 2010-04-16 Universitat Politecnica De Catalunya Metodo y equipo de diagnostico de fallos en motores electricos de corriente alterna.
WO2011006528A1 (fr) * 2009-07-13 2011-01-20 Abb Research Ltd Détection de défauts dans une machine électrique tournante
FR2952177A1 (fr) * 2009-11-04 2011-05-06 Snecma Procede de detection d'un endommagement d'au moins un roulement de palier d'un moteur
WO2011104091A1 (fr) * 2010-02-24 2011-09-01 Siemens Aktiengesellschaft Système ou procédé de détermination de l'état d'un palier
EP2728367A1 (fr) * 2012-11-01 2014-05-07 ABB Research Ltd. Procédé de détection d'une panne dans une machine électrique
WO2020015798A1 (fr) * 2018-07-17 2020-01-23 Ziehl-Abegg Se Procédé d'évaluation de la disponibilité opérationnelle d'un moteur électrique et moteur électrique et ventilateur
CN111521396A (zh) * 2020-05-11 2020-08-11 电子科技大学 基于平移不变高密度小波包变换的轴承故障诊断方法
CN111652031A (zh) * 2019-12-02 2020-09-11 昆明理工大学 一种基于改进经验小波变换的滚动轴承故障诊断方法

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3917080B2 (ja) * 2002-03-08 2007-05-23 三菱電機株式会社 モータ異常検出装置
US6993439B2 (en) * 2002-09-13 2006-01-31 Innovative Scientific Solutions, Inc. Motor based condition monitoring
US7117125B2 (en) * 2003-06-18 2006-10-03 Eaton Corporation System and method for proactive motor wellness diagnosis based on potential mechanical faults
KR20060131849A (ko) * 2004-01-23 2006-12-20 지에스아이 그룹 코포레이션 가상 레이저 마킹 시스템 및 방법
KR100812303B1 (ko) 2006-09-29 2008-03-13 부산대학교 산학협력단 웨이블릿 변환을 이용한 유도전동기의 고장 진단 장치 및방법
US7847580B2 (en) * 2007-06-04 2010-12-07 Eaton Corporation System and method for motor fault detection using stator current noise cancellation
DE102008035613A1 (de) * 2008-07-25 2010-01-28 Siemens Aktiengesellschaft Verfahren und Anordnung zur Lagerstromüberwachung einer elektrischen Maschine
US9618037B2 (en) * 2008-08-01 2017-04-11 Honeywell International Inc. Apparatus and method for identifying health indicators for rolling element bearings
US8620622B2 (en) * 2009-04-02 2013-12-31 Honeywell International Inc. System and method for determining health indicators for impellers
US8958995B2 (en) 2009-04-02 2015-02-17 Honeywell International Inc. System and method for monitoring rotating and reciprocating machinery
DE102010002296A1 (de) * 2010-02-24 2011-08-25 Siemens Aktiengesellschaft, 80333 Auswertungsverfahren für Lichtbogenentladungen und zugehöriger Prüfstand
US8473252B2 (en) 2010-06-09 2013-06-25 Honeywell International Inc. System and method for conflict resolution to support simultaneous monitoring of multiple subsystems
US8896437B2 (en) 2011-01-24 2014-11-25 Honeywell International Inc. Asset-specific equipment health monitoring (EHM) for industrial equipment using standardized asset models
US9310790B2 (en) 2011-05-23 2016-04-12 Honeywell International Inc. Large-scale comprehensive real-time monitoring framework for industrial facilities
US9845012B2 (en) 2011-07-06 2017-12-19 General Electric Company System and method for predicting mechanical failure of a motor
US9050894B2 (en) 2011-07-06 2015-06-09 General Electric Company System and method for predicting mechanical failure of a motor
US8751413B2 (en) 2011-07-26 2014-06-10 General Electric Company Fuzzy logic based system monitoring system and method
EP2792063B1 (fr) 2011-12-13 2019-10-09 Saudi Arabian Oil Company Surveillance et prédiction des défaillances d'une pompe électrique immergée
US8963733B2 (en) 2012-02-13 2015-02-24 Honeywell International Inc. System and method for blind fault detection for rotating machinery
CN102607845B (zh) * 2012-03-05 2014-09-10 北京工大智源科技发展有限公司 基于自适应拟合冗余提升小波变换的轴承故障特征提取方法
WO2013180727A1 (fr) * 2012-05-31 2013-12-05 University Of Connecticut Procédé et système de test de l'intégrité opérationnelle d'un équipement de forage
US10520397B2 (en) 2012-05-31 2019-12-31 University Of Connecticut Methods and apparatuses for defect diagnosis in a mechanical system
US20150088438A1 (en) * 2013-09-26 2015-03-26 James J. Kinsella Ratio metric current measurement
US9728016B2 (en) 2014-01-06 2017-08-08 General Electric Company Wheel monitoring system and method
US9574965B2 (en) 2014-06-24 2017-02-21 General Electric Company System and method of determining bearing health in a rotating machine
RU2589743C2 (ru) * 2014-06-25 2016-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Иркутская государственная сельскохозяйственная академия" Способ определения эксцентриситета ротора асинхронного электродвигателя
US10108325B2 (en) 2014-12-11 2018-10-23 Rdi Technologies, Inc. Method of analyzing, displaying, organizing and responding to vital signals
US10062411B2 (en) 2014-12-11 2018-08-28 Jeffrey R. Hay Apparatus and method for visualizing periodic motions in mechanical components
KR20160097701A (ko) * 2015-02-09 2016-08-18 엘지전자 주식회사 공기조화기
CA2965340C (fr) 2016-05-11 2021-05-18 Mahmoud Ismail Un systeme ameliore et une methode de realisation d'analyse pca sur les signaux de donnees
CN107643180A (zh) * 2016-07-21 2018-01-30 北京航天动力研究所 基于小波分析的高速低温涡轮泵轴承保持架故障诊断方法
US10353005B2 (en) 2017-07-13 2019-07-16 Itt Manufacturing Enterprises Llc Technique for self learning motor load profile
US10698031B2 (en) 2018-02-02 2020-06-30 R. Gene Smiley Systems and methods for obtaining and validating performance data on motors
CN108732440A (zh) * 2018-04-17 2018-11-02 北京理工大学 一种暂态电能质量检测方法及系统
US11656280B2 (en) 2018-05-31 2023-05-23 Abb Schweiz Ag Device for condition monitoring and protection of rotating electrical machines, and a method thereof
JP7357294B2 (ja) * 2018-06-19 2023-10-06 パナソニックIpマネジメント株式会社 診断システム、診断方法、プログラム
US11186304B2 (en) * 2018-07-05 2021-11-30 Alstom Transport Technologies Method and electronic system for detecting rail switch degradation and failures
EP3627134B1 (fr) * 2018-09-21 2021-06-30 Siemens Gamesa Renewable Energy A/S Procédé de détection de dommages dans un entrepôt
US11423551B1 (en) 2018-10-17 2022-08-23 Rdi Technologies, Inc. Enhanced presentation methods for visualizing motion of physical structures and machinery
RU2697852C1 (ru) * 2019-03-25 2019-08-21 Сергей Александрович Турко Устройство для диагностики технического состояния механизмов
US11099101B2 (en) 2019-05-03 2021-08-24 Mitsubishi Electric Research Laboratories, Inc. Method for estimating bearing fault severity for induction motors
DE102019210569A1 (de) * 2019-07-17 2021-01-21 Volkswagen Aktiengesellschaft Sensorlose Detektion von Wälzlagerschäden
US11977096B2 (en) * 2020-01-02 2024-05-07 Baker Hughes Oilfield Operations Llc Motion, vibration and aberrant condition detection and analysis
US11373317B1 (en) 2020-01-24 2022-06-28 Rdi Technologies, Inc. Measuring the speed of rotation or reciprocation of a mechanical component using one or more cameras
CN111308252A (zh) * 2020-03-24 2020-06-19 珠海格力电器股份有限公司 磁悬浮系统的检测方法、装置、存储介质和处理器
US11282213B1 (en) 2020-06-24 2022-03-22 Rdi Technologies, Inc. Enhanced analysis techniques using composite frequency spectrum data
US11322182B1 (en) 2020-09-28 2022-05-03 Rdi Technologies, Inc. Enhanced visualization techniques using reconstructed time waveforms
GB2602038A (en) * 2020-12-16 2022-06-22 Edwards Ltd Bearing wear monitoring
CN112733706B (zh) * 2021-01-07 2022-09-16 河南理工大学 基于双线性lbp的电机故障诊断方法、电子设备及介质
US11639966B2 (en) 2021-03-15 2023-05-02 General Electric Technology Gmbh Enhanced electrical signature analysis for fault detection
US11733301B2 (en) 2021-05-13 2023-08-22 General Electric Technology Gmbh Systems and methods for providing voltage-less electrical signature analysis for fault protection
CN113341317A (zh) * 2021-06-24 2021-09-03 华北电力大学(保定) 模拟机电交叉复合故障的永磁发电机实验装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2096770A (en) * 1981-04-14 1982-10-20 Standard Telephones Cables Ltd Testing mechanical components of electrical machines
FR2573199A1 (fr) * 1984-11-15 1986-05-16 P E M E Procede de detection a distance de l'usure des paliers d'une machine tournante et dispositif pour la mise en oeuvre de ce procede
US5030917A (en) * 1990-04-20 1991-07-09 General Electric Company Transient rotor fault detection in induction and synchronous motors
US5629870A (en) * 1994-05-31 1997-05-13 Siemens Energy & Automation, Inc. Method and apparatus for predicting electric induction machine failure during operation
US5726905A (en) * 1995-09-27 1998-03-10 General Electric Company Adaptive, on line, statistical method and apparatus for motor bearing fault detection by passive motor current monitoring

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5683223A (en) * 1979-12-12 1981-07-07 Hitachi Ltd Rotary electric machine rotor winding malfunction detector
US4509088A (en) * 1982-09-30 1985-04-02 Square D Company Motor protector relay with memory of overload
US4965513A (en) * 1986-09-30 1990-10-23 Martin Marietta Energy Systems, Inc. Motor current signature analysis method for diagnosing motor operated devices
US5574387A (en) * 1994-06-30 1996-11-12 Siemens Corporate Research, Inc. Radial basis function neural network autoassociator and method for induction motor monitoring
US5578937A (en) * 1995-03-31 1996-11-26 Martin Marietta Energy Systems, Inc. Instrument for analysis of electric motors based on slip-poles component
TW351898B (en) * 1995-12-05 1999-02-01 Advantest Corp Portrait processing method
US5689194A (en) * 1996-04-19 1997-11-18 Framatome Technologies, Inc. Acoustic motor current signature analysis system with audio amplified speaker output
US5995910A (en) * 1997-08-29 1999-11-30 Reliance Electric Industrial Company Method and system for synthesizing vibration data
US6326758B1 (en) * 1999-12-15 2001-12-04 Reliance Electric Technologies, Llc Integrated diagnostics and control systems
US6727725B2 (en) 2001-05-01 2004-04-27 Square D Company Motor bearing damage detection via wavelet analysis of the starting current transient

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2096770A (en) * 1981-04-14 1982-10-20 Standard Telephones Cables Ltd Testing mechanical components of electrical machines
FR2573199A1 (fr) * 1984-11-15 1986-05-16 P E M E Procede de detection a distance de l'usure des paliers d'une machine tournante et dispositif pour la mise en oeuvre de ce procede
US5030917A (en) * 1990-04-20 1991-07-09 General Electric Company Transient rotor fault detection in induction and synchronous motors
US5629870A (en) * 1994-05-31 1997-05-13 Siemens Energy & Automation, Inc. Method and apparatus for predicting electric induction machine failure during operation
US5726905A (en) * 1995-09-27 1998-03-10 General Electric Company Adaptive, on line, statistical method and apparatus for motor bearing fault detection by passive motor current monitoring

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SCHOEN R R ET AL: "MOTOR BEARING DAMAGE DETECTION USING STATOR CURRENT MONITORING", IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, IEEE INC. NEW YORK, US, vol. 31, no. 6, 1 November 1995 (1995-11-01), pages 1274 - 1279, XP000550011, ISSN: 0093-9994 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6727725B2 (en) 2001-05-01 2004-04-27 Square D Company Motor bearing damage detection via wavelet analysis of the starting current transient
US7770458B2 (en) 2007-03-12 2010-08-10 Snecma Method of detecting damage to an engine bearing
EP1970691A1 (fr) * 2007-03-12 2008-09-17 Snecma Procédé de détection d'un endommagement d'un roulement de palier d'un moteur
FR2913769A1 (fr) * 2007-03-12 2008-09-19 Snecma Sa Procede de detection d'un endommagement d'un roulement de palier d'un moteur
EP2455772A3 (fr) * 2007-06-04 2012-10-10 Eaton Corporation Système et procédé pour la détection de défaut de roulement utilisant l'annulation du bruit de courant de stator
EP2156159A1 (fr) * 2007-06-04 2010-02-24 Eaton Corporation Système et procédé pour porter une détection de défaut en utilisant une annulation de bruit de courant de stator
EP2156159A4 (fr) * 2007-06-04 2010-08-18 Eaton Corp Système et procédé pour porter une détection de défaut en utilisant une annulation de bruit de courant de stator
WO2009063118A1 (fr) * 2007-11-14 2009-05-22 Universitat Politècnica De Catalunya Système pour le diagnostic de pannes dans des moteurs électriques
ES2336875A1 (es) * 2007-11-14 2010-04-16 Universitat Politecnica De Catalunya Metodo y equipo de diagnostico de fallos en motores electricos de corriente alterna.
WO2011006528A1 (fr) * 2009-07-13 2011-01-20 Abb Research Ltd Détection de défauts dans une machine électrique tournante
US9032803B2 (en) 2009-11-04 2015-05-19 Snecma Method for detecting damage in at least one engine roller bearing
FR2952177A1 (fr) * 2009-11-04 2011-05-06 Snecma Procede de detection d'un endommagement d'au moins un roulement de palier d'un moteur
WO2011054867A1 (fr) * 2009-11-04 2011-05-12 Snecma Procédé de détection d'un endommagement d'au moins un roulement de palier d'un moteur
WO2011104091A1 (fr) * 2010-02-24 2011-09-01 Siemens Aktiengesellschaft Système ou procédé de détermination de l'état d'un palier
CN102770744A (zh) * 2010-02-24 2012-11-07 西门子公司 用于确定轴承状态的系统或方法
CN102770744B (zh) * 2010-02-24 2016-01-20 西门子公司 用于确定轴承状态的系统或方法
RU2529644C2 (ru) * 2010-02-24 2014-09-27 Сименс Акциенгезелльшафт Система и способ для определения состояния подшипника
WO2014067742A1 (fr) * 2012-11-01 2014-05-08 Abb Research Ltd Méthode de détection d'un état de défaut dans une machine électrique
EP2728367A1 (fr) * 2012-11-01 2014-05-07 ABB Research Ltd. Procédé de détection d'une panne dans une machine électrique
US10088506B2 (en) 2012-11-01 2018-10-02 Abb Research Ltd. Method for detecting a fault condition in an electrical machine
WO2020015798A1 (fr) * 2018-07-17 2020-01-23 Ziehl-Abegg Se Procédé d'évaluation de la disponibilité opérationnelle d'un moteur électrique et moteur électrique et ventilateur
CN112470015A (zh) * 2018-07-17 2021-03-09 施乐百有限公司 用于评估电动机的运行就绪性的方法以及电动机和风扇
CN112470015B (zh) * 2018-07-17 2024-01-12 施乐百有限公司 用于评估电动机的运行就绪性的方法以及电动机和风扇
US11892369B2 (en) 2018-07-17 2024-02-06 Ziehl-Abegg Se Method for evaluating the operational readiness of an electric motor, electric motor, and ventilator
CN111652031A (zh) * 2019-12-02 2020-09-11 昆明理工大学 一种基于改进经验小波变换的滚动轴承故障诊断方法
CN111521396A (zh) * 2020-05-11 2020-08-11 电子科技大学 基于平移不变高密度小波包变换的轴承故障诊断方法

Also Published As

Publication number Publication date
EP1421670A1 (fr) 2004-05-26
DE60236668D1 (de) 2010-07-22
US6727725B2 (en) 2004-04-27
US20020186039A1 (en) 2002-12-12
EP1421670B1 (fr) 2010-06-09

Similar Documents

Publication Publication Date Title
US6727725B2 (en) Motor bearing damage detection via wavelet analysis of the starting current transient
Eren et al. Bearing damage detection via wavelet packet decomposition of the stator current
Eren et al. Motor bearing damage detection via wavelet analysis of the starting current transient
Mehala et al. Motor current signature analysis and its applications in induction motor fault diagnosis
Bellini et al. Diagnosis of bearing faults of induction machines by vibration or current signals: A critical comparison
US5739698A (en) Machine fault detection using slot pass frequency flux measurements
Knight et al. Mechanical fault detection in a medium-sized induction motor using stator current monitoring
Frosini et al. Stator current and motor efficiency as indicators for different types of bearing faults in induction motors
Benbouzid et al. Induction motor asymmetrical faults detection using advanced signal processing techniques
Singh et al. Vibration signal analysis using wavelet transform for isolation and identification of electrical faults in induction machine
Cusido et al. Wavelet and PDD as fault detection techniques
Patel et al. Induction motor bearing fault identification using vibration measurement
Mehala et al. Condition monitoring methods, failure identification and analysis for Induction machines
Amirat et al. Wind turbine bearing failure detection using generator stator current homopolar component ensemble empirical mode decomposition
Iorgulescu et al. Vibration monitoring for diagnosis of electrical equipment's faults
Kumar et al. Effectiveness of vibration and current monitoring in detecting broken rotor bar and bearing faults in an induction motor
Eren et al. Bearing damage detection via wavelet packet
Thomson et al. Failure identification of offshore induction motor systems using on-condition monitoring
Ahamed et al. Novel diagnosis technique of mass unbalance in rotor of induction motor by the analysis of motor starting current at no load through wavelet transform
Correia et al. Experimental Study on the Impact of MMF Spatial Harmonics in the Mechanical Vibration of a Three-Phase Induction Motor
Arashloo et al. A novel broken rotor bar fault detection method using park's transform and wavelet decomposition
Cusido et al. Fault detection in induction machines by using continuous and discrete wavelet decomposition
Eren et al. Bearing fault detection via wavelet packet decomposition with spectral post processing
Immovilli et al. Currents and vibrations in asynchronous motor with externally induced vibration
Li et al. Induction motor fault detection using vibration and stator current methods

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002729075

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002729075

Country of ref document: EP