WO2002086913A1 - Conductive organic thin film and production method therefor, electrode and electric cable using it - Google Patents

Conductive organic thin film and production method therefor, electrode and electric cable using it Download PDF

Info

Publication number
WO2002086913A1
WO2002086913A1 PCT/JP2002/001067 JP0201067W WO02086913A1 WO 2002086913 A1 WO2002086913 A1 WO 2002086913A1 JP 0201067 W JP0201067 W JP 0201067W WO 02086913 A1 WO02086913 A1 WO 02086913A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
group
thin film
organic thin
film
Prior art date
Application number
PCT/JP2002/001067
Other languages
French (fr)
Japanese (ja)
Inventor
Kazufumi Ogawa
Norihisa Mino
Shinichi Yamamoto
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to DE2002616257 priority Critical patent/DE60216257T2/en
Priority to EP20020711401 priority patent/EP1381058B1/en
Publication of WO2002086913A1 publication Critical patent/WO2002086913A1/en
Priority to US10/322,229 priority patent/US20030099845A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/20Organic diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/701Langmuir Blodgett films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31815Of bituminous or tarry residue
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers

Definitions

  • the present invention relates to a conductive organic thin film using an organic material and a method for producing the same, an electrode and an electric cable using the same. Further, the present invention relates to a conductive monomolecular film or a monomolecular cumulative film.
  • a conductive film containing a conductive conjugate group such as polyacetylene, polydiacetylene, polyacene (Polyacene;), polyphenylene, polychenylene, polypyrrole, and polyaniline ( JP-A-2 (1990)-27766, USP 5,008,127, EP-A-0385656, EP-A-0339677, EP-A-0552637, USP 5,270,417, JP-A 5 (1993)-87559 Gazette, JP-A-6 (1994) -242352).
  • a conductive conjugate group such as polyacetylene, polydiacetylene, polyacene (Polyacene;), polyphenylene, polychenylene, polypyrrole, and polyaniline
  • organic electronic devices are disclosed in, for example, Japanese Patent Nos. 2034197 and 2507153.
  • the organic electronic devices described in these publications are organic electronic devices that switch a current flowing between terminals in response to an applied electric field.
  • the conventional organic conductive film has a problem that the conductivity is lower than that of a metal.
  • crystal defects have become a problem as miniaturization has progressed, and there has been a problem that device performance is greatly affected by crystals. There is also the problem of poor flexibility. I got it.
  • the present invention has been made in view of the above, and a first object of the present invention is to provide a conductive organic thin film having higher conductivity than a conventional organic conductive film and a method for producing the same.
  • the second object of the present invention is to provide an electrode made of a conductive organic thin film that is not influenced by crystallinity even if finer processing of 0.1 m or less is performed due to the progress of device densification.
  • An object of the present invention is to provide an organic electronic device having the highest operability.
  • the conductive organic thin film of the present invention comprises: a terminal bonding group covalently bonded to a substrate surface or an underlayer surface formed on the substrate; a conjugate bonding group; A conductive organic thin film composed of an organic molecule containing an alkyl group between a conjugate bond group and the organic molecule, wherein the organic molecule is oriented, and the conjugate bond group is linked to a conjugate bond group of another molecule. It is characterized in that it forms a conductive mesh and work by polymerization.
  • the method for producing a conductive organic thin film of the present invention comprises the following steps: a terminal functional group capable of covalently bonding to the surface of the substrate or the surface of the underlayer formed on the substrate; a functional group capable of conjugate bonding; A chemically adsorbed compound containing an alkyl group between the functional group and the functional group capable of conjugate bonding to the surface of a substrate having active hydrogen on the surface or to which active hydrogen has been added, or the surface of an underlayer formed on the substrate.
  • An organic thin film is formed by being covalently bonded by an elimination reaction to form an organic thin film, and the organic molecules constituting the organic thin film are oriented in a predetermined direction or polymerized while being oriented in a polymerization step.
  • the conjugate-bondable groups are conjugated to each other by at least one polymerization method selected from electrolytic oxidation polymerization, catalyst polymerization, and energy beam irradiation polymerization to form a conductive network.
  • the electrode of the present invention is an electrode formed of a conductive organic thin film transparent at a light wavelength in a visible light region, wherein the conductive organic thin film is formed on a substrate surface or on a substrate.
  • a terminal bonding group covalently bonded to the surface of the underlayer, a conjugated bonding group, and an organic molecule containing an alkyl group between the terminal bonding group and the conjugated bonding group.
  • the conjugated group is polymerized with a conjugated group of another molecule to form a conductive network.
  • the electric cable of the present invention is an electric cable including a core wire and a conductive organic thin film formed in a length direction of the surface of the core wire, wherein the conductive organic thin film is formed on a base material surface or A terminal bonding group covalently bonded to the surface of the underlayer formed on the base material; a conjugate bonding group; and an organic molecule including an alkyl group between the terminal bonding group and the conjugate bonding group.
  • the conjugated group is polymerized with the conjugated group of another molecule to form a conductive network.
  • FIG. 1A is a cross-sectional view of a monomolecular film having a conductive network formed in all regions according to Embodiment 1 of the present invention
  • FIG. 1B is a cross-sectional view of a monomolecular film having a conductive network formed in a plurality of partial regions
  • FIG. 1C is a cross-sectional view of a monomolecular film composed of an organic molecule having a conjugated polymerizable functional group therein and having a conductive network formed in a plurality of partial regions.
  • FIG. 2 is a schematic plan view for explaining the direction of the conductive network according to the first embodiment of the present invention.
  • FIG. 3A is a plan view of a monolayer in which a conductive network extending in one direction is formed in the entire region in Embodiment 1 of the present invention
  • FIG. 3B is a parallel view in which a conductive network extending in one direction is formed in each conductive region.
  • Plan view of a monolayer having various conductive regions and Fig. 3C shows a conductive network connected in one direction to each conductive region.
  • Fig. 3D shows the direction of the conductive network formed in each conductive region, and the shape of each conductive region is not the same.
  • FIG. 4 is a plan view of a monolayer having conductive regions arranged in a pattern shown in FIG.
  • FIG. 4A is a cross-sectional view schematically showing a structural example of a monomolecular film formed on a base material according to the first embodiment of the present invention, and FIG. It is sectional drawing of the formed monomolecular film.
  • FIG. 5A is a schematic perspective view for explaining a rubbing orientation method for tilting (orienting) molecules constituting an organic thin film according to Embodiment 1 of the present invention
  • FIG. 5B is a perspective view of a photo-alignment method
  • FIG. FIG. 4 is a perspective view of a liquid drainage alignment method.
  • FIG. 6A is a perspective view schematically showing a configuration example in which a conductive region is formed in a selective portion on a base material according to the first embodiment of the present invention
  • FIG. 6B is a diagram in which a conductive region is formed in all regions.
  • FIG. 4 is a perspective view in which a plurality of monomolecular films formed are formed on a base material.
  • FIGS. 7A to 7D are cross-sectional views schematically showing examples of a laminated structure of a monomolecular cumulative film formed on a base material according to Embodiment 2 of the present invention.
  • FIG. 7A shows the orientation direction of each monomolecular layer.
  • FIG. 7B shows Y-type monomolecular accumulation film with the same orientation direction of each monolayer, and Fig. 7C shows different orientation directions for each monolayer.
  • Figure 7D shows an X-type monomolecular cumulative film oriented in one of two orientation directions for each monolayer.
  • FIG. 8A is a cross-sectional view of an electric cable formed on the outer surface of a core wire in Example 12 of the present invention.
  • FIG. 8B is a perspective view of a collective electric wire type electric cable in Embodiment 3 of the present invention.
  • FIG. 9 is a perspective view of a collective electric wire type flat cable according to Embodiment 3 of the present invention.
  • FIGS. 9A and 9B are cross-sectional views schematically showing an example of the structure of a capacitor using a conductive region formed in a monomolecular film as an electrode according to Embodiment 4 of the present invention.
  • FIG. Each of the two substrates with molecular films Fig. 9B shows a structure in which a monomolecular film having a conductive region is formed on each of two parallel surfaces of the dielectric.
  • FIG. 2 is a cross-sectional view for explaining a step of manufacturing a monomolecular film having a conductive region according to Embodiment 1 and Example 6 of the present invention.
  • FIG. 1OA is formed on a substrate after a monomolecular layer forming step.
  • FIG. 10B Oriented monolayer after tilting process (alignment process)
  • Figure 10C Conductive region formation by applying voltage to a pair of electrodes formed on the surface in the polymerization electrode formation process The monomolecular film immediately after the start of the process
  • FIG. 10D is a monomolecular film having a conductive network formed after the conductive region forming process.
  • FIGS. 11A to 11F are conceptual diagrams of a manufacturing process of an organic conductive film in Example 2 of the present invention.
  • FIGS. 12A and 12B are conceptual cross-sectional views illustrating a process for orienting molecules in a molecular layer according to the second embodiment of the present invention.
  • FIG. 13 is a conceptual cross-sectional view illustrating an organic electronic device according to Example 3 of the present invention.
  • FIG. 14 is a conceptual cross-sectional view illustrating a liquid crystal display device according to a fourth embodiment of the present invention.
  • FIG. 15 is a conceptual cross-sectional view illustrating an elector-luminescence (EL) display device according to a fifth embodiment of the present invention.
  • FIG. 16 is an explanatory diagram showing a method for evaluating the orientation of conductive molecules in Example 14 of the present invention.
  • FIG. 17 is an NMR chart of the product obtained in Example 1 of the present invention.
  • FIG. 18 is an IR chart of the product obtained in Example 1 of the present invention.
  • 1 substrate (substrate), 2: substrate insulating film, 3: protective coating, 4: monolayer (monolayer), 5: conjugated system (conjugated bond chain), 6: conductive region, 7: metal contact ( 8) Dielectric, 9: Conjugated polymerizable functional group, 11: Insulating substrate, 1 3: Insulating protective film, 14: Monomolecular film composed of organic molecules having a pyrol group, 16: Conductive region having a polypyrrol conductive network, 17: Platinum electrode for electrolytic polymerization, 24: Monomolecular film with oriented organic molecules having pyrrole group, 34: Monomolecular film with polypyrroline-type conductive network, 41: Lapindarol, 42: Rubbing cloth, 43: Polarizing plate, 44, Cleaning Organic solution for
  • the reason why the organic thin film has conductivity is that molecules constituting an assembly group of organic molecules are conjugated and polymerized.
  • the conductive network is an aggregate of organic molecules connected by conjugate bonds involved in electric conduction, and is formed of a polymer having a conjugate bond chain (conjugate system).
  • the conductive network is formed in the direction between the electrodes.
  • This conjugated bond chain polymer is not strictly connected in one direction, and it is sufficient that polymer chains in various directions are formed between the electrodes as a whole.
  • the conductive organic thin film of conductivity (p) is the 1 SZ cm or more, and preferably 1 X 1 0 2 SZ cm or more, more preferably 1 X 1 0 3 S / cm or more. All above values are for room temperature (25 ° C) without dopant.
  • the polymerized conjugated group is preferably at least one conjugated group selected from polypyrrole, polychenylene, polyacetylene, polydiacetylene and polyacene.
  • the conjugated bond is polypyrrole or polychenylene, and the thin film formed by electrolytic oxidation polymerization has high conductivity.
  • the terminal binding group is preferably at least one bond selected from siloxane (—Sio—) and SiN— bonds.
  • the terminal linking group includes dehydrochlorination, dealcoholation and It is formed by at least one elimination reaction selected from the cyanate reaction.
  • the functional groups of the molecular ends - SiCl 3, - Si (0R ) 3 (where R is an alkyl group having 1-3 carbon atoms), or - Si (NC0) For 3, on the substrate surface or substrate forming the undercoat layer on the surface - 0H group, -CH0 group, -C00H group, - NH 2 group,> the active hydrogen that is part of the NH group or the like exists, dehydrochlorination reaction and dealcoholization or removal Isoshianeto reaction As a result, the chemisorbed molecules are covalently bonded to the surface of the substrate or the surface of the underlayer formed on the substrate.
  • the molecular film formed by this method is referred to in the art as a “chemisorption film” or “self assembling film”, but is referred to as a “chemisorption film” in the present invention. .
  • the formation method is called "chemisorption method”.
  • the orientation of molecules is determined by rubbing orientation treatment, decantation treatment from a reaction solution after covalently bonding molecules to a substrate surface by a desorption reaction, polarized light irradiation treatment, and molecular fluctuation in the polymerization process.
  • the conductive region of the organic thin film is transparent to light having a wavelength in the visible region.
  • the molecular unit forming the conductive network is preferably represented by, for example, the following formula (A) or (B).
  • X is hydrogen, an organic group containing an ester group or an unsaturated group
  • Q is an integer of 0 to 10
  • E is hydrogen or an alkyl group having 13 to 13 carbon atoms
  • n is an integer of 2 or more and 25 or less, preferably 10 or more and 20 or less
  • p is an integer and is 1, 2 or 3.
  • the compound for forming the conductive network has the following chemical formula: It is a pyrrolyl compound or a thienyl compound represented by (C) or (D).
  • X is hydrogen, an organic group containing an ester group or an unsaturated group
  • q is an integer of 0 to 10
  • D is a halogen atom, an isocyanate group or An alkoxyl group having 13 to 13 carbon atoms
  • E is hydrogen or an alkyl group having 1 to 3 carbon atoms
  • n is an integer of 2 or more and 25 or less
  • p is an integer and is 1, 2 or 3.
  • a carboxyl group (—COOH) can be introduced by hydrolysis.
  • X contains an unsaturated group such as a Bier bond
  • a hydroxyl group (-OH) can be introduced by irradiating an energy beam such as an electron beam or an X-ray in an atmosphere where moisture is present.
  • one COH can be introduced by immersion in an aqueous solution of potassium permanganate. In this case, active hydrogen can be introduced, so that the monomolecular film can be further accumulated.
  • a conductive network is collectively formed in each monolayer of the monomolecular accumulation film in the conductive network forming step.
  • a conductive monomolecular accumulation film may be formed.
  • a conductive monomolecular cumulative film may be formed by repeatedly performing a series of steps including the monomolecular layer forming step, the tilting step, and the conductive network forming step.
  • the polymerization method there is at least one polymerization method selected from electrolytic oxidation polymerization, catalytic polymerization, and energy beam irradiation polymerization. Before forming the conductive network by the electrolytic oxidation, at least one prepolymerization selected from catalytic polymerization and energy linear irradiation polymerization may be performed.
  • the energy ray is preferably at least one selected from ultraviolet rays, far ultraviolet rays, X-rays and electron beams.
  • the energy ray is at least one selected from polarized ultraviolet rays, polarized far ultraviolet rays, and polarized X-rays, and the tilt alignment treatment and the formation of the conductive network may be performed simultaneously.
  • the organic molecule contains a polar functional group, the sensitivity to an applied electric field is high, and the response speed is high. Therefore, the conductivity of the organic thin film can be changed at a high speed. It is considered that the change in the conductivity of the organic thin film when the electric field was applied occurred because the polar functional group responded to the electric field, and the effect of the response spread to the structure of the conductive network.
  • the conductivity can be further improved by incorporating a charge-transporting dopant substance into the conductive network by doping.
  • a charge-transporting dopant substance any dopant substance such as iodine, BF- ion, alkali metal such as Na and K, and alkaline earth metal such as Ca can be used. Further, it may contain a trace component contained in the solution in the organic film forming step or a dopant substance due to contamination unavoidably mixed from a glass container or the like.
  • the organic molecules that make up the conductive monolayer are fairly well-aligned, so the conjugated chains of the conductive network are in a particular plane. Therefore, the conductive net formed on the monolayer is linearly connected in a predetermined direction. Due to the linearity of the conductive network, it has high conductive anisotropy. In addition, the linearity of the conductive network means that each conjugated bond chain (conjugated system) constituting the conductive network is arranged substantially in parallel on the same plane in the monolayer. Therefore, the conductive monolayer has high electrical conductivity and uniform electrical conductivity. In addition, due to the linearity of the conductive network, the monomolecular layer has a conjugated bond chain having a high degree of polymerization.
  • a conductive organic thin film having a desired conductivity can be provided by changing the number of stacked conductive monolayers. For example, in the case of a conductive cumulative film in which the same conductive monolayer is laminated, the conductivity of the conductive network included therein is approximately proportional.
  • the tilt angle of the orientation of the organic molecule may be different for each monolayer as long as the direction of the conductive network formed in all the monolayers is the same. Also, not all monolayers need to be composed of the same organic molecule. Further, a conductive monomolecular built-up film composed of different kinds of organic molecules for each conductive monomolecular layer may t Also, in the case of the conductive monomolecular built-up film, the conductive closest to the substrate Since the water-soluble monolayer is chemically bonded to the base material, it has excellent durability such as peel resistance.
  • the tilt direction of the organic molecule in the tilting process means the direction of a line segment obtained by projecting the long axis of the organic molecule onto the substrate surface. Therefore, the inclination angles with respect to the substrate need not be the same.
  • the group of organic molecules constituting the monolayer can be accurately tilted in a predetermined direction in the tilting step.
  • the molecules that make up the monolayer can be oriented. Since alignment can be performed with high accuracy, a conductive network having directionality can be easily formed in the conductive network forming step.
  • a conductive network having a high degree of polymerization and being linearly connected can be formed.
  • a uniform conductive monolayer can be formed due to the linearity of the conductive network.
  • a polarized light having a wavelength in a visible light region is used as the polarized light. According to this example, it is possible to prevent or suppress the destruction of the organic thin film due to the exfoliation of the organic molecules constituting the organic thin film and the destruction of the organic molecules themselves.
  • the organic molecules constituting the organic thin film are inclined in a predetermined direction. Generally, the rubbing direction in the rubbing process is the same as the tilt direction of the formed organic molecules.
  • Nylon or rayon cloth can be used as the rubbing cloth used in the rubbing treatment. It is appropriate to use a rubbing cloth made of nylon or rayon as described above for the purpose of improving the accuracy of orientation.
  • the conductive network forming step one or more polymerization methods are applied, and molecules constituting the organic thin film are conjugated to each other by polymerization or by polymerization or a bridge after the polymerization to form a conductive network. Is also good. According to this example, it is possible to form a conductive network that enables electric conduction by connecting the polymerizable groups of the organic molecule by a conjugate bond.
  • the type of polymerization at least one polymerization method selected from electrolytic oxidation polymerization, catalytic polymerization, and irradiation beam irradiation polymerization can be used.
  • a monomolecular film composed of a group of organic molecules having a diacetylene group when a monomolecular film composed of a group of organic molecules having a diacetylene group is formed, catalytic polymerization is performed on the monomolecular film, and crosslinking is performed by energy beam irradiation polymerization, an extremely high conductivity is obtained.
  • a conductive network including a polyacene-type concomitant system can be formed.
  • a polymerization method selected from the group consisting of a catalyst polymerization method, an electrolytic polymerization method, and an energy beam polymerization method may be applied.
  • a catalyst polymerization method is applied to an organic thin film composed of an organic molecule having a polymerizable group having catalytic polymerizability (hereinafter, also referred to as “catalyst polymerizable group”).
  • An electropolymerization method is applied to an organic thin film composed of organic molecules having a polymerizable group (hereinafter abbreviated as an electropolymerizable group), and a polymerizable group polymerized by irradiation with an energy beam (hereinafter referred to as an energy beam).
  • a conductive network can be formed by applying an energy beam polymerization method to an organic thin film made of an organic molecule having a polymerizable group. In order to efficiently form a conductive network, first, catalytic polymerization and no or energy beam polymerization are performed, and the reaction is completed by electrolytic oxidation polymerization in the final step.
  • a combination of cross-linking steps by different actions may be used, but also includes a combination of steps having the same action but different reaction conditions.
  • a conductive network may be formed by performing a cross-linking step by irradiation of a first type of energy beam after a cross-linking step by catalytic action, and further by performing a cross-linking step by irradiation of a second type of energy beam.
  • the catalytic polymerization method is applied as a polymerization method. Form a network.
  • a conductive network including a polypyrrole-type conjugated system can be formed using an organic molecule including a pyrrole group, and a conductive network including a polychenylene-type conjugated system can be formed using an organic molecule including a chelenylene group. Applying the energy beam polymerization method in the conductive network forming step, and having an acetylene group or a diacetylene group as the polymerizable group.
  • a conductive network may be formed on the organic thin film composed of a group of organic molecules.
  • a conductive network including a polyacetylene-type conjugated system can be formed by using an organic molecule having an acetylene group as an organic molecule constituting the organic thin film.
  • a conductive network including a polydiacetylene-type conjugated system or a polyacene-type conjugated system can be formed using an organic molecule having a diacetylene group.
  • Ultraviolet rays, far ultraviolet rays, X-rays or electron beams may be used as the energy beam. According to this example, a conductive network can be efficiently formed.
  • the reaction efficiency can be improved by selecting the type and energy of the energy beam having good absorption efficiency.
  • many energy beam-irradiated polymerizable groups have absorbability to these energy beams, they can be applied to organic thin films composed of organic molecules having various types of beam-irradiated polymerizable groups.
  • the tilting step and the conductive network forming step can be performed simultaneously by using polarized ultraviolet rays, polarized far ultraviolet rays or polarized X-rays as the energy beam.
  • the organic molecules constituting the organic thin film can be inclined (orientated) in a predetermined direction, and the organic molecules can be conjugated to each other. Therefore, the process can be simplified.
  • the substrate may be an electrically insulating substrate such as glass or a resin film, or a substrate with an insulating film in which an insulating film is formed on an arbitrary substrate surface. If the substrate is glass or polyimide resin, it has active hydrogen on the surface and can be used as it is.
  • Active hydrogen is less substrate, SiCl 4, HSiCl 3, SiCl 3 0- (SiCl 2 - 0) n - SiCl 3 ( and ⁇ , n represents an integer of 0 to 6), S i (0CH 3) 4, HSi (OCH3) 3, Si (OCH3) 3O- (S i (0CH 3) 2 - 0) n -S i (0CH 3) 3 ( where, (n is an integer of 0 or more and 6 or less).
  • Active hydrogen can be provided by treating the substrate surface with a silica film, corona discharge, plasma irradiation, or the like.
  • the substrate is an electrically insulating material
  • an organic electronic device having a small leakage current and excellent operation stability can be provided.
  • the organic conductive film of the present invention has high conductivity and high transparency.
  • Applications that take advantage of this property include wires, motors, generators, capacitors (capacitors), transparent electrodes (alternative to ITO), semiconductor device wiring, CPU wiring (no heat generation due to electrical resistance), electromagnetic shielding, CRT
  • Various applications such as glass surface filters (prevention of static electricity generation) are possible.
  • the organic thin film is a monomolecular film as an example.
  • An organic molecule having a conjugated polymerizable functional group is brought into contact with a base material to perform a monomolecular layer forming step (organic thin film forming step) for forming a monomolecular film on the base material.
  • the organic molecule constituting the film In order to form a conductive network having better directionality than the conductive network formed by the above-described manufacturing method, the organic molecule constituting the film must be oriented (inclined) in a predetermined direction with respect to a monomolecular film. It is preferable to perform a conductive region forming step. In addition, when the conductive region forming step is performed on the oriented monomolecular film, a conductive region having a high degree of polymerization and high conductivity can be formed.
  • tilting in a predetermined direction is equivalent to orienting the organic molecules constituting the monolayer.
  • a monolayer or a monolayer is also referred to as an orientation.
  • a rubbing treatment is performed on the substrate surface before the monomolecular layer forming step (pretreatment step), and the monomolecular film is formed on the rubbed substrate surface.
  • pretreatment step a method of forming the monomolecular film
  • gradient treatment step a method of performing an orientation treatment on the monomolecular film after the monomolecular layer forming step
  • forming an oriented monomolecular film can be applied.
  • the manufacturing method includes a pretreatment step and a tilt treatment step, a conductive network having extremely excellent linearity can be formed.
  • the manufacturing method includes a washing step following the above-mentioned monolayer formation step, a monomolecular film having no stain on the surface can be formed. Further, if the manufacturing method includes a doping step of doping a charge-transporting dopant, the conductivity of the conductive region can be easily improved. In addition, if the manufacturing method includes a step of forming an insulating protective film on the monomolecular film after the conductive region forming step, a monomolecular film with a protective film having excellent durability such as peel resistance can be manufactured. .
  • each step will be described.
  • the monomolecular film may be formed by immersing the base material in an organic solution containing the film material molecules, or the monomolecular film may be formed by applying the organic solution onto the base material. You may. Alternatively, a monomolecular film may be formed by exposing the substrate to a gas containing film material molecules.
  • an organic molecule having a functional group that chemically adsorbs to the substrate such as a silane-based surfactant
  • a film material molecule When an organic molecule having a functional group that chemically adsorbs to the substrate, such as a silane-based surfactant, at the terminal is used as a film material molecule, it has excellent durability such as peel resistance bonded and fixed on the substrate.
  • a monomolecular film can be formed.
  • a chemisorption method or a Langmuir-Blodgett method can be applied.
  • the monomolecular layer forming step may be a step of forming a monomolecular film on the entire surface or a part of the surface of the base material, or forming the monomolecular film on the base material in a predetermined pattern.
  • Forming step For example, a coating (resist pattern) is formed on a portion other than the pattern where a monomolecular film is formed on the surface of the base material, and the base material on which the coating is formed is brought into contact with the film material molecules to form a monomolecular film. After that, the coating is removed to form a monomolecular film in a predetermined pattern.
  • the substrate on which the monomolecular film is formed is immersed in an organic solvent for washing, so that unadsorbed organic molecules can be washed and removed. It is preferable to use a non-aqueous organic solvent as the organic solvent for washing.
  • the orientation treatment step may be a step of rubbing the surface of the base material in any one direction or a step of rubbing the rubbing direction so that the rubbing direction differs for each predetermined portion.
  • the rubbing treatment method will be described in the following inclination treatment step.
  • the rubbing device used in the alignment process and the rubbing device used in the tilting process are the same device, and the difference is whether or not a monomolecular film is formed on the substrate (FIG. 5A).
  • FIG. 5A an example of a pretreatment step in the case where the rubbing direction is made different for each predetermined portion will be described.
  • a film is formed on the surface of the substrate in a predetermined first pattern (resist pattern), the surface of the substrate on which no film is formed is rubbed in a predetermined first rubbing direction, and the film is removed after the rubbing treatment. Thereafter, a coating (resist pattern) is formed on the surface of the substrate in a second pattern different from the first pattern, and the surface of the substrate on which no coating is formed is rubbed in a predetermined second rubbing direction, After the rubbing treatment, the coating is removed. Thereby, a portion rubbed in the first rubbing direction and a portion rubbed in the second rubbing direction can be formed. Further, by repeating this with different rubbing directions, a complicated rubbing pattern can be formed.
  • the organic molecules constituting the monomolecular film can be oriented in a predetermined direction by applying a method, a liquid draining orientation method, or the like.
  • 5A to 5C are schematic perspective views for explaining an orientation method for tilting (orienting) the molecules constituting the organic thin film, FIG. 5A is a rubbing orientation method, FIG. Figure 5C shows the draining orientation method.
  • a rubbing cloth 4 which comes into contact with the monomolecular film 4 while transporting the substrate 1 on which the monomolecular film 4 is formed in a predetermined direction (substrate transport direction) C.
  • the rubbing roll 4 wound around 1 is rotated in the rotation direction A, and the surface of the monomolecular film 4 is rubbed with the rubbing cloth 4 1 to rub the organic molecules constituting the monomolecular film 4.
  • This is a method of orienting in the direction B.
  • the light alignment method uses a polarizing plate 4 having a transmission axis direction D.
  • the monomolecular film 4 oriented in the polarization direction can be formed on the substrate 1.
  • the draining orientation method uses an organic solvent for washing, as shown in Figure 5C.
  • the base material 1 is pulled up in the pulling direction F while maintaining a predetermined inclination angle with respect to the liquid surface of No. 4, and the organic molecules constituting the monomolecular film 4 are oriented in the draining direction G.
  • an oriented monomolecular film 4 can be formed on the substrate 1.
  • the orientation can be achieved by the fluctuation of molecules in the solution at the time of catalytic polymerization or electrolytic oxidation polymerization.
  • the draining alignment method Even if it is a process to apply any one of the draining alignment method, the rubbing alignment method, the photo alignment method, and the alignment due to the fluctuation of molecules in the solution during polymerization It is also possible to use a rubbing direction and a rubbing direction when forming an oriented monomolecular film in an accurately aligned state by combining different orientation methods. It is preferable that the polarization direction and the draining direction are the same.
  • the step may be a step of totally or partially orienting the monomolecular film in one direction, or a step of orienting the monomolecular film by changing the orientation direction for each predetermined portion.
  • the alignment direction is made different for each predetermined portion, it is preferable to apply a rubbing alignment method or a photo alignment method. By applying a rubbing alignment method, the alignment direction can be made different for each predetermined portion.
  • the first polarized light is irradiated through a first photomask on which a predetermined pattern is formed.
  • a second polarized light having a polarization direction different from that of the first polarized light is irradiated through a second photomask having a predetermined pattern different from the pattern of the first photomask.
  • a complex alignment pattern can be formed by using a plurality of photomasks having different patterns and a plurality of types of polarization having different polarization directions.
  • the monomolecular film is scanned and irradiated with polarized light while changing the polarization direction, not only a linearly connected conductive network but also a curved conductive network can be formed.
  • the molecules constituting the monomolecular film can be polymerized or cross-linked to form a conjugated system.
  • Catalytic polymerization, electrolytic polymerization, energy beam irradiation polymerization, and the like can be applied as polymerization methods for performing polymerization and cross-linking.
  • the conductive network may be formed by performing the step of polymerizing or crosslinking a plurality of times.
  • a conjugated polymerizable functional group co- In the case where an organic molecule having a plurality of polymerizable functional groups polymerized by a minor bond
  • a conjugate system conjugate bond chain
  • conjugate bond chain can be formed on each of a plurality of parallel planes included in the monomolecular layer.
  • the polymerization method or polymerization conditions may be different for each time.
  • the polymerization conditions refer to reaction conditions when the same polymerization method is used. For example, when the type of catalyst and the reaction temperature are different in catalytic polymerization, when the applied voltage is different in electrolytic polymerization, and when the energy beam irradiation polymerization is performed, the type of beam ⁇ beam energy and beam irradiation intensity are used. Etc. are different.
  • the step may be a step of forming a conductive region in all or a part of the monomolecular film, or a step of forming a plurality of conductive regions electrically insulated from each other in the monomolecular film.
  • the conjugated polymerizable functional group contained in the film material molecule is a catalyst polymerizable functional group, an electrolytic polymerizable functional group, or an energy-one beam irradiation polymerizable functional group will be described below.
  • a conductive network can be formed by bringing the monomolecular film into contact with the catalyst. Therefore, the monolayer may be immersed in the solution containing the catalyst, the solution containing the catalyst may be applied to the monolayer, or the monolayer may be exposed to a gas atmosphere containing the catalyst. Alternatively, a gas containing a catalyst may be sprayed on the monomolecular film.
  • a solution containing a catalyst is caused to flow in a certain direction with respect to the surface of the monomolecular film, or a gas containing a catalyst is supplied to the surface of the monomolecular film.
  • a gas containing a catalyst is supplied to the surface of the monomolecular film.
  • a conductive region including a conductive network connected in a predetermined direction can be formed by omitting the alignment process.
  • a coating (resist pattern) having a predetermined pattern is formed on the monomolecular film, and then the coating is not formed by contacting with a catalyst.
  • a conductive region can be formed at the site. If unnecessary, the coating may be removed.
  • the organic molecules constituting the monomolecular film have an electropolymerizable functional group.
  • a conductive network connected in a predetermined direction can be formed. Therefore, a pair of electrodes for electropolymerization that are in contact with the surface or side surface of the monomolecular film and are separated from each other may be formed, and a voltage may be applied between the pair of formed electrodes.
  • a pair of external electrodes may be brought into contact with the surface or side surface of the molecular film so that the electrodes are separated from each other, and a voltage may be applied between the pair of external electrodes.
  • a plurality of pairs of electrodes are formed in a predetermined pattern, and a predetermined potential is applied to the electrodes so that the conductive regions are formed between electrodes having different potentials. Can be formed.
  • a conductive region may be formed one by one by applying a potential to only two electrodes, or a plurality of conductive regions may be formed simultaneously by applying a potential to three or more electrodes.
  • the organic molecules constituting the monomolecular film have a polymerizable functional group irradiated with an energy beam
  • a conductive network can be formed.
  • Light, X-rays, electron beams and the like can be used as the energy beam.
  • polarized or polarized X-rays are used as the energy beam.
  • the alignment treatment step tilt treatment step
  • the monomolecular film can be oriented and a conductive network can be formed by irradiating polarized light. Therefore, the alignment process is omitted.
  • a conductive region including a conductive network connected in a predetermined direction can be formed.
  • an energy beam is irradiated through a first photomask in which a predetermined pattern is formed, and then a pattern of the first photomask is formed.
  • An energy beam is irradiated through a second photomask having a different predetermined pattern.
  • the energy beam irradiated through the first photomask and the energy beam irradiated through the second photomask may not be the same energy beam.
  • their polarization directions need not be the same.
  • a plurality of photomasks with different patterns and a plurality of different polarizations with different polarization directions are used. By using, conductive regions having different conductive network directions can be easily formed.
  • a plurality of conductive regions electrically insulated from each other can be formed more easily.
  • conductive regions in which the directions of the conductive networks are different from each other can be easily formed.
  • scanning irradiation is performed while maintaining the polarization direction and the scanning direction (the direction of travel of the energy beam) in parallel, it is possible to form a conductive network that is curved and continues in a predetermined direction.
  • the dopant may be an x-ray dopant (electron acceptor) such as iodine (I 2 ) or BF- ion, or a donor or electron donor (electron donor) such as Li. It may be.
  • an insulating film such as a silica film or an aluminum oxide film can be formed on the substrate.
  • a transparent electrode or the like it is necessary to form a transparent film.
  • a film constituting molecules is formed as a chemisorbent film as an insulating film, a monomolecular film can be formed irrespective of the material of the base material.
  • an insulating protective film is formed on the monomolecular film surface.
  • a monomolecular film having excellent durability such as peel resistance can be formed.
  • the monomolecular film contains a dopant, evaporation of the dopant due to undoping can be reduced.
  • a transparent protective film is formed.
  • FIGS. 1A to 1C show examples of the structure of a monomolecular film having a conductive region formed by the above-described manufacturing method.
  • 1A to 1C are cross-sectional views schematically showing a monomolecular film having a conductive region formed on a base material.
  • a monomolecular film 4 is immobilized on the surface of a base material 1 by covalent bonds, a conjugate polymerizable functional group 9 is superimposed to form a conductive region 6 over the entire region, and a conductive network 5 is formed.
  • FIG. 1B shows a monomolecular film in which the conductive network 5 is formed in a plurality of partial regions (conductive regions 6, 6).
  • FIG. 1C shows a monomolecular film composed of an organic molecule having a conjugated polymerizable functional group therein and having a conductive network formed in a plurality of partial regions (conductive region 6).
  • FIG. 2 is a schematic plan view for explaining the direction of the conductive network 5 in the monomolecular film 4.
  • the meandering conductive network is represented as a straight line without meandering or a curve without meandering.
  • FIGS. 3A to 3D show examples of the pattern of the conductive region in the monomolecular film having the conductive region.
  • FIGS. 3A to 3D are plan views schematically showing a configuration example of a conductive region 6 of a monolayer including a conductive network formed on a base material.
  • FIG. 3A shows a monolayer 4 in which a conductive network 5 extending in one direction is formed in the entire region
  • FIG. 3B shows a parallel structure in which a conductive network 5 extending in one direction is formed in each conductive region 6.
  • FIG. 3C shows a monolayer 4 having a matrix-shaped conductive region 6 in which a conductive network 6 connected to each conductive region in one direction is formed.
  • FIG. 3D shows a monolayer having conductive regions 6 arranged in an arbitrary pattern in which the directions of the conductive networks formed in the conductive regions are not the same and the shapes of the conductive regions are not the same. 4 is shown.
  • FIGS. 4A and 4B show a structure of a monomolecular film having a conductive region formed over a base material.
  • FIGS. 4A and 4B are cross-sectional views schematically showing examples of the structure of a monomolecular film formed on a base material.
  • Fig. 4A shows a monomolecular film formed on the base material 1 with the base insulating film 2
  • Fig. 4B shows a monomolecular film 4 formed on the base material 1 and having a protective film 3 formed on the surface. Is shown.
  • a structure in which an insulating film, a monomolecular film, and a protective film are sequentially laminated on the base material from the base material surface may be used.
  • FIG. 1 shows a structure in which an insulating film, a monomolecular film, and a protective film are sequentially laminated on the base material from the base material surface.
  • FIG. 4 is a perspective view schematically showing a configuration example in which a conductive region is formed in a part.
  • FIG. 6A shows a configuration in which a plurality of conductive regions 6 are formed in a monomolecular film 4 formed in all regions on the substrate 1
  • FIG. 6B shows a configuration in which the conductive regions 6 are formed in all regions. The structure in which a plurality of monomolecular films 4 are formed on the substrate 1 is shown.
  • the first layer is t second and subsequent layers formed by chemical adsorption method may be a chemical adsorption method, may be applied to Langmuir one Blodgett method.
  • chemical adsorption method may be a chemical adsorption method, may be applied to Langmuir one Blodgett method.
  • orientation treatment step tilt treatment step
  • the importance of the monomolecular accumulation film is greater than that of the monomolecular film.
  • a manufacturing method including an alignment treatment step will be described.
  • Manufacturing method 1 is a method of forming a monomolecular cumulative film having a conductive region by performing a monomolecular layer forming process continuously plural times to form a monomolecular cumulative film and then performing a conductive region forming step. Is the way.
  • the monomolecular layer forming step and the orientation treatment step are sequentially and alternately performed a plurality of times to stack the oriented monomolecular layers, and then the conductive region forming step is performed.
  • This is a manufacturing method for forming a monomolecular accumulation film having a conductive region.
  • Manufacturing method 3 is a manufacturing method of forming a monomolecular accumulation film having a conductive region by performing a series of steps of sequentially performing a monomolecular layer forming step, an orientation processing step (tilting processing step), and a conductive region forming step a plurality of times. It is.
  • Manufacturing method 4 includes a step of forming a monomolecular film having a conductive region by sequentially performing a monomolecular layer forming step, an orientation processing step (tilting processing step), and a conductive region forming step, and then repeating the monomolecular layer forming step a plurality of times.
  • the conductive region forming step This is a manufacturing method for forming a monomolecular cumulative film having a conductive region by performing the method.
  • Manufacturing method 5 is a method of forming a monomolecular accumulation film having a conductive region by performing a pretreatment step, successively performing a monomolecular layer forming step a plurality of times, and then performing a conductive region forming step. Is the way. Further, a manufacturing method in which any one of the manufacturing methods 1 to 5 is performed after the pretreatment step is performed is also preferable.
  • the manufacturing methods 1 to 5 may be a manufacturing method including one or more of a base insulating film forming step, a cleaning step, a doping step, and a protective film forming step. Details of each of the monomolecular layer forming step, the conductive region forming step, the pretreatment step, the orientation step, the base insulating film forming step, the cleaning step, the doping step, and the protective film forming step are described in Embodiment 1 above. For reference, the differences between the respective steps that occur depending on whether the organic thin film is a monomolecular film or a monomolecular cumulative film will be described below.
  • the same film material molecule may be used to form a monomolecular cumulative film composed of one kind of organic molecule, or a different film material molecule may be used for each monolayer.
  • a monomolecular cumulative film having different constituent molecules may be formed.
  • the substrate is pulled up from the solution containing the film constituent molecules at a predetermined angle, usually perpendicular to the solution surface, so that the liquid is aligned in the single molecule formation step. become.
  • the rubbing orientation method is a method in which the organic molecules constituting the film are oriented by rubbing the surface of the film. The layers cannot be fully oriented. Therefore, the rubbing orientation is suitable when the production methods 2 to 4 are applied.
  • the rubbing alignment method can be used.
  • the photo-alignment method can be used for a monomolecular cumulative film with a large number of laminated layers. Therefore, it is suitable for any of the manufacturing methods 1 to 5.
  • the number of laminated layers is excessively large and the light transmittance is deteriorated, the lower monolayer on the substrate side cannot be sufficiently oriented.
  • Catalytic polymerization is a method of inducing a polymerization reaction by bringing the surface of a monomolecular accumulation film into contact with a catalyst, so that a sufficiently polymerized conductive network can be formed in the lower monolayer on the substrate side. It will be difficult. Therefore, when the catalytic polymerization method is applied, the above production method 4 is suitable. In the case of forming a monomolecular cumulative film having a very small number of laminations, the manufacturing method 1 or the manufacturing method 2 may be used.
  • the electrolytic polymerization method when applying the electrolytic polymerization method, it is difficult to form a sufficiently polymerized conductive network in the lower monolayer on the substrate side when a voltage is applied to a pair of electrodes in contact with the surface of the monomolecular accumulation film. Therefore, it is preferable to apply a voltage to the electrode in contact with the side surface of the monomolecular accumulation film.
  • a conductive network can be formed in each monolayer of the monomolecular accumulation film by applying any of the above-mentioned production methods 1 to 5.
  • the electrolytic polymerization method is suitable for forming a conductive region on the entire surface of the monomolecular accumulation film or for forming a conductive region penetrating the monomolecular accumulation film.
  • the energy beam irradiation polymerization method can be applied to a monomolecular cumulative film having a large number of stacked layers, and thus is suitable for any of the manufacturing methods 1 to 5.
  • the permeability of the polymer is deteriorated, the lower monolayer on the substrate side cannot be sufficiently oriented.
  • the washing step is preferably performed only after the formation of the lowermost monolayer on the substrate side. This is because if the cleaning step is performed after laminating the monomolecular layers, the laminated monomolecular layers are peeled off.
  • the lowermost monolayer is formed by applying the chemisorption method, it is preferable to perform the washing step.
  • the doping step is preferably performed individually on the monolayer on which the conductive network is formed. Therefore, when performing the doping step, it is preferable to apply the manufacturing method 3, and it is preferable that the doping step is performed after each conductive region forming step of the manufacturing method 3.
  • FIGS. 7A to 7D show examples of the structure of the conductive region of the monomolecular cumulative film formed by the above-described manufacturing method.
  • the pattern of the conductive region of each monolayer of the monomolecular cumulative film having the conductive region is all FIGS. 7A to 7D are cross-sectional views schematically showing an example of a laminated structure of a monomolecular cumulative film formed on the base material 1.
  • 7A shows an X-type monomolecular accumulation film in which the orientation direction of each monolayer 4 is the same direction
  • FIG. 7B shows a Y-type monomolecular accumulation film in which the orientation direction of each monolayer 4 is the same direction.
  • Fig. 7C is an X-type monomolecular cumulative film in which the orientation direction is different for each monolayer 4
  • Fig. 7D is It is an X-type monomolecular cumulative film oriented in one of two orientation directions for each sublayer 4.
  • a structure having a monomolecular accumulation film can be used instead of the monomolecular film in FIGS.
  • FIGS. 8A to 8C are diagrams schematically showing an example of a structure of an electric cable using a conductive region on which a monomolecular film is formed as a core wire.
  • FIG. 8A shows an electric wire having a conductive monomolecular film 6 formed on the outer surface of a core wire 11 made of glass or metal and having the entire region as a conductive region, the surface of which is covered with an electrically insulating film 13. It is sectional drawing of a cable.
  • Fig. 8B shows a collective wire type including a monomolecular film 4 having four conductive regions formed on the surface of a square pillar-shaped insulating substrate 11 and having an outer surface coated with an insulating protective film 13.
  • the c-diagram 8 C is a perspective view of an electrical cable, formed on the substrate, the collection electrodes type Furattoke one table that includes a contact 7 of the monomolecular film 4 and the four pairs of the conductive region 6 the whole area FIG.
  • the flat cable in FIG. 8C is a flat cable having four core wires because the conductive region of the organic thin film has high conductivity anisotropy.
  • a flat cable can be provided.
  • the organic thin film of the present invention can provide various devices used as a conductive wire, a collective wiring, an electrode, and a transparent electrode.
  • electronic devices such as semiconductor elements, capacitors, and semiconductor devices, and optical devices such as liquid crystal display devices, electroluminescent devices, and solar cells can be provided.
  • FIGS. 9A and 9B are cross-sectional views schematically showing an example of the structure of a capacitor using a conductive region formed on a monomolecular film as an electrode.
  • FIG. 9A is a sectional view showing a monomolecular film 4 having a conductive region 6.
  • the dielectric material 8 is sandwiched between the two base materials 1 with each monomolecular film 4 inside, and FIG.
  • FIG. 9B shows the conductive material on each of the two parallel surfaces of the dielectric material 8. This is a structure in which a monomolecular film 4 having a region 6 is formed.
  • a metal contact 7 wiring, lead wire
  • a uniform voltage is applied to the entire surface of the organic thin film electrode. Applicable and preferred.
  • the pyrrole compound of the present invention is obtained, for example, by reacting pyrrole with terminal bromo 1-alkyl to synthesize 1-pyrrolylalkyl, and by reacting the synthesized 1-pyrrolylalkyl with trichlorosilane. , 11-Pyrrolylalkyltrichlorosilane can be synthesized.
  • alkyl-1-pyrrolylalkyltrichlorosilane for example, a step of reacting alkylpyrrole with terminal bromo-1-alkyl to synthesize alkyl-1-pyrrolylalkyl, and the above-mentioned synthesized alkyl-1-pyrrolylalkyl and trichlorosilane Can be synthesized by reacting Chenyl compounds can be similarly synthesized.
  • the 3-position of the pyrrolyl group was substituted with an alkyl group or an alkyl group represented by the following formula 12 (a) to (e) containing an unsaturated group such as a vinyl group or a ethynyl group at the terminal. Even when the raw materials were used, 11- (1-pyrrolyl) -1-dendene, in which the 3-position of the pyrrolyl group was alkylated or alkylated, was obtained.
  • reaction condition (2) or (8) is appropriate considering the amount of the charge, the reaction time, and the like.
  • FIG. 17 shows an NMR chart of the obtained product
  • FIG. 18 shows an IR chart thereof.
  • NMR is used manufactured by JEOL Ltd. AL 3 0 0 (3 0 0 H z), were determined by dissolving the sample 3 Omg CD C 1 3.
  • the IR was measured by a neat method (measuring a sample between two pieces of NaC1) using A-100 manufactured by JASCO Corporation.
  • an electrically insulating silica film 2 having a thickness of 0.5 zm was formed on the surface of an electrically insulating polyimide substrate 1 having a thickness of 0.2 mm in advance.
  • the polyimide substrate 1 was immersed in a chemisorption solution to chemically adsorb chemisorbed molecules on the surface of the silica film 2 (monomolecular layer forming step). After the monolayer formation process, the polyimide substrate 1 was immersed in a black form solution to wash and remove unreacted film material molecules remaining on the polyimide substrate 1. As a result, a monomolecular film 14 having no stain was formed on the surface (FIG. 10A).
  • a large number of hydroxyl groups containing active hydrogen are present on the surface of the silica film 2 on the polyimide substrate 1, so that the hydroxyl groups and the one SiC1 bonding group of the chemisorbed molecule are covalently bonded by a dechlorination reaction.
  • a monomolecular film 14 composed of chemisorbed molecules represented by the chemical formula (H) is formed.
  • the chemical formula (H) the case where all —S i C 1 bonding groups in the chemisorbed molecule reacted with the surface of the silica film 2 was shown, but at least one S i C 1 bonding group was reacted with the silica film. 2 It only needs to react with the surface.
  • rubbing treatment was performed on the surface of the formed monomolecular film 14 using a rubbing device (FIG. 5A) used for producing a liquid crystal alignment film, and the chemisorbed molecules constituting the monomolecular film 14 were aligned.
  • a rubbing roll 42 with a diameter of 7.0 cm wound with a rubbing cloth 41 made of rayon was used. Rubbing was performed under the conditions of a substrate running speed of 40 mm / s. At this time, the monomolecular film 24 was oriented (inclined) substantially parallel to the rubbing direction.
  • a pair of platinum electrodes 17 having a length of 50 mm is formed on the surface of the monomolecular film 24 at a distance of 5 mm by vapor deposition, photolithography, and etching at room temperature.
  • Electrolytic oxidative polymerization was performed by immersing in ultrapure water and applying a voltage of 8 V between a pair of platinum electrodes 17 for 6 hours (conductive region forming step).
  • a conductive region 16 having a conductive network including a conductive polypyrrole-type conjugated system connected in a predetermined direction (rubbing direction) with the following chemical formula (I) as a polymerized unit is formed between a pair of platinum electrodes 17.
  • a conductive region forming step (Fig. 10D).
  • the thickness of the obtained organic conductive film was about 2.0 nm, and the thickness of the polypyrrole portion was about 0.2 nm.
  • the monomolecular film 3 4 Conductivity of the conductive network having a conductive region of about 1 0 3 S Bruno cm.
  • the conductivity of the conductive region formed as described above is about 1Z10 to 1Z100 of a metal
  • a monomolecular film 34 is laminated, a semiconductor element ⁇ a functional device such as a capacitor. It was at a level that could be used for wiring and electrodes.
  • the monomolecular film 34 according to the present embodiment does not absorb light having a wavelength in the visible region, it can be used as a transparent electrode of a liquid crystal display element, an electroluminescent element, a solar cell, etc. Met.
  • the polyimide substrate 1 provided with the insulating silica film 2 on the surface is used in the above-described embodiment, the same conductive region can be obtained by using the polyimide substrate provided with the insulating aluminum oxide film on the surface. Was obtained. Even when a conductive aluminum substrate is used instead of a polyimide substrate, a monomolecular film having a similar conductive region can be formed by providing a silicon film on the surface of the substrate or oxidizing the surface of the substrate. Obtained.
  • the rubbing orientation method was applied in the above-described tilting process of the present embodiment, but before the monomolecular layer forming process, a rubbing process was performed on the surface of the polyimide substrate provided with the silica film, and thereafter, the same method was used. If a monomolecular film is formed, a monomolecular film oriented in the rubbing direction can be formed, and then, if a conductive region is formed in a similar manner, a monomolecular film having a conductive region with similar conductive characteristics can be obtained. Was done.
  • the rubbing orientation method was applied in the tilting process of the present embodiment, as shown in FIG. 5B, even when ultraviolet light was irradiated through the polarizing plate 43, the chemical composition of the monomolecular film 14 was reduced. It is possible to form a monomolecular film 24 in which the adsorbed molecules 22 are oriented substantially parallel to the polarization direction (photo-alignment method). After that, if a conductive region is formed by the same method as described above, a conductive film having higher conductivity is obtained. Monolayer with region 3 4 was obtained.
  • the light used in the photo-alignment method is not limited to the above-mentioned polarized ultraviolet light, and any light having a wavelength that can be absorbed by the monomolecular film 34 can be used.
  • insulating polyimide substrate 101 thickness 0. 2 mm of insulating polyimide substrate 101 to a thickness 0. Of insulative (or glass or a conductive metal substrate) film, for example, silica force protective film or the A 1 2 0 3 The protective film 102 was formed (Fig. 11
  • the silica film is immersed in the adsorption solution to chemically adsorb to the surface of the silica film, and the unreacted substance remaining on the surface is washed and removed with a black hole form. 103 was selectively formed (FIG. 11B).
  • the surface of the substrate (silica film or the A 1 2 0 3 film)
  • a monomolecular film 103 composed of molecules represented by the following chemical formula (K) covalently bonded to the substrate surface was formed.
  • the rubbing device 104 used for the production of the liquid crystal alignment film was used, and the indentation depth was 0 with a rayon cloth 105 (YA-20- manufactured by Yoshikawa Kako Co., Ltd.).
  • a rayon cloth 105 YA-20- manufactured by Yoshikawa Kako Co., Ltd.
  • the molecules constituting the monomolecular film are almost in the rubbing direction.
  • a monomolecular film 103 ′ oriented in parallel was obtained (FIG. 11D).
  • a 50 mm long platinum electrode (source, drain electrode) 106, 106 ′ was formed on the monomolecular film surface by 5 mm.
  • a pair was formed by vapor deposition at intervals, and a DC electric field of 8 V was applied between the electrodes in ultrapure water at room temperature (25 ° C) for 6 hours to perform electrolytic oxidation polymerization of the pyrrolyl group 107.
  • the electrodes as shown in FIG. 11E and the following chemical formula (L) are connected by a conductive polypyrrolyl group 107 ′ (combination bonding group), and the conductivity at room temperature (25) is 4%.
  • X 1 0 3 S / cm in this monomolecular film, in field application of 8 V, it was possible to flow a current of 4mA) conductive monomolecular film 108 was obtained (FIG. 1 1 F)
  • the terminal alkyl group may be replaced with an unsaturated hydrocarbon group, for example, a Bier group or an acetylene group as shown by D or E in the above formula (12).
  • an unsaturated hydrocarbon group for example, a Bier group or an acetylene group as shown by D or E in the above formula (12).
  • This conductivity is about 1Z10 to 1/1100 of that of metal, and when laminated, it is a level that can be used for wiring and electrodes of functional devices such as semiconductor devices and capacitors.
  • this film is a monomolecular film, and its thickness is extremely thin at the nanometer level, so that it hardly absorbs light of the wavelength of visible light and transmits it. Therefore, it was at a level that could be used for transparent electrodes such as liquid crystal display elements, electroluminescent elements, and solar cells.
  • the photo-alignment can be performed using ultraviolet light or polarized light in the visible light region.
  • the monolayer After the monolayer is formed, it is immersed again in chloroform, which is the cleaning solution 124, and the same cleaning is performed. Further, the substrate is pulled up and drained, whereby the molecules constituting the monolayer are drained. direction is obtained substantially monomolecular film 123 oriented in parallel ', then, the electrolytic oxidation polymerization result in a similar way, at room temperature (2 5 ° C) at 1 0 4 S ⁇ cm conductive monomolecular film Obtained (Fig. 12B). In addition, when the step of lifting and raising the substrate and draining the liquid was performed before the optical alignment, the alignment was further improved.
  • Such a coating could also be used as a transparent electrode instead of a transparent electrode made of indium tin oxide alloy (ITO) used in electroluminescent devices (EL) and solar cells.
  • ITO indium tin oxide alloy
  • a plurality of conductive conjugated bond group is oriented in a specific direction monomolecular film-like or monomolecular built-up film shaped coating the layer, the conductivity will create a 1 0 3 S / cm or more coatings, the capacitor It could also be used as an electrode, wiring for a semiconductor IC chip, or an electromagnetic wave shielding film.
  • Example 1 As shown in FIG. 13, in Example 1, a Si substrate 131 (used as a gate electrode) was used instead of the polyimide substrate 101, and a silicon dioxide film (S i ⁇ 2 ) 132 was formed instead of the protective film 102. Then, after forming a similar conductive monomolecular film 133, a similar process was performed except that a pair of platinum electrodes (used as source 134 and drain 135 electrodes, respectively) were formed at 5 xm intervals. A thin-film transistor (TFT) -type organic electronic device (three-terminal device) 136 with two gate insulating films was fabricated (Fig. 13).
  • TFT thin-film transistor
  • the TFT channel is composed of a polypyrrolyl group, which is a conjugated bonding group bonded at both ends to the source and drain electrodes, so that the mobility of the field effect is about 100 Ocm 2 / V * S Hundreds or more of organic TFTs were easily obtained.
  • a large number of organic electronic devices are used as liquid crystal operation switches. Are arranged in a matrix in a matrix pattern.
  • the side electrodes were connected by a source wiring and a gate wiring, respectively.
  • a transparent electrode 143 was formed on the drain side electrode using an indium-tin-tin oxide alloy (ITO).
  • ITO indium-tin-tin oxide alloy
  • a polyimide film was formed on the surface of the array substrate by an ordinary method, and rubbed to form an alignment film 4, thereby producing an array substrate 145.
  • a group of RGB color elements 147 are arranged and arranged in a matrix on the surface of an acrylic substrate 146 to form a color filter, and a conductive transparent electrode 148 is formed on the front surface to form a color filter substrate 149.
  • a polyimide film was formed on one surface of the color filter and rubbed to form an alignment film 144 '.
  • the array substrate 145 on which the alignment film is formed and the color filter substrate 149 are overlapped so that the alignment films face each other, and the sealing portion is sandwiched with the epoxy adhesive 151 with the spacer 150 interposed therebetween.
  • a liquid crystal cell was prepared in which the periphery was sealed and bonded at predetermined intervals.
  • the display device 155 was manufactured (FIG. 14). Since this method does not require substrate heating in the manufacture of the array, it was possible to produce a sufficiently high-quality liquid crystal display device using a substrate having a low glass transition point (Tg) such as an acrylic substrate.
  • Tg glass transition point
  • a surfactant containing a hydrocarbon group (for example, CH 3- (CH 2 ) 9 -Si-Cl 3 ) is used as an insulating monomolecular film or an insulating monomolecular accumulation film in contact with the gate electrode of the organic electronic device.
  • a surfactant containing a hydrocarbon group for example, CH 3- (CH 2 ) 9 -Si-Cl 3
  • a hydrocarbon group for example, CH 3- (CH 2 ) 9 _Si (_0-) 3
  • the withstand voltage characteristics were significantly improved from 0.5 X 101 Q VZcm to 1 X 101 Q VZ cm.
  • the peeling strength was about 1 tonne cm 2 , and a highly reliable liquid crystal display device could be manufactured.
  • a production example of a pot-gate type liquid crystal display device is described. However, the present invention can be applied to a top-gate type liquid crystal display device.
  • Example 15 As shown in FIG. 15, first, in order to use a large number of organic electronic devices as operation switches of the electroluminescent device, the same process as in Example 1 was carried out, and three terminals were formed on the surface of a polyethylene sulfone substrate (0.2 mm thick) 161. A plurality of 162 organic electronic devices were arranged and formed in a matrix, and the respective source-side and gate-side electrodes were connected by a source wiring and a gate wiring, respectively. Further, a transparent electrode 163 was formed on the drain-side electrode using an indium-tin-tin oxide alloy (ITO), thereby producing an array substrate 164.
  • ITO indium-tin-tin oxide alloy
  • a hole transport layer 165 was deposited on the transparent electrode 163 connected to the drain of the three-terminal organic electronic device, and further a red light emitting layer 166 (2, 3, 7, 8, 12, 13, 17, 17) 18-Cetacetyl-2 1 H2 3 H-porphine Platinum ( ⁇ )) and green light-emitting layer 6 6 '(Tris (8-quinolinolato) aluminum aluminum) and blue light-emitting layer 166 "(4, 4' _ Bis (2,2-diphenylvinyl) biphenyl) was mask-deposited, and then an electron-transporting layer 167 was deposited on the entire surface.
  • a cathode 168 for example, an alloy of Mg and Ag, A 1 and Li
  • Alloy or a layer of LiF and A1 on the electron transport layer 167 and finally, mounting an IC chip incorporating peripheral circuits to produce an EL display device 169.
  • electroluminescent films individually connected to the drains of the three-terminal organic electronic device, three types of electroluminescent films that emit red, blue, and green light, respectively, are formed to form the electroluminescent films.
  • a color display device could be manufactured.
  • the present embodiment relates to a monomolecular film having a conductive region including a conductive network formed by electrolytic polymerization.
  • a chemical formula (M) containing, in advance, a pyrrole group which is a conjugated polymerizable functional group (a functional group polymerized by a conjugate bond) and a trichlorosilyl group (one SiCl 3 ) which reacts with active hydrogen at the molecular end.
  • a pyrrole group which is a conjugated polymerizable functional group (a functional group polymerized by a conjugate bond) and a trichlorosilyl group (one SiCl 3 ) which reacts with active hydrogen at the molecular end.
  • the solution was diluted to 1% by weight with a dehydrated dimethyl silicone organic solvent to prepare a chemisorbed solution.
  • an insulating silica film 2 was formed on the surface of the insulating polyimide substrate 1 in advance.
  • the polyimide substrate 1 was immersed in a chemisorption solution to chemically adsorb chemisorbed molecules on the surface of the silica film 2 (monomolecular layer forming step). After the monolayer formation process, the polyimide substrate 1 was immersed in a black form solution to wash and remove unreacted film material molecules remaining on the polyimide substrate 1. As a result, a monomolecular film 14 having no stain was formed on the surface (FIG. 10A).
  • the monomolecular film 14 composed of the chemisorbed molecule represented by the chemical formula 2 is formed by a covalent bond chemically bonded by a dechlorination reaction with the C 1 bonding group.
  • chemical formula N the case where all the —SiC1 bonding groups in the chemisorbed molecule reacted with the surface of the silica film 2 was shown, but at least one —SiC1 bonding group in the chemisorbed molecule was on the surface of the silica force film 2 It just needs to react.
  • rubbing treatment was performed on the surface of the formed monomolecular film 14 using a rubbing device (FIG. 5A) used for producing a liquid crystal alignment film, and the chemisorbed molecules constituting the monomolecular film 14 were aligned.
  • a rubbing roll 42 with a diameter of 7.0 cm, around which a rubbing cloth 41 made of rayon was wound, was used.
  • the indentation depth was 0.3 mm
  • the nip width was 1.1.7 mm
  • the number of rotations was 1200 rpm
  • the table speed was small.
  • Rubbing was performed under the conditions of substrate speed (substrate running speed) 40 mm / s.
  • the monomolecular film 24 was oriented (inclined) substantially parallel to the rubbing direction.
  • a pair of platinum electrodes 17 having a length of 50 mm is formed on the surface of the monomolecular film 24 at a distance of 5 mm by vapor deposition, photolithography, and etching at room temperature.
  • Electrolytic polymerization was performed by immersing in ultrapure water and applying a voltage of 8 V between a pair of platinum electrodes 17 for 6 hours (conductive region forming step).
  • a conductive region 6 having a conductive network containing a conductive polypyrrol-type conjugated system connected in a predetermined direction (rubbing direction) with the following chemical formula (O) as a polymerization unit is formed as a pair of platinum electrodes 17. It was formed in between (conductive region forming step) (Fig. 10D).
  • a current of 1 mA was able to flow between the pair of platinum electrodes 17 by applying a voltage of 8 V.
  • impurities such as Donna one Ya Akuseputa doped Shinano Kutomo
  • the conductivity of the conductive region formed as described above is about 1Z10 to 1/1100 of a metal
  • a monomolecular film 34 is laminated, a semiconductor element ⁇ a functional device such as a capacitor. It was at a level that could be used for wiring and electrodes.
  • the monomolecular film 34 according to the present embodiment does not absorb light having a wavelength in the visible region, it can be used as a transparent electrode of a liquid crystal display element, an electroluminescent element, a solar cell, etc. Met.
  • the polyimide substrate 1 provided with the insulating silica film 2 on the surface is used in the above-described embodiment, the same conductive region can be obtained by using the polyimide substrate provided with the insulating aluminum oxide film on the surface. Was obtained. Even when a conductive aluminum substrate is used instead of a polyimide substrate, a monomolecular film having a similar conductive region can be formed by providing a silicon film on the surface of the substrate or oxidizing the surface of the substrate. Obtained.
  • the rubbing orientation method was applied in the tilting process of the present embodiment, but before the monomolecular layer forming process, a rubbing process was performed on the surface of the polyimide substrate provided with the silica film. If a monomolecular film is formed, a monomolecular film oriented in the rubbing direction can be formed, and then, if a conductive region is formed in a similar manner, a monomolecular film having a conductive region with similar conductive characteristics can be obtained. Was done.
  • the rubbing orientation method was applied in the tilting process of the present embodiment, As shown in FIG. 5B, even when ultraviolet light is irradiated through the polarizing plate 43, the monomolecular film 24 in which the chemisorbed molecules 22 constituting the monomolecular film 14 are oriented substantially parallel to the polarization direction is formed. Thereafter, a conductive region was formed by the same method as described above, whereby a monomolecular film 34 having a conductive region having more excellent conductivity was obtained.
  • the light used in the photo-alignment method is not limited to the above-described polarized ultraviolet ray, and any light having a wavelength that can be absorbed by the monomolecular film 34 can be used.
  • the 1 1 (3-thenyl) 1-decenyltrichlorosilane obtained in the above was diluted to 1% with a dehydrated dimethyl silicone solvent to prepare a chemisorption solution.
  • a glass substrate having a thickness of about 3 mm was immersed in the chemisorption solution, and kept at room temperature for 3 hours to chemically adsorb chemisorbed molecules on the surface of the glass substrate (monomolecular layer forming step). After the monolayer formation step, the glass substrate was immersed in a black hole form solution to wash and remove the remaining unreacted film material molecules. As a result, a clean monomolecular film was formed on the surface.
  • a rubbing treatment is performed on the surface of the formed monomolecular film using a rubbing apparatus (FIG. 5A) used for producing a liquid crystal alignment film, and the chemically adsorbed molecules constituting the monomolecular film are aligned.
  • a rubbing roll with a diameter of 7.0 cm wound with a rubbing cloth made of rayon was used.
  • the indentation depth was 0.3 mm
  • the nip width was 1.1.7 mm
  • the rotation speed was 1 2 Rubbing was performed under the conditions of 0 rotation 3, table speed (substrate traveling speed) 40 mm / s.
  • the monomolecular film was oriented (inclined) substantially parallel to the rubbing direction.
  • a pair of platinum electrodes having a length of 50 mm is formed on the surface of the monomolecular film at a distance of 5 mm by vacuum evaporation, photolithography, and etching, and then ultrapure at room temperature.
  • Electrolytic oxidative polymerization was performed by immersing in water and applying a voltage of 8 V between a pair of platinum electrodes for 6 hours (conductive region forming step).
  • a conductive region having a conductive network containing a conductive polypyrrole-type conjugated system connected in a predetermined direction (rubbing direction) with the following chemical formula (S) as a polymerization unit was formed between a pair of platinum electrodes ( Conductive region forming step).
  • the thickness of the obtained organic conductive film was about 2.0 nm, and the thickness of the polyphenylene portion was about 0.2 nm.
  • a current of 1 mA was able to flow by applying a voltage of 8 V through the organic conductive film between the pair of platinum electrodes.
  • the conductivity of the conductive network is a monomolecular film was obtained having a conductive region of about 1 0 3 SZ cm.
  • the present embodiment relates to a monomolecular film having a conductive region including a conductive network formed by catalytic polymerization.
  • acetylene groups one C ⁇ C _
  • trichlorosilyl groups that react with active hydrogen in the molecule end
  • T a chemisorbed molecule represented by the chemical formula (T)
  • a chemisorption solution was prepared by diluting to 1% with an organic solvent of dehydrated dimethyl silicone.
  • a rubbing treatment was performed on the surface of the silica film (pretreatment step) to form a rubbed polyimide substrate.
  • the rubbed polyimide substrate was immersed in a chemisorption solution to chemically adsorb chemisorbed molecules on the surface of the silica film (monomolecular layer forming step).
  • the rubbed polyimide substrate was removed. It was immersed in a black hole form solution to wash and remove unreacted film material molecules remaining on the polyimide substrate.
  • a clean monomolecular film represented by the following chemical formula (U) was formed on the surface.
  • the conductive region was doped with iodine ions, which are charge-transporting substances.
  • the conductivity is can form an electrically conductive region of about 1 0 4 SZcm.
  • the conductivity of a conductive region having a conductive network containing a polyacetylene-type conjugated system was such that it could not be used as a conductor such as a conductor or a wiring.
  • the present embodiment is directed to a monomolecular film having a conductive region including a conductive network formed by energy beam irradiation polymerization.
  • a monomolecular film was formed in the same manner as in Example 8 except that a chemical adsorbent containing a diacetylene group was used (monomolecular layer forming step).
  • the surface of the monomolecular film was subjected to a rubbing treatment (inclination treatment step), and then the whole surface was irradiated with ultraviolet rays, which are energy beams, at an energy density of 100 mJZcm 2 to perform energy irradiation polymerization (conductive film).
  • Region forming step As a result, a conductive region having a conductive network containing a polydiacetylene-type conjugated system represented by the following chemical formula (X) connected in the rubbing direction was formed.
  • the organic molecule containing a group is used as the film material molecule C, but the molecule represented by the chemical formula 8 containing the acetylene group (_C ⁇ C-I) is used as the film material molecule, Irradiation with an electron beam at 100 mJZ cm 2 in a gas atmosphere resulted in a monomolecular film having a conductive region with almost the same conductivity.
  • the present embodiment relates to a monomolecular film having a conductive region in which a conductive network is formed by a two-stage polymerization reaction by applying catalytic polymerization and energy beam irradiation polymerization.
  • the monomolecular film having a conductive region having a conductive network containing a polydiacetylene-type conjugated system was further provided with an X-ray energy beam. Then, energy beam irradiation polymerization was performed to form a conductive region having a conductive network containing a polyacene-type conjugated system.
  • the present embodiment relates to a monomolecular cumulative film having a conductive region including a conductive network formed by energy beam irradiation polymerization.
  • the monolayer formation process using the Langmuir-mouth jet method was performed twice consecutively to form a total of three monolayer films. did.
  • a conductive network was formed collectively on each monolayer by irradiation with one energy beam.
  • a cumulative film could be manufactured, and when an organic molecule having an acetylene group was used as a film material molecule, a monomolecular cumulative film having a conductive region in which a polyacetylene-type conductive network was formed could be manufactured.
  • Example 2 The compound obtained in Example 1 was diluted with dehydrated dimethyl silicone solvent to 1% to prepare a chemisorption solution.
  • a glass fiber having a diameter of 1 mm was immersed in this chemisorption solution at room temperature (25 ° C.) for 1 hour, and a dechlorination reaction was performed on the surface of the glass fiber to form a thin film.
  • the unreacted compound was washed away with non-aqueous chloroform. As a result, a hydrogen chloride reaction occurred between the hydroxyl group on one surface of the glass fiber and the chlorosilyl group (1 SiCl) of the compound, and a monomolecular film was formed.
  • the glass fiber on which the monomolecular film was formed was immersed in a chloroform solution to be washed, and when the glass fiber was pulled out of the chloroform solution, the monofilament was oriented by draining in the length direction.
  • a nickel thin film was formed by vapor deposition on a part of the end of the glass fiber.
  • electrolysis of 5 V / cm was applied between the electrodes to cause electrolytic oxidation polymerization.
  • the conditions of the electrolytic oxidation polymerization were a reaction temperature of 25 ° C. and a reaction time of 8 hours.
  • a conductive network was formed by electrolytic polymerization, and the two electrodes were electrically connected.
  • a conjugate bond is formed in a self-organizing manner along the direction of the electric field.
  • the two electrodes are electrically connected by a conductive network. In this manner, a polypyrrole conjugated polymer film having a length of 10 mm was formed on the glass fiber along the axial direction of the glass fiber.
  • FIG. 8A shows a cross-sectional view of the obtained electric wire.
  • reference numeral 11 denotes a glass core wire
  • reference numeral 6 denotes a polypyrrol electrolytically oxidized polymer film
  • reference numeral 13 denotes a coating insulating film made of a room-temperature-curable silicone rubber.
  • the obtained organic conductive film was analyzed using a commercially available atomic force microscope (AFM) (manufactured by Seiko Instruments Inc., SAP380 ON) in AFM-CITS mode, voltage: lmV, current: 160 n
  • AFM atomic force microscope
  • the conductivity p under the condition of A was p: 1 ⁇ 10 3 S / cm at room temperature (25 ° C.) without doping.
  • An electric cable was manufactured by forming an insulating film so as to cover the surface of the organic thin film thus obtained.
  • Room temperature curing type silicone rubber was used for the covering insulating film.
  • the electric cable may form a collective electric wire including a plurality of core wires electrically insulated from each other.
  • metal can be used in addition to glass for the core wire when making electric wires.
  • metal when an oxide is formed on the surface, a monomolecular film is easily formed.
  • Amorphous silicon thin film transistors were formed in a matrix on the first substrate in advance, and predetermined wirings were formed to form a TFT array substrate.
  • a color filter is placed on the second substrate in advance. In this manner, a color filter and a substrate on which was formed were prepared.
  • the first alignment film and the second alignment film are set inside and the TFT alignment film is formed.
  • An array substrate and a color filter substrate were attached at an interval of 5 urn to produce an empty cell.
  • Examples 1 to 13 whether or not the conductive molecules are oriented is determined by forming a liquid crystal cell 170 as shown in FIG. 16 and sandwiching the liquid crystal between polarizing plates 177 and 178, and irradiating light from the back surface. And can be confirmed by observing from the 180 position.
  • the liquid crystal cell 170 has an adhesive 175 with the conductive molecular films of the glass plates 171 and 173, on which the conductive molecular films 172 and 174 are formed, respectively, with the gap between the gaps being 5 to 6 m and the adhesive 175.
  • a liquid crystal composition 176 (nematic liquid crystal, for example, "LC, MT-5087 LA” manufactured by Chisso Corporation) was injected into the inside, and the liquid crystal composition was formed.
  • the back substrate is not transparent, use only one polarizing plate on the upper side, irradiate light from the surface, and observe with reflected light.
  • the present invention can provide an organic thin film having a conductive region that can be used as a conductive wire, a wiring, an electrode, or a transparent electrode.
  • a high-performance device such as a semiconductor device, a capacitor, a liquid crystal display device, an electroluminescent device, or a solar cell using the organic thin film having the conductive region as a conductive wire, a wiring, an electrode, or a transparent electrode can be provided.
  • electric cables such as coaxial cables and flat cables using the organic thin film having the conductive region can be provided.

Abstract

A conductive organic thin film comprising terminal bond radicals conjugate-bonded with the surface of a base material (1) or the surface of a base layer (2) formed on the base material, conjugate bond radicals, and organic molecules containing alkyl radicals between the terminal bond radicals and the conjugate bond radicals, wherein the organic molecules are oriented, and the conjugate bond radicals are polymerized with the conjugate bond radicals of other molecules to form a conductive network (34). The network (34) is formed of polypyrrole, polythienylene, polyacetylene, polydiacetylene or polyacene. The polymerization of conjugate bond radicals uses electrolytic oxidation polymerization, catalyst polymerization, and energy beam irradiation polymerization. Accordingly, a conductive organic thin film having conductivity higher than conventional organic conductive films and a production method therefor, and an electrode, cable and electronic device using it are provided.

Description

明 細 書 導電性有機薄膜とその製造方法、 それを用いた電極および電気ケーブル 技術分野  Description Conductive organic thin film, method for producing the same, electrode and electric cable using the same
本発明は、 有機材料を用いた導電性有機薄膜とその製造方法、 それを 用いた電極および電気ケ一ブルに関するものである。 さらには、 導電性 を有する単分子膜または単分子累積膜に関する。  The present invention relates to a conductive organic thin film using an organic material and a method for producing the same, an electrode and an electric cable using the same. Further, the present invention relates to a conductive monomolecular film or a monomolecular cumulative film.
背景技術 Background art
従来から有機導電膜については様々な提案がある。 本出願人は、 すで にポリアセチレン、 ポリジアセチレン、 ポリァセン(Po lyacene;)、 ポリ フエ二レン、 ポリチェ二レン、 ポリピロール、 ポリア二リンなどの導電 性共役基を含む導電膜を提案している(特開平 2 (1990) - 27766号公報、 USP5, 008, 127 、 EP-A-0385656 、 EP-A-0339677 , EP- A - 0552637 、 USP5, 270, 417 , 特開平 5 (1993) - 87559号公報、 特開平 6 (1994) -242352号 公報)。  There have been various proposals for organic conductive films. The present applicant has already proposed a conductive film containing a conductive conjugate group such as polyacetylene, polydiacetylene, polyacene (Polyacene;), polyphenylene, polychenylene, polypyrrole, and polyaniline ( JP-A-2 (1990)-27766, USP 5,008,127, EP-A-0385656, EP-A-0339677, EP-A-0552637, USP 5,270,417, JP-A 5 (1993)-87559 Gazette, JP-A-6 (1994) -242352).
また、 従来から電子デバイスには、 シリコン結晶に代表されるように 無機系の半導体材料が用いられている。 有機系の電子デバイス (以下、 有機電子デバイス) としては、 例えば日本国特許第 2034197号および第 2507153号等に開示されている。 これら各公報に記載されている有機電 子デバイスは、 印加された電界に応答し端子間に流れる電流をスィツチ ングする有機電子デバイスである。  In addition, inorganic semiconductor materials such as silicon crystals have been used for electronic devices. Organic electronic devices (hereinafter referred to as organic electronic devices) are disclosed in, for example, Japanese Patent Nos. 2034197 and 2507153. The organic electronic devices described in these publications are organic electronic devices that switch a current flowing between terminals in response to an applied electric field.
前記従来の有機系導電膜は、 導電性が金属に比較すると低いという問 題があった。 また、 従来から用いられてきた無機結晶では、 微細化が進 展するに伴い結晶欠陥が問題となり、 デバイス性能が結晶に大きく左右 される問題があった。 また、 フレキシビリティーが悪いという問題があ つた。 The conventional organic conductive film has a problem that the conductivity is lower than that of a metal. In addition, in the case of inorganic crystals that have been used in the past, crystal defects have become a problem as miniaturization has progressed, and there has been a problem that device performance is greatly affected by crystals. There is also the problem of poor flexibility. I got it.
発明の開示 Disclosure of the invention
本発明は前記に鑑みなされたものであり、 その第 1番目の目的は、 従 来の有機導電膜よりも高い導電性を有する導電性有機薄膜とその製造方 法を提供することにある。  The present invention has been made in view of the above, and a first object of the present invention is to provide a conductive organic thin film having higher conductivity than a conventional organic conductive film and a method for producing the same.
本発明の第 2番目の目的は、 デバイスの高密化が進展し 0 . 1 m以 下の微細加工がなされても、 結晶性に左右されない導電性有機薄膜から なる電極を形成することにより、 フレキシビリティ一に優れた有機電子 デバイスを提供することにある。  The second object of the present invention is to provide an electrode made of a conductive organic thin film that is not influenced by crystallinity even if finer processing of 0.1 m or less is performed due to the progress of device densification. An object of the present invention is to provide an organic electronic device having the highest operability.
前記目的を達成するため、 本発明の導電性有機薄膜は、 基材表面また は基材上に形成した下地層表面と共有結合した末端結合基と、 共役結合 基と、 前記末端結合基と前記共役結合基との間にアルキル基を含む有機 分子で構成される導電性有機薄膜であって、 前記有機分子は配向してお り、 かつ、 前記共役結合基は他の分子の共役結合基と重合して導電ネッ 1、ワークを形成していることを特徴とする。  In order to achieve the above object, the conductive organic thin film of the present invention comprises: a terminal bonding group covalently bonded to a substrate surface or an underlayer surface formed on the substrate; a conjugate bonding group; A conductive organic thin film composed of an organic molecule containing an alkyl group between a conjugate bond group and the organic molecule, wherein the organic molecule is oriented, and the conjugate bond group is linked to a conjugate bond group of another molecule. It is characterized in that it forms a conductive mesh and work by polymerization.
次に本発明の導電性有機薄膜の製造方法は、 基材表面または基材上に 形成した下地層表面と共有結合可能な末端官能基と、 共役結合可能な官 能基と、 前記末端官能基と前記共役結合可能な官能基との間にアルキル 基を含む化学吸着化合物を、 表面に活性水素を有するかまたは活性水素 を付与した基材表面または基材上に形成した下地層表面に接触させ、 脱 離反応により共有結合させて有機薄膜を成膜し、 前記有機薄膜を構成す る有機分子を所定の方向に配向させるか、 または重合工程で配向させな がら重合し、 重合工程においては、 前記共役結合可能基同士を電解酸化 重合、 触媒重合およびエネルギービーム照射重合から選ばれる少なくと も一つの重合法により共役結合させて導電ネットワークを形成すること を特徴とする。 次に本発明の電極は、 可視光線領域の光波長では透明な導電性有機薄 膜で形成されている電極であって、 前記導電性有機薄膜は、 基材表面ま たは基材上に形成した下地層表面と共有結合した末端結合基と、 共役結 合基と、 前記末端結合基と前記共役結合基との間にアルキル基を含む有 機分子で構成され、 前記有機分子は配向しており、 かつ、 前記共役結合 基は他の分子の共役結合基と重合して導電ネットワークを形成している ことを特徴とする。 Next, the method for producing a conductive organic thin film of the present invention comprises the following steps: a terminal functional group capable of covalently bonding to the surface of the substrate or the surface of the underlayer formed on the substrate; a functional group capable of conjugate bonding; A chemically adsorbed compound containing an alkyl group between the functional group and the functional group capable of conjugate bonding to the surface of a substrate having active hydrogen on the surface or to which active hydrogen has been added, or the surface of an underlayer formed on the substrate. An organic thin film is formed by being covalently bonded by an elimination reaction to form an organic thin film, and the organic molecules constituting the organic thin film are oriented in a predetermined direction or polymerized while being oriented in a polymerization step. The conjugate-bondable groups are conjugated to each other by at least one polymerization method selected from electrolytic oxidation polymerization, catalyst polymerization, and energy beam irradiation polymerization to form a conductive network. Next, the electrode of the present invention is an electrode formed of a conductive organic thin film transparent at a light wavelength in a visible light region, wherein the conductive organic thin film is formed on a substrate surface or on a substrate. A terminal bonding group covalently bonded to the surface of the underlayer, a conjugated bonding group, and an organic molecule containing an alkyl group between the terminal bonding group and the conjugated bonding group. And the conjugated group is polymerized with a conjugated group of another molecule to form a conductive network.
次に本発明の電気ケーブルは、 芯線と、 前記芯線の表面の長さ方向に 形成されている導電性有機薄膜を備えた電気ケーブルであって、 前記導 電性有機薄膜は、 基材表面または基材上に形成した下地層表面と共有結 合した末端結合基と、 共役結合基と、 前記末端結合基と前記共役結合基 との間にアルキル基を含む有機分子で構成され、 前記有機分子は配向し ており、 かつ、 前記共役結合基は他の分子の共役結合基と重合して導電 ネットワークを形成していることを特徴とする。  Next, the electric cable of the present invention is an electric cable including a core wire and a conductive organic thin film formed in a length direction of the surface of the core wire, wherein the conductive organic thin film is formed on a base material surface or A terminal bonding group covalently bonded to the surface of the underlayer formed on the base material; a conjugate bonding group; and an organic molecule including an alkyl group between the terminal bonding group and the conjugate bonding group. Are oriented, and the conjugated group is polymerized with the conjugated group of another molecule to form a conductive network.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1 Aは本発明の実施形態 1における全領域に導電ネットワークの形 成された単分子膜の断面図、 図 1 Bは複数の部分領域に導電ネットヮー クの形成された単分子膜の断面図、 図 1 Cは共役重合性官能基を内部に 有する有機分子からなり、 複数の部分領域に導電ネットワークの形成さ れた単分子膜の断面図である。  FIG. 1A is a cross-sectional view of a monomolecular film having a conductive network formed in all regions according to Embodiment 1 of the present invention, and FIG. 1B is a cross-sectional view of a monomolecular film having a conductive network formed in a plurality of partial regions. FIG. 1C is a cross-sectional view of a monomolecular film composed of an organic molecule having a conjugated polymerizable functional group therein and having a conductive network formed in a plurality of partial regions.
図 2は本発明の実施形態 1における導電ネットワークの方向を説明す るための模式的平面図である。  FIG. 2 is a schematic plan view for explaining the direction of the conductive network according to the first embodiment of the present invention.
図 3 Aは本発明の実施形態 1における一方向に連なる導電ネットヮー クが全領域に形成され単分子層の平面図、 図 3 Bは各導電領域に一方向 に連なる導電ネットワークの形成された平行な導電領域を有する単分子 層の平面図、 図 3 Cは各導電領域に一方向に連なる導電ネットワークの 形成されたマトリックス状に配列した導電領域を有する単分子層の平面 図、 図 3 Dは各導電領域に形成された導電ネットワークの方向が同じで, かつ、 各導電領域の形状も同じでない、 任意のパターンに配列した導電 領域を有する単分子層の平面図である。 FIG. 3A is a plan view of a monolayer in which a conductive network extending in one direction is formed in the entire region in Embodiment 1 of the present invention, and FIG. 3B is a parallel view in which a conductive network extending in one direction is formed in each conductive region. Plan view of a monolayer having various conductive regions, and Fig. 3C shows a conductive network connected in one direction to each conductive region. Plan view of the formed monolayer having conductive regions arranged in a matrix. Fig. 3D shows the direction of the conductive network formed in each conductive region, and the shape of each conductive region is not the same. FIG. 4 is a plan view of a monolayer having conductive regions arranged in a pattern shown in FIG.
図 4 Aは本発明の実施形態 1における基材上に形成された単分子膜の 構造例を模式的に示す断面図、 図 4 Bは基材上に形成され、 かつ、 表面 に保護膜の形成された単分子膜の断面図である。  FIG. 4A is a cross-sectional view schematically showing a structural example of a monomolecular film formed on a base material according to the first embodiment of the present invention, and FIG. It is sectional drawing of the formed monomolecular film.
図 5 Aは本発明の実施形態 1における有機薄膜を構成する分子を傾斜 (配向) させるラビング配向法を説明するための模式的斜視図、 図 5 B は光配向法の斜視図、 図 5 Cは液切り配向法の斜視図である。  FIG. 5A is a schematic perspective view for explaining a rubbing orientation method for tilting (orienting) molecules constituting an organic thin film according to Embodiment 1 of the present invention, FIG. 5B is a perspective view of a photo-alignment method, and FIG. FIG. 4 is a perspective view of a liquid drainage alignment method.
図 6 Aは本発明の実施形態 1における基材上の選択的な部位に導電領 域を形成した構成例を模式的に示す斜視図であり、 図 6 Bは全領域に導 電領域の形成された単分子膜を基材上に複数形成した斜視図である。 図 7 A— Dは本発明の実施形態 2における基材上に形成された単分子 累積膜の積層構造例を模式的に示す断面図であり、 図 7 Aは各単分子層 の配向方向を同一方向とする X型の単分子累積膜、 図 7 Bは各単分子層 の配向方向を同一方向とする Y型の単分子累積膜、 図 7 Cは各単分子層 ごとに配向方向を異にする X型の単分子累積膜、 図 7 Dは各単分子層ご とに 2つの配向方向のいずれかに配向した X型の単分子累積膜である。 図 8 Aは本発明の実施例 1 2における芯線の外表面に形成された電気 ケーブルの断面図、 図 8 Bは本発明の実施形態 3における集合電線型の 電気ケーブルの斜視図、 図 8 Cは本発明の実施形態 3における集合電線 型のフラットケ一ブルの斜視図である。  FIG. 6A is a perspective view schematically showing a configuration example in which a conductive region is formed in a selective portion on a base material according to the first embodiment of the present invention, and FIG. 6B is a diagram in which a conductive region is formed in all regions. FIG. 4 is a perspective view in which a plurality of monomolecular films formed are formed on a base material. FIGS. 7A to 7D are cross-sectional views schematically showing examples of a laminated structure of a monomolecular cumulative film formed on a base material according to Embodiment 2 of the present invention. FIG. 7A shows the orientation direction of each monomolecular layer. X-type monomolecular accumulation film with the same direction, Fig. 7B shows Y-type monomolecular accumulation film with the same orientation direction of each monolayer, and Fig. 7C shows different orientation directions for each monolayer. Figure 7D shows an X-type monomolecular cumulative film oriented in one of two orientation directions for each monolayer. FIG. 8A is a cross-sectional view of an electric cable formed on the outer surface of a core wire in Example 12 of the present invention. FIG. 8B is a perspective view of a collective electric wire type electric cable in Embodiment 3 of the present invention. FIG. 9 is a perspective view of a collective electric wire type flat cable according to Embodiment 3 of the present invention.
図 9 A _ Bは本発明の実施形態 4における単分子膜に形成された導電 領域を電極として用いるコンデンサの構造例を模式的に示す断面図であ り、 図 9 Aは導電領域を有する単分子膜の形成された 2つの基材で各単 分子膜を内側にして誘電体を狭持した構造、 図 9 Bは誘電体の平行な 2 つの表面それぞれに導電領域を有する単分子膜が形成された構造を示す < 図 1 0 A— Dは本発明の実施形態 1および実施例 6における導電領域 を有する単分子膜を製造する工程を説明するための断面図であり、 図 1 O Aは単分子層形成工程後における基材上に形成された単分子膜、 図 1 0 Bは傾斜処理 (配向処理) 工程後における配向した単分子膜、 図 1 0 Cは重合電極形成工程で表面に形成された一対の電極に電圧を印加する 導電領域形成工程を開始した直後の単分子膜、 図 1 0 Dは導電領域形成 工程後における導電ネットワークが形成された単分子膜である。 9A and 9B are cross-sectional views schematically showing an example of the structure of a capacitor using a conductive region formed in a monomolecular film as an electrode according to Embodiment 4 of the present invention. FIG. Each of the two substrates with molecular films Fig. 9B shows a structure in which a monomolecular film having a conductive region is formed on each of two parallel surfaces of the dielectric. FIG. 2 is a cross-sectional view for explaining a step of manufacturing a monomolecular film having a conductive region according to Embodiment 1 and Example 6 of the present invention.FIG. 1OA is formed on a substrate after a monomolecular layer forming step. Monolayer, Figure 10B: Oriented monolayer after tilting process (alignment process), Figure 10C: Conductive region formation by applying voltage to a pair of electrodes formed on the surface in the polymerization electrode formation process The monomolecular film immediately after the start of the process, and FIG. 10D is a monomolecular film having a conductive network formed after the conductive region forming process.
図 1 1 A— Fは本発明の実施例 2における有機導電性膜の製造工程概 念図である。  FIGS. 11A to 11F are conceptual diagrams of a manufacturing process of an organic conductive film in Example 2 of the present invention.
図 1 2 A— Bは本発明の実施例 2における分子層内の分子を配向させ るプロセスを説明するための断面概念図である。  FIGS. 12A and 12B are conceptual cross-sectional views illustrating a process for orienting molecules in a molecular layer according to the second embodiment of the present invention.
図 1 3は本発明の実施例 3における有機電子デバイスを説明するため の断面概念図である。  FIG. 13 is a conceptual cross-sectional view illustrating an organic electronic device according to Example 3 of the present invention.
図 1 4は本発明の実施例 4における液晶表示装置を説明するための断 面概念図である。  FIG. 14 is a conceptual cross-sectional view illustrating a liquid crystal display device according to a fourth embodiment of the present invention.
図 1 5は本発明の実施例 5におけるエレクト口ルミネッセンス (E L ) 表示装置を説明するための断面概念図である。  FIG. 15 is a conceptual cross-sectional view illustrating an elector-luminescence (EL) display device according to a fifth embodiment of the present invention.
図 1 6は本発明の実施例 1 4における導電性分子の配向を評価する方 法を示す説明図である。  FIG. 16 is an explanatory diagram showing a method for evaluating the orientation of conductive molecules in Example 14 of the present invention.
図 1 7は本発明の実施例 1で得られた生成物の N M Rチャートである 図 1 8は本発明の実施例 1で得られた生成物の I Rチャートである。 1 :基材 (基板) , 2 :基板絶縁膜, 3 :保護被膜, 4 :単分子膜 (単 分子層) , 5 :共役系 (共役結合鎖) , 6 :導電領域, 7 : 金属接点 (配線) , 8 :誘電体, 9 :共役重合性官能基, 1 1 :絶縁性基材, 1 3 :絶縁保護膜, 1 4 : ピロ一ル基を有する有機分子からなる単分子膜, 1 6 :ポリピロ一ル型導電ネットワークを有する導電領域, 1 7 :電解 重合用の白金電極, 2 4 : ピロール基を有する有機分子が配向した単分 子膜, 3 4 : ポリピロ一ル型導電ネットワークを有する単分子膜, 4 1 : ラピンダロール, 4 2 : ラビング布, 4 3 :偏光板, 4 4, 洗浄用 の有機溶液 FIG. 17 is an NMR chart of the product obtained in Example 1 of the present invention. FIG. 18 is an IR chart of the product obtained in Example 1 of the present invention. 1: substrate (substrate), 2: substrate insulating film, 3: protective coating, 4: monolayer (monolayer), 5: conjugated system (conjugated bond chain), 6: conductive region, 7: metal contact ( 8) Dielectric, 9: Conjugated polymerizable functional group, 11: Insulating substrate, 1 3: Insulating protective film, 14: Monomolecular film composed of organic molecules having a pyrol group, 16: Conductive region having a polypyrrol conductive network, 17: Platinum electrode for electrolytic polymerization, 24: Monomolecular film with oriented organic molecules having pyrrole group, 34: Monomolecular film with polypyrroline-type conductive network, 41: Lapindarol, 42: Rubbing cloth, 43: Polarizing plate, 44, Cleaning Organic solution for
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
本発明において、 有機薄膜が導電性を有するのは、 有機分子の集合群 を構成する分子相互が共役結合してポリマー化していることによる。 こ こに、 導電ネットワークは、 電気伝導に関与する共役結合で結合した有 機分子の集合体であり、 共役結合鎖 (共役系) を有するポリマーで形成 されている。 また、 導電ネットワークは電極間の方向に形成されている。 この共役結合鎖ポリマ一は厳密に 1方向に連なるものではなく、 様々な 方向のポリマー鎖が、 全体として電極間に形成されていればよい。  In the present invention, the reason why the organic thin film has conductivity is that molecules constituting an assembly group of organic molecules are conjugated and polymerized. Here, the conductive network is an aggregate of organic molecules connected by conjugate bonds involved in electric conduction, and is formed of a polymer having a conjugate bond chain (conjugate system). The conductive network is formed in the direction between the electrodes. This conjugated bond chain polymer is not strictly connected in one direction, and it is sufficient that polymer chains in various directions are formed between the electrodes as a whole.
本発明においては、 導電性有機薄膜の電導度 (p ) は、 1 S Z c m以 上、 好ましくは 1 X 1 0 2 S Z c m以上、 さらに好ましくは 1 X 1 0 3 S / c m以上である。 前記の値はすべて室温 (2 5 °C) におけるドーパ ントなしの場合である。 In the present invention, the conductive organic thin film of conductivity (p) is the 1 SZ cm or more, and preferably 1 X 1 0 2 SZ cm or more, more preferably 1 X 1 0 3 S / cm or more. All above values are for room temperature (25 ° C) without dopant.
前記重合した共役結合基は、 ポリピロール、 ポリチェ二レン、 ポリア セチレン、 ポリジアセチレンおよびポリァセンから選ばれる少なくとも 一つの共役結合基であることが好ましい。 とくに共役結合が、 ボリピロ —ルまたはポリチェ二レンであり、 電解酸化重合させた薄膜は高い電導 度を有する。  The polymerized conjugated group is preferably at least one conjugated group selected from polypyrrole, polychenylene, polyacetylene, polydiacetylene and polyacene. In particular, the conjugated bond is polypyrrole or polychenylene, and the thin film formed by electrolytic oxidation polymerization has high conductivity.
前記末端結合基は、 シロキサン (— S i O—) および S i N—結合か ら選ばれる少なくとも一つの結合であることが好ましい。  The terminal binding group is preferably at least one bond selected from siloxane (—Sio—) and SiN— bonds.
前記末端結合基は、 脱塩化水素反応、 脱アルコール反応および脱イソ シァネート反応から選ばれる少なくとも一つの脱離反応によって形成さ れている。 例えば分子末端の官能基が- SiCl3,- Si(0R)3 (但し Rは炭素数 1-3のアルキル基),または- Si (NC0)3の場合、 基材表面または基材の上に 形成した下地層表面に - 0H基, -CH0基, -C00H基, - NH2基,〉NH基等に含まれ る活性水素が存在すると、 脱塩化水素反応、 脱アルコール反応または脱 イソシァネート反応が起こり、 化学吸着分子を基材表面または基材の上 に形成した下地層表面に共有結合させる。 The terminal linking group includes dehydrochlorination, dealcoholation and It is formed by at least one elimination reaction selected from the cyanate reaction. For example the functional groups of the molecular ends - SiCl 3, - Si (0R ) 3 ( where R is an alkyl group having 1-3 carbon atoms), or - Si (NC0) For 3, on the substrate surface or substrate forming the undercoat layer on the surface - 0H group, -CH0 group, -C00H group, - NH 2 group,> the active hydrogen that is part of the NH group or the like exists, dehydrochlorination reaction and dealcoholization or removal Isoshianeto reaction As a result, the chemisorbed molecules are covalently bonded to the surface of the substrate or the surface of the underlayer formed on the substrate.
この方法によって形成される分子膜は、 当業界では" 化学吸着膜" ま たは" セルフ アセンブリング フィルム(self assembling film) " と言 われているが、 本発明においては" 化学吸着膜" と呼ぶ。 また、 その形 成方法を" 化学吸着法" と呼ぶ。  The molecular film formed by this method is referred to in the art as a “chemisorption film” or “self assembling film”, but is referred to as a “chemisorption film” in the present invention. . The formation method is called "chemisorption method".
本発明において、 分子の配向は、 ラビングによる配向処理、 脱離反応 によって基材表面に分子を共有結合した後の反応溶液からの傾斜液切り 処理、 偏光の照射処理、 および重合工程における分子のゆらぎによる配 向から選ばれる少なくとも一つによって形成されていることが好ましい 前記有機薄膜の導電領域は可視領域の波長を有する光に対して透明で あることが好ましい。  In the present invention, the orientation of molecules is determined by rubbing orientation treatment, decantation treatment from a reaction solution after covalently bonding molecules to a substrate surface by a desorption reaction, polarized light irradiation treatment, and molecular fluctuation in the polymerization process. Preferably, the conductive region of the organic thin film is transparent to light having a wavelength in the visible region.
前記導電ネットワークを形成している分子ュニットは例えば下記式 (A) または (B) で示されることが好ましい。  The molecular unit forming the conductive network is preferably represented by, for example, the following formula (A) or (B).
Figure imgf000009_0001
(A) X一 Si (- 0 -) PE 3-p
Figure imgf000009_0001
(A) X-Si (-0-) P E 3-p
Figure imgf000010_0001
(B)
Figure imgf000010_0001
(B)
(但し、 前記化学式 (A) および (B) において、 Xは水素、 エステル 基または不飽和基を含む有機基、 Qは 0〜 1 0の整数、 Eは水素または 炭素数 1一 3のアルキル基、 nは 2以上 2 5以下の整数、 好ましくは 1 0以上 20以下の整数、 pは整数であり 1、 2または 3である。 ) 前記導電性ネッ トワークを形成するための化合物は、 下記化学式 (C) または (D) で示されるピロリル化合物またはチェニル化合物で ある。  (However, in the chemical formulas (A) and (B), X is hydrogen, an organic group containing an ester group or an unsaturated group, Q is an integer of 0 to 10, E is hydrogen or an alkyl group having 13 to 13 carbon atoms) And n is an integer of 2 or more and 25 or less, preferably 10 or more and 20 or less, and p is an integer and is 1, 2 or 3. The compound for forming the conductive network has the following chemical formula: It is a pyrrolyl compound or a thienyl compound represented by (C) or (D).
Figure imgf000010_0002
Figure imgf000010_0002
X-
Figure imgf000010_0003
X-
Figure imgf000010_0003
(但し、 前記式 (C) および (D) において、 Xは水素、 エステル基ま たは不飽和基を含む有機基、 qは 0〜 1 0の整数、 Dはハロゲン原子、 ィソシァネ一ト基または炭素数 1一 3のアルコキシル基、 Eは水素また は炭素数 1 _ 3のアルキル基、 nは 2以上 2 5以下の整数、 pは整数で あり 1、 2または 3である。 )  (However, in the above formulas (C) and (D), X is hydrogen, an organic group containing an ester group or an unsaturated group, q is an integer of 0 to 10, D is a halogen atom, an isocyanate group or An alkoxyl group having 13 to 13 carbon atoms, E is hydrogen or an alkyl group having 1 to 3 carbon atoms, n is an integer of 2 or more and 25 or less, and p is an integer and is 1, 2 or 3.)
前記共役結合可能基は、 ピロール基、 チェ二レン基、 アセチレン基、 およびジアセチレン基から選ばれる少なくとも一つの基であっても良い t 前記有機分子は単分子層状に形成されていることが好ましい。 また、 前記単分子層形成工程を複数回繰り返すことにより、 単分子層 を積層させて単分子累積膜を形成しても良い。 The conjugated bondable group, pyrrole group, Choi two alkylene groups, be acetylene group, and at least one good t the organic molecules be a group selected from diacetylene group is formed on the monomolecular layer preferably . Further, by repeating the monomolecular layer forming step a plurality of times, the monomolecular layers may be stacked to form a monomolecular cumulative film.
前記化学式 Aまたは Bにおいて、 Xがエステル基を含む場合は、 加水 分解することによりカルボキシル基 (― C O O H) を導入できる。 Xが ビエル結合などの不飽和基を含む場合は、 例えば水分の存在する雰囲気 中で電子線または X線などのエネルギー線を照射することにより水酸基 ( - O H ) を導入できる。 また、 Xがビエル結合などの不飽和基を含む 場合は、 例えば過マンガン酸力リウム水溶液に浸漬することにより一 C O O Hを導入できる。 このようにすると、 活性水素を導入できるので、 さらに単分子膜を累積結合させることができる。  In the above formula A or B, when X contains an ester group, a carboxyl group (—COOH) can be introduced by hydrolysis. When X contains an unsaturated group such as a Bier bond, a hydroxyl group (-OH) can be introduced by irradiating an energy beam such as an electron beam or an X-ray in an atmosphere where moisture is present. Further, when X contains an unsaturated group such as a Bier bond, for example, one COH can be introduced by immersion in an aqueous solution of potassium permanganate. In this case, active hydrogen can be introduced, so that the monomolecular film can be further accumulated.
また、 前記単分子層形成工程と前記傾斜処理 (配向) 工程とを交互に 繰り返し行った後、 前記導電ネットワーク形成工程で、 単分子累積膜の 各単分子層内に導電ネットワークを一括形成することにより、 導電性単 分子累積膜を形成しても良い。  In addition, after the monomolecular layer forming step and the tilting (orienting) step are alternately and repeatedly performed, a conductive network is collectively formed in each monolayer of the monomolecular accumulation film in the conductive network forming step. Thus, a conductive monomolecular accumulation film may be formed.
また、 前記単分子層形成工程、 前記傾斜処理工程および前記導電ネッ トワーク形成工程よりなる一連の工程を繰り返し行うことにより、 導電 性単分子累積膜を形成しても良い。  Further, a conductive monomolecular cumulative film may be formed by repeatedly performing a series of steps including the monomolecular layer forming step, the tilting step, and the conductive network forming step.
重合方法としては、 電解酸化重合、 触媒重合およびエネルギー線照射 重合から選ばれる少なくとも一つの重合方法がある。 前記電解酸化によ る導電ネットワークを形成する前に、 触媒重合およびエネルギ一線照射 重合から選ばれる少なくとも一つの予備重合を行っても良い。  As the polymerization method, there is at least one polymerization method selected from electrolytic oxidation polymerization, catalytic polymerization, and energy beam irradiation polymerization. Before forming the conductive network by the electrolytic oxidation, at least one prepolymerization selected from catalytic polymerization and energy linear irradiation polymerization may be performed.
前記エネルギー線は、 紫外線、 遠紫外線、 X線および電子線から選ば れる少なくとも一つであることが好ましい。  The energy ray is preferably at least one selected from ultraviolet rays, far ultraviolet rays, X-rays and electron beams.
前記エネルギー線は、 偏光した紫外線、 偏光した遠紫外線および偏光 した X線から選ばれる少なくとも一つであり、 前記傾斜配向処理と前記 導電ネットワーク形成とを同時に行っても良い。 有機分子が有極性の官能基を含むことにより、 印加された電界に対す る感度が高く、 応答速度が高速となる。 したがって、 有機薄膜の導電性 を高速に変化させることができる。 電界が印加された際、 前記有機薄膜 の導電性の変化は、 有極性の官能基が電界に応答し、 その応答による影 響が前記導電ネットワークの構造に波及されたため、 生じたと考えられ る。 The energy ray is at least one selected from polarized ultraviolet rays, polarized far ultraviolet rays, and polarized X-rays, and the tilt alignment treatment and the formation of the conductive network may be performed simultaneously. When the organic molecule contains a polar functional group, the sensitivity to an applied electric field is high, and the response speed is high. Therefore, the conductivity of the organic thin film can be changed at a high speed. It is considered that the change in the conductivity of the organic thin film when the electric field was applied occurred because the polar functional group responded to the electric field, and the effect of the response spread to the structure of the conductive network.
また、 ドーピングにより導電ネットワークに電荷移動性のドーパント 物質の組み込めば、 さらに導電率を向上することも可能である。 このド 一パン卜物質として、 ヨウ素、 B F—イオン、 N a, K等のアルカリ金 属、 C a等のアルカリ土類金属等の任意のド一パント物質が利用できる。 さらに有機膜形成工程の溶液に含まれる微量成分やガラス容器などから 不可避的に混入されるコンタミネーションによるド一パント物質を含ん でいても良い。  Further, the conductivity can be further improved by incorporating a charge-transporting dopant substance into the conductive network by doping. As this dopant substance, any dopant substance such as iodine, BF- ion, alkali metal such as Na and K, and alkaline earth metal such as Ca can be used. Further, it may contain a trace component contained in the solution in the organic film forming step or a dopant substance due to contamination unavoidably mixed from a glass container or the like.
導電単分子層を構成する有機分子はかなり良く配向した状態にあるた め、 導電ネットワークの共役結合鎖が特定平面内に存在する。 したがつ て、 単分子層に形成された導電ネットヮ一クは所定の方向に直線的に連 なる。 その導電ネットワークの直線性により、 高い導電異方性を有する。 また、 その導電ネットワークの直線性は、 導電ネットワークを構成する 各共役結合鎖 (共役系) が単分子層内の同一平面で略平行に配列してい ることを意味する。 したがって、 導電単分子層は、 高い導電率を有し、 且つ、 均一な導電率を有する。 また、 前記導電ネットワークの直線性に より、 重合度の高い共役結合鎖を単分子層に有する。  The organic molecules that make up the conductive monolayer are fairly well-aligned, so the conjugated chains of the conductive network are in a particular plane. Therefore, the conductive net formed on the monolayer is linearly connected in a predetermined direction. Due to the linearity of the conductive network, it has high conductive anisotropy. In addition, the linearity of the conductive network means that each conjugated bond chain (conjugated system) constituting the conductive network is arranged substantially in parallel on the same plane in the monolayer. Therefore, the conductive monolayer has high electrical conductivity and uniform electrical conductivity. In addition, due to the linearity of the conductive network, the monomolecular layer has a conjugated bond chain having a high degree of polymerization.
別の例によれば、 膜厚が薄くても極めて良好な導電性を有する導電性 単分子膜および導電性単分子累積膜を提供できる。  According to another example, it is possible to provide a conductive monomolecular film and a conductive monomolecular cumulative film having extremely good conductivity even if the film thickness is small.
導電性単分子累積膜の場合、 各導電性単分子層に導電ネットワークが 形成されているので、 単分子累積膜の導電ネットワークの導電率は、 積 層された単分子膜の層数に依存する。 したがって、 導電単分子層の積層 数を変更することにより所望の導電率を有する導電性有機薄膜を提供で きる。 例えば、 同一の導電性単分子層が積層された導電性累積膜であれ ば、 それに含まれる導電ネッ卜ワークの導電率はほぼ比例する。 In the case of a conductive monomolecular cumulative film, since a conductive network is formed in each conductive monolayer, the conductivity of the conductive network of the monomolecular cumulative film is It depends on the number of layers of the layered monomolecular film. Therefore, a conductive organic thin film having a desired conductivity can be provided by changing the number of stacked conductive monolayers. For example, in the case of a conductive cumulative film in which the same conductive monolayer is laminated, the conductivity of the conductive network included therein is approximately proportional.
導電性単分子累積膜において、 すべての単分子層に形成された導電ネ ットワークの方向が同一である限り、 各単分子層ごとに有機分子の配向 の傾斜角が異なっていてもよい。 また、 すべての単分子層を同一有機分 子から構成するものでなくとも良い。 また、 各導電性単分子層ごとに異 なる種類の有機分子から構成された導電性単分子累積膜であってもよい t また、 導電性単分子累積膜の場合は、 基材に最近接する導電性単分子 層が基材と化学結合で結合されているので、 耐剥離性等の耐久性に優れ る。 In the conductive monomolecular cumulative film, the tilt angle of the orientation of the organic molecule may be different for each monolayer as long as the direction of the conductive network formed in all the monolayers is the same. Also, not all monolayers need to be composed of the same organic molecule. Further, a conductive monomolecular built-up film composed of different kinds of organic molecules for each conductive monomolecular layer may t Also, in the case of the conductive monomolecular built-up film, the conductive closest to the substrate Since the water-soluble monolayer is chemically bonded to the base material, it has excellent durability such as peel resistance.
傾斜処理工程における有機分子の傾斜方向は、 有機分子の長軸を基材 表面に射影した線分の方向を意味する。 したがって、 基材に対する傾斜 角は同一角度でなくてもよい。  The tilt direction of the organic molecule in the tilting process means the direction of a line segment obtained by projecting the long axis of the organic molecule onto the substrate surface. Therefore, the inclination angles with respect to the substrate need not be the same.
単分子層を構成した有機分子の集合群を、 傾斜処理工程において、 精 度よく所定の方向に傾斜させることができる。 一般的には、 単分子層を 構成した分子を配向させることができる。 精度よく配向させることがで きるので、 導電ネットワーク形成工程において、 方向性を有する導電ネ ットワークを簡便に形成できる。  The group of organic molecules constituting the monolayer can be accurately tilted in a predetermined direction in the tilting step. Generally, the molecules that make up the monolayer can be oriented. Since alignment can be performed with high accuracy, a conductive network having directionality can be easily formed in the conductive network forming step.
また、 単分子層内の配向した有機分子相互を共役結合させると、 重合 度が高くかつ直線的に連なる導電ネットワークが形成できる。 また、 導 電ネットワークの直線性により、 均質な導電性単分子層が形成できる。 別の例においては、 前記偏光として可視光領域の波長を有する偏光を 用いる。 この例によれば、 有機薄膜を構成した有機分子の剥離や、 有機 分子自体の破壊等による有機薄膜の破壊を防止または抑制できる。 別の例によれば、 ラビング処理を施した基材表面に有機薄膜を成膜す ると、 その有機薄膜を構成した有機分子は所定の方向に傾斜した状態と なる。 一般的には、 ラビング処理におけるラビング方向と成膜された有 機分子の傾斜方向とは同一方向となる。 In addition, when the oriented organic molecules in the monolayer are conjugated to each other, a conductive network having a high degree of polymerization and being linearly connected can be formed. In addition, a uniform conductive monolayer can be formed due to the linearity of the conductive network. In another example, a polarized light having a wavelength in a visible light region is used as the polarized light. According to this example, it is possible to prevent or suppress the destruction of the organic thin film due to the exfoliation of the organic molecules constituting the organic thin film and the destruction of the organic molecules themselves. According to another example, when an organic thin film is formed on the surface of a rubbed substrate, the organic molecules constituting the organic thin film are inclined in a predetermined direction. Generally, the rubbing direction in the rubbing process is the same as the tilt direction of the formed organic molecules.
前記ラビング処理で用いるラビング布として、 ナイロン製またはレー ヨン製の布を用いることができる。 前記の構成の如くナイロン製または レ一ヨン製のラビング布を用いることが、 配向の精度を向上させる目的 にとつて適正である。  Nylon or rayon cloth can be used as the rubbing cloth used in the rubbing treatment. It is appropriate to use a rubbing cloth made of nylon or rayon as described above for the purpose of improving the accuracy of orientation.
前記導電ネットワーク形成工程で 1種以上の重合法を適用し、 前記有 機薄膜を構成する分子相互を重合によりまたは重合おょぴ該重合後の架 橋により共役結合させて導電ネットワークを形成しても良い。 この例に よれば、 有機分子の前記重合性基を共役結合で連結させ電気伝導を可能 にする導電ネットワークを形成できる。 重合の種類としては電解酸化重 合、 触媒重合およびエネルギービームの照射重合から選ばれる少なくと 一つの重合法が利用できる。 とくに最終工程において、 電解酸化重合に より導電ネットワークを完結させると、 高い導電性を得ることができる c また、 前記有機薄膜を形成する分子が共役結合で結合する重合性基を 複数有する場合、 一方の重合性基の重合で形成された高分子に対して、 さらに架橋反応を行い他方の重合性基を共役結合させることにより、 重 合後の構造と異なる構造を有する導電ネットワークを形成できる。 この 際、 重合により形成された高分子の側鎖にある前記他方の重合性基が架 橋される。 In the conductive network forming step, one or more polymerization methods are applied, and molecules constituting the organic thin film are conjugated to each other by polymerization or by polymerization or a bridge after the polymerization to form a conductive network. Is also good. According to this example, it is possible to form a conductive network that enables electric conduction by connecting the polymerizable groups of the organic molecule by a conjugate bond. As the type of polymerization, at least one polymerization method selected from electrolytic oxidation polymerization, catalytic polymerization, and irradiation beam irradiation polymerization can be used. Particularly in the final step, when to complete the more conductive network in the electrolytic oxidation polymerization, also c it is possible to obtain a high conductivity, if molecules forming the organic thin film has a plurality of polymerizable groups that bind with conjugated bonds, whereas By conducting a cross-linking reaction on the polymer formed by the polymerization of the polymerizable group to form a conjugate bond with the other polymerizable group, a conductive network having a structure different from the structure after the polymerization can be formed. At this time, the other polymerizable group on the side chain of the polymer formed by polymerization is bridged.
例えば、 ジアセチレン基を有する有機分子の集合群からなる単分子膜 を形成し、 その単分子膜に触媒重合を行い、 更に、 エネルギービーム照 射重合により架橋を行うと、 極めて高い導電率を有するポリアセン型共 役系を含む導電ネットワークを形成することができる。 前記重合を行う工程で触媒重合法、 電解重合法、 エネルギービーム重 合法よりなる群から選択される重合法を適用してもよい。 この例によれ ば、 触媒重合性を有する重合性基 (以下、 触媒重合性基ともいう) を有 する有機分子からなる有機薄膜には触媒重合法を適用して、 また、 電解 重合性を有する重合性基 (以下、 電解重合性基とも略記する) を有する 有機分子からなる有機薄膜には電解重合法を適用して、 また、 エネルギ —ビームの照射により重合する重合性基 (以下、 エネルギービーム重合 性基ともいう) を有する有機分子からなる有機薄膜にはエネルギービ一 ム重合法を適用して、 導電ネットワークを形成することができる。 効率 よく導電ネットワークを形成するには、 まず触媒重合法およびノまたは エネルギービーム重合を行い、 最終工程で電解酸化重合により反応を完 結させる。 For example, when a monomolecular film composed of a group of organic molecules having a diacetylene group is formed, catalytic polymerization is performed on the monomolecular film, and crosslinking is performed by energy beam irradiation polymerization, an extremely high conductivity is obtained. A conductive network including a polyacene-type concomitant system can be formed. In the step of performing the polymerization, a polymerization method selected from the group consisting of a catalyst polymerization method, an electrolytic polymerization method, and an energy beam polymerization method may be applied. According to this example, a catalyst polymerization method is applied to an organic thin film composed of an organic molecule having a polymerizable group having catalytic polymerizability (hereinafter, also referred to as “catalyst polymerizable group”). An electropolymerization method is applied to an organic thin film composed of organic molecules having a polymerizable group (hereinafter abbreviated as an electropolymerizable group), and a polymerizable group polymerized by irradiation with an energy beam (hereinafter referred to as an energy beam). A conductive network can be formed by applying an energy beam polymerization method to an organic thin film made of an organic molecule having a polymerizable group. In order to efficiently form a conductive network, first, catalytic polymerization and no or energy beam polymerization are performed, and the reaction is completed by electrolytic oxidation polymerization in the final step.
複数回の架橋工程を採用する場合は、 異なる作用による架橋工程の組 合せでもよいが、 同じ作用であるが反応条件が異なる工程の組合せも含 む。 例えば、 触媒作用による架橋工程後に第 1の種類のエネルギービ一 ム照射による架橋工程を行い、 さらに第 2の種類のエネルギービーム照 射による架橋工程を行う等により導電ネットワークを形成してもよい。 前記導電ネットワーク形成工程で重合法として前記触媒重合法を適用 し、 前記重合性基としてピロール基、 チェ二レン基、 アセチレン基また はジアセチレン基を有する有機分子の集合群よりなる有機薄膜に導電ネ ットワークを形成する。  When a plurality of cross-linking steps are employed, a combination of cross-linking steps by different actions may be used, but also includes a combination of steps having the same action but different reaction conditions. For example, a conductive network may be formed by performing a cross-linking step by irradiation of a first type of energy beam after a cross-linking step by catalytic action, and further by performing a cross-linking step by irradiation of a second type of energy beam. In the conductive network forming step, the catalytic polymerization method is applied as a polymerization method. Form a network.
例えば、 ピロール基を含む有機分子を用いてポリピロール型共役系を 含む導電ネットワークを形成でき、 チェ二レン基を含む有機分子を用い てポリチェ二レン型共役系を含む導電ネットワークを形成できる。 前記導電ネットワーク形成工程で前記エネルギービーム重合法を適用 し、 前記重合性基としてアセチレン基またはジアセチレン基を有する有 機分子の集合群からなる前記有機薄膜に導電ネットワークを形成するこ ともできる。 この例によれば、 有機薄膜を構成する有機分子として、 ァ セチレン基を有する有機分子を用いて、 ポリアセチレン型共役系を含む 導電ネットワークを形成できる。 また、 ジアセチレン基を有する有機分 子を用いて、 ポリジアセチレン型共役系またはポリアセン型共役系を含 む導電ネットワークを形成できる。 For example, a conductive network including a polypyrrole-type conjugated system can be formed using an organic molecule including a pyrrole group, and a conductive network including a polychenylene-type conjugated system can be formed using an organic molecule including a chelenylene group. Applying the energy beam polymerization method in the conductive network forming step, and having an acetylene group or a diacetylene group as the polymerizable group. A conductive network may be formed on the organic thin film composed of a group of organic molecules. According to this example, a conductive network including a polyacetylene-type conjugated system can be formed by using an organic molecule having an acetylene group as an organic molecule constituting the organic thin film. In addition, a conductive network including a polydiacetylene-type conjugated system or a polyacene-type conjugated system can be formed using an organic molecule having a diacetylene group.
前記エネルギービームとして紫外線、 遠紫外線、 X線または電子線を 用いてもよい。 この例によれば、 効率よく導電ネットワークを形成する ことができる。 また、 エネルギ一ビーム照射重合性基の種類によりそれ ぞれ吸収特性は異なるので、 吸収効率の良いエネルギービームの種類お よびエネルギーを選択すれば反応効率を向上できる。 更に、 多くのエネ ルギービーム照射重合性基がこれらのエネルギービームに対し吸収性を 有するため、 様々な種類のビーム照射重合性基を有する有機分子からな る有機薄膜に適用できる。  Ultraviolet rays, far ultraviolet rays, X-rays or electron beams may be used as the energy beam. According to this example, a conductive network can be efficiently formed. In addition, since the absorption characteristics differ depending on the type of polymerizable group irradiated with energy beam, the reaction efficiency can be improved by selecting the type and energy of the energy beam having good absorption efficiency. Furthermore, since many energy beam-irradiated polymerizable groups have absorbability to these energy beams, they can be applied to organic thin films composed of organic molecules having various types of beam-irradiated polymerizable groups.
また、 前記エネルギービームとして偏光した紫外線、 偏光した遠紫外 線または偏光した X線を用い、 前記傾斜処理工程と前記導電ネットヮー ク形成工程とを同時に行うこともできる。 この例によれば、 有機薄膜を 構成する有機分子を所定の方向に傾斜 (配向) させるとともに、 有機分 子相互を共役結合させることができる。 したがって、 工程を簡素化でき る。  Further, the tilting step and the conductive network forming step can be performed simultaneously by using polarized ultraviolet rays, polarized far ultraviolet rays or polarized X-rays as the energy beam. According to this example, the organic molecules constituting the organic thin film can be inclined (orientated) in a predetermined direction, and the organic molecules can be conjugated to each other. Therefore, the process can be simplified.
前記基板は、 ガラスや樹脂フィルムなどの電気絶縁性の基板、 または 任意の基板表面に絶縁膜が形成された絶縁膜付き基板であっても良い。 基板はガラスやポリイミド樹脂などであれば表面に活性水素を有するの で、 そのままでも使用できる。 活性水素が少ない基板の場合は、 SiCl4 ,HSiCl3 , SiCl30- (SiCl2- 0)n- SiCl3(伹し、 nは 0以上 6以下の整 数), S i (0CH3) 4 ,HSi (OCH3) 3 ,Si (OCH3) 3O- (S i (0CH3) 2- 0) n-S i (0CH3) 3 (但し、 nは 0以上 6以下の整数) などで処理するか、 シリカ膜を形成するか、 コロナ放電、 プラズマ照射などで基材表面を活性化することにより活性 水素を付与できる。 The substrate may be an electrically insulating substrate such as glass or a resin film, or a substrate with an insulating film in which an insulating film is formed on an arbitrary substrate surface. If the substrate is glass or polyimide resin, it has active hydrogen on the surface and can be used as it is. For the active hydrogen is less substrate, SiCl 4, HSiCl 3, SiCl 3 0- (SiCl 2 - 0) n - SiCl 3 ( and伹, n represents an integer of 0 to 6), S i (0CH 3) 4, HSi (OCH3) 3, Si (OCH3) 3O- (S i (0CH 3) 2 - 0) n -S i (0CH 3) 3 ( where, (n is an integer of 0 or more and 6 or less). Active hydrogen can be provided by treating the substrate surface with a silica film, corona discharge, plasma irradiation, or the like.
基板が電気絶縁性材料の場合は、 リーク電流が小さく、 動作安定性に 優れる有機電子デバイスを提供できる。  When the substrate is an electrically insulating material, an organic electronic device having a small leakage current and excellent operation stability can be provided.
本発明の有機導電膜は、 電導度が高く、 透明性も高い。 この性質を利 用した用途としては、 電線、 モーター、 発電機、 コンデンサ一 (キャパ シター) 、 透明電極 ( I T O代替) 、 半導体装置配線 · C P U配線 (電 気抵抗により発熱しない) 、 電磁波シールド、 C R Tガラス表面フィル ター (静電気発生防止) 等様々な用途が考えられる。  The organic conductive film of the present invention has high conductivity and high transparency. Applications that take advantage of this property include wires, motors, generators, capacitors (capacitors), transparent electrodes (alternative to ITO), semiconductor device wiring, CPU wiring (no heat generation due to electrical resistance), electromagnetic shielding, CRT Various applications such as glass surface filters (prevention of static electricity generation) are possible.
(実施の形態 1 )  (Embodiment 1)
本実施の形態 1においては、 有機薄膜が単分子膜である場合を例にし て、 その製造方法及びその構造を説明する。  In the first embodiment, a method for manufacturing the organic thin film and a structure thereof will be described taking a case where the organic thin film is a monomolecular film as an example.
まず、 製造方法について説明する。 共役重合性官能基を有する有機分 子を基材と接触させて、 基材上に単分子膜を形成する単分子層形成工程 (有機薄膜形成工程) を行い、 次に、 単分子膜を構成する分子相互が共 役結合で所定の方向に連なる導電ネットワークを有する導電領域を単分 子膜の少なくとも一部に形成する導電領域形成工程を行うことにより、 導電領域を有する単分子膜を形成できる。  First, the manufacturing method will be described. An organic molecule having a conjugated polymerizable functional group is brought into contact with a base material to perform a monomolecular layer forming step (organic thin film forming step) for forming a monomolecular film on the base material. Region forming step of forming a conductive region having a conductive network in which molecules that are connected to each other in a predetermined direction by covalent bonding is formed in at least a part of the single-molecule film, whereby a monomolecular film having a conductive region can be formed. .
前記の製造方法により形成された導電ネットワークよりも、 方向性に 優れた導電ネットワークを形成するためには、 膜を構成する有機分子が 所定の方向に配向 (傾斜) した単分子膜に対して、 導電領域形成工程を 行うことが好ましい。 また、 配向した単分子膜に導電領域形成工程を行 うと、 重合度及び導電率の高い導電領域を形成できることとなる。 ここに、 単分子膜及び単分子層においては、 所定の方向に傾斜させる ことは、 単分子膜を構成する有機分子を配向させることと等価であるの で、 以下、 単分子膜や単分子層に対しては、 配向ともいう。 In order to form a conductive network having better directionality than the conductive network formed by the above-described manufacturing method, the organic molecule constituting the film must be oriented (inclined) in a predetermined direction with respect to a monomolecular film. It is preferable to perform a conductive region forming step. In addition, when the conductive region forming step is performed on the oriented monomolecular film, a conductive region having a high degree of polymerization and high conductivity can be formed. Here, in monolayers and monolayers, tilting in a predetermined direction is equivalent to orienting the organic molecules constituting the monolayer. In the following, a monolayer or a monolayer is also referred to as an orientation.
このような配向した単分子膜を形成する方法としては、 単分子層形成 工程前に基材表面をラビング処理しておき (前処理工程) 、 ラビング処 理済みの基材表面に単分子膜を形成する方法や、 単分子層形成工程後に 単分子膜に対して配向処理を施して (傾斜処理工程) 、 配向した単分子 膜を形成する方法等が適用できる。 また、 前処理工程と傾斜処理工程と を含む製造方法であれば極めて直線性に優れた導電ネットワークを形成 できる。  As a method for forming such an oriented monomolecular film, a rubbing treatment is performed on the substrate surface before the monomolecular layer forming step (pretreatment step), and the monomolecular film is formed on the rubbed substrate surface. A method of forming the monomolecular film, a method of performing an orientation treatment on the monomolecular film after the monomolecular layer forming step (gradient treatment step), and forming an oriented monomolecular film can be applied. In addition, if the manufacturing method includes a pretreatment step and a tilt treatment step, a conductive network having extremely excellent linearity can be formed.
前記の単分子層形成工程に引き続き、 洗浄工程を含む製造方法であれ ば、 表面に汚れのない単分子膜を形成することができる。 また、 電荷移 動性のドーパントをドーピングするドーピング工程を含む製造方法であ れば、 簡便に、 導電領域の導電率を向上させることができる。 また、 導 電領域形成工程後に、 単分子膜上に絶縁性の保護膜を形成する工程を含 む製造方法であれば、 耐剥離性等の耐久性に優れる保護膜付き単分子膜 を製造できる。 以下に、 各工程について説明する。  If the manufacturing method includes a washing step following the above-mentioned monolayer formation step, a monomolecular film having no stain on the surface can be formed. Further, if the manufacturing method includes a doping step of doping a charge-transporting dopant, the conductivity of the conductive region can be easily improved. In addition, if the manufacturing method includes a step of forming an insulating protective film on the monomolecular film after the conductive region forming step, a monomolecular film with a protective film having excellent durability such as peel resistance can be manufactured. . Hereinafter, each step will be described.
単分子層形成工程では、 膜材料分子を含む有機溶液に基材を浸漬する ことにより単分子膜を形成してもよいし、 有機溶液を基材上に塗布する ことにより単分子膜を形成してもよい。 また、 膜材料分子を含むガス中 に基材を暴露することにより単分子膜を形成してもよい。  In the monomolecular layer forming step, the monomolecular film may be formed by immersing the base material in an organic solution containing the film material molecules, or the monomolecular film may be formed by applying the organic solution onto the base material. You may. Alternatively, a monomolecular film may be formed by exposing the substrate to a gas containing film material molecules.
シラン系界面活性剤等のような、 基材に化学吸着する官能基を末端に 有する有機分子を膜材料分子として用いると、 基材上に結合固定された 耐剥離性等の耐久性に優れた単分子膜を形成できる。 2層目以降の積層 膜を形成する場合は、 化学吸着法あるいはラングミュアーブロジェット 法を適用できる。  When an organic molecule having a functional group that chemically adsorbs to the substrate, such as a silane-based surfactant, at the terminal is used as a film material molecule, it has excellent durability such as peel resistance bonded and fixed on the substrate. A monomolecular film can be formed. In the case of forming a second or subsequent laminated film, a chemisorption method or a Langmuir-Blodgett method can be applied.
また、 単分子層形成工程は、 基材の全面又は一部の面に単分子膜を形 成する工程であってもよいし、 基材に、 所定のパターンに単分子膜を形 成する工程であってもよい。 例えば、 基材表面に単分子膜を形成するパ ターン以外の部位に被膜 (レジストパターン) を形成し、 被膜の形成さ れた基材と膜材料分子とを接触させて単分子膜を成膜した後、 被膜を除 去することにより所定のパターンに単分子膜を形成することができる。 次に、 洗浄工程では、 単分子層形成工程後に、 単分子膜の形成された 基材を洗浄用の有機溶媒に浸漬させて、 未吸着の有機分子を洗浄除去す ることができる。 洗浄用の有機溶媒として非水系の有機溶媒を用いるこ とが好ましい。 In addition, the monomolecular layer forming step may be a step of forming a monomolecular film on the entire surface or a part of the surface of the base material, or forming the monomolecular film on the base material in a predetermined pattern. Forming step. For example, a coating (resist pattern) is formed on a portion other than the pattern where a monomolecular film is formed on the surface of the base material, and the base material on which the coating is formed is brought into contact with the film material molecules to form a monomolecular film. After that, the coating is removed to form a monomolecular film in a predetermined pattern. Next, in the washing step, after the monomolecular layer forming step, the substrate on which the monomolecular film is formed is immersed in an organic solvent for washing, so that unadsorbed organic molecules can be washed and removed. It is preferable to use a non-aqueous organic solvent as the organic solvent for washing.
次に、 配向処理工程では、 基材の表面を任意の 1方向にラビング処理 する工程であってもよいし、 所定の部位ごとにラビング方向を異ならせ る様にラビング処理する工程であってもよい。 ラビング処理方法につい ては、 下記の傾斜処理工程において説明する。 配向処理工程で用いるラ ビング装置と傾斜処理工程で用いるラビング装置とは同一の装置であり、 基材上に単分子膜が形成されているか否かの違いである (図 5 A ) 。 以下に、 所定の部位ごとにラビング方向を異ならせる場合の前処理工 程の例を説明する。 基材表面に所定の第 1のパターン状に被膜を形成し (レジストパターン) 、 被膜の形成されていない基材表面を所定の第 1 のラビング方向にラビングし、 ラビング処理後に被膜を除去する。 その 後、 基材表面に第 1のパターンと異なる第 2のパターン状に被膜 (レジ ストパターン) を形成し、 被膜の形成されていない基材表面を所定の第 2のラビング方向にラビングし、 ラビング処理後に被膜を除去する。 こ れにより、 第 1のラビング方向にラビング処理した部位と、 第 2のラビ ング方向にラビング処理した部位とを形成できる。 更に、 これをラビン グ方向を異ならせて繰り返すことにより、 複雑なラビングパターンを形 成することもできる。  Next, the orientation treatment step may be a step of rubbing the surface of the base material in any one direction or a step of rubbing the rubbing direction so that the rubbing direction differs for each predetermined portion. Good. The rubbing treatment method will be described in the following inclination treatment step. The rubbing device used in the alignment process and the rubbing device used in the tilting process are the same device, and the difference is whether or not a monomolecular film is formed on the substrate (FIG. 5A). Hereinafter, an example of a pretreatment step in the case where the rubbing direction is made different for each predetermined portion will be described. A film is formed on the surface of the substrate in a predetermined first pattern (resist pattern), the surface of the substrate on which no film is formed is rubbed in a predetermined first rubbing direction, and the film is removed after the rubbing treatment. Thereafter, a coating (resist pattern) is formed on the surface of the substrate in a second pattern different from the first pattern, and the surface of the substrate on which no coating is formed is rubbed in a predetermined second rubbing direction, After the rubbing treatment, the coating is removed. Thereby, a portion rubbed in the first rubbing direction and a portion rubbed in the second rubbing direction can be formed. Further, by repeating this with different rubbing directions, a complicated rubbing pattern can be formed.
次に、 配向処理工程 (傾斜処理工程) では、 ラビング配向法、 光配向 法、 液切り配向法等を適用して、 単分子膜を構成する有機分子を所定の 方向に配向させることができる。 図 5 A—Cは、 有機薄膜を構成する分 子を傾斜 (配向) させる配向法を説明するための模式的斜視図であり、 図 5 Aはラビング配向法、 図 5 Bは光配向法、 図 5 Cは液切り配向法で ある。 Next, the rubbing alignment method and the photo alignment The organic molecules constituting the monomolecular film can be oriented in a predetermined direction by applying a method, a liquid draining orientation method, or the like. 5A to 5C are schematic perspective views for explaining an orientation method for tilting (orienting) the molecules constituting the organic thin film, FIG. 5A is a rubbing orientation method, FIG. Figure 5C shows the draining orientation method.
ラビング配向法は、 図 5 Aに示したように、 単分子膜 4の形成された 基材 1を所定の方向 (基板搬送方向) Cに搬送しながら、 単分子膜 4と 接触するラビング布 4 1の巻き付けられたラビングロ一ル 4 2を回転方 向 Aに回転させて、 ラビング布 4 1で単分子膜 4の表面.を擦ることによ り、 単分子膜 4を構成する有機分子をラビング方向 Bに配向させる方法 である。 これにより、 基材 1上に、 ラビング方向 Bに配向した単分子膜 In the rubbing orientation method, as shown in FIG. 5A, a rubbing cloth 4 which comes into contact with the monomolecular film 4 while transporting the substrate 1 on which the monomolecular film 4 is formed in a predetermined direction (substrate transport direction) C. The rubbing roll 4 wound around 1 is rotated in the rotation direction A, and the surface of the monomolecular film 4 is rubbed with the rubbing cloth 4 1 to rub the organic molecules constituting the monomolecular film 4. This is a method of orienting in the direction B. As a result, a monomolecular film oriented in the rubbing direction B on the substrate 1
4を形成することができる。 4 can be formed.
光配向法は、 図 5 Bに示したように、 透過軸方向 Dを有する偏光板 4 As shown in FIG. 5B, the light alignment method uses a polarizing plate 4 having a transmission axis direction D.
3に紫外線または可視光線 4 5を照射し、 偏光 4 6により単分子膜 4を 構成する有機分子を偏光方向 Eに配向させる方法である。 偏光としては 直線偏光が好ましい。 これにより、 基材 1上に、 偏光方向に配向した単 分子膜 4を形成することができる。 3 is a method of irradiating ultraviolet light or visible light 45 onto the organic molecules constituting the monomolecular film 4 in the polarization direction E using the polarized light 46. Linearly polarized light is preferable as the polarized light. Thereby, the monomolecular film 4 oriented in the polarization direction can be formed on the substrate 1.
また、 液切り配向法は、 図 5 Cに示したように、 洗浄用の有機溶媒 4 In addition, the draining orientation method uses an organic solvent for washing, as shown in Figure 5C.
4の液面に対して所定の傾斜角度を保ちつつ引き上げ方向 Fに基材 1を 引き上げ、 単分子膜 4を構成する有機分子を液切り方向 Gに配向させる 方法である。 これにより基材 1上に、 配向した単分子膜 4を形成するこ とができる。 In this method, the base material 1 is pulled up in the pulling direction F while maintaining a predetermined inclination angle with respect to the liquid surface of No. 4, and the organic molecules constituting the monomolecular film 4 are oriented in the draining direction G. Thus, an oriented monomolecular film 4 can be formed on the substrate 1.
さらに図示していないが、 触媒重合、 電解酸化重合時の溶液中におけ る分子のゆらぎによっても配向させることができる。  Further, although not shown, the orientation can be achieved by the fluctuation of molecules in the solution at the time of catalytic polymerization or electrolytic oxidation polymerization.
液切り配向法、 ラビング配向法、 光配向法、 重合時の溶液中における 分子のゆらぎによる配向いずれか 1つの方法を適用する工程であっても よいし、 複数種の配向法を組み合わせて順次適用する工程であってもよ レ 異なる配向方法を組み合わせて、 精度よく配向した状態にある配向 した単分子膜を形成する際には、 ラビング方向や偏光方向や液切り方向 が同一方向になるようにすることが好ましい。 Even if it is a process to apply any one of the draining alignment method, the rubbing alignment method, the photo alignment method, and the alignment due to the fluctuation of molecules in the solution during polymerization It is also possible to use a rubbing direction and a rubbing direction when forming an oriented monomolecular film in an accurately aligned state by combining different orientation methods. It is preferable that the polarization direction and the draining direction are the same.
また、 全体的又は部分的に単分子膜を一方向に配向させる工程であつ てもよいし、 所定の部位ごとに配向方向を異ならせて配向させる工程で あってもよい。 所定の部位ごとに配向方向を異ならせる場合、 ラビング 配向法又は光配向法を適用することが好ましい。 ラビング配向法を適用 して所定の部位ごとに配向方向を異ならせることもできる。  In addition, the step may be a step of totally or partially orienting the monomolecular film in one direction, or a step of orienting the monomolecular film by changing the orientation direction for each predetermined portion. When the alignment direction is made different for each predetermined portion, it is preferable to apply a rubbing alignment method or a photo alignment method. By applying a rubbing alignment method, the alignment direction can be made different for each predetermined portion.
また、 光配向法を適用して所定の部位ごとに配向方向を異ならせて配 向させる場合には、 例えば、 所定のパターンを形成した第 1のフォトマ スクを介して、 第 1の偏光を照射した後、 第 1のフォトマスクのパ夕一 ンと異なる所定のパターンを形成した第 2のフォトマスクを介して、 第 1の偏光の偏光方向と異なる偏光方向を有する第 2の偏光を照射すれば よい。 更に、 パターンが互いに異なる複数のフォトマスクと偏光方向の 互いに異なる複数種の偏光とを用いれば、 複雑な配向パターンを形成す ることができる。  In addition, in the case where the alignment is performed with a different alignment direction for each predetermined portion by applying the optical alignment method, for example, the first polarized light is irradiated through a first photomask on which a predetermined pattern is formed. After that, a second polarized light having a polarization direction different from that of the first polarized light is irradiated through a second photomask having a predetermined pattern different from the pattern of the first photomask. I just need to. Furthermore, a complex alignment pattern can be formed by using a plurality of photomasks having different patterns and a plurality of types of polarization having different polarization directions.
また、 偏光方向を変化させながら、 単分子膜に偏光をスキャン照射す れば、 直線的に連なる導電ネットワークばかりでなく、 曲線的に連なる 導電ネットワークを形成することが可能である。  If the monomolecular film is scanned and irradiated with polarized light while changing the polarization direction, not only a linearly connected conductive network but also a curved conductive network can be formed.
次に、 導電領域形成工程では、 単分子膜を構成する分子相互を重合又 は架橋させて共役系を形成することができる。 重合や架橋を行う重合法 として触媒重合法、 電解重合法、 エネルギービーム照射重合法等を適用 することができる。  Next, in the conductive region forming step, the molecules constituting the monomolecular film can be polymerized or cross-linked to form a conjugated system. Catalytic polymerization, electrolytic polymerization, energy beam irradiation polymerization, and the like can be applied as polymerization methods for performing polymerization and cross-linking.
重合又は架橋させる工程を複数回行うことにより、 導電ネットワーク を形成してもよい。 例えば、 膜材料分子として、 共役重合性官能基 (共 役結合で重合する重合性官能基) を複数有する有機分子を用いた場合、 単分子層内に含まれる複数の平行な平面それぞれに共役系 (共役結合 鎖) を形成することができる。 The conductive network may be formed by performing the step of polymerizing or crosslinking a plurality of times. For example, a conjugated polymerizable functional group (co- In the case where an organic molecule having a plurality of polymerizable functional groups polymerized by a minor bond) is used, a conjugate system (conjugate bond chain) can be formed on each of a plurality of parallel planes included in the monomolecular layer.
更に、 重合又は架橋を複数回行う際、 各回ごとに重合法あるいは重合 条件が異なっていてもよい。 ここで、 重合条件とは、 同一の重合法を用 いた場合の反応条件を意味する。 例えば、 触媒重合において触媒の種類 や反応温度等が異なる場合、 また、 電解重合において印加電圧等が異な る場合、 また、 エネルギービーム照射重合においてビームの種類ゃビ一 ムのエネルギーやビームの照射強度等が異なる場合である。  Further, when performing polymerization or crosslinking a plurality of times, the polymerization method or polymerization conditions may be different for each time. Here, the polymerization conditions refer to reaction conditions when the same polymerization method is used. For example, when the type of catalyst and the reaction temperature are different in catalytic polymerization, when the applied voltage is different in electrolytic polymerization, and when the energy beam irradiation polymerization is performed, the type of beam ゃ beam energy and beam irradiation intensity are used. Etc. are different.
また、 単分子膜の全部又は 1部に導電領域を形成する工程であっても よいし、 電気的に互いに絶縁された複数の導電領域を単分子膜に形成す る工程であってもよい。 以下に、 膜材料分子に含まれる共役重合性官能 基が触媒重合性官能基の場合、 電解重合性官能基である場合、 エネルギ 一ビーム照射重合性官能基である場合について説明する。  Further, the step may be a step of forming a conductive region in all or a part of the monomolecular film, or a step of forming a plurality of conductive regions electrically insulated from each other in the monomolecular film. The case where the conjugated polymerizable functional group contained in the film material molecule is a catalyst polymerizable functional group, an electrolytic polymerizable functional group, or an energy-one beam irradiation polymerizable functional group will be described below.
第 1に、 単分子膜を構成する有機分子が触媒重合性官能基を有する場 合について説明する。 単分子膜と触媒とを接触させることにより導電ネ ットワークを形成できる。 したがって、 触媒を含む溶液に単分子膜を浸 漬してもよいし、 触媒を含む溶液を単分子膜に塗布してもよく、 また、 触媒を含むガス雰囲気中に単分子膜を暴露してもよいし、 触媒を含むガ スを単分子膜に吹き付けてもよい。  First, the case where the organic molecule constituting the monomolecular film has a catalytic polymerizable functional group will be described. A conductive network can be formed by bringing the monomolecular film into contact with the catalyst. Therefore, the monolayer may be immersed in the solution containing the catalyst, the solution containing the catalyst may be applied to the monolayer, or the monolayer may be exposed to a gas atmosphere containing the catalyst. Alternatively, a gas containing a catalyst may be sprayed on the monomolecular film.
また、 前記配向処理工程 (傾斜処理工程) を行わない場合、 触媒を含 む溶液を単分子膜表面に対して一定方向に流すことにより、 又は、 触媒 を含むガスを単分子膜表面に対して一定方向に吹き付けることにより、 単分子膜を配向させると共に導電ネットワークを形成することが可能で ある。 したがって、 配向処理工程を省略して、 所定の方向に連なる導電 ネットヮ一クを含む導電領域を形成できる。 また、 電気的に互いに絶縁された複数の導電領域を形成する場合、 単 分子膜上に所定のパターンの被膜 (レジストパターン) を形成した後、 触媒と接触させることにより、 被膜の形成されていない部位に導電領域 を形成することができる。 不要であれば被膜を除去すればよい。 When the orientation treatment step (gradient treatment step) is not performed, a solution containing a catalyst is caused to flow in a certain direction with respect to the surface of the monomolecular film, or a gas containing a catalyst is supplied to the surface of the monomolecular film. By spraying in a certain direction, it is possible to orient the monomolecular film and to form a conductive network. Therefore, a conductive region including a conductive network connected in a predetermined direction can be formed by omitting the alignment process. Also, when forming a plurality of conductive regions that are electrically insulated from each other, a coating (resist pattern) having a predetermined pattern is formed on the monomolecular film, and then the coating is not formed by contacting with a catalyst. A conductive region can be formed at the site. If unnecessary, the coating may be removed.
第 2に、 単分子膜を構成する有機分子が電解重合性官能基を有する場 合について説明する。 単分子膜に電位差のある 1対の電極を接触させる ことにより、 所定の方向に連なる導電ネットワークを形成できる。 した がって、 単分子膜の表面又は側面に接触しかつ互いに離隔した 1対の電 解重合用の電極を形成し、 形成した 1対の電極間に電圧を印加してもよ いし、 単分子膜の表面又は側面に 1対の外部電極を互いの電極が離隔す るように接触させ、 一対の外部電極間に電圧を印加してもよい。  Second, the case where the organic molecules constituting the monomolecular film have an electropolymerizable functional group will be described. By bringing a pair of electrodes having a potential difference into contact with the monomolecular film, a conductive network connected in a predetermined direction can be formed. Therefore, a pair of electrodes for electropolymerization that are in contact with the surface or side surface of the monomolecular film and are separated from each other may be formed, and a voltage may be applied between the pair of formed electrodes. A pair of external electrodes may be brought into contact with the surface or side surface of the molecular film so that the electrodes are separated from each other, and a voltage may be applied between the pair of external electrodes.
また、 電気的に互いに絶縁された複数の導電領域を形成する場合、 複 数対の電極を所定のパターンに形成し、 電極に所定の電位を与えること により、 電位の異なる電極間に導電領域を形成できる。 このとき 2つの 電極のみに電位を与えて導電領域を 1つずつ形成してもよいし、 3っ以 上の複数の電極に電位を与えて複数の導電領域を同時に形成してもよい 前記において、 電極を形成して電解重合を行うと端子付き導電領域を 有する単分子膜を製造できる。 不要であれば、 これらの電極は除去する 第 3に、 単分子膜を構成する有機分子がエネルギービーム照射重合性 官能基を有する場合について説明する。 単分子膜にエネルギービームを 照射することにより、 導電ネットワークを形成することができる。 エネ ルギービームとしては光、 X線、 電子線等を用いることができる。 好ま しくは、 エネルギービームとして偏光又は偏光 X線を用いる。  In the case of forming a plurality of conductive regions that are electrically insulated from each other, a plurality of pairs of electrodes are formed in a predetermined pattern, and a predetermined potential is applied to the electrodes so that the conductive regions are formed between electrodes having different potentials. Can be formed. At this time, a conductive region may be formed one by one by applying a potential to only two electrodes, or a plurality of conductive regions may be formed simultaneously by applying a potential to three or more electrodes. When an electrode is formed and electrolytic polymerization is performed, a monomolecular film having a conductive region with terminals can be manufactured. If unnecessary, these electrodes are removed. Thirdly, a case where the organic molecules constituting the monomolecular film have a polymerizable functional group irradiated with an energy beam will be described. By irradiating the monomolecular film with an energy beam, a conductive network can be formed. Light, X-rays, electron beams and the like can be used as the energy beam. Preferably, polarized or polarized X-rays are used as the energy beam.
また、 前記配向処理工程 (傾斜処理工程) を行わない場合であっても、 偏光を照射することにより、 単分子膜を配向させると共に、 導電ネット ワークを形成することが可能である。 したがって、 配向処理工程を省略 して、 所定の方向に連なる導電ネットワークを含む導電領域を形成でき る。 Further, even when the alignment treatment step (tilt treatment step) is not performed, the monomolecular film can be oriented and a conductive network can be formed by irradiating polarized light. Therefore, the alignment process is omitted. Thus, a conductive region including a conductive network connected in a predetermined direction can be formed.
また、 電気的に互いに絶縁された複数の導電領域を形成する場合、 所 定のパターンを形成した第 1のフォトマスクを介して、 エネルギービー ムを照射した後、 第 1のフォトマスクのパターンと異なる所定のパター ンを形成した第 2のフォトマスクを介して、 エネルギービームを照射す る。  In the case where a plurality of conductive regions which are electrically insulated from each other are formed, an energy beam is irradiated through a first photomask in which a predetermined pattern is formed, and then a pattern of the first photomask is formed. An energy beam is irradiated through a second photomask having a different predetermined pattern.
このとき、 第 1のフォトマスクを介して照射されるエネルギービーム と第 2のフォトマスクを介して照射されるエネルギービームとは同じェ ネルギービームでなくともよい。 更に、 エネルギービームとして偏光又 は偏光 X線を用いる場合には、 それらの偏光方向が同じでなくともよい < 例えば、 パターンが互いに異なる複数のフォトマスクと偏光方向の互い に異なる複数種の偏光とを用いれば、 導電ネットワークの方向が互いに 異なる導電領域を簡便に形成できる。  At this time, the energy beam irradiated through the first photomask and the energy beam irradiated through the second photomask may not be the same energy beam. Furthermore, when polarized light or polarized X-rays are used as the energy beam, their polarization directions need not be the same. <For example, a plurality of photomasks with different patterns and a plurality of different polarizations with different polarization directions are used. By using, conductive regions having different conductive network directions can be easily formed.
また、 エネルギービームを単分子膜にスキャン照射すれば、 より簡便 に電気的に互いに絶縁された複数の導電領域を形成できる。 このとき、 エネルギービームとして偏光又は偏光 X線を用いれば、 導電ネットヮー クの方向が互いに異なる導電領域を簡便に形成することができる。 更に, 偏光方向とスキャン方向 (エネルギービームの進行方向) とを平行に保 ちながらスキャン照射すれば、 曲線的に所定の方向に連なる導電ネット ワークを形成できる。  Further, when the monomolecular film is scanned and irradiated with the energy beam, a plurality of conductive regions electrically insulated from each other can be formed more easily. At this time, if polarized light or polarized X-rays are used as the energy beam, conductive regions in which the directions of the conductive networks are different from each other can be easily formed. Furthermore, if scanning irradiation is performed while maintaining the polarization direction and the scanning direction (the direction of travel of the energy beam) in parallel, it is possible to form a conductive network that is curved and continues in a predetermined direction.
前記導電ネットワークを効率よく形成するためには、 触媒重合および ノまたは光エネルギービーム照射による重合をまず行い、 最後に電解酸 化重合によりネットワークを完結させる手段がある。 触媒重合および/ または光エネルギービーム照射による重合は重合速度が速く、 また電解 酸化重合はそれほど速くはないが電流を流しながら重合させるので、 ネ ットワークが完結した瞬間に大電流が流れるため、 完結したい否かを容 易に検知できる。 In order to efficiently form the conductive network, there is a method of first performing catalytic polymerization and polymerization by irradiation with a laser beam or a light energy beam, and finally completing the network by electrolytic oxidation polymerization. Catalytic polymerization and / or polymerization by light energy beam irradiation have a high polymerization rate, and electrolytic oxidation polymerization is not so fast, but polymerization is carried out while passing an electric current. Since a large current flows at the moment when the network is completed, it is easy to detect whether or not the network is completed.
次にドーピング工程では、 電荷移動性のドーパントをドーピングする ことにより、 簡便に導電率を向上させることができる。 ド一パントとし てはヨウ素 ( I 2 ) 、 B F—イオン等のァクセプ夕ー · ドーパント (電 子受容体) であってもよいし、 L i等のドナ一 · ド一パント (電子供与 体) であってもよい。 Next, in the doping step, the conductivity can be easily improved by doping with a charge-transporting dopant. The dopant may be an x-ray dopant (electron acceptor) such as iodine (I 2 ) or BF- ion, or a donor or electron donor (electron donor) such as Li. It may be.
次に、 基材絶縁膜形成工程では、 基板上にシリカ膜又は酸化アルミ二 ゥム膜等の絶縁性の被膜を形成することができる。 透明電極等に用いる ためには透明な被膜を形成する必要がある。 また、 絶縁性の被膜として、 膜構成分子が化学吸着しゃすい被膜を形成すると、 基材の材質に依らず、 単分子膜を形成できる。  Next, in a base material insulating film forming step, an insulating film such as a silica film or an aluminum oxide film can be formed on the substrate. For use as a transparent electrode or the like, it is necessary to form a transparent film. Further, when a film constituting molecules is formed as a chemisorbent film as an insulating film, a monomolecular film can be formed irrespective of the material of the base material.
最後に、 保護膜形成工程では、 単分子膜表面にの絶縁性の保護膜を形 成する。 保護膜形成工程を行えば、 耐剥離性等の耐久性に優れた単分子 膜を形成することができる。 また、 ドーパントを含む単分子膜であれば、 脱ドーピングによるドーパントの蒸発を低減できる。 また、 透明電極等 に用いるためには透明な保護膜を形成する。  Finally, in the protective film forming step, an insulating protective film is formed on the monomolecular film surface. By performing the protective film forming step, a monomolecular film having excellent durability such as peel resistance can be formed. Further, if the monomolecular film contains a dopant, evaporation of the dopant due to undoping can be reduced. For use as a transparent electrode or the like, a transparent protective film is formed.
前記の製造方法により形成された導電領域を有する単分子膜の構造例 を図 1 A— Cに示す。 図 1 A— Cは、 基材上に形成された、 導電領域を 有する単分子膜を模式的に示す断面図である。 図 1 Aは基材 1の表面に 単分子膜 4が共有結合により固定されており、 共役重合性官能基 9が重 合されて導電領域 6が全領域に形成され、 導電ネットワーク 5が形成さ れている状態を示す。 図 1 Bは複数の部分領域 (導電領域 6, 6 ) に導 電ネッ卜ワーク 5が形成された単分子膜を示す。 図 1 Cは共役重合性官 能基を内部に有する有機分子からなり、 複数の部分領域 (導電領域 6 ) に導電ネットワークの形成された単分子膜を示す。 図 2は、 単分子膜 4中の導電ネットワーク 5の方向を説明するための 模式的平面図である。 なお、 図 2以外の図面においては、 蛇行した導電 ネットワークを蛇行のない直線又は蛇行のない曲線として表す。 FIGS. 1A to 1C show examples of the structure of a monomolecular film having a conductive region formed by the above-described manufacturing method. 1A to 1C are cross-sectional views schematically showing a monomolecular film having a conductive region formed on a base material. In FIG. 1A, a monomolecular film 4 is immobilized on the surface of a base material 1 by covalent bonds, a conjugate polymerizable functional group 9 is superimposed to form a conductive region 6 over the entire region, and a conductive network 5 is formed. Indicates that the device is being used. FIG. 1B shows a monomolecular film in which the conductive network 5 is formed in a plurality of partial regions (conductive regions 6, 6). FIG. 1C shows a monomolecular film composed of an organic molecule having a conjugated polymerizable functional group therein and having a conductive network formed in a plurality of partial regions (conductive region 6). FIG. 2 is a schematic plan view for explaining the direction of the conductive network 5 in the monomolecular film 4. In drawings other than FIG. 2, the meandering conductive network is represented as a straight line without meandering or a curve without meandering.
また、 前記導電領域を有する単分子膜内における、 導電領域のパター ン例を図 3 A— Dに示す。 図 3 A— Dは、 基材上に形成された導電ネッ トワークを含む単分子層の導電領域 6の構成例を模式的に示す平面図で ある。 図 3 Aは一方向に連なる導電ネッ卜ワーク 5が全領域に形成され 単分子層 4であり、 図 3 Bは、 各導電領域 6に一方向に連なる導電ネッ トワーク 5の形成された、 平行な導電領域 6を有する単分子層 4を示し、 図 3 Cは、 各導電領域に一方向に連なる導電ネットワーク 6の形成され た、 マ卜リックス状に配列した導電領域 6を有する単分子層 4を示し、 図 3 Dは、 各導電領域に形成された導電ネットワークの方向が同じでな く、 かつ、 各導電領域の形状も同じでない、 任意のパターンに配列した 導電領域 6を有する単分子層 4を示す。  3A to 3D show examples of the pattern of the conductive region in the monomolecular film having the conductive region. FIGS. 3A to 3D are plan views schematically showing a configuration example of a conductive region 6 of a monolayer including a conductive network formed on a base material. FIG. 3A shows a monolayer 4 in which a conductive network 5 extending in one direction is formed in the entire region, and FIG. 3B shows a parallel structure in which a conductive network 5 extending in one direction is formed in each conductive region 6. FIG. 3C shows a monolayer 4 having a matrix-shaped conductive region 6 in which a conductive network 6 connected to each conductive region in one direction is formed. FIG. 3D shows a monolayer having conductive regions 6 arranged in an arbitrary pattern in which the directions of the conductive networks formed in the conductive regions are not the same and the shapes of the conductive regions are not the same. 4 is shown.
また、 基材上に形成される導電領域を有する単分子膜の構成を図 4 A _ Bに示す。 図 4 A— Bは、 基材上に形成された、 単分子膜の構造例を 模式的に示す断面図である。 図 4 Aは基材絶縁膜 2付き基材 1上に形成 された単分子膜を示し、 図 4 Bは基材 1上に形成され、 かつ表面に保護 膜 3の形成された単分子膜 4を示す。 図示していないが、 基材上に、 絶 緣膜と単分子膜と保護膜とが基材表面から順次積層された構造でもよい また、 図 6 A— Bは、 基材上の選択的な部位に導電領域を形成した構 成例を模式的に示す斜視図である。 図 6 Aは基材 1上の全部位に形成さ れた単分子膜 4内に、 複数の導電領域 6が形成された構成を示し、 図 6 Bは全領域に導電領域 6の形成された単分子膜 4を、 基材 1上に複数形 成した構成を示す。  FIGS. 4A and 4B show a structure of a monomolecular film having a conductive region formed over a base material. FIGS. 4A and 4B are cross-sectional views schematically showing examples of the structure of a monomolecular film formed on a base material. Fig. 4A shows a monomolecular film formed on the base material 1 with the base insulating film 2, and Fig. 4B shows a monomolecular film 4 formed on the base material 1 and having a protective film 3 formed on the surface. Is shown. Although not shown, a structure in which an insulating film, a monomolecular film, and a protective film are sequentially laminated on the base material from the base material surface may be used. FIG. 4 is a perspective view schematically showing a configuration example in which a conductive region is formed in a part. FIG. 6A shows a configuration in which a plurality of conductive regions 6 are formed in a monomolecular film 4 formed in all regions on the substrate 1, and FIG. 6B shows a configuration in which the conductive regions 6 are formed in all regions. The structure in which a plurality of monomolecular films 4 are formed on the substrate 1 is shown.
(実施の形態 2 ) 本実施の形態 2においては、 導電領域を有する単分子累積膜の例を説 明する。 (Embodiment 2) In the second embodiment, an example of a monomolecular cumulative film having a conductive region will be described.
単分子累積膜を形成する場合、 第 1層目は化学吸着法により形成する t 第 2層目以降は化学吸着法でもよいし、 ラングミュア一ブロジェット法 を適用しても良い。 しかし、 全層を化学吸着法による単分子積層膜とす ることが簡便であり、 好ましい。 また、 配向処理工程 (傾斜処理工程) を行うことは実施の形態 1においても説明したが、 単分子累積膜の場合 は単分子膜の場合に比べその重要性が大きい。 以下においては、 配向処 理工程を含む製造方法について説明する。 When forming a monomolecular built-up film, the first layer is t second and subsequent layers formed by chemical adsorption method may be a chemical adsorption method, may be applied to Langmuir one Blodgett method. However, it is convenient and preferable to form a monomolecular multilayer film by a chemisorption method for all layers. Although the orientation treatment step (tilt treatment step) has been described in the first embodiment, the importance of the monomolecular accumulation film is greater than that of the monomolecular film. Hereinafter, a manufacturing method including an alignment treatment step will be described.
本発明に係る導電領域を有する単分子累積膜に製造方法おいては、 単 分子層形成工程と、 導電領域形成工程と、 配向処理工程との様々な組合 せ及び順序が可能である。 以下に、 好ましい製造方法を製造方法 1〜 5 に説明する。  In the method for producing a monomolecular cumulative film having a conductive region according to the present invention, various combinations and orders of the monomolecular layer forming step, the conductive region forming step, and the alignment treatment step are possible. Hereinafter, preferred production methods are described in Production Methods 1 to 5.
製造方法 1は、 単分子層形成工程を複数回連続して行って単分子累積 膜を形成した後、 導電領域形成工程を行うことにより、 導電領域を有す る単分子累積膜を形成する製造方法である。  Manufacturing method 1 is a method of forming a monomolecular cumulative film having a conductive region by performing a monomolecular layer forming process continuously plural times to form a monomolecular cumulative film and then performing a conductive region forming step. Is the way.
製造方法 2は、 単分子層形成工程と配向処理工程 (傾斜処理工程) と を順次交互に複数回行って、 配向した単分子層を積層させた後、 導電領 域形成工程を行うことにより、 導電領域を有する単分子累積膜を形成す る製造方法である。  In the production method 2, the monomolecular layer forming step and the orientation treatment step (tilting treatment step) are sequentially and alternately performed a plurality of times to stack the oriented monomolecular layers, and then the conductive region forming step is performed. This is a manufacturing method for forming a monomolecular accumulation film having a conductive region.
製造方法 3は、 単分子層形成工程と配向処理工程 (傾斜処理工程) と 導電領域形成工程を順次行う一連の工程を複数回行うことにより、 導電 領域を有する単分子累積膜を形成する製造方法である。  Manufacturing method 3 is a manufacturing method of forming a monomolecular accumulation film having a conductive region by performing a series of steps of sequentially performing a monomolecular layer forming step, an orientation processing step (tilting processing step), and a conductive region forming step a plurality of times. It is.
製造方法 4は、 単分子層形成工程と配向処理工程 (傾斜処理工程) と 導電領域形成工程を順次行って導電領域を有する単分子膜を形成した後、 単分子層形成工程を複数回連続して行い、 その後、 導電領域形成工程を 行うことにより、 導電領域を有する単分子累積膜を形成する製造方法で ある。 Manufacturing method 4 includes a step of forming a monomolecular film having a conductive region by sequentially performing a monomolecular layer forming step, an orientation processing step (tilting processing step), and a conductive region forming step, and then repeating the monomolecular layer forming step a plurality of times. After that, the conductive region forming step This is a manufacturing method for forming a monomolecular cumulative film having a conductive region by performing the method.
製造方法 5は、 前処理工程を行った後、 単分子層形成工程を複数回連 続して行い、 その後、 導電領域形成工程を行うことにより、 導電領域を 有する単分子累積膜を形成する製造方法である。 また、 前処理工程を行 つた後、 前記製造方法 1〜製造方法 5のいずれかの製造方法を行う製造 方法であっても好ましい。  Manufacturing method 5 is a method of forming a monomolecular accumulation film having a conductive region by performing a pretreatment step, successively performing a monomolecular layer forming step a plurality of times, and then performing a conductive region forming step. Is the way. Further, a manufacturing method in which any one of the manufacturing methods 1 to 5 is performed after the pretreatment step is performed is also preferable.
前記の製造方法 1〜 5を用いた場合であっても、 導電領域を有する単 分子累積膜にどの様な導電領域のパターンを形成するか、 また、 配向処 理工程でどの様な配向方法を適用するか、 導電領域形成工程でどの様な 重合方法を適用するか、 等によりその優位性は製造方法ごとに異なる。 したがって、 所望の導電領域を有する単分子累積膜を形成するために最 適な製造方法を選択することが重要である。  Even when the above-described manufacturing methods 1 to 5 are used, what kind of pattern of the conductive region is formed in the monomolecular cumulative film having the conductive region, and what kind of alignment method is used in the alignment processing step The superiority differs depending on the manufacturing method depending on the application method, the type of polymerization method used in the conductive region forming step, and the like. Therefore, it is important to select an optimal manufacturing method to form a monomolecular cumulative film having a desired conductive region.
前記製造方法 1〜 5は、 更に、 基材絶縁膜形成工程、 洗浄工程、 ドー ピング工程、 保護膜形成工程のいずれか 1つ又は複数の工程を含む製造 方法であってもよい。 単分子層形成工程、 導電領域形成工程、 前処理工 程、 配向工程、 基材絶縁膜形成工程、 洗浄工程、 ドーピング工程及び保 護膜形成工程の各々についての詳細は、 前記実施の形態 1を参照するこ ととし、 以下において、 有機薄膜が単分子膜であるか、 又は単分子累積 膜であるかによって生じる各工程の相違点について述べる。  The manufacturing methods 1 to 5 may be a manufacturing method including one or more of a base insulating film forming step, a cleaning step, a doping step, and a protective film forming step. Details of each of the monomolecular layer forming step, the conductive region forming step, the pretreatment step, the orientation step, the base insulating film forming step, the cleaning step, the doping step, and the protective film forming step are described in Embodiment 1 above. For reference, the differences between the respective steps that occur depending on whether the organic thin film is a monomolecular film or a monomolecular cumulative film will be described below.
各単分子層形成工程において、 同一の膜材料分子を用いて、 1種の有 機分子からなる単分子累積膜を形成してもよいし、 異なる膜材料分子を 用いて、 単分子層ごとに構成分子の異なる単分子累積膜を形成してもよ い。  In each monolayer formation step, the same film material molecule may be used to form a monomolecular cumulative film composed of one kind of organic molecule, or a different film material molecule may be used for each monolayer. A monomolecular cumulative film having different constituent molecules may be formed.
次に、 配向処理工程におけるラビング配向法及び光配向法の適用性に ついて説明する。 ここに、 ラングミュア一プロジェット法を適用した単 分子層形成工程で、 基材は膜構成分子を含む溶液中から所定の角度、 通 常は溶液面に対して垂直で引き上げられるため、 単分子形成工程で液切 り配向が行われていることになる。 Next, the applicability of the rubbing alignment method and the photo alignment method in the alignment processing step will be described. Here, simply apply the Langmuir-Projet method. In the molecular layer formation step, the substrate is pulled up from the solution containing the film constituent molecules at a predetermined angle, usually perpendicular to the solution surface, so that the liquid is aligned in the single molecule formation step. become.
ラビング配向法は、 膜表面をラビングすることにより、 膜を構成する 有機分子を配向させる方法であるため、 積層数の多い単分子累積膜に対 して適用した場合、 基材側下層の単分子層を十分に配向させることがで きなくなる。 したがって、 ラビング配向は、 製造方法 2〜4を適用する 場合に適している。 なお、 製造方法 1を適用して積層数の少ない単分子 累積膜を形成する場合であれば、 ラビング配向法を用いることができる 一方、 光配向法は、 積層数の多い単分子累積膜に対しも適用できるの で、 製造方法 1〜 5のいずれに対しても適している。 ただし、 過度に積 層数が多くなり、 光透過性が劣化する場合においては、 基材側下層の単 分子層を十分に配向させることができなくなる。  The rubbing orientation method is a method in which the organic molecules constituting the film are oriented by rubbing the surface of the film. The layers cannot be fully oriented. Therefore, the rubbing orientation is suitable when the production methods 2 to 4 are applied. When manufacturing method 1 is used to form a monomolecular cumulative film with a small number of laminated layers, the rubbing alignment method can be used.On the other hand, the photo-alignment method can be used for a monomolecular cumulative film with a large number of laminated layers. Therefore, it is suitable for any of the manufacturing methods 1 to 5. However, when the number of laminated layers is excessively large and the light transmittance is deteriorated, the lower monolayer on the substrate side cannot be sufficiently oriented.
次に、 導電領域形成工程で触媒重合法、 電解重合法、 エネルギービー ム照射重合法を適用する場合について、 好ましい製造方法を重合法ごと に説明する。  Next, in the case where a catalytic polymerization method, an electrolytic polymerization method, or an energy beam irradiation polymerization method is applied in the conductive region forming step, a preferable production method will be described for each polymerization method.
触媒重合法は、 単分子累積膜の表面と触媒とを接触させて重合反応を 誘起する方法であるので、 基材側下層の単分子層内に十分に重合した導 電ネットワークを形成することが困難となる。 したがって、 触媒重合法 を適用する場合は、 前記製造方法 4が適している。 積層数が極めて少な い単分子累積膜を形成する場合には、 前記製造方法 1又は製造方法 2で あってもよい。  Catalytic polymerization is a method of inducing a polymerization reaction by bringing the surface of a monomolecular accumulation film into contact with a catalyst, so that a sufficiently polymerized conductive network can be formed in the lower monolayer on the substrate side. It will be difficult. Therefore, when the catalytic polymerization method is applied, the above production method 4 is suitable. In the case of forming a monomolecular cumulative film having a very small number of laminations, the manufacturing method 1 or the manufacturing method 2 may be used.
また、 電解重合法を適用する場合、 単分子累積膜表面に接触した一対 の電極に電圧を印加すると基材側下層の単分子層内に十分に重合した導 電ネットワークを形成することが困難となるので、 単分子累積膜の側面 部に接触した電極に電圧を印加することが好ましい。 このように、 側面 部に接触した電極に電圧を印加すれば、 前記製造方法 1〜 5のいずれの 製造方法を適用しても単分子累積膜の各単分子層に導電ネットワークを 形成することができる。 更に、 電解重合法は、 単分子累積膜の全面に導 電領域を形成する場合や単分子累積膜を貫通する導電領域を形成する場 合に適する。 Also, when applying the electrolytic polymerization method, it is difficult to form a sufficiently polymerized conductive network in the lower monolayer on the substrate side when a voltage is applied to a pair of electrodes in contact with the surface of the monomolecular accumulation film. Therefore, it is preferable to apply a voltage to the electrode in contact with the side surface of the monomolecular accumulation film. Thus, the side If a voltage is applied to the electrode in contact with the portion, a conductive network can be formed in each monolayer of the monomolecular accumulation film by applying any of the above-mentioned production methods 1 to 5. Further, the electrolytic polymerization method is suitable for forming a conductive region on the entire surface of the monomolecular accumulation film or for forming a conductive region penetrating the monomolecular accumulation film.
また、 エネルギービーム照射重合法は、 積層数の多い単分子累積膜に 対しも適用できるので、 製造方法 1〜 5のいずれに対しても適している ただし、 過度に積層数が多くなり、 エネルギービームの透過性が劣化す る場合においては、 基材側下層の単分子層を十分に配向させることがで きなくなる。  In addition, the energy beam irradiation polymerization method can be applied to a monomolecular cumulative film having a large number of stacked layers, and thus is suitable for any of the manufacturing methods 1 to 5. In the case where the permeability of the polymer is deteriorated, the lower monolayer on the substrate side cannot be sufficiently oriented.
次に、 洗浄工程は、 基材側最下層の単分子層形成後のみに行うことが 好ましい。 単分子層を積層後に洗浄工程を行うと、 積層された単分子層 が剥離してしまうからである。 また、 化学吸着法を適用して最下層の単 分子層を形成した場合、 洗浄工程は行うことが好ましい。  Next, the washing step is preferably performed only after the formation of the lowermost monolayer on the substrate side. This is because if the cleaning step is performed after laminating the monomolecular layers, the laminated monomolecular layers are peeled off. When the lowermost monolayer is formed by applying the chemisorption method, it is preferable to perform the washing step.
次に、 ドーピング工程は、 導電ネットワークの形成された単分子層に 対して個々に行うことが好ましい。 したがって、 ドーピング工程を行う 際には、 前記製造方法 3を適用することが好ましく、 前記製造方法 3の 各導電領域形成工程後に行うことが好ましい。  Next, the doping step is preferably performed individually on the monolayer on which the conductive network is formed. Therefore, when performing the doping step, it is preferable to apply the manufacturing method 3, and it is preferable that the doping step is performed after each conductive region forming step of the manufacturing method 3.
前記の製造方法により形成される、 単分子累積膜の導電領域の構造例 を図 7 A— Dに示し、 また、 導電領域を有する単分子累積膜の各単分子 層の導電領域のパターンは全ての各単分子層で同一であることが好まし レ^ 図 7 A— Dは、 基材 1上に形成された、 単分子累積膜の積層構造例 を模式的に示す断面図であり、 図 7 Aは各単分子層 4の配向方向を同一 方向とする X型の単分子累積膜を示し、 図 7 Bは各単分子層 4の配向方 向を同一方向とする Y型の単分子累積膜であり、 図 7 Cは各単分子層 4 ごとに配向方向を異にする X型の単分子累積膜であり、 図 7 Dは各単分 子層 4ごとに 2つの配向方向のいずれかに配向した X型の単分子累積膜 である。 FIGS. 7A to 7D show examples of the structure of the conductive region of the monomolecular cumulative film formed by the above-described manufacturing method. In addition, the pattern of the conductive region of each monolayer of the monomolecular cumulative film having the conductive region is all FIGS. 7A to 7D are cross-sectional views schematically showing an example of a laminated structure of a monomolecular cumulative film formed on the base material 1. 7A shows an X-type monomolecular accumulation film in which the orientation direction of each monolayer 4 is the same direction, and FIG. 7B shows a Y-type monomolecular accumulation film in which the orientation direction of each monolayer 4 is the same direction. Fig. 7C is an X-type monomolecular cumulative film in which the orientation direction is different for each monolayer 4, and Fig. 7D is It is an X-type monomolecular cumulative film oriented in one of two orientation directions for each sublayer 4.
また、 図 4及び図 6における単分子膜の代わりに、 単分子累積膜を備 えた構造とすることもできる。  Further, a structure having a monomolecular accumulation film can be used instead of the monomolecular film in FIGS.
(実施の形態 3 )  (Embodiment 3)
本実施の形態に係る電気ケーブルを図 8 A— Cを用いて説明する。 図 8 A— Cは、 単分子膜が形成された導電領域を芯線として用いる電気ケ 一ブルの構造例を模式的に示す図である。 図 8 Aは、 ガラスまたは金属 からなる芯線 1 1の外表面に形成され、 全領域を導電領域とする導電性 単分子膜 6を備え、 その表面が電気的絶縁膜 1 3で被覆された電気ケー ブルの断面図である。 図 8 Bは、 四角柱状の絶緣基材 1 1の表面に形成 され、 かつ、 外側表面を絶縁保護膜 1 3で被膜された、 4つの導電領域 を有する単分子膜 4を備えた集合電線型の電気ケーブルの斜視図である c 図 8 Cは、 基板上に形成された、 全領域を導電領域 6とする単分子膜 4 と 4対の接点 7とを備えた集合電極型のフラットケ一ブルの斜視図であ る。 なお、 図 8 Cのフラットケーブルは、 有機薄膜の導電領域が高い導 電異方性を有することにより、 4本の芯線を備えたフラットケーブルと なる。 The electric cable according to the present embodiment will be described with reference to FIGS. FIGS. 8A to 8C are diagrams schematically showing an example of a structure of an electric cable using a conductive region on which a monomolecular film is formed as a core wire. FIG. 8A shows an electric wire having a conductive monomolecular film 6 formed on the outer surface of a core wire 11 made of glass or metal and having the entire region as a conductive region, the surface of which is covered with an electrically insulating film 13. It is sectional drawing of a cable. Fig. 8B shows a collective wire type including a monomolecular film 4 having four conductive regions formed on the surface of a square pillar-shaped insulating substrate 11 and having an outer surface coated with an insulating protective film 13. the c-diagram 8 C is a perspective view of an electrical cable, formed on the substrate, the collection electrodes type Furattoke one table that includes a contact 7 of the monomolecular film 4 and the four pairs of the conductive region 6 the whole area FIG. The flat cable in FIG. 8C is a flat cable having four core wires because the conductive region of the organic thin film has high conductivity anisotropy.
また、 図 6 A— Bに示された、 絶縁基材 1上に導電領域 6を有する有 機薄膜 4に、 更に、 絶縁性の保護膜を形成することによつても、 集合電 極型のフラットケーブルを提供することができる。  Also, by forming an insulating protective film on the organic thin film 4 having the conductive region 6 on the insulating base material 1 shown in FIGS. A flat cable can be provided.
(実施の形態 4 )  (Embodiment 4)
本発明の有機薄膜は、 導線、 集合配線、 電極、 透明電極として利用し た様々なデバイスを提供できる。 例えば、 半導体素子、 コンデンサ、 半 導体装置等の電子デバイスや、 液晶表示装置、 電界発光素子、 太陽電池 等の光デバイスを提供できる。 例えば、 図 9 A— Bは、 単分子膜に形成された導電領域を電極として 用いるコンデンサの構造例を模式的に示す断面図であり、 図 9Aは、 導 電領域 6を有する単分子膜 4の形成された 2つの基材 1で、 各単分子膜 4を内側にして、 誘電体 8を狭持した構造であり、 図 9 Bは、 誘電体 8 の平行な 2つの表面それぞれに、 導電領域 6を有する単分子膜 4の形成 された構造である。 図 9 A及び図 9 Bにおいて、 導電ネットワークの方 向と直交する方向に、 導電領域 6を貫く金属接点 7 (配線、 リード線) が形成されていると、 有機薄膜電極全面に均一な電圧を印加でき、 好ま しい。 The organic thin film of the present invention can provide various devices used as a conductive wire, a collective wiring, an electrode, and a transparent electrode. For example, electronic devices such as semiconductor elements, capacitors, and semiconductor devices, and optical devices such as liquid crystal display devices, electroluminescent devices, and solar cells can be provided. For example, FIGS. 9A and 9B are cross-sectional views schematically showing an example of the structure of a capacitor using a conductive region formed on a monomolecular film as an electrode. FIG. 9A is a sectional view showing a monomolecular film 4 having a conductive region 6. In this structure, the dielectric material 8 is sandwiched between the two base materials 1 with each monomolecular film 4 inside, and FIG. 9B shows the conductive material on each of the two parallel surfaces of the dielectric material 8. This is a structure in which a monomolecular film 4 having a region 6 is formed. In FIG. 9A and FIG. 9B, when a metal contact 7 (wiring, lead wire) penetrating the conductive region 6 is formed in a direction orthogonal to the direction of the conductive network, a uniform voltage is applied to the entire surface of the organic thin film electrode. Applicable and preferred.
本発明のピロ一ル化合物は、 例えばピロールと末端ブロモ 1 _アルキ ルを反応させて 1一ピロリルアルキルを合成する工程と、 前記合成され た 1一ピロリルアルキルとトリクロロシランを反応させることで、 1一 ピロリルアルキルトリクロロシランを合成できる。 アルキル 1一ピロリ ルアルキルトリクロロシランの場合は、 例えばアルキルピロールと末端 ブロモ 1一アルキルを反応させてアルキル 1一ピロリルアルキルを合成 する工程と、 前記合成されたアルキル 1一ピロリルアルキルとトリクロ ロシランを反応させることで合成できる。 チェニル化合物も同様に合成 できる。  The pyrrole compound of the present invention is obtained, for example, by reacting pyrrole with terminal bromo 1-alkyl to synthesize 1-pyrrolylalkyl, and by reacting the synthesized 1-pyrrolylalkyl with trichlorosilane. , 11-Pyrrolylalkyltrichlorosilane can be synthesized. In the case of alkyl-1-pyrrolylalkyltrichlorosilane, for example, a step of reacting alkylpyrrole with terminal bromo-1-alkyl to synthesize alkyl-1-pyrrolylalkyl, and the above-mentioned synthesized alkyl-1-pyrrolylalkyl and trichlorosilane Can be synthesized by reacting Chenyl compounds can be similarly synthesized.
(実施例)  (Example)
以下、 実施例に基づいて、 本発明を具体的に説明する。 下記の実施例 において、 単に%と表示しているのは質量%を意味する。  Hereinafter, the present invention will be specifically described based on examples. In the following examples, simply expressing% means mass%.
(実施例 1)  (Example 1)
[ 1] 合成工程 1. 1 1— ( 1一ピロリル) 一 1—ゥンデセンの合成 下記化学式 (E) に示す反応式 1に従って、 アルゴン気流下、 2 の 反応容器にピロール 3 8.0 g (0. 56 7mol) 、 脱水テトラヒドロ フラン (THF) 200 m lを仕込み、 5°C以下に冷却した。 これに 1.6M n-ブチルリチウムへキサン溶液 3 54m 1 (0 , 5 6 7mol) を 1 0°C以下で滴下した。 同温度で 1時間攪拌させた後、 ジ メチルスルホキシドを 600m 1加えて THFを加熱留去して溶媒置換 した。 次に、 1 1一プロモー 1一ゥンデセン 145.2 g (0. 6 2 3 ol) を室温にて滴下した。 滴下後、 2時間、 同温度で攪拌させた。 次に、 前記反応混合物に水 6 0 Omolを加え、 へキサン抽出し、 有機 層を水洗した。 無水硫酸マグネシウムにて乾燥後、 溶媒留去した。 [1] Synthetic process 1. Synthesis of 1 1- (1-pyrrolyl) -11-pandecene According to the reaction formula 1 shown in the following chemical formula (E), pyrrole 38.0 g (0.56 7 mol) and 200 ml of dehydrated tetrahydrofuran (THF) were charged and cooled to 5 ° C or lower. To this, 354 ml (0, 567 mol) of a 1.6 M n-butyllithium hexane solution was added dropwise at 10 ° C or lower. After stirring at the same temperature for 1 hour, 600 ml of dimethyl sulfoxide was added, and THF was distilled off by heating to replace the solvent. Next, 145.2 g (0.623 ol) of 111-promodeonedecene was added dropwise at room temperature. After the addition, the mixture was stirred at the same temperature for 2 hours. Next, 60 Omol of water was added to the reaction mixture, hexane extraction was performed, and the organic layer was washed with water. After drying over anhydrous magnesium sulfate, the solvent was distilled off.
さらに、 残渣を、 へキサン/酢酸ェチル = 5 0Z 1にてシリカゲル力 ラムで精製して 1 1 3.2 gの 1 1— ( 1一ピロリル) 一 1—ゥンデセ ンを得た。  Further, the residue was purified by silica gel column with hexane / ethyl acetate = 50Z1 to obtain 11.2 g of 11- (11-pyrrolyl) -11-pinedecene.
反応式 1. Reaction formula 1.
Br-(CH2)irCH=CH2 Br- (CH 2 ) ir CH = CH 2
Γ NH N -(CH„)n-CH=CH, Γ NH N-(CH „) n -CH = CH,
(E) 収率は 9 1.2 %であった。  (E) The yield was 91.2%.
なお、 ここで、 ピロリル基の 3位をアルキル基、 または末端にビニル 基ゃェチニル基のような不飽和基を含む下記式 1 2の (a) - (e) で 示されるアルキル基で置換した原料を用いても、 ピロリル基の 3位がァ ルキル化、 あるいはアルキル化された 1 1— ( 1—ピロリル) — 1ーゥ ンデセンがそれぞれ得られた。  Here, the 3-position of the pyrrolyl group was substituted with an alkyl group or an alkyl group represented by the following formula 12 (a) to (e) containing an unsaturated group such as a vinyl group or a ethynyl group at the terminal. Even when the raw materials were used, 11- (1-pyrrolyl) -1-dendene, in which the 3-position of the pyrrolyl group was alkylated or alkylated, was obtained.
(a) CH (CH fi - (b) CH - (CH ) 7(a) CH (CH fi- (b) CH-(CH) 7
(c) CH (CH J fl(c) CH (CH J fl
(d) CH? = CH— (CH?) fi— ( e ) (CH3) 3 S i -C≡C- (CH2) 6(d) CH ? = CH— (CH?) fi — (e) (CH 3 ) 3 S i -C≡C- (CH 2 ) 6
Figure imgf000034_0001
Figure imgf000034_0001
[2] 合成工程 2. 1 1 - ( 1一ピロリル) 一ゥンデセニルトリクロ ロシランの合成  [2] Synthetic process 2. Synthesis of 1 1- (1-pyrrolyl) 1-decenyltrichlorosilane
下記化学式 (F) に示す反応式 2に従って、 (1)〜(8)の反応をそれぞ れ行つた。 反 、式 Δ .
Figure imgf000034_0002
The reactions (1) to (8) were performed according to the reaction formula 2 shown in the following chemical formula (F). Conversely, the formula Δ.
Figure imgf000034_0002
(1) 50m 1キャップ付き耐圧試験管に、 1 1一 ( 1 _ピロリル) 一 1 -ゥンデセン 2. 0 g、 ( 9. 1 X 1 0 -½ol) 、 トリクロロシラン 2.0 g ( 1.48 X 1 0— 2mol) 、 AIBN 0.0 1 5 gを仕込み 8 0 で 5時間反応させた。 (1) In a 50m 1 cap pressure-resistant test tube, add 1 1- (1_pyrrolyl) 1-1-undecene 2.0 g, (9.1 x 10-½ol), trichlorosilane 2.0 g (1.48 x 10— 2 mol) and AIBN (0.015 g) were charged and reacted at 80 for 5 hours.
その後、 NMRにて反応チェックしたところ、 ほとんど未反応であった c さらにトリクロロシラン 2. 0 g ( 1. 4 8 X 1 0 -2mol) 、 AIBNThereafter, it was reacted checked by NMR, c further trichlorosilane was nearly unreacted 2. 0 g (1. 4 8 X 1 0 - 2 mol), AIBN
0.0 1 5 gを加え、 1 0 0°Cで 2 2時間反応させた。 反応チェックす ると、 5 0 %程度反応が進行していた。 0.015 g was added and reacted at 100 ° C. for 22 hours. When the reaction was checked, about 50% of the reaction had progressed.
(2) 5 Om 1キャップ付き耐圧試験管に、 1 1 _ ( 1一ピロリル) 一 1一ゥンデセン 2.0 g (9. 1 X 1 0-3mol) 、 トリクロロシラン 2. 0 g (1.48 X 1 0"2 ol) 、 H2PtCl6 · 6H20の 5 %イソプロピルアルコ ール溶液 0.0 1 gを仕込み 50°Cで 9時間反応させた。 匪 Rにて反応チ エックしたところ、 5 0 %程度反応が進行していた。 (2) to 5 Om 1 capped pressure tube, 1 1 _ (1 one pyrrolyl) Single 1 one Undesen 2.0 g (9. 1 X 1 0- 3 mol), trichlorosilane 2. 0 g (1.48 X 1 0 "2 ol), H 2 PtCl 6 · 6H 2 0 to 5% isopropyl alcohol solution 0.0 1 g was 9 hours at charging 50 ° C in. was reacted Ji Eck at negation R, about 50% The reaction was in progress.
その後、 一夜同温度にて反応させたが反応は進行しなかった。  Thereafter, the reaction was carried out overnight at the same temperature, but the reaction did not proceed.
(3) 還流冷却管、 滴下ロートを取り付けた 3 Om 1反応容器に、 1 1 ― ( 1一ピロリル) _ 1一ゥンデセン 2. 0 g (9. 1 X 1 0 -¾ol) 、 H2PtCl6 · 6H20の 5 %イソプロピルアルコール溶液 0.0 1 gを仕込み、 7 0°Cに加熱した。 これにトリクロロシラン 1.49 g ( 1 0 X 1 0一 2mol) を 60〜70°Cで 2時間かけて滴下した。 (3) In a 3 Om1 reaction vessel equipped with a reflux condenser and a dropping funnel, 1 1 - (1 one-pyrrolyl) _ 1 one Undesen 2. charged 0 g (9. 1 X 1 0 -¾ol), 5% isopropyl alcohol solution 0.0 1 g of H 2 PtCl 6 · 6H 2 0 , to 7 0 ° C Heated. To this was added dropwise trichlorosilane 1.49 g of (1 0 X 1 0 one 2 mol) over a period of 2 hours at 60 to 70 ° C.
その後 2時間同温度で反応させた。  Thereafter, the reaction was carried out at the same temperature for 2 hours.
匪 Rにて反応チェックしたところ、 5 0 %程度反応が進行していた。 その後、 一夜同温度にて反応させたが反応は進行しなかった。  When checking the reaction with the bandit R, the reaction was progressing about 50%. Thereafter, the reaction was carried out overnight at the same temperature, but the reaction did not proceed.
(4) 還流冷却管、 滴下ロートを取り付けた 5 0m 1反応容器に、 1 1 一 ( 1 一ピロリル) 一 1 —ゥンデセン l O . O g (4. 5 7 X 1 0-2 mol) 、 H2PtCl 6H20の 5 %イソプロピルアルコール溶液 0.0 5 gを仕 込み、 7 0°Cに加熱した。 これにトリクロロシラン 7.45 g (5.5 0 X 1 0-2mol) を 60〜7 0 :で 4時間かけて滴下した。 (4) In a 50 m1 reaction vessel equipped with a reflux condenser and a dropping funnel, 1 1 1 (1 -pyrrolyl) 1 1-pendene l O. O g (4.57 X 10-2 mol), H 0.05 g of a 5% isopropyl alcohol solution of 2 PtCl 6 H 20 was charged and heated to 70 ° C. This trichlorosilane 7.45 g (5.5 0 X 1 0- 2 mol) of 60-7 0: was added dropwise over 4 hours.
その後、 6時間同温度で反応させた。 NMRにて反応チェックしたとこ ろ、 5 0 %程度反応が進行していた。  Thereafter, the reaction was carried out at the same temperature for 6 hours. When the reaction was checked by NMR, it was found that the reaction had progressed by about 50%.
その後、 H2PtCl 6H20の 5 %イソプロピルアルコ―ル溶液 0.0 5 g 加えて一夜同温度にて反応させたが反応は進行しなかった。 Thereafter, 0.05 g of a 5% isopropyl alcohol solution of H 2 PtCl 6H 20 was added and reacted overnight at the same temperature, but the reaction did not proceed.
これにトリクロロシラン 7.45 g (5. 50 X 1 0 "2ιο1) を 6 0〜 7 0°Cで 2時間かけて滴下した。 このとき、 トリクロロシランが還流す るため内温 5 0°Cに下がった。 なお、 滴下後 6時間反応させて、 反応チ エックしたところ反応は進行していなかった。 To this was added dropwise over 2 hours at trichlorosilane 7.45 g (5. 50 X 1 0 "2 ιο1) a 6 0~ 7 0 ° C. At this time, in order to trichlorosilane reflux temperature 5 0 ° C After dropping, the mixture was allowed to react for 6 hours, and when the reaction was checked, the reaction did not proceed.
これを 50m lキャップ付き耐圧試験管に移し、 1 0 0°Cで一夜反応 させたが、 変化がなかった。  This was transferred to a 50 ml pressure-resistant test tube with a cap, and reacted at 100 ° C. overnight, but there was no change.
これを減圧蒸留して 4. 0 gの 1 1一 ( 1一ピロリル) —ゥンデセニ ルトリクロロシランを得た。  This was distilled under reduced pressure to obtain 4.0 g of 111- (1-1-pyrrolyl) -pentadecenyltrichlorosilane.
このとき、 得た物質の b pは 1 1 9〜 1 2 1 /5. 3 2 Pa (0. 0 imHg) であり、 収率は 24.7 %であった。 (5) 5 0m 1キャップ付き耐圧試験管に、 1 1一 ( 1—ピロリル) 一 1一ゥンデセン 1 0. O g (4. 5 7 X 1 0"½ο1) 、 トリクロロシラン 1 0.0 g (7. 3 8 X 1 0— 2mol) 、 H2PtCl6 · 6H20の 5 %イソプロピル アルコール溶液 0.0 5 gを仕込み 1 0 0 °Cで 3時間反応させた。 NMRに て反応チェックしたところ、 50 %程度反応が進行していた。 その後、 一夜同温度にて反応させたが反応は進行しなかった。 At this time, the bp of the obtained substance was 119 to 121 / 5.32 Pa (0.0 imHg), and the yield was 24.7%. (5) In a 50m1 pressure-resistant test tube with a cap, add 1- (1-pyrrolyl) -111-decene 10.Og (4.57 X10 "½ο1) and trichlorosilane 10.0 g (7. 3 8 X 1 0- 2 mol) , was hand checking the reaction to H 2 PtCl 6 · 6H 2 0 5% isopropyl alcohol solution 0.0 5 g of reacted for 3 hours at charging 1 0 0 ° C. NMR, 50 The reaction was continued overnight at the same temperature, but the reaction did not proceed.
(6) 還流冷却管、 滴下ロートを取り付けた 5 Om 1反応容器に、 1 1 ― ( 1一ピロリル) _ 1—ゥンデセン 6 7. 0 g ( 3. 0 6 X 1 0 -1 mol) 、 H2PtCl6 · 6H20の 5 %イソプロピルアルコール溶液 0.34 gを仕 込み、 70°Cに加熱した。 これにトリクロロシラン 5 0.0 g (3.6 9 X 1 0-½ο1) を 6 0〜 7 0 °Cで 2時間かけて滴下した。 その後、 3時 間同温で反応させた。 NMRにて反応チェックしたところ、 40 %程度反 応が進行していた。 その後、 一夜同温度にて反応させたが反応は進行し な力、つた。 (6) a reflux condenser, a 5 Om 1 reactor equipped with a dropping funnel, 1 1 - (1 one-pyrrolyl) _ l- Undesen 6 7. 0 g (3. 0 6 X 1 0 - 1 mol), H 2 PtCl 6 · 6H 2 0 5 % isopropyl alcohol solution 0.34 g narrows specification was heated to 70 ° C. To this, 50.0 g (3.69 X 10-) ο1) of trichlorosilane was added dropwise at 60 to 70 ° C over 2 hours. Thereafter, the reaction was carried out at the same temperature for 3 hours. When the reaction was checked by NMR, it was found that the reaction had progressed by about 40%. After that, the reaction was continued overnight at the same temperature, but the reaction did not proceed.
前記(5)、 (6)を合わせて減圧蒸留して、 2 6. 9 gの 1 1一 ( 1—ピ 口リル) —ゥンデセニルトリクロロシランを得た。 このとき、 得た物質 の b pは 1 2 1〜 1 2 3。じ/ 6. 6 5 Pa (0.0 5 minHg) であり、 収率 は 21.6%であった。  The above (5) and (6) were combined and distilled under reduced pressure to obtain 26.9 g of 11- (1-piperyl) -p-decenyltrichlorosilane. At this time, the bp of the obtained substance is 121 to 123. /6.65 Pa (0.05 minHg), and the yield was 21.6%.
(7) 還流冷却管、 滴下ロートを取り付けた 5 Om l反応容器に、 1 1 一 ( 1—ピロリル) 一 1 _ゥンデセン 8 0. 0 g ( 3. 6 5 X 1 0 -1 mol) 、 H2PtCl6 · 6H20の 5 %イソプロピルアルコール溶液 0.4 1 gを仕 込み、 7 0°Cに加熱した。 これにトリクロロシラン 60.0 g (4.42 X 1 0-½ο1) を 6 0〜 7 0 で 2時間かけて滴下した。 その後一夜同 温にて反応させた。 NMRにて反応チェックしたところ、 3 0 %程度反応 が進行していた。 (7) a reflux condenser, a 5 Om l reactor equipped with a dropping funnel, 1 1 i (1-pyrrolyl) Single 1 _ Undesen 8 0. 0 g (3. 6 5 X 1 0 - 1 mol), H 2 PtCl 6 · 6H 2 0 5 % isopropyl alcohol solution 0.4 1 g to narrow specifications and heated to 7 0 ° C. To this, 60.0 g (4.42 X 10-½ο1) of trichlorosilane was added dropwise at 60 to 70 over 2 hours. Thereafter, the reaction was carried out overnight at the same temperature. When the reaction was checked by NMR, it was found that the reaction had progressed by about 30%.
これを減圧蒸留して、 1 7.0 gの 1 1一 (1一ピロリル) —ゥンデ セニルトリクロロシランを得た。 このとき、 得た物質の b pは 1 29〜 1 V / 3 3. 2 5Pa(0. 2 5mmHg)であり、 収率は 1 3. 1 %であった c (8) 1 0 Om 1キャップ付き耐圧試験管に、 1 1 — ( 1一ピロリル) _ 1一ゥンデセン 4 5. 0 g (2. 0 5 X 1 0-½ο1) 、 トリクロロシラ ン 2 5. O g ( 1. 8 5 X 1 0 -½01) 、 H2PtCl6 · 6H20の 5 %イソプロ ピルアルコール溶液 0. 2 3 gを仕込み 1 0 0 °Cで 1 2時間反応させた c NMRにて反応チェックしたところ、 5 0 %程度反応が進行していた。 This was distilled under reduced pressure to obtain 17.0 g of 1 1 1 (1 pyrrolyl) Cenyltrichlorosilane was obtained. At this time, a the bp of the resulting substance 1 29~ 1 V / 3 3. 2 5Pa (0. 2 5mmHg), c (8) yield of 1 3.1% with 1 0 Om 1 cap In a pressure test tube, add 1 1 — (1-pyrrolyl) _ 1-dundene 45.0 g (2.05 X10-½ο1) and trichlorosilane 2 5.Og (1.85 X10) -½01), was reacted checked by H 2 PtCl 6 · 6H 2 0 to 5% isopropyl alcohol solution 0. 2 3 g charge 1 0 0 ° was reacted for 1 2 hour at C c NMR, 5 0% The reaction was progressing to some extent.
これを減圧蒸留して、 1 4. 7 gの 1 1— ( 1—ピロリル) 一ゥンデ セニルトリクロロシランを得た。 このとき、 得た物質の b pは 1 24〜 1 2 5 °C/ 1 3. 3Pa(0. ImmHg)であり、 収率は 2 2. 4 %であった c なお、 ここで反応(7)、 (8)では回収した原料を用いて反応させた。 以上、 工程 2の合成方法として 8種の合成条件を検討したが、 どれも 収率 2 0〜 2 5 %程度であった。 ただし、 回収原料を使って、 トリクロ ロシラン滴下法では 1 3 %と低くなつてしまった。 また、 滴下法はスケ ールが大きくなると反応率が低下するようである。 This was distilled under reduced pressure to obtain 14.7 g of 11- (1-pyrrolyl) undecenyltrichlorosilane. At this time, a the bp of the resulting substance 1 24~ 1 2 5 ° C / 1 3. 3Pa (0. ImmHg), yields 2 2. Note c was 4%, the reaction being (7) In (8), a reaction was performed using the recovered raw materials. As described above, eight kinds of synthesis conditions were examined as the synthesis method in the step 2, and all of the yields were about 20 to 25%. However, using the recovered raw materials, the trichlorosilane dropping method was as low as 13%. In addition, the drop rate seems to decrease the reaction rate as the scale increases.
以上の結果から、 仕込量、 反応時間等を考慮すると、 反応条件(2)か (8)の方法が適当と思われる。  From the above results, it is considered that the reaction condition (2) or (8) is appropriate considering the amount of the charge, the reaction time, and the like.
得られた生成物の NMRチャートを図 1 7に、 I Rのチャートを図 1 8に示す。 NMRは日本電子社製 AL 3 0 0 ( 3 0 0 H z ) を用い、 サ ンプル 3 Omg CD C 1 3に溶解して測定した。 I Rは日本分光社製 A 一 1 0 0を用い、 n e a t (サンプルを 2枚の N a C 1 に挟み測定) 法 によって測定した。 FIG. 17 shows an NMR chart of the obtained product, and FIG. 18 shows an IR chart thereof. NMR is used manufactured by JEOL Ltd. AL 3 0 0 (3 0 0 H z), were determined by dissolving the sample 3 Omg CD C 1 3. The IR was measured by a neat method (measuring a sample between two pieces of NaC1) using A-100 manufactured by JASCO Corporation.
ここで、 ピロリル基の 3位をアルキル基、 または末端にビニル基ゃァ セチレン基のような不飽和基を含むアルキル基で置換した合成工程 1. で得られたアルキル化、 あるいはアルキル化された 1 1— ( 1一ピロリ ル) 一ゥンデセンを原料として用いても、 アルキル化、 あるいはアルキ ル化された 1 1— ( 1 _ピロリル) —ゥンデセニルトリクロロシランが それぞれ得られた。 Here, the alkylation obtained in the synthesis step 1 in which the 3-position of the pyrrolyl group is substituted with an alkyl group or an alkyl group containing an unsaturated group such as a vinyl group or a acetylene group at the terminal, or 1 1— (1-Pyrrolyl) one-decene is used as a raw material, but alkylation or alkylation Fluorinated 11- (1-pyrrolyl) -p-decenyltrichlorosilane was obtained, respectively.
前記反応式 2 (化学式 (F) ) で得られた下記化学式 (G) に示す 1 1一 ( 1一ピロリル) 一ゥンデセニルトリクロロシランを脱水したジメ チルシリコーン溶媒で 1 %に薄めて化学吸着液を調製した。  After diluting 1- (1-1-pyrrolyl)-undecenyltrichlorosilane shown in the following chemical formula (G) obtained by the above-mentioned reaction formula 2 (chemical formula (F)) to 1% with a dehydrated dimethyl silicone solvent, the chemical An adsorbent was prepared.
. N-(CH2)irSiCI3 . N- (CH 2 ) ir SiCI 3
(G)  (G)
また、 図 1 0 Aに示すように予め厚み 0. 2mmの電気的絶縁性ポリ イミド基板 1の表面に、 厚み 0. 5 zmの電気的絶縁性シリカ膜 2を形 成した。  Further, as shown in FIG. 10A, an electrically insulating silica film 2 having a thickness of 0.5 zm was formed on the surface of an electrically insulating polyimide substrate 1 having a thickness of 0.2 mm in advance.
次に、 ポリイミド基板 1を化学吸着溶液に浸潰して、 シリカ膜 2の表 面に化学吸着分子を化学吸着させた (単分子層形成工程) 。 単分子層形 成工程後、 ポリイミド基板 1をクロ口ホルム溶液に浸漬して、 ポリイミ ド基板 1上に残留する未反応の膜材料分子を洗浄除去した。 これにより、 表面に汚れのない単分子膜 14を形成した (図 1 0 A) 。  Next, the polyimide substrate 1 was immersed in a chemisorption solution to chemically adsorb chemisorbed molecules on the surface of the silica film 2 (monomolecular layer forming step). After the monolayer formation process, the polyimide substrate 1 was immersed in a black form solution to wash and remove unreacted film material molecules remaining on the polyimide substrate 1. As a result, a monomolecular film 14 having no stain was formed on the surface (FIG. 10A).
このとき、 ポリイミド基板 1上のシリカ膜 2表面には、 活性水素を含 む水酸基が多数存在するので、 それらの水酸基と化学吸着分子の一 S i C 1結合基との脱塩素反応により共有結合で化学結合して、 化学式 (H) に示す化学吸着分子で構成された単分子膜 14が形成されている。 ただし、 化学式 (H) において、 化学吸着分子中の全ての— S i C 1結 合基がシリカ膜 2表面と反応した場合を示したが、 少なくとも 1つの一 S i C 1結合基がシリカ膜 2表面と反応していればよい。
Figure imgf000039_0001
At this time, a large number of hydroxyl groups containing active hydrogen are present on the surface of the silica film 2 on the polyimide substrate 1, so that the hydroxyl groups and the one SiC1 bonding group of the chemisorbed molecule are covalently bonded by a dechlorination reaction. Thus, a monomolecular film 14 composed of chemisorbed molecules represented by the chemical formula (H) is formed. However, in the chemical formula (H), the case where all —S i C 1 bonding groups in the chemisorbed molecule reacted with the surface of the silica film 2 was shown, but at least one S i C 1 bonding group was reacted with the silica film. 2 It only needs to react with the surface.
Figure imgf000039_0001
次に、 形成した単分子膜 14の表面に、 液晶配向膜の作製に使用する ラビング装置 (図 5A) を使用してラビング処理を行い、 単分子膜 14 を構成する化学吸着分子を配向させた (傾斜処理工程) (図 1 0 B) 。 ラビング処理においてレーヨン製のラビング布 41を巻き付けた直径 7. 0 c mのラビングロ一ル 42を用い、 押し込み深さ 0. 3mm、 ニップ 幅 1 1. 7mm、 回転数 1 200回転 Z s、 テーブルスピード (基板走 行速度) 40 mm/ sの条件でラビングを行った。 このとき、 ラビング 方向と略平行に配向 (傾斜) した単分子膜 24となった。  Next, rubbing treatment was performed on the surface of the formed monomolecular film 14 using a rubbing device (FIG. 5A) used for producing a liquid crystal alignment film, and the chemisorbed molecules constituting the monomolecular film 14 were aligned. (Inclination process) (Fig. 10B). In the rubbing process, a rubbing roll 42 with a diameter of 7.0 cm wound with a rubbing cloth 41 made of rayon was used. Rubbing was performed under the conditions of a substrate running speed of 40 mm / s. At this time, the monomolecular film 24 was oriented (inclined) substantially parallel to the rubbing direction.
次に、 真空蒸着法、 フォトリソグラフィ法及びエッチング法を適用し て、 単分子膜 24の表面に、 長さ 5 0mmの一対の白金電極 1 7を 5m m隔てて蒸着形成した後、 室温下で超純水中に浸漬し、 かつ、 一対の白 金電極 1 7間に 8 Vの電圧を 6時間印加して、 電解酸化重合を行った (導電領域形成工程) 。 これにより、 下記化学式 ( I ) を重合単位とす る、 所定の方向 (ラビング方向) に連なる導電性のポリピロール型共役 系を含む導電ネットワークを有する導電領域 1 6を一対の白金電極 1 7 間に形成できた (導電領域形成工程) (図 1 0 D) 。 Next, a pair of platinum electrodes 17 having a length of 50 mm is formed on the surface of the monomolecular film 24 at a distance of 5 mm by vapor deposition, photolithography, and etching at room temperature. Electrolytic oxidative polymerization was performed by immersing in ultrapure water and applying a voltage of 8 V between a pair of platinum electrodes 17 for 6 hours (conductive region forming step). As a result, a conductive region 16 having a conductive network including a conductive polypyrrole-type conjugated system connected in a predetermined direction (rubbing direction) with the following chemical formula (I) as a polymerized unit is formed between a pair of platinum electrodes 17. (Conducting region forming step) (Fig. 10D).
Figure imgf000039_0002
Figure imgf000039_0002
得られた有機導電膜の膜厚は約 2. 0 nm、 ポリピロール部分の厚さ は約 0. 2 nmであった。  The thickness of the obtained organic conductive film was about 2.0 nm, and the thickness of the polypyrrole portion was about 0.2 nm.
前記の一対の白金電極 1 7間に有機導電膜を介して 8 Vの電圧印加で 1 mAの電流を流すことができた。 したがって、 ドナーやァクセプ夕等 の不純物をドープしなくとも、 導電ネットワークの導電率が約 1 0 3 S ノ c mの導電領域を有する単分子膜 3 4が得られた。 By applying a voltage of 8 V through an organic conductive film between the pair of platinum electrodes 17 A current of 1 mA was able to flow. Thus, even without doping with donors and Akusepu evening like impurities, the monomolecular film 3 4 Conductivity of the conductive network having a conductive region of about 1 0 3 S Bruno cm.
上記のようにして形成された導電領域の導電率は金属の 1 Z 1 0〜 1 Z 1 0 0程度であるので、 単分子膜 3 4を積層すれば半導体素子ゃコン デンサ等の機能デバイスの配線や電極に使用できるレベルであった。 ま た、 本実施例に係る単分子膜 3 4は可視領域の波長の光を吸収しないた め、 積層すれば液晶表示素子、 電解発光素子、 太陽電池等の透明電極と しても使用できるレベルであった。  Since the conductivity of the conductive region formed as described above is about 1Z10 to 1Z100 of a metal, if a monomolecular film 34 is laminated, a semiconductor element の a functional device such as a capacitor. It was at a level that could be used for wiring and electrodes. Further, since the monomolecular film 34 according to the present embodiment does not absorb light having a wavelength in the visible region, it can be used as a transparent electrode of a liquid crystal display element, an electroluminescent element, a solar cell, etc. Met.
なお、 上記の本実施例では絶縁性のシリカ膜 2を表面に設けたポリイ ミド基板 1を用いたが、 絶縁性の酸化アルミニウム膜を表面に設けたポ リイミド基板を用いても同様の導電領域を有する単分子膜が得られた。 また、 ポリイミド基板の代わりに導電性のアルミニウム基板を用いても、 その基板表面にシリ力膜を設けること又はその基板表面に酸化処理を施 すことにより、 同様の導電領域を有する単分子膜が得られた。  Although the polyimide substrate 1 provided with the insulating silica film 2 on the surface is used in the above-described embodiment, the same conductive region can be obtained by using the polyimide substrate provided with the insulating aluminum oxide film on the surface. Was obtained. Even when a conductive aluminum substrate is used instead of a polyimide substrate, a monomolecular film having a similar conductive region can be formed by providing a silicon film on the surface of the substrate or oxidizing the surface of the substrate. Obtained.
また、 上記の本実施例の傾斜処理工程でラビング配向法を適用したが、 単分子層形成工程前に、 シリカ膜を設けたポリイミド基板の表面にラビ ング処理を施し、 その後、 同様の方法で単分子膜を形成すればラビング 方向に配向した単分子膜を形成することができ、 更にその後、 同様の方 法で導電領域を形成すると、 同様な導電特性の導電領域を有する単分子 膜が得られた。  Also, the rubbing orientation method was applied in the above-described tilting process of the present embodiment, but before the monomolecular layer forming process, a rubbing process was performed on the surface of the polyimide substrate provided with the silica film, and thereafter, the same method was used. If a monomolecular film is formed, a monomolecular film oriented in the rubbing direction can be formed, and then, if a conductive region is formed in a similar manner, a monomolecular film having a conductive region with similar conductive characteristics can be obtained. Was done.
また、 上記の本実施例の傾斜処理工程でラビング配向法を適用したが、 図 5 Bに示す如く、 偏光板 4 3を介して紫外線を照射しても、 単分子膜 1 4を構成する化学吸着分子 2 2が偏光方向と略平行に配向した単分子 膜 2 4を形成する (光配向法) ことができ、 その後、 上記と同じ方法で 導電領域を形成すると、 より導電性に優れた導電領域を有する単分子膜 3 4が得られた。 なお、 光配向法で用いる光としては、 上記の偏光紫外 線のみに限らず、 単分子膜 3 4が吸収する波長の光であれば用いること ができた。 Although the rubbing orientation method was applied in the tilting process of the present embodiment, as shown in FIG. 5B, even when ultraviolet light was irradiated through the polarizing plate 43, the chemical composition of the monomolecular film 14 was reduced. It is possible to form a monomolecular film 24 in which the adsorbed molecules 22 are oriented substantially parallel to the polarization direction (photo-alignment method). After that, if a conductive region is formed by the same method as described above, a conductive film having higher conductivity is obtained. Monolayer with region 3 4 was obtained. The light used in the photo-alignment method is not limited to the above-mentioned polarized ultraviolet light, and any light having a wavelength that can be absorbed by the monomolecular film 34 can be used.
また、 上記の本実施例の洗浄工程において、 洗浄用のクロロフオルム 溶液からポリイミド基板 1を引き上げる際に、 図 5 Cに示す如く、 ポリ ィミド基板 1の表面を洗浄用のクロロフオルム溶液 4 4の液面にして、 略垂直に引き上げて液切りを行っても、 単分子膜を構成する化学吸着分 子 2 2が液切り方向と略平行に配向した単分子膜 2 4を形成する (液切 り配向法) ことができた。 これにより、 洗浄工程と傾斜処理工程とを同 時に行うことができる。 更に、 液切り配向処理を行った単分子膜に光配 向処理を施し、 その後、 上記と同じ方法で導電領域を形成すると、 導電 率 1 0 4 S Z c mの導電領域を有する単分子膜 3 4が得られた。 In addition, in the above-described cleaning step of the present embodiment, when the polyimide substrate 1 is pulled up from the chloroform solution for cleaning, as shown in FIG. 5C, the surface of the polyimide substrate 1 is leveled with the chloroform solution 44 for cleaning. Even if the liquid is pulled up almost vertically and drained, a monomolecular film 24 in which the chemisorbed molecules 22 constituting the monomolecular film are oriented substantially parallel to the draining direction is formed. Law) I was able to. Thus, the cleaning step and the tilting step can be performed simultaneously. Moreover, subjected to Hikarihai countercurrent process in monolayer liquid was removed orientation treatment, then, when forming a conductive region in the same manner as described above, the monomolecular film 3 4 having a conductive region of the conductivity 1 0 4 SZ cm was gotten.
(実施例 2 )  (Example 2)
実施例 1と同様の方法で合成した下記化学式 (J ) に示す 3—へキシ ルー 1—ピロリルォクタデセニルトリクロロシランを用い、 脱水したジ メチルシリコーンの有機溶媒で 1 %に薄めて化学吸着液を調製した。
Figure imgf000041_0001
Using 3-hexyl-1-pyrroliloctadecenyltrichlorosilane represented by the following chemical formula (J), which was synthesized in the same manner as in Example 1, diluted to 1% with an organic solvent of dehydrated dimethyl silicone and chemisorbed. A liquid was prepared.
Figure imgf000041_0001
( J )  (J)
次に、 厚み 0 . 2 mmの絶縁性ポリイミ ド基板 101 (ガラスあるいは 導電性のメタル基板でも良い) の表面に厚み 0 . の絶縁性の薄膜、 例えばシリ力保護膜あるいは A 1 203の保護膜 102を形成した (図 1 1Then, thickness 0. 2 mm of insulating polyimide substrate 101 to a thickness 0. Of insulative (or glass or a conductive metal substrate) film, for example, silica force protective film or the A 1 2 0 3 The protective film 102 was formed (Fig. 11
A) 。 A)
次に、 前記吸着液に浸漬して前記シリカ膜表面に化学吸着を行い、 さ らに表面に残った未反応の前記物質をクロ口ホルムで洗浄除去して、 前 記物質よりなる単分子膜 103を選択的に形成した (図 1 1 B ) 。 このとき、 基板表面 (シリカ膜または A 1203膜) には活性水素を含 む水酸基が多数存在するので、 前記物質の一 S i C 1基が水酸基と脱塩 化水素反応を生じて基板表面に共有結合した下記化学式 (K) で示され る分子で構成された単分子膜 103が形成された。 Next, the silica film is immersed in the adsorption solution to chemically adsorb to the surface of the silica film, and the unreacted substance remaining on the surface is washed and removed with a black hole form. 103 was selectively formed (FIG. 11B). At this time, the surface of the substrate (silica film or the A 1 2 0 3 film) The active hydrogen containing anhydride groups there are many, one S i C 1 groups of the material caused a hydroxyl group and desalted hydrogen reaction A monomolecular film 103 composed of molecules represented by the following chemical formula (K) covalently bonded to the substrate surface was formed.
Figure imgf000042_0001
Figure imgf000042_0001
その後、 図 1 1 Cに示したように、 液晶配向膜作製に使用するラビン グ装置 104を使用し、 レーヨン製布 105 (吉川加工 (株) 製: YA— 20 - ) で、 押し込み深さ 0. 3mm、 エップ幅 1 1. 7mm、 回転数 1 2 0 0回転、 テーブルスピード 40 mmZ s e cの条件で電極ギャップ とほぼ垂直方向にラビング処理すると、 単分子膜を構成する分子がラビ ング方向とほぼ並行に配向した単分子膜 103'が得られた (図 1 1 D) 次に、 前記単分子膜表面に長さ 5 0mmの白金電極 (ソース、 ドレ一 ン電極) 106, 106'を 5 mm間隔で 1対を蒸着形成し、 超純水中で室温 (2 5°C) 下で 6時間この電極間に 8 Vの直流電界を印加してピロリル 基 107の電解酸化重合を行った。 その結果、 図 1 1 Eと下記化学式 (L) で示されるような前記電極間を導電性のポリピロリル基 107' (共 役結合基) で接続され、 室温 (2 5 ) での導電度が 4 X 1 03S/c m (この単分子膜の場合、 8 Vの電界印加で、 4mAの電流を流すこと ができた) の導電性単分子膜 108が得られた (図 1 1 F) Then, as shown in Fig. 11C, the rubbing device 104 used for the production of the liquid crystal alignment film was used, and the indentation depth was 0 with a rayon cloth 105 (YA-20- manufactured by Yoshikawa Kako Co., Ltd.). When rubbing is performed in the direction almost perpendicular to the electrode gap under the conditions of 3 mm, 11.7 mm in width, 11.7 mm in rotation, 1200 rotations, and table speed of 40 mmZ sec, the molecules constituting the monomolecular film are almost in the rubbing direction. A monomolecular film 103 ′ oriented in parallel was obtained (FIG. 11D). Next, a 50 mm long platinum electrode (source, drain electrode) 106, 106 ′ was formed on the monomolecular film surface by 5 mm. A pair was formed by vapor deposition at intervals, and a DC electric field of 8 V was applied between the electrodes in ultrapure water at room temperature (25 ° C) for 6 hours to perform electrolytic oxidation polymerization of the pyrrolyl group 107. As a result, the electrodes as shown in FIG. 11E and the following chemical formula (L) are connected by a conductive polypyrrolyl group 107 ′ (combination bonding group), and the conductivity at room temperature (25) is 4%. X 1 0 3 S / cm (in this monomolecular film, in field application of 8 V, it was possible to flow a current of 4mA) conductive monomolecular film 108 was obtained (FIG. 1 1 F)
Figure imgf000042_0002
なお、 より大きな電流容量が必要な場合には、 前記物質の代わりに末 端アルキル基を不飽和炭化水素基、 たとえば前記化学式 1 2の Dまたは Eで示したようなビエル基やアセチレン基を組み込んだ物質を用い、 化 学吸着反応させた後、 重合後または重合前に酸化して水酸基 (一〇H ) に変換し、 この— O H部に次層の単分子膜を累積する工程を繰り返して 単分子膜を累積形成すれば導電性の単分子累積膜を形成できた。
Figure imgf000042_0002
If a larger current capacity is required, the terminal alkyl group may be replaced with an unsaturated hydrocarbon group, for example, a Bier group or an acetylene group as shown by D or E in the above formula (12). After performing a chemical adsorption reaction using an organic substance, it is oxidized after polymerization or before polymerization to convert it into hydroxyl groups (〇H), and the process of accumulating the monolayer of the next layer in the —OH portion is repeated. By accumulating the monomolecular films, a conductive monomolecular accumulated film could be formed.
この導電度は、 金属の 1 Z 1 0〜 1 / 1 0 0程度であり、 積層すれば 半導体装置やコンデンサ等の機能デバイスの配線や電極に使用できるレ ベルであった。 また、 この被膜は、 単分子膜 あり、 膜厚がナノメータ —レベルできわめて薄いため、 可視光の波長の光をほとんど吸収せず、 透過する。 このため、 液晶表示素子や電界発光素子、 太陽電池等の透明 電極に使用できるレベルであった。  This conductivity is about 1Z10 to 1/1100 of that of metal, and when laminated, it is a level that can be used for wiring and electrodes of functional devices such as semiconductor devices and capacitors. In addition, this film is a monomolecular film, and its thickness is extremely thin at the nanometer level, so that it hardly absorbs light of the wavelength of visible light and transmits it. Therefore, it was at a level that could be used for transparent electrodes such as liquid crystal display elements, electroluminescent elements, and solar cells.
なお、 ここで、 単分子膜を構成する分子を配向させる際、 偏光板 121 を介して紫外線 122を照射する (図 1 2 A ) と、 単分子膜を構成する分 子 123が偏光方向とほぼ並行に配向した単分子膜が得られ、 その後、 前 記と同様の方法で重合するとより導電性に優れた導電性単分子膜が得ら れた。  Here, when orienting the molecules constituting the monomolecular film, irradiation with ultraviolet rays 122 through the polarizing plate 121 (FIG. 12A) causes the molecular 123 constituting the monomolecular film to have almost the same polarization direction. A monomolecular film oriented in parallel was obtained, and then polymerized by the same method as described above to obtain a conductive monomolecular film having higher conductivity.
なお、 光配向に用いる光として、 単分子膜が吸収する波長の光であれ ば、 紫外光あるいは可視光領域の偏光を用いて光配向を行うことが可能 であった。  As long as the light used for photo-alignment has a wavelength that is absorbed by the monomolecular film, the photo-alignment can be performed using ultraviolet light or polarized light in the visible light region.
また、 同単分子膜を形成後、 もう一度洗浄液 124であるクロロフオル ムに浸漬し、 同様の洗浄を行い、 さらに基板を立てながら引き上げて液 切りを行うと、 単分子膜を構成する分子が液切り方向とほぼ並行に配向 した単分子膜 123'が得られ、 その後、 前記と同様の方法で電解酸化重合 すると、 室温 (2 5 °C ) で 1 0 4 S · c mの導電性単分子膜が得られた (図 1 2 B ) 。 また、 基板を立てながら引き上げて液切りを行う工程を光配向の前に 行うとさらに配向性を向上できた。 After the monolayer is formed, it is immersed again in chloroform, which is the cleaning solution 124, and the same cleaning is performed. Further, the substrate is pulled up and drained, whereby the molecules constituting the monolayer are drained. direction is obtained substantially monomolecular film 123 oriented in parallel ', then, the electrolytic oxidation polymerization result in a similar way, at room temperature (2 5 ° C) at 1 0 4 S · cm conductive monomolecular film Obtained (Fig. 12B). In addition, when the step of lifting and raising the substrate and draining the liquid was performed before the optical alignment, the alignment was further improved.
なお、 この様な被膜は、 電界発光素子 (EL) や太陽電池で用いられ ているインジウム錫酸化物合金 ( I TO) 製透明電極の代わりの透明電 極としても利用可能であった。  Such a coating could also be used as a transparent electrode instead of a transparent electrode made of indium tin oxide alloy (ITO) used in electroluminescent devices (EL) and solar cells.
また、 層内の複数の導電性共役結合基が特定の方向に配向した単分子 膜状または単分子累積膜状の被膜で、 導電度が 1 03S/cm以上の被膜を 作成すると、 コンデンサの電極、 半導体 I Cチップの配線、 または電磁 波シールド膜にも利用可能であった。 Further, a plurality of conductive conjugated bond group is oriented in a specific direction monomolecular film-like or monomolecular built-up film shaped coating the layer, the conductivity will create a 1 0 3 S / cm or more coatings, the capacitor It could also be used as an electrode, wiring for a semiconductor IC chip, or an electromagnetic wave shielding film.
(実施例 3)  (Example 3)
図 1 3に示すように、 実施例 1においてポリイミド基板 101の代わり に S i基板 131 (ゲート電極として利用) を用い、 保護膜 102の代わりに 2酸化シリコン膜 (S i〇2) 132を形成し、 同様の導電性単分子膜 133 を形成した後、 一対の白金電極 (それぞれソース 134、 ドレーン 135電極 として利用) を 5 xm間隔で形成した他は、 同様のプロセスを行ない、 前記 S i 02膜をゲート絶縁膜とした薄膜トランジスタ (TFT) 型有 機電子デバイス (3端子素子) 136を作製できた (図 1 3) 。 As shown in FIG. 13, in Example 1, a Si substrate 131 (used as a gate electrode) was used instead of the polyimide substrate 101, and a silicon dioxide film (S i〇 2 ) 132 was formed instead of the protective film 102. Then, after forming a similar conductive monomolecular film 133, a similar process was performed except that a pair of platinum electrodes (used as source 134 and drain 135 electrodes, respectively) were formed at 5 xm intervals. A thin-film transistor (TFT) -type organic electronic device (three-terminal device) 136 with two gate insulating films was fabricated (Fig. 13).
このデバイスでは、 TFTのチャネルは、 それぞれ両端がソース及び ドレーン電極に結合された共役結合基であるポリピロリル基で構成され ているため、 電界効果の移動度が約 1 0 0 Ocm2/V * S数百以上の有機 T FTが容易に得られた。 In this device, the TFT channel is composed of a polypyrrolyl group, which is a conjugated bonding group bonded at both ends to the source and drain electrodes, so that the mobility of the field effect is about 100 Ocm 2 / V * S Hundreds or more of organic TFTs were easily obtained.
(実施例 4)  (Example 4)
図 14に示すように、 まず、 多数の有機電子デバイスを液晶の動作ス イッチとして用いるため、 実施例 1と同様のプロセスでァクリル基板 (0. 5mm厚) 141表面に 3端子有機電子デバイス 142群をマトリック 状に複数個配列配置形成して、 さらに、 それぞれのソース側及びゲート 側電極をソース配線とゲート配線でそれぞれ接続した。 またドレーン側 電極には、 インジウム一錫酸化物合金 ( I TO) を用いて透明電極 143 を形成した。 As shown in Fig. 14, first, a large number of organic electronic devices are used as liquid crystal operation switches. Are arranged in a matrix in a matrix pattern. The side electrodes were connected by a source wiring and a gate wiring, respectively. A transparent electrode 143 was formed on the drain side electrode using an indium-tin-tin oxide alloy (ITO).
次に、 前記アレイ基板表面に通常の方法でポリイミド被膜を形成し、 ラビングして配向膜 4を形成し、 アレイ基板 145を作製した。  Next, a polyimide film was formed on the surface of the array substrate by an ordinary method, and rubbed to form an alignment film 4, thereby producing an array substrate 145.
一方、 平行して、 アクリル基板 146表面にマトリック状に RGBの色 要素 147群を配列配置してカラーフィルタ一を形成し、 さらに導電性透 明電極 148を前面に形成してカラーフィルター基板 149を作製した。  On the other hand, in parallel, a group of RGB color elements 147 are arranged and arranged in a matrix on the surface of an acrylic substrate 146 to form a color filter, and a conductive transparent electrode 148 is formed on the front surface to form a color filter substrate 149. Produced.
次に、 前記カラーフィルタ一表面にポリイミド被膜を形成し、 ラビン グして配向膜 144'を作製した。  Next, a polyimide film was formed on one surface of the color filter and rubbed to form an alignment film 144 '.
次に、 前記配向膜の形成されたアレイ基板 145とカラーフィルタ一基 板 149を配向膜が向かい合わせになるよう重ね合わせし、 スぺ一サー 150 を挟んでエポキシ系接着剤 151で封口部を除いて接着して所定の間隔で 周縁部をシール接着した液晶セルを作製した。  Next, the array substrate 145 on which the alignment film is formed and the color filter substrate 149 are overlapped so that the alignment films face each other, and the sealing portion is sandwiched with the epoxy adhesive 151 with the spacer 150 interposed therebetween. A liquid crystal cell was prepared in which the periphery was sealed and bonded at predetermined intervals.
最後に、 TN型液晶 152を注入し封止して、 さらに周辺回路を組み込 んだ I Cチップを実装し、 前後に偏光板 153, 153'を設置してバックライ ト 154を組み込んで TN型液晶表示装置 155を製造できた (図 14) 。 この方法では、 アレイの製造において、 基板加熱の必要がないので、 アクリル基板のようなガラス転移点 (Tg) が低い基板を用いても十分 高画質な型液晶表示装置を作成できた。  Finally, inject and seal the TN-type liquid crystal 152, mount an IC chip incorporating peripheral circuits, install polarizing plates 153, 153 'before and after, and incorporate the backlight 154 to incorporate the TN-type liquid crystal. The display device 155 was manufactured (FIG. 14). Since this method does not require substrate heating in the manufacture of the array, it was possible to produce a sufficiently high-quality liquid crystal display device using a substrate having a low glass transition point (Tg) such as an acrylic substrate.
このとき、 有機電子デバィスのゲート電極に接する絶縁性単分子膜ま たは絶縁性単分子累積膜として、 炭化水素基を含む界面活性剤 (例えば CH3-(CH2)9-Si-Cl3) を用い、 化学吸着法により CH3-(CH2)9_Si(_0-)3の単 分子膜を形成した。 この場合は、 耐電圧特性を 0. 5 X 1 01 QVZc m〜 1 X 1 01 Q VZ c mまで大幅に向上できた。 その耐剥離強度は、 1 トンノ cm2程度になり、 信頼性に優れた液晶表示装置製造できた。 なお、 実施例 4においてはポ卜ムゲートタイプの液晶表示装置の作成 例を示したが、 トップゲートタイプの液晶表示装置に応用することもで きる。 At this time, a surfactant containing a hydrocarbon group (for example, CH 3- (CH 2 ) 9 -Si-Cl 3 ) is used as an insulating monomolecular film or an insulating monomolecular accumulation film in contact with the gate electrode of the organic electronic device. ) Was used to form a CH 3- (CH 2 ) 9 _Si (_0-) 3 monolayer by chemisorption. In this case, the withstand voltage characteristics were significantly improved from 0.5 X 101 Q VZcm to 1 X 101 Q VZ cm. The peeling strength was about 1 tonne cm 2 , and a highly reliable liquid crystal display device could be manufactured. In the fourth embodiment, a production example of a pot-gate type liquid crystal display device is described. However, the present invention can be applied to a top-gate type liquid crystal display device.
(実施例 5 )  (Example 5)
図 1 5に示すように、 まず、 多数の有機電子デバイスを電界発光素子 の動作スィツチとして用いるため、 実施例 1と同様のプロセスでポリエ 一テルサルホン基板 (厚み 0 . 2 mm) 161表面に 3端子有機電子デバ イス 162群をマトリック状に複数個配列配置形成して、 さらに、 それぞ れのソース側及びゲート側電極をソース配線とゲート配線でそれぞれ接 続した。 またドレーン側電極には、 インジウム一錫酸化物合金 ( I T O ) を用いて透明電極 163を形成してアレイ基板 164を作製した。  As shown in FIG. 15, first, in order to use a large number of organic electronic devices as operation switches of the electroluminescent device, the same process as in Example 1 was carried out, and three terminals were formed on the surface of a polyethylene sulfone substrate (0.2 mm thick) 161. A plurality of 162 organic electronic devices were arranged and formed in a matrix, and the respective source-side and gate-side electrodes were connected by a source wiring and a gate wiring, respectively. Further, a transparent electrode 163 was formed on the drain-side electrode using an indium-tin-tin oxide alloy (ITO), thereby producing an array substrate 164.
次に、 前記 3端子有機電子デバイスのドレーンに接続された透明電極 163上にホール輸送層 165を蒸着 し、 さ ら に赤色発光層 166 (2, 3, 7, 8, 12, 13, 17, 18 -才クタェチル- 2 1 H 2 3 H-ポルフィン プラ チナ (Π) ) と緑色発光層 6 6 ' (トリス (8—キノリノラト) アルミ 二ゥム) と青色発光層 166" (4, 4' _ビス (2, 2—ジフエ二ルビニル) ビフエ二ル) をそれぞれマスク蒸着した後、 さらに電子輸送層 167を全 面蒸着し、 陰極 168 (例えば M gと A gの合金、 A 1 と L iの合金、 ま たは電子輸送層 167の上に L i Fと A 1を積層したもの) を形成して、 最後に、 周辺回路を組み込んだ I Cチップを実装すると E L型表示装置 169を製造できた (図 1 5 ) 。  Next, a hole transport layer 165 was deposited on the transparent electrode 163 connected to the drain of the three-terminal organic electronic device, and further a red light emitting layer 166 (2, 3, 7, 8, 12, 13, 17, 17) 18-Cetacetyl-2 1 H2 3 H-porphine Platinum (Π)) and green light-emitting layer 6 6 '(Tris (8-quinolinolato) aluminum aluminum) and blue light-emitting layer 166 "(4, 4' _ Bis (2,2-diphenylvinyl) biphenyl) was mask-deposited, and then an electron-transporting layer 167 was deposited on the entire surface. A cathode 168 (for example, an alloy of Mg and Ag, A 1 and Li) Alloy or a layer of LiF and A1 on the electron transport layer 167), and finally, mounting an IC chip incorporating peripheral circuits to produce an EL display device 169. (Figure 15).
この方法ではアレイの製造において、 基板を加熱する必要がないので、 ポリエーテルサルホン基板を用いても十分高画質な E L型表示装置を作 成できた。  With this method, it was not necessary to heat the substrate in the manufacture of the array, so an EL display device with sufficiently high image quality could be created even with a polyethersulfone substrate.
このとき、 有機電子デバイスのゲート電極の上に実施例 4で用いた炭 化水素基を含む界面活性剤で絶縁膜を形成すると、 耐電圧特性を 0 . 5 X 1 01 GVZcm〜 1 X 1 01。 VZ c mまで大幅に向上できた。 その 耐剥離強度は、 1 トン/ cm2程度になり、 信頼性に優れた液晶表示装 置が製造できた。 At this time, if an insulating film is formed on the gate electrode of the organic electronic device using the surfactant containing a hydrocarbon group used in Example 4, the withstand voltage characteristics will be 0.5. X 1 0 1 G VZcm~ 1 X 1 0 1. It has been improved to VZ cm. The peel resistance was about 1 ton / cm 2 , and a highly reliable liquid crystal display device could be manufactured.
また、 3端子有機電子デバイスのドレーンに個々に接続されたエレク トロルミネッセンス膜を接続形成する工程において、 それぞれ赤、 青、 緑色の光を発光する 3種類のエレクトロルミネッセンス膜を形成してェ レクトロルミネッセンス型カラー表示装置を製造できた。  In the process of forming the electroluminescent films individually connected to the drains of the three-terminal organic electronic device, three types of electroluminescent films that emit red, blue, and green light, respectively, are formed to form the electroluminescent films. A color display device could be manufactured.
(実施例 6)  (Example 6)
本実施例は、 電解重合により形成された導電ネットワークを含む導電 領域を有する単分子膜についてである。  The present embodiment relates to a monomolecular film having a conductive region including a conductive network formed by electrolytic polymerization.
予め、 共役重合性官能基 (共役結合で重合する官能基) であるピロ一 ル基と、 分子端に活性水素と反応するトリクロロシリル基 (一 S i C l 3) とを含む化学式 (M) に示す化学吸着分子を膜材料分子として用い、 脱水したジメチルシリコーンの有機溶媒で 1重量%に希釈して化学吸着 溶液を調製した。 また予め、 絶縁性のポリイミド基板 1の表面に絶縁性 のシリカ膜 2を形成した。 A chemical formula (M) containing, in advance, a pyrrole group which is a conjugated polymerizable functional group (a functional group polymerized by a conjugate bond) and a trichlorosilyl group (one SiCl 3 ) which reacts with active hydrogen at the molecular end. Using the chemically adsorbed molecules shown in (1) as membrane material molecules, the solution was diluted to 1% by weight with a dehydrated dimethyl silicone organic solvent to prepare a chemisorbed solution. In addition, an insulating silica film 2 was formed on the surface of the insulating polyimide substrate 1 in advance.
、 — (CH2)10—SiCI3 , — (CH 2 ) 10 —SiCI 3
(M)  (M)
次に、 ポリイミド基板 1を化学吸着溶液に浸漬して、 シリカ膜 2の表 面に化学吸着分子を化学吸着させた (単分子層形成工程) 。 単分子層形 成工程後、 ポリイミド基板 1をクロ口ホルム溶液に浸漬して、 ポリイミ ド基板 1上に残留する未反応の膜材料分子を洗浄除去した。 これにより、 表面に汚れのない単分子膜 14を形成した (図 1 0A) 。  Next, the polyimide substrate 1 was immersed in a chemisorption solution to chemically adsorb chemisorbed molecules on the surface of the silica film 2 (monomolecular layer forming step). After the monolayer formation process, the polyimide substrate 1 was immersed in a black form solution to wash and remove unreacted film material molecules remaining on the polyimide substrate 1. As a result, a monomolecular film 14 having no stain was formed on the surface (FIG. 10A).
このとき、 ポリイミド基板 1上のシリカ膜 2表面には、 活性水素を含 む水酸基が多数存在するので、 それらの水酸基と化学吸着分子の— S i C 1結合基との脱塩素反応により共有結合で化学結合して、 化学式 2に 示す化学吸着分子で構成された単分子膜 14が形成されている。 ただし, 化学式 Nにおいて、 化学吸着分子中の全ての— S i C 1結合基がシリカ 膜 2表面と反応した場合を示したが、 少なくとも 1つの— S i C 1結合 基がシリ力膜 2表面と反応していればよい。 At this time, since many hydroxyl groups containing active hydrogen exist on the surface of the silica film 2 on the polyimide substrate 1, the hydroxyl groups and the Si The monomolecular film 14 composed of the chemisorbed molecule represented by the chemical formula 2 is formed by a covalent bond chemically bonded by a dechlorination reaction with the C 1 bonding group. However, in chemical formula N, the case where all the —SiC1 bonding groups in the chemisorbed molecule reacted with the surface of the silica film 2 was shown, but at least one —SiC1 bonding group in the chemisorbed molecule was on the surface of the silica force film 2 It just needs to react.
Figure imgf000048_0001
Figure imgf000048_0001
次に、 形成した単分子膜 14の表面に、 液晶配向膜の作製に使用する ラビング装置 (図 5A) を使用してラビング処理を行い、 単分子膜 14 を構成する化学吸着分子を配向させた (傾斜処理工程) (図 1 0 B) 。 ラビング処理においてレーヨン製のラビング布 41を巻き付けた直径 7. 0 cmのラビングロール 42を用い、 押し込み深さ 0. 3mm、 ニップ 幅 1 1. 7mm、 回転数 1 20 0回転/ s、 テーブルスピ一ド (基板走 行速度) 40mm/ sの条件でラビングを行った。 このとき、 ラビング 方向と略平行に配向 (傾斜) した単分子膜 24となった。  Next, rubbing treatment was performed on the surface of the formed monomolecular film 14 using a rubbing device (FIG. 5A) used for producing a liquid crystal alignment film, and the chemisorbed molecules constituting the monomolecular film 14 were aligned. (Inclination process) (Fig. 10B). In the rubbing process, a rubbing roll 42 with a diameter of 7.0 cm, around which a rubbing cloth 41 made of rayon was wound, was used. The indentation depth was 0.3 mm, the nip width was 1.1.7 mm, the number of rotations was 1200 rpm, and the table speed was small. Rubbing was performed under the conditions of substrate speed (substrate running speed) 40 mm / s. At this time, the monomolecular film 24 was oriented (inclined) substantially parallel to the rubbing direction.
次に、 真空蒸着法、 フォトリソグラフィ法及びエッチング法を適用し て、 単分子膜 24の表面に、 長さ 5 0mmの一対の白金電極 1 7を 5m m隔てて蒸着形成した後、 室温下で超純水中に浸漬し、 かつ、 一対の白 金電極 1 7間に 8 Vの電圧を 6時間印加して、 電解重合を行った (導電 領域形成工程) 。 これにより、 下記化学式 (O) を重合単位とする、 所 定の方向 (ラビング方向) に連なる導電性のポリピロ一ル型共役系を含 む導電ネットワークを有する導電領域 6を一対の白金電極 1 7間に形成 できた (導電領域形成工程) (図 1 0D) 。
Figure imgf000049_0001
Next, a pair of platinum electrodes 17 having a length of 50 mm is formed on the surface of the monomolecular film 24 at a distance of 5 mm by vapor deposition, photolithography, and etching at room temperature. Electrolytic polymerization was performed by immersing in ultrapure water and applying a voltage of 8 V between a pair of platinum electrodes 17 for 6 hours (conductive region forming step). As a result, a conductive region 6 having a conductive network containing a conductive polypyrrol-type conjugated system connected in a predetermined direction (rubbing direction) with the following chemical formula (O) as a polymerization unit is formed as a pair of platinum electrodes 17. It was formed in between (conductive region forming step) (Fig. 10D).
Figure imgf000049_0001
この一対の白金電極 1 7間に 8 Vの電圧印加で 1 mAの電流を流すこ とができた。 したがって、 ドナ一ゃァクセプタ等の不純物をドープしな くとも、 導電ネッ卜ワークの導電率が約 1 0 3 S Z c mの導電領域を有 する単分子膜 3 4が得られた。 A current of 1 mA was able to flow between the pair of platinum electrodes 17 by applying a voltage of 8 V. Thus, impurities such as Donna one Ya Akuseputa doped Shinano Kutomo, conductive network Bok work conductivity of about 1 0 3 monomolecular film to have a conductive region of the SZ cm 3 4 was obtained.
前記のようにして形成された導電領域の導電率は金属の 1 Z 1 0〜 1 / 1 0 0程度であるので、 単分子膜 3 4を積層すれば半導体素子ゃコン デンサ等の機能デバイスの配線や電極に使用できるレベルであった。 ま た、 本実施例に係る単分子膜 3 4は可視領域の波長の光を吸収しないた め、 積層すれば液晶表示素子、 電解発光素子、 太陽電池等の透明電極と しても使用できるレベルであった。  Since the conductivity of the conductive region formed as described above is about 1Z10 to 1/1100 of a metal, if a monomolecular film 34 is laminated, a semiconductor element の a functional device such as a capacitor. It was at a level that could be used for wiring and electrodes. Further, since the monomolecular film 34 according to the present embodiment does not absorb light having a wavelength in the visible region, it can be used as a transparent electrode of a liquid crystal display element, an electroluminescent element, a solar cell, etc. Met.
なお、 前記の本実施例では絶縁性のシリカ膜 2を表面に設けたポリイ ミド基板 1を用いたが、 絶縁性の酸化アルミニウム膜を表面に設けたポ リイミド基板を用いても同様の導電領域を有する単分子膜が得られた。 また、 ポリイミド基板の代わりに導電性のアルミニウム基板を用いても, その基板表面にシリ力膜を設けること又はその基板表面に酸化処理を施 すことにより、 同様の導電領域を有する単分子膜が得られた。  Although the polyimide substrate 1 provided with the insulating silica film 2 on the surface is used in the above-described embodiment, the same conductive region can be obtained by using the polyimide substrate provided with the insulating aluminum oxide film on the surface. Was obtained. Even when a conductive aluminum substrate is used instead of a polyimide substrate, a monomolecular film having a similar conductive region can be formed by providing a silicon film on the surface of the substrate or oxidizing the surface of the substrate. Obtained.
また、 前記の本実施例の傾斜処理工程でラビング配向法を適用したが、 単分子層形成工程前に、 シリカ膜を設けたポリイミド基板の表面にラビ ング処理を施し、 その後、 同様の方法で単分子膜を形成すればラビング 方向に配向した単分子膜を形成することができ、 更にその後、 同様の方 法で導電領域を形成すると、 同様な導電特性の導電領域を有する単分子 膜が得られた。  Further, the rubbing orientation method was applied in the tilting process of the present embodiment, but before the monomolecular layer forming process, a rubbing process was performed on the surface of the polyimide substrate provided with the silica film. If a monomolecular film is formed, a monomolecular film oriented in the rubbing direction can be formed, and then, if a conductive region is formed in a similar manner, a monomolecular film having a conductive region with similar conductive characteristics can be obtained. Was done.
また、 前記の本実施例の傾斜処理工程でラビング配向法を適用したが、 図 5 Bに示す如く、 偏光板 4 3を介して紫外線を照射しても、 単分子膜 1 4を構成する化学吸着分子 2 2が偏光方向と略平行に配向した単分子 膜 2 4を形成する (光配向法) ことができ、 その後、 前記と同じ方法で 導電領域を形成すると、 より導電性に優れた導電領域を有する単分子膜 3 4が得られた。 なお、 光配向法で用いる光としては、 前記の偏光紫外 線のみに限らず、 単分子膜 3 4が吸収する波長の光であれば用いること ができた。 Further, the rubbing orientation method was applied in the tilting process of the present embodiment, As shown in FIG. 5B, even when ultraviolet light is irradiated through the polarizing plate 43, the monomolecular film 24 in which the chemisorbed molecules 22 constituting the monomolecular film 14 are oriented substantially parallel to the polarization direction is formed. Thereafter, a conductive region was formed by the same method as described above, whereby a monomolecular film 34 having a conductive region having more excellent conductivity was obtained. In addition, the light used in the photo-alignment method is not limited to the above-described polarized ultraviolet ray, and any light having a wavelength that can be absorbed by the monomolecular film 34 can be used.
また、 前記の本実施例の洗浄工程において、 洗浄用のクロロフオルム 溶液からポリイミド基板 1を引き上げる際に、 図 5 Cに示す如く、 ポリ イミド基板 1の表面を洗浄用のクロロフオルム溶液 4 4の液面にして、 略垂直に引き上げて液切りを行っても、 単分子膜を構成する化学吸着分 子 2 2が液切り方向と略平行に配向した単分子膜 2 4を形成する (液切 り配向法) ことができた。 これにより、 洗浄工程と傾斜処理工程とを同 時に行うことができる。 更に、 液切り配向処理を行った単分子膜に光配 向処理を施し、 その後、 前記と同じ方法で導電領域を形成すると、 導電 率 1 0 4 S / c mの導電領域を有する単分子膜 3 4が得られた。 In addition, in the above-described cleaning step of the present embodiment, when the polyimide substrate 1 is pulled up from the chloroform solution for cleaning, as shown in FIG. 5C, the surface of the polyimide substrate 1 is brought to the liquid surface of the chloroform solution 44 for cleaning. Even if the liquid is pulled up almost vertically and drained, a monomolecular film 24 in which the chemisorbed molecules 22 constituting the monomolecular film are oriented substantially parallel to the draining direction is formed. Law) I was able to. Thus, the cleaning step and the tilting step can be performed simultaneously. Moreover, subjected to Hikarihai countercurrent process in monolayer liquid was removed orientation treatment, then, when forming a conductive region in the same manner as, the conductivity 1 0 4 monomolecular film having a conductive region of the S / cm 3 4 was obtained.
(実施例 7 )  (Example 7)
実施例 1と同様にして下記化学式 (P ) に示す反応式により、 1 1 一 ( 3一チェニル) — 1 一ゥンデセンを合成し、 次に下記化学式 ( Q ) に 示す反応式により 1 1一 ( 3—チェニル) 一 1一ゥンデセニルトリクロ ロシランを合成した。  In the same manner as in Example 1, 111- (3-thenyl) -1-1-decene is synthesized according to the reaction formula represented by the following chemical formula (P), and then 11-1 3-Chenyl) 111-decenyltrichlorosilane was synthesized.
Figure imgf000050_0001
Figure imgf000051_0001
で得られた 1 1 一 (3—チェニル) 一ゥンデセニルトリクロロシラン を脱水したジメチルシリコーン溶媒で 1 %に薄めて化学吸着液を調製し た。 この化学吸着液中に、 厚み約 3mmのガラス基板を浸漬し、 室温で 3時間保持し、 ガラス基板の表面に化学吸着分子を化学吸着させた (単 分子層形成工程) 。 単分子層形成工程後、 ガラス基板をクロ口ホルム溶 液に浸漬して、 残留する未反応の膜材料分子を洗浄除去した。 これによ り、 表面に汚れのない単分子膜が形成できた。
Figure imgf000050_0001
Figure imgf000051_0001
The 1 1 (3-thenyl) 1-decenyltrichlorosilane obtained in the above was diluted to 1% with a dehydrated dimethyl silicone solvent to prepare a chemisorption solution. A glass substrate having a thickness of about 3 mm was immersed in the chemisorption solution, and kept at room temperature for 3 hours to chemically adsorb chemisorbed molecules on the surface of the glass substrate (monomolecular layer forming step). After the monolayer formation step, the glass substrate was immersed in a black hole form solution to wash and remove the remaining unreacted film material molecules. As a result, a clean monomolecular film was formed on the surface.
ガラス基板表面には、 活性水素を含む水酸基が多数存在するので、 そ れらの水酸基と化学吸着分子の一 S i C 1結合基との脱塩素反応により 共有結合で化学結合して、 下記化学式 (R) に示す化学吸着分子で構成 された単分子膜が形成されている。 ただし、 化学式 (R) において、 化 学吸着分子中の全ての一 S i C 1結合基がガラス基板表面と反応した場 合を示したが、 少なくとも 1つの _ S i C 1結合基がガラス基板表面と 反応していればよい。  Since a large number of hydroxyl groups containing active hydrogen are present on the surface of the glass substrate, these hydroxyl groups and the SiC1 bonding group of the chemisorbed molecule are chemically bonded by a dechlorination reaction to form a covalent bond. A monomolecular film composed of the chemisorbed molecules shown in (R) is formed. However, in the chemical formula (R), the case where all the S i C 1 bonding groups in the chemically adsorbed molecule reacted with the glass substrate surface was shown, but at least one _S i C 1 bonding group was reacted with the glass substrate. It only needs to react with the surface.
0-0-
/ /
π—r (CH2).rSi-0-π—r (CH 2 ) .r Si-0-
(} V (} V
S (R) S (R)
次に、 形成した単分子膜の表面に、 液晶配向膜の作製に使用するラビ ング装置 (図 5 A) を使用してラビング処理を行い、 単分子膜を構成す る化学吸着分子を配向させた (傾斜処理工程) 。 ラビング処理において レーヨン製のラビング布を巻き付けた直径 7. 0 cmのラビングロール を用い、 押し込み深さ 0. 3 mm、 二ップ幅 1 1. 7 mm、 回転数 1 2 0 0回転 3、 テーブルスピード (基板走行速度) 4 0 mm/ sの条件 でラビングを行った。 このとき、 ラビング方向と略平行に配向 (傾斜) した単分子膜となった。 Next, a rubbing treatment is performed on the surface of the formed monomolecular film using a rubbing apparatus (FIG. 5A) used for producing a liquid crystal alignment film, and the chemically adsorbed molecules constituting the monomolecular film are aligned. (Inclination process step). In the rubbing process, a rubbing roll with a diameter of 7.0 cm wound with a rubbing cloth made of rayon was used. The indentation depth was 0.3 mm, the nip width was 1.1.7 mm, and the rotation speed was 1 2 Rubbing was performed under the conditions of 0 rotation 3, table speed (substrate traveling speed) 40 mm / s. At this time, the monomolecular film was oriented (inclined) substantially parallel to the rubbing direction.
次に、 真空蒸着法、 フォトリソグラフィ法及びエッチング法を適用し て、 単分子膜の表面に、 長さ 5 0 mmの一対の白金電極を 5 mm隔てて 蒸着形成した後、 室温下で超純水中に浸漬し、 かつ、 一対の白金電極間 に 8 Vの電圧を 6時間印加して、 電解酸化重合を行った (導電領域形成 工程) 。 これにより、 下記化学式 (S ) を重合単位とする、 所定の方向 (ラビング方向) に連なる導電性のポリピロール型共役系を含む導電ネ ットワークを有する導電領域を一対の白金電極間に形成できた (導電領 域形成工程) 。  Next, a pair of platinum electrodes having a length of 50 mm is formed on the surface of the monomolecular film at a distance of 5 mm by vacuum evaporation, photolithography, and etching, and then ultrapure at room temperature. Electrolytic oxidative polymerization was performed by immersing in water and applying a voltage of 8 V between a pair of platinum electrodes for 6 hours (conductive region forming step). As a result, a conductive region having a conductive network containing a conductive polypyrrole-type conjugated system connected in a predetermined direction (rubbing direction) with the following chemical formula (S) as a polymerization unit was formed between a pair of platinum electrodes ( Conductive region forming step).
Figure imgf000052_0001
Figure imgf000052_0001
得られた有機導電膜の膜厚は約 2 . 0 n m、 ポリチェ二レン部分の厚 さは約 0 . 2 n mであった。  The thickness of the obtained organic conductive film was about 2.0 nm, and the thickness of the polyphenylene portion was about 0.2 nm.
前記の一対の白金電極間に有機導電膜を介して 8 Vの電圧印加で 1 m Aの電流を流すことができた。 したがって、 ドナーゃァクセプタ等の不 純物をドープしなくとも、 導電ネットワークの導電率が約 1 0 3 S Z c mの導電領域を有する単分子膜が得られた。 A current of 1 mA was able to flow by applying a voltage of 8 V through the organic conductive film between the pair of platinum electrodes. Thus, even without doping with non pure materials such as donor Ya Akuseputa, the conductivity of the conductive network is a monomolecular film was obtained having a conductive region of about 1 0 3 SZ cm.
(実施例 8 )  (Example 8)
本実施例は、 触媒重合により形成された導電ネットワークを含む導電 領域を有する単分子膜についてである。  The present embodiment relates to a monomolecular film having a conductive region including a conductive network formed by catalytic polymerization.
予め、 共役重合性官能基であるアセチレン基 (一 c≡c _ ) と、 分子 端に活性水素と反応するトリクロロシリル基 (一 S i C 1 3 ) とを含む 化学式 (T) に示す化学吸着分子を用い、 脱水したジメチルシリコーン の有機溶媒で 1 %に希釈して化学吸着溶液を調製した。 また予め、 絶縁 性のポリイミド基板の表面に絶縁性のシリカ膜を形成した後、 シリカ膜 表面にラビング処理を施し (前処理工程) 、 ラビング処理済みポリイミ ド基板を形成した。 Previously, including acetylene groups (one C≡C _) is conjugated polymerizable functional groups, and trichlorosilyl groups that react with active hydrogen in the molecule end (one S i C 1 3) Using a chemisorbed molecule represented by the chemical formula (T), a chemisorption solution was prepared by diluting to 1% with an organic solvent of dehydrated dimethyl silicone. Further, after an insulating silica film was formed on the surface of the insulating polyimide substrate in advance, a rubbing treatment was performed on the surface of the silica film (pretreatment step) to form a rubbed polyimide substrate.
(CH3)3Si-C≡C-(CH2)10-SiCl3 (T) (CH 3 ) 3 Si-C≡C- (CH 2 ) 10 -SiCl 3 (T)
次に、 ラビング処理済みポリイミド基板を化学吸着溶液に浸漬して、 シリカ膜の表面に化学吸着分子を化学吸着させた (単分子層形成工程) 単分子層形成工程後、 ラビング処理済みポリイミド基板をクロ口ホルム 溶液に浸漬して、 ポリイミド基板上に残留する未反応の膜材料分子を洗 浄除去した。 これにより、 表面に下記化学式 (U) に示す汚れのない単 分子膜が形成できた。 (CH3)3Si-C≡C-(CH2)1()-Si (- 0- )3 (U) Next, the rubbed polyimide substrate was immersed in a chemisorption solution to chemically adsorb chemisorbed molecules on the surface of the silica film (monomolecular layer forming step). After the monomolecular layer forming step, the rubbed polyimide substrate was removed. It was immersed in a black hole form solution to wash and remove unreacted film material molecules remaining on the polyimide substrate. As a result, a clean monomolecular film represented by the following chemical formula (U) was formed on the surface. (CH 3 ) 3 Si-C≡C- (CH 2 ) 1 () -Si (-0-) 3 (U)
なお、 ラビング処理済みポリイミド基板を用いたため、 形成された単 分子膜を構成する化学吸着分子はラビング方向に配向していた。  Since a rubbed polyimide substrate was used, the chemically adsorbed molecules constituting the formed monomolecular film were oriented in the rubbing direction.
次に、 チグラー .ナッタ触媒(トリェチルアルミニウムの 5 X 1 0一 2 mo 1 リットル溶液とテトラブチルチタネートの 2. 5 X 1 0 "2mol/ リットル溶液)を含むトルエン溶媒中に単分子膜の形成されたポリイミ ド基板を浸漬して、 触媒重合を行った (導電領域形成工程) 。 これによ り、 下記化学式 (V) に示すラビング方向に連なるポリアセチレン型共 役系を含む導電ネットヮ一クを有する導電領域を形成できた。
Figure imgf000054_0001
Next, Ziegler. Natta catalyst (of 5 X 1 0 one 2 mo 1 liter solution and tetrabutyl titanate tri E chill aluminum 2. 5 X 1 0 "2 mol / l solution) of monolayer toluene solvent comprising The formed polyimide substrate was immersed to perform catalytic polymerization (a conductive region forming step), whereby a conductive net including a polyacetylene-type shared system connected in the rubbing direction represented by the following chemical formula (V) was obtained. Was formed.
Figure imgf000054_0001
次に、 導電領域に電荷移動性の物質であるヨウ素イオンのドーピング を行った。 これにより、 導電率が約 1 04SZcmの導電領域を形成で きた。 なお、 ドーピングを行わない場合、 ポリアセチレン型共役系を含 む導電ネットワークを有する導電領域の導電率は、 導線、 配線等の導電 体として用いることができない程度であった。 Next, the conductive region was doped with iodine ions, which are charge-transporting substances. Thus, the conductivity is can form an electrically conductive region of about 1 0 4 SZcm. When doping was not performed, the conductivity of a conductive region having a conductive network containing a polyacetylene-type conjugated system was such that it could not be used as a conductor such as a conductor or a wiring.
(実施例 9)  (Example 9)
本実施例は、 エネルギービーム照射重合により形成された導電ネット ワークを含む導電領域を有する単分子膜についてである。  The present embodiment is directed to a monomolecular film having a conductive region including a conductive network formed by energy beam irradiation polymerization.
予め、 共役重合性官能基であるジアセチレン基 (一 c≡c一 c≡c 一) と、 分子端に活性水素と反応するトリクロロシリル基 (一 S i C 1 3) とを含む下記化学式 (W) に示す化学吸着分子を膜材料分子として 用い、 脱水したジメチルシリコーンの有機溶媒で 1 %に希釈して化学吸 着溶液を調製した。 Previously, the following chemical formula containing a diacetylene group which is conjugated polymerizable functional groups (one c≡c one c≡c I), and a trichlorosilyl group that reacts with active hydrogen molecule end (one S i C 1 3) ( Using the chemisorbed molecule shown in (W) as the membrane material molecule, the solution was prepared by diluting it to 1% with an organic solvent of dehydrated dimethyl silicone.
(CH3)3Si_C≡C— C≡C— 。― SiCl3 (W) (CH 3 ) 3 Si_C≡C— C≡C—. ― SiCl 3 (W)
ジアセチレン基を含む化学吸着剤を用いること以外は、 前記実施例 8 と同様にして単分子膜を形成した (単分子層形成工程) 。 次に、 単分子 膜の表面にラビング処理 (傾斜処理工程) を施した後、 エネルギービー ムである紫外線をエネルギー密度 1 00m J Zcm2で全面に照射して、 エネルギー照射重合を行った (導電領域形成工程) 。 これにより、 ラビ ング方向に連なる下記化学式 (X) に示すポリジアセチレン型共役系を 含む導電ネットワークを有する導電領域を形成できた。
Figure imgf000055_0001
( X)
A monomolecular film was formed in the same manner as in Example 8 except that a chemical adsorbent containing a diacetylene group was used (monomolecular layer forming step). Next, the surface of the monomolecular film was subjected to a rubbing treatment (inclination treatment step), and then the whole surface was irradiated with ultraviolet rays, which are energy beams, at an energy density of 100 mJZcm 2 to perform energy irradiation polymerization (conductive film). Region forming step). As a result, a conductive region having a conductive network containing a polydiacetylene-type conjugated system represented by the following chemical formula (X) connected in the rubbing direction was formed.
Figure imgf000055_0001
(X)
また、 前記の本実施例では、 基を含む有機分子を膜材料 分子 Cとして用いたが、 アセチレン基 (_ C≡C一) を含む化学式 8に 示される分子を膜材料分子として用い、 不活性ガス雰囲気中において電 子線を 1 0 0 m J Z c m 2で照射しても、 ほぼ同じ導電率の導電領域を 有する単分子膜が得られた。 In this embodiment, the organic molecule containing a group is used as the film material molecule C, but the molecule represented by the chemical formula 8 containing the acetylene group (_C≡C-I) is used as the film material molecule, Irradiation with an electron beam at 100 mJZ cm 2 in a gas atmosphere resulted in a monomolecular film having a conductive region with almost the same conductivity.
(実施例 1 0 )  (Example 10)
本実施例は、 触媒重合及びエネルギービーム照射重合を適用し、 2段 階の重合反応により導電ネットワークを形成した、 導電領域を有する単 分子膜についてである。  The present embodiment relates to a monomolecular film having a conductive region in which a conductive network is formed by a two-stage polymerization reaction by applying catalytic polymerization and energy beam irradiation polymerization.
前記実施例 9と同様にジアセチレン基を有する有機分子を用いた場合 において、 ポリジアセチレン型共役系を含む導電ネットワークを有する 導電領域の形成された単分子膜に、 更に、 エネルギービームである X線 を照射して、 エネルギービーム照射重合を行うと、 ポリアセン型共役系 を含む導電ネットワークを有する導電領域が形成できた。  When an organic molecule having a diacetylene group was used in the same manner as in Example 9, the monomolecular film having a conductive region having a conductive network containing a polydiacetylene-type conjugated system was further provided with an X-ray energy beam. Then, energy beam irradiation polymerization was performed to form a conductive region having a conductive network containing a polyacene-type conjugated system.
(実施例 1 1 )  (Example 11)
本実施例は、 エネルギービーム照射重合により形成された導電ネッ卜 ワークを含む導電領域を有する単分子累積膜についてである。  The present embodiment relates to a monomolecular cumulative film having a conductive region including a conductive network formed by energy beam irradiation polymerization.
実施例 9と同様に第 1層の単分子膜を形成した後、 ラングミュアーブ 口ジヱット法を適用した単分子層形成工程を 2回連続して行い、 計 3層 の単分子累積膜を形成した。 このとき、 エネルギ一ビームの照射により 各単分子層に一括して導電ネットワークを形成した。 これにより、 ジァ セチレン基を有する有機分子を膜材料分子として用いた場合にはポリジ アセチレン型の導電ネットワークが形成された導電領域を有する単分子 累積膜を製造でき、 また、 アセチレン基を有する有機分子を膜材料分子 として用いた場合にはポリアセチレン型の導電ネットワークが形成され た導電領域を有する単分子累積膜を製造できた。 After the monolayer of the first layer was formed in the same manner as in Example 9, the monolayer formation process using the Langmuir-mouth jet method was performed twice consecutively to form a total of three monolayer films. did. At this time, a conductive network was formed collectively on each monolayer by irradiation with one energy beam. Thus, when an organic molecule having a diacetylene group is used as a film material molecule, a single molecule having a conductive region in which a polydiacetylene-type conductive network is formed is formed. A cumulative film could be manufactured, and when an organic molecule having an acetylene group was used as a film material molecule, a monomolecular cumulative film having a conductive region in which a polyacetylene-type conductive network was formed could be manufactured.
(実施例 1 2 )  (Example 12)
前記実施例 1で得られた化合物を、 脱水したジメチルシリコーン溶媒 で 1 %に薄めて化学吸着液を調製した。 この化学吸着液に直径' l mmの ガラスファイバ一を室温 (2 5 °C ) で 1時間浸漬し、 ガラスファイバー 表面で脱塩化反応させ、 薄膜を形成させた。 次に、 未反応の前記化合物 を非水溶液のクロロフオルムで洗浄除去した。 これにより、 ガラスファ ィバ一表面の水酸基と、 前記化合物のクロロシリル基 (一 S i C l ) と の間で塩化水素反応を生じて単分子膜が形成された。  The compound obtained in Example 1 was diluted with dehydrated dimethyl silicone solvent to 1% to prepare a chemisorption solution. A glass fiber having a diameter of 1 mm was immersed in this chemisorption solution at room temperature (25 ° C.) for 1 hour, and a dechlorination reaction was performed on the surface of the glass fiber to form a thin film. Next, the unreacted compound was washed away with non-aqueous chloroform. As a result, a hydrogen chloride reaction occurred between the hydroxyl group on one surface of the glass fiber and the chlorosilyl group (1 SiCl) of the compound, and a monomolecular film was formed.
次に、 単分子膜が形成されたガラスファイバーをクロロフオルム溶液 中に浸漬して洗浄し、 クロロフオルム溶液から引き上げる際、 長さ方向 に液切りして単分子膜を配向させた。  Next, the glass fiber on which the monomolecular film was formed was immersed in a chloroform solution to be washed, and when the glass fiber was pulled out of the chloroform solution, the monofilament was oriented by draining in the length direction.
次に、 ガラスファイバーの端部の一部分にニッケル薄膜を蒸着形成し た。  Next, a nickel thin film was formed by vapor deposition on a part of the end of the glass fiber.
その後、 純水溶液中で、 電極間に 5 V / c mの電解を印加し電解酸化 重合させた。 電解酸化重合の条件は、 反応温度 2 5 °C、 反応時間 8時間 であった。 これにより、 電解重合して導電ネットワークを形成し、 両電 極間を電気的に接続した。 このとき、 電界の方向に沿って共役結合が自 己組織的に形成されて行くので、 完全に重合が終われば、 両電極間は導 電ネットワークで電気的に接続されたことになる。 このようにして、 ガ ラスファイバー上にポリピロールの共役結合重合膜がガラスファイバー の軸方向に沿って長さ 1 0 mm形成できた。 有機薄膜の膜厚は約 2 . 0 n m、 ポリピロール部分の厚さは約 0 . 2 n mであった。 また、 得られ た有機導電膜は可視光線のもとでは透明であった。 このようにして得られた有機薄膜の表面を覆うように絶縁膜を形成す ることにより電気ケ一ブルを作製した。 得られた電線の断面図を図 8 A に示す。 図 8Aにおいて、 1 1はガラス芯線、 6はポリピロ一ル電解酸 化重合膜、 1 3は室温硬化型のシリコーンゴムからなる被覆絶縁膜であ る。 Thereafter, in a pure aqueous solution, electrolysis of 5 V / cm was applied between the electrodes to cause electrolytic oxidation polymerization. The conditions of the electrolytic oxidation polymerization were a reaction temperature of 25 ° C. and a reaction time of 8 hours. As a result, a conductive network was formed by electrolytic polymerization, and the two electrodes were electrically connected. At this time, a conjugate bond is formed in a self-organizing manner along the direction of the electric field. When the polymerization is completely completed, the two electrodes are electrically connected by a conductive network. In this manner, a polypyrrole conjugated polymer film having a length of 10 mm was formed on the glass fiber along the axial direction of the glass fiber. The thickness of the organic thin film was about 2.0 nm, and the thickness of the polypyrrole portion was about 0.2 nm. The obtained organic conductive film was transparent under visible light. An electric cable was manufactured by forming an insulating film so as to cover the surface of the organic thin film thus obtained. Figure 8A shows a cross-sectional view of the obtained electric wire. In FIG. 8A, reference numeral 11 denotes a glass core wire, reference numeral 6 denotes a polypyrrol electrolytically oxidized polymer film, and reference numeral 13 denotes a coating insulating film made of a room-temperature-curable silicone rubber.
得られた有機導電膜を、 市販の原子間力顕微鏡 (AFM) (セイコー インスツルメント社製、 SAP 3 8 0 ON) を用い、 AFM— C I T Sモードで、 電圧: lmV、 電流: 1 6 0 n Aの条件における電導度 p は、 室温 (2 5 °C) においてド一プなしで p : 1 X 1 03 S/ c mであ つた。 The obtained organic conductive film was analyzed using a commercially available atomic force microscope (AFM) (manufactured by Seiko Instruments Inc., SAP380 ON) in AFM-CITS mode, voltage: lmV, current: 160 n The conductivity p under the condition of A was p: 1 × 10 3 S / cm at room temperature (25 ° C.) without doping.
また、 ヨウ素イオンをドーピングすることにより、 電導度 /0は 1 X 1 04SZcmとなった。 Further, by doping with iodine ions, the conductivity / 0 became 1 × 10 4 SZcm.
このようにして得られた有機薄膜の表面を覆うように絶縁膜を形成す ることにより電気ケーブルを作製した。 被覆絶縁膜は、 室温硬化型のシ リコ一ンゴムを用いた。  An electric cable was manufactured by forming an insulating film so as to cover the surface of the organic thin film thus obtained. Room temperature curing type silicone rubber was used for the covering insulating film.
本実施例においては、 前記電気ケーブルは互いに電気的に絶縁された 複数本の芯線を含む集合電線を形成していてもよい。  In this embodiment, the electric cable may form a collective electric wire including a plurality of core wires electrically insulated from each other.
また、 電線を作成する場合の芯線は、 ガラス以外にも金属も使用する ことができる。 金属の場合は、 表面に酸化物を形成すると、 単分子膜は 形成しやすい。  In addition, metal can be used in addition to glass for the core wire when making electric wires. In the case of metal, when an oxide is formed on the surface, a monomolecular film is easily formed.
(実施例 1 3)  (Example 13)
実施例 1に説明した単分子膜の導電領域を透明電極として用いたデバ イス (液晶表示装置) について実験した。  An experiment was performed on a device (liquid crystal display) using the conductive region of the monomolecular film described in Example 1 as a transparent electrode.
予め、 第 1の基板上に、 アモルファスシリコン薄膜トランジスタ (T FT) をマトリックス状に形成し、 かつ、 所定の配線を形成して TFT アレイ基板を作製した。 また、 予め、 第 2の基板上にカラ一フィルタ一 の形成されたカラ一フィルタ一基板を作製した。 Amorphous silicon thin film transistors (TFTs) were formed in a matrix on the first substrate in advance, and predetermined wirings were formed to form a TFT array substrate. In addition, a color filter is placed on the second substrate in advance. In this manner, a color filter and a substrate on which was formed were prepared.
次に、 通常、 透明電極としてカラーフィルターの表面に形成されるィ ンジゥム錫酸化物合金 ( I TO) 膜の代わりに、 カラーフィルター基板 のカラーフィルター表面にシリカ膜を介して、 導電率 1 02SZcm以 上の導電領域を全面に有する単分子膜を形成した。 Then, usually, instead of I Njiumu tin oxide alloy formed on the surface of the color filter as a transparent electrode (I TO) film, through a silica film on the color filter surface of the color filter substrate, the conductivity 1 0 2 A monomolecular film having a conductive region of SZcm or more on the entire surface was formed.
次に、 TFTアレイ基板上に第 1の配向膜を、 カラーフィルター基板 上に第 2の配向膜をそれぞれ形成した後、 第 1の配向膜と第 2の配向膜 とを内側にして、 T FTアレイ基板とカラーフィルター基板とを 5 urn の間隔で貼り合わせて空セルを作製した。  Next, after forming a first alignment film on the TFT array substrate and a second alignment film on the color filter substrate, respectively, the first alignment film and the second alignment film are set inside and the TFT alignment film is formed. An array substrate and a color filter substrate were attached at an interval of 5 urn to produce an empty cell.
最後に、 空セルの内部に液晶を注入した後、 液晶を封止して、 液晶表 示装置を作製した。 I TO膜の代わりに、 カラ一フィルター基板のカラ Finally, after injecting the liquid crystal into the empty cell, the liquid crystal was sealed to produce a liquid crystal display device. Instead of the ITO film,
—フィルタ一表面にシリカ膜を介して、 単分子膜を形成すること以外は, 従来の技術を利用した。 —The conventional technology was used except that a monomolecular film was formed on the surface of the filter via a silica film.
I TO膜を透明電極として用いた従来の液晶表示装置の画像表示と比 較しても何ら遜色のない画像表示が、 前記のようにして形成された液晶 表示装置を用いて行うことができた。  An image display comparable to that of a conventional liquid crystal display device using an ITO film as a transparent electrode could be performed using the liquid crystal display device formed as described above. .
(実施例 14)  (Example 14)
前記実施例 1〜1 3おいて、 導電性分子が配向しているか否かは、 図 1 6に示すような液晶セル 170を形成し、 偏光板 177, 178で挟み、 裏面よ り光を照射して 180の位置から観察することにより確認できる。 液晶セ ル 170は、 導電性分子膜 172, 174がそれぞれ形成されたガラス板 171, 173 の導電性分子膜を内側にして、 ギャップ間距離 5〜 6 mに保持して周 囲を接着剤 175で封止し、 内部に液晶組成物 176 (ネマチック液晶、 例え ばチッソ社製" L C, MT- 508 7 LA" ) を注入して作成した。 ( 1) 偏光板 177, 178をクロスにした場合、 導電性分子膜 172, 174の配向 方向を揃え、 この方向と、 一方の偏光板を平行にし、 他方の偏光板を直 交させる。 完全に配向していれば液晶が配向して均一な黒色になる。 均 一な黒色にならない場合は配向不良である。 In Examples 1 to 13, whether or not the conductive molecules are oriented is determined by forming a liquid crystal cell 170 as shown in FIG. 16 and sandwiching the liquid crystal between polarizing plates 177 and 178, and irradiating light from the back surface. And can be confirmed by observing from the 180 position. The liquid crystal cell 170 has an adhesive 175 with the conductive molecular films of the glass plates 171 and 173, on which the conductive molecular films 172 and 174 are formed, respectively, with the gap between the gaps being 5 to 6 m and the adhesive 175. Then, a liquid crystal composition 176 (nematic liquid crystal, for example, "LC, MT-5087 LA" manufactured by Chisso Corporation) was injected into the inside, and the liquid crystal composition was formed. (1) When the polarizers 177 and 178 are crossed, the orientation directions of the conductive molecular films 172 and 174 are aligned, and this direction is parallel to one polarizer and the other polarizer is Exchange. If the liquid crystal is completely aligned, the liquid crystal will be aligned and become uniform black. If it does not become uniform black, the orientation is poor.
( 2 ) 偏光板 177, 178を平行にした場合、 導電性分子膜 172, 174の配向方 向を揃え、 この方向と、 両方の偏光板を平行にする。 完全に配向してい れば液晶が配向して均一な白色になる。 均一な白色にならない場合は配 向不良である。  (2) When the polarizers 177 and 178 are parallel, the orientation directions of the conductive molecular films 172 and 174 are aligned, and this direction and both polarizers are parallel. If the liquid crystal is completely aligned, the liquid crystal will be aligned and become uniform white. If the white color is not uniform, the orientation is poor.
なお、 裏側の基板が透明でない場合は、 偏光板は上側一枚とし、 表面 より光を照射して反射光で観察する。  If the back substrate is not transparent, use only one polarizing plate on the upper side, irradiate light from the surface, and observe with reflected light.
この方法により、 前記実施例 1〜1 3で得られた導電性分子膜は配向 していることが確認できた。  By this method, it was confirmed that the conductive molecular films obtained in Examples 1 to 13 were oriented.
産業上の利用可能性 Industrial applicability
以上説明した通り、 本発明は、 導線、 配線、 電極または透明電極とし て利用できる導電領域を有する有機薄膜を提供できる。 また、 この導電 領域を有する有機薄膜を導線、 配線、 電極、 透明電極として用いた、 半 導体装置、 コンデンサ、 液晶表示素子、 電界発光素子、 太陽電池等の高 性能なデバイスを提供できる。 更に、 この導電領域を有する有機薄膜を 用いた同軸ケーブル、 フラットケーブル等の電気ケーブルが提供できる  As described above, the present invention can provide an organic thin film having a conductive region that can be used as a conductive wire, a wiring, an electrode, or a transparent electrode. In addition, a high-performance device such as a semiconductor device, a capacitor, a liquid crystal display device, an electroluminescent device, or a solar cell using the organic thin film having the conductive region as a conductive wire, a wiring, an electrode, or a transparent electrode can be provided. Further, electric cables such as coaxial cables and flat cables using the organic thin film having the conductive region can be provided.

Claims

請求の範囲 The scope of the claims
1. 基材表面または基材上に形成した下地層表面と共有結合した末端結 合基と、 共役結合基と、 前記末端結合基と前記共役結合基との間にアル キル基を含む有機分子で構成される導電性有機薄膜であって、 1. a terminal binding group covalently bonded to the surface of a base material or the surface of an underlayer formed on the base material; a conjugated bonding group; and an organic molecule containing an alkyl group between the terminal bonding group and the conjugated bonding group. A conductive organic thin film comprising:
前記有機分子は配向しており、 かつ、 前記共役結合基は他の分子の共 役結合基と重合して導電ネットワークを形成していることを特徴とする 導電性有機薄膜。  The conductive organic thin film, wherein the organic molecules are oriented, and the conjugated group is polymerized with a conjugated group of another molecule to form a conductive network.
2. 重合が、 電解酸化重合、 触媒重合およびエネルギービーム照射重合 から選ばれる少なくとも一つである請求項 1に記載の導電性有機薄膜。 2. The conductive organic thin film according to claim 1, wherein the polymerization is at least one selected from electrolytic oxidation polymerization, catalytic polymerization, and energy beam irradiation polymerization.
3. 最終段階の重合が電解酸化重合である請求項 2に記載の導電性有機 3. The conductive organic material according to claim 2, wherein the polymerization in the final step is electrolytic oxidation polymerization.
4. 前記導電性有機薄膜の電導度 (p) が、 室温 (2 50 においてド 一パントなしで 1 S/cm以上である請求項 1に記載の導電性有機薄膜 c 4. The conductive organic thin film c according to claim 1, wherein the conductivity (p) of the conductive organic thin film is 1 S / cm or more at room temperature (without a dopant at 250).
5. 前記導電性有機薄膜の電導度 (p) が、 室温 (2 5°C) においてド —パントなしで 1 X 1 03 S/c m以上である請求項 4に記載の導電性 有機薄膜。 5. The conductive organic thin film according to claim 4, wherein the conductivity (p) of the conductive organic thin film at room temperature (25 ° C.) is 1 × 10 3 S / cm or more without dopant.
6. 前記重合した共役結合基が、 ポリピロール、 ポリチェ二レン、 ポリ アセチレン、 ポリジアセチレンおよびポリァセンから選ばれる少なくと も一つの共役結合基である請求項 1に記載の導電性有機薄膜。  6. The conductive organic thin film according to claim 1, wherein the polymerized conjugated bonding group is at least one conjugated bonding group selected from polypyrrole, polychenylene, polyacetylene, polydiacetylene, and polyacene.
7. 前記末端結合基が、 シロキサン (一 S i〇一) および S i N—結合 から選ばれる少なくとも一つの結合 (但し、 S iおよび Nには価数に相 当する他の結合基があっても良い。 ) である請求項 1に記載の導電性有  7. The terminal binding group is at least one bond selected from siloxane (one Si〇-one) and Si N— bond (provided that Si and N have another binding group corresponding to a valence). 2. The conductive material according to claim 1, wherein
8. 前記分子の配向が、 ラビングによる配向処理、 脱離反応によって基 材表面に分子を共有結合した後の反応溶液からの液切り処理、 偏光の照 射処理、 および重合時の分子のゆらぎによる配向から選ばれる少なくと も一つによって形成されている請求項 1に記載の導電性有機薄膜。 8. The orientation of the molecules is determined by rubbing orientation treatment, liquid removal from the reaction solution after the molecules are covalently bonded to the substrate surface by a desorption reaction, and polarized light irradiation. 2. The conductive organic thin film according to claim 1, wherein the conductive organic thin film is formed by at least one selected from the group consisting of irradiation treatment and orientation caused by molecular fluctuation during polymerization.
9 . 前記有機薄膜の導電領域が可視領域の波長を有する光に対して透明 である請求項 1に記載の導電性有機薄膜。  9. The conductive organic thin film according to claim 1, wherein the conductive region of the organic thin film is transparent to light having a wavelength in a visible region.
1 0 . 前記導電ネットワークを形成している分子ュニットが下記化学式 ( A) または (B ) で示される請求項 1に記載の導電性有機薄膜。  10. The conductive organic thin film according to claim 1, wherein the molecular unit forming the conductive network is represented by the following chemical formula (A) or (B).
Figure imgf000061_0001
Figure imgf000061_0001
(但し、 前記化学式 (A) および (B ) において、 Xは水素、 エステル 基または不飽和基を含む有機基、 qは 0〜 1 0の整数、 Eは水素または 炭素数 1 一 3のアルキル基、 nは 2以上 2 5以下の整数、 pは整数であ り 1、 2または 3である。 )  (However, in the chemical formulas (A) and (B), X is hydrogen, an organic group containing an ester group or an unsaturated group, q is an integer of 0 to 10, E is hydrogen or an alkyl group having 13 carbon atoms) , N is an integer of 2 or more and 25 or less, and p is an integer and is 1, 2 or 3.)
1 1 . 前記導電性有機薄膜の導電領域表面にさらに保護膜を備えた請求 項 1に記載の導電性有機薄膜。  11. The conductive organic thin film according to claim 1, further comprising a protective film on a surface of a conductive region of the conductive organic thin film.
1 2 . 前記導電性有機薄膜が、 さらにド一パント物質を含む請求項 1に 記載の導電性有機薄膜。  12. The conductive organic thin film according to claim 1, wherein the conductive organic thin film further contains a dopant substance.
1 3 . 前記導電性有機薄膜が、 単分子膜または単分子累積膜である請求 項 1に記載の導電性有機薄膜。  13. The conductive organic thin film according to claim 1, wherein the conductive organic thin film is a monomolecular film or a monomolecular cumulative film.
1 4 . 基材表面または基材上に形成した下地層表面と共有結合可能な末 端官能基と、 共役結合可能な官能基と、 前記末端官能基と前記共役結合 可能な官能基との間にアルキル基を含む化学吸着化合物を、  14. A terminal functional group that can be covalently bonded to the surface of the base material or the surface of the underlayer formed on the substrate, a functional group that can be conjugated, and a space between the terminal functional group and the functional group that can be conjugated. A chemisorbed compound containing an alkyl group
表面に活性水素を有するかまたは活性水素を付与した基材表面または 基材上に形成した下地層表面に接触させ、 脱離反応により共有結合させ て有機薄膜を成膜し、 A substrate surface having active hydrogen or having active hydrogen added to the surface or An organic thin film is formed by bringing it into contact with the surface of an underlayer formed on a base material and covalently bonding by an elimination reaction.
前記有機薄膜を構成する有機分子を所定の方向に配向させるか、 また は重合工程で配向させながら重合し、  The organic molecules constituting the organic thin film are oriented in a predetermined direction, or are polymerized while being oriented in a polymerization step,
重合工程においては、 前記共役結合可能基同士を電解酸化重合、 触媒 重合およびエネルギービーム照射重合から選ばれる少なくとも一つの重 合法により共役結合させて導電ネットワークを形成することを特徴とす る導電性有機薄膜の製造方法。  In the polymerization step, a conductive network is formed by forming a conductive network by conjugate-bonding the conjugate-bondable groups to each other by at least one polymerization method selected from electrolytic oxidation polymerization, catalytic polymerization, and energy beam irradiation polymerization. Manufacturing method of thin film.
1 5 . 前記末端官能基が、 八ロゲン化シリル基、 アルコシシリル基また はイソシァネート基であり、 基材表面の活性水素と脱塩化水素反応、 脱 アルコール反応および脱ィソシァネート反応から選ばれる少なくとも一 つの脱離反応によって共有結合を形成する請求項 1 4に記載の導電性有 機薄膜の製造方法。  15. The terminal functional group is an octogenated silyl group, an alkoxysilyl group or an isocyanate group, and at least one dehydrogenation reaction selected from active hydrogen on the surface of the base material, a dehydrochlorination reaction, a dealcoholation reaction, and a desocyanate reaction. 15. The method for producing a conductive organic thin film according to claim 14, wherein a covalent bond is formed by a detachment reaction.
1 6 . 前記共役結合可能基が、 ピロリル基、 チェニル基、 アセチレン基 を含むェチニル基およびジアセチレン基を含むジェチニル基から選ばれ る少なくとも一つの基である請求項 1 4に記載の導電性有機薄膜の製造 方法。  16. The conductive organic material according to claim 14, wherein the conjugate-bondable group is at least one group selected from a pyrrolyl group, a phenyl group, an ethynyl group including an acetylene group, and a ethynyl group including a diacetylene group. Manufacturing method of thin film.
1 7 . 重合工程の最終段階においては、 電解酸化重合により導電ネット ワークを完結させる請求項 1 6に記載の導電性有機薄膜の製造方法。  17. The method for producing a conductive organic thin film according to claim 16, wherein, in the final stage of the polymerization step, the conductive network is completed by electrolytic oxidation polymerization.
1 8 . 前記分子の配向を、 ラビングによる配向処理、 脱離反応によって 基材表面に分子を共有結合した後の反応溶液からの傾斜液切り処理、 偏 光の照射処理、 および重合時の分子のゆらぎによる配向から選ばれる少 なくとも一つの処理によって行う請求項 1 4に記載の導電性有機薄膜の 製造方法。 18 8. The orientation of the molecules is determined by rubbing, decoupling from the reaction solution after covalently bonding the molecules to the substrate surface by a desorption reaction, irradiating with polarized light, and 15. The method for producing a conductive organic thin film according to claim 14, wherein the method is performed by at least one treatment selected from the orientation due to fluctuation.
1 9 . 前記有機分子が下記化学式 (C ) または (D ) で示される請求項 1 4に記載の導電性有機薄膜の製造方法。
Figure imgf000063_0001
19. The method for producing a conductive organic thin film according to claim 14, wherein the organic molecule is represented by the following chemical formula (C) or (D).
Figure imgf000063_0001
(但し、 前記式 (C ) および (D ) において、 Xは水素、 エステル基ま たは不飽和基を含む有機基、 Qは 0〜 1 0の整数、 Dはハロゲン原子、 イソシァネート基または炭素数 1 一 3のアルコキシル基、 Eは水素また は炭素数 1 一 3のアルキル基、 nは 2以上 2 5以下の整数、 pは整数で あり 1、 2または 3である。 )  (However, in the above formulas (C) and (D), X is hydrogen, an organic group containing an ester group or an unsaturated group, Q is an integer of 0 to 10, D is a halogen atom, an isocyanate group or a carbon number. 13 alkoxyl groups, E is hydrogen or an alkyl group having 13 carbon atoms, n is an integer of 2 or more and 25 or less, and p is an integer and is 1, 2 or 3.)
2 0 . 前記有機分子は単分子層状に形成されている請求項 1 4に記載の 導電性有機薄膜の製造方法。  20. The method for producing a conductive organic thin film according to claim 14, wherein the organic molecules are formed in a monomolecular layer.
2 1 . 前記単分子層形成工程を複数回繰り返すことにより、 単分子層を 積層させて単分子累積膜を形成する請求項 2 0に記載の導電性有機薄膜 の製造方法。  21. The method for manufacturing a conductive organic thin film according to claim 20, wherein the monomolecular layer forming step is repeated a plurality of times to form a monomolecular layer by stacking monomolecular layers.
2 2 . 前記単分子層形成工程と前記傾斜処理工程とを交互に繰り返し行 つた後、 前記導電ネットワーク形成工程で、 単分子累積膜の各単分子層 内に導電ネットワークを一括形成することにより、 導電性単分子累積膜 を形成する請求項 2 0に記載の導電性有機薄膜の製造方法。  22. After repeatedly performing the monolayer forming step and the tilting step alternately, in the conductive network forming step, collectively forming a conductive network in each monolayer of the monomolecular accumulation film, The method for producing a conductive organic thin film according to claim 20, wherein a conductive monomolecular accumulation film is formed.
2 3 . 前記単分子層形成工程、 前記傾斜処理工程および前記導電ネット ワーク形成工程を繰り返し行うことにより、 導電性単分子累積膜を形成 する請求項 1 4に記載の導電性有機薄膜の製造方法。  23. The method for producing a conductive organic thin film according to claim 14, wherein the conductive monomolecular accumulation film is formed by repeatedly performing the monolayer forming step, the tilting step, and the conductive network forming step. .
2 4 . 前記エネルギービームが、 紫外線、 遠紫外線、 X線および電子線 から選ばれる少なくとも一つである請求項 1 4に記載の導電性有機薄膜 の製造方法。 24. The method for producing a conductive organic thin film according to claim 14, wherein the energy beam is at least one selected from ultraviolet rays, far ultraviolet rays, X-rays, and electron beams.
2 5 . 前記エネルギービームが、 偏光した紫外線、 偏光した遠紫外線お よび偏光した X線から選ばれる少なくとも一つであり、 前記傾斜配向処 理と前記導電ネットワーク形成とを同時に行う請求項 2 4に記載の導電 性有機薄膜の製造方法。 25. The method according to claim 24, wherein the energy beam is at least one selected from a polarized ultraviolet ray, a polarized far ultraviolet ray, and a polarized X-ray, and the tilt alignment treatment and the formation of the conductive network are performed simultaneously. The method for producing a conductive organic thin film according to the above.
2 6 . 前記導電ネットワーク形成中または形成後に、、さらにドーパント を添加する請求項 1 4に記載の導電性有機薄膜の製造方法。  26. The method for producing a conductive organic thin film according to claim 14, wherein a dopant is further added during or after the formation of the conductive network.
2 7 . 可視光線領域の光波長では透明な導電性有機薄膜で形成されてい る電極であって、 27. An electrode made of a conductive organic thin film that is transparent at light wavelengths in the visible light range,
前記導電性有機薄膜は、 基材表面または基材上に形成した下地層表面 と共有結合した末端結合基と、 共役結合基と、 前記末端結合基と前記共 役結合基との間にアルキル基を含む有機分子で構成され、  The conductive organic thin film includes a terminal bonding group covalently bonded to a substrate surface or a base layer surface formed on the substrate, a conjugate bonding group, and an alkyl group between the terminal bonding group and the common bonding group. Composed of organic molecules including
前記有機分子は配向しており、 かつ、 前記共役結合基は他の分子の共 役結合基と重合して導電ネットワークを形成していることを特徴とする  The organic molecule is oriented, and the conjugated group is polymerized with a conjugated group of another molecule to form a conductive network.
2 8 . 芯線と、 前記芯線の表面の長さ方向に形成されている導電性有機 薄膜を備えた電気ケーブルであって、 28. An electric cable comprising a core wire and a conductive organic thin film formed in a length direction of a surface of the core wire,
前記導電性有機薄膜は、 基材表面または基材上に形成した下地層表面 と共有結合した末端結合基と、 共役結合基と、 前記末端結合基と前記共 役結合基との間にアルキル基を含む有機分子で構成され、  The conductive organic thin film includes a terminal bonding group covalently bonded to a substrate surface or a base layer surface formed on the substrate, a conjugate bonding group, and an alkyl group between the terminal bonding group and the common bonding group. Composed of organic molecules including
前記有機分子は配向しており、 かつ、 前記共役結合基は他の分子の共 役結合基と重合して導電ネットワークを形成していることを特徴とする 電気ケーブル。  The electric cable, wherein the organic molecule is oriented, and the conjugated group is polymerized with a conjugated group of another molecule to form a conductive network.
2 9 . 前記電気ケーブルは互いに電気的に絶縁された複数本の芯線を含 む集合電線を形成している請求項 2 8に記載の電気ケーブル。  29. The electric cable according to claim 28, wherein the electric cable forms a collective electric wire including a plurality of core wires electrically insulated from each other.
3 0 . 芯線がガラスまたは金属である請求項 2 8に記載の電気ケーブル  30. The electric cable according to claim 28, wherein the core wire is glass or metal.
PCT/JP2002/001067 2001-04-17 2002-02-08 Conductive organic thin film and production method therefor, electrode and electric cable using it WO2002086913A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE2002616257 DE60216257T2 (en) 2001-04-17 2002-02-08 Conductive organic thin film, process for its manufacture, as well as electric and electrical cables that make use of it
EP20020711401 EP1381058B1 (en) 2001-04-17 2002-02-08 Conductive organic thin film and production method therefor, electrode and electric cable using it
US10/322,229 US20030099845A1 (en) 2001-04-17 2002-12-17 Conductive organic thin film, method for manufacturing the same, electrode and electric cable using the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001-118666 2001-04-17
JP2001118666 2001-04-17
JP2001358340 2001-11-22
JP2001-358340 2001-11-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/322,229 Continuation US20030099845A1 (en) 2001-04-17 2002-12-17 Conductive organic thin film, method for manufacturing the same, electrode and electric cable using the same

Publications (1)

Publication Number Publication Date
WO2002086913A1 true WO2002086913A1 (en) 2002-10-31

Family

ID=26613720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001067 WO2002086913A1 (en) 2001-04-17 2002-02-08 Conductive organic thin film and production method therefor, electrode and electric cable using it

Country Status (7)

Country Link
US (1) US20030099845A1 (en)
EP (1) EP1381058B1 (en)
KR (1) KR100544378B1 (en)
CN (1) CN100585751C (en)
DE (1) DE60216257T2 (en)
TW (1) TWI298732B (en)
WO (1) WO2002086913A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051756A3 (en) * 2002-11-29 2005-06-23 Konarka Technologies Inc Photovoltaic component and production method therefor
EP1609173A2 (en) * 2003-03-21 2005-12-28 International Business Machines Corporation Electronic device including a self-assembled monolayer, and a method of fabricating the same

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10329247A1 (en) * 2003-06-24 2005-01-27 Infineon Technologies Ag A compound for forming a self-assembling monolayer, a layered structure, a semiconductor device and a method for producing a layered structure
JP2005084200A (en) * 2003-09-05 2005-03-31 Nec Kagoshima Ltd Rubbing alignment treatment device and rubbing alignment treatment method of liquid crystal display panel
DE10353093A1 (en) * 2003-11-12 2005-06-16 H.C. Starck Gmbh Unsymmetrical linear organic oligomers
JP4553771B2 (en) * 2005-03-29 2010-09-29 三洋電機株式会社 Solid electrolytic capacitor and manufacturing method thereof
CN100489020C (en) * 2006-11-16 2009-05-20 中国科学院长春应用化学研究所 High order polythiophene film and preparation process thereof
DE102008034714B4 (en) * 2008-07-25 2012-01-19 Siemens Medical Instruments Pte. Ltd. Hearing aid with transparent electric hearing tube
JP5583147B2 (en) 2009-03-04 2014-09-03 ゼロックス コーポレイション Structured organic thin films with additional functionality and methods for their production
US9567425B2 (en) 2010-06-15 2017-02-14 Xerox Corporation Periodic structured organic films
US8697322B2 (en) 2010-07-28 2014-04-15 Xerox Corporation Imaging members comprising structured organic films
US8257889B2 (en) 2010-07-28 2012-09-04 Xerox Corporation Imaging members comprising capped structured organic film compositions
US8318892B2 (en) 2010-07-28 2012-11-27 Xerox Corporation Capped structured organic film compositions
US8119314B1 (en) 2010-08-12 2012-02-21 Xerox Corporation Imaging devices comprising structured organic films
US8119315B1 (en) 2010-08-12 2012-02-21 Xerox Corporation Imaging members for ink-based digital printing comprising structured organic films
CN102378553A (en) * 2010-08-24 2012-03-14 峻跃科技股份有限公司 Radiator and manufacturing method thereof
US8759473B2 (en) 2011-03-08 2014-06-24 Xerox Corporation High mobility periodic structured organic films
US8353574B1 (en) 2011-06-30 2013-01-15 Xerox Corporation Ink jet faceplate coatings comprising structured organic films
US8247142B1 (en) 2011-06-30 2012-08-21 Xerox Corporation Fluorinated structured organic film compositions
US8313560B1 (en) 2011-07-13 2012-11-20 Xerox Corporation Application of porous structured organic films for gas separation
US8377999B2 (en) 2011-07-13 2013-02-19 Xerox Corporation Porous structured organic film compositions
US8410016B2 (en) 2011-07-13 2013-04-02 Xerox Corporation Application of porous structured organic films for gas storage
US8460844B2 (en) 2011-09-27 2013-06-11 Xerox Corporation Robust photoreceptor surface layer
US8372566B1 (en) 2011-09-27 2013-02-12 Xerox Corporation Fluorinated structured organic film photoreceptor layers
KR101338391B1 (en) * 2011-12-28 2013-12-10 한국과학기술원 Contact lenses for diagnosis of diseases and process for preparing the same
US8529997B2 (en) 2012-01-17 2013-09-10 Xerox Corporation Methods for preparing structured organic film micro-features by inkjet printing
US8765340B2 (en) 2012-08-10 2014-07-01 Xerox Corporation Fluorinated structured organic film photoreceptor layers containing fluorinated secondary components
US8906462B2 (en) 2013-03-14 2014-12-09 Xerox Corporation Melt formulation process for preparing structured organic films
CN105788708B (en) * 2013-12-25 2018-05-15 中山大学 A kind of manufacture method for the conductive film being distributed in order
JP6789257B2 (en) * 2018-02-28 2020-11-25 株式会社Kokusai Electric Semiconductor device manufacturing methods, substrate processing devices, and programs

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60146406A (en) * 1984-01-09 1985-08-02 日本電信電話株式会社 Conductive polymer film and method of producing same
EP0339677A2 (en) * 1988-04-28 1989-11-02 Matsushita Electric Industrial Co., Ltd. Process for producing polyacetylene or polyacene type super long conjugated polymers
EP0383584A2 (en) * 1989-02-15 1990-08-22 Matsushita Electric Industrial Co., Ltd. Organic electro-conductive thin films and process for production thereof
JPH03229710A (en) * 1990-02-05 1991-10-11 Matsushita Electric Ind Co Ltd Production of highly orienting conjugated polymer
JPH0581921A (en) * 1991-09-20 1993-04-02 Asahi Chem Ind Co Ltd Electric conductive organic thin film
JPH05175485A (en) * 1991-12-20 1993-07-13 Fujitsu Ltd Formation method of high polymer film
EP0552637A1 (en) * 1992-01-14 1993-07-28 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a polyacetylene conjugate polymer
JPH05274919A (en) * 1992-03-24 1993-10-22 Asahi Chem Ind Co Ltd Conductive organic thin film
JPH09162440A (en) * 1995-12-08 1997-06-20 Stanley Electric Co Ltd Organic led element
EP0962460A1 (en) * 1997-07-31 1999-12-08 Matsushita Electric Industrial Co., Ltd. Chemisorptive substance, aligned liquid-crystal film and liquid-crystal display element both made by using the same, and processes for producing these
JP2000268634A (en) * 1999-03-15 2000-09-29 Canon Inc Conductive expansion particle and manufacture thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0766990B2 (en) * 1988-07-15 1995-07-19 松下電器産業株式会社 Organic device and manufacturing method thereof
EP0385656B1 (en) * 1989-02-27 1995-05-10 Matsushita Electric Industrial Co., Ltd. A process for the production of a highly-orientated ultralong conjugated polymer
JPH07104571B2 (en) * 1990-02-05 1995-11-13 松下電器産業株式会社 Method of manufacturing optical recording medium
JP2507153B2 (en) * 1990-07-31 1996-06-12 松下電器産業株式会社 Organic device and manufacturing method thereof
EP0511590B1 (en) * 1991-04-30 1997-10-15 Matsushita Electric Industrial Co., Ltd. Functional laminated chemically adsorbed films and methods of manufacturing the same
JP2992141B2 (en) * 1991-09-26 1999-12-20 松下電器産業株式会社 Probe for atomic force microscope for scanning tunneling electron microscope and silicon compound containing 3-thienyl group
JPH07266351A (en) * 1994-03-30 1995-10-17 Sumitomo Chem Co Ltd Production of conductive resin composite
DE59707681D1 (en) * 1996-10-28 2002-08-14 Rolic Ag Zug Crosslinkable, photoactive silane derivatives

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60146406A (en) * 1984-01-09 1985-08-02 日本電信電話株式会社 Conductive polymer film and method of producing same
EP0339677A2 (en) * 1988-04-28 1989-11-02 Matsushita Electric Industrial Co., Ltd. Process for producing polyacetylene or polyacene type super long conjugated polymers
EP0383584A2 (en) * 1989-02-15 1990-08-22 Matsushita Electric Industrial Co., Ltd. Organic electro-conductive thin films and process for production thereof
JPH03229710A (en) * 1990-02-05 1991-10-11 Matsushita Electric Ind Co Ltd Production of highly orienting conjugated polymer
JPH0581921A (en) * 1991-09-20 1993-04-02 Asahi Chem Ind Co Ltd Electric conductive organic thin film
JPH05175485A (en) * 1991-12-20 1993-07-13 Fujitsu Ltd Formation method of high polymer film
EP0552637A1 (en) * 1992-01-14 1993-07-28 Matsushita Electric Industrial Co., Ltd. Method of manufacturing a polyacetylene conjugate polymer
JPH05274919A (en) * 1992-03-24 1993-10-22 Asahi Chem Ind Co Ltd Conductive organic thin film
JPH09162440A (en) * 1995-12-08 1997-06-20 Stanley Electric Co Ltd Organic led element
EP0962460A1 (en) * 1997-07-31 1999-12-08 Matsushita Electric Industrial Co., Ltd. Chemisorptive substance, aligned liquid-crystal film and liquid-crystal display element both made by using the same, and processes for producing these
JP2000268634A (en) * 1999-03-15 2000-09-29 Canon Inc Conductive expansion particle and manufacture thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1381058A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004051756A3 (en) * 2002-11-29 2005-06-23 Konarka Technologies Inc Photovoltaic component and production method therefor
EP1609173A2 (en) * 2003-03-21 2005-12-28 International Business Machines Corporation Electronic device including a self-assembled monolayer, and a method of fabricating the same
JP2007524989A (en) * 2003-03-21 2007-08-30 インターナショナル・ビジネス・マシーンズ・コーポレーション Electronic device including self-assembled monolayer and method for manufacturing the same
EP1609173A4 (en) * 2003-03-21 2010-09-01 Ibm Electronic device including a self-assembled monolayer, and a method of fabricating the same

Also Published As

Publication number Publication date
EP1381058A1 (en) 2004-01-14
US20030099845A1 (en) 2003-05-29
DE60216257D1 (en) 2007-01-04
CN1463444A (en) 2003-12-24
DE60216257T2 (en) 2007-06-14
TWI298732B (en) 2008-07-11
KR100544378B1 (en) 2006-01-23
EP1381058B1 (en) 2006-11-22
KR20040030175A (en) 2004-04-09
EP1381058A4 (en) 2005-04-13
CN100585751C (en) 2010-01-27

Similar Documents

Publication Publication Date Title
WO2002086913A1 (en) Conductive organic thin film and production method therefor, electrode and electric cable using it
US7198829B2 (en) Conductive organic thin film, process for producing the same, electronic device employing the same, electrical cable, electrode, pyrrolyl compound, and theienyl compound
US7560731B2 (en) Organic electronic device and method for manufacturing the same
WO2003052827A1 (en) Non-volatile memory
US6995506B2 (en) Display device with organic conductive thin film having conductive network
KR100483504B1 (en) Liquid crystal composition and alignment layer
JP3569257B2 (en) Conductive organic thin film and method for producing the same, electronic device, electric cable and electrode using the same
US7476424B2 (en) Liquid crystal display device and method for fabricating thereof
Li et al. Effects of interfacial modification for vapor phase polymerized PEDOT on glass substrate
Saha et al. Photoswitchable molecular glue for carbon nanotubes reversibly controls electronic mobility with light
JP2003223814A (en) Conductive organic thin film and its manufacturing method, and electrode and electric cable using the same
JP2003231738A (en) Conductive organic thin film and its production process
JP4264216B2 (en) 3-terminal organic electronic device
JP2003231737A (en) Conductive organic thin film, its production process and 3-pyrrolyl compound used for it
JP2003309307A (en) Organic electronic device and manufacturing method thereof
US7662009B2 (en) Organic electronic device, method of producing the same, and method of operating the same
JP2003234029A (en) Manufacturing method for conductive organic thin film
JP2004158530A (en) Element having conductive organic molecule thin film
JP3703380B2 (en) ORGANIC ELECTRONIC DEVICE, ITS MANUFACTURING METHOD, ITS OPERATION METHOD, DISPLAY DEVICE USING THE SAME, AND ITS MANUFACTURING METHOD
JP3809330B2 (en) ORGANIC THIN FILM AND ITS MANUFACTURING METHOD, LIQUID CRYSTAL ALIGNING FILM USING THE SAME, ITS MANUFACTURING METHOD, LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME, AND ITS MANUFACTURING METHOD
JP3219257B2 (en) Organosilicon compound and method for producing the same
JP2003154595A (en) Conductive monomolecular accumulated film and its production method, organic electronic device using the film and its production method, display using the device and its production method
JP3109632B2 (en) Alkyloxycarbonyl group-containing silicon compound and method for producing the same
KR100362939B1 (en) Formation of self-assembled layers on conductive transparent electrode
JP2004071984A (en) Electrode having conductive organic molecular thin film

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 10322229

Country of ref document: US

Ref document number: 1020027017228

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002711401

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 028021088

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002711401

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1020027017228

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1020027017228

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2002711401

Country of ref document: EP