WO2002074830A1 - Polyurethane geotextile composite liner with improved water resistance and a process for the production thereof - Google Patents
Polyurethane geotextile composite liner with improved water resistance and a process for the production thereof Download PDFInfo
- Publication number
- WO2002074830A1 WO2002074830A1 PCT/US2002/007301 US0207301W WO02074830A1 WO 2002074830 A1 WO2002074830 A1 WO 2002074830A1 US 0207301 W US0207301 W US 0207301W WO 02074830 A1 WO02074830 A1 WO 02074830A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- weight
- polyurethane
- geotextile
- isocyanate
- composite
- Prior art date
Links
- 239000004814 polyurethane Substances 0.000 title claims abstract description 98
- 229920002635 polyurethane Polymers 0.000 title claims abstract description 98
- 239000004746 geotextile Substances 0.000 title claims abstract description 88
- 239000002131 composite material Substances 0.000 title claims abstract description 64
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 64
- 238000000034 method Methods 0.000 title claims description 29
- 238000004519 manufacturing process Methods 0.000 title description 6
- 239000000203 mixture Substances 0.000 claims abstract description 53
- 229920005862 polyol Polymers 0.000 claims abstract description 47
- 150000003077 polyols Chemical class 0.000 claims abstract description 47
- 229920000570 polyether Polymers 0.000 claims abstract description 35
- 239000005056 polyisocyanate Substances 0.000 claims abstract description 35
- 229920001228 polyisocyanate Polymers 0.000 claims abstract description 35
- 239000004721 Polyphenylene oxide Substances 0.000 claims abstract description 28
- 239000003054 catalyst Substances 0.000 claims abstract description 23
- 239000007788 liquid Substances 0.000 claims abstract description 23
- 239000012948 isocyanate Substances 0.000 claims abstract description 22
- 150000002513 isocyanates Chemical class 0.000 claims abstract description 22
- 239000004359 castor oil Substances 0.000 claims abstract description 19
- 235000019438 castor oil Nutrition 0.000 claims abstract description 19
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 claims abstract description 19
- 150000002009 diols Chemical class 0.000 claims abstract description 12
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical group CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000007795 chemical reaction product Substances 0.000 claims abstract description 10
- 125000002947 alkylene group Chemical group 0.000 claims abstract description 9
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 claims abstract description 7
- -1 polyoxypropylene Polymers 0.000 claims description 16
- 239000000945 filler Substances 0.000 claims description 13
- 238000006243 chemical reaction Methods 0.000 claims description 9
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims description 9
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 8
- 229920001451 polypropylene glycol Polymers 0.000 claims description 5
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical compound ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 claims description 4
- 239000003999 initiator Substances 0.000 claims description 3
- 150000002902 organometallic compounds Chemical class 0.000 claims description 2
- 125000002524 organometallic group Chemical group 0.000 claims description 2
- 150000001875 compounds Chemical class 0.000 claims 2
- 150000004072 triols Chemical class 0.000 abstract description 6
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 8
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 229920001971 elastomer Polymers 0.000 description 4
- 239000006260 foam Substances 0.000 description 4
- 238000005187 foaming Methods 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- LCZVSXRMYJUNFX-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol Chemical compound CC(O)COC(C)COC(C)CO LCZVSXRMYJUNFX-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical group NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- VPKDCDLSJZCGKE-UHFFFAOYSA-N carbodiimide group Chemical group N=C=N VPKDCDLSJZCGKE-UHFFFAOYSA-N 0.000 description 2
- SZXQTJUDPRGNJN-UHFFFAOYSA-N dipropylene glycol Chemical compound OCCCOCCCO SZXQTJUDPRGNJN-UHFFFAOYSA-N 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 238000003973 irrigation Methods 0.000 description 2
- 230000002262 irrigation Effects 0.000 description 2
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical group OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 2
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 2
- DNIAPMSPPWPWGF-UHFFFAOYSA-N monopropylene glycol Natural products CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 2
- 150000002924 oxiranes Chemical class 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 150000003606 tin compounds Chemical class 0.000 description 2
- AVWRKZWQTYIKIY-UHFFFAOYSA-N urea-1-carboxylic acid Chemical group NC(=O)NC(O)=O AVWRKZWQTYIKIY-UHFFFAOYSA-N 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 1
- DNIAPMSPPWPWGF-GSVOUGTGSA-N (R)-(-)-Propylene glycol Chemical compound C[C@@H](O)CO DNIAPMSPPWPWGF-GSVOUGTGSA-N 0.000 description 1
- ZBBLRPRYYSJUCZ-GRHBHMESSA-L (z)-but-2-enedioate;dibutyltin(2+) Chemical compound [O-]C(=O)\C=C/C([O-])=O.CCCC[Sn+2]CCCC ZBBLRPRYYSJUCZ-GRHBHMESSA-L 0.000 description 1
- ZTNJGMFHJYGMDR-UHFFFAOYSA-N 1,2-diisocyanatoethane Chemical compound O=C=NCCN=C=O ZTNJGMFHJYGMDR-UHFFFAOYSA-N 0.000 description 1
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 1
- 229940035437 1,3-propanediol Drugs 0.000 description 1
- 229940008841 1,6-hexamethylene diisocyanate Drugs 0.000 description 1
- JXHQHIGDDYSAJH-UHFFFAOYSA-N 1-isocyanato-1-(isocyanatomethyl)-3,3,5-trimethylcyclohexane Chemical compound CC1CC(C)(C)CC(CN=C=O)(N=C=O)C1 JXHQHIGDDYSAJH-UHFFFAOYSA-N 0.000 description 1
- NOBUYVZUAMYLSQ-UHFFFAOYSA-N 2,3,4-trimethylpentane-1,3-diol Chemical compound CC(C)C(C)(O)C(C)CO NOBUYVZUAMYLSQ-UHFFFAOYSA-N 0.000 description 1
- ZRWNRAJCPNLYAK-UHFFFAOYSA-N 4-bromobenzamide Chemical compound NC(=O)C1=CC=C(Br)C=C1 ZRWNRAJCPNLYAK-UHFFFAOYSA-N 0.000 description 1
- CEZWFBJCEWZGHX-UHFFFAOYSA-N 4-isocyanato-n-(oxomethylidene)benzenesulfonamide Chemical class O=C=NC1=CC=C(S(=O)(=O)N=C=O)C=C1 CEZWFBJCEWZGHX-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 241000531908 Aramides Species 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 240000000491 Corchorus aestuans Species 0.000 description 1
- 235000011777 Corchorus aestuans Nutrition 0.000 description 1
- 235000010862 Corchorus capsularis Nutrition 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- BRLQWZUYTZBJKN-UHFFFAOYSA-N Epichlorohydrin Chemical compound ClCC1CO1 BRLQWZUYTZBJKN-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 239000005058 Isophorone diisocyanate Substances 0.000 description 1
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- 238000005684 Liebig rearrangement reaction Methods 0.000 description 1
- 241000276489 Merlangius merlangus Species 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- AWMVMTVKBNGEAK-UHFFFAOYSA-N Styrene oxide Chemical compound C1OC1C1=CC=CC=C1 AWMVMTVKBNGEAK-UHFFFAOYSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 229920004935 Trevira® Polymers 0.000 description 1
- ORLQHILJRHBSAY-UHFFFAOYSA-N [1-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1(CO)CCCCC1 ORLQHILJRHBSAY-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- CQQXCSFSYHAZOO-UHFFFAOYSA-L [acetyloxy(dioctyl)stannyl] acetate Chemical compound CCCCCCCC[Sn](OC(C)=O)(OC(C)=O)CCCCCCCC CQQXCSFSYHAZOO-UHFFFAOYSA-L 0.000 description 1
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- JGCWKVKYRNXTMD-UHFFFAOYSA-N bicyclo[2.2.1]heptane;isocyanic acid Chemical class N=C=O.N=C=O.C1CC2CCC1C2 JGCWKVKYRNXTMD-UHFFFAOYSA-N 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- OWBTYPJTUOEWEK-UHFFFAOYSA-N butane-2,3-diol Chemical compound CC(O)C(C)O OWBTYPJTUOEWEK-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- 150000004985 diamines Chemical class 0.000 description 1
- RJGHQTVXGKYATR-UHFFFAOYSA-L dibutyl(dichloro)stannane Chemical compound CCCC[Sn](Cl)(Cl)CCCC RJGHQTVXGKYATR-UHFFFAOYSA-L 0.000 description 1
- JGFBRKRYDCGYKD-UHFFFAOYSA-N dibutyl(oxo)tin Chemical compound CCCC[Sn](=O)CCCC JGFBRKRYDCGYKD-UHFFFAOYSA-N 0.000 description 1
- 239000012975 dibutyltin dilaurate Substances 0.000 description 1
- KORSJDCBLAPZEQ-UHFFFAOYSA-N dicyclohexylmethane-4,4'-diisocyanate Chemical compound C1CC(N=C=O)CCC1CC1CCC(N=C=O)CC1 KORSJDCBLAPZEQ-UHFFFAOYSA-N 0.000 description 1
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical compound OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- PYBNTRWJKQJDRE-UHFFFAOYSA-L dodecanoate;tin(2+) Chemical compound [Sn+2].CCCCCCCCCCCC([O-])=O.CCCCCCCCCCCC([O-])=O PYBNTRWJKQJDRE-UHFFFAOYSA-L 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 125000004185 ester group Chemical group 0.000 description 1
- SHZIWNPUGXLXDT-UHFFFAOYSA-N ethyl hexanoate Chemical compound CCCCCC(=O)OCC SHZIWNPUGXLXDT-UHFFFAOYSA-N 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 125000005313 fatty acid group Chemical group 0.000 description 1
- 239000011152 fibreglass Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 125000005474 octanoate group Chemical group 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- DGTNSSLYPYDJGL-UHFFFAOYSA-N phenyl isocyanate Chemical compound O=C=NC1=CC=CC=C1 DGTNSSLYPYDJGL-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920005903 polyol mixture Polymers 0.000 description 1
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 229960004063 propylene glycol Drugs 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- IUTCEZPPWBHGIX-UHFFFAOYSA-N tin(2+) Chemical compound [Sn+2] IUTCEZPPWBHGIX-UHFFFAOYSA-N 0.000 description 1
- SYRHIZPPCHMRIT-UHFFFAOYSA-N tin(4+) Chemical class [Sn+4] SYRHIZPPCHMRIT-UHFFFAOYSA-N 0.000 description 1
- YXFVVABEGXRONW-UHFFFAOYSA-N toluene Substances CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 1
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 1
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/65—Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
- C08G18/66—Compounds of groups C08G18/42, C08G18/48, or C08G18/52
- C08G18/6666—Compounds of group C08G18/48 or C08G18/52
- C08G18/6696—Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/36 or hydroxylated esters of higher fatty acids of C08G18/38
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2190/00—Compositions for sealing or packing joints
Definitions
- the present invention relates to a polyurethane geotextile composite having improved water resistance. Additionally, the present invention relates to a process for forming a polyurethane geotextile composite having improved water resistance.
- Losses in the distribution of water using unlined irrigation ditches are estimated at a minimum to be 25% and in some situations to be more than 50% depending upon the porosity of the ditch surface and the distance the water is being moved.
- ditches are formed by excavating the soil to the desired depth and width. The water moves through the ditch in contact with the exposed natural surface. This can be sand, clay, rocks, etc. and, more commonly, mixtures thereof. The porosity will depend upon the proportions of the different components in the soil.
- the loss of water in unlined irrigation ditches at one time was considered acceptable only because the supply of water exceeded demand. However, as civilization has developed and world population has increased, more water is required for both greater food production and for the marked by increasing in non-agriculture uses.
- the liquid polyurethane soaked geotextile composite is then placed over the surface of an area to be lined and allowed to cure, to form a polyurethane/geotextile composite.
- One drawback of the mixture taught by the ' 677 patent is that the filler in the mixture is often not completely dry and can absorb additional moisture from the atmosphere. Moisture is always present when the mixture is applied under relatively humid conditions. This water will react with the polyisocyanate and cause the mixture to foam. Foaming weakens the strength and impermeability of the composite.
- the polyurethane geotextile composite when stored under water (such as in a ditch or canal liner application), can absorb considerable amounts of water (i.e., 1-2%) which swells and weakens the liner.
- water i.e., 1-2%
- the present invention relates to a polyurethane geotextile composite with improved water resistance useful as a liner for a ditch or canal in which the polyurethane used is a reaction product of a mixture comprising: a) a liquid polyisocyanate havjng an ispcyanate content of at least 10% by weight, b) an isocyanate-reactive component comprising:
- the invention further relates to a process for producing a polyurethane geotextile composite liner with improved water resistance in which a geotextile is impregnated with such polyurethane.
- the invention is also directed to a ditch or canal lined with such polyurethane geotextile composite and to a process for lining a ditch or canal with such composite.
- the advantage of the polyurethane composition used to produce the composite of the present invention is that it has less tendency to foam.
- the geotextile polyurethane composite of the present invention will, therefore, be characterized by low water absorption. When such composite is used to line a ditch and/or a canal, water loss is kept at a minimum.
- the present invention relates to a polyurethane geotextile composite which is suitable for use as a liner with improved water resistance which is produced by impregnating a geotextile with a polyurethane composition that is a reaction product of a mixture which includes: a) a liquid polyisocyanate having an isocyanate content of at least 10% by weight, b) an isocyanate-reactive component which includes:
- the invention is also directed to a method for making such composites, ditches and canals lined with such composites and to a method for lining ditches and canals with such composites.
- a ditch or canal is lined with the polyurethane geotextile composite of the present invention by dispensing a polyurethane composition having improved water resistance onto a geotextile or otherwise impregnating the geotextile with the polyurethane composition, laying the polyurethane-impregnated geotextile onto a surface of a ditch or canal before the polyurethane has fully cured, conforming the polyurethane impregnated geotextile to the shape of the surface of the ditch or canal, and allowing the polyurethane to fully cure to form a polyurethane geotextile composite liner.
- the polyurethane composition having improved water resistance is a reaction product of the above described components a), b) and c).
- the polyurethane composition having improved water resistance may be applied onto one or more geotextiles.
- a second polyurethane Mo-5940 7 impregnated geotextile may be laid on the surface of a canal or ditch which has previously been lined with the liquid polyurethane composition is fully cured, if desired. Subsequently the polyurethane- impregnated geotextile is conformed to the shape of the surface of the canal or ditch where the polyurethane geotextile composite is allowed to fully cure.
- the polyurethane composition having improved water resistance used in this process is less likely to foam under humid conditions and produces a composite with less water absorption.
- the term "geotextile” refers to any woven or non- woven porous blanket or mat which is produced from natural or synthetic fibers. Also, as used herein, the terms “ditch” and “canal” are used interchangeably and can refer to any liquid carrying surface having a depression or grade.
- Geotextiles are used primarily to line earthen surfaces. Such liners may, however, also be used to line roofs, ponds, reservoirs, landfills, underground storage tanks, canals and ditches. Examples of geotextiles include woven or non-woven polypropylene, polyester, jute, cotton and fiberglass fabrics. Any of the known goetextiles may be used in the practice of the present invention. Any of the known liquid isocyanates having an isocyanate content of at least 10% by weight, preferably at least 20% by weight, most preferably at least 30% by weight, which are liquid under the processing conditions used may be used in the practice of the present invention.
- Suitable liquid organic polyisocyanates include aliphatic, cycloaliphatic, araliphatic, aromatic, and heterocyclic polyisocyanates of the type described, for example, by W. Siefken in Justus Liebigs Annalen der Chemie, 562, pages 75 to 136.
- Such isocyanates include those represented by the formula Q(NCO) n in which n represents a number from 2 to about 5, preferably 2 to 3, and Q represents an aliphatic hydrocarbon group containing from 2 to about 18, preferably 6 to 10, carbon atoms, a cycloaliphatic hydrocarbon group containing from 4 to about 15, preferably Mo-5940 from 5 to 10, carbon atoms, an araliphatic hydrocarbon group containing from 8 to 15, preferably from 8 to 13, carbon atoms, or an aromatic hydrocarbon group containing from 6 to about 15, preferably 6 to 13, carbon atoms.
- Suitable isocyanates include: ethylene diisocyanate; 1 ,4-tetramethylene diisocyanate; 1 ,6-hexamethylene diisocyanate; 1 ,12-dodecane diisocyanate; cyclobutane- 1 ,3-diisocyanate; cyclohexane-1 ,3- and 1 ,4- diisocyanate, and mixtures of these isomers; 1- isocyanato- 3,3,5- trimethyl-isocyanatomethylcyclohexane ("isophorone diisocyanate" (See, e.g. German Offenlegungsschrift 1 ,202,785 and U.S. Patent No.
- Pat. No. 3,492,330 m- and p-isocyanatophenyl sulfonylisocyanates (of the type described in U.S. Patent No. 3,454,606); perchlorinated aryl polyisocyanates (of the type described, for example, in U.S. Patent No. 3,227,138); modified polyisocyanates containing carbodiimide groups (of the type described in U.S. Patent No. 3,152,162); modified polyisocyanates containing urethane groups (of the type described, for example, in U.S. Patent Nos.
- modified polyisocyanates containing allophanate groups (of the type described, for example, in British Patent 994,890, Belgian Patent 761 ,616, and published Dutch Patent Application 7,102,524); modified polyisocyanates containing isocyanurate groups (of the type described, for example, in U.S. Patent No.
- polyisocyanates such as 2,4- and 2,6-toluene diisocyanates and their isomer mixtures ("TDI”); diphenyl methane diisocyanate (“MDI”); polymethylene poly(phenylisocyanates) of the type obtained by condensing aniline with formaldehyde, followed by phosgenation ("crude MDI”); and polyisocyanates containing carbodiimide groups, urethane groups, allophanate groups, isocyanurate groups, urea groups, or biuret groups ("modified polyisocyanates").
- TDI 2,4- and 2,6-toluene diisocyanates and their isomer mixtures
- MDI diphenyl methane diisocyanate
- CAde MDI polymethylene poly(phenylisocyanates) of the type obtained by condensing aniline with formaldehyde, followed by phosgenation
- the isocyanate-reactive component used to produce the polyurethane composition includes either (1) a combination or blend of castor oil or a modified castor oil and a polyether polyol, or (2) a modified castor oil which is a reaction product of castor oil or a modified castor oil with a polyether polyol.
- suitable isocyanate- reactive components include: (i) from about 20 to 90% by weight, preferably 40 to 80% by weight, based on total weight of the isocyanate- reactive component, of castor oil having an OH number of from 160 to 170, a viscosity of from 500 to 900 mPa-s at 25°C, and a water content of less than 0.5% by weight, based on the total weight of castor oil, and (ii) from about 10 to 80% by weight, preferably 20 to 60% by weight, based on total weight of isocyanate-reactive component, of a polyether polyol having an OH number of from 28 to 700, preferably from 112 to 500, a functionality of from 3 to 8, preferably from 4 to 7, most preferably 2 to 3, a number average molecular weight of from about 240 to about 6,000, preferably from about 400 to about 4,000, most preferably from about 400 to about 2,000, and a viscosity of from 50 to 3
- polyether polyols prepared from alkylene oxides in which at least 70% by weight, preferably at least 90% by weight, of the alkylene oxide content is propylene oxide are particularly suitable for the present invention. It is also advantageous to use an isocyanate-reactive component containing less than 0.5% by weight, preferably less than 0.1% by weight, based on total weight of isocyanate-reactive component of water.
- Suitable polyether polyols useful in component b) include polyethers prepared, for example, by the polymerization of epoxides such as ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran, styrene oxide, or epichlorohydrin, optionally in the presence of Lewis acids such as BF 3 , or prepared by chemical addition of such epoxides, optionally added as mixtures or in sequence, to starting components containing reactive hydrogen atoms, such as water, alcohols, or amines.
- epoxides such as ethylene oxide, propylene oxide, butylene oxide, tetrahydrofuran, styrene oxide, or epichlorohydrin
- Lewis acids such as BF 3
- epoxides optionally added as mixtures or in sequence, to starting components containing reactive hydrogen atoms, such as water, alcohols, or amines.
- starting components include: ethylene glycol, 1 ,3- or 1 ,2-propanediol, 1 ,2-, 1 ,3-, or 1 ,4-butanediol, trimethylolpropane, 4,4'-dihydroxydiphenylpropane, aniline, ammonia, ethanolamine, and ethylene diamine.
- Offenlegungsschriften 1 ,176,358 and 1,064,938 may also be used.
- Polyethers which contain predominantly primary hydroxyl groups (up to about 90% by weight, based on all of the hydroxyl groups in the polyether) are also suitable.
- Polyethers modified by vinyl polymers of the kind obtained, for example, by the polymerization of styrene and acrylonitrile in the presence of polyethers are also suitable, as are polybutadienes containing hydroxyl groups.
- polyether polyols include polyoxyalkylene polyether polyols, such as polyoxypropylene diol, polyoxybutylene diol, and polytetramethylene diol, as well as polyoxypropylene polyoxyethylene triols.
- PHD polyols include the so-called "PHD polyols", which are prepared by reaction of an organic polyisocyanate, hydrazine, and a polyether polyol.
- PHD polyols prepared by reaction of an organic polyisocyanate, hydrazine, and a polyether polyol.
- U.S. Patent No. 3,325,421 discloses a method for producing suitable PHD polyols by reacting a stoichiometric or substoichiometric quantity (relative to diamine) of polyisocyanate dissolved in a polyol having a molecular weight of at least 500 and a hydroxyl number of no more than 225. See also U.S. Patent Nos. 4,042,537 and 4,089,835.
- polyether polyols useful in the present invention include the so-called "polymer polyols", which are prepared by polymerizing styrene and acrylonitrile in the presence of a polyether. See, for example, U.S. Patent Nos. 3,383,351 , 3,304,273, 3,523,093, 3,652,639, 3,823,201 and 4,390,645.
- the most preferred polyethers are polyoxypropylene polyethers that do not contain ethylene oxide.
- any of the known low molecular weight organic diols or triols may optionally be included in the isocyanate-reactive component b) of the present invention in an amount of up to 10% by weight, based on total weight of component b).
- Suitable organic diols and triols have equivalent weights of from about 31 to 99. Examples of such diols and triols include: Mo-5940 12
- 2-methyl-1 ,3-propranediol ethylene glycol; 1 ,2- and 1 ,3-propanediol; 1 ,3-, 1 ,4- and 2,3-butanediol; 1 ,6-hexanediol; 1 ,10-decanediol; diethylene glycol; triethylene glycol; tetraethylene glycol; dipropylene glycol; tripropylene glycol; glycerol; trimethylolpropane; neopentyl glycol; cyclohexanedimethanol; and 2,3,4-trimethylpentane-1 ,3-diol.
- Preferred diols and triols include dipropylene glycol and tripropylene glycol.
- the reaction mixture from which the polyurethanes used in the present invention are produced also contains a catalyst c) for catalyzing the reaction between isocyanate groups and hydroxyl groups (i.e., a urethane catalyst).
- a catalyst c) for catalyzing the reaction between isocyanate groups and hydroxyl groups i.e., a urethane catalyst.
- Such catalysts are well known in the art and are generally used in an amount which is no greater than 0.5 parts by weight per 100 parts by weight of isocyanate-reactive component, preferably from 0.0001 to 5 parts by weight, most preferably from 0.0001 to 0.1 parts by weight.
- Suitable catalysts include the organometallic catalysts.
- Preferred catalysts c) are organic tin compounds.
- the organic tin compounds are preferably tin(ll) salts of a carboxylic acid such as tin(ll) acetate, tin(ll) octoate, tin (II) ethyl hexoate and tin (II) laurate and tin (IV) compounds such as dibutyl tin oxide, dibutyl tin dichloride, dibutyl tin diacetate, dibutyl tin dilaurate, dibutyl tin maleate, dioctyl tin diacetate and the like.
- urethane catalysts which are well known to those skilled in the art of polyurethane chemistry. It is preferred to use organometallic compounds.
- the catalyst can be added separately to the polyurethane-forming reaction mixture or it may be combined with the isocyanate-reactive component prior to combining the polyisocyanate and polyol components.
- Catalysts which catalyze the reaction of isocyanate groups with water should not be included in the polyurethane- forming reaction mixture.
- fillers can be used in the present invention.
- the fillers useful herein are also known.
- Useful fillers include calcium carbonate, barium sulfate, kieselguhr, whiting, mica, glass fibers, liquid crystal fibers, Mo-5940 glass flakes, glass balls, aramide fibers, and carbon fibers.
- ground solid plastics such as polyurethane scrap
- rubber wastes such as from tires
- any kind of ground rubber may be used.
- fillers are used, they can be added to either the polyisocyanate or the isocyanate-reactive component prior to forming the polyurethane- forming reaction mixture or they may be separately metered into the mixture.
- liquid polyisocyanate component a) is mixed with isocyanate reactive component b) in the presence of a urethane catalyst c) at an NCO : OH equivalent ratio of from 1.4 : 1 to 0.9 : 1 , preferably from 1.1 :1.0 to 1.0 to 1.0.
- the polyurethane geotextile composites having improved water resistance of the present invention can be formed as a liner for a ditch and/or canal.
- the ditch and/or canal lining is made with a machine such as that described in United States Patent Number 5,639,331 ("the '331 patent").
- the '331 patent teaches a mobile ditch lining apparatus having reservoirs for supplying raw materials such as resin, catalysts, fillers, colors or other additives.
- the reservoirs are connected to a mixing chamber through flexible conduit means.
- the delivery rate of the raw materials to the mixing chamber will vary depending upon the particular formulation and the quantity of the formulation required for a specific area of the liner being formed.
- the components used to produce the polyurethane composition having improved water resistance are mixed in the mixing chamber.
- the polyurethane composition having improved water resistance is applied to one or more geotextiles.
- the geotextiles are pulled from a vat containing the polyurethane composition having improved water resistance through an adjustable die.
- the opening of the die evenly distributes of the polyurethane on the geotextile(s), Mo-5940 14 determines how much polyurethane is dispensed on the geotextile(s), and also controls the thickness of the polyurethane-impregnated geotextile composite.
- the polyurethane-impregnated geotextile is then cut to the desired length and placed in the canal or ditch where it conforms to the surface and cures to form a polyurethane geotextile composite liner.
- the polyurethane composition having improved water resistance is applied to the geotextile by spraying using commercially available two-component polyurethane spray equipment.
- the polyurethane-impregnated geotextile is subsequently placed in the ditch or canal where it conforms to the surface and cures to form a polyurethane geotextile composite.
- the geotextile can also first be cut to size, placed in the canal or ditch and subsequently sprayed with the polyurethane composition having improved water resistance.
- the geotextile with the still liquid polyurethane on it is rolled with a paint roller to allow the polyurethane to penetrate through the geotextile and onto the surface of the ditch or canal.
- the polyurethane composition having improved water resistance is first sprayed on any cracked or broken concrete of a concrete lined ditch or canal and subsequently a geotextile is placed over the polyurethane-coated concrete in a manner such that the geotextile absorbs the still liquid polyurethane to form a polyurethane-impregnated composite which subsequently cures to form a solid yet flexible polyurethane geotextile composite.
- any of the above processes can be repeated one or more times.
- the thickness of the polyurethane geotextile composite can be varied over a wide range but usually measures from about 50 microns to about 500 microns.
- the amount of polyurethane applied to the geqtextile(s) can be varied but usually the amount of polyurethane applied per square meter of geotextile ranges from 1 kg to 20 kg, preferably from 2 kg to 5 kg. If desirable several layers of the polyurethane-impregnated geotextile(s) may be applied over each other to obtain a composite of higher strength and dimensional stability. Such multi-layered composite(s) are actually preferred for lining an earthen canal or ditch.
- Isocyanate A polymethylene poly (phenylisocyanate) having an NCO content of about 31.5%, a functionality of 2.6 and a viscosity at 25°C of 200 mPa-s.
- Polyol 1 a monoethanolamine-started propylene oxide polyether polyol, having an OH number of about 350, a functionality of about 3 and a number average molecular weight of about 480.
- Mo-5940 a monoethanolamine-started propylene oxide polyether polyol, having an OH number of about 350, a functionality of about 3 and a number average molecular weight of about 480.
- Polyol 2 a glycerine-started propylene oxide polyether polyol, having an OH number of about 250, a functionality of about 3 and a number average molecular weight of about 670.
- Polyol 3 a propylene glycol-started propylene oxide polyether polyol, having an OH number of 56, a functionality of about 2 and a number average molecular weight of about 2000.
- Polyol 4 a propylene glycol-started propylene oxide polyether polyol, having an OH number of 264, a functionality of about 2 and a molecular weight of about 425.
- Polyol 5 Castor Oil, DB, (CasChem, Inc.) (water content ⁇ 0.5%).
- Catalyst A dimethyltin dilaurate, commercially available as Fomrez UL-28 from Witco.
- Geotextile A Typar-3301 , spunbonded polypropylene, 3oz/yd 2 , 12 mils thickness (Reemay)
- Geotextile B FX-40HS, polypropylene, nonwoven, heatbonded, 4oz/yd 2 (Carthage Mills)
- Geotextile C Trevira Spunbound Type 1620, polyester, nonwoven, heatbonded, 5.7oz yd 2 , 37 mils thickness, (Fluid Systems) The following polyol blends were used in these Examples:
- Polyol Blend A 10 pbw Polyol 1 45 pbw Polyol 2 45 pbw Polyol 3 0.01 pbw Catalyst A Mo-5940 17
- Polyol Blend B 80 pbw Polyol 5
- the polyol blend indicated in Table 1 and Isocyanate A were hand mixed in the amounts indicated in Table 1 at 25-30°C for about 2 minutes, and then poured into a book-case mold which measured 8 in. x 16 in. x 0.125 in. at room temperature.
- the cast samples were allowed to cure at room temperature for 16 hours before demolding.
- the samples were stored for at least 1 week at room temperature in a temperature and humidity controlled environment and then tested for various physical and mechanical properties. The results of these tests are reported are in Table 1.
- Example 2 The polyurethane prepared from Polyol Blend B and Isocyanate A (Example 2) in accordance with the present invention showed superior physical properties and significantly lower water absorption than the polyurethane prepared with Polyol Blend A in which no Castor Oil was present (Comparative Example 1).
- Examples 3-5 Comparative
- Polyurethane geotextile composites were prepared according to the following procedure: 100 g of Polyol Blend A, and 42.6 g of Isocyanate A were mixed and then poured onto a 1 sq. ft. piece of geotextile A. The polyurethane- forming reaction mixture was spread out with a spatula and one sq. ft. of a second Geotextile (A, B or C) was placed on top of the liquid polyurethane. A rubber roller was then rolled over the second geotextile to evenly distribute the polyurethane mixture between the geotextiles and also to roll off any excess of polyurethane. The material cured to a solid geotextile polyurethane composite in about 1 hour.
- the amount of resin in the composite was typically about 200 g/sq. ft. and the composite thickness ranged from 40 to 100 mils. All samples were prepared under high humidity conditions (>70%), and showed significant foaming before curing to form a solid polyurethane geotextile composite. The physical properties of each of these comparative composites were determined and the results are reported in Table 2.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyurethanes Or Polyureas (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP02719191A EP1381638A1 (en) | 2001-03-15 | 2002-03-07 | Polyurethane geotextile composite liner with improved water resistance and a process for the production thereof |
PL02364136A PL364136A1 (en) | 2001-03-15 | 2002-03-07 | Polyurethane geotextile composite liner with improved water resistance and a process for the production thereof |
MXPA03008233A MXPA03008233A (es) | 2001-03-15 | 2002-03-07 | Revestimiento compuesto geotextil de poliuretano con mayor resistencia al agua y un procedimiento para su produccion. |
CA002440881A CA2440881A1 (en) | 2001-03-15 | 2002-03-07 | Polyurethane geotextile composite liner with improved water resistance and a process for the production thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/809,023 US6669407B2 (en) | 2001-03-15 | 2001-03-15 | Polyurethane geotextile composite liner with improved water resistance and a process for the production thereof |
US09/809,023 | 2001-03-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002074830A1 true WO2002074830A1 (en) | 2002-09-26 |
Family
ID=25200363
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2002/007301 WO2002074830A1 (en) | 2001-03-15 | 2002-03-07 | Polyurethane geotextile composite liner with improved water resistance and a process for the production thereof |
Country Status (8)
Country | Link |
---|---|
US (1) | US6669407B2 (es) |
EP (1) | EP1381638A1 (es) |
CN (1) | CN1240739C (es) |
CA (1) | CA2440881A1 (es) |
MX (1) | MXPA03008233A (es) |
PL (1) | PL364136A1 (es) |
WO (1) | WO2002074830A1 (es) |
ZA (1) | ZA200307149B (es) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7267288B2 (en) * | 2001-03-22 | 2007-09-11 | Nevada Supply Corporation | Polyurethane in intimate contact with fibrous material |
US20050058515A1 (en) * | 2003-09-12 | 2005-03-17 | Markusch Peter H. | Geotextile/polymer composite liners based on waterborne resins |
US7157010B1 (en) | 2004-02-18 | 2007-01-02 | Civil & Environmental Consultants, Inc. | Polymeric flocculant infused silt fence |
US8692030B1 (en) * | 2006-04-20 | 2014-04-08 | Pittsburg State University | Biobased-petrochemical hybrid polyols |
DK2081973T3 (da) * | 2006-10-04 | 2010-08-16 | Basf Se | Støbemasser på basis af polyurethan |
US8468968B2 (en) | 2009-10-22 | 2013-06-25 | Quest Inspar LLC | Method and apparatus for lining pipes with isocyanate and hydroxyl-amine resin based on castrol or soy oil |
CA2747460A1 (en) | 2010-07-30 | 2012-01-30 | Kent Weisenberg | Method and apparatus for lining pipes with isocyanate and hydroxyl-amine resin based on castrol or soy oil |
CN105671968B (zh) * | 2014-05-20 | 2019-03-29 | 嘉兴富胜达染整有限公司 | 一种防护面料 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0130458A2 (de) * | 1983-07-02 | 1985-01-09 | Th. Goldschmidt AG | Verwendung von Polyoxyalkylenethern des Rizinusöles zur Herstellung von Polyurethanen |
US4582891A (en) * | 1984-02-09 | 1986-04-15 | Dai-Ichi Kogyo Seiyaku Co., Ltd. | Process for inhibiting corrosion of polyurethane coating |
US5421677A (en) * | 1994-04-07 | 1995-06-06 | Miles Inc. | Process for forming a ditch liner |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2846814A1 (de) * | 1978-10-27 | 1980-05-08 | Bayer Ag | Suspensionen von isocyanat-destillationsrueckstaenden in polyolen |
DE2906091C3 (de) * | 1979-02-17 | 1982-04-08 | Fa. Carl Freudenberg, 6940 Weinheim | Verwendung von Polyurethanen zur Heißversiegelung von textilen Flächengebilden |
DE3015440A1 (de) * | 1980-04-22 | 1981-10-29 | Bayer Ag, 5090 Leverkusen | Verfahren zur herstellung von polyurethan-kunststoffen unter verwendung von cyclischen, n-hydroxyalkyl-substituierten, amidingruppen aufweisenden verbindungen als katalysatoren |
DE3227679A1 (de) * | 1982-07-24 | 1984-02-02 | Bayer Ag, 5090 Leverkusen | Beschichteter verbundwerkstoff, verfahren zu seiner herstellung und seine verwendung zum auskleiden von durchlaessen |
US4728710A (en) * | 1986-11-28 | 1988-03-01 | Ashland Oil, Inc. | Sag resistant urethane adhesives with improved antifoaming property |
US4743672A (en) * | 1987-02-26 | 1988-05-10 | Ashland Oil, Inc. | Sag resistant, two component urethane adhesives |
US4889915A (en) * | 1987-04-14 | 1989-12-26 | Caschem, Inc. | Urethane adhesives |
US4955759A (en) | 1988-08-23 | 1990-09-11 | Le Roy Payne | Ditch lining apparatus and method and product therefrom |
US5062740A (en) | 1988-08-23 | 1991-11-05 | Le Roy Payne | Laminate forming and applying apparatus and method and product therefrom |
US4872784A (en) * | 1988-08-23 | 1989-10-10 | Le Roy Payne | Ditch lining apparatus and method and product therefrom |
US4955760A (en) | 1988-08-23 | 1990-09-11 | Le Roy Payne | Laminate forming and applying apparatus and method and product therefrom |
US5166303A (en) * | 1990-04-19 | 1992-11-24 | Miles Inc. | Expandable non-sagging polyurethane compositions |
US5061776A (en) * | 1990-11-19 | 1991-10-29 | Hughes Aircraft Company | Modified polyurethane flow-under thermal transfer adhesive |
DE4134693A1 (de) * | 1991-10-21 | 1993-04-22 | Basf Ag | Transparente, heissdampfsterilisierbare, nicht zytotoxische, im wesentlichen kompakte polyurethan-vergussmassen, verfahren zu ihrer herstellung und ihre verwendung, insbesondere fuer medizinisch-technische artikel |
EP0648237B1 (en) * | 1992-06-26 | 1997-11-05 | Minnesota Mining And Manufacturing Company | Polyurethane/polyurea elastomers |
US5378733A (en) * | 1993-04-09 | 1995-01-03 | Seaward International, Inc. | Sound attenuating polymer composites |
CA2159263A1 (en) * | 1994-11-14 | 1996-05-15 | Peter H. Markusch | Non-sagging, sandable polyurethane compositions |
DE4443432A1 (de) * | 1994-12-06 | 1996-06-13 | Elastogran Gmbh | Unter Druck stehende, Treibmittel enthaltende Isocyanat-Semirpräpolymermischungen auf Basis von Mischungen aus Polyhydroxylverbindungen und Monoalkoholen und/oder Hydroxyketonen, ihre Verwendung zur Herstellung von Polyurethanschaumstoffen und ein Verfahren hierfür |
KR100414602B1 (ko) * | 1995-01-13 | 2004-02-18 | 에섹스 스페시얼티 프로덕츠, 인코오포레이티드 | 2-부분습윤경화성폴리우레탄접착제 |
US5770673A (en) * | 1996-04-10 | 1998-06-23 | Bayer Corporation | Non-sagging, light stable polyurethane compositions, a process for producing them, and their use as seam sealants |
WO1998008884A1 (en) * | 1996-08-26 | 1998-03-05 | Tyndale Plains-Hunter, Ltd. | Hydrophilic and hydrophobic polyether polyurethanes and uses therefor |
US6384130B1 (en) * | 1999-12-03 | 2002-05-07 | Bayer Corporation | Liquid, hydrophobic, non-migrating, non-functional polyurethane plasticizers |
US6248856B1 (en) * | 1999-12-10 | 2001-06-19 | Bayer Corporation | One-shot polyurethane elastomers with very low compression sets |
US6277943B1 (en) * | 1999-12-10 | 2001-08-21 | Bayer Corporation | One-shot polyurethane elastomers with very low compression set |
US6503980B2 (en) * | 2000-12-20 | 2003-01-07 | Bayer Corporation | Liquid polyurethane plasticizers containing allophanate and/or carbodiimide and/or uretonimine groups |
-
2001
- 2001-03-15 US US09/809,023 patent/US6669407B2/en not_active Expired - Fee Related
-
2002
- 2002-03-07 MX MXPA03008233A patent/MXPA03008233A/es not_active Application Discontinuation
- 2002-03-07 WO PCT/US2002/007301 patent/WO2002074830A1/en not_active Application Discontinuation
- 2002-03-07 EP EP02719191A patent/EP1381638A1/en not_active Withdrawn
- 2002-03-07 PL PL02364136A patent/PL364136A1/xx not_active Application Discontinuation
- 2002-03-07 CA CA002440881A patent/CA2440881A1/en not_active Abandoned
- 2002-03-07 CN CN02806603.0A patent/CN1240739C/zh not_active Expired - Fee Related
-
2003
- 2003-09-12 ZA ZA200307149A patent/ZA200307149B/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0130458A2 (de) * | 1983-07-02 | 1985-01-09 | Th. Goldschmidt AG | Verwendung von Polyoxyalkylenethern des Rizinusöles zur Herstellung von Polyurethanen |
US4582891A (en) * | 1984-02-09 | 1986-04-15 | Dai-Ichi Kogyo Seiyaku Co., Ltd. | Process for inhibiting corrosion of polyurethane coating |
US5421677A (en) * | 1994-04-07 | 1995-06-06 | Miles Inc. | Process for forming a ditch liner |
Non-Patent Citations (1)
Title |
---|
WEB-SITE, XP002203794, Retrieved from the Internet <URL:http://www.china-castoroil.com/html/eno1.htm> [retrieved on 20020627] * |
Also Published As
Publication number | Publication date |
---|---|
MXPA03008233A (es) | 2005-03-07 |
PL364136A1 (en) | 2004-12-13 |
US6669407B2 (en) | 2003-12-30 |
ZA200307149B (en) | 2004-09-13 |
CN1240739C (zh) | 2006-02-08 |
US20020172565A1 (en) | 2002-11-21 |
EP1381638A1 (en) | 2004-01-21 |
CA2440881A1 (en) | 2002-09-26 |
CN1496380A (zh) | 2004-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6632875B2 (en) | Polyurethane-forming composition with adjustable mix viscosity, geotextile composites prepared therefrom and a process for producing such composites | |
US6669407B2 (en) | Polyurethane geotextile composite liner with improved water resistance and a process for the production thereof | |
US6602025B2 (en) | Process for lining canals, ditches and pipes with a non-sagging polyurethane/geofabric composite | |
US20030206775A1 (en) | Polyurethane/geotextile composite liner for canals and ditches based on liquefied monomeric MDI-derivatives | |
US20020168531A1 (en) | Two-ply polyurethane/geotextile composite and process for preparing the same | |
US6582771B1 (en) | Method for producing a polyurethane/geofabric composite | |
US20020168907A1 (en) | Polyurethane/geotextile composite and a process related thereto for the production thereof | |
AU2002250289A1 (en) | Polyurethane geotextile composite liner with improved water resistance and a process for the production thereof | |
AU2002242331A1 (en) | Improved polyurethane/geotextile composite and a process related thereto for the production thereof | |
AU2002242332A1 (en) | Two-ply polyurethane/geotextile composite and process for preparing the same | |
AU2002248598A1 (en) | Polyurethane-forming composition with adjustable mix viscosity, geotextile composites prepared therefrom and a process for producing such composites | |
AU2002244278A1 (en) | Process for lining canals, ditches and pipes with a non-sagging polyurethane/geofabric composite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2002719191 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 813/MUMNP/2003 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002250289 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2440881 Country of ref document: CA Ref document number: PA/a/2003/008233 Country of ref document: MX |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2003/07149 Country of ref document: ZA Ref document number: 200307149 Country of ref document: ZA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 028066030 Country of ref document: CN |
|
WWP | Wipo information: published in national office |
Ref document number: 2002719191 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: JP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: 2002719191 Country of ref document: EP |