WO2002086536A2 - Verfahren zum betreiben eines radarsystems - Google Patents

Verfahren zum betreiben eines radarsystems Download PDF

Info

Publication number
WO2002086536A2
WO2002086536A2 PCT/EP2002/003915 EP0203915W WO02086536A2 WO 2002086536 A2 WO2002086536 A2 WO 2002086536A2 EP 0203915 W EP0203915 W EP 0203915W WO 02086536 A2 WO02086536 A2 WO 02086536A2
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
transmission
measuring
signals
signal
Prior art date
Application number
PCT/EP2002/003915
Other languages
English (en)
French (fr)
Other versions
WO2002086536A3 (de
Inventor
Peter Glocker
Original Assignee
Automotive Distance Control Systems Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Automotive Distance Control Systems Gmbh filed Critical Automotive Distance Control Systems Gmbh
Publication of WO2002086536A2 publication Critical patent/WO2002086536A2/de
Publication of WO2002086536A3 publication Critical patent/WO2002086536A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/10Systems for measuring distance only using transmission of interrupted, pulse modulated waves
    • G01S13/24Systems for measuring distance only using transmission of interrupted, pulse modulated waves using frequency agility of carrier wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/021Auxiliary means for detecting or identifying radar signals or the like, e.g. radar jamming signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/36Means for anti-jamming, e.g. ECCM, i.e. electronic counter-counter measures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating

Definitions

  • radar systems are used to determine the distance of a reference object to moving or stationary objects (target objects) and / or to determine the speed and / or acceleration of moving or stationary objects (target objects) with respect to the reference object.
  • These radar systems are generally used for observation areas with large distances between the reference object and the target objects ("far range”, e.g. approx. 100 km away), e.g. in aviation for air traffic control or for navigation purposes; there are also increasing applications in observation areas with a short distance between the reference object and the target objects ("close range”, e.g. approx. 100 m distance), e.g. for detecting the traffic area surrounding a motor vehicle.
  • the analog high-frequency transmission signal (transmission frequency typically in the GHz range) generated by an oscillator and emitted by a (transmitting) antenna is detected by a (receiving) antenna after passing through a transmission path and reflecting on the target objects located in the observation area and this reflection signal is evaluated as a received signal after the signal processing with regard to transit time and / or frequency shift (phase shift); from this can Then the desired information about the distance and / or the speed and / or the acceleration of the target objects can be obtained.
  • different radar systems are used, in which either a discrete transmission frequency is specified for the transmission signal or the transmission frequency of the transmission signal passes through a frequency range
  • the pulse radar system pulse Doppler radar system
  • the transmission signal is interrupted cyclically, ie transmission pulses with a specific pulse duration are emitted; in the pulse pauses between two transmission pulses, the reflection signals of the preceding transmission pulses are detected as reception signals (alternating Transmission
  • the invention has for its object to provide a method with which an undisturbed operation of a radar system is made possible in a simple manner and at low cost
  • the reflection signals originating from target objects which are acquired during a measurement cycle from the entire observation range (distance range, angular range), are evaluated as received signals, and the evaluated received signals of the measurement cycle (the angle-dependent amplitude or intensity of the reflection signals from the measurement processes of the measurement cycle) are one
  • the transmission frequency of the transmission signal is changed in the next measuring cycle by changing the transmission frequency in the measuring processes of the next measuring cycle a changed frequency value that differs by a certain constant frequency difference from the previous frequency value of the previous measurement cycle is specified;
  • a changed (discrete) transmission frequency or another frequency range is specified for the transmission frequency of the transmission signal.
  • the changed frequency value for the transmission frequency is preferably maintained in the subsequent measuring cycles until a renewed interference of the radar system by interference signals with an interference frequency corresponding to the changed transmission frequency of the transmission signal is determined, i.e. as long as an undisturbed operation of the radar system with the changed frequency value for the transmission frequency is possible. If the radar system is disturbed again by interference signals with an interference frequency corresponding to the changed transmission frequency of the transmission signal, the original frequency value can then be specified again for the transmission frequency in the measuring processes of the next measuring cycle.
  • the changed frequency value for the transmission frequency can be chosen as desired within the range (frequency range) permitted for the operation of the radar system, in particular it can be greater or smaller than the previous frequency value for the transmission frequency (the constant frequency difference between the previous frequency value and the changed frequency value can thus be positive or negative).
  • the constant frequency difference between the previous frequency value and the changed frequency value is preferably at least as large as the ( waited) bandwidth of the interference signal selected;
  • the bandwidth of the components of the radar system used to detect the received signal is preferably also taken into account (for example the bandwidth of a receive filter).
  • Interference frequency corresponding to the transmission signal are physically implausible results when evaluating the measurement results of a measurement cycle, in particular taking into account and evaluating the physical properties of the determined target objects: Examples include the sudden appearance and disappearance of target objects in a measurement cycle, the presence of too large a number of
  • Target objects in the observation area or a relative speed of target objects at a constant distance.
  • the transmission signal is generated on the basis of an oscillator signal generated by an oscillator, in order to change the frequency value for the transmission frequency of the transmission signal, the oscillator signal (the frequency value of the oscillator frequency) is changed by the desired frequency difference.
  • a disturbance of the radar system with an interference frequency corresponding to the transmission frequency of the transmission signal is possible for a maximum of one measuring cycle due to the change in the transmission frequency that is then carried out; this interference therefore has no influence on the functionality and thus the operation of the radar system.
  • the method is particularly suitable for those radar systems in which individual discrete transmission frequencies are specified for the transmission signal, for example. for pulse radar systems or for FSK radar systems ("Frequency Shift Keying").
  • FIG. 1 shows a schematic illustration of the principle on which the distance determination is based
  • FIG. 2 shows a schematic block diagram of the radar system
  • Figure 3 shows the time course of the frequency of the transmission signal during several successive measurement processes.
  • the distance (and, if applicable, the relative speed and the relative acceleration) of the target objects located in the observation area must be determined clearly and with high resolution;
  • the desired distance uniqueness range is 450 m
  • the desired distance resolution is 1 m
  • the desired speed resolution is 1 km / h
  • the desired acceleration resolution is 0.1 m / s 2 .
  • a good angular resolution is sought, ie a separation of different target objects (for example the separation of several vehicles traveling ahead in different lanes) must be possible with sufficient accuracy; e.g. is desired an angular resolution) of 0.1 ° (resolving power of the azimuth angle).
  • a pulse Doppler radar system which emits pulse-shaped transmission signals with a specific transmission frequency; a frequency band from 76.0 GHz to 77.0 GHz is permitted for radar systems in motor vehicles (within this frequency band of 1 GHz, any transmission frequency for the transmission signal can be selected).
  • a transmission signal for example, is used in the measurement processes of at least one measurement phase of a measurement cycle. emits with a constant transmission frequency (carrier frequency) within this frequency band in each case in a specific angular range assigned to the measurement phase (transmission mode); the reflection signal obtained by reflection on the target objects located in this angular range (for example the vehicles in front or obstacles) is detected as an analog reception signal (reception mode).
  • the received signal is received by a signal processing unit processed during a certain time interval within the receiving mode and evaluated with respect to frequency difference or frequency shift and / or phase difference or phase shift and from this the distance information (and possibly the speed information and the acceleration information) obtained by spectral analysis
  • the reception signal processed further by a signal processing unit 40 is evaluated with respect to the transit time and evaluated the reflection signals, the distance information and the speed information and the
  • the observation area 23 (in particular the angular range detected by the radar system 3) is divided into three, in each case one of the antennas 1 1, 1 2, 1 3 assigned target sectors 24, each target sector 24 having a plurality of distance ranges 25 (“range gates”), in each of which target objects 2 are detected, based on the information of which an object matrix of the target objects 2 is created, for example each
  • the target sectors 24 are divided aquidistantly into 30 distance ranges 25.
  • a measurement phase is defined for the antennas 1 1, 1 2, 13, in which a large number of successive measurement processes are carried out, in this case the received signals are received from all in one measurement phase of the measurement cycle Distance ranges 25 within of the target sector 24 assigned to this measuring phase, wherein all distance areas 25 of this target sector 24 are successively queried in each case with a multiplicity of measuring processes and thus transmission pulses. That is, the distance measurement is carried out by means of so-called “rangegating”, in that after the emission of a transmission pulse, the received signals 21 are processed during a time period corresponding to the pulse duration of the transmission pulse (for example 33 ns) and this is carried out successively for all 30 distance ranges 25 with the corresponding transit time difference.
  • 133 measurement processes are carried out in each of the three measurement phases and thus for each target sector 24 for each of the 30 distance ranges 25 and thus 1 33 transmission pulses are emitted; 4000 measurement processes are thus carried out in each of the three measurement phases and thus 4,000 transmission pulses are emitted for the entire measuring cycle thus approx. 1 2000 measuring processes and thus 1 2000 transmission pulses
  • the following components of the pulse Doppler radar system 3 are provided:
  • the antenna unit 17 of the transmit / receive unit 10 used to emit the transmit signal 22 and at the same time to detect the receive signal 21 has an antenna 11, 1 for detecting different angular ranges of the azimuth angle ⁇ and thus for each target sector 24 shown in FIG 2, 1 3 and an antenna switch 1 8 for selecting the respective antenna 1 1, 1 2, 1 3;
  • the antenna 1 1; 1 2; 1 3 used simultaneously as a transmitting antenna and a receiving antenna.
  • the transmit / receive unit 10 can be between the transmit side 1 5 and the receive side 1 6, ie between the transmit mode and the receive mode to be switched; At the same time, frequency modulation is used to generate the transmission signal 22.
  • the (synchronous) switching of the Transmit-receive switch 26 and LO switch 27 is carried out as a function of the pulse duration of the transmit pulses (pulse duration, for example, 33 ns).
  • the two switches transmit / receive switch 26 and LO switch 27 are in the left position (on the transmit side 1 5), the antenna switch 1 8 is connected to one of the antennas 1 1 acting as the transmit antenna; 1 2; 1 3 connected; in reception mode, the two switches transmit / receive switch 26 and LO switch 27 are in the right position (on the receive side 1 6), the antenna switch 1 8 is connected to the antenna 1 1 used as the transmit antenna; 1 2; 1 3 connected (ie the receiving antenna is in a measurement phase and thus the same antenna 1 1; 1 2; 1 3 as the transmitting antenna for a target sector 24).
  • RF radiation is generated with an oscillator frequency fo of 76.68 GHz (as the transmission frequency fs of the transmission pulses) and with an oscillator frequency f 0 of 76.5 GHz (as the reception frequency f E ); the frequency difference between the transmission frequency fs of the transmission pulses and the reception frequency f E is thus, for example. 1 80 MHz.
  • the oscillator 29 In transmission mode (e.g. for 33 ns), the oscillator 29 is switched to the oscillator frequency fo of 76.68 GHz (transmission frequency fs of the transmission pulses thus 76.68 GHz), in the remaining time (in reception mode) the oscillator 29 is switched to the oscillator frequency fo from 76.5 GHz switched (reception frequency f E thus 76.5 GHz). From the receiving side 1 6 of the transmitting-receiving unit 10, the reflection signals of the target objects 2 located in the detected observation area originating from the last-emitted transmission pulse are detected as reception signal 21 before the emission of the next transmission pulse (ie before the switchover from
  • the antenna switch 1 8 for a certain reception time with the respective reception antenna 1 1; 1 2; 13 connected, the reception time and thus the distance range 25 in the respective of the receiving antenna 1 1; 1 2; 13 assigned target sector 24 (angular range ⁇ ) is varied for distance selection.
  • the mixer 28 provided on the receiving side 16 of the transmitting / receiving unit 10 transmits the received signal 22 (the received pulses reflected at the target objects 2 with a frequency higher by the Doppler frequency than the transmission frequency fs of ex. 76.68 GHz) by mixing (multiplication) with the reception frequency f E of e.g.
  • the signal processing unit 40 contains, for example. a preamplifier, a filter, an analog-to-digital converter (A / D converter) and a digital processing unit.
  • the mixed signal is evaluated within a certain time interval during the receiving operation in the respective measuring process.
  • a control unit 30 which controls the antenna switch 18 of the antenna unit 17 and the two RF switches transmit / receive switch 26 and LO switch 27 of the RF switch unit 19 and controls the oscillator 29.
  • a measuring cycle is e.g. divided into three equally long, chronologically successive measuring phases, in which a large number of transmission pulses are emitted for each of the 30 distance ranges 25 of a target sector 24.
  • the duration of a measuring cycle is made up of the duration of the measuring processes (measuring phases) and the time required for signal processing and for other auxiliary functions (e.g. regulation of the IF frequency etc.); E.g. the duration of a measuring cycle is approx. 66 ms.
  • FIG. 3 several measuring processes assigned to two successive measuring cycles MZ are exemplified, ie several measuring processes during the transition from measuring cycle MZ1 to measuring cycle MZ2 at time tx.
  • each measuring cycle MZ e.g. 1 2000 measurement processes are carried out by switching 1 2000 times from transmit mode to receive mode, ie 1 2000 transmit pulses are emitted in each measurement cycle MZ.
  • the time duration of a measurement process and thus the period TP of a pulse cycle of the transmission pulses is made up of the pulse duration or the transmission interval (transmission mode) and the pulse pause (E p- fishing operation) together.
  • receive mode pulse pause
  • the reflection signals are received signals 21 by the receive antenna 1 1; 1 2; 1 3 detected from a certain angular range ⁇ ;
  • a specific reception duration (a specific reception interval) is specified in the reception mode, in which the detected reception signals 21 are further processed and evaluated.
  • the pulse duration of the transmit pulses is 33 ns
  • the pulse pause t 0 F F between the transmit pulses is 3 ⁇ s and thus the period TP of a pulse cycle or the duration of a measurement process is 3,033 ⁇ s
  • Each measuring phase of the measuring cycle MZ is assigned 4000 measuring processes and thus 4000 pulse cycles ⁇ of the period TP, so that the measuring phases each have a duration of approx. 1 2.1 ms (total duration of the measuring phases of a measuring cycle MZ thus approx. 36 ms, total duration of a measuring cycle MZ due to the signal processing and the execution of further functions (e.g. approx. 66 ms).
  • transmission pulses are emitted as transmission signals 22 with the same transmission frequency f s in the measurement cycles MZ and thus also in the measurement processes of the two successive measurement cycles MZ1, MZ2 during undisturbed operation of the radar system 3; by switching over the oscillator frequency fo of the oscillator 29, the frequency value fs constant during a transmission pulse, the transmission frequency fs of ex. 76.68 GHz by a certain frequency amount (e.g. by 1 80 MHz) higher than the frequency value f E in reception mode, the reception frequency f £ of e.g. 76.5 GHz.
  • the transmission signals acting from interference signals from another radar system with the same transmission frequency fs which occurs in particular in radar systems that pass through a specific frequency range (typically emit)
  • Radar systems transmit signals with different frequency values for the transmit frequency fs within a frequency range of 200 MHz), by the control unit 30 for the oscillator frequency f 0 in transmit mode and in receive mode and thus for the transmit frequency fs of the transmit signal 22 and for the receive frequency f E changed frequency values predefined, each of which is determined by a specific frequency difference ⁇ f ( ⁇ f e.g. 230 MHz, e.g. as the sum of the potential bandwidth of the interference signal of e.g. 200 MHz and the bandwidth of the reception filter of our own radar Systems from e.g.
  • ⁇ f e.g. 230 MHz
  • the changed frequency value of the oscillator frequency fo and thus the changed frequency value fs * of the transmission frequency fs and the changed frequency value the reception frequency f E are determined after the detection of a malfunction of the radar system 3 on the basis of the evaluated reception signals 21 of the measuring cycle MZ1 from the beginning of the next measuring cycle MZ2 (time t,) for all subsequent measuring cycles MZ and thus for their measuring processes, as long as undisturbed operation of the radar system 3 with the changed frequency value fs 2 of the transmission frequency fs and the changed frequency value f E2 of the reception frequency f E is possible.
  • the occurrence of faults is determined here by evaluating the position and physical properties of the target objects 2 determined in a measurement cycle MZ on the basis of the evaluation of the received signals 21 with the aid of plausibility considerations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Es soll auf einfache Weise und mit geringen Kosten ein störungsfreier Betrieb des Radarsystems ermöglicht werden, bei dem in einem Meßzyklus mit einer Vielzahl von Meßvorgängen die Entfernung zu sich im Beobachtungsbereich befindlichen Zielobjekten bestimmt wird. Hierbei werden in den Meßvorgängen jeweils in einem Sendebetrieb pulsförmige Sendesignale mit einer einen bestimmten Frequenzwert aufweisenden Sendefrequenz emittiert und in einem Empfangsbetrieb Reflexionssignale als Empfangssignale detektiert. Bei einer anhand der ausgewerteten Empfangssignale eines Meßzyklus erkannten Störung des Radarsystems durch Störsignale mit einer einem Frequenzwert der Sendefrequenz entsprechenden Störfrequenz wird zumindest in den Meßvorgängen des darauffolgenden Meßzyklus für die Sendefrequenz ein um eine konstante Frequenzdifferenz vom Frequenzwert des vorausgehenden Meßzyklus abweichender geänderter Frequenzwert vorgegeben. Verfahren zum Betrieb eines Abstandswarnsystems für Kraftfahrzeuge.

Description

Verfahren zum Betreiben eines Radarsvstems
Neben optischen Systemen werden zur Bestimmung der Entfernung eines Bezugsobjekts zu bewegten oder ruhenden Objekten (Zielobjekten) und/oder zur Bestimmung der Geschwindigkeit und/oder der Beschleunigung von bewegten oder ruhenden Objekten (Zielobjekten) bezüglich des Bezugsobjekts insbesondere Radar- Systeme eingesetzt. Diese Radarsysteme werden in der Regel für Beobachtungsbereiche mit großen Entfernungen zwischen dem Bezugsobjekt und den Zielobjekten eingesetzt („Fernbereich", bsp. ca. 100 km Entfernung), bsp. in der Luftfahrt bei der Flugsicherung oder zu Navigationszwecken; daneben gibt es zunehmend auch Anwendungen in Beobachtungsbereichen mit geringer Entfernung zwischen dem Be- zugsobjekt und den Zielobjekten („Nahbereich", bsp. ca. 100 m Entfernung), bsp. zur Erfassung des ein Kraftfahrzeug umgebenden Verkehrsraums. In diesem Zusammenhang wird die Entfernung (der Abstand) eines Kraftfahrzeugs zu vorausfahrenden, nachfolgenden oder entgegenkommenden Fahrzeugen oder sonstigen Reflexionsobjekten und/oder die Relativgeschwindigkeit des Kraftfahrzeugs bezüglich vorausfahrenden, nachfolgenden oder entgegenkommenden Fahrzeugen oder sonstigen Reflexionsobjekten und/oder die Relativbeschleunigung des Kraftfahrzeugs bezüglich vorausfahrenden, nachfolgenden oder entgegenkommenden Fahrzeugen oder sonstigen Reflexionsobjekten bestimmt. Hierzu wird das mittels eines Oszillators generierte und von einer (Sende-)Antenne emittierte analoge hochfrequente Sendesignal (Sendefrequenz typischerweise im GHz-Bereich) nach dem Durchlaufen einer Übertragungsstrecke und der Reflexion an den sich im Beobachtungsbereich befindlichen Zielobjekten von einer (Empfangs-)Antenne detektiert und dieses Reflexionssignal als Empfangssignal nach der Signalverarbeitung hinsichtlich Laufzeit und/oder Frequenzverschiebung (Phasenverschiebung) ausgewertet; hieraus kann dann die gewünschte Information über die Entfernung und/oder die Geschwindigkeit und/oder die Beschleunigung der Zielobjekte gewonnen werden Zur Bestimmung der Position, Entfernung, Relativgeschwindigkeit und Relativbeschleunigung der Zielobjekte sind unterschiedliche Radarsysteme gebräuchlich, bei denen entweder für das Sendesignal eine diskrete Sendefrequenz vorgegeben wird oder die Sendefrequenz des Sendesignals einen Frequenzbereich durchlauft Beim Puls-Radarsystem (Pulsdoppler-Radarsystem) wird das Sendesignal zyklisch unterbrochen, d h es werden Sendepulse mit bestimmter Pulsdauer emittiert, in den Pulspausen zwischen zwei Sendepulsen werden die Reflexionssignale der vorausge- henden Sendepulse als Empfangssignale detektiert (abwechselnder Sendebetrieb und Empfangsbetrieb), die Entfernung zu den Zielobjekten (Reflexionsobjekten) wird durch eine direkte Signal-Laufzeitmessung ermittelt, die gewünschte Entfernungsauflosung kann über die Pulsdauer der Sendepulse vorgegeben werden Beim FMCW-Radarsystem wird das Sendesignal kontinuierlich emittiert („continuous wa- ve" cw), wobei die Sendefrequenz des Sendesignals variiert wird, d h durch Frequenzmodulation (FM) einen bestimmten Modulationsverlauf aufweist, gleichzeitig mit der Emission des Sendesignals wird auch das Empfangssignal detektiert (gleichzeitiger Sendebetrieb und Empfangsbetrieb) Problematisch ist, daß auch (ggf reflektierte) Sendesignale von anderen, sich in der Nahe befindlichen, mit der gleichen Sendefrequenz betriebenen Radarsystemen empfangen werden können, durch diese (insbesondere bei einer weiten Verbreitung dieser Radarsysteme häufig auftretenden) Storsignale können Störungen (bsp Übersteuerungen oder Auswertefehler) des Radarsystems auftreten, die die Funktion des Radarsystems beeinträchtigen oder das Radarsystem außer Betrieb setzen
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren anzugeben, mit dem ein ungestörter Betrieb eines Radarsystems auf einfache Weise und mit geringen Kosten ermöglicht wird
Diese Aufgabe wird nach der Erfindung durch das Merkmal im Kennzeichen des Pa- tentanspruchs 1 gelost
Vorteilhafte Weiterbildungen des Verfahrens sind Bestandteil der weiteren Patentansprüche Beim vorgeschlagenen Verfahren werden die während eines Meßzyklus aus dem gesamten Beobachtungsbereich (Entfernungsbereich, Winkelbereich) erfaßten, von Zielobjekten herrührenden Reflexionssignale als Empfangssignale ausgewertet und die ausgewerteten Empfangssignale des Meßzyklus (die winkelabhängige Amplitude bzw. Intensität der Reflexionssignale aus den Meßvorgängen des Meßzyklus) einer
Plausibilitätsbetrachtung unterzogen. Wird hierbei eine Störung des eigenen Radarsystems durch Störsignale mit einer der Sendefrequenz des Sendesignals entsprechenden Störfrequenz erkannt (insbesondere durch die Sendesignale anderer Radarsysteme), wird die Sendefrequenz des Sendesignals im nächsten Meßzyklus ge- ändert, indem für die Sendefrequenz in den Meßvorgängen des nächsten Meßzyklus jeweils ein sich um eine bestimmte konstante Frequenzdifferenz vom vorherigen Frequenzwert des vorausgehenden Meßzyklus unterscheidender geänderter Frequenzwert vorgegeben wird; je nachdem, ob in den Meßvorgängen Sendesignale mit jeweils dem gleichen Frequenzwert oder mit jeweils unterschiedlichen, innerhalb eines Frequenzbereichs variierenden Frequenzwerten für die Sendefrequenz emittiert werden, wird somit entweder eine geänderte (diskrete) Sendefrequenz oder ein anderer Frequenzbereich für die Sendefrequenz des Sendesignals vorgegeben. Der geänderte Frequenzwert für die Sendefrequenz wird vorzugsweise in den darauffolgenden Meßzyklen so lange beibehalten, bis eine erneute Störung des Radarsy- stems durch Störsignale mit einer der geänderten Sendefrequenz des Sendesignals entsprechenden Störfrequenz festgestellt wird, d.h. so lange, wie ein ungestörter Betrieb des Radarsystems mit dem geänderten Frequenzwert für die Sendefrequenz möglich ist. Bei einer erneuten Störung des Radarsystems durch Störsignale mit einer der geänderten Sendefrequenz des Sendesignals entsprechenden Störfre- quenz kann dann für die Sendefrequenz in den Meßvorgängen des nächsten Meßzyklus wieder der ursprüngliche Frequenzwert vorgegeben werden.
Der geänderte Frequenzwert für die Sendefrequenz kann innerhalb des für den Betrieb des Radarsystems zugelassenen Bandes (Frequenzbereichs) beliebig gewählt werden, insbesondere kann er größer oder kleiner als der vorherige Frequenzwert für die Sendefrequenz sein (die konstante Frequenzdifferenz zwischen dem vorherige Frequenzwert und dem geänderten Frequenzwert kann somit positiv oder negativ sein). Die konstante Frequenzdifferenz zwischen dem vorherigen Frequenzwert und dem geänderten Frequenzwert wird vorzugsweise mindestens so groß wie die (er- wartete) Bandbreite des Störsignals gewählt; vorzugsweise wird hierbei auch die Bandbreite der zur Detektion des Empfangssignals dienenden Komponenten des Radarsystems berücksichtigt (bsp. die Bandbreite eines Empfangsfilters).
Kriterien zur Feststellung einer Störung und damit für den Einfluß von (ggf. ebenfalls reflektierten) Sendesignalen anderer Radarsysteme mit einer der Sendefrequenz des
Sendesignals entsprechenden Störfrequenz sind physikalisch unplausible Ergebnisse bei der Auswertung der Meßergebnisse eines Meßzyklus, insbesondere unter Berücksichtigung und Bewertung der physikalischen Eigenschaften der ermittelten Zielobjekte: Beispiele hierzu sind das plötzliche Auftauchen und Verschwinden von Zie-Iobjekten in einem Meßzyklus, das Vorhandensein einer zu großen Anzahl von
Zielobjekten im Beobachtungsbereich, oder eine Relativgeschwindigkeit von Zielobjekten bei konstantem Abstand.
Falls das Sendesignal auf der Basis eines von einem Oszillator generierten Oszillatorsignals erzeugt wird, wird zur Änderung des Frequenzwerts für die Sendefrequenz des Sendesignals das Oszillatorsignal (der Frequenzwert der Oszillatorfrequenz) um die gewünschte Frequenzdifferenz geändert.
Beim vorgestellten Verfahren zum Betreiben eines Radarsystems ist eine Störung des Radarsystems mit einer der Sendefrequenz des Sendesignals entsprechenden Störfrequenz aufgrund der dann vorgenommenen Änderung der Sendefrequenz maximal einen Meßzyklus lang möglich; diese Störung hat somit keinen Einfluß auf die Funktionalität und damit den Betrieb des Radarsystems. Das Verfahren ist insbesondere für solche Radarsysteme geeignet, bei denen für das Sendesignal einzelne diskrete Sendefrequenzen vorgegeben werden, bsp. für Puls-Radarsysteme oder für FSK-Radarsysteme („Frequency Shift Keying").
Das Verfahren soll anhand eines Ausführungsbeispiels, der Verwendung des Radarsystems in einem Fahrerassistenzsystem für Kraftfahrzeuge im Zusammenhang mit der Zeichnung näher erläutert werden. Hierbei zeigt:
Figur 1 eine schematische Darstellung des der Entfernungsbestimmung zugrundeliegenden Prinzips,
Figur 2 ein schematisches Blockschaltbild des Radarsystems,
Figur 3 den zeitlichen Verlauf der Frequenz des Sendesignals während mehrerer aufeinanderfolgender Meßvorgänge.
Bei Fahrerassistenzsystemen in Kraftfahrzeugen muß die Entfernung (und ggf. die Relativgeschwindigkeit sowie die Relativbeschleunigung) der im Beobachtungsbe- reich befindlichen Zielobjekte (insbesondere der Abstand zu vorausfahrenden, entgegenkommenden oder nachfolgenden Fahrzeugen und Personen) eindeutig und mit hoher Auflösung bestimmt werden; bsp. beträgt der gewünschte Entfernungseindeu- tigkeitsbereich 450 m, die gewünschte Entfernungsauflösung 1 m, die gewünschte Geschwindigkeitsauflösung 1 km/h und die gewünschte Beschleunigungsauflösung 0.1 m/s2. Weiterhin wird eine gute Winkelauflösung angestrebt, d.h. eine Trennung unterschiedlicher Zielobjekte (bsp. die Trennung mehrerer auf verschiedenen Fahrspuren vorausfahrender Fahrzeuge) muß mit ausreichender Genauigkeit möglich sein; gewünscht wird bsp. eine Winkelauflösung) von 0.1 ° (Auflösungsvermögen des Azimutwinkels). Hierzu wird bsp. ein Puls-Doppler-Radarsystem eingesetzt, das pulsförmige Sendesignale mit einer bestimmten Sendefrequenz emittiert; für Radarsysteme in Kraftfahrzeugen ist hierbei ein Frequenzband von 76.0 GHz bis 77.0 GHz zugelassen (innerhalb dieses Frequenzbands von 1 GHz kann eine beliebige Sendefrequenz für das Sendesignal gewählt werden). Beim Puls-Doppler-Radarsystem wird in den Meßvorgängen mindestens einer Meßphase eines Meßzyklus ein Sendesignal bsp. mit einer konstanten Sendefrequenz (Trägerfrequenz) innerhalb dieses Frequenzbands jeweils in einen bestimmten, der Meßphase zugeordneten Winkelbereich emittiert (Sendebetrieb); das durch Reflexion an den sich in diesem Winkelbereich befindlichen Zielobjekten (bsp. den vorausfahrenden Fahrzeugen oder Hindernissen) erhaltene Reflexionssignal wird als analoges Empfangssignal detektiert (Empfangsbetrieb). Von einer Signalverarbeitungseinheit wird das Empfangssignal wahrend eines bestimmten Zeitintervalls innerhalb des Empfangsbetriebs weiterverarbeitet und hinsichtlich Frequenzdifferenz bzw Frequenzverschiebung und/oder Phasendifferenz bzw Phasenverschiebung ausgewertet und hieraus die Entfernungsinformation (und ggf die Geschwindigkeitsinformation sowie die Beschleuni- gungsinformation) durch Spektralanalyse gewonnen
Gemäß der Figur 1 wird das drei Antennen 1 1 , 1 2, 1 3 aufweisende Radarsystem 3 an einer für diesen Anwendungsfall vorteilhaften Position im oder am Kraftfahrzeug 1 implementiert, bsp im Kuhlergrill des Kraftfahrzeugs 1 integriert In einem Meßzyklus wird in einer Vielzahl von Meßvorgangen in jedem Meßvorgang von einer der Antennen 1 1 , 1 2, 13 des Radarsystems 3 jeweils ein Sendesignal 22 als HF-Signal emittiert; das durch Reflexion an den sich im Beobachtungsbereich 23, d h im durch das Sendesignal 22 der jeweiligen Antenne 1 1 , 1 2, 13 erfaßten Entfernungsbereich und Winkeibereich (Azimutwinkel bzw horizontaler Offnungswmkel α einer Antenne 1 1 , 1 2, 13, bsp α = 3°) befindlichen Zielobjekten 2 (bsp den vorausfahrenden Fahrzeugen oder Hindernissen) erhaltene Reflexionssignal 21 wird von der jeweiligen Antenne 1 1 , 1 2, 13 als analoges Empfangssignal detektiert Von einer Steuereinheit 30 wird das von einer Signalverarbeitungseinheit 40 weiterverarbeitete Empfangssignal hinsichtlich der Laufzeit ausgewertet und aus den Reflexions- Signalen die Entfernungsinformation und die Geschwindigkeitsinformation sowie die
Beschleunigungsinformation gewonnen, d h die Entfernung dz zwischen dem Kraftfahrzeug 1 und Zielobjekten 2 und/oder die Geschwindigkeit der Zielobjekte 2 und/oder die Beschleunigung der Zielobjekte 2 Der Beobachtungsbereich 23 (insbesondere der vom Radarsystem 3 erfaßte Winkelbereich) wird in drei, jeweils einer der Antennen 1 1 , 1 2, 1 3 zugeordnete Zielsektoren 24 unterteilt, wobei jeder Zielsektor 24 mehrere Entfernungsbereiche 25 („ränge gates") aufweist, in denen jeweils Zielobjekte 2 erfaßt werden, anhand deren Information eine Objektmatrix der Zielobjekte 2 erstellt wird, bsp wird jeder der Zielsektoren 24 aquidistant in 30 Entfernungsbereiche 25 unterteilt In einem Meßzyklus wird für die Antennen 1 1 , 1 2, 13 jeweils eine Meßphase definiert, in der jeweils eine Vielzahl von aufeinanderfolgenden Meßvorgangen durchgeführt werden, hierbei werden in einer Meßphase des Meßzyklus die Empfangssignale aus allen Entfernungsbereichen 25 innerhalb des dieser Meßphase zugeordneten Zielsektors 24 selektiert, wobei alle Entfernungsbereiche 25 dieses Zielsektors 24 sukzessive jeweils mit einer Vielzahl von Meßvorgängen und damit Sendepulsen abgefragt werden. D.h. die Entfernungsmessung erfolgt durch sogenanntes „Rangegating", indem nach der Emission eines Sendepulses die Empfangssignale 21 während einer der Pulsdauer des Sendepulses entsprechenden Zeitdauer (bsp. 33 ns) verarbeitet werden und dies für alle 30 Entfernungsbereiche 25 mit der entsprechenden Laufzeitdifferenz sukzessive durchgeführt wird. Bsp. werden in jeder der drei Meßphasen und damit für jeden Zielsektor 24 für jeden der 30 Entfernungsbereiche 25 jeweils 133 Meßvorgänge durchgeführt und damit jeweils 1 33 Sendepulse emittiert; in jeder der drei Meßphasen werden somit 4000 Meßvorgänge durchgeführt und damit 4000 Sendepulse emittiert, für den gesamten Meßzyklus somit ca. 1 2000 Meßvorgänge und damit 1 2000 Sendepulse.
Gemäß der Figur 2 sind folgende Komponenten des Puls-Doppler-Radarsystems 3 vorgesehen:
• Eine Sende-Empfangs-Einheit 10 mit einer „Sendeseite" 1 5 und einer „Empfangsseite" 1 6 zur Emission des Sendesignals 22 und zur Detektion des Empfangssignals 21 , deren wesentliche Komponenten als einheitliches Modul kom- pakt zusammengefaßt sind. Die zur Emission des Sendesignals 22 und gleichzeitig zur Detektion des Empfangssignals 21 dienende Antenneneinheit 1 7 der Sende-Empfangs-Einheit 1 0 weist zur Erfassung unterschiedlicher Winkelbereiche des Azimutwinkels α und damit für jeden in Figur 1 dargestellten Zielsektor 24 jeweils eine Antenne 1 1 , 1 2, 1 3 auf sowie einen Antennenschalter 1 8 zur Selek- tion der jeweiligen Antenne 1 1 , 1 2, 1 3; in den Meßvorgängen einer Meßphase wird die für diese Meßphase vorgesehene Antenne 1 1 ; 1 2; 1 3 gleichzeitig als Sendeantenne und als Empfangsantenne herangezogen. Mittels der HF- Schalteinheit 1 9 mit den beiden HF-Schaltern Sende-Empfangs-Schalter 26 und LO-Schalter 27 kann zwischen der Sendeseite 1 5 und der Empfangsseite 1 6 der Sende-Empfangs-Einheit 10, d.h. zwischen dem Sendebetrieb und dem Empfangsbetrieb umgeschaltet werden; gleichzeitig wird eine Frequenzmodulation zur Generierung des Sendesignals 22 vorgenommen. Das (synchrone) Schalten des Sende-Empfangs-Schalters 26 und des LO-Schalters 27 wird in Abhängigkeit der Pulsdauer der Sendepulse durchgeführt (Pulsdauer bsp. 33 ns). Im Sendebetrieb sind die beiden Schalter Sende-Empfangs-Schalter 26 und LO-Schalter 27 in der linken Stellung (auf der Sendeseite 1 5), der Antennenschalter 1 8 ist mit einer der als Sendeantenne fungierenden Antenne 1 1 ; 1 2; 1 3 verbunden; im Empfangsbetrieb sind die beiden Schalter Sende-Empfangs-Schalter 26 und LO-Schalter 27 in der rechten Stellung (auf der Empfangsseite 1 6), der Antennenschalter 1 8 ist mit der als Sendeantenne herangezogenen Antenne 1 1 ; 1 2; 1 3 verbunden (d.h. die Empfangsantenne ist in einer Meßphase und damit für einen Zielsektor 24 die -gleiche Antenne 1 1 ; 1 2; 1 3 wie die Sendeantenne). Mittels eines bsp. als VCO ausgebildeten Oszillators 29 (Leistung bsp. 10 mW) wird HF-Strahlung mit einer Oszillatorfrequenz fo von 76.68 GHz (als Sendefrequenz fs der Sendepulse) und mit einer Oszillatorfrequenz f0 von 76.5 GHz (als Empfangsfrequenz fE) erzeugt; die Frequenzdifferenz zwischen der Sendefrequenz fs der Sendepulse und der Empfangsfrequenz fE beträgt somit bsp. 1 80 MHz. In jedem Meßvorgang einer
Meßphase wird (wie oben beschrieben) mittels der HF-Schalteinheit 1 9 eine Umschaltung vom Sendebetrieb zum Empfangsbetrieb vorgenommen. Hierbei wird im Sendebetrieb (bsp. für 33 ns) der Oszillator 29 auf die Oszillatorfrequenz fo von 76.68 GHz geschaltet (Sendefrequenz fs der Sendepulse somit 76.68 GHz), in der restlichen Zeit (im Empfangsbetrieb) wird der Oszillator 29 auf die Oszillatorfrequenz fo von 76.5 GHz geschaltet (Empfangsfrequenz fE somit 76.5 GHz). Von der Empfangsseite 1 6 der Sende-Empfangs-Einheit 10 werden als Empfangssignal 21 die vom letztmalig emittierten Sendepuls herrührenden Reflexionssignale der im erfaßten Beobachtungsbereich befindlichen Zielobjekte 2 vor der Emission des nächsten Sendepulses detektiert (d.h. vor der Umschaltung vom
Empfangsbetrieb eines Meßvorgangs zum Sendebetrieb des nächsten Meßvorgangs); hierzu wird der Antennenschalter 1 8 für eine bestimmte Empfangszeit mit der jeweiligen Empfangsantenne 1 1 ; 1 2; 13 verbunden, wobei die Empfangszeit und damit der Entfernungsbereich 25 im jeweiligen der Empfangsantenne 1 1 ; 1 2; 13 zugeordneten Zielsektor 24 (Winkelbereich α) zur Entfernungsselektion variiert wird. Der auf der Empfangsseite 1 6 der Sende-Empfangs-Einheit 10 vorgesehene Mischer 28 überführt das Empfangssignal 22 (die an den Zielobjekten 2 reflektierten Empfangspulse mit einer um die Dopplerfrequenz höheren Frequenz als die Sendefrequenz fs von bsp. 76.68 GHz) durch Mischung (Multiplikation) mit der Empfangsfrequenz fE von bsp. 76.5 GHz somit in die Zwischenfrequenzebene (Zwischenfrequenz des Mischsignals somit bsp. 1 80 MHz), d.h. das Empfangssignal 22 wird bsp. auf eine Zwischenfrequenz von 1 80 MHz heruntergemischt. • Eine Signalverarbeitungseinheit 40 zur Signalverarbeitung und Auswertung des
Mischsignals; die Signalverarbeitungseinheit 40 enthält bsp. einen Vorverstärker, ein Filter, einen Analog-Digital-Wandler (A/D-Wandler) und eine Digitalverarbei- tungseinheit. Eine Auswertung des Mischsignals wird dabei innerhalb eines bestimmten Zeitintervalls während des Empfangsbetriebs im jeweiligen Meßvorgang 'vorgenommen.
• Eine Steuereinheit 30, die die Ansteuerung des Antennenschalters 18 der Antenneneinheit 1 7 und der beiden HF-Schalter Sende-Empfangs-Schalter 26 und LO- Schalter 27 der HF-Schalteinheit 1 9 sowie die Ansteuerung des Oszillators 29 übernimmt.
Während der Zeitdauer, in der das Fahrerassistenzsystem des Kraftfahrzeugs aktiviert ist, werden Meßvorgänge durchgeführt, die bestimmten Meßphasen und Meßzyklen zugeordnet werden. Ein Meßzyklus wird bsp. in drei gleichlange, zeitlich aufeinanderfolgende Meßphasen unterteilt, in denen für jeden der 30 Entfernungsbe- reiche 25 eines Zielsektors 24 eine Vielzahl von Sendepulsen emittiert werden. Die
Zeitdauer eines Meßzyklus setzt sich hierbei aus der Zeitdauer der Meßvorgänge (Meßphasen) und der zur Signalverarbeitung und für weitere Hilfsfunktionen (bsp. Regelung der ZF-Frequenz etc.) benötigten Zeitdauer zusammen; bsp. beträgt die Zeitdauer eines Meßzyklus ca. 66 ms. In der Figur 3 sind mehrere, zwei zeitlich aufeinanderfolgenden Meßzyklen MZ zugeordnete Meßvorgänge beispielhaft dargestellt, d.h. mehrere Meßvorgänge beim Übergang vom Meßzyklus MZ1 zum Meßzyklus MZ2 zum Zeitpunkt tx. In jedem Meßzyklus MZ werden bsp. 1 2000 Meßvorgänge vorgenommen, indem 1 2000-mal vom Sendebetrieb zum Empfangsbetrieb umgeschaltet wird, d.h. es werden in je- dem Meßzyklus MZ 1 2000 Sendepulse emittiert. Die Zeitdauer eines Meßvorgangs und damit die Periodendauer TP eines Pulszyklus der Sendepulse setzt sich aus der Pulsdauer bzw. dem Sendeintervall (Sendebetrieb) und der Pulspause (E p- fangsbetrieb) zusammen. Im Empfangsbetrieb (Pulspause ) werden als Empfangssignale 21 die Reflexionssignale durch die jeweils für die Meßphase vorgegebene Empfangsantenne 1 1 ; 1 2; 1 3 aus einem bestimmten Winkelbereich α detektiert; weiterhin wird im Empfangsbetrieb eine bestimmte Empfangsdauer (ein bestimmtes Empfangsintervall) vorgegeben, in der die detektierten Empfangssignale 21 weiterverarbeitet und ausgewertet werden. Bsp. beträgt die Pulsdauer der Sendepulse 33 ns, die Pulspause t0FF zwischen den Sendepulsen 3 μs und somit die Periodendauer TP eines Pulszyklus bzw. die Zeitdauer eines Meßvorgangs 3.033 μs; jeder Meßphase des Meßzyklus MZ werden 4000 Meßvorgänge und damit 4000 Pulszy- kle ι der Periodendauer TP zugeordnet, so daß die Meßphasen jeweils eine Zeitdauer von ca. 1 2.1 ms aufweisen (Gesamtdauer der Meßphasen eines Meßzyklus MZ somit ca. 36 ms, Gesamtdauer eines Meßzyklus MZ aufgrund der Signalverarbeitung und der Ausführung von weiteren Funktionen bsp. ca. 66 ms).
Gemäß der Figur 3a wird bei einem ungestörten Betrieb des Radarsystems 3 in den Meßzyklen MZ und damit auch in den Meßvorgängen der beiden aufeinanderfolgenden Meßzyklen MZ1 , MZ2 Sendepulse als Sendesignale 22 mit jeweils der gleichen Sendefrequenz fs emittiert; durch Umschaltung der Oszillatorfrequenz fo des Oszillators 29 ist im Sendebetrieb der während eines Sendepulses konstante Frequenzwert fs, der Sendefrequenz fs von bsp. 76.68 GHz um einen bestimmten Frequenzbetrag (bsp. um 1 80 MHz) höher als im Empfangsbetrieb der Frequenzwert fE, der Empfangsfrequenz f£ von bsp. 76.5 GHz.
Gemäß der Figur 3b werden bei einer Störung des Radarsystems 3 im Meßzyklus MZ1 durch die als Störsignale wirkenden Sendesignale eines anderen Radarsystems mit der gleichen Sendefrequenz fs, was insbesondere bei einen bestimmten Fre- quenzbereich durchlaufenden Radarsystemen auftritt (typischerweise emittieren
Radarsysteme Sendesignale mit unterschiedlichen Frequenzwerten für die Sendefrequenz fs innerhalb eines Frequenzbereichs von 200 MHz), von der Steuereinheit 30 für die Oszillatorfrequenz f0 im Sendebetrieb und im Empfangsbetrieb und damit für die Sendefrequenz fs des Sendesignals 22 und für die Empfangsfrequenz fE geän- derte Frequenzwerte vorgegeben, die sich jeweils um eine bestimmte Frequenzdifferenz Δf (Δf bsp. 230 MHz, bsp. als Summe der potentiellen Bandbreite des Störsignals von bsp. 200 MHz und der Bandbreite des Empfangsfilters des eigenen Radar- Systems von bsp. 30 MHz) von dem im Meßzyklus MZ1 vorgegebenen vorherigen Frequenzwerten für die Oszillatorfrequenz fo und damit vom Frequenzwert fs, für die Sendefrequenz fs des Sendesignals 22 und vom Frequenzwert fE, für die Empfangsfrequenz fE unterscheiden (bsp. betragen die geänderten Frequenzwerte der Oszilla- torfrequenz f0 somit 76.73 GHz und 76.91 GHz, so daß der geänderte Frequenzwert fs! der Sendefrequenz fs 76.91 GHz und der geänderte Frequenzwert fa der Empfangsfrequenz fE 76.73 GHz beträgt). Der geänderte Frequenzwert der Oszillatorfrequenz fo und damit der geänderte Frequenzwert fs* der Sendefrequenz fs und der geänderte Frequenzwert
Figure imgf000012_0001
der Empfangsfrequenz fE werden nach dem Erkennen einer Störung des Radarsystems 3 anhand der ausgewerteten Empfangssignale 21 des Meßzyklus MZ1 ab Beginn des nächsten Meßzyklus MZ2 (Zeitpunkt t,) für alle folgenden Meßzyklen MZ und damit für deren Meßvorgänge so lange vorgegeben, wie ein ungestörter Betrieb des Radarsystems 3 mit dem geänderten Frequenzwert fs2 der Sendefrequenz fs und dem geänderten Frequenzwert fE2 der Empfangsfrequenz fE möglich ist. Ein Auftreten von Störungen wird hierbei durch Bewertung der in einem Meßzyklus MZ anhand der Auswertung der Empfangssignale 21 ermittelten Position und physikalischen Eigenschaften der Zielobjekte 2 unter Zuhilfenahme von Plausibilitätsbetrachtungen festgelegt.

Claims

Patentansprüche
I . Nerfahren zum Betreiben eines Radarsystems (3), bei dem in einem Meßzyklus (MZ) mit einer Vielzahl von Meßvorgängen die Entfernung zu sich im Beobachtungsbereich (23) befindlichen Zielobjekten (2) bestimmt wird, wobei in jedem Meßvorgang in einem Sendebetrieb ein Sendesignal (22) mit einer einen bestimmten Frequenzwert (fs,) aufweisenden Sendefrequenz (fs) emittiert wird und in einem Empfangsbetrieb Reflexionssignale als Empfangssignal (21 ) detektiert werden, dadurch gekennzeichnet, daß bei einer anhand der ausgewerteten Empfangssignale (21 ) eines Meßzyklus
(MZ1 ) erkannten Störung des Radarsystems (3) durch Störsignale mit einer einem Frequenzwert (fs,) der Sendefrequenz (fs) entsprechenden Störfrequenz zumindest in den Meßvorgängen des darauffolgenden Meßzyklus (MZ2) für die Sendefrequenz (fs) ein um eine konstante Frequenzdifferenz (Δf) vom Fre- quenzwert (fs,) des vorausgehenden Meßzyklus (MZ1 ) abweichender geänderter
Frequenzwert (fs!) vorgegeben wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß der geänderte Frequenzwert (fSJ) für die Sendefrequenz (f5) bis zu dem Meßzyklus (MZ) vorgegeben wird, in dem eine Störung des Radarsystems (3) durch Störsignale mit einer ei- nem geänderten Frequenzwert (fs2) für die Sendefrequenz (fs) entsprechenden
Störfrequenz erkannt wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß in den Meßvorgängen eines Meßzyklus (MZ) Sendesignale (22) mit einer jeweils den gleichen Frequenzwert (fs.) aufweisenden Sendefrequenz (fs) emittiert werden.
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß in den Meßvor- gangen eines Meßzyklus (MZ) Sendesignale (22) mit einer innerhalb eines Frequenzbereichs variierenden, unterschiedliche Frequenzwerte aufweisenden Sendefrequenz (fs) emittiert werden.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Sendefrequenz (fs) des Sendesignals (22) von einem Oszillator (29) erzeugt wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß zur Veränderung des
Frequenzwerts (fs,, fS2) für die Sendefrequenz (fs) die Oszillatorfrequenz (fo) des Oszillatorsignals variiert wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Auftreten von Störsignalen unter Berücksichtigung der aus den ausgewerteten Empfangssignalen (21 ) abgeleiteten physikalischen Eigenschaften der sich im
Beobachtungsbereich (23) befindlichen Zielobjekte (2) bewertet wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß in jedem Meßvorgang zwischen einem Sendebetrieb und einem Empfangsbetrieb umgeschaltet wird, und daß im Sendebetrieb ein pulsförmiges Sendesignal (22) emittiert wird.
PCT/EP2002/003915 2001-04-20 2002-04-09 Verfahren zum betreiben eines radarsystems WO2002086536A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10119289.4 2001-04-20
DE10119289A DE10119289A1 (de) 2001-04-20 2001-04-20 Verfahren zum Betreiben eines Radarsystems

Publications (2)

Publication Number Publication Date
WO2002086536A2 true WO2002086536A2 (de) 2002-10-31
WO2002086536A3 WO2002086536A3 (de) 2003-02-20

Family

ID=7682032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/003915 WO2002086536A2 (de) 2001-04-20 2002-04-09 Verfahren zum betreiben eines radarsystems

Country Status (2)

Country Link
DE (1) DE10119289A1 (de)
WO (1) WO2002086536A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008082973A1 (en) * 2006-12-28 2008-07-10 Valeo Raytheon Systems, Inc. System and method for reducing the effect of a radar interference signal
US7403153B2 (en) 2004-12-15 2008-07-22 Valeo Raytheon Systems, Inc. System and method for reducing a radar interference signal
WO2009043618A2 (de) * 2007-09-28 2009-04-09 Robert Bosch Gmbh Messvorrichtung

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014116021A1 (de) * 2014-11-04 2016-05-04 Amazonen-Werke H. Dreyer Gmbh & Co. Kg Verfahren zur Steuerung und/oder Regelung einer Sensoranordnung zur Reduktion des Rauschniveaus dieser Sensoranordnung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4328497A (en) * 1980-08-11 1982-05-04 Westinghouse Electric Corp. Method and system for jamming analysis and transmission selection
US4358766A (en) * 1974-07-01 1982-11-09 Sanders Associates, Inc. Jamming signal reduction system
US5017921A (en) * 1989-12-13 1991-05-21 Grumman Aerospace Corporation Radar system and a method for operating a radar system
US5274380A (en) * 1992-03-17 1993-12-28 Fujitsu Limited FM-CW radar
US5280288A (en) * 1992-08-14 1994-01-18 Vorad Safety Systems, Inc. Interference avoidance system for vehicular radar system
GB2299722A (en) * 1995-04-04 1996-10-09 Gunars Berzins Improvement to radars and sonars

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3347571B2 (ja) * 1996-03-12 2002-11-20 富士通株式会社 レーダ装置
DE19631590C2 (de) * 1996-08-05 1999-09-23 Bosch Gmbh Robert Verfahren zur Behandlung von Störsignalen bei einem Kraftfahrzeug-Radarsystem und Kraftfahrzeug-Radarsystem hierfür

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4358766A (en) * 1974-07-01 1982-11-09 Sanders Associates, Inc. Jamming signal reduction system
US4328497A (en) * 1980-08-11 1982-05-04 Westinghouse Electric Corp. Method and system for jamming analysis and transmission selection
US5017921A (en) * 1989-12-13 1991-05-21 Grumman Aerospace Corporation Radar system and a method for operating a radar system
US5274380A (en) * 1992-03-17 1993-12-28 Fujitsu Limited FM-CW radar
US5280288A (en) * 1992-08-14 1994-01-18 Vorad Safety Systems, Inc. Interference avoidance system for vehicular radar system
GB2299722A (en) * 1995-04-04 1996-10-09 Gunars Berzins Improvement to radars and sonars

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7403153B2 (en) 2004-12-15 2008-07-22 Valeo Raytheon Systems, Inc. System and method for reducing a radar interference signal
WO2008082973A1 (en) * 2006-12-28 2008-07-10 Valeo Raytheon Systems, Inc. System and method for reducing the effect of a radar interference signal
WO2009043618A2 (de) * 2007-09-28 2009-04-09 Robert Bosch Gmbh Messvorrichtung
WO2009043618A3 (de) * 2007-09-28 2009-06-04 Bosch Gmbh Robert Messvorrichtung
US8698482B2 (en) 2007-09-28 2014-04-15 Robert Rosch Gmbh UWB measuring device capable of reducing disturbance in external signals

Also Published As

Publication number Publication date
DE10119289A1 (de) 2002-10-24
WO2002086536A3 (de) 2003-02-20

Similar Documents

Publication Publication Date Title
EP0922967B1 (de) Verfahren zum Betrieb eines Radarsystems
DE19803660C2 (de) Kraftfahrzeugradar
EP1864155B1 (de) Verfahren und vorrichtung zur abstands- und relativgeschwindigkeitsmessung mehrerer objekte
EP0980008A2 (de) Verfahren zum Betrieb eines Radarsystems
DE60035314T2 (de) Fahrzeug-Radargerät
DE69214456T2 (de) Kohärenter Puls-Doppler-Radar-Höhenmesser für hohe Dopplerraten und grosse Höhen
EP2417475B1 (de) Radarsystem mit anordnungen und verfahren zur entkopplung von sende- und empfangssignalen sowie unterdrückung von störeinstrahlungen
EP1856555B1 (de) Radarsystem für kraftfahrzeuge mit automatischer precrash-cw-funktion
DE102018132745B4 (de) Fmcw radar mit störsignalunterdrückung im zeitbereich
DE102006049879B4 (de) Radarsystem für Kraftfahrzeuge
WO2002014902A1 (de) Verfahren zur pulsbreitenmodulation eines radarsystems
DE102009016480A1 (de) Radarsystem zur Unterdrückung von Mehrdeutigkeiten bei der Bestimmung von Objektmaßen
WO2004053520A2 (de) Einrichtung zur abstands- und geschwindigkeitsmessung von objekten
DE10350553A1 (de) Vorrichtung sowie Verfahren zum Erfassen, zum Detektieren und/oder zum Auswerten von mindestens einem Objekt
DE10053061A1 (de) Verfahren zur adaptiven Zielverarbeitung in einem kraftfahrzeugradar
EP1680688B1 (de) Messeinrichtung f r ein kraftfahrzeug
DE10208332A1 (de) Pulsradarvorrichtung und Verfahren zum Erfassen, zum Detektieren und/oder zum Auswerten von mindestens einem Objekt
EP0814348A2 (de) Messverfahren für den Abstand zwischen einem Kraftfahrzeug und einem Objekt
WO2008022981A1 (de) Gepulstes fmcw radar mit range gates im empfangspfad
WO2006069924A1 (de) Radarsystem zur überwachung von zielen in verschiedenen entfernungsbereichen
DE102007008944A1 (de) Radarsystem zu Bestimmung der Länge von Objekten
DE102010040890A1 (de) Radarsensor mit phasengeregeltem Oszillator
WO2002086536A2 (de) Verfahren zum betreiben eines radarsystems
EP1431776B1 (de) Verfahren zur Bestimmung der Länge eines Objektes mittels Radar
WO2003027708A1 (de) Cw-radar mit bestimmung des objektabstandes über die laufzeit eines dem cw-signal aufgeprägten phasensprunges

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase