明 細 書 Specification
錶鋼および錶造金型 技術分野 錶 Steel and metal mold
本発明は、 錶造後の内部品質および被削性に優れた錡鋼ならびに、 前 記錶鋼を錶造して得られる錶鋼製品とりわけ金型に関するもので、 詳し くは、 錶造状態で各種欠陥を抑制し、 鍛鋼製品に匹敵する内部品質およ び優れた被削性を有する錶鋼ならびにそれを用いた金型に関する。 背景技術 The present invention relates to a steel having excellent internal quality and machinability after manufacturing, and a steel product obtained by manufacturing the above steel, especially a mold. The present invention relates to a steel which suppresses various defects, has an internal quality comparable to a forged steel product, and has excellent machinability, and a mold using the same. Background art
金型は金属やプラスチックをはじめとする各種の材料を成形する上で 不可欠な加工部材 (工具) である。 これには一般に各種鋼材が使用され ている。 Molds are indispensable processing members (tools) for molding various materials including metals and plastics. Various steel materials are generally used for this.
例えば、 プラスチック成形用金型には C: 0. 10〜0. 50質量% を含有する炭素鋼またはこれに C r、 Mo、 Cu、 Ni、 V等を添加し た鋼材が使用されている。 また、 熱間鍛造用金型には J I S SKD 6 1種を始めとして、 Cr : 1〜9質量%と : 0. 2〜1. 2質量%、 Mo : 0. 2〜2. 0質量%を主要成分とする鋼材が使用される。 さら に、 冷間成形用金型には例えば質量%で 1%C— 3. 5%Cr程度を含 有する鋼材が使用される。 For example, carbon steel containing 0.10 to 0.50% by mass of C or a steel material added with Cr, Mo, Cu, Ni, V, etc. is used for a plastic molding die. In addition, JIS SKD 6 Class 1 Cr, 1 to 9% by mass, 0.2 to 1.2% by mass, Mo: 0.2 to 2.0% by mass for hot forging dies Steel material is used as the main component. Further, a steel material containing, for example, about 1% C to 3.5% Cr by mass% is used for the cold forming die.
これらの金型は主に鋼素材を熱間加工して素形材とし、 必要に応じて 切断したのちユーザーにて所定の金型形状に切削加工されることが多い。 しかしながら、 熱間加工後切削加工する方法では、 素形材を入手し、 切 削加工にて仕上げるまでに多くの日数を要し、 納期の短縮等の面で限界 がある。 さらに熱間加工仕上げのため、 必要な形状に近い形状、 いわゆ る二ァネットシヱイブに加工することが困難であり、 素形材の多くを切 削切り屑として排出することでロスするとともに、 切削加工において長
い時間と多大の工具費を必要とする。 These dies are usually hot-worked from steel materials to form shaped materials, and cut as needed, and then cut into the desired shape by the user in many cases. However, the method of cutting after hot working requires many days to obtain a shaped material and finish it by cutting, and there is a limit in terms of shortening the delivery time. Furthermore, due to the hot working finish, it is difficult to machine the shape close to the required shape, so-called Nine Shade, so that most of the raw material is discharged as cutting swarf, resulting in loss and cutting. Long in It requires a lot of time and a lot of tool costs.
一方、 錶造材では、 各種の冷却用孔をはじめ、 最終仕上げ形状に近い 形状に鎵造が可能であるが、 下記のような課題があり、 適用には大きな 制約があった。 On the other hand, in the case of prefabricated materials, it is possible to produce a shape close to the final finished shape, including various cooling holes, but there are the following problems, and its application has been greatly restricted.
例えば、 特開平 11— 279673号公報では融点が低く取り扱いが 容易な Zn鍊造合金を用いることを提案している。 すなわち、 重量%に て、 Mg : 1. 5〜2. 5%、 1 : 3〜5%ぉょび〇^ : 2〜4%を 含み、 残部が実質的に Znからなり、 凝固開始温度が 390°C以下、 ビ ヅカース硬さが 150以上で、 ポロシティ一の発生が抑制された亜鉛合 金の使用である。 For example, Japanese Patent Application Laid-Open No. 11-279673 proposes to use a Zn alloy which has a low melting point and is easy to handle. That is, in terms of% by weight, Mg: 1.5 to 2.5%, 1: 3 to 5%, and ^: 2 to 4%, and the balance is substantially composed of Zn. The use of zinc alloy with 390 ° C or less, Vickers hardness of 150 or more, and suppressed generation of porosity.
また、 特開平 10— 147840号公報では錶鋼で金型を製造するこ とを提案している。 すなわち、 重量%で、 C: 0. 5〜1. 0%、 S i : 0. 25〜: L. 5%、 Mn : l. 0〜: L. 85%、 Cr : 0. 6〜5. 0%、 Moと Wの 1種または 2種を (Mo+W/2) で 0. 06〜0. 80 %含み、 さらに、 S : 0. 10〜0. 40%、 残部が実質的に Fe よりなり、 硫化物系介在物が基地組織中に粒状に分散した快削錡鋼によ る金型の製造である。 Also, Japanese Patent Application Laid-Open No. H10-147840 proposes manufacturing a metal mold from steel. That is, in weight%, C: 0.5 to 1.0%, Si: 0.25 to: L. 5%, Mn: l. 0 to: L. 85%, Cr: 0.6 to 5. 0%, one or two types of Mo and W (Mo + W / 2) in the range of 0.06 to 0.80%, and S: 0.10 to 0.40%, with the balance substantially Fe This is a method of manufacturing a mold using free-cutting steel in which sulfide-based inclusions are dispersed in a matrix structure in a granular manner.
しかしながら、 前者では Znを主体とする合金であるために、 被削性 には優れるものの、 金型としての寿命を改善するために必要な硬さに限 界がある。 また、 Zn合金は鋼材に比べ著しく高価である。 However, in the former, since the alloy is mainly composed of Zn, it has excellent machinability, but there is a limit to the hardness required to improve the life of the mold. Also, Zn alloys are significantly more expensive than steel materials.
後者では従来と同様な鋼成分を使用するため、 硬さは十分に得られる ものの、 被削性改善のために Sを積極的に添加し、 MnS量を増加させ ると、 錶鋼であるため、 ポロシティ一や Sの偏析、 あるいはこれらに起 因した割れ等の鎵造欠陥を助長する。 さらに、 鎵鋼では、 ポロシティ一 はその後に熱間加工が加わらないために圧着せず、 切削後の表面欠陥と なる。 Since the latter uses the same steel composition as before, sufficient hardness can be obtained.However, if S is added aggressively to improve machinability and the amount of MnS is increased, it will be a steel. It promotes structural defects such as porosity and S segregation or cracks caused by these. In addition, in 鎵 steel, porosity is not subjected to hot working and is not pressed, resulting in surface defects after cutting.
したがって、 従来の技術では、 錶造材で加工表面が素形材内部におよ
ぶ深彫用や、 仕上げ用で表面性状の良さが厳しく要求される用途には適 用出来なかった。 発明の開示 Therefore, in the conventional technology, the processing surface of the 錶 It could not be used for deep sculpture or finishing, which requires strict surface properties. Disclosure of the invention
本発明は上述した従来技術における問題点を解決するためになされた ものであり、 その課題は、 鎵造後の内部品質および被削性に優れた鍊鋼 ならびに、前記錶鋼を錶造して得られる、铸造状態で各種欠陥を抑制し、 鍛鋼製品に匹敵する内部品質および優れた被削性を有する金型を提供す ることを目的としている。 The present invention has been made to solve the above-described problems in the prior art, and its object is to provide a steel having excellent internal quality and machinability after forging, and a method for manufacturing the steel. The purpose of the present invention is to provide a die having an internal quality comparable to a forged steel product and excellent machinability, while suppressing various defects in a forged state obtained.
本発明者らは、 前記課題の解決を図るため、 下記の目標を同時に満足 し得る錡鋼および金型の開発を進めてきた。 In order to solve the above-mentioned problems, the present inventors have promoted the development of steel and a mold that can simultaneously satisfy the following goals.
1 ) 錡造にて金型素材を作製し、 金型仕上げのための切削加工量を大 きく低減させ、 加工時間および加工コストを大幅に低減する。 1) The die material is manufactured by die-casting, the amount of cutting for die finishing is greatly reduced, and the processing time and cost are greatly reduced.
2 ) 錶造にて十分な硬さの金型が得られる錡鋼を開発する。 2) Develop steel that can obtain a mold with sufficient hardness by forging.
3 ) 錡鋼金型で問題のある被削性および錶造欠陥を同時に解決するた めに、 高 S含有成分系で、 錶造のままにて鍛鋼なみの内部品質を実現す る o 3) 内部 To simultaneously solve the problems of machinability and forging defects, which are problematic in steel dies, to achieve the same internal quality as forged steel in as-forged form with a high S content component system.
ここでいう内部品質とは、単に錶造品の内部の品質を指すだけでなく、 切削により新たに表面となる表面部分における品質をも含むものである。 なお、 以上のような課題が解決出来れば、 上記の錶鋼は、 一般の機械 部品用等の錶鋼にももちろん適用が可能である。 The term “internal quality” as used herein refers not only to the internal quality of a product, but also to the quality of a surface portion that becomes a new surface by cutting. If the above problems can be solved, the steel described above can be applied to steel used for general mechanical parts.
上記の開発を進めた結果、 以下の知見を得た。 As a result of the above development, the following findings were obtained.
a ) 鋼中に被削性改善を目的に Sを多量に含有させ、 さらに T iや Z rを必要量添加すると、 T iや Z rを含有する硫化物が生成し、 M n S が皆無になるかまたはその生成が著しく抑制され、 その結果、 T i Z rを含む硫化物が錶鋼内にて微細に分散する。 a) When a large amount of S is contained in steel for the purpose of improving machinability and the necessary amount of Ti or Zr is added, a sulfide containing Ti or Zr is formed and MnS is completely eliminated. Or sulfides containing TiZr are finely dispersed in the steel.
b ) 上記 a ) の結果、 被削性が改善されるばかりでなく、 従来とは異
なつた凝固形態が得られ、 S含有率が高くても錶造のままで Sの偏析が 大幅に改善されるとともに、 柱状晶が減少または消失し、 ポロシティ一 ゃ偏析といった欠陥だけでなく、 粗い柱状晶に起因する切削表面の凹凸 も改善され、 鍛鋼に匹敵する画期的な内部品質が得られる。 b) As a result of the above a), not only the machinability is improved, but also Even when the S content is high, the segregation of S is greatly improved while the structure remains as it is, and the columnar crystals are reduced or disappear, and not only defects such as porosity and segregation, but also coarse Irregularities on the cutting surface due to columnar crystals are also improved, and epoch-making internal quality comparable to forged steel is obtained.
上記の知見に基づいて完成させた本発明の要旨は、 下記のとおりであ る o The gist of the present invention completed based on the above findings is as follows: o
① 質量%で、 C : 0. 02〜0. 45%、 S i : 0. 1〜2. 5%、 Mn: 0. 1〜2. 5%、 P : 0. 10 %以下、 S : 0. 02〜 0. 6 0 %、 N: 0. 020 %以下、 A1 : 0. 001〜0. 03 %を含み、 さらに、 T i : 0. 05〜0. 25%および Z r : 0. 05〜0. 50 ① In mass%, C: 0.02 to 0.45%, S i: 0.1 to 2.5%, Mn: 0.1 to 2.5%, P: 0.10% or less, S: 0 02 to 0.60%, N: 0.002% or less, A1: 0.001 to 0.03%, Ti: 0.05 to 0.25%, and Zr: 0.05 ~ 0.50
%の 1種または 2種を含み、 残部が F eおよび不純物からなり、 下記式 (1) により与えられる有効 T i等量 (Ti*) が下記式 (2) により 与えられる関係を満足し、 鋼中に T iおよび Z rのうちの 1種以上を含 む硫化物を含むことを特徴とする鍊造後の内部品質および被削性に優れ た鍊鋼である。 % Of one or two kinds, and the balance consists of Fe and impurities, and the effective Ti equivalent (Ti *) given by the following equation (1) satisfies the relationship given by the following equation (2), A steel with excellent internal quality and machinability after fabrication, characterized in that the steel contains a sulfide containing at least one of Ti and Zr.
Ti* = T i + 0. 53 X Z r Ti * = T i + 0.53 X Z r
-3. 4xN ( 1 ) -3. 4xN (1)
T i */S≥ 1. 5 (2) T i * / S≥ 1.5 (2)
② 前記①に記載の錡鋼において、 F eの一部に代えて、 質量%で、 C r : 0. 2〜9. 0%、 Ni : 0. 2〜2. 0%、 Mo : 0. 05〜 (2) In the steel No. described in (1) above, Cr: 0.2 to 9.0%, Ni: 0.2 to 2.0%, Mo: 0. 05 ~
2. 0%および V : 0. 01〜1. 5%のうちから選ばれた 1種または 2種以上を含有させてもよい。 2.0% and V: one or more selected from 0.01 to 1.5% may be contained.
③ 前記①または②に記載の錡鋼において、 Feの一部に代えて、 質 量%で、 Cu: 0. :!〜 3. 0%および 0 (酸素): 0. 005〜0. 020 %のうちの 1種または 2種を含有させてもよい。 (3) In the steel (2) described in (1) or (2) above, instead of part of Fe, the mass% is Cu: 0. 3.3.0% and 0 (oxygen): One or two of 0.005 to 0.002% may be contained.
④ 前記①から③のいずれかに記載の錡鋼を錶造してなる金型である。
図面の簡単な説明 (4) A mold made of (2) the steel described in any of (1) to (3) above. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 T iおよび Z rのいずれも含有しない鎢鋼についての銪塊の マクロ組織写真を示す図である。 FIG. 1 is a diagram showing a macrostructure photograph of a lump for a steel containing neither Ti nor Zr.
図 2は、 Z rを含有する錡鋼についての鍊塊のマクロ組織写真を示す 図である。 FIG. 2 is a view showing a macrostructure photograph of a mass of a steel containing Zr.
図 3は、 T iを含有する錄鋼についての錶塊中心部の介在物のミクロ 写真を示す図である。 FIG. 3 is a view showing a microphotograph of inclusions at the center of a lump for a steel containing Ti.
図 4は、 Z rを含有する錄鋼についての錶塊中心部の介在物のミクロ 写真を示す図である。 発明を実施するための最良の形態 FIG. 4 is a diagram showing a microphotograph of inclusions at the center of the ingot in the steel containing Zr. BEST MODE FOR CARRYING OUT THE INVENTION
本発明に係る錶鋼の組織および化学組成にづいて、 以下で詳細に説明 する。 なお、 以下の説明において、 各元素の含有量としての 「%」 は、 特に断らない限り、 「質量%」 を意味するものとする。 The structure and chemical composition of the steel according to the present invention will be described in detail below. In the following description, “%” as the content of each element means “% by mass” unless otherwise specified.
図 1は、 T iおよび Z rのいずれをも含有しない錶鋼による錶塊のマ クロ組織写真である。 後述する実施例における鋼番号 1 6の錶鋼により 直径 1 4 3 mmの錶塊を製造し、 そのマクロ組織写真を撮影したもので ある。 中心部に割れや極端なマクロ偏析は認められないものの、 組織は 粗大で、 表面から半径方向に半径の約 3 0 %の範囲が柱状晶からなつて いる。 Figure 1 is a macrostructure photograph of a lump of steel containing neither Ti nor Zr. This is a microstructure having a diameter of 144 mm produced from a steel having a steel number 16 in an example described later, and a macrostructure photograph thereof was taken. Although no cracks or extreme macrosegregation are observed at the center, the structure is coarse and columnar crystals cover a radius of about 30% from the surface in the radial direction.
図 2は、 Z rを含有する鎵鋼による錶塊のマクロ組織写真である。 実 施例における鋼番号 2の錶鋼により直径 1 4 3 mmの錶塊を製造し、 そ のマクロ組織写真を撮影したものである。 組織はきわめて微細で、 柱状 晶も認められず熱間鍛造後のマクロ組織に匹敵する。 FIG. 2 is a macrostructure photograph of a mass made of a steel containing Zr. In this example, a steel block with a diameter of 144 mm was manufactured from steel No. 2 of steel No. 2 and a macrostructure photograph thereof was taken. The microstructure is extremely fine, with no columnar crystals, comparable to the macrostructure after hot forging.
図 3は、 T iを含有する錶鋼 (実施例の鋼番号 1 ) の錶塊中心部の介 在物のミクロ写真であり、 図 4は、 Z rを含有する錶鋼 (実施例の鋼番 号 2 ) の錶塊中心部の介在物のミクロ写真である。
介在物の EPMAによる点分析で得た硫化物の組成分析結果から、 図 3の介在物は、 大部分が T iの硫化物を含有する介在物であり、 図 4の 介在物は、 大部分が Z rの硫化物を含有する介在物であることが判明し た。 FIG. 3 is a microphotograph of the inclusions at the center of the ingot of the steel containing Ti (Steel No. 1 in the example), and FIG. This is a microphotograph of the inclusion at the center of the lump No. 2). From the sulfide composition analysis results obtained by point analysis of inclusions by EPMA, the inclusions in Fig. 3 are mostly inclusions containing sulfides of Ti, and the inclusions in Fig. 4 are mostly Was found to be an inclusion containing the sulfide of Zr.
この現象は錶鋼中の元素成分のうち、 Ti、 Zr、 Sおよび Nによつ て支配される。 すなわち、 これらの元素含有量により前記式 (1) で与 えられる有効 T i等量が前記式 (2) を満足すると、 凝固時に、 まず少 量の T iや Z rは Nと反応して窒化物を形成し、 残りの大部分の T iや Z rは硫化物を生成する。 この硫化物が、 凝固形態を変化させる最終凝 固部で、 S、 P等の大きな濃縮をともなうことなく一挙に凝固を促進さ せるため、 偏析が改善されるとともに、 凝固収縮にともなうポロシティ 一等の錶造欠陥が改善される。 This phenomenon is controlled by Ti, Zr, S and N among the elemental components in steel. That is, when the effective Ti equivalent given by the above formula (1) satisfies the above formula (2) by the content of these elements, a small amount of Ti or Zr first reacts with N at the time of solidification. It forms nitrides, and most of the remaining Ti and Zr form sulfides. This sulfide is the final solidified part that changes the solidification morphology, and promotes solidification at once without large enrichment of S, P, etc. Structural defects are improved.
前記式 ( 1) は硫化物として反応可能な T iおよび Z rの量であり、 前記式 (2) で与えられる関係を満足すると、 化学量論的には Sは全て T iや Z rの硫化物になる。 実際には凝固した後に、 少量の MnSが観 察されることはあるが、 問題にならない程度の量である。 式 (2) の左 辺の値が 1. 5未満になると MnSが多量に観察され、 凝固組織の改善 やこれに関連した欠陥の改善が認められなくなる。 The above equation (1) is the amount of Ti and Zr that can react as a sulfide. If the relationship given by the above equation (2) is satisfied, stoichiometrically, S is all of Ti and Zr. Becomes sulfide. In practice, a small amount of MnS may be observed after solidification, but this is not a problem. When the value on the left side of equation (2) is less than 1.5, a large amount of MnS is observed, and no improvement in the solidification structure or related defects can be observed.
なお、 T i含有量や Z r含有量が S含有量に対して多過ぎると、 T i や Z rの炭化物の生成量が多くなり、靭性ゃ被削性が劣化することから、 前記式 (2) の左辺の値は 10以下であることが好ましい。 If the Ti content or the Zr content is too large with respect to the S content, the amount of carbides of Ti or Zr increases and the toughness ゃ the machinability deteriorates. The value on the left side of 2) is preferably 10 or less.
以下に、 本発明で規定する各元素の含有量の範囲を前記のとおり定め た理由を説明する。 Hereinafter, the reason why the range of the content of each element specified in the present invention is determined as described above will be described.
C: C:
Cは、 安価に強度を高めるために有効な元素である。 プラスチック金 型等では被削性が重視されるため、 C含有量はできるだけ低くし、 鋼材 の硬度を低くして工具摩耗を低減することが必要である。 しかし、 0.
02%未満になると硬度低下が著しく、 切削加工中にむしれが生じ、 か えって被削性が劣化する。 また、 含有量が 0. 60%を超えると硬度が 高くなりすぎ、 被削性ゃ靭性が劣化する。 そこで、 C含有量の範囲を 0. 02〜0. 45%とした。 好ましい範囲は、 0. 08〜0. 45%であ る。 C is an element that is effective to increase strength at low cost. Since machinability is important in plastic molds, it is necessary to keep the C content as low as possible and reduce the hardness of steel materials to reduce tool wear. But 0. If it is less than 02%, the hardness decreases remarkably, causing tearing during the cutting process, and rather deteriorating the machinability. On the other hand, if the content exceeds 0.60%, the hardness becomes too high, and the machinability and toughness deteriorate. Therefore, the range of the C content is set to 0.02 to 0.45%. A preferred range is from 0.08 to 0.45%.
S i : S i:
S iは、 脱酸および被削性改善に有効な元素である。 含有量が 0. 1 %未満ではこの効果が十分に得られない。 さらに、 錡造時の湯流れが阻 害され錶型内での溶鋼の充満性が不十分となる。 一方、 含有量が 2. 5 %を超えて高すぎると被削性改善効果ゃ靭性が低下する。 そこで、 S i 含有量の範囲を 0. 1〜2. 5%とした。 好ましい範囲は、 0. 5〜2. 0%である。 Si is an element effective for deoxidation and improvement of machinability. If the content is less than 0.1%, this effect cannot be sufficiently obtained. In addition, the flow of molten metal during construction is impeded, and the filling of molten steel in the mold becomes insufficient. On the other hand, if the content exceeds 2.5% and is too high, the machinability improving effect and the toughness decrease. Therefore, the range of the Si content is set to 0.1 to 2.5%. A preferred range is 0.5 to 2.0%.
Mn: Mn:
Mnは、 脱酸剤として有効な元素であるが、 多量に含有すると被削性 を劣化させる。含有量が 0. 1%未満では脱酸効果が得られない。一方、 含有量が 2. 5%を超えると被削性を劣化させる。 そこで、 Mn含有量 の範囲を 0. 1〜2. 5%とした。 好ましい範囲は、 0. 1〜1. 5% である。 Mn is an effective element as a deoxidizing agent, but when contained in large amounts, it deteriorates machinability. If the content is less than 0.1%, no deoxidizing effect can be obtained. On the other hand, if the content exceeds 2.5%, the machinability deteriorates. Therefore, the range of the Mn content is set to 0.1 to 2.5%. The preferred range is 0.1-1.5%.
P: P:
Pは、 凝固時の偏析を助長し、 靭性を劣化させるが、 一方では、 含有 されることにより被削性を改善する作用を有する。 Pは鋼の使用目的に より、 不純物として含有されていても良く、 また、 積極的に含有させて も良い。 例えば、 靭性を重視する場合には、 P含有量は 0. 02%以下 とすることが好ましいし、 被削性を重視する場合には 0. 05%以上を 含有させることが好ましい。 しかし、 含有量が 0. 10%を超えると靭 性の劣化が著しくなるため、 P含有量は 0. 10%以下とした。 P promotes segregation during solidification and degrades toughness. On the other hand, P has the effect of improving machinability by being contained. P may be contained as an impurity or may be actively contained depending on the purpose of use of the steel. For example, when toughness is emphasized, the P content is preferably set to 0.02% or less, and when machinability is emphasized, it is preferable to contain 0.05% or more. However, if the content exceeds 0.10%, the toughness significantly deteriorates, so the P content was set to 0.10% or less.
S :
Sは、 被削性を改善するために含有させる元素である。 含有量が 0. 02%未満では、 T iや Z rの硫化物の生成が不十分であり、 十分な効 果が得られない。 一方、 含有量が 0. 60%を超えると、 FeS Mn Sが多量に生成し、 凝固時の偏析ゃボイ ド、 あるいは割れを助長する。 そこで、 S含有量の範囲は 0. 02〜0. 60%とした。 好ましい範囲 は 0. 05〜0. 40%であり、 より好ましい範囲は 0. 05〜0. 2 0%である。 S: S is an element contained to improve machinability. If the content is less than 0.02%, the formation of sulfides of Ti and Zr is insufficient, and a sufficient effect cannot be obtained. On the other hand, if the content exceeds 0.60%, a large amount of FeS Mn S is generated, which promotes segregation, voiding or cracking during solidification. Therefore, the range of the S content is set to 0.02 to 0.60%. A preferred range is 0.05 to 0.40%, and a more preferred range is 0.05 to 0.20%.
T iおよび Z r : T i and Z r:
T iおよび Z rは、 硫化物を生成させる効果を有する元素であり、 本 発明においては、 これらの元素のうちのいずれか 1種または 2種を含有 させる。 いずれもその含有量が 0. 05%未満では十分な硫化物を生成 することが出来ないため、 MnSが多量に生成し、 凝固組織の改善やこ れに関連した欠陥の改善が認められなくなる。一方、 Tiについては 1. 0%を超えると、 また、 Z rについては 0. 50%を超えると、 硫化物 以外に炭化物の生成量が増加し、 被削性や靭性を劣化させる。 Ti and Zr are elements having an effect of forming a sulfide, and in the present invention, one or two of these elements are contained. In any case, if the content is less than 0.05%, sufficient sulfide cannot be generated, so that a large amount of MnS is generated, and no improvement in the solidification structure and no improvement in defects related thereto are recognized. On the other hand, if Ti exceeds 1.0% and Zr exceeds 0.50%, the amount of carbides other than sulfides increases, thereby deteriorating machinability and toughness.
そこで、 T i含有量の範囲は 0. 05〜0. 25%とした。 好ましい 範囲は 0. 10〜0. 25%である。 Therefore, the range of the Ti content is set to 0.05 to 0.25%. The preferred range is 0.10 to 0.25%.
また、 Z r含有量の範囲は 0. 05〜0. 50%とした。 好ましい範 囲は 0. 05〜0. 20%であり、 より好ましい範囲は 0. 10〜0. 20 %である。 The range of the Zr content was set to 0.05 to 0.50%. A preferred range is from 0.05 to 0.20%, and a more preferred range is from 0.10 to 0.20%.
なお、 これらの元素は、 前記式 (1) で与えられる有効 T i等量が前 記式 (2) を満足するように含有させる必要がある。 These elements must be contained so that the effective Ti equivalent given by the above formula (1) satisfies the above formula (2).
N: N:
Nは、 T iや Z rの硫化物を生成する前に窒化物を生成するため、 T iや Z rの硫化物の生成を抑制する元素である。 さらに生成した窒化物 は硬質で、 工具刃先を痛め、 工具寿命を低下させる。 このため、 上限は 0. 020 %とした。 含有量は低ければ低いほどよく、 0. 002%未
満では、 Nによる悪影響の原因となる窒化物の生成は回避でき、 好まし い。 N is an element that suppresses the generation of sulfides of Ti and Zr because nitrides are generated before the sulfides of Ti and Zr are generated. In addition, the formed nitride is hard and damages the cutting edge of the tool, reducing tool life. Therefore, the upper limit was set to 0.020%. The lower the content, the better, less than 0.002% At full, the formation of nitrides, which can cause adverse effects of N, can be avoided and is preferred.
A1 : A1:
A1は、 強力な脱酸元素であり、 靭性を改善する効果も有する。 0. 001 %未満ではその効果が得られず、 一方、 0. 03%を超えて含有 させると脱酸効果が飽和するとともに、 被削性が低下する。 そこで、 A 1含有量の範囲を 0. 001〜0. 03%とした。 A1 is a powerful deoxidizing element and also has the effect of improving toughness. If the content is less than 0.001%, the effect cannot be obtained. On the other hand, if the content exceeds 0.03%, the deoxidizing effect is saturated and the machinability is reduced. Therefore, the range of the A1 content is set to 0.001 to 0.03%.
なお、 本発明において、 A 1含有量とは、 酸可溶 A 1含有量(so l. A1含有量) をいう。 In the present invention, the A1 content refers to acid-soluble A1 content (sol. A1 content).
C r : C r:
Crは、 強度、 靭性および耐熱性の向上に効果を有する元素である。 含有してもしなくてもよいが、 強度、 靭性および耐熱性の向上を要求さ れる場合には、 0. 2%以上を含有させることにより、 これらの効果が 得られる。 特に、 熱間鍛造用金型では Crを 3. 0%以上含有させるこ とが好ましい。一方、 9. 0%を超えて含有させると、 靭性が劣化する。 そこで、 含有させる場合の含有量の範囲を 0. 2〜9. 0%とした。 含 有量の好ましい範囲は 0. 5〜5. 0%である。 Cr is an element that has an effect on improving strength, toughness, and heat resistance. It may or may not be contained, but when improvement in strength, toughness and heat resistance is required, these effects can be obtained by containing 0.2% or more. In particular, it is preferable that the hot forging die contain Cr in an amount of 3.0% or more. On the other hand, if the content exceeds 9.0%, toughness deteriorates. Therefore, the range of the content when it is contained is set to 0.2 to 9.0%. A preferred range for the content is 0.5-5.0%.
Mo : Mo:
Moは、強度、 靭性および高温強度の改善に効果を有する元素である。 含有してもしなくてもよいが、 強度、 靭性および高温強度の改善を要求 される場合には、 0. 05%以上を含有させることにより、 これらの効 果が得られる。 一方、 2. 0%を超えて含有させても高温強度の改善効 果は飽和し、 また、 靭性が劣化する。 そこで、 含有させる場合の含有量 の範囲を 0. 05〜2. 0%とした。 含有量の好ましい範囲は 0. 05 〜: L. 0%である。 Mo is an element effective in improving strength, toughness and high-temperature strength. It may or may not be contained, but when improvement in strength, toughness and high-temperature strength is required, these effects can be obtained by containing 0.05% or more. On the other hand, if the content exceeds 2.0%, the effect of improving the high-temperature strength is saturated, and the toughness is deteriorated. Therefore, the range of the content when it is contained is set to 0.05 to 2.0%. A preferred range of the content is 0.05 to: L. 0%.
N i : N i:
Niは、 強度および靭性の改善に効果を有する元素である。 含有して
もしなくてもよいが、 靭性の改善を要求される場合は、 0. 2%以上を 含有させることにより、 その効果が得られる。 一方、 2. 0%を超えて 含有させると、 靭性の改善効果は得られるものの、 Ni元素は高価なこ とから、 経済性を損なうこととなる。 そこで、 含有させる場合の含有量 の範囲を 0. 2〜2. 0%とした。含有量の好ましい範囲は 0. 2〜1.Ni is an element that has an effect on improving strength and toughness. Contains It is not necessary, but if improvement in toughness is required, the effect can be obtained by adding 0.2% or more. On the other hand, if the content exceeds 2.0%, the effect of improving toughness can be obtained, but the cost of Ni element is high, which impairs economic efficiency. Therefore, the range of the content when it is contained is set to 0.2 to 2.0%. The preferred range of the content is 0.2 to 1.
5 %である。 5%.
V: V:
Vは、 強度改善に効果を有し、 かつ、 含有による靭性劣化が少ない元 素である。含有してもしなくてもよいが、強度改善を要求される場合は、 0. 01 %以上を含有させることにより、 その効果が得られる。 一方、 V is an element that has the effect of improving the strength and has little toughness degradation due to its inclusion. It may or may not be contained, but if improvement in strength is required, the effect can be obtained by adding 0.01% or more. on the other hand,
1. 5%を超えて含有させると、 靭性が劣化する。 そこで、 含有させる 場合の含有量の範囲を 0. 01〜1. 5%とした。 含有量の好ましい範 囲は 0. 05〜0. 5%である。 If the content exceeds 1.5%, toughness will deteriorate. Therefore, the range of the content when it is contained is set to 0.01% to 1.5%. The preferred range of the content is 0.05-0.5%.
Cu: Cu:
Cllは、 被削性、 強度および靭性の改善に効果を有する元素である。 含有してもしなくてもよいが、 被削性、 強度および靭性の改善を要求さ れる場合は、 0. 1%以上を含有させることにより、 それらの効果が得 られる。 一方、 3. 0%を超えて含有させると、 靭性が劣化する。 そこ で、 含有させる場合の含有量の範囲を 0. 1〜3. 0%とした。 含有量 の好ましい範囲は 0. 2〜1. 0%である。 Cll is an element effective in improving machinability, strength and toughness. It may or may not be contained, but when improvement in machinability, strength and toughness is required, the effect can be obtained by containing 0.1% or more. On the other hand, if the content exceeds 3.0%, toughness deteriorates. Therefore, the range of the content when it is contained is set to 0.1 to 3.0%. The preferred range of the content is 0.2 to 1.0%.
0: 0:
0 (酸素) は、 適度に含有させることにより、 鋼中にて低融点の酸化 物を形成し、 被削性を改善する効果を有する。 含有してもしなくてもよ いが、 酸化物の形成による被削性の改善を要求される場合は、 0. 00 5 %以上を含有させることにより、 その効果が得られる。 一方、 0. 0 O (oxygen) has an effect of improving the machinability by forming an oxide having a low melting point in steel by appropriately containing 0 (oxygen). It may or may not be contained, but when improvement in machinability by formation of an oxide is required, the effect can be obtained by adding 0.005% or more. On the other hand, 0.0
20%を超えて含有させると、 鋼中に巨大介在物が形成され、 金型表面 の仕上げ精度が低下し、 靭性も劣化する。 そこで、 含有させる場合の含
有量の範囲を 0. 005〜0. 020 %とした。 含有量の好ましい範囲 は 0. 010〜0. 020%である。 If the content exceeds 20%, giant inclusions are formed in the steel, and the finishing accuracy of the mold surface is reduced, and the toughness is also deteriorated. Therefore, when including The range of the weight was 0.005 to 0.0020%. A preferable range of the content is 0.010 to 0.020%.
ここで、 0 (酸素) とは、 鋼中の全酸素をいう。 Here, 0 (oxygen) refers to the total oxygen in the steel.
熱処理: Heat treatment:
本発明にて得られた錶塊は、 その後の熱処理によってさらにミクロ組 織や硬度、 靭性を改善することができる。 また、 被削性を改善するため に、 必要な硬度にまで軟化することもできる。 この熱処理は、 850〜 1050°Cに加熱後、 焼準または焼入れを行い、 その後、 700°C以下 での焼戻しによる軟化処理を行うか、 または歪み取り焼鈍を行うか、 ま たは焼戻しおよび歪み取り焼鈍を行うことにより、 実施することができ る。 The micromass obtained by the present invention can be further improved in microstructure, hardness and toughness by a subsequent heat treatment. It can also be softened to the required hardness to improve machinability. In this heat treatment, after heating to 850 to 1050 ° C, normalizing or quenching is performed, and then softening by tempering at 700 ° C or lower, or strain relief annealing, or tempering and distortion This can be achieved by performing annealing.
(実施例) (Example)
次頁の表 1に示す化学組成を有する試験鋼を溶製し、 直径 143 mm の円柱状の錡塊を作製した。 A test steel having the chemical composition shown in Table 1 on the next page was melted to produce a cylindrical lumps having a diameter of 143 mm.
錶造のままでマクロ試験を実施した後、 さらに、 以下の試験を実施し た。 After the macro test was performed as it was, the following tests were further performed.
〔硬度〕 マクロ試験に用いた試験板を用い、 J I S Z 2243に 規定されたブリネル硬さ試験方法に準じて、 前記錶塊中心部位置、 半径 の 1/2位置および表面近傍位置において、 硬度を測定し、 これらの平 均値にて評価した。 [Hardness] Using the test plate used for the macro test, the hardness was measured at the center of the lump, 1/2 of the radius and near the surface according to the Brinell hardness test method specified in JISZ 2243. Then, evaluation was made based on these average values.
〔靭性〕 J I S Z 2242に規定されたシャルビ一衝撃試験方法 に準じて、錶塊の円柱中心軸に平行方向で且つ半径の 1Z2の位置から、 Uノッチ試験片 (J I S Z 2202に規定された幅が 10mmのフ ルサイズ試験片) を採取し、 室温にて衝撃値を測定した。 [Toughness] In accordance with the Charpy impact test method specified in JISZ 2242, (1) A U-notch test piece (with a width of 10 mm specified in JISZ 2202) A full-size test piece was sampled, and the impact value was measured at room temperature.
〔フライス加工性〕 硬さ試験および衝撃試験用の各試験片を採取後、 錡塊を直径を含む円筒軸方向に切断した後、 フライス加工を実施し、 ェ 具の摩耗量でフライス加工性を評価した。
鋼 [Milling workability] After collecting each test piece for hardness test and impact test, 錡 after cutting the lump in the cylindrical axis direction including the diameter, milling was performed, and the milling workability was determined by the wear amount of the tool. evaluated. steel
化学鉗成(暂暈 ¾、 残部 Feおよび不純物) Chemical forceps (暂 暂, balance Fe and impurities)
号 C Si P S Ti Zr N A1 0 その他 No. C Si P S Ti Zr N A1 0 Other
1 0.10 1.01 0.12 0.010 0.052 0.49 一 0.0009 0.018 一 一 1 0.10 1.01 0.12 0.010 0.052 0.49 one 0.0009 0.018 one one
2 0.10 1.06 0.23 0.020 0.055 一 0.43 0.0038 0.010 一 ― 2 0.10 1.06 0.23 0.020 0.055 one 0.43 0.0038 0.010 one-
3 0.08 0.48 0.21 0.012 0.340 0.68 一 0.0043 一 一 Cr:0.56, Mo:0.23 3 0.08 0.48 0.21 0.012 0.340 0.68 one 0.0043 one Cr: 0.56, Mo: 0.23
4 0.07 0.23 0.75 0.063 0.580 0.86 0.48 0.0051 一 一 一 4 0.07 0.23 0.75 0.063 0.580 0.86 0.48 0.0051 1 1 1
5 0.09 0.47 0.21 0.014 0.180 0.08 0.44 0.0035 0.015 一 Cu: 1.18 5 0.09 0.47 0.21 0.014 0.180 0.08 0.44 0.0035 0.015 One Cu: 1.18
6 0.25 0.67 0.22 0.038 0.040 0.26 一 0.0068 0.002 0.0098 Cu:2.45 6 0.25 0.67 0.22 0.038 0.040 0.26 one 0.0068 0.002 0.0098 Cu: 2.45
7 0.23 0.48 0.67 0.025 0.080 0.18 - 0.0098 0.012 0.0087 Cu:0.16, Cr:1.53 7 0.23 0.48 0.67 0.025 0.080 0.18-0.0098 0.012 0.0087 Cu: 0.16, Cr: 1.53
8 0.24 0.16 1.20 0.013 0.058 0.12 ― 0.0089 0.001 0.0150 Cr:0.12 8 0.24 0.16 1.20 0.013 0.058 0.12 ― 0.0089 0.001 0.0150 Cr: 0.12
g 0.20 0.12 1.77 0.022 0.076 0.23 0.05 0.0055 0.028 0.0057 Ni : 1.02 g 0.20 0.12 1.77 0.022 0.076 0.23 0.05 0.0055 0.028 0.0057 Ni: 1.02
10 0.08 1.51 0.78 0.026 0.093 0.24 - 0.0120 0.006 一 Ni : 1.68 10 0.08 1.51 0.78 0.026 0.093 0.24-0.0120 0.006 i Ni: 1.68
11 0.22 1.67 0.28 0.086 0.150 - 0.49 0.0069 0.009 一 V:0.19 11 0.22 1.67 0.28 0.086 0.150-0.49 0.0069 0.009 V: 0.19
12 0.38 1.22 0.45 0.059 0.059 0.15 - 0.0079 0.009 0.0058 V:0.14 12 0.38 1.22 0.45 0.059 0.059 0.15-0.0079 0.009 0.0058 V: 0.14
13 0.26 1.02 0.80 0.009 0.021 0.05 0.06 0.0059 0.005 一 Cr: 1.48, V:0.10 13 0.26 1.02 0.80 0.009 0.021 0.05 0.06 0.0059 0.005 Cr: 1.48, V: 0.10
0.56 0.23 0.89 0.035 0.034 0.12 0.0114 0.003 0.56 0.23 0.89 0.035 0.034 0.12 0.0114 0.003
15 0.35 0.76 0.58 0.007 0.026 0.18 0.0036 0.002 Cr:6.8, V:0.82, Mo: 1.57 15 0.35 0.76 0.58 0.007 0.026 0.18 0.0036 0.002 Cr: 6.8, V: 0.82, Mo: 1.57
16 0.08 0.23 0.23 0.022 0.060 0.04* 0.03* 0.0057 0.002 0.0052 16 0.08 0.23 0.23 0.022 0.060 0.04 * 0.03 * 0.0057 0.002 0.0052
17 0.07 0.58 2.64* 0.022 0.160 0.05 0.0029 0.043* 17 0.07 0.58 2.64 * 0.022 0.160 0.05 0.0029 0.043 *
18 0.10 0.27 0.34 0.120* 0.050 0.27 0.15 0.0236* 0.001 0.0068 Cr: 1.05 18 0.10 0.27 0.34 0.120 * 0.050 0.27 0.15 0.0236 * 0.001 0.0068 Cr: 1.05
19 0.29 0.75 1.18 0.027 0.025 1.09* -* 0.0068 0.017 19 0.29 0.75 1.18 0.027 0.025 1.09 *-* 0.0068 0.017
20 0.24 0.25 0.82 0.035 0.016* -* -* 0.0086 0.020 Cr: 1.69, V:0.13 20 0.24 0.25 0.82 0.035 0.016 *-*-* 0.0086 0.020 Cr: 1.69, V: 0.13
21 0.64* 0.25 0.96 0.029 0.014* -* 一本 0.0096 0.001 21 0.64 * 0.25 0.96 0.029 0.014 *-* Single 0.0096 0.001
22 0.42 0.22 0.92 0.025 0.540 -* -* 0.0080 0.024 Cr: 1.2 22 0.42 0.22 0.92 0.025 0.540-*-* 0.0080 0.024 Cr: 1.2
(注) *印:本発明で規定する範囲外を示す。
(Note) *: Indicates a value outside the range specified in the present invention.
表 2 Table 2
(注) *印 本発明で規定する範囲外を示す。 (Note) * Indicates a value outside the range specified in the present invention.
(*!) 図 1 (鋼番号 16) のマクロ組織を X、 図 2 (鋼番号 2) のマクロ組織およびこ れと同等又はそれ以上のものを〇、 Xに比較して改善が認められるものを厶、 鋼塊中央にキヤビティ一や割れが生じたものを X Xにて評価。 (*!) X indicates the macrostructure of Fig. 1 (Steel No. 16), and the macrostructure of Fig. 2 (Steel No. 2) and those which are equivalent to or better than X and X show improvement. And XX for those with cracks or cracks in the center of the steel ingot.
(*2) 工具材質: TiCNコーティング超硬、 切削速度: 428m/min.、 送り: 0.22瞧/刃、 切込み: 5匿 X25腿、 無潤滑条件にて3000腿切肖!!後の最大摩耗量 Vbmax (聽)にて 工具摩耗を讓。
前頁の表 2に、 各試験鋼についての前記式 ( 1 ) および式 (2 ) によ る計算値、 前記の試験結果およびマクロ組織の調査結果を示した。 (* 2) Tool Material: TiCN coating Carbide, Cutting speed: 428m / min, Feed:. 0.22瞧/ blade Depth of cut: 5 anonymous X25 thigh, 3 000 Momokiayaka !! at unlubricated condition After the maximum wear Vbmax (listening), the tool wear is reduced. Table 2 on the previous page shows the calculated values of each test steel according to the above formulas (1) and (2), the above test results, and the results of the macrostructure investigation.
表 1に示された試験鋼のうちで、 鋼番号 1〜1 5の鋼は本発明鋼であ り、いずれも鋼成分は本発明で規定する化学組成の範囲を満足している。 また、 表 2に示されるとおり、 鋼の化学組成に基づき計算される式 ( 1 ) の値は、 式 (2 ) により与えられる関係を満足している。 Among the test steels shown in Table 1, steels with steel numbers 1 to 15 are the steels of the present invention, and all of the steel components satisfy the range of the chemical composition specified in the present invention. Also, as shown in Table 2, the value of equation (1) calculated based on the chemical composition of the steel satisfies the relationship given by equation (2).
試験鋼のマクロ組織は、 以下のように評価した。 The macrostructure of the test steel was evaluated as follows.
図 1に示される鋼番号 1 6の鋼 (比較鋼) のマクロ組織を粗大で望ま しくない組織として X印で表し、 図 2に示される鋼番号 2の鋼 (本発明 鋼) のマクロ組織を微細で良好な組織として〇印で表し、 それと同等ま たはそれ以上の組織も〇印で表した。 また、 X印と〇印との中間の組織 を△で表した。 The macrostructure of steel No. 16 (comparative steel) shown in Fig. 1 (comparative steel) is represented by a cross mark as a coarse and undesirable structure, and the macrostructure of steel No. 2 (steel of the present invention) shown in Fig. 2 is Fine and good structures are indicated by triangles, and equivalent or better structures are also indicated by triangles. The organization between X and X is indicated by △.
本発明鋼のマクロ組織は、 概ね評価〇となっている。 一部の試験鋼 (鋼番号 7、 8、 1 4および 1 5 ) では評価△のものもあったが、 これ は S含有量が比較的少なく、 凝固組織の改善に寄与する T iや Z rの硫 化物の生成量が少なかったためである。 The macrostructure of the steel of the present invention is generally evaluated as 〇. Some of the test steels (Steel Nos. 7, 8, 14 and 15) had a rating of △, but this was because Ti and Zr had relatively low S content and contributed to the improvement of solidification structure. This is because the amount of sulfide produced was small.
鋼番号 1 4および 1 5の鋼は、 錶造のままでは硬度が高すぎるため、 焼準後、 焼戻し処理を行い、 軟化させることにより、 踌造後の切削加工 を容易にしている。 特に鋼番号 1 5の鋼は、 熱間鍛造用金型に使用され るため、 切削加工後、 改めて焼入れおよび焼戻しの熱処理が施される。 衝撃値は、 S含有量が高いレベルにあるにも拘わらず、 鋼番号 1 5の 鋼を除き、 いずれの本発明鋼の場合も良好である。 The steels of Nos. 14 and 15 have too high hardness as-forged, so that after tempering, they are tempered and softened to facilitate post-forging cutting. In particular, steel No. 15 is used for hot forging dies, so after cutting, it is subjected to another heat treatment of quenching and tempering. Despite the high S content, the impact values are good for all of the steels of the present invention, except for steel No. 15 steel.
また、 いずれの本発明鋼についても、 フライス加工における工具摩耗 量は少なく、 良好な被削性を有している。 Further, all of the steels of the present invention have a small amount of tool wear during milling and have good machinability.
鋼番号 7の鋼は C rおよび C uを、 また、 鋼番号 1 3の鋼は C rおよ び Vを含有し、 硬度は上昇しているが、 靭性が改善されている。 Steel No. 7 contains Cr and Cu, and steel No. 13 contains Cr and V. Although the hardness is increased, the toughness is improved.
鋼番号 9および 1 0の鋼は N iを含有し、 靭性改善の効果が認められ
る。 鋼番号 3の鋼は C rおよび M oを含有し、 強度および靭性の改善効 果が認められる。 Steel Nos. 9 and 10 contain Ni and have an effect of improving toughness. You. Steel No. 3 contains Cr and Mo and has an effect of improving strength and toughness.
鋼番号 1 1および 1 2の鋼は Vを含有し、 強度および靭性が大きく改 善されている。鋼番号 5の鋼は C uを含有し、強度が高められているが、 被削性も改善されている。 Steels Nos. 11 and 12 contain V and have greatly improved strength and toughness. Steel No. 5 contains Cu and has increased strength, but also has improved machinability.
鋼番号 6の鋼は C uおよび 0 (酸素) を含有し、 被削性が改善されて いる。 鋼番号 7および 8の鋼は 0 (酸素) を含有し、 被削性が改善され ている。 Steel No. 6 contains Cu and O (oxygen) and has improved machinability. Steels 7 and 8 contain 0 (oxygen) and have improved machinability.
これらに対して、 鋼番号 1 6〜 2 2の鋼は比較鋼であり、 鋼成分また は式 (2 ) により与えられる関係の少なくとも 1つが、 本発明で規定さ れる範囲から外れている。 On the other hand, the steels of steel numbers 16 to 22 are comparative steels, and at least one of the steel composition or the relation given by the formula (2) is out of the range defined by the present invention.
このうちで、 鋼番号 1 6、 1 7、 2 0、 2 1および 2 2の鋼は、 式 ( 2 ) により与えられる関係を満足せず、 マクロ組織の評価は Xまたは X Xである。 また、 鋼番号 1 8および 1 9の鋼は、 式 (2 ) により与え られる関係を満足するが、 それぞれ、 Pおよび T i含有量が過多となつ ていることから、 Pや T iの偏祈が激しく、 鋼塊中心部に割れを伴う顕 著な偏祈が観察された。 Among these, the steels of steel numbers 16, 17, 20, 20, 21 and 22 do not satisfy the relationship given by the equation (2), and the macrostructure evaluation is X or XX. The steels of Nos. 18 and 19 satisfy the relationship given by equation (2). However, since the contents of P and Ti are excessive, respectively, Intense prying with a crack in the center of the ingot was observed.
鋼番号 1 6の鋼は、 柱状晶が著しく成長したマクロ組織となり、 その 結果、 鋼塊中心部に P、 S等の顕著な偏析組織が認められた。 さらに、 その偏析組織の存在する位置でポロシティ一および割れも観察された。 また、 鋼番号 2 0の鋼も同様である。 Steel No. 16 had a macrostructure in which columnar crystals grew remarkably. As a result, a remarkable segregation structure such as P and S was observed in the center of the ingot. In addition, porosity and cracks were also observed at the location where the segregated structure was present. The same applies to steel No. 20.
鋼番号 2 2の鋼においては、 さらに、 低い衝撃値にみられるとおり、 靭性に劣っていた。 Steel No. 22 had poorer toughness as shown by the lower impact value.
鋼番号 1 7の鋼は M nおよび A 1含有量が高過ぎることから、 また、 鋼番号 1 8の鋼は N含有量が高過ぎることから、 フライス加工性に劣つ ていた。 鋼番号 1 9の鋼は T i含有量が高過ぎるために大量の T i Cが 生成し、 しかも硬度が高いことから、 また、 鋼番号 2 1の鋼は C含有量
が高過ぎ、 しかも S含有量が不足していることから、 フライス加工性に 劣っていた。 Steel No. 17 was inferior in milling workability because the Mn and A1 contents were too high, and steel No. 18 was too high in N content. Steel No. 19 has a large TiC content due to too high Ti content and high hardness, and steel No. 21 has a high C content. Was too high, and the S content was insufficient, resulting in poor milling workability.
以上の結果から明らかなように、 鋼中の T i、 Z r、 Sおよび N含有 量を適切な範囲に調整することにより、 T iや Z rの微細な硫化物を形 成させ、 錶造後の内部品質および被削性に優れた錶鋼ならびに、 錡造状 態での内部品質が鍛鋼製品に匹敵するような優れた被削性を有する金型 を製造することが可能である。 産業上の利用の可能性 As is clear from the above results, by adjusting the contents of Ti, Zr, S and N in the steel to an appropriate range, fine sulfides of Ti and Zr can be formed, and It is possible to manufacture a steel having excellent internal quality and machinability afterwards, and a mold having excellent machinability such that internal quality in a forged state is comparable to a forged steel product. Industrial applicability
本発明の銪鋼および錶造金型によれば、 特定成分について鋼組成を制 限するとともに、 鋼中の T i、 Z r、 Sおよび N含有量を適切な範囲に 調整することにより、 T iや Z rの微細な硫化物を形成させ、 鍊造後の 内部品質および被削性に優れた特性が確保でき、 この錡鋼を铸造するこ とによって、 錡造状態での内部品質が鍛鋼製品に匹敵するような優れた 被削性を有する金型を製造することができる。 これにより、 従来では適 用できなかった、 錶造材で加工表面が素形材内部におよぶ深彫用や、 仕 上げ用で表面性状の良さが厳しく要求される用途にも、 広く適用するこ とができる。
According to the steel and the metal mold of the present invention, the steel composition is restricted for specific components, and the Ti, Zr, S, and N contents in the steel are adjusted to an appropriate range, whereby the T By forming fine sulfides of i and Zr, it is possible to ensure excellent internal quality and machinability after forging. By manufacturing this steel, the internal quality in the forged state is improved. A mold having excellent machinability comparable to products can be manufactured. As a result, it can be widely applied to deep engraving, in which the processed surface extends inside the shaped material, or to finishing, which requires strict surface properties, which could not be applied in the past. Can be.