WO2002076449A1 - Traitement de l'acne rosacee par l'acide lipoique - Google Patents
Traitement de l'acne rosacee par l'acide lipoique Download PDFInfo
- Publication number
- WO2002076449A1 WO2002076449A1 PCT/US2001/009380 US0109380W WO02076449A1 WO 2002076449 A1 WO2002076449 A1 WO 2002076449A1 US 0109380 W US0109380 W US 0109380W WO 02076449 A1 WO02076449 A1 WO 02076449A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acid
- lipoic
- dihydrolipoic
- tocotrienol
- mixtures
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/34—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having five-membered rings with one oxygen as the only ring hetero atom, e.g. isosorbide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/35—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
- A61K31/352—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline
- A61K31/353—3,4-Dihydrobenzopyrans, e.g. chroman, catechin
- A61K31/355—Tocopherols, e.g. vitamin E
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/38—Heterocyclic compounds having sulfur as a ring hetero atom
- A61K31/385—Heterocyclic compounds having sulfur as a ring hetero atom having two or more sulfur atoms in the same ring
Definitions
- This invention relates primarily to methods and compositions for the treatment of rosacea.
- Rosacea is a chronic inflammatory disorder affecting the blood vessels and pilosebaceous units of the face in middle-aged individuals, afflicting as many as 13 million Americans.
- Patients with rosacea have papules and pustules superimposed on diffuse erythema and telangiectasia (visible blood vessels) over the central portion of the face.
- the clinical features are facial redness, swelling, papules, pustules, and telangiectasias.
- An important component of the patients' history is often easy flushing and blushing of the face, and this is often accentuated when alcohol, caffeine-containing, or hot spicy foods are ingested.
- Hyperplasia of the sebaceous glands, connective tissue, and vascular bed of the nose sometimes causes rhinophyma, or a large, red, bulbous nose in addition to the other signs.
- Ocular complications occur in a small but significant number of rosacea patients; these include blepharitis, chalazion, conjunctivitis, and eratinitis. Progressive keratinitis can lead to scarring and blindness.
- Rosacea and the eye complications are usually responsive to tetracycline, but the antibiotic must be continued for life (at the lowest dose that suppresses the condition) because rosacea recurs when therapy is interrupted.
- a disadvantage to such treatments are the possible side effects associated with long-term use of oral antibiotics, such as nausea, gastrointestinal upset, phototoxicity, enhanced susceptibility to yeast infection, and interactions with other medications.
- Oral antibiotics may also lessen the effectiveness of oral contraceptives.
- High-potency topical corticosteroid preparations may induce or aggravate pre-existing rosacea and should not be used for long periods of time on the face.
- topical metronidazole is sometimes prescribed for reducing skin redness and the number of pimples on the face of patients with rosacea.
- Laser therapy has been used to reduce the telangiectasia and redness in some cases. (See Wilkin JK: Rosacea: Pathophysiology and Treatment. Archives of Dermatology, 1994, 130 :359-362; this and subsequent references are expressly incorporated herein by reference.) It would be desirable to have alternate treatments for rosacea.
- Lipoic acid was originally identified as a bacterial growth factor present in the water-soluble fraction of liver and yeast. It was found to be necessary for the oxidative decarboxylation of pyruvic acid by Streptococcus fecalis and for the growth of Tetrahymena gelii, and replaced acetate for the growth of Lactobacillus casei. It has been variously known as acetate replacing factor, protogen A, and pyruvate oxidation factor. Subsequent research showed that lipoic acid (LA) was a growth factor for many bacteria and protozoa, and it served as a prosthetic group, coenzyme, or substrate in plants, microorganisms, and animal tissues.
- LA lipoic acid
- LA dihydrolipoic acid
- LA has been suggested for treating systemically, or as adjuvant systemic medication for, liver cirrhosis, atheroschlerosis, diabetes, neurodegenerative diseases, heavy metal poisoning, and Chagas disease (ibid.). It has also been used as an antidote to poisonous mushrooms (ibid., particularly Amanita species, Merck Index, llth ed., 1989, entry 9255).
- lipoic acid in dermatological compositions.
- lipoic acid in cosmetics at concentrations of 0.01 % to 1%, preferably 0.05% to 0.5%, or in topical "quasi-drugs" at concentrations of 0.1 % to 1.5% , preferably 0.5% to 1.0%, were suggested for inhibiting tyrosinase, and thus melanin formation, to whiten skin.
- lipoic acid is a disulfide, it's listed as a thiol in the patent (column 3, lines 29 to 30); perhaps what is referred to as “lipoic acid” is, instead, dihydrolipoic acid.
- This supposition is reinforced by the fact that a Sigma product was employed in some examples (column 7, line 63). Both oxidized lipoic acid and reduced, i.e. , dihydrolipoic acid, are available from that chemical company, so DHLA may have been used. Unfortunately, there is more uncertainty about the effects of DHLA when compared to LA (see Packer, et al., cited above, 231-234).
- the only illustrations of alternate sulfur-containing ingredients were acylated cysteine derivatives, including glutathione.
- Example 7 Suggested administration was oral, parenteral or intravenous (column 7, line 31 to end, et seq.), preferably oral (column 11, line 42), but application to skin and mucous membranes was mentioned (column 12, lines 58 to 60).
- Antioxidants could be employed in some embodiments (column 16, lines 47 to 55), and the list included ascorbic acid, ascorbyl "palmirate” [sic] and tocopherols.
- the examples combined lipoic and/or dihydrolipoic acid with tocopherols (Examples 1, 2, 5, and 6) or ascorbic acid (Examples 3, 4, and 7).
- An ointment was disclosed in Example 6; the others described suppositories, capsules, ampules, and tablets.
- Perricone suggested the use of lipoic acid in dermatological compositions for the treatment of skin damage, particularly inflammation and aging (U.S. Pat. No. 5,709,868).
- the antioxidant activity of lipoic acid appears to prevent free radical damage to cells and cell components. Free radical damage is most evident in cellular membranes because of the density of the molecular structure of the membranes. It is currently hypothesized that cell membrane aging leads to all of the various cellular changes seen in aging, such as decreased RNA production, decreased protein production, and faulty enzyme action.
- Inflammation in skin is mediated by several active chemicals and metabolites of arachidonic acid.
- Arachidonic acid is oxidized by cyclo-oxygenase and lipoxygenase to active metabolites such as the leukotrienes and 5- and 12- hydroxyeicosatetraenoic acid (HETES).
- HETES 5- and 12- hydroxyeicosatetraenoic acid
- NF ⁇ -B Transcription factor nuclear factor kappa-B
- NF ⁇ -B Transcription factor nuclear factor kappa-B
- the inhibitory fraction of NF ⁇ -B When the cell undergoes oxidative stress, i.e., ultraviolet radiation, ionizing radiation, infection, and free radicals created by metabolism, the inhibitory fraction of NF ⁇ -B is dissociated from the molecule. Once the- inhibitory fraction is dissociated from the NFKB molecule, it then migrates to the nucleus of the cell, begins transcription, and subsequent production of inflammatory mediators, including cytokines such as tumor necrosis factor alpha (TF ⁇ ) and various interleukins, as well as many of the pro-inflammatory interleukins. These pro- inflammatory and inflammatory products of transcription then enter the cell cytoplasm effecting all parts of the cell including the mitochondria and cell membrane. Arachidonic acid is released, which is oxidized to biologically active mediators.
- oxidative stress i.e., ultraviolet radiation, ionizing radiation, infection, and free radicals created by metabolism
- oxidative stress i.e., ultraviolet radiation, ionizing radiation, infection, and free
- arachidonic acid When arachidonic acid is oxidized via the cyclooxygenase or lipoxygenase pathways, for example, prostaglandins, leukotrines, and hydroxyeicosatetraenoic acid (HETE) are produced, which cause erythema, edema, and free radical production.
- HETE hydroxyeicosatetraenoic acid
- Lipoic acid is a powerful inhibitor of the activation of NF ⁇ -B, and therefore can act as an anti-inflammatory as well as an antioxidant. It would be useful to employ this substance in the treatment of chronic skin conditions such as rosacea.
- compositions and methods for the treatment and inhibition of rosacea It is an objective of this invention to provide compositions and methods for the treatment and inhibition of rosacea.
- compositions containing lipoic acid and/or lipoic acid derivatives typically in association with a dermatologically acceptable carrier or vehicle, to skin exhibiting signs of rosacea.
- compositions and methods for the treatment and/or inhibition of rosacea which comprises topical application to skin areas exhibiting rosacea of an effective amount of lipoic acid, lipoic acid derivatives or mixtures thereof.
- Preferred embodiments also contain an ⁇ -hydroxy acid such as glycolic acid in addition to lipoic acid.
