WO2002079484A2 - Verfahren zum vergären von biomasse - Google Patents

Verfahren zum vergären von biomasse Download PDF

Info

Publication number
WO2002079484A2
WO2002079484A2 PCT/EP2002/003168 EP0203168W WO02079484A2 WO 2002079484 A2 WO2002079484 A2 WO 2002079484A2 EP 0203168 W EP0203168 W EP 0203168W WO 02079484 A2 WO02079484 A2 WO 02079484A2
Authority
WO
WIPO (PCT)
Prior art keywords
biomass
methanobacter
fermenter
fermentation
anaerobic
Prior art date
Application number
PCT/EP2002/003168
Other languages
English (en)
French (fr)
Other versions
WO2002079484A3 (de
Inventor
Thomas Kremb
Original Assignee
Friedrich, Karl, Heinz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Friedrich, Karl, Heinz filed Critical Friedrich, Karl, Heinz
Priority to AU2002302453A priority Critical patent/AU2002302453A1/en
Priority to EP02730040A priority patent/EP1373538A2/de
Publication of WO2002079484A2 publication Critical patent/WO2002079484A2/de
Publication of WO2002079484A3 publication Critical patent/WO2002079484A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/023Methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Definitions

  • the present invention relates to a process for the fermentation of, in particular, intermittent biomass to form biogas that can be used in engines.
  • the material which may have been comminuted, is first broken down aerobically by ubiquitous or cultured bacteria by splitting the organic substance into short-chain molecules such as alcohol and acids, etc., after which the anaerobic fermentation by acetic acid and methanobacter begins, which results in the formation of Acetic acid ultimately leads to C0 2 and methane (Schlegel, Fischer “Allyere Mikrobiologie", Springerverlag,).
  • DE 199 46 299 A1 relates to the joint fermentation of biowaste containing carbohydrate, fat and protein, cellulose-rich biowaste, digested sludge from sewage treatment plants as well as paper sludge and whey.
  • Hygiene at 70 ° C should be carried out with a slow increase in pH in order to then fermenting aerobically and anaerobically.
  • whey and paper sludge are added first, followed by treatment with sewage sludge.
  • the present invention is based on the object of processing seasonal and thus intermittent biomass in a manner which is more advantageous than the prior art. All contaminations should be avoided so that the rest (sludge) can be disposed of without further ado, but at the same time it should be possible to produce high-quality biogas (CH 4 ) as continuously as possible, which contains at least 50% by volume of methane, in order to make engines to be able to operate, for example in cogeneration, since at about 46 vol% gas engines no longer run. There are no indications of the solution to this problem from the prior art.
  • CH 4 high-quality biogas
  • the aerobically fermented biomass is rendered inert batchwise, ie protected against attack by methanobacter and vinegar bacteria, so that it can be temporarily stored without problems and also batch-wise treated anaerobically.
  • This inerting takes place by raising the pH and / or by partial drainage, since methanobacter bacilli and vinegar bacteria cannot be active when the residual water content is below about 10%.
  • increasing the pH to values above about 6.5 leads to an environment which is harmful to Methanobacter.
  • Anaerobic fermentation requires a pH of between 6.8 and 7.2.
  • the second measure essential to the invention therefore consists in producing and storing bacterial populations from acetic acid bacteria and Methanobacter in nutrient solution in a separate fermenter. If, after inerting, a suitable portion is activated by adjusting the pH to about 6.8 to 7.2 and adding Methanobacter and possibly water, mixing with the separately generated bacterial population nutrient solution immediately starts the fermentation, whereby this also runs significantly faster due to the precisely adjustable amount of bacteria.
  • the inerting can of course also be ramped up to the mentioned range from pH 6.8 to 7.2 in order to temporarily store the mass, at least briefly, as well as values of 7.2, whereby then for the anaerobic fermentation a pH reduction in the range required for the Methanobacter activity must be carried out.
  • Another advantage is that not only the amount of bacteria can be adapted to the needs of the material in the anaerobic fermenter, such as grape pomace, grass, leaves, etc., but that the Methanobacter specialize in the material to be processed in the separate fermenter before addition can. This happens so that one The water can of course be added by the nutrient solution itself.
  • the treatment with Aceto and Methanobacter can basically be carried out in the same digestion tower in which the aerobic fermentation takes place.
  • a third reactor is preferred so that the digestion tower becomes free for a new batch of biomass.
  • the cultivation fermenter naturally occurring and / or genetically engineered Methanobacter species are propagated. This is done in an oxygen-free nutrient solution, which is added to the biomass.
  • intermittent biomass such as autumn leaves, fruit or grape pomace, etc. can be worked off, with large amounts being pre-fermented and then rendered inert in order to work up this mass in batches, which of course can also be mixed with continuously accumulating substances.
  • the inertized biomass in several reactors (digestion towers) one after the other, the number and / or size of the digestion towers being matched to the amount of output from the first fermenter. It is also possible to cascade these digestion towers one after the other, with the biomass becoming pumpable in the first part of the cascade by adding the nutrient solution.
  • the residence time of the starting material in the aerobic fermenter is 12 to 36, typically 24 hours, whereas the anaerobic fermentation requires 12 to 24, especially 18 days.
  • a larger, comminuted amount of biomass is kept in a pulp collecting basin 1. Here it is already undergoing aerobic fermentation due to ubiquitous bacteria. From this pomace collecting basin, this mass reaches a first fermenter 2 equipped with a stirrer 4 and is aerobically hydrolyzed here with the aid of bacteria added from a storage container 3. This produces gases (O2; C0 2 ; H 2 ) and alcohols as well as acids and aldehydes. This takes about four days.
  • the product is rendered inert by removing water (evaporation) and / or by increasing the pH (lyes), ie rendered insensitive to the attack by Aceto or Methanobacter.
  • the remaining amount of water is ⁇ about 20%, the pH> 7.2.
  • This inertized biomass is brought to an intermediate storage facility 11 and from there processed in batches in one or more digestion towers (5). For this purpose, the mass is mashed again with water or the pH is adjusted to 6.8 - 7.2.
  • a nutrient solution for Methanobacter and Acetobacter is kept in a second fermenter (6). Crushed (cattle) rumen containing these bacteria is preferably used.
  • Bacteria specialized in the substrate are also kept here and with particular effectiveness, which are obtained by breeding or genetically engineered.
  • the bacterial solution is precisely matched to the amount and the type of material presented in the digestion tower, so that the dwell time in the digestion tower is kept short by the rapid start of the reaction. For example, it is a little over 15 days and is roughly four times as long as aerobic fermentation, but is up to 30% shorter than in the prior art.
  • Raw gas is withdrawn from the digester tower (5) via line (8) and passed through a filter (9), where C0 2 and N 2 are separated.
  • Fine gas with a purity of over 98% reaches the natural gas network via the line (10) and a meter (11) or a gas engine with heat utilization (7) with a connected generator (with meter) and from here into the power network.

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zum Vergären von Biomasse in Fermentern unter Erzeugung von Methan, bei welchem man erfindungsgemäss in einem ersten Schritt die Biomasse homogenisiert, in einen Fermenter verbringt und aerob hydrolysiert oder bis auf einen Feststoffgehalt von etwa 20% entwässert und anschliessend durch pH-Wert-Erhöhung inertisiert, wobei man parallel in einem zweiten anaeroben Fermenter die benötigte Menge und Population anaerober Bakterien, um die intertisierte Biomasse unmittelbar in anaerobe Gärung zu versetzen, separat züchtet.

Description

Verfahren zum Vergären von Biomasse
Die vorliegende Erfindung betrifft ein Verfahren zum Vergären von insbesondere stoßweise anfallender Biomasse unter Bildung von in Motoren verwendbarem Biogas. Dabei wird in einer ersten Phase das gegebenenfalls zerkleinerte Material zunächst aerob von ubiquitären oder gezüchteten Bakterien durch Aufspalten der organischen Substanz in kurzkettige Moleküle wie z.B. Alkohol und Säuren etc. zerlegt, wonach die anaerobe Gärung durch Essigsäure- und Methanobacter einsetzt, was über die Bildung von Essigsäure letztlich zu C02 und Methan führt (Schlegel, Fischer "Allgemeine Mikrobiologie", Springerverlag,).
Der Anfall von Biomasse ist jedoch oft saisonbedingt in großen Mengen und stoßweise, was die Kapazität der zur Verfügung stehenden Fermenter bei weitem übersteigt. Andererseits geht die anaerobe Gärung sehr viel langsamer vor sich, so daß die Mengen nicht gleichmäßig bewältigt werden können. Lagert man das Produkt der aeroben Gärung zwischen, so geht dieses spontan in die anaerobe Gärung über und das Material wird unbrauchbar, abgesehen von der damit verbundenen Geruchsbelästigung.
Die DE 199 28 663 A1 beschreibt ein Verfahren zur Aufarbeitung strukturfreier oder strukturarmer Bioabfälle, worunter ausschließlich Speisereste bzw. Abfälle aus der Lebensmittelindustrie verstanden werden (Oberbegriff Anspruch 1). Solche Abfälle unterscheiden sich grundsätzlich von den erfindungsgemäß aufzuarbeitenden, da sie einer alkalischen Gärung nicht zugänglich sind, nur aerob gären und somit kein Methan bilden.
Die DE 199 46 299 A1 bezieht sich auf die gemeinsame Vergärung von kohlehy- drat-, fett- und eiweißhaltigen Bioabfällen, cellulosereichen Bioabfällen, Faulschlamm aus Kläranlagen sowie Papierschlamm und Molke. Dabei soll unter langsamem pH-Anstieg eine Hygienisierung bei 70°C durchgeführt werden um an- schließend aerob und anaerob zu vergären. In der anaeroben Stufe werden zunächst Molke und Papierschlamm hinzugefügt, danach wird mit Klärschlamm behandelt. Eine solche Mischung fällt nicht stoßweise und saisonbedingt an, zum anderen stellt natürlich Klärschlamm eine problematische Substanz hinsichtlich der Schwermetalle und schleimbildenden Salmonellen und weiterer unhygienischer Bakterien und Sporenbildner auch nach der Vergärung Sondermüll dar, was natürlich nachteilig ist.
In der EP 0 934 998 A2 werden Biomassen zu Ballen geformt und z.B. innerhalb einer diese umschließenden Folie mit Bakterien inokuliert und anaerob vergärt. Diese Methode hat den Nachteil, daß durch die dabei verwendete trockene Vergärung die Methanbildung relativ niedrig ist über 40 Tage anhält und somit zu einer nur geringen Raum/Zeitausbeute führt. Das einsetzbare Material entspricht dem vorliegenden.
Der vorliegenden Erfindung liegt demgegenüber die Aufgabe zugrunde, saison- und damit stoßweise anfallende Biomasse auf gegenüber dem Stand der Technik vorteilhaftere Weise aufzuarbeiten. Dabei sollen sämtliche Kontaminationen vermieden werden, so daß der anfallende Rest (Schlamm) ohne weiteres entsorgt werden kann, gleichzeitig soll aber auch ein qualitativ hochwertiges Biogas (CH4) möglichst kontinuierlich erzeugbar sein, das mindestens 50 Vol % an Methan enthält, um damit Motoren betreiben zu können, beispielsweise in Wärme-Kraft- Kopplung, da bei etwa 46 Vol % Gasmotoren nicht mehr laufen. Hinweise auf die Lösung dieser Aufgabe lassen sich dem Stand der Technik nicht entnehmen.
Diese Aufgabe gelingt durch ein Verfahren gemäß Hauptanspruch. Vorteilhafte Ausgestaltungen finden sich in den Unteransprüchen. Dieses Verfahren weist somit zwei wesentliche Merkmale auf. Einmal wird die aerob vergorene Biomasse absatzweise inertisiert, d.h. gegen Angriff von Methano- bacter und Essigbakterien geschützt, so daß diese problemlos zwischengelagert und ebenso absatzweise anaerob behandelt werden kann. Dieses Inertisieren geschieht durch pH-Erhöhung und/oder durch teilweise Entwässerung, da Metha- nobacter-Bazillen und Essigbakterien bei Restwassergehalten von etwa unter 10 % nicht aktiv sein können. Ebenso führt die pH-Erhöhung auf Werte von über etwa 6,5 zu einem für Methanobacter schädlichen Milieu.
Die anaerobe Gärung benötigt einen pH von etwa zwischen 6,8 und 7,2.
Wie oben gesagt, benötigt die anaerobe Gärung deutlich mehr Zeit als die anaerobe. Ebenso startet diese langsamer.
Die zweite erfindungswesentliche Maßnahme besteht daher darin, daß man in einem separaten Fermenter Bakterienpopulation aus Essigsäurebakterien und Methanobacter in Nährlösung herstellt und bevorratet. Aktiviert man nach der Inertisierung eine geeignete Teilmenge durch Einstellung des pH auf werte von etwa 6,8 bis 7,2 und Zugabe von Methanobacter und ggf. Wasser, so führt das Vermischen mit der separat erzeugten Bakterienpopulationsnährlösung sofort zu einem Start der Fermentation, wobei diese aufgrund der genau anpaßbaren Bakterienmenge auch deutlich schneller verläuft. Falls in der Biomasse keine oder nur wenige Methanobacter vorliegen, kann natürlich die Inertisierung auch bis in den genannten Bereich von pH 6,8 bis 7,2 hochgefahren werden, um die Masse mindestens kurzfristig zwischenzulagern, ebenso auch über Werte von 7,2, wobei dann für die anaerobe Gärung eine pH-Absenkung in den für die Methanobacter- aktivität erforderlichen Bereich vorgenommen werden muß. Von weiterem Vorteil ist dabei, daß nicht nur die Bakterienmenge an den Bedarf des in anaeroben Fermenter befindlichen Materials wie z.B. Traubentrester, Gras, Laub, etc. anpaßbar ist, sonder daß man die Methanobacter auf das zu verarbeitende Gut im separaten Fermenter vor der Zugabe spezialisieren kann. Dies geschieht so, daß man Die Wasserzugabe kann dabei natürlich durch die Nährlösung selbst geschehen.
Die Behandlung mit Aceto- und Methanobacter kann grundsätzlich im selben Faulturm vorgenommen werden, in welchem auch die aerobe Gärung stattfindet. Vorgezogen wird ein dritter Reaktor, so daß der Faulturm frei wird für einen neuen Teilansatz der Biomasse.
Insbesondere wird vorgeschlagen, auf das Substrat spezifizierte Methanobac- terspezies im zweiten Fermenter zu züchten.
Vorteilhaft ist dabei natürlich, den Wassergehalt der inertisierten Biomasse bis zur Zugabe der Aceto- und Methanobacterlösung konstant zu halten.
Im zweiten Fermenter, dem Anzuchtfermenter, werden natürlich vorkommende und/oder gentechnologisch hergestellte Methanobacterspezies vermehrt. Dies geschieht in sauerstofffreier Nährlösung, welche der Biomasse zugefügt wird.
Auf die vorbeschriebene Weise läßt sich stoßweise anfallende Biomasse wie Herbstlaub, Frucht- oder Traubentrester etc. abarbeiten, wobei große Mengen vorgegoren und anschließend inertisiert werden, um diese Masse chargenweise aufzuarbeiten, wobei diese Massen natürlich auch mit kontinuierlich anfallenden Substanzen vermischt werden können.
Um auch die Gasabgabe zu vergleichmäßigen, wird ferner vorgeschlagen, die inertisierte Biomasse in mehreren Reaktoren (Faultürmen) und zwar nacheinander abzuarbeiten, wobei die Zahl und/oder Größe der Faultürme auf die Menge des Ausstoßes aus dem ersten Fermenter abgestimmt ist. Ebenso ist es möglich, diese Faultürme kaskadenartig nacheinander zu fahren, wobei im ersten Teil der Kaskade durch Zugabe der Nährlösung die Biomasse pumpfähig wird. Die Verweilzeit des Ausgangsmaterials im aeroben Fermenter beträgt dabei 12 bis 36, typischerweise 24 Stunden, wohingegen die anaerobe Gärung 12 bis 24, insbesondere 18 Tage erfordert.
Diese Art der Vorgehensweise führt einmal zu einer sehr viel schnelleren anaeroben Gärung, zum anderen werden durch die Vorzüchtung und insbesondere die Spezialisierung der Bakterien Methankonzentrationen in Abgas von bis zu über 78 Vol % erreichbar.
Das anliegende Verfahrensschema erläutert die vorliegende Erfindung anhand eines Ausführungsbeispiels näher.
In einem Trestersammelbecken 1 wird eine größere, zerkleinerte Biomassenmenge vorgehalten. Hier geht sie aufgrund ubiquitärer Bakterien schon in aerobe Gärung über. Von diesem Trestersammelbecken gelangt diese Masse in einen ersten, mit einem Rührwerk 4 ausgestatteten Fermenter 2 und wird hier mit Hilfe von aus einem Vorratsbehälter 3 zudosierten Bakterien aerob hydrolysiert. Dabei entstehen Gase (O2; C02; H2) und Alkohole sowie Säuren und Aldehyde. Dies dauert etwa vier Tage.
Nach Abschluß dieser Gärung wird das Produkt durch Wasserentzug (Verdampfen) und/oder durch pH-Wert-Erhöhung (Laugen) inertisiert, d.h. für den Angriff von Aceto- oder Methanobacter unempfindlich gemacht. Die Restwassermenge beträgt dabei < etwa 20 %, der pH-Wert > 7,2. Diese inertisierte Biomasse wird in ein Zwischenlager 11 verbracht und von hier aus absatzweise in einem oder mehreren Faultürmen (5) weiter verarbeitet. Dazu wird die Masse wieder mit Wasser angemaischt bzw. es wird der pH-Wert auf 6,8 - 7,2 eingestellt. In einem zweiten Fermenter (6) wird eine Nährlösung für Methanobacter und Acetobacter vorgehalten. Dabei wird vorzugsweise zerkleinerter (Rinder-)pansen verwendet, der diese Bakterien enthält. Ebenso und mit besonderer Effektivität werden hier auf das Substrat spezialisierte Bakterien vorgehalten, die durch Züchtung oder gentechnisch gewonnen werden. Die Bakterienlösung wird genau auf die Menge und die Art des im Faulturm vorgelegten Materials abgestimmt und zudosiert, so daß die Verweildauer im Faulturm durch schnelles Anspringen der Reaktion kurz gehalten wird. Sie beträgt z.B. etwas über 15 Tage und ist damit grob vier Mal so lang wie die aerobe Gärung, jedoch gegenüber dem Stand der Technik um bis zu über 30 % kürzer.
Aus dem Faulturm (5) wird Rohgas über die Leitung (8) abgezogen und über ein Filter (9) geleitet, wo C02 und N2 abgetrennt werden.
Feingas mit einer Reinheit von über 98 % gelangt über die Leitung (10) und einen Zähler (11) ins Erdgasnetz oder an einen Gasmotor mit Wärmenutzung (7) mit angeschlossenem Generator (mit Zähler) und von hier ins Stromnetz.
Bezugszeichenliste
1 Trestersammelbecken
2 erster Fermenter
3 Vorratsbehälter
4 Rührwerk
5 Faulturm
6 zweiter Fermenter
7 Gasmotor mit Wärmenutzung
8 Leitung
9 Filter
10 Leitung
11 Zwischenlager

Claims

Patentansprüche
1. Verfahren zum Vergären von stoßweise anfallenden Biomassen, wie insbesondere Traubenester unter Erzeugung von Methan, wobei man in einem ersten Schritt homogenisierte Biomasse in einem Fermenter aerob hydrolysiert und anschließend durch Entwässerung auf etwa 10-20% Feststoffgehalt und/oder durch pH-Erhöhung inertisiert und zwischenlagert, parallel in einem zweiten Fermenter die benötigte Menge und Population anaerober Bakterien züchtet und vorhält, um in einem zweiten Schritt die inertisierte Biomasse in einem Fermenter durch Zugabe der gezüchteten Bakterien unmittelbar in anaerobe Gärung zu versetzen.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß man im zweiten Fermenter substratspezifische Methanobacterspezies züchtet.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man vor dem Hinzufügen der Methanobacter den pH-Wert der inertisierten Biomasse auf etwa 7,2 bis 6,8 einstellt.
4. Verfahren nach Anspruch 1 - 3, dadurch gekennzeichnet, daß der Wassergehalt der inertisierten Biomasse vor der Zugabe der Methanobacter konstant gehalten wird.
5. Verfahren nach Anspruch 1 - 4, dadurch gekennzeichnet, daß man im Anzuchtfermenter natürlich vorkommende und/oder gentechnologisch hergestellte Methanobacterspezies in sauerstofffreier Nährflüssigkeit vermehrt und diese der in einem Faulturm vorgelegten Biomasse bedarfsgerecht hinzufügt.
. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß man zur Anzucht der Methanobacter homogenisierten Pansen oder Eingeweide von Wiederkäuern verwendet.
7. Verfahren nach Anspruch 1 - 6, dadurch gekennzeichnet, daß man die anaerobe Fermentierung zum Zwecke einer kontinuierlichen Gasgewinnung in mehreren Reaktoren durchführt, die nacheinander durch Zugaben von Aceto- und Methanobacterlösung gestartet werden.
PCT/EP2002/003168 2001-03-30 2002-03-21 Verfahren zum vergären von biomasse WO2002079484A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2002302453A AU2002302453A1 (en) 2001-03-30 2002-03-21 Method for fermenting biomass
EP02730040A EP1373538A2 (de) 2001-03-30 2002-03-21 Verfahren zum vergären von biomasse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10116144.1 2001-03-30
DE10116144A DE10116144A1 (de) 2001-03-30 2001-03-30 Verfahren zum Vergären von Biomasse

Publications (2)

Publication Number Publication Date
WO2002079484A2 true WO2002079484A2 (de) 2002-10-10
WO2002079484A3 WO2002079484A3 (de) 2003-04-17

Family

ID=7679931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/003168 WO2002079484A2 (de) 2001-03-30 2002-03-21 Verfahren zum vergären von biomasse

Country Status (4)

Country Link
EP (1) EP1373538A2 (de)
AU (1) AU2002302453A1 (de)
DE (1) DE10116144A1 (de)
WO (1) WO2002079484A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011047809A1 (de) * 2009-10-20 2011-04-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Algenkulturverfahren
GB2527317A (en) * 2014-06-17 2015-12-23 Nch Corp Microbial fermentation system for growing and discharging a biological material
CZ305839B6 (cs) * 2010-12-09 2016-04-06 Technická univerzita v Liberci Způsob přípravy biologicky aktivního roztoku pro diskontinuální proces suché fermentace biomasy

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2047223A (en) * 1979-04-24 1980-11-26 Agency Ind Science Techn Anaerobic digestion process

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5161233A (en) * 1988-05-17 1992-11-03 Dai Nippon Printing Co., Ltd. Method for recording and reproducing information, apparatus therefor and recording medium
DE3840517A1 (de) * 1988-12-01 1990-06-07 Hoefer Erika Verfahren und vorrichtung zur energieerzeugung aus biomasse
DE19805045A1 (de) * 1998-02-09 1999-08-12 Manfred Prof Dr Hoffmann Verfahren und Vorrichtung zur Methanisierung von Biomassen
DE19928663A1 (de) * 1999-06-23 2000-12-28 Beg Bioenergie Gmbh Verfahren und Vorrichtung zur Behandlung von strukturfreien oder strukturarmen Bioabfällen
DE19946299C2 (de) * 1999-09-28 2001-03-29 Mostofizadeh Ghalamfarsa S M C Verfahren und Vorrichtung zur gemeinsamen Vergärung von kohlenhydrat-, fett- und eiweisshaltigen Bioabfällen, cellulosereichen Bioabfällen, Faulschlamm aus Kläranlagen sowie Papierschlamm und Molke

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2047223A (en) * 1979-04-24 1980-11-26 Agency Ind Science Techn Anaerobic digestion process

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FRUTEAU DE LACLOS H. ET AL.: "Anaerobic digestion of municipal solid organic waste." WATER SCIENCE AND TECHNOLOGY, Bd. 36, Nr. 6-7, 1997, Seiten 457-462, XP001117938 *
UEKI A. ET AL.: "Survival of methanogens in air-dried paddy filed soil and their heat tolerance." WATER SCIENCE AND TECHNOLOGY, Bd. 36, Nr. 6-7, 1997, Seiten 517-522, XP001117937 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011047809A1 (de) * 2009-10-20 2011-04-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Algenkulturverfahren
CN102666835A (zh) * 2009-10-20 2012-09-12 弗朗霍夫应用科学研究促进协会 藻类培养方法
CZ305839B6 (cs) * 2010-12-09 2016-04-06 Technická univerzita v Liberci Způsob přípravy biologicky aktivního roztoku pro diskontinuální proces suché fermentace biomasy
GB2527317A (en) * 2014-06-17 2015-12-23 Nch Corp Microbial fermentation system for growing and discharging a biological material
GB2527317B (en) * 2014-06-17 2020-12-02 Nch Corp Microbial fermentation system for growing and discharging a biological material

Also Published As

Publication number Publication date
EP1373538A2 (de) 2004-01-02
WO2002079484A3 (de) 2003-04-17
AU2002302453A1 (en) 2002-10-15
DE10116144A1 (de) 2002-10-17

Similar Documents

Publication Publication Date Title
EP0698005B1 (de) Verfahren und vorrichtung zur kompostierung und nassvergärung von biologischen abfällen
DE3207676C2 (de) Verfahren zur Verzuckerung von Rhizomen und anschließende Fermentierung zu Alkohol
EP1185384B1 (de) Verfahren und vorrichtung zur behandlung von strukturfreien oder strukturarmen bioabfällen
EP0970234A1 (de) Verfahren zur verwertung von pflanzlicher biomasse und schneckenpresse zur durchführung dieses verfahrens
DE102008015609A1 (de) Biogasanlage und Verfahren zur Erzeugung von Biogas
DE102012109821A1 (de) Verfahren und Vorrichtung zur Erzeugung von Biogas
EP3548626B1 (de) Verfahren zur erzeugung von biogas aus faserhaltigem substrat
EP1373538A2 (de) Verfahren zum vergären von biomasse
DE102011118067B4 (de) Aufbereitungsverfahren von Biomasse mit einer Zugabe mindestens eines Aktivators
DE3539875A1 (de) Verfahren und vorrichtung zum herstellen enzymhaltiger biomasse aus zuckerruebenschnitzeln
EP2252695B1 (de) Verfahren zur fermentation von biomasse
DE102013102642A1 (de) Verfahren und Vorrichtung zur Erzeugung von Biogas
Agyeman et al. Utilization of cocoa by-products as an alternative source of energy
EP1676819B1 (de) Verfahren zur umweltverträglichen Behandlung von Klärschlamm sowie Anordnung umfassend eine Kläranlage
JP2020180018A (ja) メタン発酵消化液と堆肥化可能余剰有機物から液肥とコプロダクツを生産する方法およびそれに用いる装置
DE2845378C3 (de) Verfahren zur Haltbarmachung und Nährwertsteigerung von Naßfutter
EP0190610B1 (de) Verfahren zur Gewinnung von Alkohol und proteinangereicherter Schlempe aus zucker-, stärke- und/oder zellulosehaltigen Rohstoffen
EP1488855A1 (de) Verfahren und Anlage zur Herstellung von Biogas aus Biomüll
DE693284C (de) Verfahren zur Herstellung von Butanol auf gaertechnischem Wege
AT368549B (de) Verfahren zur biologischen verarbeitung eines festkoerper- fluessigkeitsgemisches und reaktor zur durchfuehrung des verfahrens
DE102011118068A1 (de) Verfahren zum Erzeugen von Biogas aus Biomasse unter Bildung von Essigsäure
CH687763A5 (de) Verfahren zur Kompostierung und Nassvergaerung von organischen Reststoffen.
EP2682470A1 (de) Verfahren zur Erzeugung von Biogas aus Verarbeitungsrückständen von Früchten oder Rüben oder Knollen oder aus unverarbeiteten Früchten oder Rüben oder Knollen als zu vergärendes Ausgangssubstrat in einem Biogasreaktor
DD219794A5 (de) Verfahren zur gewinnung einer das coenzym b tief 12 produzierenden fermentbruehe
EP0506900A1 (de) Verfahren zur herstellung von spagyrischen essenzen aus pflanzen.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002730040

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002730040

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP