WO2002076913A2 - Procede de preparation d'une olefine halogenee - Google Patents

Procede de preparation d'une olefine halogenee Download PDF

Info

Publication number
WO2002076913A2
WO2002076913A2 PCT/EP2002/003238 EP0203238W WO02076913A2 WO 2002076913 A2 WO2002076913 A2 WO 2002076913A2 EP 0203238 W EP0203238 W EP 0203238W WO 02076913 A2 WO02076913 A2 WO 02076913A2
Authority
WO
WIPO (PCT)
Prior art keywords
palladium
methylacetylene
propadiene
compound
reaction
Prior art date
Application number
PCT/EP2002/003238
Other languages
English (en)
Other versions
WO2002076913A3 (fr
Inventor
Véronique Mathieu
Original Assignee
Solvay (Societe Anonyme)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay (Societe Anonyme) filed Critical Solvay (Societe Anonyme)
Priority to AU2002312773A priority Critical patent/AU2002312773A1/en
Priority to EP02737895A priority patent/EP1381584A2/fr
Priority to JP2002576176A priority patent/JP2004525933A/ja
Priority to US10/472,784 priority patent/US7109386B2/en
Publication of WO2002076913A2 publication Critical patent/WO2002076913A2/fr
Publication of WO2002076913A3 publication Critical patent/WO2002076913A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/07Preparation of halogenated hydrocarbons by addition of hydrogen halides
    • C07C17/08Preparation of halogenated hydrocarbons by addition of hydrogen halides to unsaturated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/206Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/272Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions
    • C07C17/278Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions of only halogenated hydrocarbons

Definitions

  • 2-Chloroprop-1-ene is an intermediate in the synthesis of halogen precursors of 1, 1, 1,3,3-pentafluorobutane (HFC-365mfc) used as a solvent and as a swelling agent in the preparation of polymeric cellular foams.
  • 2-chloroprop-1-ene is particularly useful for the synthesis of the precursor 1,1,1,3,3-pentachlorobutane.
  • Patent application EP-A-905 113 in the name of the Applicant teaches a process for the preparation of 2-chloroprop-1-ene by reaction of methylacetylene and / or propadiene with hydrogen chloride in a liquid medium containing at least
  • a hydrochlorination catalyst which comprises at least one compound chosen from compounds of the metals of the Villa group and of lanthanides; and (b) an organic solvent capable of solubilizing the catalyst.
  • R 1 denotes a hydrogen, alkyl, aryl or carboxyl group. ester or halogen.
  • R 1 is chosen from a carboxyl group, an alkyl group comprising from 1 to 10 carbon atoms, a phenyl group optionally substituted by 1,2 or 3 alkyl substituents comprising from 1 to 4 carbon atoms, an alkyl ester carrying an alkyl radical comprising from 1 to 10 carbon atoms or an aryl ester.
  • the invention relates in particular to a process for preparing 2-chloroprop-1-ene by reaction of methylacetylene and / or propadiene with hydrogen chloride in a liquid medium comprising at least
  • the catalyst used in the process of the present invention comprises at least one palladium compound.
  • the palladium compound is often chosen from complexes and salts containing palladium in the oxidation stage 0 or 2.
  • a palladium compound containing palladium in the oxidation stage 2 is used.
  • the palladium compounds used are chosen from halides. A preference is shown for chlorides or bromides but any other compound which can transform into halide in the presence of hydrogen halide can also be used.
  • palladium compounds complexed by electron-rich systems such as amines, oxygenated compounds such as carbonyl compounds or ethers, cyclic or acyclic, sulfur compounds, aromatic compounds or compounds carrying aromatic nuclei.
  • the invention also relates to a catalytic system comprising any one of the above-mentioned palladium compounds and any one of the above-mentioned organic nitriles, preferably in the amounts of catalyst mentioned in the above-mentioned organic nitrile.
  • a cocatalyst which comprises at least one compound of at least one metal from groups Ib or TVb such as copper, silver, tin or lead .
  • metals such as copper and tin, in particular copper.
  • the metal compound of groups Ib or TVb used as cocatalyst in this embodiment is a chloride. Particular preference is shown for copper chloride (TJ).
  • the cocatalyst is used in a molar ratio relative to the catalyst greater than 0.1. Preferably, this molar ratio is greater than or equal to 1.
  • this molar ratio is greater than or equal to 2. However, this molar ratio is usually less than 20.
  • co-solvents that can be envisaged on the basis of the various criteria given above are certain heavy halogenated compounds, such as haloalkanes, halobenzenes and other halogenated derivatives of aromatic compounds.
  • the weight ratio between the organic nitrile and the co-solvent is generally at least 0.1. More often this ratio is at least 0.2. Preferably it is at least 0.3. Where appropriate, when the process according to the invention is carried out in the presence of a co-solvent, the weight ratio between the organic nitrile and the co-solvent is generally at most 10. More often this ratio is at most 5. Preferably it is at most 3.
  • the method according to the invention is carried out in the absence of co-solvent.
  • a particularly liquid medium in the process according to the invention, a particularly liquid medium
  • preferred contains palladium chloride (TJ) as the catalyst and adiponitrile as the solvent. More particularly preferred is a liquid medium consisting essentially of palladium chloride (TJ) as catalyst and adiponitrile as solvent.
  • TJ palladium chloride
  • the process for manufacturing 2-chloroprop-1-ene according to the invention is carried out by bringing methylacetylene and / or propadiene into contact with hydrogen chloride in any suitable reactor containing the liquid medium. This contacting is generally carried out by introducing a gaseous fraction comprising methylacetylene and / or propadiene into the liquid medium.
  • the introduction of the gaseous fraction into the liquid medium is preferably carried out so as to maximize the gas / liquid exchange surface.
  • means of introduction and / or stirring will be chosen ensuring good dispersion of the gas in the form of bubbles in the liquid medium.
  • means of introduction are inter alia porous plates or porous frits having an adequate porosity and distribution pipes having multiple holes allowing the passage of the gaseous fraction.
  • the flow rate of the gases introduced into the reactor is advantageously adjusted so as to maximize the gas / liquid exchange surface.
  • the process according to the invention can be carried out, discontinuously or continuously, conventionally in any apparatus promoting gas-liquid exchange such as a column with trays, a column with stackings, in particular an embedded column with stackings, a saturator type reactor or a bubble column.
  • saturator type reactor is understood to mean in particular a tabular reactor containing during the reaction alternating segments of liquid medium and of gas which are propelled towards the outlet of the tube by the pressure of the gas.
  • graphite-impregnated polymer available are those marketed under the names GRAPHELOR ® which is a graphite impregnated PTFE and DIABON ® NS-1 which is a graphite impregnated with a phenolic polymer.
  • GRAPHELOR ® which is a graphite impregnated PTFE
  • DIABON ® NS-1 which is a graphite impregnated with a phenolic polymer.
  • steel coated with polymer is that marketed under the name ARMTLOR, which is a steel coated with PTFE.
  • the graphite impregnated with polymer or the coated steel is advantageously used to produce the parts of the reactor or other components of the equipment of the process which are regularly in contact with the liquid medium such as pumps or introduction means. as described above.
  • HASTELLOY ® B and C steels are well suited.
  • HASTELLOY ® C type steel is preferred.
  • HASTELLOY ® C type steel is advantageously used to make the parts of the reactor which are, if necessary, substantially exclusively in contact with the gas phase present in the reactor.
  • the materials mentioned above are well suited for implementing the method according to the invention. They can also be used with other catalytic systems as described for example in application EP-A-905113.
  • the invention relates in a particular aspect therefore also to the use of reactors as described above comprising the materials as described above for carrying out a hydrochlorination reaction with hydrogen chloride in a liquid medium containing at least one hydrochlorination catalyst which preferably comprises at least one compound chosen from compounds of the metals of the group VTJIa and lanthanides, and an organic solvent capable of solubilizing the catalyst.
  • the gas / liquid contact time which is the period during which the gas is in contact with the liquid medium, for example in the form of a bubble which passes through a given quantity of liquid medium, is generally greater than or equal to 0.5 seconds.
  • the contact time is greater than or equal to 1 second.
  • the time to gas / liquid contact does not exceed 5 minutes. It is most often less than or equal to 2 minutes.
  • it is less than or equal to 1 minute. It has been found that particularly good selectivities and yields of 2-chloroprop-1-ene are obtained by implementing the method according to the invention under the contact time conditions mentioned above.
  • the molar ratio between hydrogen chloride and methylacetylene and / or propadiene introduced into the reactor is generally greater than or equal to about 0.5. Preferably, this ratio is greater than or equal to 1. In general, this molar ratio is less than or equal to about 10. Preferably, this ratio is less than or equal to 5. Good results have been obtained with a molar ratio between the hydrogen chloride and methylacetylene and / or propadiene introduced into the reactor less than or equal to about 2.5.
  • the methylacetylene and / or propadiene and hydrogen chloride can be brought into contact in the reactor or mixed before their introduction into the reactor.
  • the process of the invention can be carried out from ambient temperature to approximately 200 ° C. At higher temperatures, the catalyst tends to degrade.
  • the preferred reaction temperature that is to say that offering the best compromise between productivity, yield and stability of the catalyst, is greater than or equal to 80 ° C. The best results are obtained at temperatures greater than or equal to about 100 ° C. Preferably, the reaction temperature does not exceed about 180 ° C. A reaction temperature less than or equal to about 160 ° C is particularly preferred.
  • the pressure is generally greater than or equal to atmospheric pressure and equal to or less than 15 bars. Preferably, the pressure is less than or equal to 10 bars. A particular preference is shown for a pressure less than or equal to 5 bars.
  • the process of the invention often takes place at a pressure close to or greater than 1 bar.
  • a pressure greater than or equal to 2 bars gives good results.
  • a pressure of around 3 bars is particularly suitable.
  • the flow rate of reagents, generally gaseous, is generally sufficient to allow efficient mixing of the liquid medium. It is also possible to use known stirring means for the liquid medium, such as mechanical stirrers.
  • the residence time which is the ratio between the volume of liquid medium in the reactor and the volume flow rate of the reactants, is generally greater than or equal to 0.5 seconds.
  • the time to stay is greater than or equal to 1 second.
  • the residence time does not exceed 5 minutes. It is most often less than or equal to 2 minutes.
  • it is less than or equal to 1 minute.
  • TETRENE Air Liquide under the name of TETRENE. Its molar composition is approximately 25% methylacetylene, 13% propadiene, 46% propylene, 4% propane and 12% C4 hydrocarbons.
  • the liquid medium is saturated with hydrogen chloride before introducing the methyl acetylene and / or the propadiene into the reactor. This makes it possible to maintain a particularly good activity of the catalytic system during the reaction.
  • the invention therefore also relates to a method for preparing 2-chloroprop-1-ene by reacting a methylacetylene / propadiene mixture with hydrogen chloride in a liquid medium comprising at least one hydrochlorination catalyst and at least one organic solvent capable of solubilizing the catalyst, method in which
  • step (c) the fraction comprising unreacted methylacetylene and propadiene is recycled to step (a).
  • the molar ratio between methylacetylene and propadiene in the fraction comprising unreacted methylacetylene and propadiene is substantially identical to the initial molar ratio between these same constituents.
  • the variation in the molar ratio between methylacetylene and propadiene in the fraction comprising unreacted methylacetylene and propadiene relative to the initial molar ratio is generally less than or equal to 10%. Preferably this variation is less than or equal to 5%. A variation less than or equal to 1% is more particularly preferred. A variation less than or equal to 0.5% is very particularly preferred. We can even arrive at a variation of 0%.
  • the variation can be adjusted, if necessary by operations intended to modify the molar ratio between methylacetylene and propadiene such as for example an addition of one of these compounds or a selective separation operation such as an adsorption.
  • operations intended to modify the molar ratio between methylacetylene and propadiene such as for example an addition of one of these compounds or a selective separation operation such as an adsorption.
  • the process according to the invention described above makes it possible to obtain, at the end of the reaction, a fraction comprising unreacted methylacetylene and propadiene with a molar ratio between methylacetylene and propadiene substantially identical to the molar ratio initial.
  • the method according to the invention allows very efficient use of the raw materials while avoiding an accumulation of one of the starting materials in the reactor.
  • the invention also relates to a process for manufacturing a fluorinated compound, in particular a hydrofluoroalkane comprising
  • the manufacture of the halogen precursor can be, for example, a telomerization reaction in which 2-chloroprop-1-ene is reacted with a haloalkane in the presence of a catalyst and optionally a cocatalyst.
  • This type of reaction is particularly suitable for obtaining 1,1,1,3,3-pentachlorobutane, which is a halogen precursor of 1, 1, 1,3,3-pentafluorobutane.
  • 2-chloroprop-1-ene is therefore reacted with tetrachloromethane in the presence of a catalyst comprising a copper compound and a cocatalyst chosen from amines to form 1, 1, 1, 3,3-peritachlorobutane.
  • the preferred fluorinated reagent is anhydrous hydrogen fluoride.
  • the fluorination can be carried out in the presence or absence of a fluorination catalyst.
  • the fluorination is advantageously chosen from the metal halides of group 4, 5, 14 and 15, in particular the derivatives of tin, antimony, titanium, niobium and tantalum.
  • the preferred hydrofluoroalkane is 1,1,1,3,3-pentafluorobutane.
  • the reaction was carried out in a reactor of saturator type provided with a double jacket in which circulates oil thermostatically controlled at the test temperature and surmounted by a cooled condenser to condense the solvent and co-solvent vapors .
  • a reactor of saturator type provided with a double jacket in which circulates oil thermostatically controlled at the test temperature and surmounted by a cooled condenser to condense the solvent and co-solvent vapors .
  • 0.15 mmol of PdCTj was dissolved by slightly heating in 80 ml of adiponitrile. After complete dissolution of the palladium chloride, the liquid phase was poured into the reactor previously heated to 140 ° C. Hydrogen chloride was then injected at a rate of
  • the process according to the invention makes it possible to obtain 2-chloroprop-1-ene with better selectivity compared to the process catalyzed by PtCl 2 / adiponitrile.
  • the conversion of methylacetylene is greatly improved.
  • the process according to the invention therefore provides unexpected and superior results compared to the process catalyzed by PtCVadiponitrile.
  • the conversion rates of propadiene and methylacetylene are identical. Therefore the mixture of propadiene and methylacetylene unconverted is, after separation of 2-chloroprop-1-ene, suitable for recycling to the manufacturing reaction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

Procédé de préparation d'une oléfine halogénée par réaction d'un alkyne et/ou d'un composé allénique avec un halogénure d'hydrogène dans un milieu liquide comprenant au moins un catalyseur d'hydrohalogénation comprenant au moins un composé de palladium.

Description

Procédé dé préparation d'une oléfine halogénée
La présente invention concerne un procédé de préparation d'une oléfine halogénée, en particulier du 2-chloroprop-l-ène.
Le 2-chloroprop-l-ène est un intermédiaire dans la synthèse de précurseurs halogènes du 1, 1, 1,3,3-pentafluorobutane (HFC-365mfc) utilisé comme solvant et comme agent gonflant dans la préparation de mousses cellulaires polymériques. Le 2-chloroprop-l-ène est particulièrement utile pour la synthèse du précurseur 1,1,1,3,3-pentachlorobutane.
La demande de brevet EP-A-905113 au nom de la Demanderesse enseigne un procédé de préparation du 2-chloroprop- 1 -ène par réaction de méthylaçétylène et/ou de propadiène avec du chlorure d'hydrogène dans un milieu liquide renfermant au moins
(a) un catalyseur d'hydrochloration qui comprend au moins un composé choisi parmi les composés des métaux du groupe Villa et des lanthanides ; et (b) un solvant organique capable de solubiliser le catalyseur.
Ce procédé connu donne globalement des résultats très satisfaisants. Toutefois, il était désirable de trouver un procédé de préparation du 2- chloroprop-1-ène par réaction de méthylaçétylène et/ou de propadiène permettant d'obtenir une sélectivité améliorée en 2-chloroprop-l-ène. Il était également souhaitable de trouver un tel procédé permettant une conversion efficace de méthylaçétylène et de propadiène, assurant une utilisation encore plus efficace de ces matières premières.
L'invention concerne dès lors un procédé de préparation d'une oléfine halogénée par réaction d'un alkyne et/ou d'un composé allénique avec un halogénure d'hydrogène dans un milieu liquide comprenant au moins
(a) un catalyseur d'hydrohalogénation comprenant au moins un composé de palladium; et
(b) au moins un solvant organique capable de solubiliser le catalyseur, choisi parmi les nitriles organiques. Conviennent bien à titre d' alkyne, les alkynes de formule générale (I)
P C≡C-H dans laquelle R1 désigne un groupement hydrogène, alkyle, aryle, carboxyle, . ester ou halogène. De préférence R1 est choisi parmi un groupement carboxyle, un groupement alkyl comprenant de 1 à 10 atomes de carbone, un groupement phényle éventuellement substitué par 1,2 ou 3 substituants alkyl comprenant de 1 à 4 atomes de carbone, un alkylester porteur d'un radical alkyl comprenant de 1 à 10 atomes de carbone ou un aryl ester.
Conviennent bien à titre de composé allénique, les composés de formule générale (TJ)
R2R3C=C=CH2 (H) dans laquelle R2 et R3 désignent indépendamment un groupement hydrogène alkyl, aryl, carboxyle, ester ou halogène. De préférence 2 est R3 sont choisis indépendamment parmi un groupement hydrogène, un groupement carboxyle un groupement alkyl comprenant de 1 à 10 atomes de carbone, un groupement phényle éventuellement substitué par 1,2 ou 3 substituants alkyl comprenant de 1 à 4 atomes de carbone, un alkylester porteur d'un radical alkyl comprenant de 1 à 10 atomes de carbone ou un aryl ester.
On a en effet observé que le procédé selon l'invention permet de manière particulièrement sélective d'accéder à des halooléfines de formule générale (ni) et (TV) I^-XC≈CEk (m)
R2R3C=XC-CH3 (TV) dans lesquelles R1, R2 et R3 ont la même signification que décrite plus haut et X désigne un halogène choisi de préférence parmi le brome et le chlore en particulier le chlore. Dans le procédé selon l'invention on préfère mettre en œuvre un halogénure d'hydrogène choisi parmi le bromure d'hydrogène et le chlorure d'hydrogène. Le chlorure d'hydrogène est particulièrement préféré.
L'invention concerne en particulier un procédé de préparation du 2- chloroprop-1-ène par réaction de méthylaçétylène et/ou de propadiène avec du chlorure d'hydrogène dans un milieu liquide comprenant au moins
(a) un catalyseur d'hydrochloration comprenant au moins un composé choisi parmi les composés de palladium; et
(b) au moins un solvant organique capable de solubiliser le catalyseur, choisi parmi les nitriles organiques. II a été trouvé, de manière surprenante, que le procédé selon l'invention permet d'obtenir du 2-chloroprop-l-ène avec une sélectivité améliorée par rapport au procédé connu. Le procédé selon l'invention permet de plus d'améliorer la conversion du méthylaçétylène tout eh conservant une sélectivité élevée en 2-chloroprop-l-ène. Ceci permet d'augmenter l'efficacité de la fabrication du 2- chloroprop-1-ène en particulier lorsqu'on met en œuvre un produit de départ comprenant du méthylaçétylène.
La suite de la description se rapportera en particulier au procédé de synthèse de 2-chloroprop-l-ène. Il est cependant entendu que les variantes et préférences décrites s'appliquent le cas échéant également au procédé selon l'invention de fabrication d'une halooléfine de formule générale (III) ou (IV). De manière avantageuse, le procédé selon l'invention se déroule en absence substantielle d'eau.
Comme solvant capable de solubiliser le catalyseur, on utilise un nitrile organique. Généralement, le nitrile organique comprend 1, 2, 3 ou 4 fonctionnalités nitrile. Sont notamment utilisables les nitriles aliphatiques de formule générale CH3-(CH2)n-CN avec n un entier de 3 à 7 ; les dinitriles aliphatiques de formule générale NC-(CH2)m-CN avec m un entier de 3 à 10 ; et les nitriles aromatiques tels que le benzonitrile et le toluonitrile. Les dinitriles aliphatiques de formule générale NC-(CH2)m-CN avec m un entier de 3 à 10, de préférence avec m un entier de 4 à 6 sont préférés. L'adiponitrile est tout particulièrement préféré.
Le catalyseur utilisé dans le procédé de la présente invention comprend au moins un composé de palladium. Le composé de palladium est souvent choisi parmi les complexes et les sels contenant le palladium à l'étage d'oxydation 0 ou 2. De préférence on met en œuvre un composé de palladium contenant le palladium à l'étage d'oxydation 2. Avantageusement, les composés de palladium mis en œuvre sont choisis parmi les halogénures. Une préférence est montrée pour les chlorures ou les bromures mais tout autre composé pouvant se transformer en halogénure en présence d'halogénure d'hydrogène peut aussi être utilisé. Peuvent également être mis en œuvre, les composés de palladium complexés par des systèmes riches en électrons tels que les aminés, les composés oxygénés comme les composés carbonylés ou les éthers, cycliques ou acycliques, les composés soufrés, les composés aromatiques ou les composés porteurs de noyaux aromatiques. Sont avantageusement considérés comme composés dé palladium utilisables, les sels formés entre le palladium et un composé organique acide, non seulement avec les acides carboxyliques mais aussi avec d'autres composés, tels que l'acétylacétone. On peut également mettre en œuvre comme catalyseur des complexes de palladium (0) tels que les complexes formés avec la triphénylphosphine ou l'oxyde de triphénylphosphine. On peut également mettre en œuvre comme catalyseur des complexes de palladium (H) tels que des complexes π-al yl comme par exemple le bis-(η3-allyl-μ-chloropalladium(LI)). A titre de sels de palladium conviennent, par exemple, F acétate de palladium (H), le nitrate de palladium (LT) le bromure de palladium (II) et le chlorure de palladium (II). Le chlorure de palladium (II) et le bromure de palladium (LT) sont particulièrement préférés. Le chlorure de palladium (TJ) est tout particulièrement préféré. Avantageusement, la nature et/ou la quantité de catalyseur mise en œuvre est telle que, tout le catalyseur se trouve sous forme dissoute. On peut cependant aussi mettre en œuvre un catalyseur en quantité ou de nature telle qu'une f action au moins de celui-ci soit présente dans le milieu liquide sous forme solide dispersé, sans porter préjudice à l'invention. La quantité de catalyseur engagé est généralement supérieure ou égale à 0,1 millimole par litre de milieu liquide. De préférence, elle est supérieure ou égale à 0,5 millimole par litre de milieu liquide. Avantageusement, elle est supérieure ou égale à 1 millimole par litre de milieu liquide. La quantité de catalyseur est habituellement inférieure ou égale à 50 millimoles par litre de milieu liquide. De préférence, elle est inférieure ou égale à 20 millimoles par litre de milieu liquide. Avantageusement, elle est inférieure ou égale à 10 millimoles par litre de milieu liquide. De préférence, le milieu liquide est constitué essentiellement d'un nitrile organique tel que décrit plus haut.
L'invention concerne aussi un système catalytique comprenant l'un quelconque des composés de palladium précités et l'un quelconque des nitriles organiques précités, de préférence dans les quantités de catalyseur dans le nitrile organique précitées.
Dans une variante du procédé selon l'invention, on met aussi en œuvre un cocatalyseur, lequel comprend au moins un composé d'au moins un métal des groupes Ib ou TVb tel que le cuivre, l'argent, l'étain ou le plomb. Une préférence est marquée pour des métaux tels que le cuivre et l'étain, en particulier le cuivre. De préférence, le composé de métal des groupes Ib ou TVb mis en œuvre comme cocatalyseur dans ce mode de réalisation est un chlorure. Une préférence particulière est montrée pour le chlorure de cuivre (TJ). Généralement, le cocatalyseur est mis en œuvre dans un rapport molaire par rapport au catalyseur supérieur à 0,1. De préférence, ce rapport molaire est supérieur ou égal à 1. Avantageusement, ce rapport molaire est supérieur ou égal à 2. Toutefois, ce rapport molaire est habituellement inférieur à 20. De préférence, ce rapport molaire est inférieur ou égal à 15. Avantageusement, ce rapport molaire est inférieur ou égal à 10. Le cocatalyseur peut être introduit au début de la réaction, en même temps que le catalyseur, ou il peut être introduit en cours de réaction. Dans une autre variante, outre le composé de palladium et le nitrile organique, le milieu liquide comprend au moins un co-solvant organique. Le choix de la nature du co-solvant organique mis en œuvre est conditionné notamment par la nécessité qu'il soit inerte vis-à-vis des réactifs dans les conditions de réaction, qu'il soit miscible avec le solvant à la température de réaction et qu'il soit capable de le solubiliser, en particulier lorsque ce dernier est solide à température ambiante. Par ailleurs, pour des raisons de sécurité et de facilité d'emploi, on donne la préférence aux co-solvants organiques peu volatils. Le choix du co-solvant organique est aussi influencé par sa capacité de dissolution du méthylaçétylène et/ou du propadiène. Des co-solvants satisfaisant aux différents critères exposés ci-dessus sont choisis parmi les hydrocarbures aliphatiques, cycloaliphatiques et aromatiques et leurs mélanges, par exemple les paraffines en C7 à C\ζ et les alkylbenzènes, notamment les xylènes, les propylbenzènes, les butylbenzènes, les méthyléthylbenzènes. Le co-solvant mis en œuvre est de préférence choisi parmi les produits commerciaux constitués de mélanges d'hydrocarbures aliphatiques tels que le produit ISOPAR de ESSO ou
® le produit SHELLSOL D70 de SHELL ou de mélanges de composés
® aromatiques tels que le produit SOLVESSO de ESSO ou le produit
SHELLSOL® AB de SHELL. Des co-solvants appropriés sont par exemple les co-solyants aliphatiques
® saturés tels que le produit SHELLSOL D70, constitué de coupes pétrolières ayant un point d'ébullition supérieur ou égal à environ 190 °C et inférieur ou égal à environ 250 °C.
D'autres co-solvants envisageables sur base des divers critères donnés ci- dessus sont certains composés halogènes lourds, tels que des halogénoalcanes, halogénobenzènes et autres dérivés halogènes de composés aromatiques.
Lorsque le procédé selon l'invention est effectué en présence d'un co- solvant, le rapport pondéral entre le nitrile organique et le co-solvant est généralement d'au moins 0,1. Plus souvent ce rapport est d'au moins 0,2. De préférence il est d'au moins 0,3. Le cas échéant, lorsque le procédé selon l'invention est effectué en présence d'un co-solvant le rapport pondéral entre le nitrile organique et le co-solvant est généralement d'au plus 10. Plus souvent ce rapport est d'au plus 5. De préférence il est d'au plus 3.
Dans une variante qui est préférée, le procédé selon l'invention est effectué en l'absence de co-solvant. Dans le procédé selon l'invention, un milieu liquide particulièrement
, préféré contient du chlorure de palladium (TJ) comme catalyseur et de l' adiponitrile comme solvant. Est plus particulièrement préféré un milieu liquide constitué essentiellement de chlorure de palladium (TJ) comme catalyseur et d' adiponitrile comme solvant. Le procédé de fabrication du 2-chloroprop-l-ène selon l'invention est réalisé par mise en contact de méthylaçétylène et/ou de propadiène avec du chlorure d'hydrogène dans tout réacteur approprié renfermant le milieu liquide. Cette mise en contact est généralement réalisée par introduction d'une fraction gazeuse comprenant du méthylaçétylène et/ou de propadiène dans le milieu liquide.
L'introduction de la fraction gazeuse dans le milieu liquide est réalisée de préférence de manière à maximaliser la surface d'échange gaz/liquide. On choisira de préférence des moyens d'introduction et/ou d'agitation assurant une bonne dispersion du gaz sous forme de bulles dans le milieu liquide. Des exemples de moyens d'introduction sont entre autres des plaques poreuses ou frittes poreux présentant une porosité adéquate et des tuyaux de distribution présentant des multiples trous permettant le passage de la fraction gazeuse.
Dans le procédé selon l'invention, on ajuste avantageusement le débit des gaz introduits au réacteur de manière à maximaliser la surface d'échange gaz/liquide.
Le procédé selon l'invention peut être réalisé, de façon discontinue ou de façon continue, classiquement dans tout appareillage favorisant l'échange gaz- liquide telle qu'une colonne à plateaux, une colonne à empilages, en particulier une colonne noyée à empilages, un réacteur de type saturateur ou une colonne à bulles. Par réacteur de type saturateur, on entend en particulier un réacteur tabulaire contenant au cours de la réaction des segments alternants de milieu liquide et de gaz qui sont propulsés en direction de la sortie du tube par la pression du gaz.
Les appareillages mis en oeuvre dans le procédé selon l'invention sont généralement réalisés en un matériau qui présente une résistance suffisante à la corrosion en présence de chlorure d'hydrogène et du milieu liquide, en particulier en présence du système catalytique. Des matériaux utilisables sont choisis par exemple parmi le graphite imprégné de polymère et les aciers, par exemple de type HASTELLOY® etlNCONEL®, éventuellement revêtus de polymère. Le polymère avec lequel le graphite est imprégné ou l'acier est revêtu est de préférence choisi parmi un polymère fluoré, en particulier le polytétrafluoroéthylène (PTFE) et un polymère phénolique. Des exemples de graphite imprégné de polymère disponibles sont ceux commercialisés sous les dénominations GRAPHELOR® qui est un graphite imprégné de PTFE et DIABON® NS-1 qui est un graphite imprégné de polymère phénolique. Un exemple d'acier revêtu de polymère est celui commercialisé sous la dénomination ARMTLOR, qui est un acier revêtu de PTFE. Le graphite imprégné de polymère ou l'acier revêtu est avantageusement utilisé pour réaliser les parties du réacteur ou d'autres composantes de l'équipement du procédé qui se trouvent régulièrement en contact avec le milieu liquide telles que des pompes ou des moyens d'introduction tels que décrits plus haut.
Parmi les aciers, les aciers de type HASTELLOY® B et C conviennent bien. L'acier de type HASTELLOY® C est préféré. L'acier de type HASTELLOY® C est avantageusement utilisé pour réaliser les parties du réacteur qui se trouvent, le cas échéant, substantiellement exclusivement en contact avec la phase gazeuse présente dans le réacteur.
Les matériaux mentionnés ci-avant conviennent bien pour la mise en oeuvre du procédé selon l'invention. Ils peuvent également être mis en oeuvre avec d'autres systèmes catalytiques tels que décrits par exemple dans la demande EP-A-905113. L'invention concerne dans un aspect particulier dès lors aussi la mise en oeuvre de réacteurs tels que décrits plus haut comprenant les matériaux tels que décrits ci-avant pour effectuer une réaction d'hydrochloration avec du chlorure d'hydrogène dans un milieu liquide renfermant au moins un catalyseur d'hydrochloration qui comprend de préférence au moins un composé choisi parmi les composés des métaux du groupe VTJIa et des lanthanides, et un solvant organique capable de solubiliser le catalyseur.
Dans le procédé selon l'invention, le temps de contact gaz/liquide, qui est la durée pendant laquelle le gaz est en contact avec le milieu liquide, par exemple sous forme d'une bulle qui traverse une quantité donnée de milieu liquide, est généralement supérieur ou égal à 0,5 secondes. Avantageusement, le temps de contact est supérieur ou égal à 1 seconde. En général, le temps de contact gaz/liquide ne dépasse pas 5 minutes. Il est le plus souvent inférieur ou égal à 2 minutes. Avantageusement, il est inférieur ou égal à 1 minute. Il a été trouvé que de particulièrement bonnes sélectivités et rendements en 2- chloroprop-1-ène sont obtenus grâce à la mise en oeuvre du procédé selon l'invention dans les conditions de temps de contact mentionnées ci-avant. Dans le procédé selon l'invention, le rapport molaire entre le chlorure d'hydrogène et le méthylaçétylène et/ou le propadiène introduits dans le réacteur est en général supérieur ou égal à environ 0,5. De préférence, ce rapport est supérieur ou égal à 1. En général, ce rapport molaire est inférieur ou égal à environ 10. De préférence, ce rapport est inférieur ou égal à 5. De bons résultats ont été obtenus avec un rapport molaire entre le chlorure d'hydrogène et le méthylaçétylène et/ou le propadiène introduits dans le réacteur inférieur ou égal à environ 2,5. Le méthylaçétylène et/ou le propadiène et le chlorure d'hydrogène peuvent être mis en contact dans le réacteur ou mélangés préalablement à leur introduction dans le réacteur.
Le procédé de l'invention est réalisable de la température ambiante jusqu'à environ 200 °C. A plus haute température, le catalyseur a tendance à se dégrader. La température de réaction préférée, c'est-à-dire celle offrant le meilleur compromis entre productivité, rendement et stabilité du catalyseur est supérieure ou égale à 80 °C. Les meilleurs résultats sont obtenus à des températures supérieures ou égales à environ 100 °C. De préférence, la température de réaction ne dépasse pas environ 180 °C. Une température de réaction inférieure ou égale à environ 160 °C est particulièrement préférée. La pression est généralement supérieure ou égale à la pression atmosphérique et égale ou inférieure à 15 bars. De préférence, la pression est inférieure ou égale à 10 bars. Une préférence particulière est montrée pour une pression inférieure ou égale à 5 bars. Le procédé de l'invention se déroule souvent à une pression proche supérieure ou égale à 1 bar. Une pression supérieure ou égale à 2 bars donne de bons résultats. Une pression d'environ 3 bars convient particulièrement bien. Le débit des réactifs, généralement gazeux, est généralement suffisant pour permettre un brassage efficace du milieu liquide. On peut également mettre en œuvre des moyens d'agitation connus du milieu liquide, tels que des agitateurs mécaniques.
Dans un procédé en continu, le temps de séjour, qui est le rapport entre le volume de milieu liquide dans le réacteur et le débit volumique des réactifs, est généralement supérieur ou égal à 0,5 secondes. Avantageusement, le temps de séjour est supérieur ou égal à 1 seconde. En général, le temps de séjour ne dépasse pas 5 minutes. Il est le plus souvent inférieur ou égal à 2 minutes.
Avantageusement, il est inférieur ou égal à 1 minute.
Dans le procédé selon l'invention, on préfère utiliser comme réactif un mélange d'hydrocarbures contenant du méthylaçétylène et du propadiène, par
® exemple celui commercialisé par Air Liquide sous le nom de TETRENE . Sa composition molaire est environ de 25 % de méthylaçétylène, 13 % de propadiène, 46 % de propylène, 4 % de propane et 12 % d'hydrocarbures en C4.
De préférence, le milieu liquide est saturé en chlorure d'hydrogène avant d'introduire le métylacétylène et/ou le propadiène dans le réacteur. Ceci permet de maintenir une particulièrement bonne activité du système catalytique au cours de la réaction.
Lorsqu'on met en œuvre un mélange d'hydrocarbures contenant du méthylaçétylène et du propadiène, il est particulièrement souhaitable d'atteindre une conversion efficace du méthylaçétylène et du propadiène.
L'invention concerne dès lors aussi une méthode de préparation du 2-chloroprop-l-ène par réaction d'un mélange méthylacétylène/propadiène avec du chlorure d'hydrogène dans un milieu liquide comprenant au moins un catalyseur d'hydrochloration et au moins un solvant organique capable de solubiliser le catalyseur, méthode dans laquelle
(a) on introduit un mélange méthylacétylène/propadiène dans le milieu liquide et
(b) on récupère à l'issue de la réaction d'une part du 2-chloropropène et d'autre part une fraction comprenant du méthylaçétylène et du propadiène non réagis et
(c) on recycle la fraction comprenant du méthylaçétylène et du propadiène non réagis vers l'étape (a).
De préférence le rapport molaire entre le méthylaçétylène et le propadiène dans la fraction comprenant du méthylaçétylène et du propadiène non réagis est substantiellement identique au rapport molaire initial entre ces mêmes constituants. La variation du rapport molaire entre le méthylaçétylène et le propadiène dans la fraction comprenant du méthylaçétylène et du propadiène non réagis par rapport au rapport molaire initial est généralement inférieure ou égale à 10%. De préférence cette variation est inférieure ou égale à 5%. Une variation inférieure ou égale à 1% est plus particulièrement préférée. Une variation inférieure ou égale à 0,5 % est tout particulièrement préférée. On peut même arriver à une variation de 0%.
La variation peut être ajustée, si nécessaire par des opérations destinées à modifier le rapport molaire entre le méthylaçétylène et le propadiène telles que par exemple un appoint en l'un de ces composés ou une opération sélective de séparation telle qu'une adsorption. Toutefois, le procédé selon l'invention décrit plus haut, permet d'obtenir à l'iss,ue de la réaction une fraction comprenant du méthylaçétylène et du propadiène non réagis avec un rapport molaire entre le méthylaçétylène et le propadiène substantiellement identique au rapport molaire initial.
La méthode selon l'invention permet une utilisation très efficace des matières premières tout en évitant une accumulation de l'un des produits de départ dans le réacteur.
L'invention concerne aussi un procédé de fabrication d'un composé fluoré, en particulier un hydrofluoroalcane comprenant
(a) l'utilisation d'une oléfine halogénée, en particulier le 2-chloroprop-l-ène, obtenue selon le procédé selon l'invention ou selon la méthode selon l'invention, pour la fabrication d'un précurseur halogène du composé fluoré
(b) la fluoration du précurseur obtenu avec un réactif fluoré, de préférence le fluorure d'hydrogène, pour former le composé fluoré.
La fabrication du précurseur halogène peut être, par exemple, une réaction de télomérisation dans laquelle on fait réagir du 2-chloroprop-l-ène avec un haloalcane en présence d'un catalyseur et éventuellement d'un cocatalyseur. Ce type de réaction convient particulièrement bien pour l'obtention de 1,1,1,3,3- pentachlorobutane, qui est un précurseur halogène du 1, 1, 1,3,3- pentafluorobutane. Dans une réaction de télomérisation préférée, on fait dès lors réagir du 2-chloroprop-l-ène avec du tétrachlorométhane en présence d'un catalyseur comprenant un composé de cuivre et un cocatalyseur choisi parmi les aminés pour former du 1, 1, 1,3,3-peritachlorobutane. Dans la fluoration du précurseur obtenu, le réactif fluoré préféré est le fluorure d'hydrogène anhydre. La fluoration peut être effectuée en la présence ou en l'absence de catalyseur de fluoration. Lorsque la fluoration est effectuée en la présence de catalyseur, ce dernier est avantageusement choisi parmi les halogénures de métaux de groupe 4, 5, 14 et 15, en particulier les dérivés d'étain, d' antimoine, de titane, de niobium et de tantale. L'hydroflùoroalcane préféré est le 1,1,1,3,3-pentafluorobutane. L'invention est illustrée de manière non limitative dans les exemples suivants. Exemple 1
La réaction a été conduite dans un réacteur de type saturateur muni d'une double enveloppe dans laquelle circule de l'huile thermostatisée à la température de l'essai et surmonté d'un réfrigérant refroidi pour condenser les vapeurs de solvant et de co-solvant. Dans un bêcher, on a dissout en chauffant légèrement 0,15 mmol de PdCTj dans 80 ml d' adiponitrile. Après dissolution totale du chlorure de palladium, on a versé la phase liquide dans le réacteur préalablement chauffé à 140 °C. On a alors injecté du chlorure d'hydrogène à un débit de
1,3 1/h pendant 30 minutes. Ensuite, conjointement au chlorure d'hydrogène, on a injecté un mélange constitué, sur une base molaire, de 25 % de . méthylaçétylène, de 13 % de propadiène, de 46 % de propylène, de 4 % de propane et de 12 % d'hydrocarbures en C4 dans le réacteur à un débit de 2,41/h. Le temps de séjour dans le réacteur était de 23 s.
Les produits de la réaction obtenus au cours du temps ont été analysés par une analyse chromatographique en phase gazeuse en ligne. Les résultats sont présentés dans le tableau I ci-après. Dans ce tableau, le tau de conversion est le rapport entre la concentration initiale en méthylaçétylène et en propadiène diminuée de sa concentration finale divisée par la concentration initiale, multiplié par 100 ; la sélectivité en 2-chloroprop-l-ène est le rapport entre la concentration finale en 2-chloroprop-l-ène divisée par la concentration initiale en méthylaçétylène et en propadiène diminuée de sa concentration finale, multiplié par 100. Exemple 2 (comparaison)
On a mis en œuvre un milieu liquide contenant 0, 15 mmόl de PtCl2 dans 80 ml d'adiponitrile. La réaction a été effectuée dans le même appareillage et dans les mêmes conditions qu'à l'exemple 1, à l'exception du temps de séjour qui a été porté à 46s. Le résultat obtenu est indiqué dans le tableau 1. Tableau 1
Figure imgf000012_0001
Il apparaît que le procédé selon l'invention permet d'obtenir du 2-chloroprop-l-ène avec une meilleure sélectivité par rapport au procédé catalysé par PtCl2/adiponitrile. La conversion de méthylaçétylène est fortement améliorée. Le procédé selon l'invention fournit donc des résultats inattendus et supérieurs par rapport au procédé catalysé par PtCVadiponitrile. Les taux de conversion de propadiène et de méthylaçétylène sont identiques. Des lors le mélange de propadiène et de méthylaçétylène non convertis est, après séparation du 2-chloroprop-l-ène, approprié au recyclage vers la réaction de fabrication.

Claims

REVENDI C AT I ON S
1 - Procédé de préparation d'une oléfine halogénée par réaction d'un alkyne et/ou d'un composé allénique avec un halogénure d'hydrogène dans un milieu liquide comprenant au moins
(a) un catalyseur d'hydrohalogénation comprenant au moins un composé de palladium; et
(b) au moins un solvant organique capable de solubiliser le catalyseur, choisi parmi les nitriles organiques.
2 - Procédé selon la revendication 1 dans lequel l' alkyne répond à la formule générale (I)
Ri-C≡C-H
dans laquelle R1 désigne un groupement alkyl, aryl, carboxyle, esterou halogène et/ou le composé allénique répond à la formule générale (TJ)
R2R3C=C=CH2 (II)
dans laquelle R2 et R3 désignent indépendamment un groupement hydrogène alkyl, aryl, carboxyle, ester ou halogène.
3 - Procédé selon la revendication 1 ou 2 dans lequel on prépare du 2- chloroprop-1-ène par réaction de méthylaçétylène et/ou de propadiène avec du chlorure d'hydrogène.
4 - Procédé selon l'une quelconque des revendications 1 à 3, dans lequel le composé de palladium est choisi parmi les complexes et les sels contenant le palladium à l' étage d' oxydation 0 ou 2.
5. - Procédé selon la revendication 4, dans lequel le composé de palladium contient le palladium à l' étage d' oxydation 2.
6. - Procédé selon la revendication 5, dans lequel le composé de palladium est un sel, choisi parmi l'acétate de palladiumHl), le nitrate de palladium (II), le bromure de palladium (TJ) et le chlorure de palladium (TT).
7. - Procédé selon la revendication 6, dans lequel le composé de palladium est le chlorure de palladium (U).
8. - Procédé selon l'une quelconque des revendications 1 à 7 dans lequel le nitrile organique comprend 1, 2, 3 ou 4 fonctionnalités nitrile.
9 - Procédé selon la revendication 8 dans lequel le nitrile organique est l' adiponitrile.
10 - Procédé selon l'une quelconque des revendications 1 à 9 dans lequel la pression à laquelle on effectue la réaction est de 1 à 5 bars et la température à laquelle on effectue la réaction est de 100 à 160°C.
11. - Méthode de préparation du 2-chloroprop-l-ène par réaction d'un mélange méthylacétylène/propadiène avec du chlorure d'hydrogène dans un milieu liquide comprenant au moins un catalyseur d'hydrochloration et au moins un solvant organique capable de solubiliser le catalyseur, méthode dans laquelle
(a) on introduit un mélange méthylacétylène/propadiène dans le milieu liquide et
(b) on récupère à l'issue de la réaction d'une part du 2-chloropropène et d'autre part une fraction comprenant du méthylaçétylène et du propadiène non réagis et
(c) on recycle la fraction comprenant du méthylaçétylène et du propadiène non réagis vers l'étape (a).
12. - Méthode selon la revendication 11, dans lequel le rapport molaire entre le méthylaçétylène et le propadiène dans la fraction comprenant du méthylaçétylène et du propadiène non réagis est. substantiellement identique au rapport molaire initial entre ces mêmes constituants.
13. Procédé de fabrication d'un composé fluoré, en particulier un hydrofluoroalcane comprenant (a) l'utilisation d'une oléfine halogénée, en particulier le 2-chloroprop-l-ène, obtenue selon le procédé selon l'une quelconque des revendications 1 à 10 ou selon la méthode selon la revendication 11 ou 12, pour la fabrication d'un précurseur halogène du composé fluoré;
(b) la' fluoration du précurseur obtenu avec un réactif fluoré, de préférence le fluorure d'hydrogène pour former le composé fluoré.
14. - Procédé de fabrication selon la revendication 13, dans lequel le composé fluoré est le 1,1,1,3 ,3-pentafluorobutane.
15. Système catalytique comprenant un composé de palladium et un nitrile organique.
PCT/EP2002/003238 2001-03-22 2002-03-20 Procede de preparation d'une olefine halogenee WO2002076913A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2002312773A AU2002312773A1 (en) 2001-03-22 2002-03-20 Method for preparing a halogenated olefin
EP02737895A EP1381584A2 (fr) 2001-03-22 2002-03-20 Procede de preparation d'une olefine halogenee
JP2002576176A JP2004525933A (ja) 2001-03-22 2002-03-20 ハロゲン化オレフィンの製造方法
US10/472,784 US7109386B2 (en) 2001-03-22 2002-03-20 Method for preparing a halogenated olefin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR01/03908 2001-03-22
FR0103908A FR2822459B1 (fr) 2001-03-22 2001-03-22 Procede de preparation d'une olefine halogenee

Publications (2)

Publication Number Publication Date
WO2002076913A2 true WO2002076913A2 (fr) 2002-10-03
WO2002076913A3 WO2002076913A3 (fr) 2003-07-31

Family

ID=8861447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/003238 WO2002076913A2 (fr) 2001-03-22 2002-03-20 Procede de preparation d'une olefine halogenee

Country Status (7)

Country Link
US (1) US7109386B2 (fr)
EP (1) EP1381584A2 (fr)
JP (1) JP2004525933A (fr)
CN (1) CN1531517A (fr)
AU (1) AU2002312773A1 (fr)
FR (1) FR2822459B1 (fr)
WO (1) WO2002076913A2 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2910350B1 (fr) * 2006-12-22 2009-01-30 Solvay Systeme catalytique d'hydrochloration et procede de fabrication de chlorure de vinyle au depart d'acetylene et de chlorure d'hydrogene en presence de ce systeme catalytique.
US8524955B2 (en) * 2010-05-21 2013-09-03 Honeywell International Inc. Process for the preparation of hexafluoro-2-butyne
US9000239B2 (en) * 2012-05-15 2015-04-07 Honeywell International Inc. Methods for producing 1-chloro-3,3,3-trifluoropropene from 2-chloro-3,3,3-trifluoropropene

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3420902A (en) * 1966-08-01 1969-01-07 Marathon Oil Co Process for the hydrohalogenation of organic compounds
EP0905113A1 (fr) * 1997-09-24 1999-03-31 SOLVAY (Société Anonyme) Procédé de préparation de 2-chloroprop-1-ène
US5917098A (en) * 1996-02-01 1999-06-29 Elf Atochem S.A. Preparation of 1,1,1,3,3-pentachlorobutane and 1,1,1,3,3-pentafluorobutane

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60181046A (ja) * 1984-02-29 1985-09-14 Babcock Hitachi Kk メチルエチルケトンの合成法
US5468819A (en) * 1993-11-16 1995-11-21 The B.F. Goodrich Company Process for making polymers containing a norbornene repeating unit by addition polymerization using an organo (nickel or palladium) complex
US5811590A (en) * 1995-10-25 1998-09-22 Shell Oil Company Hydroformylation process
US6080888A (en) * 1997-01-08 2000-06-27 Albemarle Corporation Preparation of olefinic compounds and carboxylic derivatives thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3420902A (en) * 1966-08-01 1969-01-07 Marathon Oil Co Process for the hydrohalogenation of organic compounds
US5917098A (en) * 1996-02-01 1999-06-29 Elf Atochem S.A. Preparation of 1,1,1,3,3-pentachlorobutane and 1,1,1,3,3-pentafluorobutane
EP0905113A1 (fr) * 1997-09-24 1999-03-31 SOLVAY (Société Anonyme) Procédé de préparation de 2-chloroprop-1-ène

Also Published As

Publication number Publication date
FR2822459B1 (fr) 2004-07-09
US20040116754A1 (en) 2004-06-17
EP1381584A2 (fr) 2004-01-21
US7109386B2 (en) 2006-09-19
FR2822459A1 (fr) 2002-09-27
CN1531517A (zh) 2004-09-22
WO2002076913A3 (fr) 2003-07-31
JP2004525933A (ja) 2004-08-26
AU2002312773A1 (en) 2002-10-08

Similar Documents

Publication Publication Date Title
CA2232421C (fr) Procede pour la preparation de 1,1,1,3,3-pentafluoropropane
JP3042703B2 (ja) パーフッ素化有機物質を製造する直接フッ素化法
EP0522639B1 (fr) Procédé pour la préparation de 1-chloro-1,1,3,3,3-pentafluoropropane et de 1,1,1,3,3,3-hexafluoropropane
CA2321892C (fr) Procede d'hydrofluoration d'hydrocarbures chlores
EP2368869A1 (fr) Procédé catalytique de fabrication d'un hydrofluoroalcane
EP0297947B1 (fr) Synthèse du chloro-1-difluoro-1,1-éthane
BE1011954A3 (fr) Synthese du 1,1,1,3,3-pentafluoropropane.
WO2020002800A1 (fr) Procédé de production du 1-chloro-3,3,3-trifluoropropène
CA2239763C (fr) Procede de fabrication d'hydrofluoroalcanes
EP1001923B1 (fr) Procede de preparation d'hydrocarbures halogenes
BE1005095A3 (fr) Procede pour la preparation de 1,1-dichloro-1,3,3,3-tetrafluoropropane.
EP0905113B1 (fr) Procédé de préparation de 2-chloroprop-1-ène
BE1007393A3 (fr) Procede pour la preparation de 1-chloro-1-fluoroethane et/ou de 1,1-difluoroethane.
WO2002076913A2 (fr) Procede de preparation d'une olefine halogenee
WO1991018852A1 (fr) Procede de preparation de 1,1-dichloro-1-fluoroethane
WO1998027041A1 (fr) Procede pour preparer le nonafluoroisobutyl methyl ether
EP0819668A1 (fr) Synthèse du 1,1,1-trifluoroéthane par fluoration du 1-chloro-1,1-difluoroethane
BE1011249A3 (fr) Pentachlorobutane, son procede de fabrication et son utilisation, procede de preparation du 1,1-difluoro-2-trifluoromethylpropane et utilisation de ce compose.
FR2695123A1 (fr) Procédé pour la préparation de composés éthaniques fluorés.
FR2768726A1 (fr) Synthese du 1, 1, 1, 3, 3-pentafluoropropane

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002737895

Country of ref document: EP

Ref document number: 2002576176

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 10472784

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 028102657

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002737895

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642