- Typical embodiments involve the topical application of compositions containing active ingredient(s) in a dermatologically acceptable carrier.
- Ascorbic acid particularly fat-soluble fatty acid esters of ascorbic acid such as ascorbyl palmitate, can, optionally, also be utilized for further enhancing the efficacy of the therapeutic or prophylactic treatment.
- tocotrienols or derivatives thereof or vitamin E compositions enriched with tocotrienols or tocotrienol derivatives such as tocotrienol-enriched fractions of natural oils are included in the lipoic acid composition with or without an ascorbic acid ingredient.
- lipoic acid and/or derivative
- a dermatologically acceptable carrier or vehicle e.g. , as a. lotion, cream, ointment, soap, or the like
- other ingredients particularly ascor- byl palmitate and/or tocotrienol, can be advantageously included in the compositions.
- lipoic acid or derivative thereof (hereinafter referred to collectively as lipoic acid for ease of reference) necessary to treat rosacea is not fixed per se, and necessarily is dependent upon the identity and form of lipoic acid em- ployed, the amount and type of any additional ingredients used, particularly ⁇ -hydroxy acids such as glycolic acid, but also ascorbyl esters and/or tocotrienol, the user's skin type, and the severity and extent of the patient's rosacea.
- the composition contains from about 0.1% to about 7 weight %, lipoic acid or dihydrolipoic acid, more narrowly from about 0.25 to about 5 weight%. In one embodiment, about 2% to 5% lipoic acid is employed.
- ⁇ -Hydroxy acids are employed in concentration ranges of from about 1 % to about 10%, more narrowly from about 1% to about 5%, by weight.
- This invention is based upon the finding that lipoic acid and/or its derivatives are useful for the treatment of rosacea.
- lipoic acid encompasses thioctic acid (1,2- dithiolane-3-pentanoic acid; 1 ,2-dithiolane-3-valeric acid), C 8 H 14 O 2 S 2 , formula weight 206.32. It has been variously known as acetate replacing factor, protogen A, and pyruvate oxidation factor. Elucidation of its structure and function determined that it is a co-factor for ⁇ -keto-dehydrogenase complexes, typically bound as lipoamide, that participates in acyl transfer reactions. Its reduced form, dihydrolipoic acid, is a potent sulfhydryl reductant. In aqueous systems, both LA and dihydroLA exhibit antioxidant action.
- Lipoic acid derivatives include thioctic acid esters, particularly alkyl esters such as fatty acid esters, amides, particularly those isolated from or mimicking naturally occurring lipoamides, salts, particularly alkali metal salts, anhydrides and specifically includes the reduced form, dihydrolipoic acid and its esters, amides and salts.
- One particularly efficacious derivative that exhibits increased cellular uptake and biological activity useful in the practice of the invention is N,N-dimethyl,N-2- amidoethyl lipoate recently described by Sen, C.K., et al. (Free Radical Biol. Med. , 1998, 25: 89) and called lipoic acid plus (LA-Plus).
- lipoic acid is both fat- and water-soluble, it is an advantage of the invention that it can be used in either lipid or aqueous-based compositions, and it readily crosses cellular membranes and disperses in extracellular and intracellular tissue components.
- Derivatives may also include those involving other reactive groups known to those skilled in the art.
- the term "derivatives" includes metabolic precursors of lipoic acid. Where lipoic acid derivatives are employed, they must be functionally equivalent to lipoic acid.
- lipoic acid is fat-soluble. Therefore, lipoic acid preparations can be applied neat to skin tissue. It is an advantage of the invention that the active compound is fatty so that it physically contributes to the lubrication of affected skin areas to which it is applied.
- lipoic acid only effective amounts of lipoic acid are needed to treat rosacea, so generally topical application to exposed or affected skin sites is accomplished in association with a carrier, and particularly one in which the active ingredient is soluble per se or is effectively solubilized (e.g., as an emulsion or microemulsion).
- a carrier particularly one in which the active ingredient is soluble per se or is effectively solubilized (e.g., as an emulsion or microemulsion).
- the carrier is inert in the sense of not bringing about a deactivation of the lipoic acid or derivative, and in the sense of not bringing about any adverse effect on the skin areas to which it is applied.
- Suitable carriers include water, alcohols, oils and the like, chosen for their ability to dissolve or disperse lipoic acid and any other ingredients used in the treatment. Generally, even low concentrations of active ingredients in a carrier are suitable, depending upon the application regimen and adjunct ingredients employed. Many embodiments contain from about 0.1 % to about 7% by weight, more narrowly from about 0.25 to about 5% by weight, LA or LA derivative. Many embodiments contain more than 1 weight % lipoic acid and/or lipoic acid derivative, e.g., from about 1.1 % to about 3 to 5 weight % LA. One efficacious embodiment contains from about 2% to about 5% by weight. Examples are illustrated hereafter.
- the carrier for lipoic acid can consist of a relatively simple solvent or dispersant
- the carrier comprise a composition more conducive to topical application, and particularly one which will form a film or layer on the skin to which it is applied so as to localize the application and provide some resistance to perspiration and/or one which aids in percutaneous delivery and penetration of the active ingredients into lipid layers of the scarred area.
- compositions are known in the art, and can take the form of lotions, creams, gels or even solid compositions (e.g., stick-form preparations).
- compositions include lotions containing water and/or alcohols and emollients such as hydrocarbon oils and waxes, silicone oils, hyaluronic acid, vegetable, animal or marine fats or oils, glyceride derivatives, fatty acids or fatty acid esters or alcohols or alcohol ethers, lanolin and derivatives, polyhydric alcohols or esters, wax esters, sterols, phospholipids and the like, and generally also emulsifiers (nonionic, cationic or anionic), although some of the emollients inherently possess emulsifying properties.
- emollients such as hydrocarbon oils and waxes, silicone oils, hyaluronic acid, vegetable, animal or marine fats or oils, glyceride derivatives, fatty acids or fatty acid esters or alcohols or alcohol ethers, lanolin and derivatives, polyhydric alcohols or esters, wax esters, sterols, phospholipids and the like, and generally also
- compositions can be formulated into a cream rather than a lotion, or into gels, or into solid sticks by utilization of different proportions of the ingredients and/or by inclusion of thickening agents such as gums or other forms of hydrophillic colloids.
- Such compositions are referred to herein as dermatologically acceptable carriers.
- Most preferred for skin are those carriers which are fat-soluble, i.e., those which can effectively penetrate skin layers and deliver LA to all skin layers.
- ⁇ -hydroxy acid has reference to and encompasses the general class of organic compounds containing at least one hydroxy group and at least one carboxyl group, and wherein at least one hydroxyl group is located on the ⁇ -carbon atom.
- the compounds are organic acids having at least one carboxylic acid group and at least one hydroxyl group on the ⁇ -carbon atom, and may contain other functional groups including additional hydroxyl and carboxylic acid moieties.
- ⁇ -hydroxy acids will have a basic structure of lower aliphatic compounds having from two to six carbon atoms.
- the "derivatives" of these ⁇ -hydroxy acids most typically will involve derivatives related to the carboxyl functionality, i.e., wherein the hydrogen or hydroxyl portion of the carboxyl moiety is substituted by metallic ions (to form salts), alkoxy groupings (to form esters), ammonium ions (to form ammonium salts), as well as other substitution reactions and products leading to formation of corresponding lactones, anhydrides or amines.
- the derivatives may also include reactions involving the ⁇ -hydroxyl group, most notably ketone formation, to form corresponding ⁇ -keto carboxylic acids.
- hydroxy acids and derivative compounds useful in the present invention are hydroxy monocarboxylic acids such as glycolic acid, hydroxymethylgly- colic acid, lactic acid, glucuronic acid, galacturonic acid, gluconic acid, glucoheptomc acid, ⁇ -hydroxybutyric acid, ⁇ -hydroxyisobutyric acid, ⁇ -hydroxyvaleric acid, ⁇ -hydroxyisovaleric acid, ⁇ -hydroxycaproic acid, and ⁇ -isocaproic acid.
- hydroxy monocarboxylic acids such as glycolic acid, hydroxymethylgly- colic acid, lactic acid, glucuronic acid, galacturonic acid, gluconic acid, glucoheptomc acid, ⁇ -hydroxybutyric acid, ⁇ -hydroxyisobutyric acid, ⁇ -hydroxyvaleric acid, ⁇ -hydroxyisovaleric acid, ⁇ -hydroxycaproic acid, and ⁇ -isocaproic acid.
- di- and tri-carboxylic hydroxy acids such as tartronic acid, tartaric acid, malic acid, hydroxyglutaric acid, hydroxyadipic acid, hydroxypimelic acid, muric acid, citric acid, isocitric acid, saccharic acid, dihydroxymaleic acid, dihydroxytartaric acid, and dihydroxyfumaric acid.
- keto acids and keto esters such as pyruvic acid, methyl pyruvate, ethyl pyruvate, isopropyl pyruvate, benzoylformic acid, methyl benzoylformate, and ethyl benzoylformate.
- ⁇ -hydroxy acids having an aliphatic backbone of 2 to 3 carbons such as glycolic and/or lactic acid or their derivatives are employed. Glycolic acid is especially efficacious.
- compositions contain effective amounts of ⁇ -hydroxy acids.
- Typcal concentrations range from about 1 % to about 10% by weight, more narrowly from about 1% to about 5%, by weight ⁇ - hydroxy acid.
- Fat-soluble fatty acid esters of ascorbic acid may be added to the lipoic acid composition for treating rosacea in some embodiments.
- the more oxida- tion-resistant saturated fatty acid esters of ascorbic acid are preferred, including, but not limited to, ascorbyl laurate, ascorbyl myristate, ascorbyl palmitate, ascorbyl stearate, and ascorbyl behenate.
- Ascorbyl palmitate is used in one embodiment.
- fatty acid esters are described, e.g., ascorbyl stearate, compositions having predominantly that ester, e.g., predominantly stearate, are included.
- the esters may be prepared using hydrogenated oils or fats, or fractions thereof, and contain small amounts of another ester.
- Ascorbyl stearate prepared using canola for example, commonly contain about 4% ascorbyl palmitate.
- Tocotrienol may also be added to lipoic acid compositions of the invention, alone or in combination with an ascorbyl esters and/or ⁇ -hydroxy acids or their derivatives in some embodiments.
- the term "tocotrienol” encompasses natural and/or synthetic counterparts of tocopherol (vitamin E) that bear unsaturated tails, and include, but not limited to, ⁇ -, ⁇ -, ⁇ -, and ⁇ -tocotrienols, tocotrienol P25, desmethyl-toco- trienol, didesmethyl-tocotrienol, their synthetic counterparts, their counterparts having methylated or demethylated chroman rings, and mixtures thereof.
- the double bonds may be cis or trans or mixtures thereof.
- Tocotrienol useful in compositions of the invention may be tocotrienol-en- riched vitamin E preparations obtained from natural or synthetic sources, such as those obtained by removal of tocopherol from vitamin E compositions.
- Many embodiments employ tocotrineol isolated from natural sources such as tocotrienol-enriched fractions obtained from sunflower seed, wheat germ, bran, palm, or other vegetable oils by high performance liquid chromatography or other methods, or tocotrienol-enriched extracts obtained from barley, brewer's grains oats, and other tocotrienol-containing natural products by alcohol extraction, molecular distillation and the like.
- Useful tocotrienols can be tocotrienol-enriched fractions or extracts, or mixtures of these with vitamin E fractions.
- the term "tocotrienols" includes all of these tocotrienol-rich fractions and extracts obtained from these natural products as well as the pure compounds and mixtures of any of these.
- tocotrienol or tocotrienol-enriched preparations include those containing tocotrienol and, in some cases, tocopherol derivatives, -particularly stabilized derivatives. These typically include derivatives related to the phenolic hydroxyl functionality, i.e., wherein it is acylated with an organic acid to form an ester. Examples of such stabilized tocotrienols include, but are not limited to, tocotrienol acetate, tocotrienol succinate, and mixtures thereof. However, the derivatives may also include those involving other reactive groups known to those skilled in the art. Where tocotrienol derivatives are employed, they must be functionally equivalent to tocotrienol.
- Preferred derivatives contain both the chromanol nucleus and three double bonds in the hydrocarbon tail. While not wishing to be bound to any theory, it is possible that lipoic acid is efficacious in the treatment of rosacea because it is both fat- and water-soluble and readily disperses in cell membranes and other cellular components. Because of its solubility, it is sometimes referred to as a universal antioxidant. It acts as a free radical scavenger and neutralizer, and prevents the cross-linking of cell membranes that is often seen in rosacea.
- LA modulation of free radicals and other oxidative species affects gene expression, including expression of nuclear factor -B (NF- ⁇ B), nitric oxide synthetase and other mediators at all stages of proinflammation and inflammation.
- NF- ⁇ B nuclear factor -B
- nitric oxide synthetase nitric oxide synthetase
- Lipoic acid's alteration of lipid peroxidation, protein cross-linking, growth factor stimulation, and membrane permability may explain its negative effect on the symptoms of rosacea.
- the composition is topically applied to the affected skin areas in a predetermined or as-needed regimen either at intervals by application of a lotion or the like, it generally being the case that gradual improvement is noted with each successive application.
- a lotion or the like it generally being the case that gradual improvement is noted with each successive application.
- no adverse side effects are encountered. Though two patients reported a slight stinging within the first four days of a study, it was immediately resolved, and there were no reports or observations of irritation, erythema, irritant dermatitis or other side effects.
- Lipoic acid was supplied by the Henkel Corporation and was placed into a lecithin-based oil-in-water cream at a level of 5 % .
- eight patients aged 20 to 51 diagnosed with rosasea and photographed were given the 5% lipoic cream and an identical composition containing no lipoic acid.
- the patients were not informed which was which, but instructed to cleanse their faces and then apply one i-ream to one side of their faces twice daily during the duration of the study, and apply the other cream to the other side at the same time.
- Patients were evaluated every two weeks. In every patient, marked improvement and a decrease in erythema was observed on the face side treated with lipoic acid after two weeks. After four weeks, erythema was even more markedly reduced on the face side to which lipoic had been applied in every patient.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2001/009380 WO2002076449A1 (fr) | 2001-03-23 | 2001-03-23 | Traitement de l'acne rosacee par l'acide lipoique |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US2001/009380 WO2002076449A1 (fr) | 2001-03-23 | 2001-03-23 | Traitement de l'acne rosacee par l'acide lipoique |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002076449A1 true WO2002076449A1 (fr) | 2002-10-03 |
Family
ID=21742433
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2001/009380 WO2002076449A1 (fr) | 2001-03-23 | 2001-03-23 | Traitement de l'acne rosacee par l'acide lipoique |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2002076449A1 (fr) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5972993A (en) * | 1998-03-20 | 1999-10-26 | Avon Products, Inc. | Composition and method for treating rosacea and sensitive skin with free radical scavengers |
-
2001
- 2001-03-23 WO PCT/US2001/009380 patent/WO2002076449A1/fr active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5972993A (en) * | 1998-03-20 | 1999-10-26 | Avon Products, Inc. | Composition and method for treating rosacea and sensitive skin with free radical scavengers |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6472432B1 (en) | Treatment of rosacea using lipoic acid | |
EP0863744B1 (fr) | Acide lipoique en compositions a usage local | |
US6365623B1 (en) | Treatment of acne using lipoic acid | |
US5965618A (en) | Treatment of scar tissue using lipoic acid | |
US6191121B1 (en) | Treatment of skin damage using polyenylphosphatidylcholine | |
US5574063A (en) | Method and compositions for topical application of ascorbic acid fatty acid esters for treatment and/or prevention of skin damage | |
EP0801565B1 (fr) | Utilisation pour l'application topicale de tocotrienol pour la peau et les cheveux | |
JP3413803B2 (ja) | 哺乳動物の細胞を保護および蘇生するための治療用組成物およびその製造および使用方法 | |
EP0879501A1 (fr) | Combinateur de puissance | |
US7438896B2 (en) | Method of skin care using lipoic and ascorbic acids | |
FR2722098A1 (fr) | Nouveaux medicaments a base de metro-nidazole ou d'un melange synergetique de metronidazole et de clindamycine | |
JPH07501339A (ja) | 創傷治癒組成物,その調製方法と使用 | |
US20040265345A1 (en) | Treatment of skin damage using acetyl carnitine and lipoic acid | |
WO1996020701A1 (fr) | Composition modulant l'apoptose comprenant un facteur influençant le taux intracellulaire de methional ou de malondialdehyde | |
US6752999B2 (en) | Method of skin care and/or treatment using lipoic acid | |
US6979459B1 (en) | Treatment of skin damage using polyenylphosphatidycholine | |
WO2002076449A1 (fr) | Traitement de l'acne rosacee par l'acide lipoique | |
AU701301B2 (en) | Antikeratolytic-wound healing compositions and methods for preparing and using same | |
CA2212109C (fr) | Procede et compositions pour l'application locale cutanee de tocotrienol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC (EPO COMMUNICATION= FORM 1205A DATED: 18.03.2004) |
|
122 | Ep: pct application non-entry in european phase | ||
NENP | Non-entry into the national phase |
Ref country code: JP |