WO2002080202A1 - Composite magnetic material - Google Patents

Composite magnetic material Download PDF

Info

Publication number
WO2002080202A1
WO2002080202A1 PCT/JP2001/007516 JP0107516W WO02080202A1 WO 2002080202 A1 WO2002080202 A1 WO 2002080202A1 JP 0107516 W JP0107516 W JP 0107516W WO 02080202 A1 WO02080202 A1 WO 02080202A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite magnetic
iron
magnetic material
ferrite
resin
Prior art date
Application number
PCT/JP2001/007516
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiyuki Shimada
Original Assignee
Sumitomo Electric Industries, Ltd.
Denso Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd., Denso Corporation filed Critical Sumitomo Electric Industries, Ltd.
Priority to JP2002578524A priority Critical patent/JPWO2002080202A1/en
Publication of WO2002080202A1 publication Critical patent/WO2002080202A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
    • H01F1/26Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated by macromolecular organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • H01F1/24Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated

Definitions

  • the present invention relates to a composite magnetic material, and more particularly to a composite magnetic material provided with composite magnetic particles having gold magnetic particles and a layer containing metal oxide or a metal oxide magnetic substance.
  • the metal magnetic material has a high saturation magnetic flux density and magnetic permeability, has a low electrical resistivity (1 0- 6 ⁇ I 0 ⁇ cm), a large eddy current loss in middle and high frequency range. As a result, the magnetic properties deteriorate, and it is difficult to use it alone.
  • the metal oxide magnetic material has a higher electrical resistivity than the magnetic metal material (1 ⁇ 1 0 8 ⁇ cm) , a small eddy current loss in middle and high frequency range, the deterioration of the magnetic properties Sukunashi.
  • the saturation magnetic flux density is 1 to 3 to 1/2 of that of metallic magnetic materials, there are limitations on applications.
  • the surface of iron powder is coated with iron phosphate.
  • a method of forming a composite magnetic material by joining a plurality of composite magnetic particles having a film formed thereon with an organic substance such as polyphenylene ether or polyetherimide and an amide type oligomer.
  • the composite magnetic material When a composite magnetic material is used in the control mechanism of an automobile engine, not only the magnetic properties described above but also the temperature of the engine becomes high, so the composite magnetic material is required to have heat resistance.
  • the composite magnetic material described in the above publication the composite magnetic particles are bonded with an organic material having low heat resistance such as polyphenylene ether or polyetherimide and an amide type oligomer. Softens. As a result, there has been a problem that the bonding strength between adjacent composite magnetic particles is reduced, and the strength of the composite magnetic material is reduced.
  • this invention is made in order to solve the above-mentioned problems, and an object of this invention is to provide a composite magnetic material with high heat resistance. Disclosure of the invention
  • the present inventors have conducted various studies on a technology for improving the heat resistance of a composite magnetic material, and found that by setting the long-term heat resistance of the organic material joining the composite magnetic particles to 200 or more, the composite magnetic material was improved.
  • ⁇ long-term heat-resistant temperature '' is the heat-resistant temperature specified in UL (Underwriters Laboratories) Standard 746B, and the mechanical properties of the material after long-term heat treatment in zero gravity are reduced. It is a scale indicating the heat resistance limit. Specifically, it refers to a temperature at which the properties at room temperature, such as tensile strength and impact strength, are reduced by half after heat treatment in air for 100,000 hours.
  • an Alewuse plot of the high temperature accelerated test is used for estimating the long-term heat resistance temperature.
  • the composite magnetic material according to the present invention which has been made based on such findings, includes a plurality of composite magnetic particles joined to each other by an organic material.
  • the composite magnetic particles have metal magnetic particles and a coating layer containing a metal oxide or a metal oxide magnetic substance bonded to the surface of the metal magnetic particles, and the organic material has a long-term temperature of 200 ° C. or more. Has heat resistant temperature.
  • the plurality of composite magnetic particles are bonded to each other by an organic substance having a long-term heat-resistant temperature of 200 ° C. or more. Therefore, high Organic matter does not soften even at warm temperatures. As a result, the bonding force between the overlapping composite magnetic particles is maintained, so that the heat resistance of the composite magnetic material can be improved.
  • the organic substance is a thermoplastic resin having a ketone group, a thermoplastic polyethernitrile resin, a thermoplastic polyamide resin, a thermosetting polyamide resin, a thermoplastic polyimide resin, a thermosetting polyimide resin, a polyarylate. It includes at least one selected from the group consisting of a resin and a resin having fluorine.
  • Polyetheretherketone (long-term heat resistance: 260 ° C), polyetherketoneketone (PEKK, long-term heatproof temperature: 240 ° C), polyetherketone (PEK, long-term) Heat resistant temperature 220 ° C) and polyketone sulfide (PKS, long-term heat resistant temperature 210-240 ° C).
  • Thermoplastic polyamide Doimi de there is Amoko Ltd. trade name TOR LON (long Heat resistance temperature 2 30 D C ⁇ 2 50 ° C ) or Toray trade name TI 5000 (long-term heat resistance temperature 2 50 ° or more C) .
  • Polyarylate is ekonol (product name, long-term heat resistance: 240 ° C to 260 ° C).
  • thermosetting polyamide imide As a thermosetting polyamide imide, there is a trade name T I 1000 (prolonged heat resistance temperature 230.C) manufactured by Toray.
  • fluorine-containing resins examples include polytetrafluoroethylene (PTFE, long-term heat resistance of 260 ° C) and tetrafluoroethylene-perfluoroalkylbierether copolymer (PFA, long-term heat resistance of 260 ° C). C) and tetrafluoroethylene-hexafluoro Q propylene copolymer (FEP, long-term heat resistance 200 ° C).
  • the thickness of the coating layer is from 0.005 ⁇ m to 20 ⁇ m. If the thickness of the covering layer is less than 0.005 / 7. Nr, it will be difficult to obtain insulative properties by the covering layer.
  • the thickness of the coating layer is particularly preferably from 0.0 ⁇ m to 5 ⁇ m.
  • the thickness of the coating layer is not less than 0.05 ⁇ m and not more than 0.1 ⁇ rn.
  • the metal oxide magnetic material is Magunetai bets (F e 2 ⁇ 3), manganese (Mn) mono-zinc (Zn) ferrite, nickel (N i) —zinc (Zn) ferrite, kono noreto (Co) ferrite, manganese (Mn) ferrite, nickelo (Ni) ferrite, copper (Cu) ferrite, magnesium (Mg) ferrite, lithium (Li) ferrite, manganese (Mn) —magnesium (Mg) ferrite, copper (Cu) —zinc (Zn) ferrite and manganese (Mg) ) —Zinc (Zn) at least one species selected from the group consisting of ferrite.
  • the metal oxide magnetic substance contains metal oxide magnetic particles, and the average particle diameter of the metal oxide magnetic particles is 0.005 ⁇ m or more and 5 ⁇ m or less. If the average particle diameter of the metal oxide magnetic particles is less than 0.005 ⁇ m, it becomes difficult to produce the metal oxide magnetic particles. On the other hand, if the average particle size of the gold oxide magnetic particles exceeds 5 m, it is difficult to make the thickness of the coating layer uniform.
  • the average particle size of the metal oxide magnetic particles is particularly preferably 0.5 / .ra or more and 2 ⁇ or less.
  • average particle size refers to the particle size of a particle whose sum of masses from the smaller particle size reaches 50% of the total mass in a histogram of the particle size measured by the sieving method. That is, the c- metal oxide magnetic particles having a 50% particle diameter D50 have a soft magnetic property and an electric resistivity of L 0 to 3 ⁇ cm or more.
  • various soft magnetic ferrites or iron nitrides can be used. Particularly, manganese-zinc ferrite or nickel-zinc ferrite having a high saturation magnetic flux density is preferable. Use one or two or more of these.
  • the metal oxide is an oxide containing phosphorus (P) and iron (F e).
  • P phosphorus
  • F e iron
  • the coating layer covering the surface of the metal magnetic particles can be made thinner. Therefore, the density of the composite magnetic material can be increased, and the magnetic properties are improved.
  • the average particle size of the metal magnetic particles is 5 ⁇ m or more and 200 ⁇ m or less. If the average particle size of the gold magnetic particles is less than 5 am, the metal will be oxidized and the magnetic properties will deteriorate. If the average particle size of the metal magnetic particles exceeds 200 ⁇ m, the compressibility during molding is reduced, so that the density of the molded body is reduced and it is difficult to remove it.
  • the magnetic metal particles include iron CF e), iron (F e) —silicon (S i) -based alloy, iron (F e) —nitrogen (N) -based alloy, and iron (F e) —nickel (N i ) Based alloy, Iron (F e) —Carbon (C) based alloy, Iron (F e) —Boron (B) based alloy, Iron (F e) —Cobanoleto (C o) based alloy, Iron (F e) —Lin (P ) -Based alloys, iron (F e)-nickel (Ni)-cobalt (Co) based alloys and iron (Fe)-aluminum (A).)-Silicon (Si) based alloys Including at least one selected from One or more of these may be used. As long as the material of the metal magnetic particles is a soft magnetic metal, it may be a simple metal or an alloy, and there is no particular limitation.
  • the ratio of the organic substance to the composite magnetic particles is from 0.05% to 2% by mass. More preferably, the ratio of the organic substance to the composite magnetic particles is from 0.1% to 1% by mass.
  • 1 2 000 flux density at the time of applying a magnetic field above Arufazumbleiiota B is not less 1 5 k G or more, the electrical resistivity p force; 1 0 - no more than 3 Omega cm least 1 0 2 Omega cm, temperature Flexural strength at 200 ° C is 10 OMPa or more.
  • the mass ratio of the metal oxide or the metal oxide magnetic substance to the metal magnetic particles is desirably 0.2 ° / 0 or more and 30% or less. That is, (mass of metal oxide or metal oxide magnetic substance) / (mass of metal magnetic particles) is desirably 0.2% or more and 30% or less. If the ratio is less than 0.2%, the electric resistivity decreases, which causes a decrease in AC magnetic characteristics. On the other hand, if the ratio exceeds 30%, the ratio of the metal oxide or the metal oxide magnetic material increases, and the saturation magnetic flux density decreases. More preferably, the ratio of the metal oxide or the metal oxide magnetic substance to the metal magnetic particles is preferably not less than 0.4% and not more than 0.0% by mass.
  • the composite magnetic material according to the present invention has both high magnetic properties and high heat resistance, electronic components such as choke coils, switching power supply elements and magnetic heads, various motor components, automotive solenoids, various magnetic sensors, various types Used for solenoid valves. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a sectional view of a composite magnetic material according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION (Example ]. )
  • Somaroy 500 (trade name, manufactured by Heganess Co., Ltd.) was prepared.
  • a coating layer made of a metal oxide containing phosphorus and iron is formed on the surface of gold dust and iron powder as magnetic particles.
  • the average particle size of the composite magnetic particles is 150 ⁇ ⁇ ⁇ or less, and the average thickness of the coating layer is 20 nHi.
  • the composite magnetic particles so that the mass ratio of 1% 0., the average particle size of u this particles were prepared particles Porieterue Ichite ketone resin is less 3 mu m.
  • PVD method plating method, sputtering method, evaporation method, sol-gel method, etc. can be used.
  • the mixed powder was placed in a mold and molded.
  • a mold lubrication molding in which a lubricant was applied to a mold to perform molding was used.
  • the temperature of the mold was 130 ° C
  • the temperature of the mixed powder was 130 ° C
  • the molding pressure was 784 MPa to form a compact.
  • the temperature of the mold can be from 70 C to 150 ° C
  • the temperature of the mixed powder can be 200 from room temperature
  • the molding pressure can be from 392 MPa to 98 OMPa.
  • the molded body was heat-treated (annealed) at a temperature of 420 ° C in a nitrogen gas atmosphere.
  • the polyetheretherketone softened and entered the interface between the plurality of composite magnetic particles to join the composite magnetic particles to obtain a solid.
  • the temperature of the heat treatment is preferably in the range of 340 ° C to 450 ° C.
  • the polyetheretherketone does not soften completely and does not diffuse uniformly. If the temperature is 450 ° C or higher, the strength of the composite magnetic material does not improve due to decomposition of the polyetheretherketone.
  • heat treatment in argon or helium increases manufacturing costs.
  • HP HotIssostaticPRessinng
  • SPS SparkPlassaSintering
  • FIG. 1 shows a composite according to the invention. It is sectional drawing of a magnetic forest material.
  • composite magnetic material 1 includes a plurality of composite magnetic particles 30 joined to each other by organic substance 40.
  • the composite magnetic particles 30 include metal magnetic particles 10 and a coating layer 20 containing a metal oxide or a metal oxide magnetic substance, which is bonded to the surface of the metal magnetic particles 10.
  • Organic substance 40 has a long-term heat-resistant temperature of 200 ° C. or higher.
  • the density of this composite magnetic material 1 was 7.55 g Zc.
  • the magnetic flux density when a magnetic field of 1200 Am was applied was 17 kG, and the electric resistivity p was 100 ⁇ cm.
  • the composite magnetic material 1 was machined into a prism shape having a length, width, and thickness of 1 Omm X 5 Omm X 1.0 mm.
  • the transverse rupture strength was] .5 OMPa.
  • the transverse rupture strength was 13 OMPa.
  • the long-term heat resistance of polyetheretherketone is 200 ° C. or higher, the strength at high temperatures is increased, and the heat resistance of composite magnetic material 1 is improved.
  • polyetheretherketone has a low viscosity (melt viscosity) when softened, so even a small amount of the polyetheretherketone causes a uniform capillary phenomenon.
  • the composite magnetic particles 1 can be surely joined to each other with a small amount, the amount of organic substances can be reduced. As a result, the ratio of the metal magnetic material 10 can be increased, and the magnetic characteristics can be improved.
  • the use of the metal mold molding can reduce the amount of lubricant in the molded body. As a result, the density of one composite magnetic material is improved, and the magnetic properties can be improved. Further, since it is possible to prevent the occurrence of voids inside the molded body, it is possible to improve the magnetic permeability.
  • Example 2 a composite magnetic material was obtained by the same manufacturing method as in Example 1 except that the average thickness of the coating layer in Example 1 was set to 511 m and 100 nm. The density, the magnetic flux density when a magnetic field of 1200 AZm was applied, and the electrical resistivity of the obtained composite magnetic material compact were measured. Further, the composite magnetic material was machined into a square main shape having a length, width, and thickness of 10 mm ⁇ 50 mm ⁇ 10 mm. Flexural strength when performing a three-point bending test at room temperature with a span of 40 mm. The bending strength at the time of performing a three-point bending test at a temperature of 200 ° C was measured. Table 1 shows the results.
  • Table 1 shows that the electrical resistivity is higher than that of Example 1. Therefore, when it is desired to improve the electric resistivity, it is preferable that the average thickness of the coating layer is not less than 50 ⁇ and not more than 100 nm.
  • Somaroy 500 (trade name, manufactured by Heganess Co., Ltd.) was prepared.
  • a coating layer made of a metal oxide containing phosphorus and iron is formed on the surface of iron powder as magnetic metal particles.
  • the average particle size of the composite magnetic particles is 150 ⁇ m or less, and the average thickness of the coating layer is 20 nm.
  • Amid-type oligomer particles were mixed so that the mass ratio to the composite magnetic particles was 0.6%.
  • the mixed powder was placed in a mold, compressed at room temperature at a pressure of 60 OMPa, and then heat-treated in the atmosphere at a temperature of 300 ° C for 60 minutes. Thus, a composite magnetic material was obtained.
  • the density of this composite magnetic material was 7.15 g cm 3 .
  • the magnetic flux density was 15 kG, and the electric resistivity p was 2 ⁇ cm.
  • the composite magnetic material was machined into a prism shape having a length, width, and thickness of 1 OmmX5OmmX10 mm.
  • the transverse rupture strength was 12 OMPa.
  • the transverse rupture strength was 1 OMPa.
  • the coating layer was formed of an oxide containing phosphorus and iron. Even if the coating layer was formed of metal oxide magnetic particles, the same effect as in the above embodiment was obtained. Can be obtained. In this case, it is necessary to mix the metal magnetic particles and the metal oxide magnetic particles.
  • the method of mixing the metal magnetic particles and the metal oxide magnetic particles such as a mechanical two-way lubricating method, a ball mill, a vibrating ball mill, a planetary ball mill, a mechanofusion, a coprecipitation method, and a chemical vapor deposition method. It is possible to use any of (CVD method), physical vapor deposition method (PVD method), plating method, sputtering method, vapor deposition method, and sol-gel method.
  • a composite magnetic material having high heat resistance can be obtained.
  • the composite magnetic material according to the present invention is used for electronic components such as choke coils, switching power supply elements, and magnetic heads, various motor components, automotive solenoids, various magnetic sensors, various solenoid valves, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

A composite magnetic material (1) comprising a plurality of composite magnetic particles (30) bonded to each other with an organic substance (40). The composite magnetic particle (30) includes a metallic magnetic particle (10) and a coating layer (20) bonded to the surface of the metallic magnetic particle (10) and containing a metal oxide or a metallic oxide magnetic substance. The organic substance (40) has a long-term heat-resisting temperature of 200 ° or higher. The organic substance (40) contains at least one kind selected from the group consisting of a thermoplastic resin having a ketone group, a thermoplastic polyether nitrile resin, a thermoplastic polyamide-imide resin, a thermosetting polyamide-imide resin, a thermoplastic polyimide resin, a thermosetting polyimide resin, a polyarylate resin, and a resin having fluoride.

Description

明細書 複合磁性材料 技術分野  Description Composite magnetic material Technical field
この発明は、 複合磁性材料に関し、 特に、 金厲磁性粒子と、 金属酸化物または 金属酸化物磁性物質を含む被禝層とを有する複合磁性粒子を備えた複合磁性材料 に関するものである。 背景技術  The present invention relates to a composite magnetic material, and more particularly to a composite magnetic material provided with composite magnetic particles having gold magnetic particles and a layer containing metal oxide or a metal oxide magnetic substance. Background art
近年、 世界的な環境規制の強化に伴い、 各自動 *メーカーでは、 排気ガスの低 公害化、 および低燃費化に関する開発が活発に進められている。 そのため、 従来 のエンジンの機械的制御機構が電子制御機構に移行しつつあり、 これに伴い、 制 御機構の中枢部品である磁性材料の高性能化および小型化が要求されてレ、る。 特 に、 より精密な制御を小電力で行なうことができるように、 中高周波数領域での 高い磁気特性を有する材料の開発が進められている。  In recent years, with the tightening of global environmental regulations, each automaker * has been actively developing developments that reduce exhaust gas emissions and fuel consumption. For this reason, the mechanical control mechanism of the conventional engine is shifting to an electronic control mechanism, and accordingly, there is a demand for higher performance and smaller size of a magnetic material which is a central part of the control mechanism. In particular, the development of materials with high magnetic properties in the mid- and high-frequency ranges is being pursued so that more precise control can be performed with low power.
中高周波数領域で高い磁気特性を有するためには、 材料が、 高い飽和磁束密度 と、 高い透磁率と、 高い電気抵抗率とを併せ持つ必要がある。 一般に、 金属磁性 材料は、 高い飽和磁束密度と透磁率とを有するが、 電気抵抗率が低い (1 0—6〜 I 0 Ω c m) ため、 中高周波数領域で渦電流損失が大きい。 そのため、 磁気特 性が劣化し、 単体では使用が困難である。 In order to have high magnetic properties in the mid-high frequency range, materials must have high saturation magnetic flux density, high magnetic permeability, and high electrical resistivity. In general, the metal magnetic material has a high saturation magnetic flux density and magnetic permeability, has a low electrical resistivity (1 0- 6 ~ I 0 Ω cm), a large eddy current loss in middle and high frequency range. As a result, the magnetic properties deteriorate, and it is difficult to use it alone.
また、 金属酸化物磁性材料は金属磁性材料に比べて電気抵抗率が高い (1〜 1 0 8 Ω c m) ため、 中高周波数領域では渦電流損失が小さく、 磁気特性の劣化は 少なし、。 しかしながら、 飽和磁束密度が金属磁性材料の 1ノ 3〜 .1 / 2であるた め、 用途に制限がある。 Further, since the metal oxide magnetic material has a higher electrical resistivity than the magnetic metal material (1~ 1 0 8 Ω cm) , a small eddy current loss in middle and high frequency range, the deterioration of the magnetic properties Sukunashi. However, since the saturation magnetic flux density is 1 to 3 to 1/2 of that of metallic magnetic materials, there are limitations on applications.
かかる実情に鑑み、 金属磁性材料と金属酸化物磁性材料とを複合化することに より、 両者の欠点を補うような、 高い飽和磁束密度と、 高い透磁率と、 高い電気 抵抗率とを有する複合磁性材料が提案されている,,  In view of this situation, by combining a metal magnetic material and a metal oxide magnetic material, a composite having a high saturation magnetic flux density, a high magnetic permeability, and a high electrical resistivity, which compensates for the disadvantages of both. Magnetic materials have been proposed,
たとえば、 特表平 1 0— 5 0 3 8 0 7号公報では、 鉄粉の表面にリン酸鉄の被 膜が形成された複数の複合磁性粒子を、 ポリフヱニレンエーテルまたはポリエー テルイミ ドおよびアミ ド型オリゴマ一等の有機物で接合して複合磁性材料を形成 する方法が開示されている。 For example, in Japanese Patent Application Publication No. Hei 10-5303807, the surface of iron powder is coated with iron phosphate. There is disclosed a method of forming a composite magnetic material by joining a plurality of composite magnetic particles having a film formed thereon with an organic substance such as polyphenylene ether or polyetherimide and an amide type oligomer.
自動車のエンジンの制御機構で複合磁性材料を用レ、る場合には、 上述の磁気特 性だけでなく、 エンジンが高温となるため、 複合磁性材料に耐熱性が要求される。 しかしながら、 上記公報に記載された複合磁性材料では、 複合磁性粒子がポリフ ェニレンエーテルまたはポリエーテルィミ ドおよびアミ ド型オリゴマ一等の耐熱 性の低い有機物で接合されているため、 高温下では、 有機物が軟化する。 その結 果、 隣り合う複合磁性粒子同士の接合力が小さくなり、 複合磁性材料の強度が低 下するという問題があった。  When a composite magnetic material is used in the control mechanism of an automobile engine, not only the magnetic properties described above but also the temperature of the engine becomes high, so the composite magnetic material is required to have heat resistance. However, in the composite magnetic material described in the above publication, the composite magnetic particles are bonded with an organic material having low heat resistance such as polyphenylene ether or polyetherimide and an amide type oligomer. Softens. As a result, there has been a problem that the bonding strength between adjacent composite magnetic particles is reduced, and the strength of the composite magnetic material is reduced.
そこで、 この発明は上述のような問題点を解決するためになされたものであり、 耐熱性の高レ、複合磁性材料を提供することを目的とする。 発明の開示  Then, this invention is made in order to solve the above-mentioned problems, and an object of this invention is to provide a composite magnetic material with high heat resistance. Disclosure of the invention
本発明者らは、 複合磁性材料の耐熱性を向上させる技術について、 種々の検討 をしたところ、 複合磁性粒子を接合する有機物の長期耐熱温度を 2 0 0て以上と することで、.複合磁性材料の耐熱性を向上させることが可能となるという知見を 得た。 なお、 本明細書中、 「長期耐熱温度」 とは、 U L (Underwriters Laboratories)規格 7 4 6 Bで規定される耐熱温度であり、 無重力で長時間熱処 理をした際の力学特性が低下する耐熱限界を示す尺度である。 具体的には、 1 0 万時間空気中で熱処理した後、 常温での特性、 例えば引張り強さおよび衝搫強さ が半減する温度をいう。 この長期耐熱温度の推定には、 高温促進試験のァレユウ スプロットを用いる。  The present inventors have conducted various studies on a technology for improving the heat resistance of a composite magnetic material, and found that by setting the long-term heat resistance of the organic material joining the composite magnetic particles to 200 or more, the composite magnetic material was improved. We have found that it is possible to improve the heat resistance of materials. In this specification, the term `` long-term heat-resistant temperature '' is the heat-resistant temperature specified in UL (Underwriters Laboratories) Standard 746B, and the mechanical properties of the material after long-term heat treatment in zero gravity are reduced. It is a scale indicating the heat resistance limit. Specifically, it refers to a temperature at which the properties at room temperature, such as tensile strength and impact strength, are reduced by half after heat treatment in air for 100,000 hours. For estimating the long-term heat resistance temperature, an Alewuse plot of the high temperature accelerated test is used.
このような知見によりなされた、 この発明に従った複合磁性材料は、 互いに有 機物で接合された複数の複合磁性粒子を備える。 複合磁性粒子は、 金属磁性粒子 と、 その金属磁性粒子の表面に接合する、 金属酸化物または金属酸化物磁性物質 を含む被覆層とを有し、 有機物は、 温度 2 0 0 °C以上の長期耐熱温度を有する。 このように構成された複合磁性材料では、 複数の複合磁性粒子は、 温度 2 0 0 °C以上の長期耐熱温度を有する有機物により互いに接合される。 そのため、 高 温下でも有機物が軟化することがない。 その結果、 瞵り合う複合磁性粒子同士の 接合力が保たれるため、 複合磁性材料の耐熱性を向上させることができる。 The composite magnetic material according to the present invention, which has been made based on such findings, includes a plurality of composite magnetic particles joined to each other by an organic material. The composite magnetic particles have metal magnetic particles and a coating layer containing a metal oxide or a metal oxide magnetic substance bonded to the surface of the metal magnetic particles, and the organic material has a long-term temperature of 200 ° C. or more. Has heat resistant temperature. In the composite magnetic material thus configured, the plurality of composite magnetic particles are bonded to each other by an organic substance having a long-term heat-resistant temperature of 200 ° C. or more. Therefore, high Organic matter does not soften even at warm temperatures. As a result, the bonding force between the overlapping composite magnetic particles is maintained, so that the heat resistance of the composite magnetic material can be improved.
好ましくは、 有機物は、 ケトン基を有する熱可塑性樹脂、 熱可塑性ポリエーテ ルニトリル樹脂、 熱可塑性ポリァミ ドィミ ド樹脂、 熱硬化性ポリアミ ドィミ ド樹 脂、 熱可塑性ポリィミ ド樹脂、 熱硬化性ポリィミ ド樹脂、 ボリァリレート樹脂お よびフッ素を有する樹脂からなる群より選ばれた少なくとも一種を含む。  Preferably, the organic substance is a thermoplastic resin having a ketone group, a thermoplastic polyethernitrile resin, a thermoplastic polyamide resin, a thermosetting polyamide resin, a thermoplastic polyimide resin, a thermosetting polyimide resin, a polyarylate. It includes at least one selected from the group consisting of a resin and a resin having fluorine.
ケトン基を有する熱可塑性樹脂として、 ポリエーテルエーテルケトン (長期耐 熱温度 2 6 0 °C) 、 ポリエーテルケトンケトン ( P E KK、 長期耐熱温度 2 4 0°C) 、 ポリエーテルケトン (PEK、 長期耐熱温度 2 20。C) およびポリケト ンサルフアイ ド (PKS、 長期耐熱温度 2 1 0〜240°C) がある。  Polyetheretherketone (long-term heat resistance: 260 ° C), polyetherketoneketone (PEKK, long-term heatproof temperature: 240 ° C), polyetherketone (PEK, long-term) Heat resistant temperature 220 ° C) and polyketone sulfide (PKS, long-term heat resistant temperature 210-240 ° C).
熱可塑性ポリアミ ドイミ ドとして、 ァモコ社製の商品名 TOR LON (長期耐 熱温度 2 30DC〜 2 50°C) または東レ製の商品名 T I 5000 (長期耐熱温度 2 50°C以上) がある。 Thermoplastic polyamide Doimi de, there is Amoko Ltd. trade name TOR LON (long Heat resistance temperature 2 30 D C~ 2 50 ° C ) or Toray trade name TI 5000 (long-term heat resistance temperature 2 50 ° or more C) .
ポリアリ レートと して、 商品名ェコノール (長期耐熱温度 2 4 0°C〜 2 6 0°C) がある。  Polyarylate is ekonol (product name, long-term heat resistance: 240 ° C to 260 ° C).
熱硬化性ポリアミ ドイミドとして、 柬レ製の商品名 T I 1 000 (長期耐熱温 度 2 30。C) がある。  As a thermosetting polyamide imide, there is a trade name T I 1000 (prolonged heat resistance temperature 230.C) manufactured by Toray.
フッ素を有する樹脂として、 ポリテトラフルォロエチレン (PTFE、 長期耐 熱温度 26 0°C) 、 テ トラフルォロエチレン一パーフルォロアルキルビエルエー テル共重合体 (PFA、 長期耐熱温度 260°C) およびテトラフルォロエチレン —へキサフルォ Qプロピレン共重合体 (FEP、 長期耐熱温度 200°C) がある。 また好ましくは、 被覆層の厚みが 0. 005 μ m以上 20 μ m以下である。 被 覆層の厚みが 0. 00 5 /7. nr未満であれば、 被覆層により絶緣性を得ることが困 難となる。 被覆層の厚みが 20 inを超えると単位体積中の金属酸化物または金 属酸化物磁性物質の体積比率が大きくなり、 所定の飽和磁束 ¾度を得ることが困 難である。 また、 被覆層の厚みは特に 0. 0丄 m以上 5 μ m以下であること力 好ましい。  Examples of fluorine-containing resins include polytetrafluoroethylene (PTFE, long-term heat resistance of 260 ° C) and tetrafluoroethylene-perfluoroalkylbierether copolymer (PFA, long-term heat resistance of 260 ° C). C) and tetrafluoroethylene-hexafluoro Q propylene copolymer (FEP, long-term heat resistance 200 ° C). Also preferably, the thickness of the coating layer is from 0.005 μm to 20 μm. If the thickness of the covering layer is less than 0.005 / 7. Nr, it will be difficult to obtain insulative properties by the covering layer. When the thickness of the coating layer exceeds 20 inches, the volume ratio of the metal oxide or metal oxide magnetic substance per unit volume increases, and it is difficult to obtain a predetermined saturation magnetic flux intensity. The thickness of the coating layer is particularly preferably from 0.0 μm to 5 μm.
さらに好ましくは、 被覆層の厚みが 0. 0 5 μ m以上 0. .1. μ rn以下である。 好ましくは、 金属酸化物磁性物質は、 マグネタイ ト (F e23) 、 マンガン (Mn) 一亜鉛 (Zn) フェライ ト、 ニッケル (N i ) —亜鉛 (Z n) フェライ ト、 コノ ノレト (C o) フェライ ト、 マンガン (Mn) フェライ ト、 ニッケノレ (N i ) フェライ ト、 銅 (Cu) フェライ ト、 マグネシウム (Mg) フェライ ト、 リ チウム (L i ) フェライ ト、 マンガン (Mn) —マグネシウム (Mg) フェライ ト、 銅 (Cu) —亜鉛 (Z n) フェライ トおよびマンガン (Mg) —亜鉛 (Z n ) フ.エライ トからなる群より選ばれた少なくとも ]種を含む。 More preferably, the thickness of the coating layer is not less than 0.05 μm and not more than 0.1 μrn. Preferably, the metal oxide magnetic material is Magunetai bets (F e 23), manganese (Mn) mono-zinc (Zn) ferrite, nickel (N i) —zinc (Zn) ferrite, kono noreto (Co) ferrite, manganese (Mn) ferrite, nickelo (Ni) ferrite, copper (Cu) ferrite, magnesium (Mg) ferrite, lithium (Li) ferrite, manganese (Mn) —magnesium (Mg) ferrite, copper (Cu) —zinc (Zn) ferrite and manganese (Mg) ) —Zinc (Zn) at least one species selected from the group consisting of ferrite.
好ましくは、 金属酸化物磁性物質は、 金属酸化物磁性粒子を含み、 金厲酸化物 磁性粒子の平均粒径が 0. 00 5 μ m以上 5 μ .以下である。 金属酸化物磁性粒. 子の平均粒径が 0. 00 5 μ m未満では、 金属酸化物磁性粒子の作製が困難とな る。 また、 金厲酸化物磁性粒子の平均粒径が 5 mを超えると被覆層の膜厚を均 一にすることが困難である。 また、 金属酸化物磁性粒子の平均粒径は特に 0. 5 /.ra以上 2 μπι以下であることが好ましい。 なお、 本明細書中、 「平均粒径」 と は、 ふるい法によって測定した粒径のヒストグラム中、 粒径の小さい方からの質 量の和が総質量の 50 %に達する粒子の粒径、 すなわち 50 %粒径 D 50をレ、う c 金属酸化物磁性粒子は、 軟磁性を有し、 かつ電気抵抗率が; L 0—3Ω cm以上で あれば特に制限はない。 上述のように、 各種の軟磁性フェライ トまたは窒化鉄を 用いることができる。 特に、 飽和磁束密度の高いマンガン一亜鉛フェライ トまた は二ッケルー亜鉛フェライ 卜が好ましい。 これらの 1種または 2種以上を用レ、て 'もよレヽ。 Preferably, the metal oxide magnetic substance contains metal oxide magnetic particles, and the average particle diameter of the metal oxide magnetic particles is 0.005 μm or more and 5 μm or less. If the average particle diameter of the metal oxide magnetic particles is less than 0.005 μm, it becomes difficult to produce the metal oxide magnetic particles. On the other hand, if the average particle size of the gold oxide magnetic particles exceeds 5 m, it is difficult to make the thickness of the coating layer uniform. The average particle size of the metal oxide magnetic particles is particularly preferably 0.5 / .ra or more and 2 μπι or less. In this specification, “average particle size” refers to the particle size of a particle whose sum of masses from the smaller particle size reaches 50% of the total mass in a histogram of the particle size measured by the sieving method. That is, the c- metal oxide magnetic particles having a 50% particle diameter D50 have a soft magnetic property and an electric resistivity of L 0 to 3 Ωcm or more. As described above, various soft magnetic ferrites or iron nitrides can be used. Particularly, manganese-zinc ferrite or nickel-zinc ferrite having a high saturation magnetic flux density is preferable. Use one or two or more of these.
好ましくは、 金属酸化物は、 リン (P) と鉄 (F e) とを含む酸化物からなる。 このような金属酸化物を使用することで、 金属磁性粒子の表面を覆う被覆層をよ り薄くすることができる。 したがって、 複合磁性材料の密度を大きくすることが でき、 磁気特性が向上する。  Preferably, the metal oxide is an oxide containing phosphorus (P) and iron (F e). By using such a metal oxide, the coating layer covering the surface of the metal magnetic particles can be made thinner. Therefore, the density of the composite magnetic material can be increased, and the magnetic properties are improved.
好ましくは、 金属磁性粒子の平均粒径は 5 μ m以上 200 μ m以下である。 金 厲磁性粒子の平均粒径が 5 a m未満では、 金属が酸化しゃすレ、ため磁気特性が劣 化しゃすい。 金属磁性粒子の平均粒径が 200 μ mを超えると、 成形時の圧縮性 が低下するため、 成形体の密度が低下し取极レ、が困難となる。  Preferably, the average particle size of the metal magnetic particles is 5 μm or more and 200 μm or less. If the average particle size of the gold magnetic particles is less than 5 am, the metal will be oxidized and the magnetic properties will deteriorate. If the average particle size of the metal magnetic particles exceeds 200 μm, the compressibility during molding is reduced, so that the density of the molded body is reduced and it is difficult to remove it.
好ましくは、 金属磁性粒子は、 鉄 CF e) 、 鉄 (F e) —シリコン (S i ) 系合金、 鉄 (F e) —窒素 (N) 系合金、 鉄 (F e) —ニッケル (N i ) 系合金、 鉄 (F e) —炭素 (C) 系合金、 鉄 (F e) —ホウ素 (B) 系合金、 鉄 (F e) —コバノレト (C o) 系合金、 鉄 (F e) —リ ン (P) 系合金、 鉄 (F e) —二ッ ケル (N i ) —コバルト (C o) 系合金および鉄 (F e) -アルミニウム (A ]. ) -シリ コン (S i ) 系合金からなる群より選ばれた少なくとも 1種を含む。 これらの 1種または 2種以上を用いてもよい。 金属磁性粒子の材料は軟磁性金属 であれば、 金属単体でも合金でもよく特に制限はない。 Preferably, the magnetic metal particles include iron CF e), iron (F e) —silicon (S i) -based alloy, iron (F e) —nitrogen (N) -based alloy, and iron (F e) —nickel (N i ) Based alloy, Iron (F e) —Carbon (C) based alloy, Iron (F e) —Boron (B) based alloy, Iron (F e) —Cobanoleto (C o) based alloy, Iron (F e) —Lin (P ) -Based alloys, iron (F e)-nickel (Ni)-cobalt (Co) based alloys and iron (Fe)-aluminum (A).)-Silicon (Si) based alloys Including at least one selected from One or more of these may be used. As long as the material of the metal magnetic particles is a soft magnetic metal, it may be a simple metal or an alloy, and there is no particular limitation.
好ましくは、 複合磁性粒子に対する有機物の割合は、 質量比で 0. 0 5 %以上 2 %以下である。 さらに好ましくは、 複合磁性粒子に対する有機物の割合は、 質 量比で 0. 1 %以上 1 %以下である。  Preferably, the ratio of the organic substance to the composite magnetic particles is from 0.05% to 2% by mass. More preferably, the ratio of the organic substance to the composite magnetic particles is from 0.1% to 1% by mass.
好ましくは、 1 2 000 ΑΖΠΙ以上の磁場を印加したときの磁束密度 Bが 1 5 k G以上であり、 電気抵抗率 p力; 1 0 -3 Ω c m以上 1 02 Ω c m以下であり、 温度 2 00°Cでの抗折強度が 1 0 OMP a以上である。 Preferably, 1 2 000 flux density at the time of applying a magnetic field above Arufazetapaiiota B is not less 1 5 k G or more, the electrical resistivity p force; 1 0 - no more than 3 Omega cm least 1 0 2 Omega cm, temperature Flexural strength at 200 ° C is 10 OMPa or more.
金属磁性粒子に対する金属酸化物または金属酸化物磁性物質の比率は、 質量比 で 0. 2°/0以上 3 0%以下とすることが望ましい。 すなわち、 (金属酸化物また は金属酸化物磁性物質の質量) / (金属磁性粒子の質量) が 0. 2%以上 3 0 % 以下となることが望ましい。 比率が 0. 2 %未満では、 電気抵抗率が低下するた め交流磁気特性の低下を招く。 また、 比率が 3 0 %を超えると、 金属酸化物また は金属酸化物磁性材料の割合が多くなり、 飽和磁束密度の低下が生じる。 より好 ましくは、 金属磁性粒子に対する金属酸化物または金属酸化物磁性物質の比率は 質量比で 0. 4 %以上 ].0 %以下であることが望ましい。 The mass ratio of the metal oxide or the metal oxide magnetic substance to the metal magnetic particles is desirably 0.2 ° / 0 or more and 30% or less. That is, (mass of metal oxide or metal oxide magnetic substance) / (mass of metal magnetic particles) is desirably 0.2% or more and 30% or less. If the ratio is less than 0.2%, the electric resistivity decreases, which causes a decrease in AC magnetic characteristics. On the other hand, if the ratio exceeds 30%, the ratio of the metal oxide or the metal oxide magnetic material increases, and the saturation magnetic flux density decreases. More preferably, the ratio of the metal oxide or the metal oxide magnetic substance to the metal magnetic particles is preferably not less than 0.4% and not more than 0.0% by mass.
この発明に従った複合磁性材料は、 高い磁気特性と、 高い耐熱性とを併せ持つ ため、 チョークコイル、 スイッチング電源素子および磁気ヘッドなどの電子部品、 各種モータ部品、 自動車用ソレノイド、 各種磁気センサ、 各種電磁弁等に用いら れる。 図面の簡単な説明  Since the composite magnetic material according to the present invention has both high magnetic properties and high heat resistance, electronic components such as choke coils, switching power supply elements and magnetic heads, various motor components, automotive solenoids, various magnetic sensors, various types Used for solenoid valves. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 この発明に従った複合磁性材料の断面図である。 発明を実施するための最良の形態 (実施例 ]. ) FIG. 1 is a sectional view of a composite magnetic material according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION (Example ]. )
複合磁性粒子として、 へガネス社製の商品名ソマロイ 500を用意した。 この 粉末では、 金屑,磁性粒子としての鉄粉の表面に、 リンと鉄とを含む金属酸化物か らなる被覆層が形成されている。 複合磁性粒子の平均粒径は 1 50 μη·ι以下、 被 覆層の平均厚みは 20 n Hiである。  As composite magnetic particles, Somaroy 500 (trade name, manufactured by Heganess Co., Ltd.) was prepared. In this powder, a coating layer made of a metal oxide containing phosphorus and iron is formed on the surface of gold dust and iron powder as magnetic particles. The average particle size of the composite magnetic particles is 150 μη · ι or less, and the average thickness of the coating layer is 20 nHi.
複合磁性粒子に対して、 質量比が 0. 1 %となるように、 ポリエーテルエ一テ ルケトン樹脂の粒子を用意した u この粒子の平均粒径は 3 μ m以下である。 The composite magnetic particles, so that the mass ratio of 1% 0., the average particle size of u this particles were prepared particles Porieterue Ichite ketone resin is less 3 mu m.
これらをボールミルで混合して混合粉末を形成した。 なお、 混合方法に特に制 限はなく、 たとえばメカニカルァロイング法、 振動ボールミル、 遊星ボールミル、 メカノフュージョ ン、 共沈法、 化学気相蒸着法 (CVD法) 、 物理気相蒸着法 These were mixed in a ball mill to form a mixed powder. There is no particular limitation on the mixing method. For example, mechanical alloying, vibrating ball mill, planetary ball mill, mechanofusion, coprecipitation, chemical vapor deposition (CVD), physical vapor deposition
(PVD法) 、 めっき法、 スパッタリング法、 蒸着法、 ゾル—ゲル法などのいず れを使用することも可能である。 (PVD method), plating method, sputtering method, evaporation method, sol-gel method, etc. can be used.
混合粉末を金型に入れて、 成形を行なった。 成形方法として、 金型に潤滑剤を 塗布して成形する金型潤滑成形を用いた。 金型の温度を 130°Cとし、 混合粉末 の温度を 130°Cとし、 成形圧力を 784 MP aとして成形体を形成した。 なお、 金型の温度を 70 Cから 150°Cとし、 混合粉末の温度を室温から 200で.とし、 成形圧力を 392 MP aから 98 OMP aとすることができる。  The mixed powder was placed in a mold and molded. As a molding method, a mold lubrication molding in which a lubricant was applied to a mold to perform molding was used. The temperature of the mold was 130 ° C, the temperature of the mixed powder was 130 ° C, and the molding pressure was 784 MPa to form a compact. The temperature of the mold can be from 70 C to 150 ° C, the temperature of the mixed powder can be 200 from room temperature, and the molding pressure can be from 392 MPa to 98 OMPa.
成形体を窒素ガス雰囲気中、 温度 420°Cで熱処理 (焼きなまし) した。 これ により、 ポリエーテルエーテルケトンが軟化して複数の複合磁性粒子間の界面に 入り込んで複合磁性粒子同士を接合することにより固化体を得た。 なお、 熱処理 の温度は 340 °C以上 450 °C以下とすることが好ましい。 温度が 340 °C以下 ではポリエーテルエーテルケトンが完全に軟化しないので、 均一に拡散しない。 温度が 450 °C以上では、 ポリエーテルエーテルケトンが分解して複合磁性材料 の強度が向上しないからである。 また、 大気中で熱処理をすると、 ボリエーテル エーテルケトンがゲル化して複合磁性材料の強度が劣化する。 アルゴンまたはへ リゥム中で熱処理をすると製造コストが上昇する。 なお、 熱処理として H P (Ho t I s o s t a t i c P r e s s i n g) 、 または S PS (S p a r k P l a s a S i n t e r i n g) 等も用いることができる。  The molded body was heat-treated (annealed) at a temperature of 420 ° C in a nitrogen gas atmosphere. As a result, the polyetheretherketone softened and entered the interface between the plurality of composite magnetic particles to join the composite magnetic particles to obtain a solid. Note that the temperature of the heat treatment is preferably in the range of 340 ° C to 450 ° C. At temperatures below 340 ° C, the polyetheretherketone does not soften completely and does not diffuse uniformly. If the temperature is 450 ° C or higher, the strength of the composite magnetic material does not improve due to decomposition of the polyetheretherketone. In addition, when heat treatment is performed in the atmosphere, polyether ether ketone gels and the strength of the composite magnetic material deteriorates. Heat treatment in argon or helium increases manufacturing costs. Note that, as the heat treatment, HP (HotIssostaticPRessinng), SPS (SparkPlassaSintering), or the like can be used.
最後に固化体を加工して複合磁性材料を得た。 図 1は、 この発明に従った複合 磁性林料の断面図である。 図 1を参照して、 複合磁性材料 1は、 互いに有機物 4 0で接合された複数の複合磁性粒子 3 0を備える。 複合磁性粒子 3 0は、 金属磁 性粒子 1 0と、 その金属磁性粒子 ]. 0の表面に接合する、 金属酸化物または金属 酸化物磁性物質を含む被覆層 2 0とを有する。 有機物 4 0は、 温度 2 0 0 °C以上 の長期耐熱温度を有する。 この複合磁性材料 1の密度は 7 . 5 5 g Z c であ つた。 また、 1 2 0 0 0 A mの磁場を印加したときの磁束密度は 1 7 k Gであ り、 電気抵抗率 pは 1 0 Ω c mで った。 Finally, the solid was processed to obtain a composite magnetic material. FIG. 1 shows a composite according to the invention. It is sectional drawing of a magnetic forest material. Referring to FIG. 1, composite magnetic material 1 includes a plurality of composite magnetic particles 30 joined to each other by organic substance 40. The composite magnetic particles 30 include metal magnetic particles 10 and a coating layer 20 containing a metal oxide or a metal oxide magnetic substance, which is bonded to the surface of the metal magnetic particles 10. Organic substance 40 has a long-term heat-resistant temperature of 200 ° C. or higher. The density of this composite magnetic material 1 was 7.55 g Zc. The magnetic flux density when a magnetic field of 1200 Am was applied was 17 kG, and the electric resistivity p was 100 Ωcm.
さらに、 複合磁性材料 1を縦 X横 X厚みが 1 O mm X 5 O mm X 1. O mmの角 柱形状に加工した。 スパンを 4 0 mm.として室温での三点曲げ試験を行なったと ころ、 抗折強度は]. 5 O M P aであった。 また、 スパンを 4 O m mとして温度 2 0 0 °Cでの三点曲げ試験を行なったところ、 抗折強度は 1 3 O M P aであった。 以上の本発明では、 ポリエーテルエーテルケトンの長期耐熱温度が 2 0 0 °C以 上であるため、 高温での強度が高くなり、 複合磁性材料 1の耐熱性が向上してい ることがわかる。 さらに、 ポリエーテルエーテルケトンは、 軟化した際の粘度 (溶融粘度) が低いため、 少量でも毛細管現象が生じ、 均一に拡散する。 また、 少量で確実に複合磁性粒子 1同士を接合できるため、 有機物の量を少なくするこ とができる。 その結果、 金属磁性材料 1 0の割合を多くすることができ、 磁気的 特性を高めることができる。  Further, the composite magnetic material 1 was machined into a prism shape having a length, width, and thickness of 1 Omm X 5 Omm X 1.0 mm. When a three-point bending test was performed at room temperature with a span of 40 mm, the transverse rupture strength was] .5 OMPa. When a three-point bending test was performed at a temperature of 200 ° C. with a span of 4 O mm, the transverse rupture strength was 13 OMPa. In the present invention, since the long-term heat resistance of polyetheretherketone is 200 ° C. or higher, the strength at high temperatures is increased, and the heat resistance of composite magnetic material 1 is improved. Furthermore, polyetheretherketone has a low viscosity (melt viscosity) when softened, so even a small amount of the polyetheretherketone causes a uniform capillary phenomenon. In addition, since the composite magnetic particles 1 can be surely joined to each other with a small amount, the amount of organic substances can be reduced. As a result, the ratio of the metal magnetic material 10 can be increased, and the magnetic characteristics can be improved.
さらに、 金型潤搰成形を用いるため、 成形体内の潤滑剤を減少させることがで きる。 その結果、 複合磁性材料 1 ひの密度が向上し、 磁気的特性を高めることが できる。 また、 成形体内部に空孔が発生することを防止できるため、 透磁率を向 上させることができる。  Further, the use of the metal mold molding can reduce the amount of lubricant in the molded body. As a result, the density of one composite magnetic material is improved, and the magnetic properties can be improved. Further, since it is possible to prevent the occurrence of voids inside the molded body, it is possible to improve the magnetic permeability.
(実施例 2および 3 .)  (Examples 2 and 3.)
実施例 2および 3では、 実施例 1の被覆層の平均厚みを 5 0 11 mおよび 1 0 0 n mとし、 実施例 1と同様の製造方法により、 複合磁性材料を得た。 得られた複 合磁性材料の成形体について、 密度、 1 2 0 0 0 AZmの磁場を印加したときの 磁束密度、 および電気抵抗率を測定した。 さらに、 複合磁性材料を縦 X横 X厚み 力; 1 0 m m X 5 0 mm X 1 0 mmの角ネ主开状に加工した。 スパンを 4 0 m mとし て室温での三点曲げ試験を行なったときの抗折強度、 スパンを 4 O mmとして温 度 200°Cでの三点曲げ試験を行なったときの抗折強度を測定した。 それらの結 果を表 1に示す。 In Examples 2 and 3, a composite magnetic material was obtained by the same manufacturing method as in Example 1 except that the average thickness of the coating layer in Example 1 was set to 511 m and 100 nm. The density, the magnetic flux density when a magnetic field of 1200 AZm was applied, and the electrical resistivity of the obtained composite magnetic material compact were measured. Further, the composite magnetic material was machined into a square main shape having a length, width, and thickness of 10 mm × 50 mm × 10 mm. Flexural strength when performing a three-point bending test at room temperature with a span of 40 mm. The bending strength at the time of performing a three-point bending test at a temperature of 200 ° C was measured. Table 1 shows the results.
表:1.  table 1.
Figure imgf000010_0001
Figure imgf000010_0001
表 1より、 電気抵抗率が実施例 1よりも向上していることがわかる。 そのため、 電気抵抗率を向上させたい場合には、 被覆層の平均厚みを 50 ηηι以上 100 n m以下とすることが好ましい。  Table 1 shows that the electrical resistivity is higher than that of Example 1. Therefore, when it is desired to improve the electric resistivity, it is preferable that the average thickness of the coating layer is not less than 50 ηηι and not more than 100 nm.
(比較例)  (Comparative example)
複合磁性粒子として、 へガネス社製の商品名ソマロイ 500を用意した。 この 粉末では、 金属磁性粒子としての鉄粉の表面に、 リンと鉄とを含む金属酸化物か らなる被覆層が形成されている。 複合磁性粒子の平均粒径は 1 50 μ m以下、 被 覆層の平均厚みは 20 nmである。  As composite magnetic particles, Somaroy 500 (trade name, manufactured by Heganess Co., Ltd.) was prepared. In this powder, a coating layer made of a metal oxide containing phosphorus and iron is formed on the surface of iron powder as magnetic metal particles. The average particle size of the composite magnetic particles is 150 μm or less, and the average thickness of the coating layer is 20 nm.
複合磁性粒子に対して、 質量比が 0. 6 %となるように、 アミ ド型のオリゴマ 一の粒子を混合した。  Amid-type oligomer particles were mixed so that the mass ratio to the composite magnetic particles was 0.6%.
混合粉末を金型に入れて、 室温中、 圧力 60 OMP aで圧縮した後、 大気中で 温度 300 °Cで 60分熱処理した。 これにより複合磁性材料を得た。  The mixed powder was placed in a mold, compressed at room temperature at a pressure of 60 OMPa, and then heat-treated in the atmosphere at a temperature of 300 ° C for 60 minutes. Thus, a composite magnetic material was obtained.
この複合磁性材料の密度は 7. 1 5 gノ c m3であった。 また、 1 2000 A Zmの磁場を印加したときの磁束密度は 15 k Gであり、 電気抵抗率 pは 2 Ω c mであった。 さらに、 複合磁性材料を縦 X横 X厚みが 1 OmmX 5 O mmX 1 0 mmの角柱形状に加工した。 スパンを 4 Ominとして室温での三点曲げ試験を行 なったところ、 抗折強度は 1 2 OMP aであった。 また、 スパンを 4 Ommとし て温度 200°Cでの三点曲げ試験を行なったところ、 抗折強度は 1 OMP aであ つた。 The density of this composite magnetic material was 7.15 g cm 3 . When a magnetic field of 12000 A Zm was applied, the magnetic flux density was 15 kG, and the electric resistivity p was 2 Ωcm. Further, the composite magnetic material was machined into a prism shape having a length, width, and thickness of 1 OmmX5OmmX10 mm. When a three-point bending test was performed at room temperature with a span of 4 Omin, the transverse rupture strength was 12 OMPa. When a three-point bending test was performed at a temperature of 200 ° C with a span of 4 Omm, the transverse rupture strength was 1 OMPa.
以上、 この発明の実施例について説明したが、 ここで示した実施例はさまざま に変形することが可能である。  Although the embodiments of the present invention have been described above, the embodiments shown here can be variously modified.
まず、 上記の実施例では、 被覆層がリンと鉄とを含む酸化物で形成されていた 力 被覆層が金属酸化物磁性粒子で形成されていても、 上記実施例と同様の効果 を得ることができる。 この場合、 金属磁性粒子と金属酸化物磁性粒子とを混合す る必要がある。 金属磁性粒子と金属酸化物磁性粒子とを混合する方法に特に制限 はなく、 たとえばメ力二力ルァ口ィング法、 ボールミル、 振動ボールミル、 遊星 ボールミル、 メカノフュージョン、 共沈法、 化学気相蒸着法 (C V D法) 、 物理 気相蒸着法 (P V D法) 、 めっき法、 スパッタリング法、 蒸着法、 ゾルーゲル法 などのいずれを使用することも可能である。 First, in the above embodiment, the coating layer was formed of an oxide containing phosphorus and iron. Even if the coating layer was formed of metal oxide magnetic particles, the same effect as in the above embodiment was obtained. Can be obtained. In this case, it is necessary to mix the metal magnetic particles and the metal oxide magnetic particles. There is no particular limitation on the method of mixing the metal magnetic particles and the metal oxide magnetic particles, such as a mechanical two-way lubricating method, a ball mill, a vibrating ball mill, a planetary ball mill, a mechanofusion, a coprecipitation method, and a chemical vapor deposition method. It is possible to use any of (CVD method), physical vapor deposition method (PVD method), plating method, sputtering method, vapor deposition method, and sol-gel method.
今回開示された実施例はすべての点で例示であつて制限的なものではないと考 えられるべきである。 本発明の範囲は上記した説明ではなくて特許請求の範囲に よって示され、 特許請求の範囲と均等の意味および範囲内でのすべての変更が含 まれることが意図される。  The embodiments disclosed this time should be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
この発明に従えば、 高い耐熱性を有する複合磁性材料を得ることができる。 産樂上の利用可能性  According to the present invention, a composite magnetic material having high heat resistance can be obtained. Industrial availability
この発明に従つた複合磁性材料は、 チョークコイル、 スィツチング電源素子お よび磁気ヘッドなどの電子部品、 各種モータ部品、 自 ¾車用ソレノィ ド、 各種磁 気センサ、 各種電磁弁等に用いられる。  The composite magnetic material according to the present invention is used for electronic components such as choke coils, switching power supply elements, and magnetic heads, various motor components, automotive solenoids, various magnetic sensors, various solenoid valves, and the like.

Claims

請求の範囲 丄. 互いに有機物 (40) で接合された複数の複合磁性粒子 (30) を備え、 前記複合磁性粒子 (3 0) は、 金属磁性粒子 (1 0) と、 その金属磁性粒子 (1 0) の表面に接合する、 金属酸化物または金属酸化物磁性物質を含む被覆層 ( 20) とを有し、 Claims I. A plurality of composite magnetic particles (30) joined to each other by an organic substance (40), wherein the composite magnetic particles (30) are metal magnetic particles (10), and the metal magnetic particles (1 0), and a coating layer (20) containing a metal oxide or a metal oxide magnetic substance,
'己有機物 (40) は、 温度 2◦ 0°C以上の長期耐熱温度を有する、 複合磁性 材料: >  'The organic substance (40) has a long-term heat resistance of 2 ° 0 ° C or higher, a composite magnetic material:>
2. 前記有機物 (40) は、 ケトン基を有する熱可塑性樹脂、 熱可塑性ポリエ 一テルニトリル樹脂、 熱可塑性ポリアミ ドィミ ド樹脂、 熱硬化性ポリアミ ドイミ ド樹脂、 熱可塑性ポリィミ ド樹脂、 熱硬化性ポリイミド樹脂、 ポリアリ レー卜樹 脂およびフッ素を有する樹脂からなる群より選ばれた少なくとも一種を含む、 請 求項 ].に記載の複合磁性材料。  2. The organic substance (40) is a thermoplastic resin having a ketone group, a thermoplastic polyester ternitrile resin, a thermoplastic polyamide imide resin, a thermosetting polyamide imide resin, a thermoplastic polyimide resin, a thermosetting polyimide resin. The composite magnetic material according to claim 1, which comprises at least one member selected from the group consisting of a polyarylate resin and a resin having fluorine.
3. 前記被覆層 (20) の厚みが 0. 005 μπι以上 20 μπι以下である、 請 求項 1に記載の複合磁性材料。  3. The composite magnetic material according to claim 1, wherein the thickness of the coating layer (20) is from 0.005 μπι to 20 μπι.
4. 前記被覆層 (20) の厚みが 0. 05 111以上0. 以下である、 請 求項 3に記載の複合磁性材料。  4. The composite magnetic material according to claim 3, wherein the thickness of the coating layer (20) is 0.05 to 111.
5. 前記金属酸化物磁性物質は、 マグネタイ ト、 マンガン—亜鉛フユライ ト、 ニッケル 亜鉛フェライ ト、 コバルトフェライ ト、 マンガンフェライ ト、 ニッケ ノレフェライ ト、 銅フェライ ト、 マグネシウムフェライ ト、 リチウムフェライ ト、 マンガン一マグネシウムフェライ ト、 銅一亜鉛フェライ トおよびマンガン一亜鉛 フェライ 卜からなる群より選ばれた少なくとも 1·種を含む、 請求項 1に記載の複 合磁性材料。  5. The metal oxide magnetic material is magnetite, manganese-zinc fluoride, nickel zinc ferrite, cobalt ferrite, manganese ferrite, nickel ferrite, copper ferrite, magnesium ferrite, lithium ferrite, manganese ferrite. 2. The composite magnetic material according to claim 1, comprising at least one selected from the group consisting of magnesium ferrite, copper-zinc ferrite, and manganese-zinc ferrite.
6. 前記金属酸化物は、 鉄とリンとを含む酸化物からなる、 請求項 1に記載の 複合磁性林料。  6. The composite magnetic forest material according to claim 1, wherein the metal oxide comprises an oxide containing iron and phosphorus.
7. 前記金属磁性粒子 (1 0) の平均粒径は 5 μπι以上 200 M m以下である、 請求項 1に記載の複合磁性材料。 7. The average particle size of the metal magnetic particle (1 0) is 200 M m below 5 Myupaiiota above, the composite magnetic material according to claim 1.
8. 前記金属磁性粒子 (1 0) は、 鉄、 鉄—シリ コン系合金、 鉄—窒素系合金、 鉄—ニッケル系合金、 鉄一炭素系合金、 鉄一ホウ素系合金、 鉄一コバルト系合金、 鉄—リン系合金、 鉄—二ッケルーコバルト系合金および鉄—アルミニゥムーシリ コン系合金からなる群より選ばれた少なくとも 1種を含む、 請求項 1に記載の複 合磁性材料。 8. The magnetic metal particles (10) are iron, iron-silicon alloy, iron-nitrogen alloy, iron-nickel alloy, iron-carbon alloy, iron-boron alloy, iron-cobalt alloy. , 2. The composite magnetic material according to claim 1, comprising at least one selected from the group consisting of iron-phosphorus alloys, iron-nickel-cobalt alloys, and iron-aluminum silicon alloys.
9. 前記複合磁性粒子 (30) に対する前記有機物 (40) の割合は、 質量比 で 0. 05 %以上 2 %以下である、 請求項 1に記載の複合磁性材料。  9. The composite magnetic material according to claim 1, wherein a ratio of the organic substance (40) to the composite magnetic particles (30) is 0.05% to 2% by mass.
10. 1200 OAノ m以上の磁場を印加したときの磁束密度 Bが 15 k G以 上であり、 電気抵抗率 p力; 10—3Ω c πι以上 102Ω c m以下であり、 温度 20 0°Cでの抗折強度が 10 OMP a以上である、 請求項 1に記載の複合磁性材料。 10.1200 an OA Roh m or more magnetic flux density B at the time of applying a magnetic field on the 15 k G than the electrical resistivity p force; or less 10- 3 Ω c πι least 10 2 Omega cm, temperature 20 0 2. The composite magnetic material according to claim 1, having a flexural strength at 10 ° C. of 10 OMPa or more.
PCT/JP2001/007516 2001-03-29 2001-08-31 Composite magnetic material WO2002080202A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002578524A JPWO2002080202A1 (en) 2001-03-29 2001-08-31 Composite magnetic material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001096326 2001-03-29
JP2001-96326 2001-03-29

Publications (1)

Publication Number Publication Date
WO2002080202A1 true WO2002080202A1 (en) 2002-10-10

Family

ID=18950252

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007516 WO2002080202A1 (en) 2001-03-29 2001-08-31 Composite magnetic material

Country Status (2)

Country Link
JP (1) JPWO2002080202A1 (en)
WO (1) WO2002080202A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004107367A1 (en) * 2003-05-30 2004-12-09 Sumitomo Electric Industries, Ltd. Soft magnetic material, motor core, transformer core and process for producing soft magnetic material
WO2005013294A1 (en) * 2003-07-30 2005-02-10 Sumitomo Electric Industries, Ltd. Soft magnetic material, dust core, transformer core, motor core, and method for producing dust core
WO2005045857A1 (en) * 2003-11-05 2005-05-19 Mitsubishi Materials Pmg Corporation Electromagnet core and process for producing the same
JP2009295991A (en) * 2009-07-15 2009-12-17 Sumitomo Electric Ind Ltd Method of manufacturing pressed powder magnetic core
US8241518B2 (en) 2006-05-30 2012-08-14 Sumitomo Electric Industries, Ltd. Soft magnetic material and dust core
WO2014140982A1 (en) * 2013-03-14 2014-09-18 Sabic Innovative Plastics Ip B.V. Functionally graded polymer articles and methods of making same
WO2017154864A1 (en) * 2016-03-10 2017-09-14 パナソニックIpマネジメント株式会社 Ferrite material, composite magnetic body, coil component, and power supply

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638402A (en) * 1979-09-05 1981-04-13 Tdk Corp High density sintered magnetic body and its manufacture
JPH04352403A (en) * 1991-05-30 1992-12-07 Tokin Corp Composite type dust core
JPH07235410A (en) * 1994-02-22 1995-09-05 Yamauchi Corp Resin-bonded soft magnetic body
JPH11251131A (en) * 1998-03-02 1999-09-17 Hitachi Powdered Metals Co Ltd Dust core for high frequency and its manufacture
JP2000173817A (en) * 1998-12-07 2000-06-23 Sanyo Special Steel Co Ltd Magnetic metal powder for dust core

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4808326A (en) * 1985-06-10 1989-02-28 Takeuchi Press Industries Co., Ltd. Resin-bonded magnetic composition and process for producing magnetic molding therefrom
SE9402497D0 (en) * 1994-07-18 1994-07-18 Hoeganaes Ab Iron powder components containing thermoplastic resin and methods of making the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638402A (en) * 1979-09-05 1981-04-13 Tdk Corp High density sintered magnetic body and its manufacture
JPH04352403A (en) * 1991-05-30 1992-12-07 Tokin Corp Composite type dust core
JPH07235410A (en) * 1994-02-22 1995-09-05 Yamauchi Corp Resin-bonded soft magnetic body
JPH11251131A (en) * 1998-03-02 1999-09-17 Hitachi Powdered Metals Co Ltd Dust core for high frequency and its manufacture
JP2000173817A (en) * 1998-12-07 2000-06-23 Sanyo Special Steel Co Ltd Magnetic metal powder for dust core

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004107367A1 (en) * 2003-05-30 2004-12-09 Sumitomo Electric Industries, Ltd. Soft magnetic material, motor core, transformer core and process for producing soft magnetic material
WO2005013294A1 (en) * 2003-07-30 2005-02-10 Sumitomo Electric Industries, Ltd. Soft magnetic material, dust core, transformer core, motor core, and method for producing dust core
WO2005045857A1 (en) * 2003-11-05 2005-05-19 Mitsubishi Materials Pmg Corporation Electromagnet core and process for producing the same
US8241518B2 (en) 2006-05-30 2012-08-14 Sumitomo Electric Industries, Ltd. Soft magnetic material and dust core
JP2009295991A (en) * 2009-07-15 2009-12-17 Sumitomo Electric Ind Ltd Method of manufacturing pressed powder magnetic core
WO2014140982A1 (en) * 2013-03-14 2014-09-18 Sabic Innovative Plastics Ip B.V. Functionally graded polymer articles and methods of making same
CN105189621A (en) * 2013-03-14 2015-12-23 沙特基础全球技术有限公司 Functionally graded polymer articles and methods of making same
US9731456B2 (en) 2013-03-14 2017-08-15 Sabic Global Technologies B.V. Method of manufacturing a functionally graded article
WO2017154864A1 (en) * 2016-03-10 2017-09-14 パナソニックIpマネジメント株式会社 Ferrite material, composite magnetic body, coil component, and power supply
CN108779035A (en) * 2016-03-10 2018-11-09 松下知识产权经营株式会社 Ferrite Material, composite magnetic body, coil component and supply unit
JPWO2017154864A1 (en) * 2016-03-10 2019-01-10 パナソニックIpマネジメント株式会社 Ferrite material, composite magnetic material, coil component and power supply
US11222739B2 (en) 2016-03-10 2022-01-11 Panasonic Intellectual Property Management Co., Ltd. Ferrite material, composite magnetic body, coil component, and power supply device

Also Published As

Publication number Publication date
JPWO2002080202A1 (en) 2004-07-22

Similar Documents

Publication Publication Date Title
EP1928002B1 (en) Soft magnetic material, dust core, process for producing soft magnetic material, and process for producing dust core
JP4654881B2 (en) Dust core manufactured using soft magnetic material
WO2003038843A1 (en) Composite magnetic material producing method
US7374814B2 (en) Soft magnetic powder material containing a powdered lubricant and a method of manufacturing a soft magnetic powder compact
EP2680281B1 (en) Composite soft magnetic material having low magnetic strain and high magnetic flux density, method for producing same, and electromagnetic circuit component
EP2157586B1 (en) Sintered soft magnetic powder molded body
WO2005083725A1 (en) Soft magnetic material, powder magnetic core and process for producing the same
JP2002246219A (en) Dust core and its manufacturing method
JPWO2004107367A1 (en) Soft magnetic material, motor core, transformer core, and method for producing soft magnetic material
WO2002080202A1 (en) Composite magnetic material
EP1650773A1 (en) Soft magnetic material, dust core, transformer core, motor core, and method for producing dust core
JP2021121006A (en) Coil component, circuit board, and electronic apparatus
JP2024056104A (en) Inductors
JP2005336513A (en) Method for manufacturing soft-magnetic material and soft-magnetic material, and method for manufacturing dust core and dust core
JP2007123376A (en) Compound magnetic substance and magnetic device using same, and method of manufacturing same
JP2002256304A (en) Composite magnetic material and its manufacturing method
JP2005079511A (en) Soft magnetic material and its manufacturing method
CN116622316A (en) Adhesive bond coating with magnetic filler
WO2005038829A1 (en) Process for producing soft magnetism material, soft magnetism material and powder magnetic core
EP1662517A1 (en) Soft magnetic material and method for producing same
JP6955382B2 (en) Laminated coil
JP2021052075A (en) Coil component
JP2003272910A (en) Magnetic material
KR20160098930A (en) Magnetic sheet, and magnetic material for wireless charging having the same
JP2004363226A (en) Method for manufacturing soft magnetic material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002578524

Country of ref document: JP

122 Ep: pct application non-entry in european phase