WO2002088053A1 - Verfahren zur aufarbeitung eines flüssigen reaktionsaustrages der kationischen polymerisation von isobuten - Google Patents

Verfahren zur aufarbeitung eines flüssigen reaktionsaustrages der kationischen polymerisation von isobuten Download PDF

Info

Publication number
WO2002088053A1
WO2002088053A1 PCT/EP2002/004000 EP0204000W WO02088053A1 WO 2002088053 A1 WO2002088053 A1 WO 2002088053A1 EP 0204000 W EP0204000 W EP 0204000W WO 02088053 A1 WO02088053 A1 WO 02088053A1
Authority
WO
WIPO (PCT)
Prior art keywords
isobutene
reaction discharge
reaction
diluent
heated
Prior art date
Application number
PCT/EP2002/004000
Other languages
English (en)
French (fr)
Inventor
Thomas Wettling
Dirk Borchers
Heinz Auer
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to DE50214483T priority Critical patent/DE50214483D1/de
Priority to EP02766623A priority patent/EP1379486B1/de
Priority to KR1020037013207A priority patent/KR100910004B1/ko
Priority to AT02766623T priority patent/ATE470652T1/de
Priority to JP2002585359A priority patent/JP4646182B2/ja
Priority to US10/473,583 priority patent/US7038008B2/en
Publication of WO2002088053A1 publication Critical patent/WO2002088053A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F6/00Post-polymerisation treatments
    • C08F6/001Removal of residual monomers by physical means
    • C08F6/003Removal of residual monomers by physical means from polymer solutions, suspensions, dispersions or emulsions without recovery of the polymer therefrom

Definitions

  • the present invention relates to a process for working up a liquid reaction product from the cationic polymerization of isobutene, which essentially consists of polyisobutene, unreacted isobutene and an inert diluent.
  • High molecular weight polyisobutenes with molecular weights of up to several 100,000 daltons have been known for a long time and their production is described, for example, in H. Schurbock: Polyisobutylene and copolymers, pp. 77-104, Springer, Berlin 1959.
  • Highly reactive polyisobutenes are in demand as intermediates for the production of additives for lubricants and fuels.
  • Such highly reactive polyisobutenes are e.g. B. by the process of EP 0 628 575 by cationic polymerization of isobutene in the liquid phase using boron trifluoride and a secondary alcohol at temperatures from 0 ° C to -60 ° C.
  • the polymerization of the isobutene is generally carried out in the presence of an inert diluent.
  • the diluent used primarily serves to reduce the increase in the viscosity of the reaction mixture which is observed during the polymerization reaction to such an extent that the heat of reaction which arises can be dissipated sufficiently quickly.
  • the reaction is stopped by deactivating the polymerization catalyst.
  • the polymerization catalyst or its deactivation products are preferably removed by extraction with an aqueous solution.
  • the unreacted isobutene and the diluent are then freed from the polyisobutene formed, which is usually done by distillation, the volatile isobutene first being distilled off and then the diluent which is higher than the isobutene.
  • the polyisobutene remains as a distillation residue.
  • the thermal load during distillation is problematic, however, because residues of deactivation products of the polymerization catalyst, such as traces of hydrogen fluoride, can lead to undesired secondary reactions of the unreacted isobutene or subsequent reactions of the polyisobutene formed when heated.
  • An undesirable secondary reaction is, for example, the acid-catalyzed isomerization of a polyisobutene molecule with a terminal vinylidene double bond to a polyisobutene molecule in which the double bond occupies a thermodynamically more favorable position inside the molecule.
  • Undesired side reactions of the unreacted isobutene are, for example, dimerization to isookten or the formation of tert-butanol from isobutene and traces of water contained in the reaction mixture.
  • the aim is to use the heating and cooling energy used for distillation as economically as possible and to avoid heating to a very high or cooling to a very low temperature level.
  • the present invention is therefore based on the object of specifying a process for working up a liquid reaction product from the cationic polymerization of isobutene, which largely avoids undesirable secondary and subsequent reactions and permits efficient use of energy.
  • this object is achieved by a method in which the reaction product is heated and expanded into a flash tank, the reaction product being released into a liquid phase containing the polyisobutene and one of the major part of the isobutene contained in the reaction product and at least 30% of that in the reaction product contained diluent contained gas phase.
  • the reaction discharge typically contains 20 to 60% by weight of polyisobutene, 0.5 to 20% by weight of isobutene and 40 to 79.5% by weight of diluent. He can also minor amounts of other ingredients, such as traces of the added catalyst deactivating agent, z. B. alcohol, or derived products thereof with isobutene, especially ether, traces of hydrogen fluoride or water contain. These components are generally present in an amount of less than 5% by weight, usually less than 1% by weight.
  • the reaction discharge in which the polymerization catalyst has been deactivated and / or from which the polymerization catalyst or deactivation products thereof have preferably been removed, as described in detail below, is, for example in a heat exchanger, preferably to a temperature of 40 to 200 ° C, in particular 40 to 140 ° C, particularly preferably 40 to 120 ° C heated.
  • the reaction discharge is under a pressure which generally corresponds to that of the polymerization system and is, for example, 2 to 30 bar, preferably 2 to 20 bar.
  • the heated reaction discharge is then expanded into a flash tank which is under a pressure of generally 1 to 10 bar, preferably 1 to 8 bar, particularly preferably 1 to 5 bar.
  • the pressure difference of the expansion is preferably at least 1 bar, in particular at least 3 bar.
  • the reaction discharge separates into a liquid phase containing the polyisobutene and a gas phase containing the main amount of the isobutene contained in the reaction discharge and the main amount of the diluent contained in the reaction discharge.
  • the temperature to which the reaction discharge is preheated and the pressure difference of the expansion are preferably selected such that the gas phase comprises at least 90%, in particular at least 95%, of the isobutene contained in the reaction discharge and at least 30%, in particular at least 40%, particularly preferably at least 60% of the diluent contained in the reaction discharge.
  • Suitable combinations of temperature and pressure difference can be readily estimated by the person skilled in the art on the basis of the known values of the specific heat capacity of polyisobutene, isobutene and the diluent and the specific enthalpy of vaporization of isobutene and the diluent or alternatively can be determined by simple experiments.
  • the gas phase formed during the expansion is drawn off and expediently condensed to form a liquid isobutene / diluent mixture which - expediently after washing with water - can be returned to the polymerization reaction.
  • the isobutene / diluent mixture advantageously condenses at a higher temperature than pure isobutene, since the liquefaction of the isobutene is promoted by its physical solubility in the diluent. Since this eliminates the need to condense the isobutene on very To cool low temperatures, the inventive method is very economical.
  • the liquid phase obtained during the expansion is freed of any residues of unreacted isobutene and diluent which may be present, for example by simple distillation or renewed heating and expansion.
  • the shape of the expansion tank is not subject to any significant restrictions.
  • the heated reaction discharge is preferably introduced into the flash tank in such a way that a large liquid surface is generated when it enters the tank, which promotes the evaporation of the gas phase from the liquid phase.
  • the reaction discharge flows along the container wall and follows its curvature, as a result of which the reaction discharge experiences a swirl and moves downward in spiral lines along the circumference of the container wall in the relaxation container.
  • a column is preferably used as the flash tank, the heated reaction discharge being fed laterally into an area of the column free of internals, preferably in the area of the middle of the column or in the upper area of the column.
  • the liquid phase which forms is suitably passed over separating internals in the lower region of the column used as the expansion vessel in order to create the largest possible phase interface and to complete the evaporation of the gas phase.
  • bell bottoms or, preferably, a packing is suitable as separating internals.
  • a sump heater can be used, but this is not essential for the process according to the invention.
  • the polyisobutene contained in the reaction discharge is only subjected to thermal stress for a short time, so that subsequent reactions, such as undesired isomerizations, are suppressed. It is additionally advantageous that the traces of water contained in the reaction discharge largely pass into the gas phase during the relaxation according to the invention.
  • the cationic polymerization of isobutene in the presence of a Lewis acid catalyst can be carried out continuously or batchwise, but is preferably carried out continuously.
  • encryption drive for continuous polymerization in the liquid organic phase are known per se.
  • part of the reaction mixture formed in the polymerization reactor is continuously discharged.
  • a quantity of feedstock corresponding to the discharge, here isobutene or feed containing isobutene, is fed continuously to the polymerization reactor.
  • the ratio of the amount of substance in the polymerization reactor to the amount that is discharged is determined by the circulation / feed ratio, which is generally in the range from 1000: 1 to 1: 1 in the continuous polymerization of isobutene to polyisobutene , preferably in the range from 500: 1 to 5: 1 and in particular in the range from 200: 1 to 30: 1.
  • the average residence time of the isobutene to be polymerized in the polymerization reactor can be five seconds to several hours. Residence times of 1 to 30 minutes, in particular 2 to 20 minutes, are particularly preferred.
  • the isobutene is polymerized in the customary reactors, such as stirred tanks, tube, tube bundle and loop reactors, loop reactors, i.e. H. Tube (bundle) reactors with stirred tank characteristics are preferred. Tube reactors with tube cross sections that lead to turbulence in some areas are particularly favorable.
  • the polymerization is usually carried out at a reaction temperature of -60 to +40 ° C, in particular -30 to 0 ° C, particularly preferably -25 to -5 ° C.
  • the heat of polymerization is correspondingly removed using a cooling device. This can be operated, for example, with liquid ammonia as the coolant.
  • Another option for removing the heat of polymerization is evaporative cooling.
  • the concentration of the isobutene in the liquid reaction phase is generally in the range from 0.2 to 50% by weight, preferably in the range from 0.5 to 20% by weight, based on the liquid organic phase.
  • Suitable starting materials are both isobutene itself and isobutene-containing C-hydrocarbon streams, for example C-raffinates, C-cuts from isobutane dehydrogenation, C-cuts from steam crackers, FCC crackers (fluid catalysed cracking), provided that they are largely contained therein contained 1,3-butadiene are exempt.
  • Suitable C -carbon streams generally contain less than 500 ppm, preferably less than 200 ppm, of butadiene.
  • the presence of 1-butene, ice and trans-2-butene is largely uncritical.
  • the isobutene concentration in the C-hydrocarbon streams is typically in the range from 40 to 60% by weight.
  • the hydrocarbons other than isobutene assume the role of an inert diluent.
  • the feed containing isobutene can contain small amounts of contaminants, such as water, carboxylic acids or mineral acids, without there being a critical loss in yield or selectivity. It is expedient to avoid an accumulation of these impurities by removing such pollutants from the feed containing isobutene, for example by adsorption on solid adsorbents, such as activated carbon, molecular sieves or ion exchangers.
  • Suitable solvents or solvent mixtures which are inert to the reagents used are suitable as diluents.
  • Suitable diluents are, for example, saturated hydrocarbons, such as butane, pentane, hexane, heptane, octane, e.g. B. n-hexane, i-octane, cyclopentane, halogenated hydrocarbons, such as methyl chloride, dichloromethane or trichloromethane, and mixtures of the aforementioned diluents, of which n-hexane is particularly preferred.
  • the diluents are preferably freed of impurities such as water, carboxylic acids or mineral acids, for example by adsorption on solid adsorbents, such as activated carbon, molecular sieves or ion exchangers.
  • a high proportion of diluent reduces the amount of polyisobutene achievable per reactor volume and worsens the economics of the process.
  • a compromise will therefore be chosen between high utilization of the reactor volume and - for the removal of the heat of reaction - sufficiently low viscosity at the reaction temperature.
  • the optimum amount of diluent can be determined in a simple manner by the person skilled in the art by reducing the proportion of diluent in the reaction mixture to just before the point at which the heat of reaction can no longer be dissipated quickly enough. Falling below the optimal dilution
  • the amount of medium can be recognized from a temperature rise in the reactor and, if appropriate, an onset of deterioration in product quality.
  • Boron trifluoride preferably in combination with a cocatalyst, is particularly preferred as the Lewis acid catalyst.
  • Boron trifluoride is expediently used in the form of gaseous boron trifluoride, it being possible to use technical boron trifluoride with a purity of approximately 99.5% by weight, but still containing small amounts of sulfur dioxide and SiF.
  • Suitable cocatalysts are generally oxygen-containing compounds which preferably contain at least one double-bonded oxygen atom.
  • suitable oxygen-containing compounds are organic compounds of up to 30 carbon atoms. Examples are C ⁇ -C o-3 alkanols and -Cycloal- alkanols, C -C ⁇ o diols, C ⁇ -C 2 o-carboxylic acids, C-C ⁇ anhydrides -Carbonklareanhy- 2 and C 2 -C 2 o-dialkyl ether.
  • monohydric alkanols with 1 to 20 carbon atoms, in particular with 1 to 4 carbon atoms, which can optionally be used together with the C 1 -C 2 -dialkyl ethers.
  • monohydric secondary C 3 -C 2 o-alkanols and tert-butyl are particularly preferred. Examples include isopropanol, 2-butanol, sec-pentanol, sec-hexanol, sec-heptanol, sec-octanol and the like.
  • 2-Butanol, isopropanol, methyl tert-butyl ether, ethyl tert-butyl ether are particularly preferably used.
  • the molar ratio of boron trifluoride to cocatalyst is preferably 1: 1 to 1:10, in particular 1: 1.1 to 1: 5 and particularly preferably 1: 1.2 to 1: 2.5.
  • the boron trifluoride and the cocatalyst can be reacted beforehand to form a complex or combined in situ in the reaction mixture.
  • the concentration of the combination of boron trifluoride and cocatalyst in the reactor is generally in the range from 0.005 to 1% by weight, based on the liquid organic phase, in particular in the range from 0.01 to 0.7% by weight and particularly preferably in the range of 0.015 to 0.5% by weight.
  • the catalyst is separated off and / or deactivated and the polymerization is stopped in this way.
  • Deactivators such as water, alcohols, acetonitrile, ammonia or aqueous solutions of mineral bases or carbonates, which are added to the reaction mixture, can be used for catalyst deactivation. Acidified aqueous solutions can also be used for this the.
  • deactivators such as water, alcohols, acetonitrile, ammonia or aqueous solutions of mineral bases or carbonates, which are added to the reaction mixture, can be used for catalyst deactivation. Acidified aqueous solutions can also be used for this the.
  • deactivating the catalyst in the reaction mixture quantitatively it can either be separated quantitatively from the reaction mixture or partially separated from the reaction mixture and the remaining catalyst in the reaction mixture deactivated.
  • the catalyst is advantageously removed in accordance with the description of WO 99/31151.
  • Soluble boron trifluoride complex catalysts with limited solubility in the reaction mixture are preferably used to separate the catalyst and / or the reaction mixture is cooled to temperatures of, for example, 5 to 30 Kelvin below the reaction temperature, preferably 10 to 20 Kelvin below the reaction temperature.
  • reaction product is expediently subjected to one or more extractions - usually with water - to remove residual amounts of catalyst.
  • the isobutene polymer generally has a number average molecular weight M n of 500 to 50,000 and a content of terminal vinylidene groups of more than 60 mol%, in particular more than 80 mol%.
  • the dispersity M w / M n is preferably not more than 1.9, in particular not more than 1.8.
  • Fig. 1 shows the longitudinal section of a flash tank which is advantageously used in the method according to the invention.
  • Fig. 2 shows a cross section through the flash tank along the line marked "A A" in Fig. 1.
  • the expansion tank 1 according to FIG. 1 has an elongated cylindrical shape, the opening 2 for the introduction of the heated reaction discharge being flanged tangentially to the jacket.
  • the gas phase formed during the expansion can be drawn off via the opening 5 and the liquid phase can be drawn off via the opening 6.
  • the expansion tank 1 has a packing 3, which rests on a carrier 4. 2 shows the tangential arrangement tion of the opening 2 with respect to the cylindrical expansion tank 1 in cross section.
  • a polyisobutene was prepared in accordance with EP-A 628 575, Example 1: the feed containing isobutene used had the following composition:
  • the reactor was cooled so that the temperature in the reaction medium was X ° C (see table below).
  • the average residence time of the reaction medium in the reactor was 6.6 minutes.
  • the reaction discharge was then mixed intensively with 2000 g of water at 90 ° C. per hour, a temperature between 35 and 45 ° C. being established.
  • the two resulting phases were then separated.
  • the lower phase contained the wash water.
  • the upper phase (referred to below as the crude product) consisted of polyisobutene, isobutene oligomers, resisobutene and the solvent hexane and was used in all the following examples.
  • the crude product was passed in a pressure system over a heat exchanger heated with 16 bar steam (about 200 ° C.). This resulted in a temperature of 140 ° C and a pressure of 14 bar in the raw product.
  • the heated raw product was then passed tangentially into the upper third of a cylindrical flash tank.
  • a filler layer of stainless steel pall rings was arranged in the middle third of the expansion tank. It was heated when it was introduced into the expansion tank

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Water Supply & Treatment (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

Beschrieben wird ein Verfahren zur Aufarbeitung eines flüssigen Reaktionsaustrages der kationischen Polymerisation von Isobuten, der im Wesentlichen aus Polyisobuten, nicht umgesetzten Isobuten und einem inerten Verdünnungsmittel besteht, bei dem man den Reaktionsaustrag erwärmt und in einen Entspannungsbehälter entspannt, wobei sich der Reaktionsaustrag infolge der Entspannung in eine das Polyisobuten enthaltende Flüssigphase und eine die Hauptmenge des im Reaktionsaustrag enthaltenen Isobutens und des Verdünnungsmittels enthaltende Gasphase auftrennt.

Description

Verfahren zur Aufarbeitung eines flüssigen Reaktionsaustrages der kationischen Polymerisation von Isobuten
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Aufarbeitung eines flüssigen Reaktionsaustrages der kationischen Polymerisation von Isobuten, der im Wesentlichen aus Polyisobuten, nicht umgesetztem Isobuten und einem inerten Verdünnungsmittel besteht.
Hochmolekulare Polyisobutene mit Molekulargewichten bis zu mehreren 100000 Dalton sind seit langem bekannt und ihre Herstellung ist beispielsweise in H. Güterbock: Polyisobutylen und Mischpoly- merisate, S. 77-104, Springer, Berlin 1959, beschrieben. Von diesen herkömmlichen Polyisobutenen sind die sogenannten hochreaktiven Polyisobutene zu unterscheiden, welche einen hohen Gehalt an endständigen Vinylidengruppierungen von vorzugsweise deutlich über 60 Mol-% haben. Hochreaktive Polyisobutene sind als Zwi- schenprodukte zur Herstellung von Additiven für Schmier- und Kraftstoffe begehrt.
Derartige hochreaktive Polyisobutene sind z. B. nach dem Verfahren der EP 0 628 575 durch kationische Polymerisation von Isobu- ten in flüssiger Phase mit Hilfe von Bortrifluorid und eines sekundären Alkohols bei Temperaturen von 0 °C bis -60 °C erhältlich.
Die älteren Patentanmeldungen DE 199 48 947.5, DE 199 52 031.3, DE 199 52 030.5, DE 100 28 585.6 und DE 100 35 298.7 betreffen Verbesserungen oder vorteilhafte Ausgestaltungen eines derartigen Verfahrens.
Aufgrund der bei Raumtemperatur und darunter vergleichsweise hohen Viskosität von Polyisobuten wird die Polymerisation des Iso- butens in der Regel in Gegenwart eines inerten Verdünnungsmittels durchgeführt. Das verwendete Verdünnungsmittel dient vor allem dazu, die während der Polymerisationsreaktion zu beobachtende Erhöhung der Viskosität des Reaktionsgemisches soweit zu verringern, dass die entstehende Reaktionswärme ausreichend rasch abge- führt werden kann. Nach Erreichen des gewünschten Molekulargewichts wird die Reaktion durch Deaktivierung des Polymerisationskatalysators abgebrochen. Vorzugsweise wird der Polymerisationskatalysator oder dessen Deaktivierungsprodukte durch Extraktion mit einer wässrigen Lösung entfernt. Anschließend wird das gebildete Polyisobuten von dem nicht umgesetzten Isobuten und dem Verdünnungsmittel befreit, was üblicherweise durch Destillation erfolgt, wobei zuerst das leichtflüchtige Isobuten und anschließend das gegenüber Isobuten höhersie- dende Verdünnungsmittel abdestilliert wird. Das Polyisobuten verbleibt als Destillationsrückstand. Die thermische Belastung bei der Destillation ist jedoch problematisch, weil Reste von Deakti- vierungsprodukten des Polymerisationskatalysators, wie zum Beispiel Fluorwasserstoffspuren, beim Erwärmen zu unerwünschten Ne- benreaktionen des nicht umgesetzten Isobutens oder Folgereaktionen des gebildeten Polyisobutens führen können. Eine unerwünschte Folgereaktion ist zum Beispiel die sauer katalysierte Isomerisie- rung eines Polyisobutenmoleküls mit endständiger Vinylidendoppel- bindung zu einem Polyisobutenmolekül, bei dem die Doppelbindung eine thermodynamisch günstigere Position im Inneren des Moleküls einnimmt. Unerwünschte Nebenreaktionen des nicht umgesetzten Isobutens sind beispielsweise die Dimerisierung zu Isookten oder die Bildung von tert-Butanol aus Isobuten und im Reaktionsgemisch enthaltenen Wasserspuren.
Grundsätzlich ist man bestrebt, die für eine Destillation eingesetzte Heiz- und Kühlenergie möglichst wirtschaftlich zu verwenden und ein Aufheizen auf ein sehr hohes oder Abkühlen auf ein sehr tiefes Temperaturniveau zu vermeiden.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Aufarbeitung eines flüssigen Reaktionsaustrages der kationischen Polymerisation von Isobuten anzugeben, das unerwünschte Neben- und Folgereaktionen weitgehend vermeidet und ei- nen effizienten Energieeinsatz gestattet.
Erfindungsgemäß wird diese Aufgabe durch ein Verfahren gelöst, bei dem man den Reaktionsaustrag erwärmt und in einen Entspannungsbehälter entspannt, wobei sich der Reaktionsaustrag infolge der Entspannung in eine das Polyisobuten enthaltende Flüssigphase und eine die Hauptmenge des im Reaktionsaustrag enthaltenen Isobutens und wenigstens 30 % des im Reaktionsaustrag enthaltenen Verdünnungsmittels enthaltende Gasphase auftrennt.
Der Reaktionsaustrag enthält typischerweise 20 bis 60 Gew.-% Polyisobuten, 0,5 bis 20 Gew.-% Isobuten und 40 bis 79,5 Gew.-% Verdünnungsmittel. Er kann daneben untergeordnete Mengen anderer Bestandteile, wie Spuren des zugesetzten Katalysatordeaktivie- rungsmittels, z. B. Alkohol, oder Folgeprodukte davon mit Isobu- ten, insbesondere Ether, Spuren von Fluorwasserstoff oder Wasser enthalten. Diese Bestandteile sind im Allgemeinen in einer Menge von weniger als 5 Gew.-%, meist weniger als 1 Gew.-%, vorhanden.
Der Reaktionsaustrag, in dem der Polymerisationskatalysator deak- tiviert worden ist und/oder aus dem der Polymerisationskatalysator oder Deaktivierungsprodukte davon vorzugsweise entfernt worden sind, wie dies im Einzelnen weiter unten beschrieben ist, wird, beispielsweise in einem Wärmetauscher, vorzugsweise auf eine Temperatur von 40 bis 200 °C, insbesondere 40 bis 140 °C, be- sonders bevorzugt 40 bis 120 °C erwärmt. Der Reaktionsaustrag steht dabei unter einem Druck, der in der Regel dem des Polymerisationssystems entspricht und zum Beispiel 2 bis 30 bar, vorzugsweise 2 bis 20 bar beträgt. Anschließend wird der erwärmte Reaktionsaustrag in einen Entspannungsbehälter entspannt, der un- ter einem Druck von im Allgemeinen 1 bis 10 bar, vorzugsweise 1 bis 8 bar, besonders bevorzugt 1 bis 5 bar steht. Die Druckdifferenz der Entspannung beträgt vorzugsweise wenigstens 1 bar, insbesondere wenigstens 3 bar.
Infolge der Entspannung trennt sich der Reaktionsaustrag in eine das Polyisobuten enthaltende Flüssigphase und eine die Hauptmenge des im Reaktionsaustrages enthaltenen Isobutens und die Hauptmenge des im Reaktionsaustrag enthaltenen Verdünnungsmittels enthaltende Gasphase auf. Vorzugsweise wird die Temperatur, auf die der Reaktionsaustrag vorerwärmt wird, und die Druckdifferenz der Entspannung so gewählt, dass die Gasphase wenigstens 90 %, insbesondere wenigstens 95 %, des im Reaktionsaustrag enthaltenen Isobutens und wenigstens 30 %, insbesondere wenigstens 40 %, besonders bevorzugt wenigstens 60 %, des im Reaktionsaustrag enthalte- nen Verdünnungsmittels enthält. Geeignete Kombinationen von Temperatur und Druckdifferenz kann der Fachmann aufgrund der bekannten Werte der spezifischen Wärmekapazität von Polyisobuten, Isobuten und des Verdünnungsmittels sowie der spezifischen Verdampfungsenthalpie von Isobuten und des Verdünnungsmittels ohne wei- teres abschätzen oder alternativ durch einfache Versuche ermitteln.
Die bei der Entspannung entstehende Gasphase wird abgezogen und zweckmäßigerweise zu einem flüssigen Isobuten-Verdünnungsmittel- Gemisch kondensiert, das - zweckmäßigerweise nach einer Wäsche mit Wasser - in die Polymerisationsreaktion zurückgeführt werden kann. Vorteilhafterweise kondensiert das Isobuten-Verdünnungsmittel-Gemisch bereits bei höherer Temperatur als reines Isobuten, da die Verflüssigung des Isobutens durch dessen physikalische Löslichkeit in dem Verdünnungsmittel begünstigt wird. Da damit das Erfordernis entfällt, zur Kondensation des Isobutens auf sehr tiefe Temperaturen abzukühlen, ist das erfindungsgemäße Verfahren sehr wirtschaftlich.
Die bei der Entspannung anfallende Flüssigphase wird von gegebe- nenfalls vorhandenen Resten an nicht umgesetzten Isobuten und Verdünnungsmittel befreit, zum Beispiel durch einfache Destillation oder erneute Erwärmung und Entspannung.
Die Gestalt des Entspannungsbehälters unterliegt keinen wesentli- chen Beschränkungen. Vorzugsweise wird der erwärmte Reaktionsaustrag so in den Entspannungsbehälter eingeführt, dass beim Eintritt in den Behälter eine große Flüssigkeitsoberfläche erzeugt wird, die das Ausdampfen der Gasphase aus der Flüssigphase begünstigt. Hierzu hat es sich als vorteilhaft erwiesen, einen vor- zugsweise länglichen, vertikal angeordneten Entspannungsbehälter mit kreisförmigem Querschnitt zu verwenden und den erwärmten Reaktionsaustrag tangential zur Wand des Entspannungsbehälters, vorzugsweise in einer Richtung senkrecht zur Längsachse des Entspannungsbehälters, einzuführen. Auf diese Weise strömt der Reak- tionsaustrag entlang der Behälterwand und folgt deren Krümmung, wodurch der Reaktionsaustrag einen Drall erfährt und sich im Entspannungsbehälter in Spirallinien entlang des Umfangs der Behälterwand nach unten bewegt.
Bevorzugt verwendet man als Entspannungsbehälter eine Kolonne, wobei die Zufuhr des erwärmten Reaktionsaustrages seitlich in einen von Einbauten freien Bereich der Kolonne, vorzugsweise im Bereich der Kolonnenmitte oder im oberen Bereich der Kolonne, erfolgt. Geeigneterweise leitet man die sich bildende Flüssigphase über trennwirksame Einbauten im unteren Bereich der als Entspannungsbehälter verwendeten Kolonne, um eine möglichst große Phasengrenzfläche zu schaffen und das Ausdampfen der Gasphase zu vervollständigen. Als trennwirksame Einbauten zum Beispiel sind Glockenböden oder bevorzugt eine Füllkörperpackung geeignet. Eine Sumpfheizung kann angewendet werden, diese ist aber für das erfindungsgemäße Verfahren nicht wesentlich.
Bei dem erfindungsgemäßen Verfahren wird das im Reaktionsaustrag enthaltene Polyisobuten nur kurzzeitig thermisch belastet, so dass Folgereaktionen, wie unerwünschte Isomerisierungen, zurückgedrängt werden. Dabei ist es zusätzlich von Vorteil, dass die im Reaktionsaustrag enthaltenen Wasserspuren bei der erfindungsgemäßen Entspannung weitgehend in die Gasphase übertreten.
Die kationische Polymerisation von Isobuten in Gegenwart eines Lewis-Säure-Katalysators kann kontinuierlich oder diskontinuierlich erfolgen, erfolgt jedoch vorzugsweise kontinuierlich. Ver- fahren zur kontinuierlichen Polymerisation in flüssiger organischer Phase sind an sich bekannt. Bei einem kontinuierlichen Verfahren wird kontinuierlich ein Teil der im Polymerisationsreaktor entstandenen Reaktionsmischung ausgetragen. Eine dem Austrag ent- sprechende Menge an Einsatzmaterialien, hier Isobuten bzw. Isobuten-haltiger Zulauf, wird dem Polymerisationsreaktor kontinuierlich zugeführt. Das Verhältnis von der im Polymerisationsreaktor befindlichen Stoffmenge zu der Menge, die ausgetragen wird, bestimmt sich durch das Umlauf/Zulauf-Verhältnis, das bei der kon- tinuierlichen Polymerisation von Isobuten zu Polyisobuten in der Regel im Bereich von 1000:1 bis 1:1, bevorzugt im Bereich von 500:1 bis 5:1 und insbesondere im Bereich von 200:1 bis 30:1 liegt. Die mittlere Verweildauer des zu polymerisierenden Isobutens im Polymerisationsreaktor kann fünf Sekunden bis mehrere Stunden betragen. Verweilzeiten von 1 bis 30 Minuten, insbesondere 2 bis 20 Minuten, sind besonders bevorzugt.
Die Polymerisation des Isobutens erfolgt in den üblichen Reaktoren, wie Rührkessel, Rohr-, Rohrbündel- und Schlaufenreaktoren, wobei Schlaufenreaktoren, d. h. Rohr(bündel)reaktoren mit Rührkesselcharakteristik, bevorzugt sind. Besonders günstig sind Rohrreaktoren mit Rohrquerschnitten, die in Teilbereichen zu Turbulenzen führen.
Die Polymerisation wird üblicherweise bei einer Reaktionstemperatur von -60 bis +40 °C, insbesondere -30 bis 0 °C, besonders bevorzugt -25 bis -5 °C, durchgeführt. Die Polymerisationswärme wird entsprechend mit Hilfe einer Kühlvorrichtung abgeführt. Diese kann beispielsweise mit flüssigem Ammoniak als Kühlmittel betrie- ben werden. Eine andere Möglichkeit, die Polymerisationswärme abzuführen, ist die Siedekühlung. Dabei wird die freiwerdende Wärme durch teilweises Verdampfen des Reaktionsgemischs, z. B. des Isobutens und/oder anderer leicht flüchtiger Bestandteile des Isobutenzulaufs oder eines leicht flüchtigen Verdünnungsmittels, abge- führt. Vorzugsweise arbeitet man unter isothermen Bedingungen, d. h. die Temperatur der flüssigen organischen Reaktionsphase im Polymerisationsreaktor hat einen stationären Wert und ändert sich während des Betriebs des Reaktors nicht oder nur in geringem Maße.
Die Konzentration des Isobutens in der flüssigen Reaktionsphase liegt in der Regel im Bereich von 0,2 bis 50 Gew.-%, vorzugsweise im Bereich von 0,5 bis 20 Gew.-%, bezogen auf die flüssige organische Phase. Als Einsatzstoffe eignen sich sowohl Isobuten selbst als auch Isobuten-haltige C-Kohlenwasserstoffströme, beispielsweise C-Raffinate, C -Schnitte aus der Isobutan-Dehydrierung, C-Schnitte aus Steamcrackern, FCC-Crackern (fluid catalysed cracking), sofern sie weitgehend von darin enthaltenem 1,3-Buta- dien befreit sind. Geeignete C -Kohlenwasserstoffströme enthalten in der Regel weniger als 500 ppm, vorzugsweise weniger als 200 ppm, Butadien. Die Anwesenheit von 1-Buten, eis- und trans-2-Buten ist weitgehend unkritisch. Typischerweise liegt die Isobutenkonzentration in den C-Kohlenwasserstoffströmen im Bereich von 40 bis 60 Gew.-%. Bei Einsatz von C4-Schnitten als Einsatzmaterial übernehmen die von Isobuten verschiedenen Kohlenwasserstoffe die Rolle eines inerten Verdünnungsmittels. Der Isobuten-haltige Zulauf kann geringe Mengen an Kontaminanten, wie Was- ser, Carbonsäuren oder Mineralsäuren enthalten, ohne dass es zu kritischen Ausbeute- oder Selektivitätseinbußen kommt. Es ist zweckdienlich, eine Anreicherung dieser Verunreinigungen zu vermeiden, indem man solche Schadstoffe beispielsweise durch Adsorption an feste Adsorbentien, wie Aktivkohle, Molekularsiebe oder Ionenaustauscher, aus dem Isobuten-haltigen Zulauf entfernt.
Als Verdünnungsmittel sind solche Lösungsmittel oder Lösungsmittelgemische geeignet, die gegenüber den eingesetzten Reagenzien inert sind. Geeignete Verdünnungsmittel sind beispielsweise ge- sättigte Kohlenwasserstoffe, wie Butan, Pentan, Hexan, Heptan, Octan, z. B. n-Hexan, i-Octan, Cyclopentan, halogenierte Kohlenwasserstoffe, wie Methylchlorid, Dichlormethan oder Trichlorme- than, sowie Mischungen der vorgenannten Verdünnungsmittel, wovon n-Hexan besonders bevorzugt ist. Vorzugsweise werden die Verdün- nungsmittel vor ihrem Einsatz von Verunreinigungen wie Wasser, Carbonsäuren oder Mineralsäuren befreit, beispielsweise durch Adsorption an feste Adsorbentien, wie Aktivkohle, Molekularsiebe oder Ionenaustauscher.
Es ist für die Abführung der Reaktionswärme günstig, bei großer Verdünnung, d. h. mit einem hohen Verdünnungsmittelanteil im Reaktionsgemisch zu arbeiten. Andererseits verringert ein hoher Verdünnungsmittelanteil die pro Reaktorvolumen erzielbare Menge an Polyisobuten und verschlechtert die Wirtschaftlichkeit des Verfahrens. In der Praxis wird man daher einen Kompromiss zwischen hoher Reaktorvolumenausnutzung und - für die Abführung der Reaktionswärme - ausreichend geringer Viskosität bei Reaktionstemperatur wählen. Die optimale Verdünnungsmittelmenge kann vom Fachmann in einfacher Weise bestimmt werden, indem er den verdün- nungsmittelanteil im Reaktionsgemisch bis knapp vor den Punkt vermindert, an dem die Reaktionswärme nicht mehr rasch genug abgeführt werden kann. Das Unterschreiten der optimalen Verdün- nungsmittelmenge ist an einem Temperaturanstieg im Reaktor und gegebenenfalls einer beginnenden Verschlechterung der Produktqualität erkennbar.
Als Lewis-Säure-Katalysator ist Bortrifluorid, vorzugsweise in Kombination mit einem Cokatalysator, besonders bevorzugt. Bortrifluorid wird zweckmäßigerweise in Form von gasförmigem Bortrifluorid eingesetzt, wobei technisches, noch geringe Mengen Schwefeldioxid und SiF enthaltendes, vorzugsweise aber hochreines Bor- trifluorid mit einer Reinheit von etwa 99,5 Gew.-% verwendet werden kann.
Geeignete Cokatalysatoren sind in der Regel sauerstoffhaltige Verbindungen, die vorzugsweise wenigstens ein zweibindiges Sauer- stoffatom enthalten. Geeignete sauerstoffhaltige Verbindungen sind neben Wasser organische Verbindungen bis zu 30 Kohlen- stoffatomen. Beispiele hierfür sind Cι-C3o-Alkanole und -Cycloal- kanole, C -Cχo-Diole, Cι-C2o-Carbonsäuren, C-Cι2-Carbonsäureanhy- dride sowie C2-C2o-Dialkylether. Hierunter bevorzugt werden ein- wertige Alkanole mit 1 bis 20 Kohlenstoffatomen, insbesondere mit 1 bis 4 Kohlenstoffatomen, die gegebenenfalls zusammen mit den Cι-C2o-Dialkylethern eingesetzt werden können. Als Cokatalysator sind einwertige sekundäre C3-C2o-Alkanole und tert-Butylether besonders bevorzugt. Beispielhaft seien genannt Isopropanol, 2-Bu- tanol, sec-Pentanol, sec-Hexanol, sec-Heptanol, sec-Octanol und dergleichen. Besonders bevorzugt werden 2-Butanol, Isopropanol, Methyl-tert-butylether, Ethyl-tert-butylether verwendet.
Vorzugsweise beträgt das Molverhältnis von Bortrifluorid zu Coka- talysator 1:1 bis 1:10, insbesondere 1:1,1 bis 1:5 und besonders bevorzugt 1:1,2 bis 1:2,5. Das Bortrifluorid und der Cokatalysator können vorab unter Bildung eines Komplexes umgesetzt oder in situ im Reaktionsgemisch kombiniert werden.
Die Konzentration der Kombination von Bortrifluorid und Cokatalysator im Reaktor liegt in der Regel im Bereich von 0,005 bis 1 Gew.-%, bezogen auf die flüssige organische Phase, insbesondere im Bereich von 0,01 bis 0,7 Gew.-% und besonders bevorzugt im Bereich von 0,015 bis 0,5 Gew.-%.
Nach Erreichen des gewünschten Polymerisationsgrades wird der Katalysator abgetrennt und/oder deaktiviert und auf diese Weise die Polymerisation abgebrochen. Zur Katalysatordeaktivierung können Desaktivatoren, wie beispielsweise Wasser, Alkohole, Acetonitril, Ammoniak oder wässrige Lösungen von Mineralbasen oder Carbonaten, verwendet werden, die dem Reaktionsgemisch zugefügt werden. Hierzu können auch angesäuerte wässrige Lösungen verwendet wer- den. Anstatt den Katalysator im Reaktionsgemisch quantitativ zu deaktivieren, kann man ihn entweder quantitativ aus dem Reaktionsgemisch abtrennen oder teilweise aus dem Reaktionsgemisch abtrennen und den restlichen Katalysator im Reaktionsgemisch deak- tivieren. Mit Vorteil erfolgt die Katalysatorabtrennung gemäß der Beschreibung der WO 99/31151.
Zur Abtrennung des Katalysators aus dem Reaktionsgemisch empfiehlt es sich, zuvor die Isobutenkonzentration auf weniger als 2 Gew.-%, vorzugsweise weniger als 1 Gew.-% und insbesondere weniger als 0,5 Gew.-%, bezogen auf das Reaktionsgemisch, zu verringern. Zur Abtrennung des Katalysators verwendet man bevorzugt lösliche Bortrifluorid-Komplex-Katalysatoren mit begrenzter Löslichkeit im Reaktionsgemisch und/oder kühlt das Reaktionsgemisch auf Temperaturen von beispielsweise 5 bis 30 Kelvin unterhalb der Reaktionstemperatur, vorzugsweise 10 bis 20 Kelvin unterhalb der Reaktionstemperatur, ab.
Im weiteren Gang der Aufarbeitung wird der Reaktionsaustrag zweckmäßigerweise einer oder mehreren Extraktionen - üblicherweise mit Wasser - zur Entfernung von Restmengen an Katalysator unterzogen.
Das Isobutenpolymerisat weist in der Regel ein zahlenmittleres Molekulargewicht Mn von 500 bis 50000 und einen Gehalt an endständigen Vinylidengruppen von mehr als 60 Mol-%, insbesondere mehr als 80 Mol-% auf. Die Dispersität Mw/Mn beträgt vorzugsweise nicht mehr als 1,9, insbesondere nicht mehr als 1,8.
Die vorliegende Erfindung wird durch die beigefügten Figuren und die nachfolgenden Beispiele und Vergleichsbeispiele näher veranschaulicht.
Fig. 1 zeigt den Längsschnitt eines Entspannungsbehälters, der mit Vorteil im erfindungsgemäßen Verfahren verwendet wird.
Fig. 2 zeigt einen Querschnitt durch den Entspannungsbehälter entlang der in Fig. 1 mit "A A" gekennzeichneten Linie.
Der Entspannungsbehälter 1 gemäß Fig. 1 weist eine längliche zylindrische Form auf, wobei die Öffnung 2 zum Einführen des erwärmten Reaktionsaustrags tangential am Mantel angeflanscht ist. Über die Öffnung 5 kann die sich bei der Entspannung bildende Gasphase, über die Öffnung 6 die Flüssigphase abgezogen werden. Der Entspannungsbehälter 1 weist eine Füllkörperpackung 3 auf, die auf einem Träger 4 ruht. Fig. 2 zeigt die tangentiale Anord- nung der Öffnung 2 bezüglich des zylindrischen Entspannungsbehälters 1 im Querschnitt.
Beispiele 1 bis 3
Zur Herstellung eines Polyisobutens wurde gemäß der EP-A 628 575, Beispiel 1 verfahren: Der eingesetzte Isobuten-haltige Zulauf entsprach folgender Zusammensetzung:
Isobutan <1 Gew.-% n-Butan <1 Gew.-%
1-Buten <1 Gew.-% trans-2-Buten <1 Gew.-% cis-2-Buten <1 Gew.-% Isobuten 45 Gew.-%
Hexan 54 Gew.-%
Butadien <50 ppm
Wasser etwa 2 ppm
Im Verlauf von einer Stunde wurden 6000 g des obigen Zulaufs auf der Saugseite eines Schlaufenreaktors zugeführt, der mit einer integrierten Umwälzpumpe ausgestattet war, dessen Rohrdurchmesser 4 mm und dessen Volumen 1000 ml betrug. Es wurden Y mmol/1000 g Zulauf (siehe nachstehende Tabelle) Bortrifluorid zugegeben. Be- zogen auf das Bortrifluorid wurde die 1,6-fache molare Menge
2-Butanol zugesetzt. Der Reaktor wurde so gekühlt, dass die Temperatur im Reaktionsmedium X °C (siehe nachstehende Tabelle) betrug. Die mittlere Verweilzeit des Reaktionsmediums im Reaktor lag bei 6,6 Minuten. Der Reaktionsaustrag wurde daraufhin mit 2000 g pro Stunde Wasser von 90 °C intensiv vermischt, wobei sich eine Temperatur zwischen 35 und 45 °C einstellte. Anschließend separierte man die beiden entstehenden Phasen. Die untere Phase enthielt das Waschwasser. Die obere Phase (im Folgenden Rohprodukt genannt) bestand aus Polyisobuten, Isobutenoligomeren, Re- stisobuten und dem Lösungsmittel Hexan und wurde in allen folgenden Beispielen verwendet.
Das Rohprodukt wurde in einem Drucksystem über einen mit 16 bar Dampf (etwa 200 °C) beheizten Wärmetauscher geleitet. Dabei stellte sich im Rohprodukt eine Temperatur von 140 °C und ein Druck von 14 bar ein. Anschließend wurde das erhitzte Rohprodukt tangential in das obere Drittel eines zylindrischen Entspannungsbehälters geleitet. Im mittleren Drittel des Entspannungsbehälters war eine Schüttschicht von Edelstahl-Pallringen angeordnet. Beim Einleiten in den Entspannungsbehälter wurde das erhitzte
Rohprodukt von 14 auf 2,2 bar entspannt. Bei der Entspannung verdampften das Isobuten, Hexan und weitere leichtflüchtige Bestand- teile des Rohprodukts. Sie wurden am Kopf des Entspannungsbehälters als Destillat abgezogen.
Die Ergebnisse sind in der nachfolgenden Tabelle zusammenge- stellt:
Figure imgf000011_0001
Figure imgf000011_0002

Claims

Patentansprüche
1. Verfahren zur Aufarbeitung eines flüssigen Reaktionsaustrages der kationischen Polymerisation von Isobuten, der im Wesentlichen aus Polyisobuten, nicht umgesetzten Isobuten und einem inerten Verdünnungsmittel besteht, bei dem man den Reaktionsaustrag erwärmt und in einen Entspannungsbehälter entspannt, wobei sich der Reaktionsaustrag infolge der Entspannung in eine das Polyisobuten enthaltende Flüssigphase und eine die Hauptmenge des im Reaktionsaustrag enthaltenen Isobutens und wenigstens 30 % des im Reaktionsaustrag enthaltenen Verdünnungsmittels enthaltende Gasphase auftrennt.
2. Verfahren nach Anspruch 1, wobei die Gasphase wenigstens 90 % des im Reaktionsaustrag enthaltenen Isobutens enthält.
3. Verfahren nach Anspruch 1 oder 2, wobei die Druckdifferenz der Entspannung wenigstens 1 bar beträgt.
Verfahren nach einem der vorhergehenden Ansprüche, wobei man einen Entspannungsbehälter mit im Wesentlichen kreisförmigen Querschnitt verwendet und den erwärmten Reaktionsaustrag tan- gential einführt.
5. Verfahren nach einem der vorhergehenden Ansprüche, wobei man den erwärmten Reaktionsaustrag in den mittleren bis oberen Bereich des Entspannungsbehälters einführt und die sich bildende Flüssigphase über trennwirksame Einbauten im unteren Bereich des Entspannungsbehälters leitet.
6. Verfahren nach Anspruch 5, wobei man als trennwirksame Einbauten eine Füllkörperpackung verwendet.
7. Verfahren nach einem der vorhergehenden Ansprüche, wobei man den Reaktionsaustrag auf eine Temperatur von 40 bis 200 °C erwärmt.
8. Verfahren nach einem der vorhergehenden Ansprüche, wobei man die Gasphase zu einem flüssigen Isobuten-Verdünnungsmittelgemisch kondensiert, das in die Polymerisationsreaktion zurückgeführt wird.
PCT/EP2002/004000 2001-04-11 2002-04-10 Verfahren zur aufarbeitung eines flüssigen reaktionsaustrages der kationischen polymerisation von isobuten WO2002088053A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE50214483T DE50214483D1 (de) 2001-04-11 2002-04-10 Nsaustrages der kationischen polymerisation von isobuten
EP02766623A EP1379486B1 (de) 2001-04-11 2002-04-10 Verfahren zur aufarbeitung eines flüssigen reaktionsaustrages der kationischen polymerisation von isobuten
KR1020037013207A KR100910004B1 (ko) 2001-04-11 2002-04-10 이소부텐의 양이온 중합의 액체 반응 배출물의 처리 방법
AT02766623T ATE470652T1 (de) 2001-04-11 2002-04-10 Verfahren zur aufarbeitung eines flüssigen reaktionsaustrages der kationischen polymerisation von isobuten
JP2002585359A JP4646182B2 (ja) 2001-04-11 2002-04-10 イソブテンのカチオン重合の液体反応排出物を後処理する方法
US10/473,583 US7038008B2 (en) 2001-04-11 2002-04-10 Method for the processing of a liquid reaction discharge of the cationic polymerization of isobutene

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10118182.5 2001-04-11
DE10118182A DE10118182A1 (de) 2001-04-11 2001-04-11 Verfahren zur Aufarbeitung eines flüssigen Reaktionsaustrages der kationischen Polymerisation von Isobuten

Publications (1)

Publication Number Publication Date
WO2002088053A1 true WO2002088053A1 (de) 2002-11-07

Family

ID=7681284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/004000 WO2002088053A1 (de) 2001-04-11 2002-04-10 Verfahren zur aufarbeitung eines flüssigen reaktionsaustrages der kationischen polymerisation von isobuten

Country Status (8)

Country Link
US (1) US7038008B2 (de)
EP (1) EP1379486B1 (de)
JP (1) JP4646182B2 (de)
KR (1) KR100910004B1 (de)
CN (1) CN1314638C (de)
AT (1) ATE470652T1 (de)
DE (2) DE10118182A1 (de)
WO (1) WO2002088053A1 (de)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10118181A1 (de) * 2001-04-11 2002-10-17 Basf Ag Abtrennung nicht umgesetzten Isobutens bei der Polymerisation von Isobuten
US7220887B2 (en) 2004-05-21 2007-05-22 Exxonmobil Chemical Patents Inc. Process and apparatus for cracking hydrocarbon feedstock containing resid
US7235705B2 (en) * 2004-05-21 2007-06-26 Exxonmobil Chemical Patents Inc. Process for reducing vapor condensation in flash/separation apparatus overhead during steam cracking of hydrocarbon feedstocks
US9309339B2 (en) 2011-10-26 2016-04-12 Tpc Group Llc Mid-range vinylidene content, high viscosity polyisobutylene polymers
US9074026B2 (en) 2011-10-26 2015-07-07 Tpc Group Llc Polyisobutylene prepared with low diluent content reaction medium
US8946361B2 (en) 2011-10-26 2015-02-03 Tpc Group Llc Polyisobutylene prepared at high velocity and circulation rate
US9034998B2 (en) 2011-12-16 2015-05-19 University Of Massachusetts Polymerization initiating system and method to produce highly reactive olefin functional polymers
US9156924B2 (en) 2013-03-12 2015-10-13 University Of Massachusetts Polymerization initiating system and method to produce highly reactive olefin functional polymers
US9631038B2 (en) 2013-10-11 2017-04-25 University Of Massachusetts Polymerization initiating system and method to produce highly reactive olefin functional polymers
US9771442B2 (en) 2015-05-13 2017-09-26 University Of Massachusetts Polymerization initiating system and method to produce highly reactive olefin functional polymers
US10047174B1 (en) 2017-06-28 2018-08-14 Infineum International Limited Polymerization initiating system and method to produce highly reactive olefin functional polymers
US10167352B1 (en) 2017-06-28 2019-01-01 University Of Massachusetts Polymerization initiating system and method to produce highly reactive olefin functional polymers
US10174138B1 (en) 2018-01-25 2019-01-08 University Of Massachusetts Method for forming highly reactive olefin functional polymers
US10829573B1 (en) 2019-05-21 2020-11-10 Infineum International Limited Method for forming highly reactive olefin functional polymers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3280091A (en) * 1963-02-06 1966-10-18 Dow Chemical Co Monomer recovery process
EP0435116A2 (de) * 1989-12-23 1991-07-03 BASF Aktiengesellschaft Verfahren zur Reinigung von Polymerisaten des Isobutens
WO1999060028A2 (en) * 1998-05-18 1999-11-25 Exxon Chemical Patents Inc. Continuous volatile removal in slurry polymerization
EP1026175A1 (de) * 1998-08-25 2000-08-09 Nippon Petrochemicals Company, Limited Verfahren zur herstellung von butylenpolymer

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1006694A5 (fr) 1991-06-22 1994-11-22 Basf Ag Procede de preparation de polyisobutenes extremement reactifs.
DE19948947A1 (de) 1999-10-11 2001-04-12 Basf Ag Verfahren zur kontinuierlichen Herstellung von Polyisobutenen
DE19952030A1 (de) 1999-10-28 2001-05-03 Basf Ag Verfahren zur Herstellung von hochreaktiven Polyisobutenen
DE19952031A1 (de) 1999-10-28 2001-05-03 Basf Ag Verfahren zur Herstellung hochreaktiver Polyisobutene

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3280091A (en) * 1963-02-06 1966-10-18 Dow Chemical Co Monomer recovery process
EP0435116A2 (de) * 1989-12-23 1991-07-03 BASF Aktiengesellschaft Verfahren zur Reinigung von Polymerisaten des Isobutens
WO1999060028A2 (en) * 1998-05-18 1999-11-25 Exxon Chemical Patents Inc. Continuous volatile removal in slurry polymerization
EP1026175A1 (de) * 1998-08-25 2000-08-09 Nippon Petrochemicals Company, Limited Verfahren zur herstellung von butylenpolymer

Also Published As

Publication number Publication date
EP1379486A1 (de) 2004-01-14
CN1314638C (zh) 2007-05-09
JP2004529241A (ja) 2004-09-24
KR100910004B1 (ko) 2009-07-29
DE50214483D1 (de) 2010-07-22
ATE470652T1 (de) 2010-06-15
US7038008B2 (en) 2006-05-02
US20040092707A1 (en) 2004-05-13
KR20040089442A (ko) 2004-10-21
JP4646182B2 (ja) 2011-03-09
CN1535257A (zh) 2004-10-06
DE10118182A1 (de) 2002-10-17
EP1379486B1 (de) 2010-06-09

Similar Documents

Publication Publication Date Title
EP0628575B1 (de) Verfahren zur Herstellung hochreaktiver Polyisobutene
EP0807641B1 (de) Verfahren zur Herstellung von mittelmolekularem, hochreaktivem Polyisobuten
EP1379486B1 (de) Verfahren zur aufarbeitung eines flüssigen reaktionsaustrages der kationischen polymerisation von isobuten
DE19825334A1 (de) Verfahren zur Herstellung hochreaktiver Polyisobutene
EP1590381B1 (de) Verfahren zur herstellung von polyisobuten
EP1224230B1 (de) Verfahren zur herstellung hochreaktiver polyisobutene
EP1940890B1 (de) Verfahren zur herstellung von polyisobuten
EP1337564B1 (de) Verfahren zur desaktivierung und rückgewinnung von bortrifluorid bei der herstellung von polyisobutenen
WO2002014385A1 (de) Verfahren zur herstellung von polyisobutenen
EP2814852B1 (de) Bortrifluorid-katalysatorkomplex und verfahren zur herstellung von hochreaktiven isobutenho-mopolymeren
EP1546213A1 (de) Verfahren zur herstellung von polyisobuten
EP1379559B1 (de) Abtrennung nicht umgesetzten isobutens bei der polymerisation von isobuten
EP1406934B1 (de) Polyisobuten-zusammensetzung
EP1362063B1 (de) Verfahren zur herstellung hochreaktiver polyisobutene
DE10028585A1 (de) Verfahren zur Herstellung von Polyisobutenen
WO2005066222A1 (de) Herstellung hochreaktiver polyisobutene mit niedrigem fluorgehalt unter verwendung eines moderators
EP2097460B1 (de) Verfahren zum entfernen von isobutenoligomeren aus einem isobutenpolymerisat
DE10361638A1 (de) Herstellung hochreaktiver Polyisobutene mit niedrigem Fluorgehalt unter Verwendung eines Moderators
DE102004033988A1 (de) Herstellung hochreaktiver Polyisobutene mit niedrigem Fluorgehalt unter Verwendung eines Moderators

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 028078942

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 10473583

Country of ref document: US

Ref document number: 1020037013207

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002585359

Country of ref document: JP

Ref document number: 2002766623

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002766623

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642