WO2002074060A1 - Method of promoting germination - Google Patents

Method of promoting germination Download PDF

Info

Publication number
WO2002074060A1
WO2002074060A1 PCT/JP2002/002665 JP0202665W WO02074060A1 WO 2002074060 A1 WO2002074060 A1 WO 2002074060A1 JP 0202665 W JP0202665 W JP 0202665W WO 02074060 A1 WO02074060 A1 WO 02074060A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
visible light
emitting diode
titanium
light emitting
Prior art date
Application number
PCT/JP2002/002665
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichi Sugihara
Tatsuhiko Ihara
Original Assignee
Ecodevice Laboratory Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecodevice Laboratory Co., Ltd. filed Critical Ecodevice Laboratory Co., Ltd.
Publication of WO2002074060A1 publication Critical patent/WO2002074060A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C1/00Apparatus, or methods of use thereof, for testing or treating seed, roots, or the like, prior to sowing or planting
    • A01C1/02Germinating apparatus; Determining germination capacity of seeds or the like
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/04Electric or magnetic or acoustic treatment of plants for promoting growth
    • A01G7/045Electric or magnetic or acoustic treatment of plants for promoting growth with electric lighting

Definitions

  • the present invention relates to a method for promoting seed germination. More specifically, the present invention relates to a method for promoting seed germination, in which germination of seeds is promoted and a germination rate is improved by utilizing a visible light-responsive photocatalyst.
  • an object of the present invention is to provide a seed germination promotion method that is highly safe, promotes seed germination, and improves the germination rate. Disclosure of the invention
  • the present invention provides a photocatalyst (visible light responsive photocatalyst) which is active by the action of light having a wavelength of 420 nm or more, or a seed containing a material containing the visible light responsive photocatalyst and water in the presence of water.
  • FIG. 1 is an ESR spectrum of the visible light responsive material of the present invention (Reference Example 1) measured at 77 K in a vacuum.
  • the upper row is the spectrum under black
  • the middle row is the spectrum under irradiation of light having a wavelength of 420 nm or more (the light of less than 420 nm is cut off of the light of the mercury lamp).
  • the lower part shows the spectrum when the light of a mercury lamp is irradiated without cutting off the light of less than 420 nm.
  • FIG. 2 is an ESR spectrum of the visible light responsive material of the present invention (Reference Example 1) measured at room temperature in a vacuum.
  • the upper row shows the spectrum in the dark.
  • the middle row shows the spectrum under irradiation with light having a wavelength of 420 nm or more (the light of the mercury lamp cuts off the light of less than 420 nm).
  • the lower row shows the spectrum. , A spectrum when a light of a mercury lamp is irradiated without cutting off light of less than 420 nm.
  • Figure 3 shows the XRD measurement results of the product of Reference Example 1 (upper) and the hydrolyzate (dried at 50 ° C) (lower).
  • FIG. 4 shows emission spectra of a blue light emitting diode (NSPB), a green light emitting diode (NSPG), and a white light emitting diode (NSPW).
  • NSPB blue light emitting diode
  • NSPG green light emitting diode
  • NSPW white light emitting diode
  • Figure 5 shows the light of the product of Example 4 (visible light responsive material) in a vacuum at 77 ⁇ , which has a wavelength of 420 ⁇ m or more (of the mercury lamp, the light of less than 420 nm is cutoff). This is the ESR spectrum measured under irradiation.
  • Figure 6 shows the light of the product of Reference Example 5 (visible light responsive material) having a wavelength of 77 mm, 420 ⁇ m or more (in a mercury lamp, light of less than 420 nm is cut off in vacuum). The ESR spectrum measured under the irradiation of).
  • Figure 7 shows the light of the product of Reference Example 6 (visible light responsive material) in vacuum at 77 K :, light with a wavelength of 420 ⁇ m or more (of the mercury lamp light, light of less than 420 nm is cut off).
  • the ESR spectrum measured under the irradiation of.
  • Figure 8 shows the ESR spectrum of the sample (analyze type titanium dioxide) before the plasma treatment.
  • Figure 9 shows the ESR spectrum of the sample (anatase type titanium dioxide) after the plasma treatment.
  • Seeds that can be used in the present invention are not particularly limited, and can be freely selected.
  • cereals such as rice and wheat
  • flowers such as chrysanthemums
  • seeds of vegetables such as pomegranates are included.
  • a visible light-responsive photocatalyst under visible light irradiation is used even for seeds such as seeds that cannot absorb water due to solid fruit or seeds that do not show an enormous number of embryos, or seeds whose seed coat does not transmit oxygen. Thereby, germination of seeds that are difficult to germinate can be promoted and the germination rate can be improved. At the same time, seeds can be sterilized.
  • the visible light responsive photocatalyst used in the present invention is, for example, a titanium oxide containing at least anatase-type titanium oxide, and is measured in a vacuum at 77 K under irradiation of light having a wavelength of 420 nm or more at 77 K.
  • the main signal having the g value of 2.004 to 2.007 (the signal having the strongest intensity) and the g values of 1.895 to 1.8966 and 2.02 were obtained.
  • It can be a visible light responsive material in which two secondary signals (4, a signal with lower intensity than the main signal) are observed.
  • the above three signals (main signal and two sub-signals) are slightly observed or substantially observed in vacuum at 77 K: in darkness. Not done.
  • the light having a wavelength of 420 nm or more used for ESR is a light from a high-pressure mercury lamp (for example, 500 W), and a light having a wavelength shorter than 420 nm is cut. This is light obtained by passing through a filter (L-42).
  • this visible light responsive material has a wavelength of 450 nm or more at 77 K in vacuum. ESR measured under illumination of light obtained by transmitting light having a wavelength (eg, a filter (GG455) that cuts light from a Xe lamp (eg, 150 W) that cuts light with a wavelength shorter than 455 nm). Also, the main signal (the strongest signal) with a g-value of 2.004-2.007 and the two sub-signals (g-values between 1.985 and 1.986 and 2.024) Signal that is lower in intensity than the main signal).
  • the visible light responsive material used in the present invention can be, for example, a visible light photocatalyst composed of titanium dioxide having a stable oxygen defect described in W000 / 10706.
  • the ESR spectrum of the visible-type photocatalyst described in WO00 / 107O6 has only a signal with a g-value force of S2.003 to 2.004 in ESR measured under black at 77 K in vacuum.
  • the visible light responsive material and the visible light photocatalyst described in TOOO / 10706 are different from each other in a spectrum different from that of the visible light photocatalyst described in TOOO / 10706. It has activity against visible light having a wavelength exceeding that.
  • the visible light responsive material will be described.
  • the visible light responsive material used in the present invention is preferably titanium oxide containing anatase-type titanium oxide as a main component, and may further contain amorphous titanium oxide. Alternatively, rutile-type titanium oxide may be further included. Also, the anatase type titanium oxide does not necessarily have to have high crystallinity. Further, in the titanium oxide constituting the visible light responsive material, titanium and oxygen can have a non-stoichiometric ratio. Specifically, the amount of oxygen with respect to titanium is reduced to titanium dioxide. May be less than the stoichiometric ratio (theoretical value: 2.00).
  • the titanium oxide in the visible light responsive material may have, for example, a molar ratio of oxygen to titanium of less than 2.00, for example, 1,00 to 1.99, or 1.50 to 1.99. it can.
  • the molar ratio of oxygen to titanium in the titanium oxide in the visible light responsive material can be measured using, for example, X-ray photoelectron spectroscopy.
  • Figure 1 shows a typical ESR spectrum of the above visible light responsive material measured at 77 K in vacuum. In the figure, the upper row shows the spectrum in the dark, and the middle row shows the spectrum under the irradiation of light having a wavelength of 42 O nm or more (of the mercury lamp light, the light of less than 420 nm is cutoff). is there.
  • the lower part shows the spectrum when the light of the mercury lamp is irradiated without cutting off the light of less than 420 nm.
  • the upper, middle, and lower rows are the results measured under the same gain (GAIN).
  • GAIN gain
  • the main signals with g values of 2.004 to 2.007 are slightly observed, but the g values are 1.985 to 1.986 and 2.024. Two sub-signals are practically not observed.
  • the main signal whose g value is 2.004 to 2.007 and the g value is 1.985 to The two side signals, 1.986 and 2.024, are significantly stronger than in the upper spectrum.
  • the above three signals should be measured.
  • the upper row shows the spectrum in the dark
  • the middle row shows the spectrum under irradiation with light having a wavelength of 420 nm or more (of the mercury lamp light, the light of less than 420 nm is cut off). It is a kutor.
  • the lower part shows the spectrum when the light of a mercury lamp is irradiated without cutting off the light of less than 420 nm.
  • the upper, middle, and lower rows are the results measured under the same gain (GAIN).
  • the visible light responsive material has a g-value of 2.0009 to 2.010 in addition to the above signal, when measured in a vacuum at 77 K under irradiation with light having a wavelength of 420 nm or more. It can also have certain side signals.
  • the side signal with a g value of 2.00-9.010 is shown in the middle ESR spectrum of FIG.
  • the visible light responsive material is a material having a characteristic ESR signal as described above, but at the same time, is also a colored material, and has a reflectance of 1 (or 600 nm) for light having a wavelength of 600 nm.
  • the reflectance for light with a wavelength of 450 nm is 0.85 (or 85%) or less, preferably 0.80 (or 80%). It is more preferably 0.70 (or 70%) or less.
  • the reflectivity here is the result measured by a spectrophotometer. Although the reflectance can be measured with a color analyzer, a spectrophotometer is used for the evaluation of the reflectance because of its excellent accuracy.
  • the visible light responsive material has a characteristic ESR signal as described above, and additionally has NO oxidation activity with respect to light in the visible light region. Specifically, NO oxidation activity is exhibited by irradiating visible light having a wavelength of at least 520 nm or less.
  • the visible light responsive material can be produced using amorphous or imperfect crystalline titanium oxide (including hydrated titanium oxide) and Z or titanium hydroxide as raw materials.
  • This raw material titanium compound can be obtained by a wet method such as a sulfuric acid method or a chloride method. More specifically, the raw material titanium compound can be obtained by hydrolyzing titanium chloride or titanium sulfate with ammonium hydroxide. Alternatively, the starting titanium compound can be obtained by hydrolyzing a titanium alkoxide with water, or can be obtained by hydrolyzing a titanium alkoxide with an aqueous ammonium hydroxide solution.
  • the hydrolysis is carried out, for example, by continuously or intermittently adding an aqueous solution of ammonium hydroxide to an aqueous solution of titanium chloride or an aqueous solution of titanium sulfate, or continuously or intermittently adding an aqueous solution of titanium chloride or an aqueous solution of titanium sulfate to an aqueous solution of ammonium hydroxide. It can be added intermittently.
  • the concentrations of the aqueous titanium chloride solution, the aqueous titanium sulfate solution, and the aqueous ammonium hydroxide solution can be determined as appropriate. This hydrolysis is suitably performed by adjusting the amount of ammonium hydroxide to be added so that the final pH of the reaction solution is 5 or more.
  • the titanium chloride may be titanium trichloride, titanium tetrachloride, or the like, or a mixture thereof.
  • the hydrolysis can be performed, for example, at a temperature in the range of 0 ° C. to 100 ° C., preferably 20 ° C. to 80 ° C., but the hydrolysis at room temperature has relatively low crystallinity.
  • the hydrolyzate of titanium chloride or titanium sulfate with ammonium hydroxide is preferably used as a starting titanium compound after washing with water or an aqueous solution of ammonium hydroxide. Washing of the hydrolyzate with water or an aqueous solution of ammonium hydroxide is performed, for example, by filtering a reaction solution containing the hydrolyzate, and further passing water or an aqueous solution of ammonium hydroxide through the hydrolyzate obtained as a filtrate. be able to.
  • This method is preferable because the operation is easy because water or an aqueous solution of ammonium hydroxide can be added to the filtered hydrolyzate as it is and then filtered.
  • the washing of the hydrolyzate with water or an aqueous solution of ammonium hydroxide is performed in addition to the above.
  • the filtrate of the hydrolyzate is suspended again in water or an aqueous solution of ammonium hydroxide, and the resulting suspension It can be performed by filtering the substance.
  • Washing with water or an aqueous solution of ammonium hydroxide can be performed such that the residual amount of ammonium salt such as ammonium chloride or ammonium sulfate generated during the hydrolysis is reduced to an appropriate amount, and can also be performed a plurality of times.
  • a commercially available amorphous or imperfect crystalline titanium dioxide may be used, for example, imperfect crystalline titanium dioxide such as ST-01 or C-02 manufactured by Ishihara Sangyo. You may.
  • a raw material titanium compound such as amorphous or incompletely crystalline titanium oxide is heated in the presence of ammonia or a derivative thereof.
  • Ammonia may be liquid or gaseous.
  • ammonia gas the raw material titanium compound is heated in an ammonia gas atmosphere.
  • the ammonia derivative include, for example, ammonium salts such as ammonium hydroxide and ammonium chloride.
  • a raw material titanium compound is heated in the presence of ammonium hydroxide and ammonium chloride.
  • the absorption of light at a wavelength of 45 O nm of the material generated by the heating is larger than that of the raw titanium compound at a wavelength of 45 O nm. This is done by terminating the heating at that point.
  • the starting titanium compound is white, and the light absorption at a wavelength of 45 O nm is around 10%.
  • the raw titanium compound when the raw titanium compound is heated in the presence of ammonia or its derivative, it gradually becomes yellow. However, this coloring fades to a peak at a certain point in time, and eventually shows an absorption similar to that of the starting titanium compound.
  • the absorption of light at a wavelength of 45 Onm may reach up to around 60%.
  • the characteristics of a visible light responsive material are not uniquely determined by the light absorption intensity at a wavelength of 45 Onm, but when the light absorption at a wavelength of 45 Onm is 15% or more (reflectance 85% or less). This is a material that clearly exhibits visible light responsiveness. Therefore, in the above heat treatment, the reflectance for light having a wavelength of 450 nm is 0.85 (or 85%) when the reflectance for light having a wavelength of 600 nm is 1 (or 100%).
  • the conditions are preferably 0.80 (or 80%) or less, more preferably 0.70 (or 70%) or less.
  • the reflectivity here is the result measured with a spectrophotometer.
  • the heating conditions cannot necessarily be defined only by the temperature.
  • the temperature used can be, for example, a temperature in the range of 250 to 550 ° C. NOx removal by light at wavelengths of 420 nm and 470 ⁇ m tends to be relatively high with heating in the range of 300-450 ° C and higher with heating in the range of 325-425 ° C.
  • the removal of N ⁇ x by light at wavelengths of 520 nm and 570 nm tends to be relatively high when heating in the range ⁇ ⁇ , and tends to be higher when heating in the range 350-425 ° C. . Accordingly, heating in the range of 350 to 425 ° C. is most preferable in terms of a high NOx removal rate in the visible light region.
  • the heating time is appropriately 30 minutes or more, preferably 1 hour or more, from the viewpoint that the NOx removal rate with respect to light in the visible light region having wavelengths of 520 nm and 570 nm is improved. . Also, if the heating time is longer than 1 hour, NOx Since there is no significant change in the removal rate, it is at most about 3 hours.
  • This heating can be performed under normal pressure.
  • the heating time can be appropriately determined based on the absorption of light at a wavelength of 45 O nm of a material generated by heating.
  • the heating can be performed using a rotary kiln, a tunnel kiln, a matsufur kiln, or the like that is generally used in the art.
  • individual particles of titanium oxide are aggregated or sintered by heating, they may be ground by a pulverizer as necessary.
  • the material obtained by heating as described above can be washed with water or an aqueous solution as needed. This washing may improve the visible light responsiveness of the obtained visible light responsive material in some cases. Further, depending on the conditions, a material having good visible light response may be obtained without washing.
  • amorphous or incompletely crystalline titanium oxide (raw titanium compound before heating) is obtained by, for example, hydrolyzing titanium chloride with ammonium hydroxide, a considerable amount of the hydrolyzate is obtained.
  • an equivalent amount of ammonium chloride may remain in the obtained material.
  • washing with water or a suitable aqueous solution may remove ammonium chloride and improve the visible light responsiveness of the visible light responsive material in some cases.
  • the washing of the material obtained by heating with water or an aqueous solution is performed by washing the water or the aqueous solution separated from the material after the washing; -7)
  • the amount of chloride ion contained in water or aqueous solution separated from the material after washing or in the case of using titanium chloride as a raw material for hydrolyzate or the amount of sulfate ion (hydrolyzing titanium sulfate) It is preferable to reduce the amount of raw material.
  • the above visible light responsive material is usually obtained as a powder.
  • the particle size of the obtained powder can be adjusted by pulverization or the like, if necessary.
  • the material containing the visible light responsive photocatalyst can be an organic coating film, an inorganic coating film, or a fiber
  • the visible light responsive photocatalyst powder is prepared by an ordinary method using an organic coating film (for example, a fluororesin coating film or the like).
  • an organic coating film for example, a fluororesin coating film or the like.
  • the above-mentioned visible light responsive materials include silicon, aluminum, tin, zirconium, antimony, phosphorus, platinum, gold, silver, copper, iron, niobium, tungsten, evening metal, etc., depending on the application. Elements, or compounds containing them, can be coated, supported, or doped.
  • the method of the present invention can be carried out, for example, by immersing the seeds in water containing a visible light-responsive photocatalyst that is continuously or intermittently irradiated with light containing visible light. Alternatively, it can be carried out by immersing the seeds in water in a state where water coexists with a material containing a visible light responsive photocatalyst.
  • the seed immersion time may be appropriately selected depending on the amount of the visible light responsive photocatalyst used or the condition and form of the seed. For example, 5 minutes to 24 hours per day (24 hours) Preferably, it can be 30 minutes to 8 hours. However, these are not limited.
  • the temperature of the water can be appropriately determined according to the type of the seed, but is, for example, 5 to 35 ° C, preferably 10 to 20 ° C.
  • the light to be irradiated is light containing a component having a wavelength of 420 nm or more, and preferably light containing at least a part of a component having a wavelength of 420 nm to 600 nm.
  • the light may include at least a part of a component having a wavelength of 450 nm to 600 nm.
  • Light containing a component having a wavelength of 420 nm or more can be, for example, light from sunlight, an incandescent lamp, a light emitting diode, a halogen lamp, a fluorescent lamp, or the like.
  • the light emitting diode is a light emitting diode having an emission wavelength in the visible light region of 420 nm or more, or having an emission wavelength only in the visible light region.
  • Examples of such a light emitting diode include a purple light emitting diode, a blue light emitting diode, a green light emitting diode, a yellow light emitting diode, and a white light emitting diode.
  • a violet light emitting diode has an emission wavelength from the ultraviolet region to the visible light region.
  • a blue light emitting diode, a green light emitting diode, a yellow light emitting diode, or a white light emitting diode has an emission wavelength only in the visible light region.
  • Fig. 4 shows the emission spectra of the blue light emitting diode (BLUE), the green light emitting diode (GREEN), and the white light emitting diode (WHITE).
  • BLUE blue light emitting diode
  • the light source was set to be 1 cm from the sample.
  • the light source is a blue LED (Model: NSSB450, manufactured by Nichia Chemical Industry Co., Ltd., model number NSSB450). It was lit by applying voltage so that Irradiation conditions were 2 cm for the sample from above the lid, and irradiation was performed continuously for 10 hours a day. Germination was determined when 2 mm radicles emerged from the seeds. Table 1 shows the results.
  • Example 1 Ultrafine titanium oxide powder on the market (made by Ishihara Sangyo)
  • Example 1 Prepared by the method described in Reference Example 3 described below.
  • Example 2 Prepared by the method described in Reference Example 7 below.
  • Reference example 1
  • titanium tetrachloride (Kanto Chemical Co., Ltd., special grade) was added to pure water of ice water (2 liters as water), stirred and dissolved to obtain an aqueous solution of titanium tetrachloride.
  • the amount of added ammonia water was adjusted so that the final pH of the aqueous solution was about 8. This turned the aqueous solution into a white slurry. After further stirring for 15 minutes, the mixture was filtered with a suction filter.
  • the precipitate collected by filtration was dispersed in 2 Om 1 ′ of aqueous ammonia (containing 6 wt% as NH 3), stirred with a stirrer for about 20 hours, and suction-filtered again to obtain a white hydrolyzate.
  • the obtained white hydrolyzate was transferred to a crucible and heated at 400 ° C for 1 hour in the air using an electric furnace to obtain a yellow product.
  • the XRD measurement results of the obtained product are shown in the upper part of FIG.
  • the lower part of Fig. 3 also shows the XRD measurement results of the white hydrolyzate dried at 50 ° C. From this result, it can be seen that the white hydrolyzate dried at 50 ° C. is amorphous, and the obtained product is ana-type titanium dioxide.
  • the white hydrolyzate was dried at 50 ° C, whereas the reflectance at 450 nm was 61% when the reflectance at 700 nm of the obtained product was 100%.
  • the reflectance at 95 nm was 95% when the reflectance at 700 nm was 100%.
  • the ESR spectrum of the obtained product was measured. The measurement was carried out in vacuum (0.1 ltorr) at 77 K or at room temperature. The measurement conditions are as follows.
  • H mn magnetic field of the Mn 2+ marker
  • amount of change in magnetic field from H mn
  • the ESR spectrum measured with a 500W high-pressure mercury lamp irradiated with light without using the filter (L-42) is shown below. Comparison of the upper and middle spectrums in Fig.
  • the visible light responsive material of Reference Example 1 has the three signals measured in the air, at room temperature, in the dark, and in ESR under light irradiation having a wavelength of 420 nm or more. Met.
  • the white hydrolyzate was dried at 50, the main signal having a g value of 2.004 to 2.007, and the g value of 1.985 to; I. 986 and 2.024 Two side signals were not observed under any of the ESR measurement conditions.
  • the cloudy solution was subjected to suction filtration.
  • the amount of white precipitate remaining on the filter paper was 131 kg.
  • the white precipitate was dispersed in 200 kg of aqueous ammonia (6% as N3 ⁇ 4), stirred for 24 hours, and subjected to suction filtration. After filtration, a white precipitate It was 108 kg.
  • the white precipitate was dried for 4 days in a forced-air shelf dryer set at 50 50. After drying, the sample weighed 17 kg.
  • Titanium sulfate (IV) solution as titanium sulfate (IV) solution (Trade name: Kanto Chemical Co., Ltd .: Titanium sulfate (IV) (deer grade 1, water-soluble night containing titanium sulfate (IV) at 24% by weight or more))
  • the white matter attached to the filter paper was washed in ammonia water adjusted to pH 11 and filtered again eight times, and washed to obtain a white powder.
  • the obtained powder was dried at 50 ° C to obtain a sample powder.
  • the BET surface area of the obtained hydrolyzate (sample powder) was 308.7 m 2 Zg.
  • Obtained 8 g of the sample powder placed in the crucible was transferred to an electric furnace and baked at 400 ° C. for 60 minutes to obtain 6.3 g of a bright yellow powder having a BET surface area of 89.4 m 2 / g.
  • An X-ray diffraction (XRD) test of this powder shows that it contains anabsorbate-type titanium oxide.
  • the ESR spectrum of the obtained powder was measured.
  • the measurement was performed at 77 K in a vacuum (0.1 Torr).
  • the measurement conditions are the same as in Reference Example 1.
  • Fig. 5 shows the ESR spectrum measured with light irradiated through a filter (L-42) that cuts light below 420 nm (using a 500 W high-pressure mercury lamp).
  • L-42 the filter that cuts light below 420 nm (using a 500 W high-pressure mercury lamp).
  • the ESR spectrum under the black bottom was also measured, but no signal was practically observed.
  • a main signal having a g-value of 2.004 to 2.007 and two sub-signals having g-values of 1.985 to 1.986 and 2.024 were observed.
  • the ESR spectrum of the obtained material was measured.
  • the measurement was performed at 77 K in a vacuum (0.1 l rr).
  • the measurement conditions are the same as in Reference Example 1.
  • Figure 6 shows the ESR spectrum measured with light irradiated through a filter (L-42) that cuts light below 420 nm (using a 500W high-pressure mercury lamp).
  • a main signal having a g value of 2.004 to 2.007, and two sub-signals having g values of 1.985 to 1.986 and 2.024 were observed.
  • anatase type titanium dioxide powder (ST-01, manufactured by Ishihara Sangyo Co., Ltd.) was placed in a quartz reaction tube having an inner diameter of 5 cm and a length of 100 cm.
  • An RF plasma generator was attached to this quartz reaction tube, and the inside of the reaction tube system was evacuated to 0.1 Torr by a vacuum pump. Then, 500 W of electromagnetic waves (13.56 MHz) were introduced into the reaction tube. The plasma was generated by irradiating the titanium oxide powder. Then, H 2 gas (flow rate of 500 ml Z) was introduced so that the pressure in the system was about 1 Torr.
  • the anatase type titanium dioxide powder in the reaction tube was treated for 30 minutes while stirring.
  • the quartz tube wall was heated to 400 ° C by resistance heating with a nichrome wire, and the temperature was maintained during the reaction.
  • the obtained anatase-type titanium dioxide powder was subjected to X-ray photoelectron spectroscopy (XPS) to determine the peak (458.8 eV (T i 2 p 3/2)) 464.6 e V (T i 2 p 1/2) area and peak (531.7 e V (O ls) area) attributed to the 1 s electron of oxygen bonded to titanium
  • the obtained area ratio (O 1 s / T i 2 p) was 1.94, and the area ratio (O 1 s / T i 2 p) of the anatase-type titanium dioxide powder not subjected to the plasma treatment.
  • XPS X-ray photoelectron spectroscopy
  • the area ratio (O 1 s / Ti 2 p) measured in the same manner as above after leaving this sample in the air for one week was 1.94. Furthermore, there was no change in the area ratio ( ⁇ 1 sZT i 2 p) of this sample after one month. In addition, as a result of subjecting the sample before the plasma treatment and the sample after the treatment to an X-ray diffraction test, no change was observed in the ana-type titanium dioxide before and after the plasma treatment.
  • the ESR spectra of the sample before the plasma treatment and the sample after the treatment were measured.
  • the measurement was performed at 77 K in a vacuum (0.1 Torr).
  • the measurement conditions are as follows.
  • H mn magnetic field of the Mn 2+ marker
  • change in magnetic field from H mn
  • Figure 8 shows the ESR spectrum of the sample before plasma treatment.
  • (a) is the ESR spectrum under black and
  • (b) is the light passing through a filter (L-42) that cuts light below 420 nm (using a 500 W high-pressure mercury lamp). This is the ESR spectrum measured in the irradiated state.
  • Figure 9 shows the ESR spectrum of the sample after the plasma treatment.
  • (a) is the ESR spectrum in the dark
  • (b) is the light passing through a filter (L-42) that cuts light below 420 nm (using a high-pressure mercury lamp of 500 W).
  • the ESR spectrum measured in the illuminated state and (c) is the ESR spectrum measured in the illuminated state without passing through the filter (L-42).
  • the seeds are germinated by immersing the seeds in water containing a visible light responsive photocatalyst or a material containing the visible light responsive photocatalyst, which is continuously or intermittently irradiated with light containing visible light. And the germination rate is improved, and at the same time, the seeds are also killed. Therefore, according to the method of the present invention, the total cost in the seed germination step can be reduced.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Botany (AREA)
  • Ecology (AREA)
  • Forests & Forestry (AREA)
  • Health & Medical Sciences (AREA)
  • Physiology (AREA)
  • Soil Sciences (AREA)
  • Catalysts (AREA)
  • Pretreatment Of Seeds And Plants (AREA)
  • Cultivation Of Plants (AREA)

Abstract

A method of promoting the germination of seeds characterized by continuously or intermittently irradiating the seeds with light involving visible light in the coexistence of a photocatalyst exerting its activity under the action of light having a wavelength of 420 nm or longer (i.e., a visible light-responsive photocatalyst) and water.

Description

明 細 書  Specification
発芽促進方法 技術分野  Germination promotion method Technical field
本発明は、 種子の発芽促進方法に関するものである。 さらに詳しくは、 本発明 は、 可視光応答性光触媒を利用することにより、 種子の発芽が促進され、 且つ発 芽率も向上する、 種子の発芽促進方法に関する。 背景技術  The present invention relates to a method for promoting seed germination. More specifically, the present invention relates to a method for promoting seed germination, in which germination of seeds is promoted and a germination rate is improved by utilizing a visible light-responsive photocatalyst. Background art
従来、 種子を発芽させるときには、 まず、 種子を汚染している細菌やウィルス を適当な薬剤を用いて殺菌し、次いで種子を水に浸し、十分に水を吸収させた後、 所定の温度、 湿度下において発芽させている。 しかし、 外殻 (種皮) が水を透過 させない種子(硬実)では吸水することができず、発芽しない場合がある。また、 種皮が酸素を通さないものであっても、 種子は容易に発芽しない。 そのため、 種 子の発芽は一定ではなく、 全ての種子が発芽して苗が揃うまでにはかなりの時間 を要するので、 苗の栽培の自動化の障害となっていた。 この改善のために、 硫酸 等の強酸で種子の種皮を傷つけたり、 鋏等で種皮を切り取ったりして発芽を促進 させる方法がなされている。 しかしながら、 例えば強酸を用いて一定の発芽率を得るためには、 強酸の濃度 を制御したり、 あるいは強酸と種子との接触時間を制御したりする大がかりな装 置が必要である。 従って、 できた種子が高価なものになるという問題が生じてい た。 また今日では、 種子を殺菌した後でも、 薬剤が種子に一切付着していない、 無薬剤の種子が要求されている。 このような従来の課題を解決し、種子の発芽が促進され、且つ発芽率も向上し、 同時に、 種子も殺菌される種子の殺菌,発芽促進方法が提案されている (特開平Conventionally, when germinating seeds, first, bacteria and viruses contaminating the seeds are sterilized using an appropriate chemical, then the seeds are immersed in water and sufficiently absorbed in water, and then subjected to the specified temperature and humidity. Germinated below. However, seeds (hard fruits) whose outer shell (seed coat) does not allow water to permeate cannot absorb water and may not germinate. Also, even if the seed coat is impervious to oxygen, the seed will not germinate easily. Therefore, seed germination is not constant, and it takes a considerable time for all seeds to germinate and obtain seedlings, which has been an obstacle to automation of seedling cultivation. In order to improve this, a method has been used in which the seed coat is damaged with a strong acid such as sulfuric acid, or the seed coat is cut off with scissors or the like to promote germination. However, in order to obtain a constant germination rate using, for example, a strong acid, a large-scale apparatus for controlling the concentration of the strong acid or controlling the contact time between the strong acid and the seed is required. Therefore, there has been a problem that the resulting seeds are expensive. And today, even after sterilizing the seeds, no drug is attached to the seeds, Drug-free seeds are required. To solve such a conventional problem, a method of promoting seed germination and germination, in which seed germination is promoted and the germination rate is improved, and at the same time, seeds are also sterilized, has been proposed (Japanese Patent Laid-Open Publication No.
5 - 2 1 1 8 0 8号公報) 。 この方法は、 オゾン濃度が 5 p p m以上のオゾン水 に、 種子を浸漬させることを特徴とするものであるが、 オゾン水を使用する事か ら、 安全性に問題があった。 そこで本発明の目的は、 安全性が高く、 種子の発芽が促進され、 且つ発芽率も 向上する種子の発芽促進方法を提供する事にある。 発明の開示 No. 5-2118808). This method is characterized by immersing the seeds in ozone water having an ozone concentration of 5 ppm or more. However, since ozone water is used, there is a problem in safety. Therefore, an object of the present invention is to provide a seed germination promotion method that is highly safe, promotes seed germination, and improves the germination rate. Disclosure of the invention
本発明は、波長 4 2 0 n m以上の光の作用により活性を有する光触媒(可視光応 答性光触媒) または該可視光応答性光触媒を含む素材と水との共存下にある種子 に、 可視光を含む光を連続的または断続的に照射することを特徴とする、 種子の 発芽促進方法に関する。 図面の簡単な説明  The present invention provides a photocatalyst (visible light responsive photocatalyst) which is active by the action of light having a wavelength of 420 nm or more, or a seed containing a material containing the visible light responsive photocatalyst and water in the presence of water. A method for promoting germination of seeds, comprising continuously or intermittently irradiating light containing BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の可視光応答型材料 (参考例 1 ) の真空中、 7 7 Kで測定され た E S Rスペクトルである。 上段は喑黒下でのスペクトルであり、 中段が 4 2 0 n m以上の波長を有する光 (水銀ランプの光の内、 4 2 0 n m未満の光をカツト オフ) の照射下でのスペクトルであり、 下段は、 4 2 0 n m未満の光をカットォ フせずに水銀ランプの光を照射した場合のスペクトルである。 図 2は、 本発明の可視光応答型材料 (参考例 1) の真空中、 常温で測定された ESRスペクトル。 上段は暗黒下でのスペクトルであり、 中段が 420 nm以上 の波長を有する光 (水銀ランプの光の内、 420 nm未満の光をカットオフ) の 照射下でのスぺクトルであり、 下段は、 420 nm未満の光をカツトオフせずに 水銀ランプの光を照射した場合のスペクトルである。 FIG. 1 is an ESR spectrum of the visible light responsive material of the present invention (Reference Example 1) measured at 77 K in a vacuum. The upper row is the spectrum under black, and the middle row is the spectrum under irradiation of light having a wavelength of 420 nm or more (the light of less than 420 nm is cut off of the light of the mercury lamp). The lower part shows the spectrum when the light of a mercury lamp is irradiated without cutting off the light of less than 420 nm. FIG. 2 is an ESR spectrum of the visible light responsive material of the present invention (Reference Example 1) measured at room temperature in a vacuum. The upper row shows the spectrum in the dark. The middle row shows the spectrum under irradiation with light having a wavelength of 420 nm or more (the light of the mercury lamp cuts off the light of less than 420 nm). The lower row shows the spectrum. , A spectrum when a light of a mercury lamp is irradiated without cutting off light of less than 420 nm.
図 3は、 参考例 1の生成物 (上段) 及び加水分解物 (50°C乾燥) (下段) の XRDの測定結果である。  Figure 3 shows the XRD measurement results of the product of Reference Example 1 (upper) and the hydrolyzate (dried at 50 ° C) (lower).
図 4は、 青色発光ダイオード (NSPB) 、緑色発光ダイオード (NSPG)、 及び白色発光ダイオード (NSPW) の発光スペクトルを示す。  FIG. 4 shows emission spectra of a blue light emitting diode (NSPB), a green light emitting diode (NSPG), and a white light emitting diode (NSPW).
図 5は、 参考例 4の生成物 (可視光応答型材料) の真空中、 77Κ、 420 η m以上の波長を有する光 (水銀ランプの光の内、 420 nm未満の光をカツトォ フ) の照射下で測定された E S Rスぺクトルである。  Figure 5 shows the light of the product of Example 4 (visible light responsive material) in a vacuum at 77Κ, which has a wavelength of 420 ηm or more (of the mercury lamp, the light of less than 420 nm is cutoff). This is the ESR spectrum measured under irradiation.
図 6は、 参考例 5の生成物 (可視光応答型材料) の真空中、 77Κ、 420 η m以上の波長を有する光 (水銀ランプの光の内、 420 nm未満の光をカツ卜ォ フ) の照射下で測定された E S Rスぺクトルである。  Figure 6 shows the light of the product of Reference Example 5 (visible light responsive material) having a wavelength of 77 mm, 420 ηm or more (in a mercury lamp, light of less than 420 nm is cut off in vacuum). The ESR spectrum measured under the irradiation of).
図 7は、 参考例 6の生成物 (可視光応答型材料) の真空中、 77K:、 420 η m以上の波長を有する光 (水銀ランプの光の内、 420 nm未満の光をカツトォ フ) の照射下で測定された E S Rスぺクトルである。  Figure 7 shows the light of the product of Reference Example 6 (visible light responsive material) in vacuum at 77 K :, light with a wavelength of 420 ηm or more (of the mercury lamp light, light of less than 420 nm is cut off). The ESR spectrum measured under the irradiation of.
図 8は、 プラズマ処理前の試料 (アナ夕一ゼ型ニ酸化チタン) の ESRスぺク トルを示す。  Figure 8 shows the ESR spectrum of the sample (analyze type titanium dioxide) before the plasma treatment.
図 9は、 プラズマ処理後の試料 (アナターゼ型ニ酸化チタン) の ESRスぺク トルを示す。 発明を実施するための最良の形態 Figure 9 shows the ESR spectrum of the sample (anatase type titanium dioxide) after the plasma treatment. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明をさらに詳細に説明する。  Hereinafter, the present invention will be described in more detail.
本発明に用いることのできる種子は、 とくに制限されるものではなく、 自由に 選択することができる。 例えば、 稲、 麦等の穀類、 キク等の花き類、 タデ等のそ 菜類の種子等が挙げられる。 しかしながら、 本発明では、 とくに硬実のため吸水 できない種子または胚の膨大が見られない等の種子、 あるいは種皮が酸素を透過 させない種子等でも、可視光線照射下の可視光応答性光触媒を用いることにより、 発芽しにくい種子の発芽を促進し且つ発芽率を向上させることができる。 また、 同時に、 種子の殺菌も行い得るものである。 本発明で使用する可視光応答性光触媒は、 例えば、 少なくともアナターゼ型酸 化チタンを含む酸化チタンであり、 かつ真空中、 7 7 Kにおいて 4 2 0 n m以上 の波長を有する光の照射下で測定された E S Rにおいて、 g値が 2 . 0 0 4〜2 . 0 0 7である主シグナル (最も強度が強いシグナル) と g値が 1 . 9 8 5〜 1 . 9 8 6及び 2 . 0 2 4である 2つの副シグナル (主シグナルよりは強度が低いシ ダナル)が観測されるものである可視光応答型材料であることができる。さらに、 この可視光応答型材料は、 上記 3つのシグナル (主シグナル及び 2つの副シグナ ル) が真空中、 7 7 K:、 暗黒下においては微小に観測されるか、 又は実質的に観 測されない。  Seeds that can be used in the present invention are not particularly limited, and can be freely selected. For example, cereals such as rice and wheat, flowers such as chrysanthemums, and seeds of vegetables such as pomegranates are included. However, in the present invention, a visible light-responsive photocatalyst under visible light irradiation is used even for seeds such as seeds that cannot absorb water due to solid fruit or seeds that do not show an enormous number of embryos, or seeds whose seed coat does not transmit oxygen. Thereby, germination of seeds that are difficult to germinate can be promoted and the germination rate can be improved. At the same time, seeds can be sterilized. The visible light responsive photocatalyst used in the present invention is, for example, a titanium oxide containing at least anatase-type titanium oxide, and is measured in a vacuum at 77 K under irradiation of light having a wavelength of 420 nm or more at 77 K. In the obtained ESR, the main signal having the g value of 2.004 to 2.007 (the signal having the strongest intensity) and the g values of 1.895 to 1.8966 and 2.02 were obtained. It can be a visible light responsive material in which two secondary signals (4, a signal with lower intensity than the main signal) are observed. Furthermore, in this visible light responsive material, the above three signals (main signal and two sub-signals) are slightly observed or substantially observed in vacuum at 77 K: in darkness. Not done.
尚、 ここで、 E S Rに使用される 4 2 0 n m以上の波長を有する光は、 高圧水 銀ランプ (例えば、 5 0 0 W) からの光を 4 2 0 n mより短波長の光をカツ卜す るフィルタ一 ( L - 4 2 ) を透過させて得られた光である。  Here, the light having a wavelength of 420 nm or more used for ESR is a light from a high-pressure mercury lamp (for example, 500 W), and a light having a wavelength shorter than 420 nm is cut. This is light obtained by passing through a filter (L-42).
また、 この可視光応答型材料では、 真空中、 7 7 Kにおいて 4 5 5 n m以上の 波長を有する光 (Xeランプ (例えば、 1 50W) からの光を 455 nmより短 波長の光をカットするフィルター (GG455) ) を透過させて得られた光の照 射下で測定された E SRにおいても、 g値が 2. 004-2. 007である主シ グナル (最も強度が強いシグナル) と g値が 1. 9 8 5〜1. 986及び 2. 0 24である 2つの副シグナル (主シグナルよりは強度が低いシグナル) が観測さ れる場合がある。 あるいは、 本発明で使用する可視光応答型材料は、 例えば、 W000/10706に記載 された安定した酸素欠陥を有する二酸化チタンからなる可視型光触媒であること もできる。 WO00/107O6に記載された可視型光触媒の E SRスぺクトルは、真空中、 77 K、 喑黒下で測定された ESRにおいて、 g値力 S2. 003〜2. 004の シグナルのみを有する。上記可視光応答型材料と TOOO/10706に記載された可視型 光触媒とは異なるスぺクトルを有し異質のものであるが、 いずれも、 420 nm を超える波長の可視光線、 好ましくは 450 nmを超える波長の可視光線に対し て活性を有する。 以下、 上記可視光応答型材料について説明する。 In addition, this visible light responsive material has a wavelength of 450 nm or more at 77 K in vacuum. ESR measured under illumination of light obtained by transmitting light having a wavelength (eg, a filter (GG455) that cuts light from a Xe lamp (eg, 150 W) that cuts light with a wavelength shorter than 455 nm). Also, the main signal (the strongest signal) with a g-value of 2.004-2.007 and the two sub-signals (g-values between 1.985 and 1.986 and 2.024) Signal that is lower in intensity than the main signal). Alternatively, the visible light responsive material used in the present invention can be, for example, a visible light photocatalyst composed of titanium dioxide having a stable oxygen defect described in W000 / 10706. The ESR spectrum of the visible-type photocatalyst described in WO00 / 107O6 has only a signal with a g-value force of S2.003 to 2.004 in ESR measured under black at 77 K in vacuum. The visible light responsive material and the visible light photocatalyst described in TOOO / 10706 are different from each other in a spectrum different from that of the visible light photocatalyst described in TOOO / 10706. It has activity against visible light having a wavelength exceeding that. Hereinafter, the visible light responsive material will be described.
本発明で使用する上記可視光応答型材料は、 好ましくはアナ夕ーゼ型酸化チタ ンを主成分とする酸化チタンであり、 それ以外に非晶質の酸化チタンを含んでい てもよい。 あるいは、 さらにルチル型酸化チタンを含んでも構わない。 また、 ァ ナターゼ型酸化チタンも、 必ずしも高い結晶性を有するものでなくてもよい。 ま た、 上記可視光応答型材料を構成する前記酸化チタンは、 チタンと酸素とが不定 比であることができ、 具体的には、 チタンに対する酸素の量が、 二酸化チタンに おける化学量論比 (理論値 2. 00)より少なくても良い。 上記可視光応答型材料 中の酸化チタンは、 例えば、 チタンに対する酸素のモル比が、 2. 00未満、 例 えば、 1, 00〜1. 99、 または 1. 50〜1. 99であることができる。 上 記可視光応答型材料中の酸化チタンにおけるチタンに対する酸素のモル比は、 例 えば、 X線光電子分光法を用いて測定することができる。 上記可視光応答型材料の真空中、 77 Kで測定された ESRの典型的なスぺク トルを図 1に示す。 図中、 上段は暗黒下でのスペクトルであり、 中段が 42 O n m以上の波長を有する光 (水銀ランプの光の内、 420 nm未満の光をカツトォ フ) の照射下でのスぺクトルである。 下段は、 420 nm未満の光をカツ卜オフ せずに水銀ランプの光を照射した場合のスペクトルである。 尚、 上段、 中段及び 下段は、 いずれも同一のゲイン (GAIN) の下で測定した結果である。 図 1の上段のスペクトルでは、 g値が 2. 004〜2. 007である主シグナ ルは、 微小に観測されるが、 g値が 1. 985〜1. 986及び 2. 024であ る 2つの副シグナルは、 実質的に観測されない。 さらに、 図 1の上段のスぺクト ルと中段のスペクトルを比較すると明らかに、 中段のスペクトルにおいては、 g 値が 2. 004〜2. 007である主シグナル、 並びに g値が 1. 985〜1. 986及び 2. 024である 2つの副シグナルは、 上段のスペクトルにおけるよ り強度が相当に大きい。 また、 図 1の中段と下段のスペクトルを比較すると明ら かなように、 g値が 2. 004〜 2. 007である主シグナル、並びに g値が 1. 985- 1. 986及び 2. 024である 2つの副シグナルの強度は、いずれも、 照射光中に 420 nm未満の光を含んでいてもいなくても実質的に相違しない。 さらに上記可視光応答型材料は、 図 2に示すように、 真空中、 常温において、 暗黒下では、 g値が 2. 004〜2. 007である主シグナルは、 微小に観測さ れるが、 g値が 1. 985〜1. 986及び 2, 024である 2つの副シグナル は、 実質的に観測されない。 さらに、 真空中、 常温において、 420 nm以上の 波長を有する光照射下及び 420 nm未満の光をカツトオフしない水銀ランプの 光照射下おける E S Rにおいては、 前記 3つのシグナルが測定される物であるこ とがわかる。 図 2中、 上段は暗黒下でのスぺクトルであり、 中段が 420 nm以 上の波長を有する光 (水銀ランプの光の内、 420 nm未満の光をカツトオフ) の照射下でのスぺクトルである。 下段は、 420 nm未満の光をカツトオフせず に水銀ランプの光を照射した場合のスペクトルである。 尚、 上段、 中段及び下段 は、 いずれも同一のゲイン (GAI N) の下で測定した結果である。 上記可視光応答型材料は、 真空中、 77 Kにおいて 420 nm以上の波長を有 する光の照射下で測定されたにおいて、 上記シグナルに加えて、 g値が 2. 00 9〜2. 010である副シグナルをさらに有することもできる。 g値が 2. 00 9〜2. 010である副シグナルは、 図 1の中段の E SRスペクトルに示されて いる。 上記可視光応答型材料は、 上記のように、 特徴的な ESRシグナルを有する物 であるが、 それと同時に、 着色を有する物でも有り、 例えば、 600 nmの波長 の光に対する反射率を 1 (又は 100%) としたときに、 450 nmの波長の光 に対する反射率が 0. 85 (又は 85%) 以下、 好ましく 0. 80 (又は 80%) 以下、 より好ましく 0 . 7 0 (又は 7 0 %) 以下であることができる。 着色が大 きいほど、 可視光応答活性が強くなる傾向がある。 ここにおける反射率は分光光 度計で測定された結果である。 尚、 反射率はカラーアナライザ一でも測定できる が、精度の点で優れていることから、上記反射率の評価には分光光度計を用いる。 上記可視光応答型材料は、 上記のように、 特徴的な E S Rシグナルを有する物 であるが、 それに加えて、 可視光領域の光に対して N Oの酸化活性を有するもの である。 具体的には、 少なくとも波長 5 2 0 n m及びそれ以下の波長の可視光を 照射することにより N Oの酸化活性を発現する。 より好ましい材料では、 波長 5 7 0 n m及びそれ以下の波長の可視光を照射することにより N Oの酸化活性を発 現する。 上記可視光応答型材料は、 非晶質または不完全な結晶質の酸化チタン (含水酸 化チタンを含む) 及び Z又は水酸化チタンを原料として製造することができる。 この原料チタン化合物は、 硫酸法や塩化物法等の湿式法で得られる物であること ができる。 より具体的には、 原料チタン化合物は、 塩化チタンまたは硫酸チタン を水酸化アンモニゥムで加水分解して得られたものであることができる。 あるい は、 原料チタン化合物は、 チタンアルコキシドを水で加水分解して得られたもの であるか、 または、 チタンアルコキシドを水酸化アンモニゥム水溶液で加水分解 して得られたものであることができる。 但し、 原料価格が安価であるという観点 からは、 工業的生産においては、 塩化チタンまたは硫酸チタンを水酸化アンモニ ゥムで加水分解して得られたものであることが好ましい。 そこで、 以下、 塩化チ タンまたは硫酸チタンを水酸化アンモニゥムで加水分解する場合について説明す る。 上記加水分解は、 例えば、 塩化チタン水溶液または硫酸チタン水溶液に水酸化 アンモニゥム水溶液を連続的または断続的に添加して行うか、 または水酸化アン モニゥム水溶液に塩化チタン水溶液または硫酸チタン水溶液を連続的または断続 的に添加して行うことができる。 塩化チタン水溶液、 硫酸チタン水溶液及び水酸 化アンモニゥム水溶液の濃度は、 適宜決定できる。 この加水分解は、 反応液の最 終的な p Hが 5以上の液性になるように水酸化アンモニゥムの添加量を調整して 行うことが適当である。 塩化チタンは、 三塩化チタン、 四塩化チタンなどであつ ても良く、 これらの混合物を用いてもよい。 上記加水分解は、 例えば、 0 °C〜1 0 0 °C、 好ましくは 2 0〜8 0 °Cの範囲の温度で行うことができるが、 常温での 加水分解が、 比較的結晶性が低い、 または非結晶質の二酸化チタンが得られると いう観点から好ましい場合が有る。 塩化チタンまたは硫酸チタンの水酸化アンモニゥムによる加水分解物は、 水ま たは水酸化ァンモニゥム水溶液で洗浄した後に原料チタン化合物として用いるこ とが好ましい。 加水分解物の水または水酸化アンモニゥム水溶液による洗浄は、 例えば、 加水分解物を含む反応液を濾過し、 濾過物として得られた加水分解物に 水または水酸化アンモニゥム水溶液をさらに通過させることで行うことができる。 この方法は、 濾過された加水分解物にそのまま水または水酸化アンモニゥム水溶 液を加え、 濾過すれば良いことから操作が容易であり好ましい。 加水分解物の水 または水酸化アンモニゥム水溶液による洗浄は、 上記以外に、 例えば、 加水分解 物の濾過物を水または水酸化アンモニゥム水溶液に再度懸濁させ、 得られた懸濁 物を濾過することにより行うことができる。 水または水酸化アンモニゥム水溶液 での洗浄は、 加水分解時に生成する塩化アンモニゥムまたは硫酸アンモニゥム等 のアンモニゥム塩の残存量が適当量まで低下するように行うことができ、 複数回 行うこともできる。 The visible light responsive material used in the present invention is preferably titanium oxide containing anatase-type titanium oxide as a main component, and may further contain amorphous titanium oxide. Alternatively, rutile-type titanium oxide may be further included. Also, the anatase type titanium oxide does not necessarily have to have high crystallinity. Further, in the titanium oxide constituting the visible light responsive material, titanium and oxygen can have a non-stoichiometric ratio. Specifically, the amount of oxygen with respect to titanium is reduced to titanium dioxide. May be less than the stoichiometric ratio (theoretical value: 2.00). The titanium oxide in the visible light responsive material may have, for example, a molar ratio of oxygen to titanium of less than 2.00, for example, 1,00 to 1.99, or 1.50 to 1.99. it can. The molar ratio of oxygen to titanium in the titanium oxide in the visible light responsive material can be measured using, for example, X-ray photoelectron spectroscopy. Figure 1 shows a typical ESR spectrum of the above visible light responsive material measured at 77 K in vacuum. In the figure, the upper row shows the spectrum in the dark, and the middle row shows the spectrum under the irradiation of light having a wavelength of 42 O nm or more (of the mercury lamp light, the light of less than 420 nm is cutoff). is there. The lower part shows the spectrum when the light of the mercury lamp is irradiated without cutting off the light of less than 420 nm. The upper, middle, and lower rows are the results measured under the same gain (GAIN). In the upper spectrum of Fig. 1, the main signals with g values of 2.004 to 2.007 are slightly observed, but the g values are 1.985 to 1.986 and 2.024. Two sub-signals are practically not observed. Furthermore, when comparing the spectrum in the upper part of FIG. 1 with the spectrum in the middle part, it is clear that the main signal whose g value is 2.004 to 2.007 and the g value is 1.985 to The two side signals, 1.986 and 2.024, are significantly stronger than in the upper spectrum. In addition, comparing the spectra in the middle and lower rows of Fig. 1, it is clear that the main signals with g values of 2.004 to 2.007 and the g values of 1.985-1.986 and 2.024. The intensities of any two sub-signals are substantially the same whether or not the irradiation light contains light of less than 420 nm. Furthermore, in the above visible light responsive material, as shown in Fig. 2, the main signal having a g value of 2.004 to 2.007 is observed in a vacuum, at room temperature, and in darkness. Two side signals with values between 1.985 and 1.986 and 2,024 are virtually not observed. Further, in an ESR under irradiation of light having a wavelength of 420 nm or more in a vacuum and at room temperature and under irradiation of a mercury lamp which does not cut off light of less than 420 nm, the above three signals should be measured. I understand. In Fig. 2, the upper row shows the spectrum in the dark, and the middle row shows the spectrum under irradiation with light having a wavelength of 420 nm or more (of the mercury lamp light, the light of less than 420 nm is cut off). It is a kutor. The lower part shows the spectrum when the light of a mercury lamp is irradiated without cutting off the light of less than 420 nm. The upper, middle, and lower rows are the results measured under the same gain (GAIN). The visible light responsive material has a g-value of 2.0009 to 2.010 in addition to the above signal, when measured in a vacuum at 77 K under irradiation with light having a wavelength of 420 nm or more. It can also have certain side signals. The side signal with a g value of 2.00-9.010 is shown in the middle ESR spectrum of FIG. The visible light responsive material is a material having a characteristic ESR signal as described above, but at the same time, is also a colored material, and has a reflectance of 1 (or 600 nm) for light having a wavelength of 600 nm. 100%), the reflectance for light with a wavelength of 450 nm is 0.85 (or 85%) or less, preferably 0.80 (or 80%). It is more preferably 0.70 (or 70%) or less. The larger the coloration, the stronger the visible light response activity tends to be. The reflectivity here is the result measured by a spectrophotometer. Although the reflectance can be measured with a color analyzer, a spectrophotometer is used for the evaluation of the reflectance because of its excellent accuracy. The visible light responsive material has a characteristic ESR signal as described above, and additionally has NO oxidation activity with respect to light in the visible light region. Specifically, NO oxidation activity is exhibited by irradiating visible light having a wavelength of at least 520 nm or less. In a more preferable material, NO oxidation activity is exhibited by irradiating visible light having a wavelength of 570 nm or less. The visible light responsive material can be produced using amorphous or imperfect crystalline titanium oxide (including hydrated titanium oxide) and Z or titanium hydroxide as raw materials. This raw material titanium compound can be obtained by a wet method such as a sulfuric acid method or a chloride method. More specifically, the raw material titanium compound can be obtained by hydrolyzing titanium chloride or titanium sulfate with ammonium hydroxide. Alternatively, the starting titanium compound can be obtained by hydrolyzing a titanium alkoxide with water, or can be obtained by hydrolyzing a titanium alkoxide with an aqueous ammonium hydroxide solution. However, from the viewpoint of the raw material price being low, in industrial production, it is preferably obtained by hydrolyzing titanium chloride or titanium sulfate with ammonium hydroxide. Therefore, the case where titanium chloride or titanium sulfate is hydrolyzed with ammonium hydroxide will be described below. You. The hydrolysis is carried out, for example, by continuously or intermittently adding an aqueous solution of ammonium hydroxide to an aqueous solution of titanium chloride or an aqueous solution of titanium sulfate, or continuously or intermittently adding an aqueous solution of titanium chloride or an aqueous solution of titanium sulfate to an aqueous solution of ammonium hydroxide. It can be added intermittently. The concentrations of the aqueous titanium chloride solution, the aqueous titanium sulfate solution, and the aqueous ammonium hydroxide solution can be determined as appropriate. This hydrolysis is suitably performed by adjusting the amount of ammonium hydroxide to be added so that the final pH of the reaction solution is 5 or more. The titanium chloride may be titanium trichloride, titanium tetrachloride, or the like, or a mixture thereof. The hydrolysis can be performed, for example, at a temperature in the range of 0 ° C. to 100 ° C., preferably 20 ° C. to 80 ° C., but the hydrolysis at room temperature has relatively low crystallinity. It may be preferable from the viewpoint that amorphous titanium dioxide can be obtained. The hydrolyzate of titanium chloride or titanium sulfate with ammonium hydroxide is preferably used as a starting titanium compound after washing with water or an aqueous solution of ammonium hydroxide. Washing of the hydrolyzate with water or an aqueous solution of ammonium hydroxide is performed, for example, by filtering a reaction solution containing the hydrolyzate, and further passing water or an aqueous solution of ammonium hydroxide through the hydrolyzate obtained as a filtrate. be able to. This method is preferable because the operation is easy because water or an aqueous solution of ammonium hydroxide can be added to the filtered hydrolyzate as it is and then filtered. The washing of the hydrolyzate with water or an aqueous solution of ammonium hydroxide is performed in addition to the above. For example, the filtrate of the hydrolyzate is suspended again in water or an aqueous solution of ammonium hydroxide, and the resulting suspension It can be performed by filtering the substance. Washing with water or an aqueous solution of ammonium hydroxide can be performed such that the residual amount of ammonium salt such as ammonium chloride or ammonium sulfate generated during the hydrolysis is reduced to an appropriate amount, and can also be performed a plurality of times.
また、非晶質または不完全な結晶質の二酸化チタンは、市販品を用いても良く、 例えば、石原産業製の ST- 01または C-02のような不完全な結晶質の二酸化チタン であってもよい。 上記製造方法では、 非晶質または不完全な結晶質の酸化チタン等の原料チタン 化合物をアンモニア又はその誘導体の存在 で加熱する。 アンモニアは液体であ つても気体であってもよい。 アンモニアガスを用いる場合、 原料チタン化合物を アンモニアガス雰囲気下加熱する。 また、 アンモニア誘導体としては、 例えば、 水酸化アンモニゥムゃ塩化アンモニゥム等のアンモニゥム塩を挙げることができ、 例えば、 原料チタン化合物を水酸化アンモニゥムゃ塩化アンモニゥムの共存下で 加熱する。 原料チタン化合物のアンモニア又はその誘導体の存在下での加熱は、 加熱によ り生成する材料の波長 4 5 O nmにおける光の吸収が、原料チタン化合物の波長 4 5 O nm における光の吸収より大きい時点で前記加熱を終了させることにより行 う。 通常、 原料チタン化合物は白色であり、 波長 4 5 O nmにおける光の吸収は 1 0 %前後である。 それに対して、 原料チタン化合物をアンモニア又はその誘導体 の存在下で加熱すると、 徐々に黄色に着色する。 しかし、 この着色はある時点を ピークに薄らぎ、 ついには原料チタン化合物と同程度の吸収を示す物となる。 原 料チタン化合物の種類や共存させるアンモニア (誘導体) の種類と量、 加熱温度 及び時間等により異なるが、波長 45 Onmにおける光の吸収は最大で 60%前後 に達する場合もある。 可視光応答型材料の特性は、 波長 45 Onmにおける光の吸 収強度により一義的に決まるものではないが、波長 45 Onmにおける光の吸収が 1 5%以上 (反射率 85%以下) である場合、 明らかに可視光応答性を示す材料 となる。従って、上記加熱処理は、 600 nmの波長の光に対する反射率を 1 (又 は 1 00%) としたときに、 450 nmの波長の光に対する反射率が 0. 85 (又 は 8 5%) 以下、 好ましく 0. 80 (又は 80%) 以下、 より好ましく 0. 70 (又は 70%) 以下となる条件に設定することが好ましい。 ここにおける反射率 は分光光度計で測定された結果である。 上記加熱の条件は、 必ずしも温度だけで規定はでき.ないが、 用いる温度として は例えば 250〜550°Cの範囲の温度であることができる。 420 nm及び 470 η mの波長の光による NO Xの除去率は、 300〜450°Cの範囲での加熱で比較的高く、 325〜425°Cの範囲での加熱でより高くなる傾向があり、 さらに 520 nm及び 5 70 nmの波長の光による N〇xの除去率は、 δΖδ δΟ の範囲での加熱で比較 的高く、 350〜425°Cの範囲での加熱でより高くなる傾向がある。 従って、 可視光 領域での NO Xの除去率が高いという点では、 350〜425°Cの範囲での加熱が最も 好ましい。 また、 加熱時間は、 520 nm及び 570 nmの波長の可視光領域の光に対す る NOxの除去率が良好になるという観点から、 30分以上、 好ましくは 1時間 以上であることが適当である。 また、 加熱時間が 1時間より長くなつても NOx 除去率に大きな変動はみかられないことから、 長くても 3時間程度である。 また、 この加熱は常圧下で行うことができる。 また、 加熱時間は、 加熱により 生成する材料の波長 4 5 O nmにおける光の吸収を目安に適宜決定できる。 上記加熱は、当分野で通常用いられているロータリ一キルン、トンネルキルン、 マツフル炉などを用いることができる。 加熱により酸化チタンの個々の粒子が凝 集したり、焼結したりした場合には、必要に応じて粉砕器により粉碎してもよい。 また、 上記のように加熱して得られた材料を、 必要により水又は水溶液で洗浄 することができる。 この洗浄により、 得られる可視光応答型材料の可視光応答性 を改善できる場合がある。 また、 条件によっては、 洗浄することなしに良好な可 視光応答性を有する材料が得られる場合もある。 A commercially available amorphous or imperfect crystalline titanium dioxide may be used, for example, imperfect crystalline titanium dioxide such as ST-01 or C-02 manufactured by Ishihara Sangyo. You may. In the above production method, a raw material titanium compound such as amorphous or incompletely crystalline titanium oxide is heated in the presence of ammonia or a derivative thereof. Ammonia may be liquid or gaseous. When using ammonia gas, the raw material titanium compound is heated in an ammonia gas atmosphere. Examples of the ammonia derivative include, for example, ammonium salts such as ammonium hydroxide and ammonium chloride. For example, a raw material titanium compound is heated in the presence of ammonium hydroxide and ammonium chloride. When the raw titanium compound is heated in the presence of ammonia or its derivative, the absorption of light at a wavelength of 45 O nm of the material generated by the heating is larger than that of the raw titanium compound at a wavelength of 45 O nm. This is done by terminating the heating at that point. Usually, the starting titanium compound is white, and the light absorption at a wavelength of 45 O nm is around 10%. On the other hand, when the raw titanium compound is heated in the presence of ammonia or its derivative, it gradually becomes yellow. However, this coloring fades to a peak at a certain point in time, and eventually shows an absorption similar to that of the starting titanium compound. original Depending on the type of titanium compound, the type and amount of coexisting ammonia (derivative), heating temperature, time, etc., the absorption of light at a wavelength of 45 Onm may reach up to around 60%. The characteristics of a visible light responsive material are not uniquely determined by the light absorption intensity at a wavelength of 45 Onm, but when the light absorption at a wavelength of 45 Onm is 15% or more (reflectance 85% or less). This is a material that clearly exhibits visible light responsiveness. Therefore, in the above heat treatment, the reflectance for light having a wavelength of 450 nm is 0.85 (or 85%) when the reflectance for light having a wavelength of 600 nm is 1 (or 100%). Hereinafter, it is preferable to set the conditions to be preferably 0.80 (or 80%) or less, more preferably 0.70 (or 70%) or less. The reflectivity here is the result measured with a spectrophotometer. The heating conditions cannot necessarily be defined only by the temperature. However, the temperature used can be, for example, a temperature in the range of 250 to 550 ° C. NOx removal by light at wavelengths of 420 nm and 470 ηm tends to be relatively high with heating in the range of 300-450 ° C and higher with heating in the range of 325-425 ° C. However, the removal of N 率 x by light at wavelengths of 520 nm and 570 nm tends to be relatively high when heating in the range δΖδ δΟ, and tends to be higher when heating in the range 350-425 ° C. . Accordingly, heating in the range of 350 to 425 ° C. is most preferable in terms of a high NOx removal rate in the visible light region. In addition, the heating time is appropriately 30 minutes or more, preferably 1 hour or more, from the viewpoint that the NOx removal rate with respect to light in the visible light region having wavelengths of 520 nm and 570 nm is improved. . Also, if the heating time is longer than 1 hour, NOx Since there is no significant change in the removal rate, it is at most about 3 hours. This heating can be performed under normal pressure. In addition, the heating time can be appropriately determined based on the absorption of light at a wavelength of 45 O nm of a material generated by heating. The heating can be performed using a rotary kiln, a tunnel kiln, a matsufur kiln, or the like that is generally used in the art. When individual particles of titanium oxide are aggregated or sintered by heating, they may be ground by a pulverizer as necessary. Further, the material obtained by heating as described above can be washed with water or an aqueous solution as needed. This washing may improve the visible light responsiveness of the obtained visible light responsive material in some cases. Further, depending on the conditions, a material having good visible light response may be obtained without washing.
非晶質または不完全な結晶質の酸化チタン (加熱前の原料チタン化合物) が、 例えば、 塩化チタンを水酸化ァンモニゥムで加水分解して得られたものである場 合、 加水分解物に相当量の塩化アンモニゥムが残存しており、 その結果、 上記の ように非晶質または不完全な結晶質の二酸化チタンを所定温度で加熱することに より可視光応答型材料に変換することが可能になる。 しかるに、 加熱処理後も相 当量の塩化アンモニゥムが得られる材料に残存する場合がある。 その様な場合に は、水または適当な水溶液を用いて洗浄することで、塩化アンモニゥムを除去し、 可視光応答型材料の可視光応答性を改善できる場合がある。 さらに、 この場合、 加熱して得られた材料の水又は水溶液での洗浄は、 洗浄し た後に材料から分離した水又は水溶液の; p Hが例えば、 3 . 5以上 (p H 3 . 5 〜7 ) となるように行う力 または洗浄した後に材料から分離した水又は水溶液 中に含まれる塩素イオン量 (塩化チタンを加水分解物の原料とする場合) または 硫酸イオン量 (硫酸チタンを加水分解物の原料とする場合) が減少するように行 うことが好ましい。 上記可視光応答型材料は、 通常、 粉末として得られる。 得られた粉末は必要に より、 粉砕等により粒度を調整することもできる。 また、 可視光応答性光触媒を 含む素材は、 有機コーティング膜、 無機コーティング膜または繊維であることが でき、 可視光応答性光触媒の粉末を常法により、 有機コーティング膜 (例えば、 フッ素樹脂コーティング膜等) 、 無機コーティング膜または繊維の原料となる樹 脂や化合物に混在させることで製造することができる。 上記可視光応答型材料には、 用途に応じてその表面及び/又は内部にケィ素、 アルミニウム、 スズ、 ジルコニウム、 アンチモン、 リン、 白金、 金、 銀、 銅、 鉄、 ニオブ、タングステン、夕ンタルなどの元素やそれらを含む化合物を被覆したり、 担持したり、 或いはドープしたりすることもできる。 本発明の方法は、 例えば、 可視光を含む光を連続的または断続的に照射した可 視光応答性光触媒を含む水に種子を浸漬することで実施する事ができる。または、 可視光応答性光触媒を含む素材に水を共存させた状態で種子を水に浸漬すること で実施する事ができる。 種子の浸漬時間は、 可視光応答性光触媒の使用量、 ある いは種子の状態や形態によって適当に選択すればよいが、 例えば、 1日 (2 4時 間) 当たり、 5分〜 2 4時間、 好ましくは 3 0分〜 8時間とすることができる。 但し、 これらの限定されない。 また水の温度は、 種子の種類に応じて適宜決定で きるが、例えば、 5〜35°C、好ましくは 1 0〜20°Cであることが適当である。 照射する光は、 波長 420 nm以上の成分を含む光であり、 好ましくは、 波長 420 nm〜600 nmの成分の少なくとも一部を含む光である。 例えば、 波長 450 nm〜600 nmの成分の少なくとも一部を含む光であってもよい。 波長 420 nm以上の成分を含む光は、 例えば、 太陽光、 白熱灯、 発光ダイオード、 ハロゲンランプ、 蛍光灯等からの光であることができる。 発光ダイオードは、 4 20 nm以上の可視光領域に発光波長を有するか、 可視光領域のみに発光波長を 有する発光ダイオードである。 そのような発光ダイオードとしては、 例えば、 紫 色発光ダイオード、 青色発光ダイオード、 緑色発光ダイオード、 黄色発光ダイォ ード、 または白色発光ダイオードを挙げることができる。 紫色発光ダイオードは 紫外領域から可視光領域に発光波長を有する。 また、 青色発光ダイオード、 緑色 発光ダイオード、 黄色発光ダイオード、 または白色発光ダイオードは、 可視光領 域のみに発光波長を有する。 青色発光ダイオード (BLUE) 、 緑色発光ダイォ ード (GREEN) 、 及び白色発光ダイオード (WH I TE) の発光スペクトル を図 4に示す。 実施例 If amorphous or incompletely crystalline titanium oxide (raw titanium compound before heating) is obtained by, for example, hydrolyzing titanium chloride with ammonium hydroxide, a considerable amount of the hydrolyzate is obtained. As a result, it is possible to convert the amorphous or imperfect crystalline titanium dioxide into a visible light responsive material by heating it at a predetermined temperature as described above. . However, even after the heat treatment, an equivalent amount of ammonium chloride may remain in the obtained material. In such a case, washing with water or a suitable aqueous solution may remove ammonium chloride and improve the visible light responsiveness of the visible light responsive material in some cases. Further, in this case, the washing of the material obtained by heating with water or an aqueous solution is performed by washing the water or the aqueous solution separated from the material after the washing; -7) The amount of chloride ion contained in water or aqueous solution separated from the material after washing or in the case of using titanium chloride as a raw material for hydrolyzate or the amount of sulfate ion (hydrolyzing titanium sulfate) It is preferable to reduce the amount of raw material. The above visible light responsive material is usually obtained as a powder. The particle size of the obtained powder can be adjusted by pulverization or the like, if necessary. Further, the material containing the visible light responsive photocatalyst can be an organic coating film, an inorganic coating film, or a fiber, and the visible light responsive photocatalyst powder is prepared by an ordinary method using an organic coating film (for example, a fluororesin coating film or the like). ) Can be produced by mixing it with a resin or a compound which is a raw material of an inorganic coating film or a fiber. The above-mentioned visible light responsive materials include silicon, aluminum, tin, zirconium, antimony, phosphorus, platinum, gold, silver, copper, iron, niobium, tungsten, evening metal, etc., depending on the application. Elements, or compounds containing them, can be coated, supported, or doped. The method of the present invention can be carried out, for example, by immersing the seeds in water containing a visible light-responsive photocatalyst that is continuously or intermittently irradiated with light containing visible light. Alternatively, it can be carried out by immersing the seeds in water in a state where water coexists with a material containing a visible light responsive photocatalyst. The seed immersion time may be appropriately selected depending on the amount of the visible light responsive photocatalyst used or the condition and form of the seed. For example, 5 minutes to 24 hours per day (24 hours) Preferably, it can be 30 minutes to 8 hours. However, these are not limited. The temperature of the water can be appropriately determined according to the type of the seed, but is, for example, 5 to 35 ° C, preferably 10 to 20 ° C. The light to be irradiated is light containing a component having a wavelength of 420 nm or more, and preferably light containing at least a part of a component having a wavelength of 420 nm to 600 nm. For example, the light may include at least a part of a component having a wavelength of 450 nm to 600 nm. Light containing a component having a wavelength of 420 nm or more can be, for example, light from sunlight, an incandescent lamp, a light emitting diode, a halogen lamp, a fluorescent lamp, or the like. The light emitting diode is a light emitting diode having an emission wavelength in the visible light region of 420 nm or more, or having an emission wavelength only in the visible light region. Examples of such a light emitting diode include a purple light emitting diode, a blue light emitting diode, a green light emitting diode, a yellow light emitting diode, and a white light emitting diode. A violet light emitting diode has an emission wavelength from the ultraviolet region to the visible light region. Also, a blue light emitting diode, a green light emitting diode, a yellow light emitting diode, or a white light emitting diode has an emission wavelength only in the visible light region. Fig. 4 shows the emission spectra of the blue light emitting diode (BLUE), the green light emitting diode (GREEN), and the white light emitting diode (WHITE). Example
以下、 本発明を実施例によりさらに説明する。  Hereinafter, the present invention will be further described with reference to examples.
実施例 1  Example 1
稲の発芽実験  Rice germination experiment
ろ紙を敷いた直径 1 0 cmのガラス製シャーレを準備し、 濾紙の上に試料 0. 2 gを均一になるように塗した。 濾紙が充分に'ぬれる程度に水を加えた。 また、 水は毎日チェックし、 十分湿っていなければ適宜加えた。 種子は稲 (品種:キヌ ヒカリ) を用いた。 1つのシャーレにっき、 20個の種子をなるベく間隔が空くよ うに置いた。 すべての種子を入れ終えたら、 シャーレに蓋をおいた。 光源は、 試 料に対して 1 cmとなるように設置した。光源には、青色 LED( 日亜化学工業製、 型番 NSSB450) を 1辺 1. 5 cm角に収まるよう碁盤状に 2X2合計 4個ならベた ものを用い 1個の発光ダイオードに対し 3. 7Yとなるように電圧かけ点灯させ た。照射条件は、蓋の上から試料に対して 2 cmとし 1日に 10時間連続照射を行 なった。また、種子から 2mm幼根出たときを発芽したと判定した。結果を表 1 に 示す。 Prepare a glass petri dish with a diameter of 10 cm covered with filter paper, and place the sample on a filter paper. 2 g was evenly applied. Water was added enough to wet the filter paper. Water was checked daily and added if it was not wet enough. The seeds used were rice (variety: Kinu Hikari). One petri dish was placed with 20 seeds spaced apart. After putting all the seeds, put the lid on the petri dish. The light source was set to be 1 cm from the sample. The light source is a blue LED (Model: NSSB450, manufactured by Nichia Chemical Industry Co., Ltd., model number NSSB450). It was lit by applying voltage so that Irradiation conditions were 2 cm for the sample from above the lid, and irradiation was performed continuously for 10 hours a day. Germination was determined when 2 mm radicles emerged from the seeds. Table 1 shows the results.
尚、 各試料の詳細は後述する。 表 1  The details of each sample will be described later. table 1
Figure imgf000016_0001
Figure imgf000016_0001
ST-01 (比較例) :市販されている超微粒子酸化チタン粉末 (石原産業製) 実施例 1 :後述の参考例 3に記載の方法により作成した。 ST-01 (Comparative Example): Ultrafine titanium oxide powder on the market (made by Ishihara Sangyo) Example 1: Prepared by the method described in Reference Example 3 described below.
実施例 2 :後述の参考例 7に記載の方法により作成した。 参考例 1 Example 2: Prepared by the method described in Reference Example 7 below. Reference example 1
四塩化チタン (関東化学株式会社製、 特級) 50 O gを純水の氷水 (水として 2リットル) に添加し、 攪拌し、 溶解し、 四塩化チタン水溶液を得た。 この水溶 液 200 gをス夕一ラーで攪拌しながら、 約 50m lのアンモニア水 (NH3と して 13wt %含有) をできるだけ速やかに加えた。 アンモニア水の添加量は、 水溶液の最終的な pHが約 8になるように調整した。 これにより水溶液は白色の スラリー状となった。 さらに攪拌を 15分間続けた後、 吸引濾過器で濾過した。 濾取した沈殿は 2 Om 1'のアンモニア水 (NH3として 6 w t %含有) に分散さ せ、 スターラーで約 20時間攪拌した後、 再度吸引濾過して、 白色の加水分解物 を得た。  50 Og of titanium tetrachloride (Kanto Chemical Co., Ltd., special grade) was added to pure water of ice water (2 liters as water), stirred and dissolved to obtain an aqueous solution of titanium tetrachloride. About 200 ml of aqueous ammonia (containing 13 wt% as NH3) was added as quickly as possible while stirring 200 g of this aqueous solution with a mixer. The amount of added ammonia water was adjusted so that the final pH of the aqueous solution was about 8. This turned the aqueous solution into a white slurry. After further stirring for 15 minutes, the mixture was filtered with a suction filter. The precipitate collected by filtration was dispersed in 2 Om 1 ′ of aqueous ammonia (containing 6 wt% as NH 3), stirred with a stirrer for about 20 hours, and suction-filtered again to obtain a white hydrolyzate.
得られた白色の加水分解物を坩堝に移し、 電気炉を用い、 大気中 400°Cで 1 時間加熱し、 黄色の生成物を得た。 得られた生成物の XRDの測定結果を図 3の上段に示す。 併せて、 白色の加水 分解物を 50°Cで乾燥してものの XRDの測定結果も図 3の下段に示す。 この結 果から、 白色の加水分解物を 50°Cで乾燥したものは、 アモルファスであり、 得 られた生成物がアナ夕一ゼ型ニ酸化チタンであることが分かる。  The obtained white hydrolyzate was transferred to a crucible and heated at 400 ° C for 1 hour in the air using an electric furnace to obtain a yellow product. The XRD measurement results of the obtained product are shown in the upper part of FIG. The lower part of Fig. 3 also shows the XRD measurement results of the white hydrolyzate dried at 50 ° C. From this result, it can be seen that the white hydrolyzate dried at 50 ° C. is amorphous, and the obtained product is ana-type titanium dioxide.
得られた生成物と白色の加水分解物を 50°Cで乾燥したものの吸収スぺクトル を、 積分球を取り付けた日立自記分光光度計 (U-3210) により、 以下の条件で測 定した。 scan speed: 120nm/min> The absorption spectrum of the obtained product and the white hydrolyzate dried at 50 ° C was measured with a Hitachi automatic recording spectrophotometer (U-3210) equipped with an integrating sphere under the following conditions. scan speed: 120nm / min>
response: MEDIUM, response: MEDIUM,
band pass: 2.00亂 band pass: 2.00 turbulence
リファレンス:硫酸バリウム Reference: Barium sulfate
その結果、 得られた生成物の 700 nmにおける反射率を 100 %としたとき の 450 nmにおける反射率が 61 %であったのに対し、 白色の加水分解物を 5 0°Cで乾燥してものは、 700 nmにおける反射率を 100 %としたときの 45 O nmにおける反射率は 95%であった。 また、 得られた生成物の ESRスペクトルを測定した。 測定は、 真空中 (0. lTo r r) 、 77 K又は常温で行った。 測定条件は以下の通りである。  As a result, the white hydrolyzate was dried at 50 ° C, whereas the reflectance at 450 nm was 61% when the reflectance at 700 nm of the obtained product was 100%. The reflectance at 95 nm was 95% when the reflectance at 700 nm was 100%. The ESR spectrum of the obtained product was measured. The measurement was carried out in vacuum (0.1 ltorr) at 77 K or at room temperature. The measurement conditions are as follows.
〔基本的パラメーター〕 [Basic parameters]
測定温度 77 Κ又は常温 Measurement temperature 77 温度 or normal temperature
フィールド 324mT±25mT Field 324mT ± 25mT
走査時間 4分 Scan time 4 minutes
Mo d. 0. lmT Mod. 0.lmT
レシーバー 'ゲイン 10〜; L 00 (測定感度) Receiver 'Gain 10 ~; L 00 (Measurement sensitivity)
タイムコンスタント 0. 1秒 Time constant 0.1 second
光源 高圧水銀ランプ 500W Light source High-pressure mercury lamp 500W
フィルター L - 42 Filter L-42
〔試料作成〕  (Sample preparation)
真空脱気 1時間以上 〔g値の計算〕 Vacuum deaeration 1 hour or more (Calculation of g value)
Mn2+マーカー (gmn=l. 981 (高磁場側から 3本目) ) を基準として g = gmnXHmn/ (Hmn+AH) G = g mn XH mn / (H mn + AH) based on Mn 2+ marker (g mn = l. 981 (third from high magnetic field side))
Hmn: Mn2+マーカーの磁場、 ΔΗ: Hmnからの磁場の変化量 図 1 (測定温度 77 K) 及び図 2 (測定温度常温) に、 上段に暗黒下での ES Rスぺクトル、 中段に 420 nm以下の光 (500 Wの高圧水銀ランプを使用) をカツ卜するフィルター (L— 42) を介して光照射した状態で測定した ESR スペクトル、 下段に 420 nm以下の光をカツ卜するフィルタ一 (L-42) を 使用せずに 500Wの高圧水銀ランプを使用して光照射した状態で測定した E S Rスぺクトルをそれぞれ示す。 図 1の上段と中段のスぺクトルを比較すると明らかに、 中段のスぺクトルにお いて、 g値が 2. 004〜2. 007である主シグナル、 並びに g値が 1. 98 5〜1. 986及び 2. 024である 2つの副シグナルは、 上段のスペクトルに おけるより強度が大きかった。 また、 図 1の中段と下段のスペクトルを比較する と明らかに、 g値力 S2. 004〜2. 007である主シグナル、並びに g値が 1. 985〜1. 986及び 2. 024である 2つの副シグナルの強度は、いずれも、 照射光中に 420 nm以下の光を含んでいても実質的に相違しなかった。 さらに図 2に示すように参考例 1の可視光応答型材料は、 前記 3つのシグナル が大気中、 常温、 暗黒下及び 420 nm以上の波長を有する光照射下における E SRにおいても測定される物であった。 尚、 白色の加水分解物を 50 で乾燥してものには、 g値が 2. 004〜2. 007である主シグナル、 並びに g値が 1. 985〜; I. 986及び 2. 024 である 2つの副シグナルは、 いずれの ESR測定条件においても観測されなかつ た。 参考例 2 H mn : magnetic field of the Mn 2+ marker, ΔΗ: amount of change in magnetic field from H mn Figure 1 (measuring temperature 77 K) and Figure 2 (measuring temperature normal temperature) show the ESR spectrum in the dark, ESR spectrum measured with light irradiated through a filter (L-42) that cuts light of 420 nm or less (using a 500 W high-pressure mercury lamp) in the middle, and light of 420 nm or less in the lower. The ESR spectrum measured with a 500W high-pressure mercury lamp irradiated with light without using the filter (L-42) is shown below. Comparison of the upper and middle spectrums in Fig. 1 clearly shows that in the middle spectrum, the main signal with a g value of 2.004 to 2.007 and a g value of 1.985-1 The two side signals, 986 and 2.024, were more intense than in the upper spectrum. Also, comparing the spectra in the middle and lower rows of Fig. 1, it is clear that the g-value power is S2.004 to 2.007, the main signal, and the g-value is 1.985 to 1.986 and 2.024. The intensities of the two sub-signals were not substantially different even when the irradiation light contained light of 420 nm or less. Further, as shown in FIG. 2, the visible light responsive material of Reference Example 1 has the three signals measured in the air, at room temperature, in the dark, and in ESR under light irradiation having a wavelength of 420 nm or more. Met. In addition, when the white hydrolyzate was dried at 50, the main signal having a g value of 2.004 to 2.007, and the g value of 1.985 to; I. 986 and 2.024 Two side signals were not observed under any of the ESR measurement conditions. Reference example 2
参考例 1で得られた粉末 3 gを 100 m 1の純水に懸濁しマグネチックスター ラーを用い、 1時間攪拌した。 得られた溶液は吸引濾過を行った。 濾紙上に残つ た試料を再度純水に攪拌し、 吸引濾過を行った。 濾過は、 ろ液が pH試験紙で 6 〜 7になるまで 3回繰り返し行った。  3 g of the powder obtained in Reference Example 1 was suspended in 100 ml of pure water, and stirred for 1 hour using a magnetic stirrer. The obtained solution was subjected to suction filtration. The sample remaining on the filter paper was again stirred in pure water, and suction filtration was performed. Filtration was repeated three times until the filtrate reached pH 6 to pH filter paper.
得られた粉末は、 1 10°Cに設定した乾燥器内に一昼夜放置し、 乾燥させて可 視光応答型材料を得た。 参考例 3  The obtained powder was left in a dryer set at 110 ° C. for a day and a night, and dried to obtain a visible light responsive material. Reference example 3
300リットルの反応容器 (冷却及び攪拌が可能) 内に満たした温度 0°Cの水 207 kgに四塩化チタン 23 kgを徐々に加えた。 このとき水溶液の温度は、 最高 6°Cであった。 塩化チタン攪拌を 2日間行い透明な四塩化チタン水溶液を作 成した。 作成した四塩化チタン水溶液を攪拌しながら 12. 5%アンモニア水を 滴下すると、 この溶液は徐々に白濁した、 アンモニア水の量は、 白濁した溶液が pH 8となるように調整した。  23 kg of titanium tetrachloride was gradually added to 207 kg of water at a temperature of 0 ° C. filled in a 300-liter reaction vessel (which can be cooled and stirred). At this time, the temperature of the aqueous solution was up to 6 ° C. Titanium chloride was stirred for 2 days to produce a transparent titanium tetrachloride aqueous solution. When the prepared aqueous titanium tetrachloride solution was stirred and 12.5% aqueous ammonia was added dropwise, the solution became cloudy gradually. The amount of aqueous ammonia was adjusted so that the cloudy solution became pH 8.
白濁した溶液は、 吸引濾過を行った。 濾紙上に残った白色の沈殿物は、 131 kgであった。 白色の沈殿物は、 200 kgのアンモニア水 (N¾として 6%) に 分散させたのち、 24時間攪拌し、 吸引濾過を行った。 濾過後白色の沈殿物は、 108 k gであった。 白色の沈殿物は、 50^に設定した強制送風式棚型乾燥機 にいれ、 4日間乾燥を行った。 乾燥後試料は、 17 k gであった。 The cloudy solution was subjected to suction filtration. The amount of white precipitate remaining on the filter paper was 131 kg. The white precipitate was dispersed in 200 kg of aqueous ammonia (6% as N¾), stirred for 24 hours, and subjected to suction filtration. After filtration, a white precipitate It was 108 kg. The white precipitate was dried for 4 days in a forced-air shelf dryer set at 50 50. After drying, the sample weighed 17 kg.
乾燥試料をアルミナ坩堝 (20 X 20 X 5 cm) に I k g入れ、 ガス炉内に設 置し、 試料表面に熱電対を置き、 試料の温度が 400°Cとなるようにして、 1時 間焼成した。  Place the dried sample in an alumina crucible (20 X 20 X 5 cm) I kg, place it in a gas furnace, place a thermocouple on the sample surface, and set the sample temperature to 400 ° C for 1 hour Fired.
作成した粉末 3 gを 10 Om lの純水に懸濁しマグネチックス夕一ラーを用い、 1時間攪拌した。 得られた溶液は吸引濾過を行った。 濾紙上に残った試料を再度 純水に攪拌し、 吸引濾過を行った。 濾過は、 ろ液が pH試験紙で 6〜7になるま で 3回繰り返し行った。  3 g of the prepared powder was suspended in 10 Oml of pure water and stirred for 1 hour using a magnetic mixer. The obtained solution was subjected to suction filtration. The sample remaining on the filter paper was again stirred in pure water and subjected to suction filtration. Filtration was repeated three times until the filtrate reached 6 to 7 with pH test paper.
得られた粉末は、 1 10°Cに設定した乾燥器内に一昼夜放置し、 乾燥させて可 視光応答型材料を得た。 参考例 4 (硫酸チタンからの可視光応答材料の製造方法 (1) )  The obtained powder was left in a dryer set at 110 ° C. for a day and a night, and dried to obtain a visible light responsive material. Reference Example 4 (Method of manufacturing visible light responsive material from titanium sulfate (1))
硫酸チタン (I V) 溶液として、 硫酸チタン (I V) 水溶液(関東化学 (株)製商 品名:硫酸チタン (I V) (鹿 1級、 硫酸チタン (I V) を 24重量%以上含有する 水溶夜))の原液をそのまま用いた。この水溶液 50 gをスターラーで混ぜながら、 アンモニア水(アンモニア原液:水 =1 : 1) 58m lをビュレツ卜でできるだけ速 やかに加えながら攪拌を続けたところ、 白濁が始まり徐々に結度が高まった。 さ らにアンモニア水を加え、 万能試験紙で pHが 7になるよう調整した。 24時間 経過後に吸引濾過器で濾過した。 濾紙についた白色物は、 pHが 11に調整した アンモニア水中で撹拝し、 再度濾過することを 8回繰り返し、 洗浄を行い、 白色 の粉末を得た。 得られた粉末は、 50°Cで乾燥して、 試料粉末を得た。 得られた 加水分解物(試料粉末)の BET表面積は、 308. 7m2Zgであった。 得られ た試料粉末 8 gを坩堝に入れ、 電気炉に移し、 400°Cで 60分間焼成し、 BE T表面積が、 89. 4m2/gの明るい黄色の粉末を 6. 3 g得た。 この粉末を X線回折(XRD)試験の結果、 アナ夕ース型酸化チタンが含まれていることが分 かる。 さらに、 X線光電子分光分析装置(アルバックフアイ(株)製商品名: Qu a n t urn 2000 )により測定した X線光電子分光法(XPS)試験の結果、 得 られるチタンの 2 p電子に帰属されるピークの面積と、 酸素の 1 s電子に帰属さ れるピークの面積とから算出される酸素元素とチタン元素との存在比(O/T i) は、上記粉末の結晶構造には酸素欠損があることを示した。この酸素欠損により、 粉末 Aは、 明るい又は淡い黄色に着色し、 可視光活性 (光触媒活性)であると考え られる。 Titanium sulfate (IV) solution as titanium sulfate (IV) solution (Trade name: Kanto Chemical Co., Ltd .: Titanium sulfate (IV) (deer grade 1, water-soluble night containing titanium sulfate (IV) at 24% by weight or more)) The stock solution of was used as it was. While stirring 50 g of this aqueous solution with a stirrer and adding 58 ml of aqueous ammonia (ammonia stock solution: water = 1: 1) as quickly as possible with a burette, stirring was continued. Was. Further, ammonia water was added, and the pH was adjusted to 7 with a universal test strip. After 24 hours, the mixture was filtered with a suction filter. The white matter attached to the filter paper was washed in ammonia water adjusted to pH 11 and filtered again eight times, and washed to obtain a white powder. The obtained powder was dried at 50 ° C to obtain a sample powder. The BET surface area of the obtained hydrolyzate (sample powder) was 308.7 m 2 Zg. Obtained 8 g of the sample powder placed in the crucible was transferred to an electric furnace and baked at 400 ° C. for 60 minutes to obtain 6.3 g of a bright yellow powder having a BET surface area of 89.4 m 2 / g. An X-ray diffraction (XRD) test of this powder shows that it contains anabsorbate-type titanium oxide. Furthermore, as a result of an X-ray photoelectron spectroscopy (XPS) test measured with an X-ray photoelectron spectrometer (trade name: Quarturn 2000, manufactured by ULVAC-FAI Co., Ltd.), the peak attributed to the 2p electron of titanium obtained was obtained. The abundance ratio (O / T i) between the oxygen element and the titanium element calculated from the area of the peak and the area of the peak attributed to the 1 s electron of oxygen indicates that the crystal structure of the powder has oxygen deficiency. showed that. Due to this oxygen deficiency, Powder A is colored bright or pale yellow, and is considered to have visible light activity (photocatalytic activity).
得られた粉末の E S Rスペクトルを測定した。 測定は、 真空中 (0. l To r r) 77 Kで行った。 測定条件は参考例 1と同様である。  The ESR spectrum of the obtained powder was measured. The measurement was performed at 77 K in a vacuum (0.1 Torr). The measurement conditions are the same as in Reference Example 1.
図 5 (測定温度 77Κ) に、 420 nm以下の光 (500Wの高圧水銀ランプ を使用) をカットするフィルター (L— 42) を介して光照射した状態で測定し た E S Rスペクトルを示す。 尚、 喑黒下での ESRスペクトルも測定したが、 実 質的にシグナルは観測されなかった。 図 5に示すスペクトルでは、 g値力 2. 004〜2. 007である主シグナル、 並びに g値が 1. 985〜1. 986及び 2. 024である 2つの副シグナルが 観測された。  Fig. 5 (measuring temperature 77Κ) shows the ESR spectrum measured with light irradiated through a filter (L-42) that cuts light below 420 nm (using a 500 W high-pressure mercury lamp). In addition, the ESR spectrum under the black bottom was also measured, but no signal was practically observed. In the spectrum shown in FIG. 5, a main signal having a g-value of 2.004 to 2.007 and two sub-signals having g-values of 1.985 to 1.986 and 2.024 were observed.
尚、 白色の加水分解物を 50 で乾燥してものには、 g値が 2. 004-2. 007である主シグナル、 並びに g値が 1. 985〜1. 986及び 2. 024 である 2つの副シグナルは、 いずれの ESR測定条件においても観測されなかつ た。 参考例 5 (硫酸チタンからの可視光応答材料の製造方法 (2) ) Incidentally, when the white hydrolyzate was dried at 50, the main signal having a g-value of 2.004-2.007 and the g-values of 1.985 to 1.986 and 2.024 2 One side signal was not observed under any of the ESR measurement conditions and Was. Reference Example 5 (Production method of visible light responsive material from titanium sulfate (2))
24%硫酸チタン溶液(関東化学製、 鹿一級) 50 gを蒸留水 400 mLに加え、 マグ ネチックスターラーで撹拌する。そこに、濃アンモニア水(28%、関東化学、特級) を加えて中和反応を行う。 中和反応後は pH 7に調製し、 15分撹拌する。 この時 スターラーが回らなくなる時があるので、 蒸留水を加える(200 mL)。 15 分後撹拌 を止めた後にしばらく放置し、 上澄み液を捨てる。 濾過はヌッチェにて行い、 こ の時 2Lのアンモニア水(5: 95)で洗浄する。この作業はろ紙上でケーキ状になつた ところでアンモニア水を追加する方法である。 その後得られたものを 60°C、 24 時間乾燥させ、 400°C、 1時間で焼成を行って本発明の可視光応答型材料を得た。 得られた材料の NO酸化活性を以下の試験例により測定し、 表 2に示す。 試験例 (N Ox除去活性)  Add 50 g of a 24% titanium sulfate solution (Kanto Kagaku, Shika grade) to 400 mL of distilled water, and stir with a magnetic stirrer. There, concentrated ammonia water (28%, Kanto Chemical, special grade) is added to perform neutralization reaction. After the neutralization reaction, adjust the pH to 7 and stir for 15 minutes. At this time, add distilled water (200 mL) because the stirrer may not rotate. After 15 minutes, stop stirring and let stand for a while. Discard the supernatant. Filtration is performed by Nutsche, and at this time, it is washed with 2 L of aqueous ammonia (5:95). This is a method of adding ammonia water when it becomes a cake on filter paper. Thereafter, the obtained product was dried at 60 ° C for 24 hours, and calcined at 400 ° C for 1 hour to obtain a visible light responsive material of the present invention. The NO oxidation activity of the obtained material was measured by the following test examples, and is shown in Table 2. Test example (N Ox removal activity)
試料 0 · 2 gガラスプレー卜(6 X 6 cm)にそれぞれ塗布したものを、 パイレ ックスガラス製反応容器(内径 160mm、 厚さ 25 mm)内に設置した。 光源に は、 300Wクセノンランプを用いた照射装置(日本分光 (株)製商品名: SM— 5 型 CT一 10)により、 半値幅 20 nmの単光色として、 光を照射した。  Samples applied to 0.2 g glass plates (6 x 6 cm) were placed in a Pyrex glass reaction vessel (inner diameter 160 mm, thickness 25 mm). Light was emitted as a single light color with a half-value width of 20 nm using an irradiator using a 300 W xenon lamp (trade name: SM-5 type CT-10, manufactured by JASCO Corporation).
この反応容器に湿度〇%RHの模擬汚染空気(NO: 1 111)を1. 5リット ル Z分の流速で連続的に供給し、 反応出口における N O及び N O 2の濃度変化を モニターした。 NOの濃度は、 オゾンを用いた化学発光法により測定した。 1時 間のモニターの値の累積値から各測定波長における NO Xの除去率(%) ( = NO 減少率一 N02生成率) を求めた。 尚、 NO濃度の測定には、 Monitor labs Inc. 製、 Nitrogen Oxides analyzer Model 8840を用いた。 表 2 Simulated contaminated air (NO: 1111) with a humidity of 〇% RH was continuously supplied to the reaction vessel at a flow rate of 1.5 liters Z, and the change in the concentration of NO and NO 2 at the reaction outlet was monitored. The NO concentration was measured by a chemiluminescence method using ozone. Removal rate of the NO X at each measurement wavelength from the accumulated value of the monitor value of one hour a (%) (= NO reduction rate one N0 2 generation rate) were obtained. For measurement of NO concentration, Monitor labs Inc. Nitrogen Oxides analyzer Model 8840 was used. Table 2
Figure imgf000024_0001
得られた材料の ESRスペクトルを測定した。 測定は、 真空中 (0. l To r r) 77Kで行った。 測定条件は参考例 1と同様である。
Figure imgf000024_0001
The ESR spectrum of the obtained material was measured. The measurement was performed at 77 K in a vacuum (0.1 l rr). The measurement conditions are the same as in Reference Example 1.
図 6 (測定温度 77K) に 420 nm以下の光 (500Wの高圧水銀ランプを 使用) をカットするフィルター (L— 42) を介して光照射した状態で測定した E S Rスぺクトルを示す。 図 6に示すスペクトルでは、 g値が 2. 004〜2. 007である主シグナル、 並びに g値が 1. 985〜1. 98 6及び 2. 024である 2つの副シグナルが 観測された。  Figure 6 (measurement temperature 77K) shows the ESR spectrum measured with light irradiated through a filter (L-42) that cuts light below 420 nm (using a 500W high-pressure mercury lamp). In the spectrum shown in FIG. 6, a main signal having a g value of 2.004 to 2.007, and two sub-signals having g values of 1.985 to 1.986 and 2.024 were observed.
尚、 白色の加水分解物を 50°Cで乾燥してものには、 g値が 2. 004〜2. 007である主シグナル、 並びに g値が 1. 985〜1. 9 86及び 2. 024 である 2つの副シグナルは、 いずれの E S R測定条件においても観測されなかつ た。 参考例 6 (アルコキシドからの製造方法) In addition, when the white hydrolyzate was dried at 50 ° C, the main signal having a g value of 2.004 to 2.007, and the g value of 1.985 to 1.986 and 2.024 The two side signals were not observed under any of the ESR measurement conditions. Reference Example 6 (Production method from alkoxide)
純水 200gに撹拌しながらチタンイソプロポキシド 30gを徐々に加えた(水とチ タンイソプロボキシドモル比 =約 10: 1) 。 得られた溶液を約 30分撹拌した後、 沈殿物 (加水分解物) を濾取し、 沈殿物 (加水分解物) は、 純水に懸濁させて 1 日撹拌したものを濾過し、 1 10°Cで乾燥し、 400°Cで 1時間焼成した。 得られた白 色の粉末を試料 Aとする。  While stirring to 200 g of pure water, 30 g of titanium isopropoxide was gradually added (molar ratio of water to titanium isopropoxide = about 10: 1). After the obtained solution was stirred for about 30 minutes, the precipitate (hydrolyzate) was collected by filtration. The precipitate (hydrolyzate) was suspended in pure water and stirred for 1 day. It was dried at 10 ° C and calcined at 400 ° C for 1 hour. The obtained white powder is used as Sample A.
沈殿物 (加水分解物) を純水に懸濁させて 1日撹拌する代わりに、 アンモニア 水 (アンモニアの濃度: 6 % ) に沈殿物 (加水分解物) を懸濁させて 1日撹拌し た使した以外は、 上記操作と同様にして、 黄色粉末を試料 Bとする。  Instead of suspending the precipitate (hydrolyzate) in pure water and stirring for 1 day, the precipitate (hydrolyzate) was suspended in ammonia water (concentration of ammonia: 6%) and stirred for 1 day. The yellow powder is used as Sample B in the same manner as above, except that it was used.
試料 A及び Bの NO活性を前記試験方法と同様にして測定した。結果を以下の表 3に示す。 ' The NO activities of Samples A and B were measured in the same manner as in the above test method. The results are shown in Table 3 below. '
表 3 Table 3
NO活性  NO activity
試料 A  Sample A
Figure imgf000026_0001
Figure imgf000026_0001
試料 B  Sample B
Figure imgf000026_0002
表 3に示す結果から、 可視光応答性を有する酸化チタンからなる材料は、 酸化 チタン(チタン加水分解物)をアンモニアの共存下で熱処理することで得られるこ とが分かる。 得られた材料の E S Rスぺクトルを測定した。 測定は、 真空中 (0 . 1 T o r r ) 7 7 Kで行った。 測定条件は参考例 1と同様である。 図 7 (測定温度 77K) に 420 nm以下の光 (500Wの高圧水銀ランプを 使用) をカットするフィルタ一 (L— 42) を介して光照射した状態で測定した ESRスペクトルを示す。 図 7に示すスペクトルでは、 g値が 2. 004〜2. 007である主シグナル、 並びに g値が 1. 985〜1. 986及び 2. 024である 2つの副シグナルが 観測された。
Figure imgf000026_0002
From the results shown in Table 3, it can be seen that a material composed of titanium oxide having visible light response can be obtained by heat-treating titanium oxide (hydrolyzate of titanium) in the presence of ammonia. The ESR spectrum of the obtained material was measured. The measurement was performed at 77 K in a vacuum (0.1 Torr). The measurement conditions are the same as in Reference Example 1. Figure 7 (measurement temperature 77K) shows the ESR spectrum measured with the light irradiated through a filter (L-42) that cuts light below 420 nm (using a 500 W high-pressure mercury lamp). In the spectrum shown in FIG. 7, a main signal having a g value of 2.004 to 2.007, and two sub-signals having g values of 1.985 to 1.986 and 2.024 were observed.
尚、 白色の加水分解物を 50 °Cで乾燥してものには、 g値が 2. 004〜 2. 007である主シグナル、 並びに g値が 1. 985〜1. 986及び 2. 024 である 2つの副シグナルは、 いずれの E S R測定条件においても観測されなかつ た。 . 参考例 7 (プラズマ法)  When the white hydrolyzate was dried at 50 ° C, the main signal with a g value of 2.004 to 2.007 and the g value of 1.985 to 1.986 and 2.024 One of the two side signals was not observed under any of the ESR measurement conditions. Reference Example 7 (plasma method)
アナターゼ型ニ酸化チタン粉末 (石原産業 (株) 製、 ST—01) 5 gを内径 5 cm, 長さ 100 cmの石英製反応管に収容した。 この石英製反応管に RF プ ラズマ発生装置を装着し、 反応管系内を真空ポンプで 0. 1 トールまで排気した 後、 500Wの電磁波 (13. 56MHz) を反応管内のアナ夕一ゼ型ニ酸化チ タン粉末に照射し、 プラズマを発生させた。 そして、 H2ガス (流量を 500m l Z分) を系内の圧力が約 1 トールとなるように導入した。 反応管内のアナターゼ 型二酸化チタン粉末を攪拌しながら 30分間処理した。 尚、 ニクロム線による抵 抗加熱により石英管壁を 400°Cに加熱し、 その温度を反応期間中維持した。 得られたアナターゼ型ニ酸化チタン粉末を X線光電子分光法(XP S)により、 チタンの 2 p電子に帰属されるピーク (458. 8 e V (T i 2 p 3/2) 及び 464. 6 e V (T i 2 p 1/2) の面積とチタンと結合している酸素の 1 s電 子に帰属されるピーク (531. 7 e V (O l s) の面積とを求めた。 得られた 面積比 (O 1 s/T i 2 p) は、 1. 94であった。 尚、 プラズマ処理しないァ ナターゼ型ニ酸化チタン粉末の面積比 (O 1 s/T i 2 p) は、 2. 00であつ た。 5 g of anatase type titanium dioxide powder (ST-01, manufactured by Ishihara Sangyo Co., Ltd.) was placed in a quartz reaction tube having an inner diameter of 5 cm and a length of 100 cm. An RF plasma generator was attached to this quartz reaction tube, and the inside of the reaction tube system was evacuated to 0.1 Torr by a vacuum pump. Then, 500 W of electromagnetic waves (13.56 MHz) were introduced into the reaction tube. The plasma was generated by irradiating the titanium oxide powder. Then, H 2 gas (flow rate of 500 ml Z) was introduced so that the pressure in the system was about 1 Torr. The anatase type titanium dioxide powder in the reaction tube was treated for 30 minutes while stirring. The quartz tube wall was heated to 400 ° C by resistance heating with a nichrome wire, and the temperature was maintained during the reaction. The obtained anatase-type titanium dioxide powder was subjected to X-ray photoelectron spectroscopy (XPS) to determine the peak (458.8 eV (T i 2 p 3/2)) 464.6 e V (T i 2 p 1/2) area and peak (531.7 e V (O ls) area) attributed to the 1 s electron of oxygen bonded to titanium The obtained area ratio (O 1 s / T i 2 p) was 1.94, and the area ratio (O 1 s / T i 2 p) of the anatase-type titanium dioxide powder not subjected to the plasma treatment. Was 2.00.
また、 この試料を 1週間大気中に放置した後に上記と同様に測定した面積比 (O 1 s /T i 2 p) も、 1. 94であった。 さらに、 この試料の 1力月後の面 積比 (〇 1 sZT i 2 p) にも変化はなかった。 また、 上記プラズマ処理前の試料及び処理後の試料を X線回折試験に付した結 果、 プラズマ処理の前及び後で、 アナ夕一ゼ型ニ酸化チタンに変化は見られなか つた。  The area ratio (O 1 s / Ti 2 p) measured in the same manner as above after leaving this sample in the air for one week was 1.94. Furthermore, there was no change in the area ratio (〇 1 sZT i 2 p) of this sample after one month. In addition, as a result of subjecting the sample before the plasma treatment and the sample after the treatment to an X-ray diffraction test, no change was observed in the ana-type titanium dioxide before and after the plasma treatment.
また、 上記プラズマ処理前の試料及び処理後の試料の ESRスぺクトルを測定 した。 測定は、 真空中 (0. lTo r r) 、 77 Kで行った。 測定条件は以下の 通りである。  The ESR spectra of the sample before the plasma treatment and the sample after the treatment were measured. The measurement was performed at 77 K in a vacuum (0.1 Torr). The measurement conditions are as follows.
〔基本的パラメーター〕 [Basic parameters]
測定温度 77 K Measurement temperature 77 K
フィールド 330mT±25mT Field 330mT ± 25mT
走査時間 4分 Scan time 4 minutes
Mo d. 0. lmT Mod. 0.lmT
ゲイン 5X 10 Gain 5X 10
パワー 0. lmW タイムコンスタント 0. 0 3秒 Power 0.lmW Time constant 0.0 3 seconds
光源 高圧水銀ランプ 5 0 0W Light source High-pressure mercury lamp 500 W
フィルター L-4 2 Filter L-4 2
〔試料作成〕  (Sample preparation)
真空脱気 1時間以上 Vacuum deaeration 1 hour or more
〔g値の計算〕  (Calculation of g value)
Mn2+マーカ一 (gmn= l . 9 8 1) を基準として Based on Mn 2+ marker one (g mn = l. 9 8 1)
g = gmnXHmn/ (Hmn + AH) g = g mn XH mn / (H mn + AH)
Hmn: Mn2+マーカーの磁場、 ΔΗ: Hmnからの磁場の変化量 プラズマ処理前の試料の E S Rスペクトルを図 8に示す。 図中 (a) が喑黒下 での E S Rスペクトル、 (b) が 42 0 nm以下の光 (5 0 0Wの高圧水銀ラン プを使用) をカットするフィルター (L— 4 2) を介して光照射した状態で測定 した E S Rスぺクトルである。 H mn : magnetic field of the Mn 2+ marker, ΔΗ: change in magnetic field from H mn Figure 8 shows the ESR spectrum of the sample before plasma treatment. In the figure, (a) is the ESR spectrum under black and (b) is the light passing through a filter (L-42) that cuts light below 420 nm (using a 500 W high-pressure mercury lamp). This is the ESR spectrum measured in the irradiated state.
プラズマ処理後の試料の E SRスペクトルを図 9に示す。 図中 (a) が暗黒下 での E SRスペクトル、 (b) が 42 0 nm以下の光 (5 0 0Wの高圧水銀ラン プを使用) をカットするフィルター (L— 4 2) を介して光照射した状態で測定 した E SRスペクトル、 (c) がフィルター (L— 42) を介さずに光照射した 状態で測定した E S Rスぺクトルである。  Figure 9 shows the ESR spectrum of the sample after the plasma treatment. In the figure, (a) is the ESR spectrum in the dark, and (b) is the light passing through a filter (L-42) that cuts light below 420 nm (using a high-pressure mercury lamp of 500 W). The ESR spectrum measured in the illuminated state, and (c) is the ESR spectrum measured in the illuminated state without passing through the filter (L-42).
図 8と図 9に示す E SRスぺクトルは同じ条件で測定したものである。  The ESR spectra shown in FIGS. 8 and 9 were measured under the same conditions.
両者を比較すると、上記で得られた触媒は、出発原料には見られない、 g = 2. 0 0 3〜4に特異的なシグナルを有し、 しかもこのシグナルは、 42 0 nm以下 の光をカットした光照射下で、 増幅される。 上記で得られた触媒 (プラズマ処理 したアナターゼ型ニ酸化チタン) は、 4 2 0 nm以上の可視光で強度が強くなる g値 2 . 0 0 3〜4にシグナルが観測された。 さらに、 このかっこのピークは、 試料を 1週間大気中に放置した後、 再度測定した際にも維持されていた。 また、 上記で得られた触媒は、 g値が 1 . 9 6にシグナルを示す T i 3+に帰属されるシ グナルは観測されなかつた。 産業上の利用分野 Comparing the two, the catalyst obtained above has a signal specific to g = 2.03-4, which is not found in the starting material, and the signal is less than 420 nm. It is amplified under the light irradiation that cut The catalyst obtained above (plasma treatment In the anatase-type titanium dioxide), a signal was observed at a g value of 2.03 to 4 at which the intensity increased with visible light of 420 nm or more. In addition, the peak of this bracket was maintained when the sample was left in the air for one week and measured again. Further, in the catalyst obtained above, no signal attributed to Ti 3+ showing a signal with a g value of 1.96 was not observed. Industrial applications
本発明の方法では、 可視光を含む光を連続的または断続的に照射した可視光応 答性光触媒または該可視光応答性光触媒を含む素材を含む水に種子を浸漬する ことで、 種子の発芽が促進され、 且つ発芽率も向上し、 同時に、 種子も殺菌され る効果を奏する。 従って、 本発明の方法によれば、 種子の発芽工程におけるトー タルコストを安くすることができる。  In the method of the present invention, the seeds are germinated by immersing the seeds in water containing a visible light responsive photocatalyst or a material containing the visible light responsive photocatalyst, which is continuously or intermittently irradiated with light containing visible light. And the germination rate is improved, and at the same time, the seeds are also killed. Therefore, according to the method of the present invention, the total cost in the seed germination step can be reduced.

Claims

■ 請 求 の 範 囲 ■ Scope of request
1 . 波長 4 2 0 n m以上の光の作用により活性を有する光触媒 (以下、可視光応 答性光触媒という)または該可視光応答性光触媒を含む素材と水との共存下にあ る種子に、 可視光を含む光を連続的または断続的に照射することを特徴とする、 種子の発芽促進方法。 1. A photocatalyst that is activated by the action of light having a wavelength of 420 nm or more (hereinafter referred to as a visible light responsive photocatalyst) or a seed that is coexistent with water and a material containing the visible light responsive photocatalyst, A method for promoting seed germination, comprising continuously or intermittently irradiating light including visible light.
2 . 可視光応答性光触媒を含む素材が有機コーティング膜、 無機コーティング 膜または繊維である請求項 1に記載の方法。  2. The method according to claim 1, wherein the material containing a visible light responsive photocatalyst is an organic coating film, an inorganic coating film, or a fiber.
3 . 可視光応答性光触媒が、 少なくともアナターゼ型酸化チタンを含む酸化チ タンであり、 かつ真空中、 7 7 Kにおいて 4 2 0 n m以上の波長を有する光の照 射下で測定した E S Rにおいて、 g値が 2 . 0 0 4〜2 . 0 0 7である主シグナ ルと g値が 1 . 9 8 5〜1 . 9 8 6及び 2 . 0 2 4である 2つの副シグナルが観 測され、 かつこれらの 3つのシグナルは真空中、 7 7 K、 暗黒下において微小に 観測されるか、 又は実質的に観測されない可視光応答型材料である請求項 1また は 2に記載の方法。  3.The visible light-responsive photocatalyst is titanium oxide containing at least anatase-type titanium oxide, and the ESR measured under the irradiation of light having a wavelength of 420 nm or more at 77 K in a vacuum is as follows: A main signal with a g-value of 2.00 to 2.007 and two sub-signals with a g-value of 1.985 to 1.986 and 2.024 were observed. The method according to claim 1, wherein the three signals are visible light responsive materials that are minutely observed or substantially not observed in vacuum at 77 K in the dark.
4. 可視光応答性光触媒が、 安定した酸素欠陥を有する二酸化チタンからなる 可視型光触媒である請求項 1または 2に記載の方法。  4. The method according to claim 1, wherein the visible light responsive photocatalyst is a visible photocatalyst comprising titanium dioxide having a stable oxygen vacancy.
5 . 可視光を含む光が発光ダイォードの光である請求項 1〜4のいずれか 1項 に記載の方法。  5. The method according to any one of claims 1 to 4, wherein the light containing visible light is light of a light emitting diode.
6 . 発光ダイオードが紫色発光ダイオード、 青色発光ダイオード、 緑色発光ダ ィオード、 黄色発光ダイオード、 または白色発光ダイオードである請求項 5に記 載の方法。  6. The method according to claim 5, wherein the light emitting diode is a violet light emitting diode, a blue light emitting diode, a green light emitting diode, a yellow light emitting diode, or a white light emitting diode.
PCT/JP2002/002665 2001-03-21 2002-03-20 Method of promoting germination WO2002074060A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-81512 2001-03-21
JP2001081512A JP2004357501A (en) 2001-03-21 2001-03-21 Method for promoting germination

Publications (1)

Publication Number Publication Date
WO2002074060A1 true WO2002074060A1 (en) 2002-09-26

Family

ID=18937606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/002665 WO2002074060A1 (en) 2001-03-21 2002-03-20 Method of promoting germination

Country Status (2)

Country Link
JP (1) JP2004357501A (en)
WO (1) WO2002074060A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113980732A (en) * 2020-07-27 2022-01-28 丰益(上海)生物技术研发中心有限公司 Nutritional and healthy sesame oil, sesame product and preparation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4733438B2 (en) * 2005-06-21 2011-07-27 株式会社豊田中央研究所 Closed container for plant growth and plant growth method
JP7243119B2 (en) * 2018-10-15 2023-03-22 富士通株式会社 Plant germination and growth promoter, member, device, and hydroponics method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182205A (en) * 1992-12-22 1994-07-05 Toyota Central Res & Dev Lab Inc Production of photocatalyst and the photocatalyst
JPH10174881A (en) * 1996-10-18 1998-06-30 Ishihara Sangyo Kaisha Ltd Photocatalyst body and its production
JP2000116207A (en) * 1998-10-13 2000-04-25 Yoshihiro Kojima Seed for environmental clean-up

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06182205A (en) * 1992-12-22 1994-07-05 Toyota Central Res & Dev Lab Inc Production of photocatalyst and the photocatalyst
JPH10174881A (en) * 1996-10-18 1998-06-30 Ishihara Sangyo Kaisha Ltd Photocatalyst body and its production
JP2000116207A (en) * 1998-10-13 2000-04-25 Yoshihiro Kojima Seed for environmental clean-up

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Kagaku to Kyoiku", THE CHEMICAL SOCIETY OF JAPAN, vol. 48, no. 3, 2000, pages 198 - 199, XP002952656, Retrieved from the Internet <URL:http//www.chemistry.or.jp/> *
JON E. KEELEY AND C.J. FOTHERINGHAM, SCIENCE, vol. 276, no. 5316, 1997, pages 1248 - 1250, XP002952655 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113980732A (en) * 2020-07-27 2022-01-28 丰益(上海)生物技术研发中心有限公司 Nutritional and healthy sesame oil, sesame product and preparation method thereof
CN113980732B (en) * 2020-07-27 2024-02-20 丰益(上海)生物技术研发中心有限公司 Nutritional and healthy sesame oil, sesame product and preparation method thereof

Also Published As

Publication number Publication date
JP2004357501A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
WO2001056928A1 (en) Material responsive to visible light and process for producing the same
CN101678345B (en) Titanium oxide photocatalyst and method for producing the same
US20070051668A1 (en) Apatite and method for producing the same, and apatite base material
KR100916930B1 (en) Ceramics dispersion liquid, method for producing the same, and hydrophilic coating agent using the same
KR20020031054A (en) Photocatalyst, process for producing the same and photocatalyst coating composition comprising the same
Bhatia et al. Effect of aging time on gas sensing properties and photocatalytic efficiency of dye on In-Sn co-doped ZnO nanoparticles
Onoda et al. Synthesis of cerium phosphate white pigments from cerium carbonate for cosmetics
WO2002068576A1 (en) Bleaching composition and method of bleaching tooth
CN105776311B (en) A kind of preparation method of copper oxide nano material
WO2002074060A1 (en) Method of promoting germination
WO2002087514A1 (en) Fluorine coating composition and method of fluorine coating
Warshagha et al. Highly efficient and stable AgI–CdO nanocomposites for photocatalytic and antibacterial activity
US20060034752A1 (en) Visible-light-activated photocatalyst and method for producing the same
JP3215698B1 (en) Visible light responsive material and manufacturing method thereof
Bouloudenine et al. Chemical route manufactured ZnO nanoparticles and their biological accumulation
JP2002331225A (en) Visible light-responsive material and its manufacturing process
JP3981757B2 (en) Photocatalyst body and photocatalyst body coating agent using the same
Mai et al. The effect of ZnO addition into TiO2 nano photocatalyst on the degradation of dye compound in aqueous solution under UV-LED irradiation
JP2002326910A (en) Bleaching composition and method for bleaching tooth
JP2002255555A (en) Visible light responsive material and method for producing the same
JP2002282652A (en) Nitrogen oxide reducing method
JP2001302548A (en) Auxiliary agent for oncotherapy and device therefor
WO2002053284A1 (en) Method of activating a photocatalyst and device therefor
JP4496427B2 (en) Method for producing titanium oxide for visible light responsive photocatalyst
Onoda et al. Synthesis of Cerium Phosphate White Pigments from Cerium Oxalate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP