WO2002078761A1 - Neo-tissu cartilagineux greffable - Google Patents

Neo-tissu cartilagineux greffable Download PDF

Info

Publication number
WO2002078761A1
WO2002078761A1 PCT/FR2002/001122 FR0201122W WO02078761A1 WO 2002078761 A1 WO2002078761 A1 WO 2002078761A1 FR 0201122 W FR0201122 W FR 0201122W WO 02078761 A1 WO02078761 A1 WO 02078761A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
chitosan
hydrogel
tissue
neo
Prior art date
Application number
PCT/FR2002/001122
Other languages
English (en)
Inventor
Alain Domard
Marie-Thérèse M. CORVOL
François Guillot
Xavier L. Chevalier
Isabelle Morfin
Dominique J. Vacher
Original Assignee
Laboratoires Genevrier
Universite Claude Bernard Lyon 1
Centre National De La Recherche Scientifique
Inserm
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0104405A external-priority patent/FR2822842B1/fr
Priority claimed from FR0111322A external-priority patent/FR2822843B1/fr
Application filed by Laboratoires Genevrier, Universite Claude Bernard Lyon 1, Centre National De La Recherche Scientifique, Inserm filed Critical Laboratoires Genevrier
Priority to CA002442734A priority Critical patent/CA2442734A1/fr
Priority to EP02757750A priority patent/EP1372751A1/fr
Priority to US10/473,359 priority patent/US20050074742A1/en
Publication of WO2002078761A1 publication Critical patent/WO2002078761A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3817Cartilage-forming cells, e.g. pre-chondrocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/3633Extracellular matrix [ECM]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3641Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the site of application in the body
    • A61L27/3645Connective tissue
    • A61L27/3654Cartilage, e.g. meniscus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3839Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
    • A61L27/3843Connective tissue
    • A61L27/3852Cartilage, e.g. meniscus
    • A61L27/3856Intervertebral discs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0655Chondrocytes; Cartilage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/06Materials or treatment for tissue regeneration for cartilage reconstruction, e.g. meniscus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/72Chitin, chitosan

Definitions

  • the present invention relates to the field of repairing cartilage lesions by the implementation of a graft. It relates more particularly to a graftable cartilage tissue.
  • Cartilage is a tissue of mesenchymal origin consisting of a small percentage of chondrocytes distributed within an extracellular matrix which they ensure renewal.
  • This matrix is composed of a network of collagen fibers, in particular type II, and of glycosaminoglycans associated with structural proteins to form proteoglycans. The whole by its amphiphilic nature and its ionic sites forms a physical gel ensuring the viscoelastic properties of the cartilaginous tissue.
  • cartilage tissue disappears in adulthood except at the level of the joints, where its role is to ensure the movement of the articular surfaces and to support significant compressive loads. Joint cartilage is however not able to regenerate spontaneously. This is why in case of cartilage lesions recourse is had to transplant techniques, such as mosaic grafting or grafting of autologous cells.
  • Mosaic grafting involves taking samples of bone covered with cartilage in non-bearing regions and grafting them at the level of the lesion.
  • Autologous cell transplantation consists of taking a sample of healthy cartilage, subjecting it to an enzymatic digestion in order to free the chondrocytes from the extra cellular matrix, making the chondrocytes multiply ex-vivo until a sufficient number is obtained. chondrocytes, which are then reimplanted in the cartilage lesion. Chondrocytes in the form of a cell suspension in aqueous medium (dispersion in a liquid medium), first cover the previously unbridled lesion with a membrane made of periosteum sutured tightly at the edge of the cartilage and then inject the suspension (dispersion containing the culture) into the cavity thus created chondrocytes. After a certain time, these cells produce an extra-cellular matrix which does not however have the tissue organization of normal articular cartilage.
  • the mode of multiplication of the chondrocytes to be implanted must be determined so as to avoid a dedifferentiation of the cells.
  • chondrocytes are made to proliferate on a support (synthetic polymer) like that of the bottom of the cell culture dishes, the chondrocytes become differentiated into fibroblastic cells. They are then spindle-shaped instead of being polygonal like chondrocytes and synthesize collagen I instead of collagen II.
  • the polysaccharides are chosen in particular from the following compounds: dextran, cellulose, arabinogalactan, pollulan and amylose.
  • the crosslinking agent is for example glutamic acid, lysine, albumin or gelatin.
  • the chondrocytes multiply while keeping their shape and their phenotype, and synthesize very particularly collagen II.
  • the chondrocytes are recovered by digesting the polysaccharide beads using specific enzymes, for example dextranase, which do not damage the chondrocytic cells. Said cells are then detached to be included in a chitosan matrix. To do this, chondrocytes are added to an acidic solution of chitosan, then the mixture is stirred until the formation of a three-dimensional structure which is placed in a 1N sodium hydroxide solution so as to obtain the precipitation of the chitosan. in a few minutes. After polymerization, the sodium hydroxide is quickly eliminated and the polymerized conglomerate of chitosan and cells is cultured at 37 ° C., 5% CO 2 for a determined period.
  • specific enzymes for example dextranase
  • the chondrocytes mixed with the chitosan are incorporated into the three-dimensional structure of the precipitated chitosan, which structure would have a firm consistency resembling the texture of the cartilage.
  • Chitosan is obtained by deacetylation of chitin, the most widespread biopolymer in nature after cellulose. Chitin can be extracted from the exoskeleton of certain crustaceans such as lobster, crab or the squid endoskeleton, for example. Chitin and chitosan consist of the same two monomer units, N-acetylD glucosamine and D-glucosamine. When the polymer is strongly acetylated, that is to say when it comprises more than 60% of N-acetyl-D-glucosamine, it is called chitin. Both are biodegradable, bioresorbable and compatible with living tissue. Chitosan is known to have a biostimulating activity on the reconstitution of tissues.
  • chitosan is combined with another polysaccharide to form an agent for stimulating the regeneration of hard tissue at an integration site of an implant, for example made of titanium.
  • the chitosan is crosslinked with a glycosaminoglycan to constitute a biochemical environment close to the cartilaginous tissue, stimulating cell growth.
  • the methods which are described in documents WO.OO / 56251 and WO.99 / 47186 are based on the so-called scaffold technique, according to which the cells are incorporated, included, in a three-dimensional structure which forms a scaffolding, a framework.
  • This three-dimensional structure constituted in particular by chitosan alone in document WO.OO / 56251 or associated with other constituents in document WO.99 / 47186, forms an integral part of the material intended to be grafted.
  • the graftable cartilage tissue of the present invention differs from the teaching of the preceding documents in that it does not comprise any component forming a three-dimensional structure of the scaffold type.
  • this graftable cartilaginous neo-tissue consists of more or less parallel rows of cells, having a gradient of cell maturation oriented from a determined zone towards its periphery.
  • Such a graftable cartilage tissue is in particular obtained by a process which consists of: a) culturing chondrogenic cells, which are either autologous chondrocytes or precursor cells of chondrocytes prepared in vitro from pluripotent stem cells, b) bringing said chondrogenic cells into contact with a chitosan hydrogel whose properties the amphiphilia and the degree of acetylation are such that the said cells adhere naturally to the external surface of the said hydrogel, c) covering the whole hydrogel / cells thus obtained with a culture medium and, d) allowing a neo- cartilage tissue in contact with chitosan hydrogel for a minimum of two weeks, frequently renewing the culture medium.
  • the natural adhesion of the cells to the external surface of the chitosan hydrogel makes it possible to obtain a very good distribution of said cells and avoids the loss of cells during the operation, for example when this is carried out in wells. culture.
  • the chitosan hydrogel plays a role in inducing the phenotype of chondrogenic cells, which proliferate without being indifferentiated.
  • the chondrogenic cells do not penetrate directly inside the hydrogel, the latter having insufficient porosity with regard to the size of said cells.
  • the hydrogel of chitosan is gradually metabolized and / or replaced and / or invaded by matrix proteins of the cartilage type, which are neosynthesized by chondrocytes. After at least two weeks of culture, the whole produces a cartilaginous neo-tissue which can be grafted as it is, the chitosan hydrogel which temporarily serves as a support for this cartilaginous neo-tissue being partly or entirely biodegraded.
  • the degree of acetylation of chitosan, used for the preparation of the hydrogel is between 30 and 70%; preferably this is between 40 and 60%.
  • the chondrogenic cells are brought into contact with the chitosan hydrogel which is in the form of small particles of a few millimeters.
  • the chondrogenic cells are spread in the form of at least one layer on a layer or between at least two layers of chitosan hydrogel, each layer being of the order of a few millimeters thick. This particular arrangement makes it very easy to obtain a large cartilage neo-tissue, after complete disappearance of the chitosan hydrogel.
  • the neo-cartilage tissue formed in particular by the process of the invention is characterized in that it is made up of more or less parallel rows of cells, having a cell maturation gradient oriented from a determined zone towards its periphery, the zone determined corresponding to the junction area of the cells with the chitosan hydrogel.
  • this neo-tissue is analyzed in histology, its morphological appearance is close to a normal cartilage tissue.
  • the present invention will be better understood on reading the description which will be made of several examples of the preparation of a cartilage neo-tissue using as an amplification support a chitosan hydrogel whose degree of acetylation is between 40 and 60%.
  • the reference chitosan used is obtained from endoskeletons of squid. It has an acetylation degree of 5.2%. It is first of all purified in order to remove the insoluble particles, by implementing the following stages: dissolution, filtration, precipitation, washing and lyophilization.
  • a solution of low viscosity is prepared, with a concentration of the order of 0.5% by weight of chitosan in an acid solution. More specifically, acetic acid is put in a stoichiometric amount relative to the amino groups of chitosan.
  • the polymer solution is filtered by successive passages on membranes of decreasing porosity (1.2; 0.8 and 0.45 ⁇ m) under a maximum pressure of 3 bars.
  • the polymer is precipitated by raising the pH of the solution by adding a concentrated ammonia solution, with stirring.
  • the suspension is centrifuged and the pellet recovered. Washing takes place until the pH of the washing water stabilizes at a value which is a function of the degree of acetylation.
  • Lyophilization makes it possible to obtain the chitosan in solid form.
  • the chitosan is then re-acetylated to obtain the degree desired acetylation.
  • This reacetylation is carried out by reaction of the amino function with acetic anhydride in a hydro-alcoholic medium. The ratio between the number of amino functions and the number of anhydride molecules present in solution determines the degree of acetylation of the chitosan produced.
  • a hydroalcoholic solution which comprises, in addition to chitosan, water, 1,2-propanadiol and the necessary quantity of acetic acid to have a quantity stoichiometric with respect to the amino functions of chitosan.
  • the hydro-alcoholic solution included 3 g of chitosan, 323 g of water and 272 g of 1,2-propanadiol.
  • the acetylating mixture comprises acetic anhydride and propanediol.
  • the mixture included 1.26 ml of acetic anhydride to obtain a degree of acetylation of chitosan of 50% and 1.62 ml of acetic anhydride to obtain a degree of acetylation of 60% .
  • the preferred preparation method starts with an initial solution of chitosan. If necessary, depending on the degree of acetylation, it will be an acid solution, the c hitosane being dissolved in hydrochloric acid in stoichiometric amount with the amino groups of chitosan. After complete dissolution of the chitosan, a certain volume of 1.2 propanediol is added dropwise to the solution which is then degassed under vacuum for a period of approximately one hour.
  • the solution is then poured into a container making it possible to have a large free surface to volume ratio and is placed in an oven at 45 ° C. for the time necessary for it to gel.
  • the formation of the chitosan hydrogel is obtained by a physicochemical process.
  • hydrogel which is not soluble in water at pHs of the order of 6 or 7
  • neutralization of the hydrogel thus obtained is carried out for approximately one hour in basic medium, for example sodium hydroxide. 0.1 molar.
  • the decrease in the number of positive charges due to the increase in pH promotes hydrophobic interactions and therefore the stability of the gel.
  • the hydrogel is then washed to remove the alcohol and obtain a pH of approximately 7. It is this chitosan hydrogel, washed, which will be used for the cultivation of the chondrogenic cells.
  • the gel corresponds to a determined aqueous solution / 1-2 propanediol ratio, a ratio which depends on the degree of acetylation of the chitosan.
  • the gelation being accompanied by a loss of water, it is important that the operating conditions favor this evaporation of the water.
  • containers can be used during gelation, whether they are petri dishes, multi-well dishes or inserts specially designed to be housed in the wells of multi-well dishes.
  • a 24-well plate equipped with inserts is used, each insert consisting of a plastic cone, the bottom of which is formed from a membrane permeable to nutrition liquid and which is arranged to be deposited in each well. without touching the bottom.
  • Chondrogenic cells can be chondrocytes autologous or precursor cells of chondrocytes prepared, in vitro, from pluripotent stem cells.
  • the hydrogel obtained is in the form of a visco-elastic and translucent block, the capacity and resistance of which depend in particular on the concentration of chitosan in the initial solution. .
  • this concentration is 0.5 to 4%.
  • the block of chitosan hydrogel is cut into small fragments whose external dimensions are of the order of a few millimeters. These fragments are placed in the wells of a multi-well plate or possibly in the inserts equipping such a plate.
  • the chondrogenic cells are introduced in the form of a suspension and mixed delicately with the hydrogel fragments. The whole is covered with an appropriate culture medium. It is found that the chondrogenic cells spontaneously adhere to the outer surface of the hydrogel fragments and do not fall into the bottom of the wells.
  • the cultivation is carried out by placing the plates thus garnished in an atmosphere of 10% CO 2 at 37 ° C.
  • the nutrition medium is renewed twice a week.
  • the cultivation continues for a variable time which can range from 2 to 6 weeks depending on the size desired for the cartilage neo-tissue which forms on contact with the chitosan hydrogel.
  • the degree of acetylation between 30 and 70%, but preferably between 40 and 60% induces optimal amphiphilic conditions favorable to the establishment of an environment conducive to the synthesis of the cartilage neo-tissue. Indeed, by increasing the degree of acetylation, one contributes to reinforcing the hydrophobic interactions due to the N-acetamide functions. Simultaneously, the cationicity of the residual amine sites is also increased, thereby reinforcing their hydrophilic nature and their ability to create electrostatic interactions. All these conditions are favorable for the establishment of interactions with the proteoglycans of the extracellular matrix neo-formed by the chondrogenic cells.
  • the pH conditions are favorable to the action of enzymes, for example the lysosyme, secreted by the chondrocytes and allowing the degradation by hydrolysis of glycosuric bonds constituting the chitosan chain.
  • the chondrocytes multiply and simultaneously synthesize an important matrix which accumulates around the cells and gradually replaces or covers the chitosan hydrogel. It is also possible to follow the formation of this cartilage neo-tissue depending on the culture time.
  • the chondrogenic cells adhere to the hydrogel without ever penetrating it, they secrete matrix proteins of the collagen type and proteoglycans which accumulate around the cells and which form a denser layer along the hydrogel. , between the cells and the hydrogel which retains its initial appearance. When the culture continues, especially for four to six weeks, the cells. Chondrogens multiply from the cells lining the hydrogel and matrix proteins continue to accumulate.
  • the structure of the hydrogel changes, becoming more loose and gradually taking on colors which are specific for collagen proteins and proteoglycans.
  • a block of neoformed tissue is obtained at the end of culture, consisting of several colonies of cells organized in more or less parallel rows and having a cell maturation gradient which is oriented from the junction zone of the cells with the hydrogel towards its periphery. .
  • This block of neo-tissue in histology we note that its morphological aspect is close to a normal cartilaginous tissue.
  • a molecular analysis by RT-PCR was carried out after five weeks of culture, for the expression of collagens I and II, agrecan, biglycan and decorin.
  • the messenger RNAs of collagen II, agrecane, biglycan and decorin are expressed while those of collagen I are not detectable.
  • the proteoglycans were extracted from the neo-tissue with guanidine chloride 4M, purified and analyzed by chromatography on a column of sepharose 2B. The elution profiles obtained show that the cells have synthesized and secreted proteoglycans which have gathered in the matrix in the form of high molecular weight aggregates, with a profile similar to those synthesized and secreted in vivo.
  • the chondrogenic cells have been spread, in the form of a sheet, between layers of hydrogel, each layer having a thickness of the order of a few millimeters.
  • four layers of cells have been spread in combination with three layers of hydrogel, namely two layers respectively on the outer faces of the first and third layers of hydrogel and two layers sandwiched between the first and second layers and the second and third hydrogel layers, respectively.
  • the cells were cultured under the same conditions as above and the same observations were made as regards the formation of a cartilage neo-tissue.
  • the cell colonies which have formed either from the cells in contact with the outer face of the first and third hydrogel layers or from the cells spread between two layers of hydrogel all exhibit a morphological gradient similar to that which has been described above.
  • the hydrogel layers, inserted between the layers of cells, have disappeared and are replaced by a very alkyanophilic fibrillar structure whose thickness corresponds approximately to the superposition of two to three layers of cells. It is understood that this last variant using a superposition of layers of chitosan hydrogel and chondrogenic cells makes it possible very easily to obtain a larger cartilage neo-tissue.
  • the cartilaginous neo-tissue which is obtained according to the method of the invention is capable of being grafted as it is for the repair of cartilaginous, meniscal or intervertebral disc lesions, notably lesions of size important.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Transplantation (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Cell Biology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Botany (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Rheumatology (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Dispersion Chemistry (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Abstract

Le néo-tissu cartilagineux greffable caractérisé est constitué de rangées de cellules plus ou moins parallèles, présentant un gradient de maturation cellulaire orienté depuis une zone déterminée vers sa périphérie. Lors de la préparation du néo-tissu cartilagineux avec un hydrogel de chitosane, la zone déterminée correspond à la zone de jonction des cellules avec l'hydrogel de chitosane au contact duquel le néo-tissu se développe.

Description

NEO-TISSU CARTILAGINEUX GREFFABLE
La présente invention concerne le domaine de la réparation des lésions cartilagineuses par mise en œuvre d'un greffon. Elle concerne plus particulièrement un néo-tissu cartilagineux greffable.
Le cartilage est un tissu d'origine mésenchymateuse constitué d'un faible pourcentage de chondrocytes réparties au sein d'une matrice extra-cellulaire dont elles assurent le renouvellement. Cette matrice est composée d'un réseau de fibres de collagène notamment de type II et de glycosaminoglycanes associés à des protéines de structure pour former des protéoglycanes. L'ensemble par sa nature amphiphile et ses sites ioniques forme un gel physique assurant les propriétés viscoélastiques du tissu cartilagineux.
Le tissu cartilagineux disparaît à l'âge adulte sauf au niveau des articulations , où son rôle est d'assurer le mouvement des surfaces articulaires et de supporter des charges compressives importantes. Le cartilage articulaire n'est cependant pas capable de se régénérer spontanément. C'est pourquoi en cas de lésions cartilagineuses on a recours aux techniques de greffe, telles que la greffe en mosaïque ou la greffe de cellules autologues.
La greffe en mosaïque consiste à effectuer des prélèvements d'os recouverts de cartilage dans des régions non portantes et à les greffer au niveau de la lésion.
La greffe de cellules autologues consiste à effectuer un prélèvement de cartilage sain, à le soumettre à une digestion enzymatique afin de libérer les chondrocytes de la matrice extra cellulaire, à faire se multiplier les chondrocytes ex-vivo jusqu'à obtention d'un nombre suffisant de chondrocytes , lesquels sont ensuite réimplantés au niveau de la lésion cartilagineuse. Les chondrocytes se présentant sous forme d'une suspension cellulaire en milieu aqueux (dispersion dans un milieu liquide), il faut d'abord recouvrir la lésion préalablement débridée par une membrane faite de périoste suturé de façon étanche au bord du cartilage puis injecter dans la cavité ainsi créée la suspension (dispersion contenant la culture) de chondrocytes. Après un certain temps , ces cellules produisent une matrice extra-cellulaire qui n'a toutefois pas l'organisation tissulaire du cartilage articulaire normal.
Il est à noter que le mode de multiplication des chondrocytes à implanter doit être déterminé en sorte d'éviter une dédifférenciation des cellules . En particulier si l'on fait proliférer des chondrocytes sur un support (polymère synthétique) comme celui du fond des boîtes de cultures cellulaires, les chondrocytes se dédifférencient en cellules fibroblastiques. Elles sont alors fusiformes au lieu d'être polygonales comme des chondrocytes et synthétisent du collagène I au lieu du collagène II.
On a déjà proposé, dans le document WO.OO/56251 de faire se multiplier des cellules , parmi lesquelles des chondrocytes humains , sur des billes de polysaccharides biodégradables et réticulées par des polyamines . Les polysaccharides sont choisis notamment parmi les composés suivants : dextrane, cellulose, arabinogalactane, pollulane et amylose. L'agent de réticulation est par exemple l'acide glutamique, la lysine , l'albumine ou la gélatine.
Selon ce document , après avoir été mis en contact avec lesdites billes de polymère sous agitation mécanique, les chondrocytes se multiplient en gardant leur forme et leur phénotype , et synthétisent tout particulièrement du collagène II.
Après cette multiplication, les chondrocytes sont récupérés en digérant les billes de polysaccharides à l'aide d'enzymes spécifiques, par exemple la dextranase , qui n'altèrent pas les cellules chondrocytaires. Lesdites cellules sont ensuite détachées pour être incluses dans une matrice de chitosane. Pour ce faire des chondrocytes sont ajoutés à une solution acide de chitosane , puis le mélange est agité jusqu'à la formation d'une structure tridimensionnelle que l'on place dans une solution de soude 1 N en sorte d'obtenir la précipitation du chitosane en quelques minutes. Après polymérisation la soude est rapidement éliminée puis le conglomérat polymérisé de chitosane et de cellules est mis en culture à 37°C, 5% de CO2 pendant une durée déterminée.
Ainsi selon ce document WO.OO/56251, les chondrocytes mélangés avec le chitosane sont incorporés dans la structure tridimensionnelle du chitosane précipité, laquelle structure aurait une consistance ferme ressemblant à la texture du cartilage.
Dans le document WO.OO/56251 est prévue une autre variante possible au niveau de la première étape de multiplication des chondrocytes à savoir de faire multiplier lesdites cellules sur un film de chitosane. Les deux autres étapes restent identiques , la seconde consistant à extraire les chondrocytes ainsi multipliés par digestion enzymatique par la collagénase ou par la trypsine et la troisième étape consistant à inclure lesdites chondrocytes dans une matrice tri- dimensionnelle de chitosane.
Le chitosane est obtenu par désacétylation de la chitine, biopolymère le plus répandu dans la nature après la cellulose. La chitine peut être extraite de l'exosquelette de certains crustacés tels que le homard, le crabe ou de l'endosquelette de calamar, par exemple. La chitine et le chitosane sont constitués des deux mêmes unités monomères , le N-acétylD glucosamine et le D-glucosamine. Lorsque le polymère est fortement acétylé , c'est-à-dire lorsqu'il comprend plus de 60% de N-acétyl-D-glucosamine, il est appelé chitine. Tous deux sont biodégradables, biorésorbables et compatibles avec les tissus vivants. Le chitosane est connu pour avoir une activité biostimulante sur la reconstitution des tissus. Il est cependant généralement utilisé en association avec d'autres éléments. Par exemple dans le document WO.96/02259 , le chitosane est combiné avec un autre polysaccharide pour former un agent de stimulation de la régénération des tissus durs au niveau d'un site d'intégration d'un implant, par exemple en titane.
Par exemple dans le document WO.99/47186, le chitosane est réticulé avec un glycosaminoglycane pour constituer un environnement biochimique proche du tissu cartilagineux , stimulant la croissance cellulaire.
Les procédés qui sont décrits dans les documents WO.OO/56251 et WO.99/47186 sont basés sur la technique dite du scaffold, selon laquelle les cellules sont incorporées , incluses , dans une structure tridimensionnelle qui forme un échafaudage, une charpente. Cette structure tridimensionnelle , constituée notamment par du chitosane seul dans le document WO.OO/56251 ou associé à d'autres constituants dans le document WO.99/47186, fait partie intégrante du matériau destiné à être greffé. Le néo-tissu cartilagineux greffable de la présente invention se différencie de l'enseignement des documents précédents en ce qu'il ne comporte pas de composant formant une structure tridimensionnelle du type scaffold.
Selon la présente invention, ce néo-tissu cartilagineux greffable est constitué de rangées de cellules plus ou moins parallèles, présentant un gradient de maturation cellulaire orienté depuis une zone déterminée vers sa périphérie.
Un tel néo-tissu cartilagineux greffable est en particulier obtenu par un procédé qui consiste : a) à mettre en culture des cellules chondrogéniques , qui sont soit des chondrocytes autologues soit des cellules précurseurs de chondrocytes préparés in vitro à partir de cellules souches pluripotentes, b) à mettre lesdites cellules chondrogéniques en contact avec un hydrogel de chitosane dont les propriétés d'amphiphilie et le degré d'acétylation sont tels que lesdites cellules adhèrent naturellement à la surface extérieure dudit hydrogel, c) à recouvrir l'ensemble hydrogel/cellules ainsi obtenu par un milieu de culture et, d) à laisser se développer un néo-tissu cartilagineux au contact de l'hydrogel de chitosane pendant une durée minimale de deux semaines, en renouvelant fréquemment le milieu de culture.
Ainsi, au contraire de ce qui est proposé dans le document WO.OO/56251, le processus d'amplification des cellules chondrogéniques se fait soit de façon spontanée en présence de l'hydrogel de chitosane, soit après amplification préalable dans les conditions classiques de culture à haute densité et la formation de la matrice extra-cellulaire se fait de façon simultanée, en présence de l'hydrogel de chitosane.
L'adhésion naturelle des cellules à la surface extérieure de l'hydrogel de chitosane permet d'obtenir une très bonne répartition desdites cellules et évite la perte de cellules lors de l'opération, par exemple lorque celle-ci est réalisée dans des puits de culture. L'hydrogel de chitosane joue un rôle d'inducteur sur le phénotype des cellules chondrogéniques, lesquelles prolifèrent sans se dédifférencier.
Il est à noter que les cellules chondrogéniques ne pénètrent pas directement à l'intérieur de l'hydrogel, celui-ci ayant une porosité insuffisante au regard de la taille desdites cellules. L'hydrogel de chitosane est progressivement métabolisé et/ou remplacé et/ou envahi par les protéines matricielles de type cartilage, qui sont néo- synthétisées par les chondrocytes. Après au moins deux semaines de culture , l'ensemble réalise un néo-tissu cartilagineux qui peut être greffé en l'état, l'hydrogel de chitosane qui sert transitoirement de support à ce néo-tissu cartilagineux étant en partie ou en totalité biodégradé.
Le degré d'acétylation du chitosane , mis en œuvre pour la préparation de l'hydrogel , est compris entre 30 et 70% ; de préférence celui-ci est compris entre 40 et 60%.
Selon une première variante de réalisation, les cellules chondrogéniques sont mises en contact avec l'hydrogel de chitosane qui se présente sous la forme de petites particules de quelques millimètres. Selon une seconde variante de réalisation, les cellules chondrogéniques sont étalées sous forme d'au moins une nappe sur une couche ou entre au moins deux couches d'hydrogel de chitosane, chaque couche faisant de l'ordre de quelques millimètres d'épaisseur. Cette disposition particulière permet d'obtenir très facilement un néo- tissu cartilagineux de grande dimension, après totale disparition de l'hydrogel de chitosane.
Le néo-tissu de cartilage formé notamment grâce au procédé de l'invention se caractérise en ce qu'il est constitué de rangées de cellules plus ou moins parallèles, présentant un gradient de maturation cellulaire orienté depuis une zone déterminée vers sa périphérie, la zone déterminée correspondant à la zone de jonction des cellules avec l'hydrogel de chitosane. Lorsque ce néo-tissu est analysé en histologie, son aspect morphologique est proche d'un tissu cartilagineux normal . La présente invention sera mieux comprise à la lecture de la description qui va être faite de plusieurs exemples de préparation d'un néo-tissu cartilagineux mettant en œuvre comme support d'amplification un hydrogel de chitosane dont le degré d'acétylation est compris entre 40 et 60%. PURIFICATION DU CHITOSANF
Le chitosane de référence utilisé est obtenu à partir d'endo- squelettes de calamars. Il a un degré d'acétylation de 5,2%. Il est tout d'abord purifié afin d'éliminer les particules non solubles , en mettant en œuvre les étapes suivantes : mise en solution, filtration, précipitation, lavage et lyophilisation.
Pour sa mise en solution, on prépare une solution de faible viscosité , avec une concentration de l'ordre de 0,5% en poids de chitosane dans une solution acide. Plus précisément l'acide acétique est mis en quantité stoechiométrique par rapport aux groupements aminé du chitosane.
La solution de polymère est filtrée par passages successifs sur des membranes de porosités décroissantes (1,2 ; 0,8 et 0,45 μm) sous une pression maximale de 3 bars.
Le polymère est précipité en remontant le pH de la solution par ajout d'une solution d'ammoniaque concentrée , sous agitation.
Plusieurs opérations de lavage sont ensuite nécessaires pour diminuer le pH de la suspension en éliminant l'ammoniaque en excès.
Après chaque lavage la suspension est centrifugée et le culot récupéré. Le lavage intervient jusqu'à stabilisation du pH de l'eau de lavage à une valeur qui est fonction du degré d'acétylation.
La lyophilisation permet d'obtenir le chitosane sous forme solide.
ΔΓFTYI ΔTIΠM ni I rnιτnsΔME Le chitosane est ensuite réacétylé pour obtenir le degré d'acétylation désiré. Cette réacétylation est réalisée par réaction de la fonction aminé avec l'anhydride acétique en milieu hydro-alcoolique. Le rapport entre le nombre des fonctions aminés et le nombre de molécules d'anhydride présent en solution détermine le degré d'acétylation du chitosane produit. Pour un chitosane ayant un degré d'acétylation donné , on met en œuvre une solution hydro-alcoolique qui comprend , outre le chitosane , de I' eau , du 1,2-propanadiol et la quantité nécessaire d'acide acétique pour avoir une quantité stoechiométrique par rapport aux fonctions aminés du chitosane. Dans un exemple précis de réalisation, la solution hydro-alcoolique comprenait 3g de chitosane , 323 g d'eau et de 272 g de 1,2- propanadiol. Le mélange acétylant comprend l'anhydride acétique et du propanediol. Par exemple pour 62,38 g de propanediol, le mélange comprenait 1 ,26ml d'anhydride acétique pour obtenir un degré d'acétylation du chitosane de 50% et 1,62ml d'anhydride acétique pour obtenir un degré d'acétylation de 60%.
FORMATION DF l 'HYnROGFI PHYSIQUF DF CHITOSANF Cette formation nécessite le passage d'un état liquide à un état de gel. Ce passage correspond à une situation antérieure (état liquide) où les interactions hydrophiles dominent à une situation postérieure
(état d'hydrogel) où les interactions hydrophobes deviennent suffisamment fortes pour qu'il n'y ait plus dissolution sans toutefois être assez fortes pour provoquer la complète précipitation du polymère. Le mode de préparation préféré , selon l'invention , part d'une solution initiale de chitosane. Si nécessaire, selon le degré d'acétylation, il s'agira d'une solution acide, le c hitosane étant mis en solution dans de l'acide chlorhydrique en quantité stoechiométrique avec les groupements aminés du chitosane. Après dissolution complète du chitosane, un certain volume de 1,2 propanediol est ajouté goutte à goutte à la solution qui est ensuite dégazée sous vide pendant une durée d'environ une heure. La solution est ensuite versée dans un récipient permettant d'avoir un grand rapport surface libre sur volume et est mise en étuve à 45°C pendant le temps nécessaire à sa prise en gel. Ainsi la formation de l'hydrogel de chitosane est obtenue par un processus physico-chimique.
Pour obtenir un hydrogel qui ne soit pas soluble dans l'eau à des pH de l'ordre de 6 ou 7, on réalise une neutralisation de l'hydrogel ainsi obtenu par passage pendant environ une heure en milieu basique , par exemple de la soude 0,1 molaire. La diminution du nombre de charges positives dues à l'augmentation du pH favorise les interactions hydrophobes et donc la stabilité du gel. On procède ensuite à un lavage de l'hydrogel pour éliminer l'alcool et obtenir un pH d'environ 7. C'est cet hydrogel de chitosane , lavé , qui sera mis en œuvre pour la mise en culture des cellules chondrogéniques.
Il est à noter que la prise en gel correspond à un rapport solution aqueuse / 1-2 propanediol déterminé , rapport qui dépend du degré d'acétylation du chitosane. De plus , la gélification s'accompagnant d'une perte en eau , il importe que les conditions opératoires favorisent cette évaporation de l'eau.
Plusieurs types de récipients peuvent être utilisés lors de la gélification, que ce soit des boîtes de pétri , des boîtes multi-puits ou encore des inserts spécialement conçus pour être logés dans les puits de boîtes multi-puits. Par exemple on met en œuvre une plaque de 24 puits équipés d'inserts, chaque insert étant constitué d'un cône en plastique dont le fond est formé d'une membrane perméable au liquide de nutrition et qui est agencé pour être déposé dans chaque puits sans en toucher le fond.
MISF FN ΓI II TURE Les cellules chondrogéniques peuvent être des chondrocytes autologues ou des cellules précurseurs de chondrocytes préparées , in vitro , à partir de cellules souches pluripotentes.
Quel que soit le récipient utilisé pour la formation de l'hydrogel, l'hydrogel obtenu se présente sous la forme d'un bloc visco-élastique et translucide, dont la capacité et la résistance dépendent notamment de la concentration en chitosane de la solution initiale. De préférence , cette concentration est de 0,5 à 4%. Pour la mise en culture des cellules chondrogéniques , il est tout d'abord nécessaire d'augmenter la surface de mise en contact entre l'hydrogel de chitosane et lesdites cellules. Pour cela selon une première variante , le bloc d'hydrogel de chitosane est découpé en petits fragments dont les dimensions extérieures sont de l'ordre de quelques millimètres. Ces fragments sont disposés dans les puits d'une plaque multi-puits ou éventuellement dans les inserts équipant une telle plaque.Les cellules chondrogéniques sont introduites sous forme de suspension et mélangées délicatement aux fragments d'hydrogel . L'ensemble est recouvert d'un milieu de culture approprié. On constate que les cellules chondrogéniques adhèrent spontanément à la surface extérieure des fragments d'hydrogel et ne tombent pas dans le fond des puits. La mise en culture est effectué en mettant les plaques ainsi garnies dans une atmosphère de 1 O% de CO2 à 37°C. Le milieu de nutrition est renouvelé deux fois par semaine. La culture se poursuit pendant un temps variable qui peut aller de 2 à 6 semaines selon la taille souhaitée pour le néo-tissu cartilagineux qui se forme au contact de l'hydrogel de chitosane.
Il faut choisir une proportion ou ratio : « nombre de cellules/fragment de l'hydrogel de chitosane » de façon à éviter le plus possible que certaines cellules ne tombent au fond du puits. Dans un exemple précis de réalisation, on a placé 5.105 cellules chondrogéniques pour une trentaine de fragments d'hydrogel de chitosane par insert ou 1 à 3.106 cellules chondrogéniques pour une centaine de fragments d'hydrogel de chitosane par puits, non équipé d'insert.
Le degré d'acétylation, compris entre 30 et 70% , mais de préférence entre 40 et 60% induit des conditions d'amphiphilie optimales favorables à l'établissement d'un environnement propice à la synthèse du néo-tissu cartilagineux . En effet , en augmentant le degré d 'acétylation , on contribue à renforcer les interactions hydrophobes dues aux fonctions N-acétamides. Simultanément , on accroît aussi la cationicité des sites aminé résiduels , renforçant par là- même leur caractère hydrophile et leur aptitude à créer des interactions électrostatiques. Toutes ces conditions sont favorables à l'établissement d'interactions avec les protéoglycanes de la matrice extracellulaire néo-formés par les cellules chondrogéniques. De plus les conditions de pH, de l'ordre de 7 sont favorables à l'action d'enzymes , par exemple le lysosyme, sécrété par les chondrocytes et permettant la dégradation par hydrolyse de liaisons glycosuriques constituant la chaîne du chitosane.
Dans les conditions indiquées ci-dessus, les chondrocytes se multiplient et synthétisent simultanément une matrice importante qui s'accumule autour des cellules et remplace ou recouvre progressivement l'hydrogel de chitosane. Il est d'ailleurs possible de suivre la formation de ce néo-tissu cartilagineux en fonction du temps de culture. Au stade précoce de la culture, les cellules chondrogéniques adhèrent à l'hydrogel sans jamais le pénétrer , elles sécrètent des protéines matricielles du type collagène et protéoglycanes qui s 'accumulent autour des cellules et qui forment une couche plus dense le long de l'hydrogel, entre les cellules et l'hydrogel qui conserve son aspect initial. Lorsque la culture se poursuit , notamment pendant de quatre à six semaines , les cellule.s chondrogéniques se multiplient à partir des cellules bordant l'hydrogel et les protéines matricielles continuent à s'accumuler. La structure de I' hydrogel se modifie , devenant de plus lâche et prenant progressivement des colorations qui sont spécifiques des protéines collagéniques et des protéo-glycanes. On obtient en fin de culture un bloc de tissu néo-formé constitué de plusieurs colonies de cellules organisées en rangées plus ou moins parallèles et présentant un gradient de maturation cellulaire qui est orienté depuis la zone de jonction des cellules avec l'hydrogel vers sa périphérie. En analysant ce bloc de néo-tissu en histologie , on constate que son aspect morphologique est proche d'un tissu cartilagineux normal. Une analyse moléculaire par RT-PCR a été réalisée après cinq semaines de culture, pour l'expression des collagènes I et II, agrécane, biglycane et décorine. Les ARN messagers de collagène II, d'agrécane, de biglycane et de décorine sont exprimés alors que ceux du collagène I ne sont pas détectables . Au niveau protéique, la synthèse de protéoglycane a été étudiée après incorporation du soufre 35. Les protéoglycanes ont été extraits du néo-tissu par le chlorure de guanidine 4M, purifiés et analysés par chromatographie sur colonne de sépharose 2B. Les profils d'élution obtenus montrent que les cellules ont synthétisé et sécrété des protéo-glycanes qui se sont regroupés dans la matrice sous formre d'agrégats de haut poids moléculaire, avec un profil similaire à ceux synthétisés et sécrétés in vivo.
Selon une seconde variante de réalisation, les cellules chondrogéniques ont été étalées , sous forme de nappe, entre des couches d'hydrogel, chaque couche ayant une épaisseur de l'ordre de quelques millimètres. Par exemple quatre nappes de cellules ont été étalées en combinaison avec trois couches d'hydrogel , à savoir deux nappes respectivement sur les faces extérieures de la première et de la troisième couche d'hydrogel et deux nappes prises en sandwich entre respectivement la première et la seconde couche et la seconde et troisième couche d'hydrogel.
La mise en culture des cellules a été réalisée dans les mêmes conditions que ci-dessus et on a procédé aux mêmes constatations en ce qui concerne la formation d'un néo-tissu cartilagineux. Les colonies cellulaires qui se sont formés soit à partir des cellules en contact avec la face extérieure de la première et de la troisième couche d'hydrogel soit à partir des cellules étalées entre deux couches d'hydrogel présentent tous un gradient morphologique similaire à celui qui a été décrit ci-dessus. Les couches d'hydrogel , intercalées entre les nappes de cellules , ont disparu et sont remplacées par une structure fibrillaire très alcyanophile dont l'épaisseur correspond environ à la superposition de deux à trois couches de cellules. On comprend que cette dernière variante mettant en œuvre une superposition de couches d'hydrogel de chitosane et de cellules chondrogéniques permet d'obtenir très facilement un néo-tissu cartilagineux de plus grande dimension.
Quelle que soit la variante mise en œuvre , le néo-tissu cartilagineux qui est obtenu selon le procédé de l'invention est apte à être greffé en l'état pour la réparation des lésions cartilagineuses, méniscales ou de disques intervertébraux notamment des lésions de tailles importantes.

Claims

REVENDICATIONS
1. Néo-tissu cartilagineux greffable caractérisé en ce qu'il est constitué de rangées de cellules plus ou moins parallèles , présentant un gradient de maturation cellulaire orienté depuis une zone déterminée vers sa périphérie.
2. Néo-tissu selon la revendication 1 caractérisé en ce que la zone déterminée correspond à la zone de jonction des cellules avec un hydrogel de chitosane au contact duquel le néo-tissu se développe lors de sa préparation.
PCT/FR2002/001122 2001-03-30 2002-03-29 Neo-tissu cartilagineux greffable WO2002078761A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA002442734A CA2442734A1 (fr) 2001-03-30 2002-03-29 Neo-tissu cartilagineux greffable
EP02757750A EP1372751A1 (fr) 2001-03-30 2002-03-29 Neo-tissu cartilagineux greffable
US10/473,359 US20050074742A1 (en) 2001-03-30 2002-03-29 Cartilaginous neo-tissue capable of being grafted

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR0104405A FR2822842B1 (fr) 2001-03-30 2001-03-30 Procede de preparation d'un neo-tissu cartilagineux
FR01/04405 2001-03-30
FR0111322A FR2822843B1 (fr) 2001-08-31 2001-08-31 Neo-tissu cartilagineux greffable
FR01/11322 2001-08-31

Publications (1)

Publication Number Publication Date
WO2002078761A1 true WO2002078761A1 (fr) 2002-10-10

Family

ID=26212946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/001122 WO2002078761A1 (fr) 2001-03-30 2002-03-29 Neo-tissu cartilagineux greffable

Country Status (4)

Country Link
US (1) US20050074742A1 (fr)
EP (1) EP1372751A1 (fr)
CA (1) CA2442734A1 (fr)
WO (1) WO2002078761A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI632926B (zh) * 2009-05-29 2018-08-21 沛爾醫療股份有限公司 用於經由呼吸道遞送二或更多種活性藥劑的組成物、方法與系統
US10612001B2 (en) 2014-12-01 2020-04-07 Advanced Chitosan Solutions Biotech Cartilage gel for cartilage repair, comprising chitosan and chondrocytes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999047186A1 (fr) * 1998-03-18 1999-09-23 University Of Pittsburgh Matieres composites a base de chitosane contenant du glycosaminoglycane pour la reparation du cartilage
WO2000056251A1 (fr) * 1999-03-24 2000-09-28 Chondros, Inc. Culture cellulaire et produits de recombinaison polymeres

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6886568B2 (en) * 1998-04-08 2005-05-03 The Johns Hopkins University Method for fabricating cell-containing implants

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999047186A1 (fr) * 1998-03-18 1999-09-23 University Of Pittsburgh Matieres composites a base de chitosane contenant du glycosaminoglycane pour la reparation du cartilage
WO2000056251A1 (fr) * 1999-03-24 2000-09-28 Chondros, Inc. Culture cellulaire et produits de recombinaison polymeres

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE MEDLINE [online] October 1998 (1998-10-01), ZHANG W ET AL: "[Tissue engineering of hyaline cartilage]", XP002207812, Database accession no. NLM11825472 *
FRANCIS SUH J-K ET AL: "Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review", BIOMATERIALS, vol. 21, no. 24, 15 December 2000 (2000-12-15), pages 2589 - 2598, XP004217422, ISSN: 0142-9612 *
ZHONGHUA WAI KE ZA ZHI [CHINESE JOURNAL OF SURGERY], vol. 36, no. 10, October 1998 (1998-10-01), pages 591 - 593, ISSN: 0529-5815 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI632926B (zh) * 2009-05-29 2018-08-21 沛爾醫療股份有限公司 用於經由呼吸道遞送二或更多種活性藥劑的組成物、方法與系統
US10612001B2 (en) 2014-12-01 2020-04-07 Advanced Chitosan Solutions Biotech Cartilage gel for cartilage repair, comprising chitosan and chondrocytes
US11718828B2 (en) 2014-12-01 2023-08-08 Advanced Chitosan Solutions Biotech Cartilage gel for cartilage repair, comprising chitosan and chondrocytes

Also Published As

Publication number Publication date
CA2442734A1 (fr) 2002-10-10
EP1372751A1 (fr) 2004-01-02
US20050074742A1 (en) 2005-04-07

Similar Documents

Publication Publication Date Title
EP3226923B1 (fr) Gel de cartilage pour la réparation cartilagineuse, comprenant du chitosane et des chondrocytes
Kang et al. Novel porous matrix of hyaluronic acid for the three-dimensional culture of chondrocytes
RU2392287C2 (ru) Матрица, клеточный имплантат и способы их получения и применения
US6790454B1 (en) Processes for the preparation of novel collagen-based supports for tissue engineering, and biomaterials obtained
EP3388091B1 (fr) Réparation de tissu cartilagineux
Chung et al. Interpenetrating polymer network (IPN) scaffolds of sodium hyaluronate and sodium alginate for chondrocyte culture
JP2021519060A (ja) インビトロ培養及び移植のための組織構築物の生理学的3dバイオプリンティングのためのバイオガム及び植物性ガムハイドロゲルバイオインク
CA2384768A1 (fr) Methodes et compositions pour la conservation de chondrocytes et utilisations
JP2003534102A (ja) 組織工学及び生体材料製造のためのコラーゲンベースによる支持体
AU2007229009A1 (en) Methods to maintain, improve and restore the cartilage phenotype of chondrocytes
WO2005044326A1 (fr) Utilisation d'un hydrogel pour la culture de chondrocytes.
US20140341874A1 (en) Dextran-based tissuelette containing platelet-rich plasma lysate for cartilage repair
WO2002078760A1 (fr) Procede de preparation d'un neo-tissu cartilagineux
WO2009017267A1 (fr) Procédé de différenciation de cellules souches mésenchymes et de culture de chondrocytes par le biais de composite fibrine/ha revêtu d'alginate
WO2002078761A1 (fr) Neo-tissu cartilagineux greffable
CA2250938A1 (fr) Laminine 5 pour la croissance des cellules des ilots pancreatiques
EP1960011B1 (fr) Utilisation d' un polysaccharide excrete par l'espece vibrio diabolicus a des fins d'ingenierie des tissus conjonctifs non mineralises
FR2809313A1 (fr) Procedes de preparation de nouveaux supports a base de collagene pour l'ingenieurie tissulaire et biomateriaux obtenus
Kumar et al. Preparation and characterization of biodegradable collagen–Chitosan scaffolds
FR2822843A1 (fr) Neo-tissu cartilagineux greffable
FR2927632A1 (fr) Cornee et muqueuse reconstruites.
EP0217816B1 (fr) Produit a base d'elastine, procede pour sa preparation et ses applications biologiques, en particulier en tant que biomateriaux et supports artificiels
Weiss et al. Hydrogels for cartilage tissue engineering
EP2406275B1 (fr) Peptide promoteur de l'adhesion et de la migration cellulaire
WO2020144381A1 (fr) Procede d'amplification in vitro ou ex vivo de cellules souches du tissu adipeux humain

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002757750

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2442734

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 2002757750

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10473359

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2002757750

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP