WO2002078000A1 - Parallel spring design for acoustic damping of a disc drive - Google Patents

Parallel spring design for acoustic damping of a disc drive Download PDF

Info

Publication number
WO2002078000A1
WO2002078000A1 PCT/US2001/024987 US0124987W WO02078000A1 WO 2002078000 A1 WO2002078000 A1 WO 2002078000A1 US 0124987 W US0124987 W US 0124987W WO 02078000 A1 WO02078000 A1 WO 02078000A1
Authority
WO
WIPO (PCT)
Prior art keywords
disc drive
flex
beam damper
platform
pole
Prior art date
Application number
PCT/US2001/024987
Other languages
English (en)
French (fr)
Inventor
Daniel Medford Heaton
Curtis Allen Trammell
Roy Lynn Wood
John Daniel Stricklin
Gary Alfred Treleven
Original Assignee
Seagate Technology Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seagate Technology Llc filed Critical Seagate Technology Llc
Priority to DE10197216T priority Critical patent/DE10197216T5/de
Priority to KR10-2003-7012280A priority patent/KR20030080098A/ko
Priority to GB0322151A priority patent/GB2389699A/en
Priority to JP2002575950A priority patent/JP2005500635A/ja
Publication of WO2002078000A1 publication Critical patent/WO2002078000A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B33/00Constructional parts, details or accessories not provided for in the other groups of this subclass
    • G11B33/02Cabinets; Cases; Stands; Disposition of apparatus therein or thereon
    • G11B33/08Insulation or absorption of undesired vibrations or sounds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/4806Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed specially adapted for disk drive assemblies, e.g. assembly prior to operation, hard or flexible disk drives

Definitions

  • the claimed invention relates generally to disc drive data storage devices and more particularly to a damper for damping acoustic noise generated by a disc drive.
  • Disc drives are commonly used for many computer environments to store large amounts of data in a form readily available to a user.
  • a disc drive has one or more magnetic discs rotated by a spindle motor at a constant high speed.
  • Each disc has a data storage surface divided into a series of concentric data tracks radially spaced across a band having an inner diameter and an outer diameter.
  • the data is stored within the data tracks in the form of magnetic flux transitions. These flux transitions are induced by one or more read/write heads.
  • Each read/write head includes an interactive element such as a magnetic transducer.
  • the transducer senses the magnetic transitions on a selected data track to either write data to the data track or to read the data stored on the data track.
  • Each of the read/write heads is mounted to a rotary actuator arm and is positioned by the actuator arm over a selected data track to either write data to the data track or to read the data stored on the data track.
  • Each read/write head includes a slider assembly having an air bearing surface that, in response to air currents generated by rotation of the disc, causes the head to fly over the disc. A desired gap separates the read/write head and the corresponding disc.
  • multiple open-center discs and spacer rings are alternately stacked on a spindle motor hub.
  • the hub that defines a core of the stack also serves to align the discs and the spacer rings about a common axis.
  • the discs, the spacer rings and the spindle motor hub collectively define a disc pack assembly.
  • the read/write heads which mount on a complementary stack of actuator arms to form part of an actuator assembly, access the surfaces of the stacked discs.
  • the actuator assembly includes features to conduct electrical signals from the read/write heads to a flex circuit, which in turn conducts the electrical signals to a flex circuit connector mounted to a base deck of the disc drive.
  • the readwrite heads When the disc drive is not in use, the readwrite heads are parked in a position separate from the data storage surfaces of the discs.
  • a landing zone is typically provided on each of the disc surfaces where the read/write heads are positioned before the rotational velocity of the spinning discs decreases below a threshold velocity necessary to sustain the air bearing.
  • the landing zones are usually located near the inner diameter of the discs.
  • the actuator assembly typically has an actuator body that pivots about a pivot assembly that is disposed in a medial position of the actuator assembly.
  • a voice coil motor positions a proximal end of the actuator assembly. This positioning of the proximal end of the actuator assembly causes a distal end of the actuator assembly, which supports the read/write heads, to move across the face of the discs.
  • the coil of the voice coil motor conducts an electrical current. This electrical current through the coil generates an electrical field.
  • the coil is positioned in a magnetic field between an upper pole and a lower pole of the voice coil motor.
  • the electrical filed of the coil interacts with the magnetic generated by the upper pole and the lower pole to cause the actuator assembly to pivot about the pivot assembly.
  • U.S. Patent No. 6,175,469 issued to Ahmad et al. discloses the use of an elastomeric member joined to a magnetically permeable liner to form a dampening member.
  • the dampening member is attached to a top cover of the disc drive and compressed between the top cover and an upper pole of the voice coil motor. While both the dampers of Kim '374 and the dampening member of Ahmad '469 have been found operable in reducing vibration of the top cover, there remains a need for a device that more effectively reduces acoustic noise generated by the top cover by dissipating the vibrational energy that is generated by the voice coil motor and transmitted to the top cover.
  • a beam damper for a voice coil motor (NCM) of a disc drive is provided to reduce acoustic noise generated by the disc drive.
  • the beam damper reduces the acoustic noise by dissipating vibrational energy of the disc drive.
  • the disc drive has a top cover and a NCM with a magnetic upper pole.
  • the NCM induces vibrational energy in the disc drive by forces exerted on the upper pole and a lower pole in reaction to electromotive forces that the NCM generates to pivotally move an actuator assembly.
  • the beam damper is affixed to a top cover of the disc drive and supported over the upper pole.
  • the beam damper includes a substantially flat platform, and a series of flex beams extending from the platform and engaging the upper pole to resiliently bias the top cover away from the upper pole.
  • FIG. 1 is a partial cut-away plan view of a disc drive constructed in accordance with preferred embodiments of the present invention.
  • FIG. 2 is a plan view of the inside of the top cover and beam damper of the disc drive of FIG. 1.
  • FIG. 3 is an isometric view of the beam damper of FIG. 2.
  • FIG. 4 is a section view of section 4-4 shown in FIG. 3.
  • FIG. 5 is a partial cross-sectional, elevation view of a beam damper in conjunction with the voice coil motor of the disc drive.
  • FIG. 6 is a partial cross-sectional, elevational view of a beam damper in accordance with another preferred embodiment of the present invention.
  • FIG. 7 is a partial cross-sectional, elevational view of a beam damper in accordance with yet another preferred embodiment of the present invention.
  • the disc drive 100 includes a base deck 102 to which various disc drive components are mounted.
  • the disc drive also has a cover 104 which, together with the base deck 102 and a gasket 105, form a housing of the disc drive 100.
  • the top cover 104 is shown in a partial cutaway fashion to expose selected components of interest. Numerous details of construction of the disc drive 100 are not included in the following description because these details of construction are well known to those skilled in the art and are unnecessary to describe the present invention.
  • a spindle motor 106 is mounted to the base deck 102, and one or more discs 108 are in turn mounted to the spindle motor 106.
  • a clamp ring 110 secures the discs 108 to the spindle motor 106 for rotation at constant high speed.
  • An actuator assembly 112 is located next to the discs 108.
  • the actuator assembly 112 pivots about a pivot bearing assembly 114 in a plane parallel to the discs 108.
  • the actuator assembly includes an E- block 115 supported by the pivot bearing assembly 114.
  • the E-block 115 has actuator arms 116 that support load arm assemblies 118.
  • the load arm assemblies 118 in turn, support read/write heads 120 with each of the read/write heads 120 adjacent a surface of one of the discs 108.
  • the read/write heads 120 are maintained in a data reading or data writing spatial relationship using conventional slider assemblies (not shown), which support the read/write heads 120.
  • Each of the discs 108 has a data storage location with a data recording surface 122 divided into concentric circular data tracks (not shown) and the read/write heads 120 are located adjacent the data tracks to read data from or write data to the data tracks.
  • the data recording surface 122 has a circular,, texturized landing zone 124 near an inner diameter of one of the discs 108 where the read/write head 120 comes to rest when the disc drive 100 is not in use.
  • the E-block 115 is positioned by a voice coil motor (VCM) 126.
  • VCM voice coil motor
  • the E-block has a coil yoke 128 attached to the E-block 115 at a proximal end of the actuator assembly.
  • the coil yoke 128 supports a coil 130.
  • the coil 130 is immersed in a magnetic field generated by a magnet assembly 132.
  • the magnet assembly 132 includes a pair of steel plates (upper pole 134 and lower pole 136), which in turn support upper and lower permanent magnets (only upper pole 134 is visible in FIG. 1).
  • the coil 130 is positioned between the upper lower magnets. When an electrical current is passed through the coil 130, an electromagnetic field is established which interacts with magnetic field established by the magnet assembly 132 to cause the coil 130 to move with respect to the magnet assembly 132. The movement of the coil 130 causes the actuator assembly 112 to pivot about the pivot bearing assembly 114 to position the read/write heads in a desired location with respect to the discs 108.
  • a flex circuit 138 provides the necessary electrical conduction paths between the actuator assembly 132 and a disc drive printed circuit board (not shown).
  • the disc drive printed circuit board mounts to an underside of the base deck 102.
  • the disc drive printed circuit board provides the disc drive read/write circuitry to control operation of the read/write heads 120.
  • the disc drive printed circuit board also provides other interface and control circuitry for the disc drive 100.
  • FIG. 1 further shows abeam damper 140 (in broken-line fashion). As discussed below, the beam damper 140 is interposed between the top cover 104 and the upper pole 134 to reduce acoustic noise generated by the disc drive 100.
  • FIG. 2 provides a plan view of the interior surface of the top cover 104 to illustrate the beam damper 140 in greater detail.
  • features of the top cover 104 shown in FIG. 2 include an actuator assembly contact point 142, a spindle motor contact point 144, and a laminate damping structure 146 adjacent the discs 108.
  • the beam damper 140 is attached to the interior surface of the top cover 104 using a layer of adhesive or other suitable fastening methodology.
  • the beam damper 140 includes a planar base or platform 148 from which a number of flex beams 150 angularly extend.
  • the flex beams 150 engage the upper pole 134 and resiliently bias the top cover 104 away from the upper pole 134.
  • This biasing is resilient because the flex beams 150 act like springs in this configuration.
  • the flex beams 150 dissipate vibrational energy transmitted to the flex beams 150 through the upper pole 134 while rigidly coupling the top cover 104 to the upper pole 134.
  • Each of the flex beams 150 in the series of flex beams 150 is preferably spaced along a chord (mid-line) of the beam damper 140 as shown.
  • FIGS. 3 and 4 show the beam damper 140 in greater detail.
  • FIG. 3 is an isometric view and FIG. 4 is a cross-sectional, elevational view along line 4-4 in FIG. 3.
  • the beam damper 140 is preferably formed from a planar sheet of material, such as stainless steel or other ductile metal. The sheet of material is stamped and cut to provide the desired configuration. It will be noted that the flex beams 150 are cut and bent upwardly at the desired angle, leaving corresponding apertures 152 in the platform 148. The flex beams 150 can retain substantially the same shape as the apertures 152, or a small amount of material can be trimmed from around the flex beams 150 so that the flex beams 150 are smaller than the corresponding apertures 152.
  • FIG. 5 shows a cross-sectional, elevational view of the beam damper 140 in conjunction with the VCM 126.
  • the magnet assembly 132 of the NCM 126 includes the upper pole 134 as well as a lower pole 154 and upper and lower permanent magnets 156, 158.
  • the coil 130 is shown disposed between the magnets 156, 158.
  • a tip 160 of each flex beam 150 pressingly engages a top surface of the upper pole 134. Vibrations in the magnet assembly 132 induced by rapid movements of the coil 130 are thus damped by the compression of the flex beams 150 between the top cover 104 and the upper pole 134.
  • the desired amount of compression, and resulting damping can be achieved through appropriate selection of the dimensions of the flex beams 150, the initial angles that the flex beams 150 form with the platform 148, and the modulus of elasticity of the material.
  • FIG. 6 provides a cross-sectional, elevational view of the beam damper 140 constructed in accordance with another preferred embodiment. More particularly, the beam damper 140 includes flex beams 162 that have a radiused profile as shown. Each flex beam 162 a curved engagement surface 164 which pressingly engages the upper pole so that a tip 166 is not in contact with the upper pole 134.
  • An advantage of this configuration is a reduced likelihood of particle generation from scraping engagement of the beam damper 140 and the upper pole 134.
  • FIG. 7 provides a cross-sectional, elevational view of the beam damper 140 constructed in accordance with yet another preferred embodiment.
  • the beam damper 140 of FIG. 7 is shown to be attached to the upper pole 134 instead of the top cover 104.
  • the beam damper of FIG. 7 has substantially linear flex beams 168, as shown in the embodiments of FIGS. 1-5, but with the addition of a vibration-absorbent material 170, such as rubber.
  • the material 170 is applied to a tip 172 of each flex beam 168 and improves the damping characteristics of the beam damper 140 as well as serves to reduce particle generation.
  • the vibration-absorbent material can be either a coating or a separate piece of material.
  • the beam damper 140 advantageously resiliently biases the top cover 104 away from the upper pole 134 by reducing the excitation of the top cover 104, thereby providing a more rigid assembly for the distribution of energy.
  • the number of flex beams shown in FIGS. 1-7 are illustrative only and not limiting to the scope of the claimed invention. It has been observed that beam dampers with different numbers of flex beams provide different damping characteristics for the top cover 104. The particular number and configuration of the flex beams are therefore preferably selected in accordance with the requirements of a given application.
  • the beam damper 140 presents several advantages over the prior art.
  • the beam damper 140 is easily manufactured and installed, which are important considerations in a high volume disc drive manufacturing environment.
  • the operation of the flex beams 150, 162, 168 as leaf springs provides improved coupling between the top cover 104 and the upper pole 134 as compared to a sandwiched, compressible material as disclosed by Kim '374 and Ahmad '469.
  • the flex beams further provide improved damping of vibrations in a direction parallel to the direction of movement of the coil 130, and unlike compressed materials, will not tend to relax and lose resilience over time.
  • the desired damping characteristics can readily be obtained through proper selection of the number and configuration of flex beams.
  • the beam damper 140 can be disposed between the base deck 102 and the lower pole 154, as desired.
  • the present invention is for a beam damper (such asl40) for a VCM (such asl26) of a disc drive (such as 100) to reduce acoustic noise generated by the disc drive.
  • the beam damper reduces the acoustic noise by dissipating vibrational energy of the disc drive.
  • the disc drive 100 has a top cover 104 and a VCM 126 with a magnetic upper pole 134.
  • the VCM induces vibrational energy in the disc drive by forces exerted on the upper pole and a lower pole in reaction to electromotive forces that the VCM generates to pivotally move an actuator assembly (such asl 12).
  • the beam damper is attached to the top cover to align with the upper pole when the top cover is attached to a base deck (such asl02).
  • the beam damper includes (a) a substantially flat platform (such asl48); and (b) a number of flex beams (such as 150, 162, 168) extending from the platform and engaging the upper pole to resiliently bias the top cover away from the upper pole of the VCM.
  • the recited function performed by the first means will be understood as being carried out by the disclosed beam damper 140 having a platform 148 affixed to a pole 134 or a housing member (such as top cover 104).
  • a number of flex beams 150, 162 and 168 extend at a desired angle from the platform 148 and engage the remaining one of the housing 104 and pole 134.
  • the beam damper 140 is formed from a ductile metal so that the flex beams operate substantially as leaf springs. Accordingly, a layer of compressible foam rubber or other elastic dampers such as disclosed by Kim '374 and Ahmad '469 are not included within the scope of the claim, and are explicitly excluded from the definition of an equivalent structure to that claimed.

Landscapes

  • Moving Of Heads (AREA)
  • Springs (AREA)
  • Vibration Prevention Devices (AREA)
PCT/US2001/024987 2001-03-21 2001-08-09 Parallel spring design for acoustic damping of a disc drive WO2002078000A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE10197216T DE10197216T5 (de) 2001-03-21 2001-08-09 Parallele Federgestaltung für akustische Dämpfung eines Plattenlaufwerks
KR10-2003-7012280A KR20030080098A (ko) 2001-03-21 2001-08-09 디스크 드라이브의 음향 완충용 평행 스프링 구조물
GB0322151A GB2389699A (en) 2001-03-21 2001-08-09 Parallel spring design for acoustic damping of a disc drive
JP2002575950A JP2005500635A (ja) 2001-03-21 2001-08-09 ディスク・ドライブの音響減衰用の平行ばね設計

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US27778401P 2001-03-21 2001-03-21
US60/277,784 2001-03-21

Publications (1)

Publication Number Publication Date
WO2002078000A1 true WO2002078000A1 (en) 2002-10-03

Family

ID=23062332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2001/024987 WO2002078000A1 (en) 2001-03-21 2001-08-09 Parallel spring design for acoustic damping of a disc drive

Country Status (6)

Country Link
JP (1) JP2005500635A (de)
KR (1) KR20030080098A (de)
CN (1) CN1505818A (de)
DE (1) DE10197216T5 (de)
GB (1) GB2389699A (de)
WO (1) WO2002078000A1 (de)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0874175A2 (de) * 1997-04-25 1998-10-28 Alps Electric Co., Ltd. Antivibrationsvorrichtung und Plattenantriebsgerät mit einer solchen
GB2336238A (en) * 1998-04-11 1999-10-13 Samsung Electronics Co Ltd Vibration-damping cover for a hard disc drive
US5999374A (en) * 1997-07-04 1999-12-07 Samsung Electronics Co., Ltd. Damper for the voice coil motor of a hard disk drive
US6175469B1 (en) * 1998-12-04 2001-01-16 Seagate Technology, Inc. Disc drive magnet housing electro mechanical resonance dampening system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0874175A2 (de) * 1997-04-25 1998-10-28 Alps Electric Co., Ltd. Antivibrationsvorrichtung und Plattenantriebsgerät mit einer solchen
US5999374A (en) * 1997-07-04 1999-12-07 Samsung Electronics Co., Ltd. Damper for the voice coil motor of a hard disk drive
GB2336238A (en) * 1998-04-11 1999-10-13 Samsung Electronics Co Ltd Vibration-damping cover for a hard disc drive
US6175469B1 (en) * 1998-12-04 2001-01-16 Seagate Technology, Inc. Disc drive magnet housing electro mechanical resonance dampening system

Also Published As

Publication number Publication date
KR20030080098A (ko) 2003-10-10
JP2005500635A (ja) 2005-01-06
CN1505818A (zh) 2004-06-16
GB0322151D0 (en) 2003-10-22
DE10197216T5 (de) 2004-04-15
GB2389699A (en) 2003-12-17

Similar Documents

Publication Publication Date Title
US6163441A (en) Resonance dampening actuator bearing assembly
US6549376B1 (en) Gimbal suspension with vibration damper
US6879466B1 (en) Disk drive including an actuator with a constrained layer damper disposed upon an actuator body lateral surface
US6603633B2 (en) Parallel spring design for acoustic damping of a disc drive
US6862156B1 (en) Disk drive including a disk plate having a damping member
US6487039B1 (en) Disc-drive mounting method and apparatus to reduce noise
US7292406B1 (en) Disk drive including a spindle motor and a pivot bearing cartridge attached to different layers of a laminated cover
US6980401B1 (en) Head stack and actuator arm assemblies including a bobbin to stiffen the coil portion of an actuator of a hard disk drive and disk drives including the same
JP3328800B2 (ja) ヘッドサスペンション
US6536555B1 (en) Multilayer acoustic damper for a disc drive
US5907452A (en) Apparatus and method to dampen flex cable vibration to disk drive actuator
US4843503A (en) Head arm damping device for disc drive actuators
US5914836A (en) Cantilevered support for the magnetic circuit of a disc drive voice coil motor
US6704161B1 (en) Shock protection skin bumper for a hard disk drive
US6125017A (en) Actuator crash stops providing a two-stage braking impulse
US6512658B1 (en) Viscoelastic voice coil damper for disc drives
US20060066993A1 (en) Disk drive device
US6501615B1 (en) Dampening member for isolating actuator vibration
US6674609B2 (en) Anechoic chamber noise reduction for a disc drive
US6674608B1 (en) Damped protective cover to improve disc drive acoustics
US20060268451A1 (en) Disk device
US6510021B1 (en) Mechanical isolation for a disc drive spindle motor
Aruga et al. High-speed orthogonal power effect actuator for recording at over 10000 TPI
US20030165033A1 (en) Head support device and recording regenerator having this head support device
US6744606B2 (en) Dual plane actuator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE GB JP KR SG

ENP Entry into the national phase

Ref document number: 0322151

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20010809

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002575950

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020037012280

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018231829

Country of ref document: CN

RET De translation (de og part 6b)

Ref document number: 10197216

Country of ref document: DE

Date of ref document: 20040415

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: 10197216

Country of ref document: DE