WO2002053284A1 - Method of activating a photocatalyst and device therefor - Google Patents

Method of activating a photocatalyst and device therefor Download PDF

Info

Publication number
WO2002053284A1
WO2002053284A1 PCT/JP2001/011576 JP0111576W WO02053284A1 WO 2002053284 A1 WO2002053284 A1 WO 2002053284A1 JP 0111576 W JP0111576 W JP 0111576W WO 02053284 A1 WO02053284 A1 WO 02053284A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting diode
visible light
responsive photocatalyst
light emitting
Prior art date
Application number
PCT/JP2001/011576
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichi Sugihara
Original Assignee
Ecodevice Laboratory Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ecodevice Laboratory Co., Ltd. filed Critical Ecodevice Laboratory Co., Ltd.
Priority to JP2002554228A priority Critical patent/JPWO2002053284A1/en
Priority to KR10-2003-7008845A priority patent/KR20030072373A/en
Publication of WO2002053284A1 publication Critical patent/WO2002053284A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/37Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups
    • C07C45/39Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of >C—O—functional groups to >C=O groups being a secondary hydroxyl group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation

Definitions

  • the present invention relates to a method for activating a photocatalyst and an apparatus comprising a photocatalyst and a light source.
  • photocatalysts composed of anatase-type titanium dioxide can be used for antibacterial tiles, self-cleaning building materials, superhydrophilic materials, deodorizing and deodorizing materials, water purification, cancer treatment, etc.
  • the Lean Revolution (Akira Fujishima et al.) Has been actively developing various applications.
  • WO94 / 11092 discloses an air treatment method using a photocatalyst under indoor lighting.
  • Japanese Patent Application Laid-Open No. 7-102678 discloses a method for preventing hospital-acquired infection using a photocatalyst. JP 8 6 7 8 3 5 and JP Hei 8 - 1 6 4 3 3 4 No.
  • 2000-218784 describes a dental light irradiation device used for sterilization and treatment of the oral cavity such as periodontal disease or decolorization of teeth by light irradiation, This is a dental irradiation device that uniformly irradiates the entire dentition with light and decolorizes using a plurality of light-emitting diodes arranged curved along the front surface of the dentition.
  • ultraviolet light is not contained as much as possible in consideration of adverse effects on the human body.
  • the conventional photocatalyst shows little activity, and the effect of the photocatalyst is very weak.
  • an object of the present invention is to provide a method and apparatus for activating a photocatalyst, which uses a light emitting diode containing a high content of visible light or a light emitting diode containing only visible light as a light source. Disclosure of the invention
  • the present invention relates to a method for activating a photocatalyst, in which a photocatalyst (visible light responsive photocatalyst) having activity by the action of light having a wavelength of 420 nm or more is irradiated with light from a light emitting diode. Further, the present invention provides an apparatus having a layer containing a visible light responsive photocatalyst on a light emitting diode substrate, a light emitting diode, a visible light responsive photocatalyst, and light from the light emitting diode being applied to the visible light responsive photocatalyst. Apparatus including light transport means for transport About. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is an ESR spectrum of the visible light responsive photocatalyst (Reference Example 1) used in the present invention measured at 77K in vacuum.
  • the upper row shows the spectrum in the dark
  • the middle row shows the spectrum under irradiation of light having a wavelength of 420 nm or more (cut off the light of less than 420 nm out of the mercury lamp light)
  • the lower row shows the spectrum. This is a spectrum when a light of a mercury lamp is irradiated without cutting off light of less than 420 nm.
  • FIG. 2 is an ESR spectrum of the visible light responsive photocatalyst (Reference Example 1) used in the present invention measured at room temperature in a vacuum.
  • the upper part is a spectrum in the dark
  • the middle part is a spectrum under irradiation of light having a wavelength of 420 nm or more (the light of 420 nm or less of the light of a mercury lamp is cut off)
  • the lower part is a spectrum.
  • the spectrum is obtained when the light of a mercury lamp is irradiated without cutting off light of less than 420 nm.
  • Figure 3 shows the XRD measurement results of the product of Reference Example 1 (upper) and the hydrolyzate (dried at 50 ° C) (lower).
  • Figure 4 shows the emission spectra of the blue light emitting diode (B LUE), the green light emitting diode (GREEN), and the white light emitting diode (WHITE).
  • FIG. 5 shows the results of oxidation of isopropanol by a blue light emitting diode in Example 3.
  • Fig. 6 shows the product of Reference Example 4 (visible light responsive photocatalyst) in a vacuum at 77 K: light with a wavelength of 420 nm or more (of the mercury lamp, the light less than 420 nm is turned off).
  • 2 is an ESR spectrum measured under the irradiation of FIG.
  • Figure 7 shows that the product (visible light responsive photocatalyst) of Reference Example 5 under vacuum at 77K, with light having a wavelength of 420 nm or more (of the light of a mercury lamp, the light of less than 420 nm was cut off). It is an ESR spectrum measured under irradiation.
  • Figure 8 shows that the product of Reference Example 6 (visible light responsive photocatalyst) was irradiated with light having a wavelength of more than 420 nm at 77K (power of the mercury lamp was less than 420 nm) in a vacuum. ESR spectrum measured under irradiation. BEST MODE FOR CARRYING OUT THE INVENTION
  • the visible light responsive photocatalyst used in the present invention contains at least anatase-type titanium dioxide and has a g-value of ESR measured in a vacuum at 77 K under irradiation of light having a wavelength of 420 nm or more at 77 K.
  • the main signal with S2.004 to 2.07 and the two subsignals with g-values of 1.985 to 1.986 and 2.024 are observed.
  • the above three signals (main signal and two subsignals) are minutely observed or substantially observed in vacuum at 77K and in darkness. That is not done.
  • the visible light-responsive photocatalyst used in the present invention preferably contains anatase type titanium dioxide as a main component, and may further contain rutile type titanium dioxide and / or amorphous titanium dioxide. Also, the anatase type titanium dioxide does not necessarily have to have high crystallinity.
  • FIG. 1 shows a typical spectrum of the visible light responsive photocatalyst used in the present invention measured at 77 in a vacuum. In the figure, the upper row shows the spectrum under black, and the middle row shows the spectrum under irradiation of light having a wavelength of 420 nm or more (light of less than 420 nm of the mercury lamp light is cut off). It is.
  • the lower part shows the spectrum when the light of the mercury lamp is irradiated without cutting off the light of less than 420 nm.
  • the upper, middle, and lower rows are all the results measured under the same gain (GA IN).
  • Comparison of the upper and middle spectrums in Fig. 1 clearly shows that in the middle spectrum, the main signal with a g-value force of S 2.004 to 2.007 and a g-value of 1.985-1.
  • the two sub-signals, 986 and 2.024 are stronger than in the upper spectrum.
  • the main signals with g values of 2.004 to 2.007 and the g values of 1.985 to 1.986 and 2.024 2 The intensities of the two sub-signals are substantially the same whether or not the irradiation light contains light of 420 nm or less.
  • the visible light responsive photocatalyst used in the present invention is also measured by ESR under irradiation of light having a wavelength of at least 420 nm in black and at room temperature in the vacuum at room temperature. It can be done.
  • ESR ESR under irradiation of light having a wavelength of at least 420 nm in black and at room temperature in the vacuum at room temperature. It can be done.
  • the upper row shows the spectrum in the dark
  • the middle row shows the spectrum under the irradiation of light having a wavelength of 420 nm or more (cut off the light of less than 420 nm out of the mercury lamp light). ⁇ It is a kutor.
  • the lower part is a spectrum when the light of a mercury lamp is irradiated without cutting off light of less than 420 nm.
  • GAIN gain
  • the visible light responsive photocatalyst used in the present invention has, in addition to the above signals, a g-value force of S 2 .7 in ESR measured in vacuum at 77 K under irradiation with light having a wavelength of 420 nm or more. It may further have a side signal that is between 09 and 2.010. The side signal having a g value of 2.009 to 2.010 is shown in the middle ESR spectrum of FIG.
  • the visible light responsive photocatalyst used in the present invention can be oxygen-deficient titanium oxide having a bond ratio between Ti (titanium) and 0 (oxygen) less than 2. Whether or not it is oxygen-deficient titanium oxide can be measured by X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • the Ti-0 of titanium oxide with close binding energy is used.
  • 530 ⁇ 0.5 eV and 532 belonging to the 0-0 bond of adsorbed oxygen It is preferable to separate ⁇ 0.5 eV and obtain by calculation. From the results of measurement and calculation by this method, it can be seen that the visible light responsive photocatalyst described in Reference Examples described later is of an oxygen deficient type.
  • the commercially available titanium oxide catalysts ST-01 manufactured by Ishihara Sangyo
  • other JRC-IT03 catalogs referred to by the Catalysis Society of Japan
  • P- 25 manufactured by Nippon Aerosil
  • the visible light responsive photocatalyst used in the present invention can be produced using amorphous or imperfect crystalline titanium dioxide as a raw material.
  • This raw material titanium dioxide can be produced by a sulfuric acid method, a chloride method, or the like. It can be obtained by a wet method using oxide as a raw material.
  • the raw material titanium dioxide can be obtained by hydrolyzing titanium chloride with ammonium hydroxide. This hydrolysis is suitably performed by adjusting the amount of ammonium hydroxide added so that the pH of the reaction solution is 6 or more.
  • the titanium chloride may be any of titanium trichloride, titanium tetrachloride, titanium oxychloride and the like, and a mixture thereof may be used.
  • the hydrolysis can be performed, for example, under cooling or at a temperature in the range of room temperature to 90 ° C., but the hydrolysis at room temperature is relatively low in crystallinity or non-crystalline dioxidation. It may be preferable from the viewpoint that titanium is obtained.
  • the hydrolyzate of titanium chloride with ammonium hydroxide is preferably used as a raw material titanium dioxide after being washed with an aqueous solution of ammonium hydroxide.
  • the remaining amount of ammonium chloride generated during hydrolysis is appropriate. It can be performed to reduce the amount, and preferably can be performed a plurality of times.
  • the amorphous or incompletely crystalline titanium dioxide may be a commercially available product, for example, incompletely crystalline titanium dioxide such as ST-01 or C-02 manufactured by Ishihara Sangyo. There may be.
  • a hydrolyzate obtained by hydrolyzing titanium sulfate or titanyl sulfate was washed with water to remove at least a part of sulfate ions contained in the hydrolyzate.
  • the method can be carried out by a method comprising at least titanium oxide containing anatase-type titanium oxide, which comprises heating in the presence of ammonia or a derivative thereof.
  • the above hydrolyzate can be washed with water or aqueous ammonia, but as a result of the subsequent studies, it has been found that a product with a higher BET specific surface area can be obtained by water washing as compared with ammonia water washing.
  • the present invention employs water washing. More specifically, when the heating conditions are the same, the product obtained by water washing can obtain a product having a BET specific surface area that is almost twice that of ammonia water washing.
  • the washing with water is carried out by washing the sulfate ion concentration in the washing filtrate. It is preferable to carry out until the degree becomes 2000 ppm or less. More preferably, the washing with water is performed until the sulfate ion concentration in the washing filtrate becomes 1500 ppm or less.
  • the production of the visible light responsive photocatalyst used in the present invention can be performed, for example, as follows, in addition to the above method.
  • Amorphous or incompletely crystalline titanium dioxide is heated in the presence of ammonia or its derivatives.
  • Ammonia may be liquid or gaseous.
  • ammonia gas the raw material titanium dioxide is heated in an atmosphere gas atmosphere.
  • the ammonia derivative include an ammonium salt such as ammonium chloride.
  • the raw material titanium dioxide is heated in the presence of ammonium chloride.
  • the absorption of light at a wavelength of 45 O nm of the material generated by heating is greater than the absorption of light at a wavelength of 45 O nm of the raw titanium dioxide This is done by terminating the heating at that point.
  • the raw material titanium dioxide is white, and the light absorption at a wavelength of 45 O nm is around 10%.
  • the raw material titanium dioxide when the raw material titanium dioxide is heated in the presence of ammonia or its derivative, it gradually turns yellow. However, this coloring fades to a peak at a certain point in time, and eventually shows an absorption similar to that of the starting titanium dioxide.
  • Types of raw material titanium dioxide and species of ammonia (derivative) to coexist Depending on the type and amount, heating temperature, time, etc., the absorption of light at a wavelength of 450 nm may reach up to about 60%.
  • the characteristic of visible light responsive photocatalyst is wavelength
  • the wavelength 4 Although not uniquely determined by the light absorption intensity at 45 O nm, the wavelength 4
  • the material clearly shows visible light response.
  • the heating conditions cannot necessarily be defined only by the temperature, but may be, for example, a temperature in the range of 300 to 500 ° C. This heating can be performed under normal pressure.
  • the heating time can be appropriately determined based on the absorption of light at a wavelength of 45 O nm of the material generated by heating.
  • a rotary kiln, a tunnel kiln, a Matsufur furnace, or the like which is generally used in this field, can be used.
  • individual particles of titanium oxide are aggregated or sintered by heating, they may be ground by a crusher as necessary.
  • the material obtained by heating as described above can be washed with water or an aqueous solution as needed. This washing may improve the visible light responsiveness of the obtained visible light responsive photocatalyst in some cases.
  • amorphous or incompletely crystalline titanium dioxide material before heating
  • ammonium hydroxide a considerable amount of chloride is added to the hydrolyzate. Ammonia remains, resulting in amorphous or imperfectly crystalline titanium dioxide as described above. Can be converted to a visible light responsive photocatalyst.
  • a considerable amount of ammonium chloride may remain in the obtained material.
  • washing with water or an appropriate aqueous solution may remove ammonium chloride and improve the visible light responsiveness of the visible light responsive photocatalyst in some cases.
  • the material obtained by heating can be washed with water or an aqueous solution such that the pH of the washed water or aqueous solution is, for example, 5 or more.
  • the visible light responsive photocatalyst used in the present invention includes silicon, aluminum, tin, zirconium, antimony, phosphorus, platinum, gold, silver, copper, iron, niobium, tungsten, on its surface and / or inside depending on the application. Elements such as tantalum and compounds containing them can be coated, supported, or doped.
  • the above visible light responsive photocatalyst can be carried using a transparent activated alumina described in JP-A-2000-119017 as a carrier.
  • a transparent visible light responsive photocatalyst can be obtained, and a transparent paint can be provided.
  • the visible light responsive photocatalyst may be contained in a coating film.
  • This coating film can be formed using a paint containing at least the above visible light responsive photocatalyst, a binder and a solvent.
  • the binder may be either an organic binder or an inorganic binder.
  • the inorganic binder include alkyl silicate and silicon halide. And products obtained by hydrolyzing hydrolyzable silicon compounds such as partially hydrolyzed products thereof, silica, colloidal silica, water glass, silicon compounds such as organopolysiloxane, and organic polysiloxane compounds.
  • Examples include inorganic binders such as condensates, phosphates such as zinc phosphate and aluminum phosphate, heavy phosphates, cement, lime, gypsum, frit for enamel, glaze for glass lining, and plaster.
  • examples of the organic binder include organic binders such as a fluorine-based polymer, a silicon-based polymer, an acrylic resin, an epoxy resin, a polyester resin, a melamine resin, a urethane resin, and an alkyd resin. Since the binder is degraded or decomposed by the photocatalytic function of the photocatalyst, it is necessary to appropriately select the type of binder according to the use scene, the degree of the photocatalytic function, and the application.
  • a visible light responsive photocatalyst is used as the photocatalyst, so that the photocatalyst function is much less deteriorated compared to a conventional paint using an ultraviolet type photocatalyst, and the photocatalyst is used indoors where there is almost no ultraviolet light. Has almost no deterioration due to the photocatalytic function.
  • organic binders such as acrylic resins, epoxy resins, polyester resins, melamine resins, urethane resins, and alkyd resins, which cannot be used in paints using an ultraviolet-type photocatalyst, can also be used favorably.
  • these binders can be used alone or in combination of two or more.
  • the alkyl silicates e.g., S i as a general formula n O n _! (OR) 2n + 2 (where S i is Keimoto, O is oxygen, R represents an alkyl group.)
  • the compound represented by N is, for example, 1 to 6, and R is, for example, an alkyl group having 1 to 4 carbon atoms. However, it is not limited to these.
  • cement examples include Portland cement, such as early-strength cement, ordinary cement, moderate heat cement, sulfate-resistant cement, white cement, oil well cement, geothermal well cement, fly ash cement, high sulfate cement, Mixed cements such as silica cement and blast furnace cement, and alumina cement can be used.
  • Portland cement such as early-strength cement, ordinary cement, moderate heat cement, sulfate-resistant cement, white cement, oil well cement, geothermal well cement, fly ash cement, high sulfate cement, Mixed cements such as silica cement and blast furnace cement, and alumina cement can be used.
  • plaster for example, secco plaster, lime plaster, doloma plaster and the like can be used.
  • fluorinated polymer examples include polyvinyl fluoride, polyvinylidene fluoride, polychlorinated trifluoroethylene, polytetrafluoroethylene, polytetrafluoroethylene propylene copolymer, ethylene-polytetrafluoroethylene copolymer, and ethylene-polytetrafluoroethylene copolymer.
  • Crystalline fluororesins such as ethylene monochloride trifluorene ethylene copolymer, tetrafluoroethylene monofluoroalkylbier ether copolymer, perfluoro-norelocyclopolymer, vinylinoleatenorreolenorreolefin copolymer, An amorphous fluororesin such as a nylester-fluorofluorin copolymer, various fluororubbers, and the like can be used.
  • a fluoropolymer mainly composed of a vinyl ether-fluorene copolymer and a vinylinestenolefinolefluorene copolymer is preferred because it has little degradation and deterioration and is easy to handle.
  • Silicone polymers include linear silicone resin and acrylic-modified silicone resin Fats and various types of silicone rubber can be used.
  • the organic polysiloxane compound used for the polycondensate of the organic polysiloxane compound is a substance known as a hydrolyzate of an organic silicon compound.
  • Japanese Patent Application Laid-Open Nos. 8-164, 334 and 8-6 Nos. 7 835, JP-A-8-155030, JP-A-10-66830, Patent No. 2756474, etc. Can be used.
  • the organic polysiloxane compound is a hydrolyzate of an organic silicon compound, and examples of the organic silicon compound include those having an alkyl group and an alkoxy group.
  • a hydrolyzate of an organosilicon compound having an alkyl group and an alkoxy group is also known, and is obtained, for example, by hydrolyzing an organosilicon compound represented by R ⁇ Si (OR 2 ) 4 — n .
  • R 1 and R 2 can each be, for example, a lower alkyl group having 1 to 8 carbon atoms.
  • R 1 is a lower alkyl group having 1 to 3 carbon atoms, preferably Is suitably a methyl group.
  • N in the above formula is an integer of 0 to 2, and specifically, a film obtained by using a hydrolyzate (three-dimensionally crosslinked product) of a mixture of organic silicon compounds in which at least n is 1 or 2 is used.
  • a hydrolyzate three-dimensionally crosslinked product
  • the organosilicon compound include methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, and methyltributanol.
  • Kishishiran methylol tri chrono Les silane, methylcarbamoyl Honoré tribromomethyl silane; Echinoretori main Tokishishiran, E triethoxysilane, E tilt re-isopropoxyphenyl Sila down, E Ji ⁇ tri t one butoxysilane, E Chino Les trichlorosilane, Echinoretoribu port Mushiran; n-propyltrimethoxysilane, n-propyltriethoxysilane, n-propyltriisopropoxysilane, n-propyltributoxysilane, n-propyltrichlorosilane, n-propyltribromosilane; n-hexyl / trime Toxoxysilane, n-hexinoletriethoxysilane, n-hexyltriisopropoxysilane, n-hexyltri-t-poxysi
  • Gurishidokishipuro pills triethoxysilane, .gamma.-glycidoxypropyltrimethoxysilane isopropoxyphenyl Sila down, y- glycidoxypropyltrimethoxysilane t Ru can be given an butoxysilane like.
  • the compounding amount of the binder is about 100 to 2000% by weight, preferably 25 to 100% by weight, and preferably 25 to 100% by weight, based on the solid matter, based on the visible light-responsive photocatalyst particles. 500% by weight is more preferable, and 25 to 250% by weight is more preferable.
  • the visible light responsive photocatalyst can be maintained without desorbing the visible light responsive photocatalyst when a coating film is formed.
  • the solvent an inorganic solvent, an organic solvent, or a mixture thereof can be used. Water is preferred as the inorganic solvent.
  • the organic solvent alcohols such as methanol, ethanol, 2-propanol, and ethylene glycol, and ketones can be used. Those containing alcohol are preferred from the viewpoints of handleability and coatability.
  • the compounding amount of the solvent can be appropriately set according to the workability. If necessary, the paint and the coating film can contain at least one compound selected from the group consisting of dicarboxylic acids and derivatives thereof.
  • Dicarponic acid is an organic compound having two olepoxyl groups COOH in the molecule.
  • aliphatic unsaturated dicarboxylic acids such as maleic acid and fumaric acid
  • aromatic dicarboxylic acids such as phthalic acid, isophthalic acid and terephthalic acid.
  • the dicarboxylic acid derivative is an esterified product of the dicarboxylic acid, Dicarboxylic acids such as salts, dicarboxylic anhydrides, dicarboxylic acid azides, dicarboxylic acid amides, dicarbonic acid imides, etc. Ethyl dicarboxylate, propyl dicarbonate, butyl dicarboxylate, sodium dicarboxylate, ammonium dicarboxylate and the like can be used. Further, a product containing dicarboxylic acid or a derivative thereof, for example, Rhodiasolve (trade name, manufactured by Rhone Pourin Japan Co., Ltd.) containing three kinds of dicarboxylic acid esters may be used.
  • Dicarboxylic acids such as salts, dicarboxylic anhydrides, dicarboxylic acid azides, dicarboxylic acid amides, dicarbonic acid imides, etc. Ethyl dicarboxylate, propyl dicarbonate, butyl dicarboxylate
  • the content of the dicarboxylic acid and the derivative thereof is about 0.5 to 500% by weight, preferably 5 to 500% by weight, and more preferably 10 to 50% by weight based on the visible light responsive photocatalyst particles in the paint or coating film. ⁇ 500 wt% is more preferred, and 25 ⁇ 250 wt% is even more preferred.
  • the content of the dicarboxylic acid and its derivative is less than the above range, the effect of adding is difficult to be exhibited, and when the content is more than the above range, a further remarkable effect is hardly recognized. Note that a coating film formed using a visible light responsive coating composition containing a dicarboxylic acid or a derivative thereof becomes porous, and the visible light responsive photocatalytic function can be improved.
  • visible light-responsive photocatalyst particles in addition to at least one compound selected from the group consisting of dicarboxylic acids and derivatives thereof, visible light-responsive photocatalyst particles, binders, and solvents, dispersants, surfactants, curing agents, Various additives such as a crosslinking agent may be contained.
  • the thickness of the visible light responsive photocatalyst coating film can be appropriately set according to the application, and can be, for example, about 0.01 to 1.
  • the coating film can be formed by applying or spraying a paint on the substrate.
  • the visible light responsive photocatalyst particles and the binder are dispersed in a solvent to form a coating composition, and then the coating composition is applied or sprayed on a substrate to form the visible light responsive photocatalyst particles and the binder.
  • a solvent water, an organic solvent such as toluene and alcohol can be used.
  • the coating method include, for example, impregnation method, die coating method, spinner coating method, blade coating method, roller coating method, wire per coating method, lino-slowno coating method, brush coating method, and sponge coating method. It can be applied by a conventional method or sprayed by a usual method such as a spray coating method.
  • the solvent is removed by drying or baking.
  • the drying or firing is preferably performed at a temperature lower than 500 ° C., more preferably at a temperature from room temperature to 400 ° C. In this case, if the temperature is higher than 500 ° C., the visible light responsive photocatalytic function tends to decrease, which is not preferable.
  • a method such as ultraviolet irradiation may be used to solidify the binder used.
  • the above-mentioned organic binder such as ataryl resin, epoxy resin, polyester resin, melamine resin, urethane resin, alkyd resin, etc.
  • the organic binder or the inorganic binder described above may be applied or sprayed on the article in advance as a primer or a coating.
  • the paints and coatings described above include particulate matter, adsorbents, carriers and / or condensed phosphates. Can be included.
  • the particulate matter has, for example, an average particle diameter of 1 ⁇ ⁇ ! It can be up to 100 m of inorganic or organic particles.
  • the photocatalytic particles can also have the function of adsorbing and / or supporting the substance to be treated. preferable.
  • adsorbent and carrier general adsorbents and carriers can be used.
  • activated carbon for example, activated carbon, zeolite, silica gel, transparent activated alumina (for example, JP-A-2000-119017), amorphous or Titanium dioxide, diatomaceous earth, etc. with low crystallinity
  • Titanium dioxide of amorphous or low crystallinity is hydrolyzed with ammonium hydroxide after titanium sulfate or titanium sulfate is obtained, and then sulfated ions remain, for example, calcined at 400 ° C, and then washed if necessary. Can be obtained by doing so.
  • the paint is a paint containing a binder, a condensed phosphate, a visible light responsive photocatalyst, and a solvent, and the solvent is preferably water.
  • a paint containing water as a solvent and containing a condensed phosphate has good dispersibility of visible light-responsive photocatalyst particles, and a coating film obtained from this paint shows excellent visible light response.
  • the present invention includes a coating containing a binder, a condensed phosphate, and a visible light-responsive photocatalyst, and the coating shows hydrophilicity under light irradiation.
  • Conventional hydrophilic paints and coatings (for example, JP-A-11-1659) contain silica and silicone to obtain weather resistance.
  • a coating film having excellent weather resistance can be obtained without containing silica-silicone.
  • a coating film with excellent weather resistance can be obtained without containing silica or silicone, so that there is more freedom in composition, for example, increasing the amount of binder or increasing the content of visible light responsive photocatalyst It is also possible.
  • the paint and the coating film in the present invention may contain silica or silicone.
  • the amount of the condensed phosphate is 0.5 to 5%, preferably 1 to 1.2%, based on the weight of the visible light responsive photocatalyst, whereby dispersibility, viscosity, Good paint is obtained in terms of stability and the like.
  • the larger the specific surface area of the visible light responsive photocatalyst and the larger the amount of the surface coating agent the larger the optimal amount of the condensed phosphate.
  • the optimum amount of condensed phosphate varies depending on the method of producing the visible light responsive photocatalyst and the type of surface coating agent.
  • the condensed phosphate need not be limited to one kind, and two or more kinds may be used in combination.
  • the paint and the coating film of the present invention may further contain a colloidal oxide in addition to the above components.
  • the colloidal oxide include colloidal silica. Since the colloidal oxide is a fine particle, it can increase the surface area of the coating (make it porous) and increase the frequency of contact between the visible light responsive photocatalyst and the reactant. However, colloidal oxides are not Is not an essential component to show Further, in the present invention, a first layer comprising a binder and containing no visible light responsive photocatalyst particles is provided on a substrate, and further, a binder and visible light responsive photocatalyst particles are formed on the first layer.
  • the first layer By providing the first layer not containing the visible light responsive photocatalyst particles, the connection between the substrate and the second layer containing the visible light responsive photocatalyst particles is strengthened. Can be adhered to the substrate more firmly and for a longer period of time.
  • a binder an organic binder is preferable.
  • the first layer preferably contains, as a filler, inorganic particles having no visible light responsive photocatalytic function.
  • inorganic particles include titanium oxide, silicon oxide, and aluminum oxide that have been surface-treated with silicon oxide, aluminum oxide, zirconium oxide, or the like so as not to have a visible light responsive photocatalytic function. And magnesium oxide.
  • the amount of the visible light responsive photocatalyst particles in the coating composition is 5 to 98%, preferably 20 to 90% by volume based on the total amount of the visible light responsive photocatalyst particles and the binder. It is 98%, more preferably 50-98%, and most preferably 70-98%.
  • the coating composition may contain a crosslinking agent, a dispersing agent, a filler and the like.
  • a cross-linking agent a normal cross-linking agent such as an isocyanate-based or melamine-based cross-linking agent can be used, and as the dispersing agent, a coupling agent or the like can be used.
  • the content of the visible light responsive photocatalyst particles in the coating composition is determined by the When the content is 40 to 98% by volume based on the total amount of the acidic photocatalyst particles and the binder, it is preferable to add a coupling agent to the coating composition.
  • the addition amount of the coupling agent is preferably 5 to 50%, more preferably 7 to 30%.
  • the reaction is preferably carried out at a temperature from room temperature to 200 ° C. In this case, if the temperature is higher than 400 ° C., the binder is thermally degraded, and the visible light-responsive photocatalyst particles are easily removed, which is not preferable.
  • a method of solidifying using an isocyanate-based or melamine-based cross-linking agent is preferable.
  • the light emitting diode used in the method of the present invention is a light emitting diode having an emission wavelength at least in the visible light region or having an emission wavelength only in the visible light region.
  • Examples of such a light emitting diode include a purple light emitting diode, a blue light emitting diode, a green light emitting diode, a yellow light emitting diode, and a white light emitting diode.
  • the violet emission diode has an emission wavelength from the ultraviolet region to the visible light region.
  • a blue light emitting diode, a green light emitting diode, a yellow light emitting diode, or a white light emitting diode has an emission wavelength only in a visible light region.
  • the photocatalyst activated by the photocatalyst activation method of the present invention can be used in, for example, a chemical reaction method, an environmental purification method, a sterilization method, a hydrophilization method, a cell growing method, an antifouling method, and the like. Further, the amount of light irradiation and the irradiation time can be appropriately set depending on the amount of the substance to be treated.
  • the method of the present invention can also be used in a reaction system such as a microchemical chip.
  • the present invention relates to a device having a layer containing a visible light responsive photocatalyst on a light emitting diode substrate.
  • the light-emitting diode substrate may include, for example, at least a light-emitting diode and a light-transmitting layer provided thereon, and a layer including the visible light-responsive photocatalyst provided on the light-transmitting layer. it can.
  • the light emitting diode is a violet light emitting diode, and light having a wavelength of 400 nm or less is transmitted between the light transmitting layer and the layer containing the visible light responsive photocatalyst.
  • a layer that does not transmit light may be further provided.
  • the violet light emitting diode also contains ultraviolet rays of 400 nm or less, but by providing a layer (one layer of filter) that does not transmit light of wavelengths of 400 nm or less, the ultraviolet rays are cut off, for example, visible light response.
  • This filter layer can be a layer that does not transmit light having an arbitrary wavelength of 410 to 550 nm or less. Also, two types of filters having different transmission characteristics can be combined. Further, the present invention relates to an apparatus including a light emitting diode, a visible light responsive photocatalyst, and a light transfer means for transferring light from the light emitting diode to the visible light responsive photocatalyst.
  • the light transfer means may be, for example, an optical fiber.
  • the layer containing the visible light responsive photocatalyst can be a coating film formed by using a paint, and for example, the visible light responsive photocatalyst in a powder state is provided on a light emitting diode.
  • the visible light-responsive photocatalyst is the above-mentioned visible light-responsive photocatalyst
  • a raw material titanium compound such as amorphous or incompletely crystalline titanium oxide on a base material is added together with a suitable binder if necessary.
  • a layer containing a visible light responsive photocatalyst can also be formed by applying the above and heating the film by applying an ammonia or a derivative thereof in an atmosphere or by including an ammonia or a derivative thereof in an atmosphere. .
  • the device of the present invention described above can be used for chemical reaction, environmental purification, sterilization, decolorization, hydrophilization, cell growth, or imparting antifouling properties.
  • the device of the present invention is useful as a microchemical reactor.
  • the device of the present invention can also be used as illumination such as an illumination lamp or an indicator lamp.
  • Example 1 Example 1
  • 0.2 g of the powder produced in Reference Example 3 was uniformly applied to a glass plate (6 ⁇ 6 cm) using water, and dried at room temperature. About 2 ml of a 0.05 wt% aqueous solution of methylene blue was dropped near the center of the plate glass and dried at room temperature.
  • the light source was set so as to be 1 cm relative to the sample.
  • the light source was a blue LED (Nichia Chemical Industry Co., Ltd., Model No. NS SB 450), a 2 x 2 grid of 4 pieces, so that one side could fit into 1.5 cm. Lighting was performed by applying a voltage to the light emitting diode to 3.7 V. The light irradiation time for the sample was 1 hour. Table 1 shows the color change of the light-irradiated part of each sample after light irradiation. Comparative Example 1
  • Example 2 A methylene blue decolorization test was performed in the same manner as in Example 1 except that a commercially available ultrafine titanium oxide powder (ST-01 manufactured by Ishihara Sangyo) was used instead of the powder produced in Reference Example 3. Table 1 shows the results. Comparative Example 2
  • a decolorization test of methylene blue was performed in the same manner as in Example 2 except that a commercially available ultrafine titanium oxide powder (ST-01 manufactured by Ishihara Sangyo) was used instead of the powder produced in Reference Example 3. Table 1 shows the results.
  • a decolorization test of methylene blue was performed in the same manner as in Example 2 except that commercially available titanium oxide powder for photocatalyst P-25 (manufactured by Dedasa) was used instead of the powder produced in Reference Example 3. Table 2 shows the results.
  • Example 2 The color was completely erased.
  • Nichia Chemical's model NSPB500S was illuminated and placed in a checkerboard shape with a total of 9 pieces of 3x3 so as to fit into a 1.5 cm square on each side.
  • One light emitting diode Lighting was applied by applying a voltage so that the voltage became 3 V with respect to the diode.
  • the illuminance at the position of the sample was 250001X.
  • isopropanol was added so that the inside of the reaction system became 540 ppm.
  • the inside of the reaction system was set at 1 atm in an air atmosphere, and the humidity was 30%.
  • the respective concentrations of isopropanol, acetone, and carbon dioxide in the reaction system were collected from the reaction system using a syringe, and measured using FID and TCD.
  • Figure 5 shows the results of the reaction after irradiation with light.
  • a water-based sealer layer (30 ⁇ ) and an acrylic silicon-based paint layer (100 ⁇ 2 layer) are provided on a glass substrate, and the above paint is applied on one layer (30 ⁇ m: coating film 1) or two layers (30 ⁇ ). 2: Coating film 2) was provided.
  • the NO oxidation activity (removal rate) of the obtained coating film was measured by the same method as that described in the above Test Example.
  • Table 3 shows the NO removal rate (%) (coating area 5 X 5 cm).
  • titanium tetrachloride (special grade, manufactured by Kanto Chemical Co., Ltd.) was added to pure water of ice water (2 liters as water), stirred and dissolved to obtain an aqueous solution of titanium tetrachloride. While stirring 200 g of the aqueous solution with a stirrer, about 50 ml of aqueous ammonia (containing 13 wt% as NH 3 ) was added as quickly as possible. The addition amount of aqueous ammonia was adjusted so that the final pH of the aqueous solution was about 8. This turned the aqueous solution into a white slurry. After further stirring for 15 minutes, the mixture was filtered with a suction filter.
  • the precipitate collected by filtration was dispersed in 2 Om 1 of aqueous ammonia (containing 6 wt% as NH 3 ), stirred for about 20 hours with a stirrer, and suction-filtered again to obtain a white hydrolyzate.
  • the obtained white hydrolyzate was transferred to a crucible and heated at 400 ° C. for 1 hour in the air using an electric furnace to obtain a yellow product.
  • the XRD measurement results of the obtained product are shown in the upper part of FIG.
  • the lower part of Fig. 3 also shows the XRD measurement results of the white hydrolyzate dried at 50 ° C. From these results, it can be seen that the white hydrolyzate dried at 50 ° C. is amorphous, and the obtained product is anatase-type titanium dioxide.
  • the absorption spectrum of the obtained product and the white hydrolyzate dried at 50 ° C was measured under the following conditions using a Hitachi autograph spectrophotometer (U-3210) equipped with an integrating sphere.
  • the white hydrolyzate was dried at 50 ° C, whereas the reflectance at 450 nm was 61% when the reflectance at 700 nm of the obtained product was 100%.
  • the reflectance at 450 nm was 95% when the reflectance at 700 nm was 100%.
  • the ESR spectrum of the obtained product was measured. The measurement was carried out in a vacuum (0.1 Torr) at 77K or at room temperature. The measurement conditions are as follows.
  • H mn field of Mn 2 + markers
  • .DELTA..eta H variation Figure 1 (measurement temperature 77 K) of the magnetic field from ⁇ n and 2 (Measurement temperature room temperature)
  • E SR spectrum of in the dark in the upper part
  • the ESR spectrum measured with a 500W high-pressure mercury lamp irradiated without using a filter (L-42) is shown below. Comparing the upper and middle spectrums in Fig.
  • the visible light responsive photocatalyst of Reference Example 1 was also measured by ESR when the three signals were in the air, at room temperature, in the dark, and under light irradiation having a wavelength of 420 nm or more. It was a thing to be done.
  • the cloudy solution was subjected to suction filtration.
  • the amount of the white precipitate remaining on the filter paper was 131 kg.
  • the white precipitate was dispersed in 200 kg of aqueous ammonia (6%), stirred for 24 hours, and subjected to suction filtration. After filtration, the white precipitate was 108 kg.
  • the white precipitate was placed in a forced-air-type shelf dryer set at 50 ° C and dried for 4 days. The sample after drying was 17 kg.
  • the dried sample was placed in an alumina crucible (20 x 20 x 5 cm) at lkg, placed in a gas furnace, a thermocouple was placed on the sample surface, and the sample was fired for 1 hour at a temperature of 400 ° C.
  • the white matter attached to the filter paper was stirred eight times in ammonia water adjusted to pH 11 and filtered again eight times, and washed to obtain a white powder.
  • the obtained powder was dried at 50 ° C. to obtain a sample powder.
  • the BET surface area of the obtained hydrolyzate (sample powder) was 308.7 m 2 / g. 8 g of the obtained sample powder was placed in a crucible, transferred to an electric furnace, and baked at 400 ° C for 60 minutes to obtain 6.3 g of a bright yellow powder having a BET surface area of 89.4 m 2 / g. Was.
  • An X-ray diffraction (XRD) test of this powder shows that it contains anatase-type titanium oxide.
  • the ESR spectrum of the obtained powder was measured.
  • the measurement was performed at 77 K in a vacuum (0.
  • the measurement conditions are the same as in Reference Example 1.
  • Fig. 6 shows the ESR spectrum measured with light irradiated through a filter (L-42) that cuts light below 420 nm (using a high-pressure mercury lamp of 500 W). .
  • the ESR spectrum under ⁇ black was also measured, but practically no signal was observed.
  • a main signal with a g-value of 2.004 to 2.007 and two sub-signals with a g-value of 1.985 to 1.986 and 2.024 were observed. .
  • the ESR spectrum of the obtained material was measured.
  • the measurement was performed at 77 K in a vacuum (00 ⁇ ⁇ rr).
  • the measurement conditions are the same as in Reference Example 1.
  • Fig. 7 shows the ESR spectrum measured under the condition that light was irradiated through a filter (L-42) that cuts light of 420 nm or less (using a high-pressure mercury lamp of 500 W). .
  • the main signal whose g-value power is S2.004 to 2.007 is And two sub-signals with g-values of 1.895 to 1.896 and 2.024.
  • Fig. 8 ESR measured with light irradiated through a filter (L-42) that cuts light below 420 nm (using a 500 W high-pressure mercury lamp) Indicates the spectrum.
  • the main signal has a g value of 2.004 to 2.007, and g values of 1.985 to 1.986 and 2.024. Two minor signals were observed.
  • the present invention it is possible to provide a method and an apparatus for activating a photocatalyst using a light-emitting diode having a high visible light content or containing only visible light as a light source.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

A method of activating a photocatalyst, for applying a LED beam onto a visible light-responding photocatalyst having an activity by means of the action of light with a wavelength of at least 420 nm. A device having a visible light-responding photocatalyst-containing layer on a LED substrate. A device including a LED, a visible light-responding photocatalyst, and a light transfer means for transferring light from the LED to the visible light-responding photocatalyst.

Description

. . 明細書  . . Specification
光触媒の活性化方法及び装置 技術分野  Method and apparatus for activating photocatalyst
本発明は、 光触媒の活性化方法及び光触媒と光源からなる装置に関する。 背景技術  The present invention relates to a method for activating a photocatalyst and an apparatus comprising a photocatalyst and a light source. Background art
アナターゼ型ニ酸化チタンからなる光触媒を用いて、 抗菌性タイル、 セルフ · クリーニング建材、 超親水性材料、 脱臭 · 消臭材料、 水の浄 化、 癌の治療等を行えることが知られ (光ク リーン革命 (藤嶋昭他))、 種々の用途開発が活発に行われている。 具体的には、 例えば、 WO 9 4 / 1 1 0 9 2号には室内照明下における光触媒による空気処理方法 が開示されている。 特開平 7— 1 0 2 6 7 8号には、 光触媒を用いた 院内感染の防止方法が開示されている。 特開平 8— 6 7 8 3 5号公報 及び特開平 8 - 1 6 4 3 3 4号公報には抗菌性塗料が開示されている t さらに WO 9 6 / 2 9 3 7 5には超親水性材料が開示されている。 ところが、 アナターゼ型ニ酸化チタンは、 励起光と して 4 0 0 n m 以下の紫外線が必要である。 それに対して、 励起光源となり得る太陽 光や人工光には、 紫外線より も可視光線がケタ違いに多く含まれてい る。 しかし、 上記二酸化チタンからなる光触媒では、 残念ながら、 可 視光線はほとんどといって良いほど利用できず、 エネルギー変換効率 という観点からは、 非常に非効率的であった。 そして、 この非効率性 が実用化に向けての大きな壁となっていた。 例えば、 特開 2 0 0 0— 2 1 7 8 4 4号公報には、 光照射により歯周 病など口腔内の殺菌 ·治療あるいは歯の脱色に使用される歯科用光照射装置が 記載され、 この装置は、 歯列前面に沿って湾曲して配置された複数の発光ダイ オードを用いて、 歯列全体に均一に光を照射し、 脱色する歯科用照射装置であ る。 しかるに、 歯科用等の光照射装置においては、 人体への悪影響を考慮する と、 極力紫外線を含まないことが望ましい。 一方、 紫外線を含まない光源から の光では、 従来の光触媒は殆ど活性を示さず、 光触媒の効果は非常に微弱であ る。 そこで本発明の目的は、 可視光線の含有量が高い、 または可視光線のみを含 む発光ダイォードを光源として使用する、 光触媒の活性化方法及び装置を提供 することにある。 発明の開示 It is known that photocatalysts composed of anatase-type titanium dioxide can be used for antibacterial tiles, self-cleaning building materials, superhydrophilic materials, deodorizing and deodorizing materials, water purification, cancer treatment, etc. The Lean Revolution (Akira Fujishima et al.) Has been actively developing various applications. Specifically, for example, WO94 / 11092 discloses an air treatment method using a photocatalyst under indoor lighting. Japanese Patent Application Laid-Open No. 7-102678 discloses a method for preventing hospital-acquired infection using a photocatalyst. JP 8 6 7 8 3 5 and JP Hei 8 - 1 6 4 3 3 4 No. further t antimicrobial coatings are disclosed WO 9 6/2 9 3 7 to 5 superhydrophilic Materials are disclosed. However, anatase-type titanium dioxide requires ultraviolet light of 400 nm or less as excitation light. On the other hand, solar light and artificial light, which can be excitation light sources, contain more visible light than the ultraviolet light. Unfortunately, in the photocatalyst consisting of titanium dioxide, unfortunately, almost no visible light is available, and energy conversion efficiency is high. From this point of view, it was very inefficient. And this inefficiency was a major barrier toward practical application. For example, Japanese Patent Application Laid-Open No. 2000-218784 describes a dental light irradiation device used for sterilization and treatment of the oral cavity such as periodontal disease or decolorization of teeth by light irradiation, This is a dental irradiation device that uniformly irradiates the entire dentition with light and decolorizes using a plurality of light-emitting diodes arranged curved along the front surface of the dentition. However, in light irradiation devices for dental use, it is desirable that ultraviolet light is not contained as much as possible in consideration of adverse effects on the human body. On the other hand, with light from a light source that does not contain ultraviolet light, the conventional photocatalyst shows little activity, and the effect of the photocatalyst is very weak. Therefore, an object of the present invention is to provide a method and apparatus for activating a photocatalyst, which uses a light emitting diode containing a high content of visible light or a light emitting diode containing only visible light as a light source. Disclosure of the invention
本発明は、波長 4 2 0 n m以上の光の作用により活性を有する光触媒(可視光 応答性光触媒)に発光ダイオードの光を照射する、光触媒の活性化方法に関する。 さらに本発明は、 発光ダイォード基板上に可視光応答性光触媒を含む層を有す る装置、 並びに発光ダイオード、 可視光応答性光触媒、 及び前記発光ダイォー ドからの光を前記可視光応答性光触媒に移送するための光移送手段を含む装置 に関する。 図面の簡単な説明 The present invention relates to a method for activating a photocatalyst, in which a photocatalyst (visible light responsive photocatalyst) having activity by the action of light having a wavelength of 420 nm or more is irradiated with light from a light emitting diode. Further, the present invention provides an apparatus having a layer containing a visible light responsive photocatalyst on a light emitting diode substrate, a light emitting diode, a visible light responsive photocatalyst, and light from the light emitting diode being applied to the visible light responsive photocatalyst. Apparatus including light transport means for transport About. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明で用いる可視光応答性光触媒 (参考例 1) の真空中、 77K で測定された E S Rスペク トル。 上段は暗黒下でのスペク トルであり、 中段が 420 nm以上の波長を有する光 (水銀ランプの光の内、 420 nm未満の光 をカットオフ) の照射下でのスペク トルであり、 下段は、 420 nm未満の光 をカツトオフせずに水銀ランプの光を照射した場合のスぺク トルである。 図 2は、 本発明で用いる可視光応答性光触媒 (参考例 1) の真空中、 常温で 測定された E S Rスペクトル。 上段は暗黒下でのスペク トルであり、 中段が 4 20 nm以上の波長を有する光 (水銀ランプの光の内、 420 nm未満の光を カットオフ) の照射下でのスペクトルであり、 下段は、 420 nm未満の光を カツトオフせずに水銀ランプの光を照射した場合のスぺクトルである。  FIG. 1 is an ESR spectrum of the visible light responsive photocatalyst (Reference Example 1) used in the present invention measured at 77K in vacuum. The upper row shows the spectrum in the dark, the middle row shows the spectrum under irradiation of light having a wavelength of 420 nm or more (cut off the light of less than 420 nm out of the mercury lamp light), and the lower row shows the spectrum. This is a spectrum when a light of a mercury lamp is irradiated without cutting off light of less than 420 nm. FIG. 2 is an ESR spectrum of the visible light responsive photocatalyst (Reference Example 1) used in the present invention measured at room temperature in a vacuum. The upper part is a spectrum in the dark, the middle part is a spectrum under irradiation of light having a wavelength of 420 nm or more (the light of 420 nm or less of the light of a mercury lamp is cut off), and the lower part is a spectrum. The spectrum is obtained when the light of a mercury lamp is irradiated without cutting off light of less than 420 nm.
図 3は、 参考例 1の生成物 (上段) 及び加水分解物 (50°C乾燥) (下段) の XRDの測定結果である。  Figure 3 shows the XRD measurement results of the product of Reference Example 1 (upper) and the hydrolyzate (dried at 50 ° C) (lower).
図 4は、青色発光ダイォード(B LUE)、緑色発光ダイォード(GREEN)、 及ぴ白色発光ダイオード (WH I TE) の発光スペク トルを示す。  Figure 4 shows the emission spectra of the blue light emitting diode (B LUE), the green light emitting diode (GREEN), and the white light emitting diode (WHITE).
図 5は、 実施例 3における青色発光ダイォードによるイソプロパノールの酸 化結果を示す。  FIG. 5 shows the results of oxidation of isopropanol by a blue light emitting diode in Example 3.
図 6は、 参考例 4の生成物 (可視光応答性光触媒) の真空中、 77K:、 42 0 nm以上の波長を有する光 (水銀ランプの光の内、 420 nm未満の光を力 ットオフ) の照射下で測定された E SRスぺク トルである。 図 7は、 参考例 5の生成物 (可視光応答性光触媒) の真空中、 77K、 42 0 nm以上の波長を有する光 (水銀ランプの光の内、 420 nm未満の光を力 ットオフ) の照射下で測定された E SRスぺク トルである。 Fig. 6 shows the product of Reference Example 4 (visible light responsive photocatalyst) in a vacuum at 77 K: light with a wavelength of 420 nm or more (of the mercury lamp, the light less than 420 nm is turned off). 2 is an ESR spectrum measured under the irradiation of FIG. Figure 7 shows that the product (visible light responsive photocatalyst) of Reference Example 5 under vacuum at 77K, with light having a wavelength of 420 nm or more (of the light of a mercury lamp, the light of less than 420 nm was cut off). It is an ESR spectrum measured under irradiation.
図 8は、 参考例 6の生成物 (可視光応答性光触媒) の真空中、 77K、 42 0 nm以上の波長を有する光 (水銀ランプの光の内、 420 nm未満の光を力 ットオフ) の照射下で測定された E S Rスぺク トルである。 発明を実施するための最良の形態  Figure 8 shows that the product of Reference Example 6 (visible light responsive photocatalyst) was irradiated with light having a wavelength of more than 420 nm at 77K (power of the mercury lamp was less than 420 nm) in a vacuum. ESR spectrum measured under irradiation. BEST MODE FOR CARRYING OUT THE INVENTION
[可視光応答性光触媒]  [Visible light responsive photocatalyst]
本発明で用いる可視光応答性光触媒は、 少なくともアナターゼ型ニ酸化チタ ンを含み、 かつ真空中、 77 Kにおいて 420 nm以上の波長を有する光の照 射下で測定された E S Rにおいて、 g値力 S2. 004〜2. 007である主シ グナルと g値が 1. 985〜1. 986及び 2. 024である 2つの副シグナ ルが観測されるものである。 さらに、 本発明で用いる可視光応答性光触媒は、 上記 3つシグナル (主シグナル及ぴ 2つの副シグナル) は真空中、 77K、 暗 黒下においては微小に観測されるか、 又は実質的に観測されないものである。 本発明で用いる可視光応答性光触媒は好ましくはアナターゼ型ニ酸化チタン を主成分とするものであり、 それ以外にルチル型二酸化チタン及び/又は非晶 質の二酸化チタンを含んでいてもよい。 また、 アナターゼ型ニ酸化チタンも、 必ずしも高い結晶性を有するものでなくてもよい。 本発明で用いる可視光応答性光触媒の真空中、 77 測定された£31 の典 型的なスペク トルを図 1に示す。 図中、 上段は喑黒下でのスペク トルであり、 中段が 420 nm以上の波長を有する光 (水銀ランプの光の内、 420 n m未 満の光をカットオフ) の照射下でのスペク トルである。 下段は、 420 nm未 満の光をカツトオフせずに水銀ランプの光を照射した場合のスぺクトルである。 尚、 上段、 中段及ぴ下段は、 いずれも同一のゲイン (GA I N) の下で測定し た結果である。 図 1の上段と中段のスぺクトルを比較すると明らかに、 中段のスぺクトルに おいて、 g値力 S 2. 004〜2. 007である主シグナル、 並びに g値が 1. 985〜1. 986及び 2. 024である 2つの副シグナ^/レは、 上段のスぺク トルにおけるより強度が大きい。 また、 図 1の中段と下段のスペク トルを比較 すると明らかに、 g値が 2. 004〜2. 007である主シグナル、 並びに g 値が 1. 985〜1. 986及び 2. 024である 2つの副シグナルの強度は、 いずれも、 照射光中に 420 nm以下の光を含んでいてもいなくても実質的に 相違しない。 さらに本発明で用いる可視光応答性光触媒は、 図 2に示すように、 前記 3つ シグナルが真空中、 常温において、 喑黒下及ぴ 420 nm以上の波長を有する 光照射下における E S Rにおいても測定される物であることができる。図 2中、 上段は暗黒下でのスぺク トルであり、 中段が 420 nm以上の波長を有する光 (水銀ランプの光の内、 420 nm未満の光をカットオフ) の照射下でのスぺ クトルである。 下段は、 4 2 0 n m未満の光をカツトオフせずに水銀ランプの 光を照射した場合のスぺク トルである。 尚、 上段、 中段及ぴ下段は、 いずれも 同一のゲイン (G A I N) の下で測定した結果である。 また、 本発明で用いる可視光応答性光触媒における前記 3つシグナルは、 正 孔補足に起因するラジカルに帰属されるものであると考えられる。 これは、 参 考例においても示すように、 電子ドナー分子であるィソプロパノール雰囲気中 での E S Rスぺクトル及ぴ電子ァクセプター分子である酸素雰囲気中での E S Rスぺクトルから明らかである。 本発明で用いる可視光応答性光触媒は、 真空中、 7 7 Kにおいて 4 2 0 n m 以上の波長を有する光の照射下で測定された E S Rにおいて、 上記シグナルに 加えて、 g値力 S 2 . 0 0 9〜2 . 0 1 0である副シグナルをさらに有すること もできる。 g値が 2 . 0 0 9〜2 . 0 1 0である副シグナルは、 図 1の中段の E S Rスぺクトルに示されている。 本発明に用いる可視光応答性光触媒は Ti (チタン) と 0 (酸素) の結合比が 2 より過小な酸素欠陥型酸化チタンであることができる。 酸素欠陥型酸化チタ ンであるか否かは X線光電子分光法 (XPS)で測定することが可能である。 The visible light responsive photocatalyst used in the present invention contains at least anatase-type titanium dioxide and has a g-value of ESR measured in a vacuum at 77 K under irradiation of light having a wavelength of 420 nm or more at 77 K. The main signal with S2.004 to 2.07 and the two subsignals with g-values of 1.985 to 1.986 and 2.024 are observed. Furthermore, in the visible light responsive photocatalyst used in the present invention, the above three signals (main signal and two subsignals) are minutely observed or substantially observed in vacuum at 77K and in darkness. That is not done. The visible light-responsive photocatalyst used in the present invention preferably contains anatase type titanium dioxide as a main component, and may further contain rutile type titanium dioxide and / or amorphous titanium dioxide. Also, the anatase type titanium dioxide does not necessarily have to have high crystallinity. FIG. 1 shows a typical spectrum of the visible light responsive photocatalyst used in the present invention measured at 77 in a vacuum. In the figure, the upper row shows the spectrum under black, and the middle row shows the spectrum under irradiation of light having a wavelength of 420 nm or more (light of less than 420 nm of the mercury lamp light is cut off). It is. The lower part shows the spectrum when the light of the mercury lamp is irradiated without cutting off the light of less than 420 nm. Note that the upper, middle, and lower rows are all the results measured under the same gain (GA IN). Comparison of the upper and middle spectrums in Fig. 1 clearly shows that in the middle spectrum, the main signal with a g-value force of S 2.004 to 2.007 and a g-value of 1.985-1. The two sub-signals, 986 and 2.024, are stronger than in the upper spectrum. In addition, comparing the spectra in the middle and lower sections of Fig. 1, it is clear that the main signals with g values of 2.004 to 2.007 and the g values of 1.985 to 1.986 and 2.024 2 The intensities of the two sub-signals are substantially the same whether or not the irradiation light contains light of 420 nm or less. Further, as shown in FIG. 2, the visible light responsive photocatalyst used in the present invention is also measured by ESR under irradiation of light having a wavelength of at least 420 nm in black and at room temperature in the vacuum at room temperature. It can be done. In Fig. 2, the upper row shows the spectrum in the dark, and the middle row shows the spectrum under the irradiation of light having a wavelength of 420 nm or more (cut off the light of less than 420 nm out of the mercury lamp light).ぺ It is a kutor. The lower part is a spectrum when the light of a mercury lamp is irradiated without cutting off light of less than 420 nm. Note that the upper, middle, and lower rows are the results measured under the same gain (GAIN). Further, it is considered that the three signals in the visible light responsive photocatalyst used in the present invention are attributed to radicals caused by hole capture. This is evident from the ESR spectrum in the atmosphere of the electron donor molecule, isopropanol, and the ESR spectrum in the oxygen atmosphere, the electron acceptor molecule, as shown in the reference examples. The visible light responsive photocatalyst used in the present invention has, in addition to the above signals, a g-value force of S 2 .7 in ESR measured in vacuum at 77 K under irradiation with light having a wavelength of 420 nm or more. It may further have a side signal that is between 09 and 2.010. The side signal having a g value of 2.009 to 2.010 is shown in the middle ESR spectrum of FIG. The visible light responsive photocatalyst used in the present invention can be oxygen-deficient titanium oxide having a bond ratio between Ti (titanium) and 0 (oxygen) less than 2. Whether or not it is oxygen-deficient titanium oxide can be measured by X-ray photoelectron spectroscopy (XPS).
X線光電子分光法(XPS)により測定、規定することのできるチタンと酸素の結 合状態及ぴ元素の量論比を確定する為には、 近接する結合エネルギーを持つ酸 化チタンの Ti - 0に帰属する 530±0. 5eVと、吸着酸素の 0-0結合に帰属する 532 ±0. 5eV を分離し、 計算によって求めることが好ましい。 この方法により測定 及ぴ計算を行った結果で見ると、 後述の参考例に記載されている可視光応答性 光触媒は酸素欠陥型であることがわかる。 In order to determine the bonding state of titanium and oxygen and the stoichiometric ratio of the elements, which can be measured and specified by X-ray photoelectron spectroscopy (XPS), the Ti-0 of titanium oxide with close binding energy is used. 530 ± 0.5 eV and 532 belonging to the 0-0 bond of adsorbed oxygen It is preferable to separate ± 0.5 eV and obtain by calculation. From the results of measurement and calculation by this method, it can be seen that the visible light responsive photocatalyst described in Reference Examples described later is of an oxygen deficient type.
市販の酸化チタン触媒である ST- 01 (石原産業製)及びその他の JRC- IT03 (日 本触媒学会参照触媒), P-25 (日本ァエロジル製)などは誤差も考慮しても 0/Ti の比は 2. 0± 0· 05の値である。 酸素欠陥については一義的に定義できない側面 はあるものの、 望ましくは 1. 5〜1. 95である。 本発明で用いる可視光応答性光触媒は、 非晶質または不完全な結晶質の二酸 化チタンを原料として製造することができ、 この原料二酸化チタンは、 硫酸法 や塩化物法等やチタンアルコキサイドを原料とする湿式法で得られる物である ことができる。 より具体的には、 原料二酸化チタンは、 塩化チタンを水酸化ァ ンモニゥムで加水分解して得られたものであることができる。この加水分解は、 反応液の p Hが 6以上になるように水酸化アンモニゥムの添加量を調整して行 うことが適当である。 塩化チタンは、 三塩化チタン、 四塩化チタン、 ォキシ塩 化チタンなどのいずれであっても良く、 これらの混合物を用いてもよい。 上記 加水分解は、 例えば、 冷却下、 または常温〜 9 0 °Cの範囲の温度で行うことが できるが、 常温での加水分解が、 比較的結晶性が低い、 または非結晶質の二酸 化チタンが得られるという観点から好ましい場合が有る。 また、 塩化チタンの 水酸化ァンモニゥムによる加水分解物は、 水酸化アンモ-ゥム水溶液で洗浄し た後に原料二酸化チタンとして用いることが好ましい。 この水酸化アンモニゥ ム水溶液での洗浄は、 加水分解時に生成する塩化アンモニゥムの残存量が適当 量まで低下するように行うことができ、好ましくは、複数回行うことができる。 また、 非晶質または不完全な結晶質の二酸化チタンは、 市販品を用いても良 く、 例えば、 石原産業製の ST- 01 または C- 02 のような不完全な結晶質の 二酸化チタンであってもよい。 あるいは、 可視光応答性光触媒の製造は、 硫酸チタンまたは硫酸チタニルを 加水分解して得られた加水分解物を、 水で洗浄して前記加水分解物に含まれる 硫酸イオンの少なくとも一部を除去した後に、 アンモニア又はその誘導体の存 在下で加熱することを含む、 少なくともアナターゼ型酸化チタンを含む酸化チ タンからなる方法により行うこともできる。 上記加水分解物の洗浄は水またはアンモニア水で行うことができるが、 その 後の検討の結果、 アンモニア水洗浄に比べ、 水洗浄により、 B E T比表面積が より高い生成物が得られることが分かり、本発明では、水洗浄を採用している。 より具体的には、 加熱条件を同一にした場合、 アンモニア水洗浄に比べ、 水洗 浄で得られる生成物は、 ほぼ 2倍の B E T比表面積を有する生成物を得ること ができる。 The commercially available titanium oxide catalysts ST-01 (manufactured by Ishihara Sangyo), other JRC-IT03 (catalysts referred to by the Catalysis Society of Japan), P- 25 (manufactured by Nippon Aerosil), etc. are 0 / Ti Is a value of 2.0 ± 0.05. Although there are aspects that cannot be unambiguously defined for oxygen vacancies, the preferred range is 1.5 to 1.95. The visible light responsive photocatalyst used in the present invention can be produced using amorphous or imperfect crystalline titanium dioxide as a raw material. This raw material titanium dioxide can be produced by a sulfuric acid method, a chloride method, or the like. It can be obtained by a wet method using oxide as a raw material. More specifically, the raw material titanium dioxide can be obtained by hydrolyzing titanium chloride with ammonium hydroxide. This hydrolysis is suitably performed by adjusting the amount of ammonium hydroxide added so that the pH of the reaction solution is 6 or more. The titanium chloride may be any of titanium trichloride, titanium tetrachloride, titanium oxychloride and the like, and a mixture thereof may be used. The hydrolysis can be performed, for example, under cooling or at a temperature in the range of room temperature to 90 ° C., but the hydrolysis at room temperature is relatively low in crystallinity or non-crystalline dioxidation. It may be preferable from the viewpoint that titanium is obtained. Further, the hydrolyzate of titanium chloride with ammonium hydroxide is preferably used as a raw material titanium dioxide after being washed with an aqueous solution of ammonium hydroxide. In this washing with an aqueous solution of ammonium hydroxide, the remaining amount of ammonium chloride generated during hydrolysis is appropriate. It can be performed to reduce the amount, and preferably can be performed a plurality of times. The amorphous or incompletely crystalline titanium dioxide may be a commercially available product, for example, incompletely crystalline titanium dioxide such as ST-01 or C-02 manufactured by Ishihara Sangyo. There may be. Alternatively, in the production of a visible light responsive photocatalyst, a hydrolyzate obtained by hydrolyzing titanium sulfate or titanyl sulfate was washed with water to remove at least a part of sulfate ions contained in the hydrolyzate. Thereafter, the method can be carried out by a method comprising at least titanium oxide containing anatase-type titanium oxide, which comprises heating in the presence of ammonia or a derivative thereof. The above hydrolyzate can be washed with water or aqueous ammonia, but as a result of the subsequent studies, it has been found that a product with a higher BET specific surface area can be obtained by water washing as compared with ammonia water washing. The present invention employs water washing. More specifically, when the heating conditions are the same, the product obtained by water washing can obtain a product having a BET specific surface area that is almost twice that of ammonia water washing.
より高い B E T比表面積を有する生成物は、 吸着性能の点で優れることが期 待できることから、 本発明の製造方法により得られた材料を光触媒として使用 する場合、 極めて有利である。 ~ さらに、 上記の製造方法は、 前記水での洗浄を洗浄濾過液中の硫酸イオン濃 度が 2000ppm以下になるまで行うことが好ましい。 前記水での洗浄を洗浄濾過 液中の硫酸イオン濃度が 1500ppm以下になるまで行うことがさらに好ましい。 尚、 硫酸チタンまたは硫酸チタニルを加水分解をアンモニアを用いて行う場合 は、前記水での洗浄を洗浄濾過液中のアンモユウムイオン濃度が 200ppm以下に なるまで行うことが好ましい。 本発明で用いる可視光応答性光触媒の製造は、 上記の方法以外に、 例えば、 以下のように行うことができる。 非晶質または不完全な結晶質の二酸化チタン をアンモニア又はその誘導体の存在下で加熱する。 アンモニアは液体であって も気体であってもよい。 アンモニアガスを用いる場合、 原料二酸化チタンをァ ンモユアガス雰囲気下加熱する。 また、 アンモニア誘導体としては、 例えば、 塩化アンモ-ゥム等のアンモニゥム塩を挙げることができ、 例えば、 原料二酸 化チタンを塩化アンモニゥムの共存下で加熱する。 原料二酸化チタンのアンモニア又はその誘導体の存在下での加熱は、 加熱に より生成する材料の波長 4 5 O nmにおける光の吸収が、原料二酸化チタンの波 長 4 5 O nm における光の吸収より大きい時点で前記加熱を終了させることに より行う。 通常、 原料二酸化チタンは白色であり、 波長 4 5 O nmにおける光の 吸収は 1 0 %前後である。 それに対して、 原料二酸化チタンをアンモニア又は その誘導体の存在下で加熱すると、 徐々に黄色に着色する。 しかし、 この着色 はある時点をピークに薄らぎ、 ついには原料二酸化チタンと同程度の吸収を示 す物となる。 原料二酸化チタンの種類や共存させるアンモニア (誘導体) の種 類と量、加熱温度及び時間等により異なるが、 波長 4 5 0 nmにおける光の吸収 は最大で 6 0 %前後に達する場合もある。 可視光応答性光触媒の特性は、 波長Since a product having a higher BET specific surface area can be expected to be excellent in terms of adsorption performance, it is extremely advantageous when the material obtained by the production method of the present invention is used as a photocatalyst. ~ Further, in the above production method, the washing with water is carried out by washing the sulfate ion concentration in the washing filtrate. It is preferable to carry out until the degree becomes 2000 ppm or less. More preferably, the washing with water is performed until the sulfate ion concentration in the washing filtrate becomes 1500 ppm or less. In the case where titanium sulfate or titanyl sulfate is hydrolyzed using ammonia, it is preferable to perform the washing with water until the concentration of ammonium ion in the washing filtrate becomes 200 ppm or less. The production of the visible light responsive photocatalyst used in the present invention can be performed, for example, as follows, in addition to the above method. Amorphous or incompletely crystalline titanium dioxide is heated in the presence of ammonia or its derivatives. Ammonia may be liquid or gaseous. When using ammonia gas, the raw material titanium dioxide is heated in an atmosphere gas atmosphere. Examples of the ammonia derivative include an ammonium salt such as ammonium chloride. For example, the raw material titanium dioxide is heated in the presence of ammonium chloride. When the raw titanium dioxide is heated in the presence of ammonia or its derivative, the absorption of light at a wavelength of 45 O nm of the material generated by heating is greater than the absorption of light at a wavelength of 45 O nm of the raw titanium dioxide This is done by terminating the heating at that point. Normally, the raw material titanium dioxide is white, and the light absorption at a wavelength of 45 O nm is around 10%. On the other hand, when the raw material titanium dioxide is heated in the presence of ammonia or its derivative, it gradually turns yellow. However, this coloring fades to a peak at a certain point in time, and eventually shows an absorption similar to that of the starting titanium dioxide. Types of raw material titanium dioxide and species of ammonia (derivative) to coexist Depending on the type and amount, heating temperature, time, etc., the absorption of light at a wavelength of 450 nm may reach up to about 60%. The characteristic of visible light responsive photocatalyst is wavelength
4 5 O nmにおける光の吸収強度により一義的に決まるものではないが、波長 4Although not uniquely determined by the light absorption intensity at 45 O nm, the wavelength 4
5 O nmにおける光の吸収が 2 0 %以上 (反射率 8 0 %以下) である場合、 明ら かに可視光応答性を示す材料となる。 上記加熱の条件は、 必ずしも温度だけで規定はできないが、 用いる温度とし ては例えば 300〜500°Cの範囲の温度であることができる。 また、 この加熱は常 圧下で行うことができる。 また、 加熱時間は、 加熱により生成する材料の波長 4 5 O nmにおける光の吸収を目安に適宜決定できる。 上記加熱は、 当分野で通常用いられているロータリーキルン、 トンネルキル ン、 マツフル炉などを用いることができる。 加熱により酸化チタンの個々の粒 子が凝集したり、 焼結したりした場合には、 必要に応じて粉砕器により粉碎し てもよい。 また、 上記のように加熱して得られた材料を、 必要により水又は水溶液で洗 浄することができる。 この洗浄により、 得られる可視光応答性光触媒の可視光 応答性を改善できる場合がある。 例えば、 非晶質または不完全な結晶質の二酸 化チタン (加熱前の材料) ι 塩化チタンを水酸化アンモニゥムで加水分解し て得られたものである場合、 加水分解物に相当量の塩化アンモニゥムが残存し ており、 その結果、 上記のように非晶質または不完全な結晶質の二酸化チタン を可視光応答性光触媒に変換することが可能になる。 しかるに、 加熱処理後も 相当量の塩化アンモニゥムが得られる材料に残存する場合がある。 その様な場 合には、 水または適当な水溶液を用いて洗浄することで、 塩化アンモニゥムを 除去し、 可視光応答性光触媒の可視光応答性を改善できる場合がある。 この場 合、 加熱して得られた材料の水又は水溶液での洗浄を、 洗浄後の水又は水溶液 の p Hが例えば、 5以上の範囲となるように行うことができる。 本発明で用いる可視光応答性光触媒には、 用途に応じてその表面及び/又は 内部にケィ素、 アルミニウム、 スズ、 ジルコニウム、 アンチモン、 リン、 白金、 金、 銀、 銅、 鉄、 ニオブ、 タングステン、 タンタルなどの元素やそれらを含む 化合物を被覆したり、 担持したり、 或いはドープしたりすることもできる。 例 えば、 上記可視光応答性光触媒は、 特開 2000-119017号公報に記載された透明 活性アルミナを担体として、 担持することもできる。 これにより、 透明な可視 光応答性光触媒が得られ、 透明な塗料を提供することもできる。 When the light absorption at 5 O nm is 20% or more (reflectance is 80% or less), the material clearly shows visible light response. The heating conditions cannot necessarily be defined only by the temperature, but may be, for example, a temperature in the range of 300 to 500 ° C. This heating can be performed under normal pressure. In addition, the heating time can be appropriately determined based on the absorption of light at a wavelength of 45 O nm of the material generated by heating. For the heating, a rotary kiln, a tunnel kiln, a Matsufur furnace, or the like, which is generally used in this field, can be used. When individual particles of titanium oxide are aggregated or sintered by heating, they may be ground by a crusher as necessary. Further, the material obtained by heating as described above can be washed with water or an aqueous solution as needed. This washing may improve the visible light responsiveness of the obtained visible light responsive photocatalyst in some cases. For example, amorphous or incompletely crystalline titanium dioxide (material before heating) ι If titanium chloride is obtained by hydrolysis with ammonium hydroxide, a considerable amount of chloride is added to the hydrolyzate. Ammonia remains, resulting in amorphous or imperfectly crystalline titanium dioxide as described above. Can be converted to a visible light responsive photocatalyst. However, even after the heat treatment, a considerable amount of ammonium chloride may remain in the obtained material. In such a case, washing with water or an appropriate aqueous solution may remove ammonium chloride and improve the visible light responsiveness of the visible light responsive photocatalyst in some cases. In this case, the material obtained by heating can be washed with water or an aqueous solution such that the pH of the washed water or aqueous solution is, for example, 5 or more. The visible light responsive photocatalyst used in the present invention includes silicon, aluminum, tin, zirconium, antimony, phosphorus, platinum, gold, silver, copper, iron, niobium, tungsten, on its surface and / or inside depending on the application. Elements such as tantalum and compounds containing them can be coated, supported, or doped. For example, the above visible light responsive photocatalyst can be carried using a transparent activated alumina described in JP-A-2000-119017 as a carrier. As a result, a transparent visible light responsive photocatalyst can be obtained, and a transparent paint can be provided.
本発明においては、 前記可視光応答性光触媒は塗膜に含有されるものであつ てもよい。 この塗膜は上記可視光応答性光触媒とバインダー及び溶媒を少なく とも含有する塗料を用いて形成することができる。 バインダ一は有機バインダ 一及び無機パインダ一のいずれであってもよい。 無機バインダーとしては、 例えば、 アルキルシリケート、 ハロゲン化ケィ素 およびこれらの部分加水分解物などの加水分解性ケィ素化合物を加水分解して 得られた生成物、 シリカ、 コロイダルシリカ、 水ガラス、 オルガノポリシロキ サンなどのケィ素化合物、有機ポリシロキサン化合物の重縮合物、リン酸亜鉛、 リン酸アルミニウムなどのリン酸塩、重リン酸塩、セメント、石灰、セッコゥ、 ほうろう用フリット、 グラスライニング用うわぐすり、 プラスターなどの無機 系パインダーを挙げることができる。また、有機パインダーとしては、例えば、 フッ素系ポリマー、 シリコン系ポリマー、 アクリル樹脂、 エポキシ樹脂、 ポリ エステル樹脂、 メラミン樹脂、 ウレタン樹脂、 アルキド榭脂などの有機系バイ ンダ一などが挙げられる。 バインダーは、 光触媒の光触媒機能により劣化した り、 分解したりするため、 使用場面、 光触媒機能の程度や用途に応じてバイン ダ一の種類を適宜選択する必要がある。 しかし、 本発明では、 光触媒として可 視光応答性光触媒を用いるため、 従来の紫外線型の光触媒を用いる塗料に比べ て光触媒機能による劣化が格段に少ない力、 紫外線の殆どない室内で使用され る場合には、 光触媒機能による劣化は殆どない。 従って、 紫外線型の光触媒を 使用した塗料では使用できなかったアクリル樹脂、 エポキシ樹脂、 ポリエステ ル樹脂、 メラミン樹脂、 ウレタン樹脂、 アルキド樹脂等の有機バインダーも良 好に使用することができる。 In the present invention, the visible light responsive photocatalyst may be contained in a coating film. This coating film can be formed using a paint containing at least the above visible light responsive photocatalyst, a binder and a solvent. The binder may be either an organic binder or an inorganic binder. Examples of the inorganic binder include alkyl silicate and silicon halide. And products obtained by hydrolyzing hydrolyzable silicon compounds such as partially hydrolyzed products thereof, silica, colloidal silica, water glass, silicon compounds such as organopolysiloxane, and organic polysiloxane compounds. Examples include inorganic binders such as condensates, phosphates such as zinc phosphate and aluminum phosphate, heavy phosphates, cement, lime, gypsum, frit for enamel, glaze for glass lining, and plaster. Examples of the organic binder include organic binders such as a fluorine-based polymer, a silicon-based polymer, an acrylic resin, an epoxy resin, a polyester resin, a melamine resin, a urethane resin, and an alkyd resin. Since the binder is degraded or decomposed by the photocatalytic function of the photocatalyst, it is necessary to appropriately select the type of binder according to the use scene, the degree of the photocatalytic function, and the application. However, in the present invention, a visible light responsive photocatalyst is used as the photocatalyst, so that the photocatalyst function is much less deteriorated compared to a conventional paint using an ultraviolet type photocatalyst, and the photocatalyst is used indoors where there is almost no ultraviolet light. Has almost no deterioration due to the photocatalytic function. Accordingly, organic binders such as acrylic resins, epoxy resins, polyester resins, melamine resins, urethane resins, and alkyd resins, which cannot be used in paints using an ultraviolet-type photocatalyst, can also be used favorably.
本発明では、 これらのバインダーを単一または 2種以上を組み合わせて用い ることができる。 アルキルシリケートとしては、 例えば、 一般式として S i n On_! ( O R) 2n+2 (但し S iはケィ素、 Oは酸素、 Rはアルキル基を示す。) で表される化合物を 挙げることができ、 上記 nは例えば、 1〜6であって、 Rは例えば、 炭素数が 1〜4のアルキル基であるものを挙げることができる。 ただし、 これらに限定 されない。 In the present invention, these binders can be used alone or in combination of two or more. The alkyl silicates, e.g., S i as a general formula n O n _! (OR) 2n + 2 ( where S i is Keimoto, O is oxygen, R represents an alkyl group.) The compound represented by N is, for example, 1 to 6, and R is, for example, an alkyl group having 1 to 4 carbon atoms. However, it is not limited to these.
セメントとしては、 例えば早強セメント、 普通セメント、 中庸熱セメント、 耐硫酸塩セメント、 ホワイ ト (白色) セメント、 油井セメント、 地熱井セメン トなどのポルトランドセメント、フライアッシュセメント、.高硫酸塩セメント、 シリカセメント、 高炉セメントなどの混合セメント、 アルミナセメントなどを 用いることができる。  Examples of cement include Portland cement, such as early-strength cement, ordinary cement, moderate heat cement, sulfate-resistant cement, white cement, oil well cement, geothermal well cement, fly ash cement, high sulfate cement, Mixed cements such as silica cement and blast furnace cement, and alumina cement can be used.
プラスターとしては、 例えばセッコゥプラスター、 石灰プラスター、 ドロマ ィ トプラスターなどを用いることができる。  As the plaster, for example, secco plaster, lime plaster, doloma plaster and the like can be used.
フッ素系ポリマーとしては、 例えばポリフッ化ビュル、 ポリフッ化ビニリデ ン、 ポリ塩化三フッ化工チレン、 ポリ四フッ化工チレン、 ポリ四フッ化工チレ ン一六フツイ匕プロピレンコポリマー、 エチレン一ポリ四フツイ匕エチレンコポリ マー、 エチレン一塩化三フッ化工チレンコポリマー、 四フツイ匕エチレン一パー フルォロアルキルビエルエーテルコポリマーなどの結晶性フッ素樹脂、 パーフ ノレォロシクロポリマー、 ビニノレエーテノレーフノレォロォレフィンコポリマー、 ビ ニルエステル一フルォロォレフィンコポリマーなどの非晶質フッ素樹脂、 各種 のフッ素系ゴムなどを用いることができる。 特に、 ビニルエーテル一フルォロ ォレフィンコポリマー、 ビニノレエステノレーフノレォロォレフィンコポリマーを主 成分としたフッ素系ポリマーが分解 '劣化が少なく、 また、 取扱が容易である ため好ましい。  Examples of the fluorinated polymer include polyvinyl fluoride, polyvinylidene fluoride, polychlorinated trifluoroethylene, polytetrafluoroethylene, polytetrafluoroethylene propylene copolymer, ethylene-polytetrafluoroethylene copolymer, and ethylene-polytetrafluoroethylene copolymer. Crystalline fluororesins such as ethylene monochloride trifluorene ethylene copolymer, tetrafluoroethylene monofluoroalkylbier ether copolymer, perfluoro-norelocyclopolymer, vinylinoleatenorreolenorreolefin copolymer, An amorphous fluororesin such as a nylester-fluorofluorin copolymer, various fluororubbers, and the like can be used. In particular, a fluoropolymer mainly composed of a vinyl ether-fluorene copolymer and a vinylinestenolefinolefluorene copolymer is preferred because it has little degradation and deterioration and is easy to handle.
シリコン系ポリマーとしては、 直鎖シリコン樹脂、 アクリル変性シリコン樹 脂、 各種のシリコン系ゴムなどを用いることができる。 有機ポリシロキサン化合物の重縮合物に用いる有機ポリシロキサン化合物 は、 有機珪素化合物の加水分解物として公知の物質であり、 例えば、 特開平 8 - 1 6 4 3 3 4号公報、 特開平 8 _ 6 7 8 3 5号公報、 特開平 8— 1 5 5 3 0 8号公報、 特開平 1 0— 6 6 8 3 0号公報、 特許第 2 7 5 6 4 7 4号等に記載 のものをそのまま使用することができる。 Silicone polymers include linear silicone resin and acrylic-modified silicone resin Fats and various types of silicone rubber can be used. The organic polysiloxane compound used for the polycondensate of the organic polysiloxane compound is a substance known as a hydrolyzate of an organic silicon compound. For example, Japanese Patent Application Laid-Open Nos. 8-164, 334 and 8-6 Nos. 7 835, JP-A-8-155030, JP-A-10-66830, Patent No. 2756474, etc. Can be used.
有機ポリシロキサン化合物は、 有機珪素化合物を加水分解物であるが、 有機 珪素化合物としては、 アルキル基及びアルコキシ基を有するものを挙げること ができる。 アルキル基及びアルコキシ基を有する有機珪素化合物を加水分解物も公知 であり、 例えば R^Si (OR2) 4_nで表される有機珪素化合物を加水分解することに より得られる。 R1及び R2は、 それぞれ、 例えば、 炭素数 1〜8 の低級アルキル 基であることができ、 得られるコーティングの膜強度を考慮すると、 R1は炭素 数 1〜3 の低級アルキル基、 好ましくはメチル基であることが適当である。 上 記式中の nは、 0〜2の整数であり、 具体的には、 少なくとも nが 1及ぴ 2の有 機珪素化合物の混合物の加水分解物(3 次元架橋物)を用いることが膜強度等を 考慮すると適当である。 上記有機珪素化合物としては、 例えば、 メチルトリメ トキシシラン、 メチル トリエトキシシラン、 メチルトリイソプロポキシシラン、 メチルトリ t一ブト キシシラン、 メチ トリクロノレシラン、 メチノレトリブロムシラン;ェチノレトリ メ トキシシラン、 ェチルトリエトキシシラン、 ェチルトリイソプロポキシシラ ン、 ェチ^ トリ t 一ブトキシシラン、 ェチノレトリクロルシラン、 ェチノレトリブ 口ムシラン; n—プロピルトリメ トキシシラン、 n—プロピルトリエトキシシ ラン、 n—プロピルトリイソプロポキシシラン、 n—プロピルトリ tーブトキ シシラン、 n—プロピルトリクロルシラン、 n—プロピルトリブロムシラン; n 一へキシ^/トリメ トキシシラン、 n—へキシノレトリエトキシシラン、 n—へキ シルトリイソプロポキシシラン、 n—へキシルトリ tープトキシシラン、 n— へキシノレ トリクロルシラン、 n一へキシルト リブロムシラン; n一デシノレ ト リ メ トキシシラン、 n—デシルトリエトキシシラン、 n—デシルトリイソプロボ キシシラン、 n—デシルトリ t—ブトキシシラン、 n—デシルトリクロルシラ ン、 n—デシルトリブロムシラン; n—ォクタデシルトリメ トキシシラン、 n ーォクタデシルトリエトキシシラン、 n—才クタデシルトリイソプロボキシシ ラン、 n—ォクタデシルトリ t—ブトキシシラン、 n—ォクタデシルトリクロ ルシラン、 n—ォクタデシルトリブ口ムシラン、 テトラメ トキシシラン、 テト ラエトキシシラン、 テトラブトキシシラン、 ジメ トキシジェトキシシラン; ジ メチルジメ トキシシラン、 ジメチルジェトキシシラン、 yーグリシドキシプロ ピルメチルジメ トキシシラン、 γ—グリシドキシプロピルメチルジェトキシシ ラン、 y—グリシドキシプロビルトリメ トキシシラン、 γ—グリシドキシプロ ピルトリエトキシシラン、 γ—グリシドキシプロピルトリイソプロポキシシラ ン、 y—グリシドキシプロピルトリ t 一ブトキシシラン等を挙げることができ る。 バインダーの配合量は、 固形分に換算して、 可視光応答性光触媒粒子に対し て 1 0〜 2 0 0 0重量%程度であり、 2 5〜 1 0 0 0重量%が好ましく、 2 5 〜 5 0 0重量%がより好ましく、 2 5〜2 5 0重量%がさらに好ましい。 バイ ンダ一の配合量を上記範囲とすることで、 塗膜としたとき可視光応答性光触媒 が脱離することなく、 かつ可視光応答性光触媒機能を維持することができる。 溶媒としては、 無機溶媒または有機溶媒、 それらの混合物を用いることがで きる。 無機溶媒としては水が好ましい。 有機溶媒としては、 メタノール、 エタ ノール、 2—プロパノール、 エチレングリコール等のアルコール類、 ケトン類 などを用いることができる。 取扱い性、 塗工性の点からアルコールを含有して なるものが好ましい。 溶媒の配合量は、 作業性に応じて適宜設定することがで さる。 前記塗料及び塗膜には、 必要により、 ジカルボン酸およびその誘導体からな る群より選択される少なくとも一種の化合物を含有させることができる。 ジカ ルポン酸とは、分子内に力ルポキシル基 C O O Hを二個持つ有機化合物であり、 例えば、 シユウ酸、 マロン酸、 コハク酸、 グルタル酸、 アジピン酸、 ピメリン 酸、 スベリン酸、 ァゼライン酸、 セバシン酸などの脂肪族飽和ジカルボン酸、 マレイン酸、 フマル酸などの脂肪族不飽和ジカルボン酸、 フタル酸、 イソフタ ル酸、 テレフタル酸などの芳香族ジカルボン酸などを用いることができる。 ジ カルポン酸誘導体とは、 前記のジカルボン酸のエステル化物、 ジカルボン酸の 塩、 ジカルボン酸無水物、 ジカルボン酸アジド、 ジカルボン酸アミ ド、 ジカル ボン酸ィミ ドなどのジカルボン酸に小部分の構造上の変化があってできる化合 物のことであり、 例えば、 ジカルボン酸メチル、 ジカルボン酸ェチル、 ジカル ボン酸プロピル、 ジカルボン酸プチル、 ジカルボン酸ナトリウム、 ジカルボン 酸アンモニゥムなどを用いることができる。 また、 ジカルボン酸またはその誘 導体を含有した商品、 例えば、 三種のジカルボン酸エステルを配合した商品名 ローディアソルブ (ローヌ 'プーラン ジャパン社製) を用いてもよい。 ジカルボン酸およびその誘導体の含有量は、 塗料または塗膜中の可視光応答 性光触媒粒子に対して 0 . 5〜 5 0 0重量%程度であり、 5〜 5 0 0重量%が 好ましく、 1 0〜5 0 0重量%がより好ましく、 2 5〜2 5 0重量%がさらに 好ましい。 ジカルボン酸およびその誘導体の含有量が上記範囲より少ないと添 加効果が発現しにくく、 また、 上記範囲より多くしてもそれ以上の顕著な効果 が認められにくい。 なお、 ジカルボン酸またはその誘導体を含有する可視光応 答型塗料組成物を用いて作成した塗膜は多孔性になり、 可視光応答性光触媒機 能が改善できる。 また、 前記塗料には、 ジカルボン酸およびその誘導体からな る群より選択される少なくとも一種の化合物、 可視光応答性光触媒粒子、 バイ ンダ一、 溶媒以外に、 分散剤、 界面活性剤、 硬化剤、 架橋剤などの種々の添加 剤を含有させてもよい。 可視光応答性光触媒塗膜の膜厚は、 用途に応じて適宜設定することができ、 例えば、 0 . 0 1〜1 程度の膜厚とすることができる。塗料を用いて、 塗膜を形成するには、 基体に塗料を塗布したりあるいは吹き付けたりして行う ことができる。 具体的には、 可視光応答性光触媒粒子とバインダーとを溶媒に 分散させて塗料組成物とし、 次いで、 該塗料組成物を基体に塗布し或いは吹き 付けて、 該可視光応答性光触媒粒子とバインダーとを基体の少なくとも一部に 配置させるのが好ましい。 前記の溶媒としては、 水やトルエン、 アルコールな どの有機溶媒を用いることができる。 塗布方法としては、 例えば、 含浸法、 デ イッブコーティング法、 スピナ一コーティング法、 ブレードコーティング法、 ローラーコーティング法、 ワイヤーパーコーティング法、 リノ 一スローノレコー ティング法、 刷毛塗り法、 スポンジ塗り法などの通常の方法で塗布したり、 あ るいは、 スプレーコーティング法などの通常の方法で吹き付けたりすることが できる。 このようにして塗布あるいは吹き付けた後、 乾燥または焼成して溶媒 を除去する。 乾燥または焼成の温度は、 5 0 0 °Cより低い温度で行うのが好ま しく、 室温〜 4 0 0 °Cの温度で行うのがより好ましい。 この場合、 5 0 0 °Cよ り高いと可視光応答性光触媒機能が低下しやすくなるため好ましくない。 さら に、 必要に応じて、 用いたバインダーを固化するために、 例えば紫外線照射な どの方法を用いてもよい。 なお、 塗料組成物を塗布したりあるいは吹き付けし たりする前に、必要に応じて、前記の有機系バインダ"である、アタリル樹脂、 エポキシ樹脂、 ポリエステル樹脂、 メラミン樹脂、 ウレタン樹脂、 アルキド樹 脂などの有機系バインダーや前記の無機系パインダーをプライマーあるいは塗 装として予め物品に塗布したりあるいは吹き付けしたりしてもよい。 The organic polysiloxane compound is a hydrolyzate of an organic silicon compound, and examples of the organic silicon compound include those having an alkyl group and an alkoxy group. A hydrolyzate of an organosilicon compound having an alkyl group and an alkoxy group is also known, and is obtained, for example, by hydrolyzing an organosilicon compound represented by R ^ Si (OR 2 ) 4 — n . R 1 and R 2 can each be, for example, a lower alkyl group having 1 to 8 carbon atoms. Considering the film strength of the obtained coating, R 1 is a lower alkyl group having 1 to 3 carbon atoms, preferably Is suitably a methyl group. N in the above formula is an integer of 0 to 2, and specifically, a film obtained by using a hydrolyzate (three-dimensionally crosslinked product) of a mixture of organic silicon compounds in which at least n is 1 or 2 is used. Appropriate considering the strength. Examples of the organosilicon compound include methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, and methyltributanol. Kishishiran, methylol tri chrono Les silane, methylcarbamoyl Honoré tribromomethyl silane; Echinoretori main Tokishishiran, E triethoxysilane, E tilt re-isopropoxyphenyl Sila down, E Ji ^ tri t one butoxysilane, E Chino Les trichlorosilane, Echinoretoribu port Mushiran; n-propyltrimethoxysilane, n-propyltriethoxysilane, n-propyltriisopropoxysilane, n-propyltributoxysilane, n-propyltrichlorosilane, n-propyltribromosilane; n-hexyl / trime Toxoxysilane, n-hexinoletriethoxysilane, n-hexyltriisopropoxysilane, n-hexyltri-t-poxysilane, n-hexinoletrichlorosilane, n-hexyltribromosilane; n-decinoletrimethoxysilane, n-decyltriethoxysilane, n-decyltriisopropoxysilane, n-decyltri-t-butoxysilane, n-decyltrichlorosilane, n-decyltribromosilane; n-octadecyltrimethoxysilane, n-octadecyl Triethoxysilane, n-octadecyltriisopropoxysilane, n-octadecyltri-t-butoxysilane, n-octadecyltrichlorosilane, n-octadecyltrib-butanesilane, tetramethoxysilane, tetraethoxysilane, tetrabutoxy Silane, dimethoxy ethoxy silane; dimethyl dimethyl silane, dimethyl ethoxy silane, y-glycidoxypropyl methyl dimethyl silane, γ-glycidoxypropyl methyl ethoxy silane, y-glycidoxy propyl trimethoxy silane .gamma. Gurishidokishipuro pills triethoxysilane, .gamma.-glycidoxypropyltrimethoxysilane isopropoxyphenyl Sila down, y- glycidoxypropyltrimethoxysilane t Ru can be given an butoxysilane like. The compounding amount of the binder is about 100 to 2000% by weight, preferably 25 to 100% by weight, and preferably 25 to 100% by weight, based on the solid matter, based on the visible light-responsive photocatalyst particles. 500% by weight is more preferable, and 25 to 250% by weight is more preferable. By setting the blending amount of the binder within the above range, the visible light responsive photocatalyst can be maintained without desorbing the visible light responsive photocatalyst when a coating film is formed. As the solvent, an inorganic solvent, an organic solvent, or a mixture thereof can be used. Water is preferred as the inorganic solvent. As the organic solvent, alcohols such as methanol, ethanol, 2-propanol, and ethylene glycol, and ketones can be used. Those containing alcohol are preferred from the viewpoints of handleability and coatability. The compounding amount of the solvent can be appropriately set according to the workability. If necessary, the paint and the coating film can contain at least one compound selected from the group consisting of dicarboxylic acids and derivatives thereof. Dicarponic acid is an organic compound having two olepoxyl groups COOH in the molecule.For example, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid And aliphatic unsaturated dicarboxylic acids such as maleic acid and fumaric acid, and aromatic dicarboxylic acids such as phthalic acid, isophthalic acid and terephthalic acid. The dicarboxylic acid derivative is an esterified product of the dicarboxylic acid, Dicarboxylic acids such as salts, dicarboxylic anhydrides, dicarboxylic acid azides, dicarboxylic acid amides, dicarbonic acid imides, etc. Ethyl dicarboxylate, propyl dicarbonate, butyl dicarboxylate, sodium dicarboxylate, ammonium dicarboxylate and the like can be used. Further, a product containing dicarboxylic acid or a derivative thereof, for example, Rhodiasolve (trade name, manufactured by Rhone Pourin Japan Co., Ltd.) containing three kinds of dicarboxylic acid esters may be used. The content of the dicarboxylic acid and the derivative thereof is about 0.5 to 500% by weight, preferably 5 to 500% by weight, and more preferably 10 to 50% by weight based on the visible light responsive photocatalyst particles in the paint or coating film. ~ 500 wt% is more preferred, and 25 ~ 250 wt% is even more preferred. When the content of the dicarboxylic acid and its derivative is less than the above range, the effect of adding is difficult to be exhibited, and when the content is more than the above range, a further remarkable effect is hardly recognized. Note that a coating film formed using a visible light responsive coating composition containing a dicarboxylic acid or a derivative thereof becomes porous, and the visible light responsive photocatalytic function can be improved. In addition to the above-mentioned paint, in addition to at least one compound selected from the group consisting of dicarboxylic acids and derivatives thereof, visible light-responsive photocatalyst particles, binders, and solvents, dispersants, surfactants, curing agents, Various additives such as a crosslinking agent may be contained. The thickness of the visible light responsive photocatalyst coating film can be appropriately set according to the application, and can be, for example, about 0.01 to 1. Using paint, The coating film can be formed by applying or spraying a paint on the substrate. Specifically, the visible light responsive photocatalyst particles and the binder are dispersed in a solvent to form a coating composition, and then the coating composition is applied or sprayed on a substrate to form the visible light responsive photocatalyst particles and the binder. Is preferably arranged on at least a part of the substrate. As the solvent, water, an organic solvent such as toluene and alcohol can be used. Examples of the coating method include, for example, impregnation method, die coating method, spinner coating method, blade coating method, roller coating method, wire per coating method, lino-slowno coating method, brush coating method, and sponge coating method. It can be applied by a conventional method or sprayed by a usual method such as a spray coating method. After being applied or sprayed in this manner, the solvent is removed by drying or baking. The drying or firing is preferably performed at a temperature lower than 500 ° C., more preferably at a temperature from room temperature to 400 ° C. In this case, if the temperature is higher than 500 ° C., the visible light responsive photocatalytic function tends to decrease, which is not preferable. Further, if necessary, a method such as ultraviolet irradiation may be used to solidify the binder used. Before applying or spraying the coating composition, if necessary, the above-mentioned organic binder such as ataryl resin, epoxy resin, polyester resin, melamine resin, urethane resin, alkyd resin, etc. The organic binder or the inorganic binder described above may be applied or sprayed on the article in advance as a primer or a coating.
上記塗料及び塗膜は、 粒状物質、 吸着剤、 担体及び/又は縮合リン酸塩をさ らに含むことができる。 粒状物質は、 例えば、 平均粒子径が 1 η π!〜 1 0 0 mの無機物または有機物粒子であることができる。 本発明においては、 バイン ダーを介して、 可視光応答性光触媒粒子と吸着剤及び/又は担体とを基体上に 接着させると、 被処理物質を吸着及び/又は担持する作用を兼ね備えることが できるため好ましい。 前記の吸着剤及び担体としては、 一般的な吸着剤及び担 体を用いることができ、 例えば、 活性炭、 ゼォライト、 シリカゲル、 透明活性 アルミナ(例えば、 特開 2000- 119017号公報)、 非晶質又は結晶性の低い二酸化 チタン、 珪藻土などを用いることができる。 非晶質又は結晶性の低い二酸化チ タンは、 硫酸チタンまたは硫酸チタエルを水酸化アンモニゥムで加水分解した 後、硫酸イオンが残存する状態で、 例えば、 400°Cで焼成後、 必要により洗浄す ることで得られたものであることができる。 上記吸着剤または担体の内の適当 な材料(例えば、 透明活性アルミナ)に可視光応答性光触媒を吸着または担持し たものを可視光応答性光触媒として使用すると、 塗膜とした場合に透明性が得 られ、 機械的強度や耐候性も向上できる場合がある。 また、 前記塗料は、 バインダー、 縮合リン酸塩、 可視光応答性光触媒及び溶 媒を含む塗料であって、 溶媒は水であることが好ましい。 溶媒が水であり、 か つ縮合リン酸塩を含む塗料は、可視光応答性光触媒粒子の分散性が良好であり、 この塗料から得られる塗膜は、 優れた可視光応答を示す。 The paints and coatings described above include particulate matter, adsorbents, carriers and / or condensed phosphates. Can be included. The particulate matter has, for example, an average particle diameter of 1 η π! It can be up to 100 m of inorganic or organic particles. In the present invention, when the visible light responsive photocatalyst particles and the adsorbent and / or the carrier are adhered to the substrate via the binder, the photocatalytic particles can also have the function of adsorbing and / or supporting the substance to be treated. preferable. As the above-mentioned adsorbent and carrier, general adsorbents and carriers can be used. For example, activated carbon, zeolite, silica gel, transparent activated alumina (for example, JP-A-2000-119017), amorphous or Titanium dioxide, diatomaceous earth, etc. with low crystallinity can be used. Titanium dioxide of amorphous or low crystallinity is hydrolyzed with ammonium hydroxide after titanium sulfate or titanium sulfate is obtained, and then sulfated ions remain, for example, calcined at 400 ° C, and then washed if necessary. Can be obtained by doing so. When a visible light responsive photocatalyst is adsorbed or supported on an appropriate material (for example, transparent activated alumina) of the above adsorbent or carrier as a visible light responsive photocatalyst, the transparency is reduced when a coating film is formed. In some cases, mechanical strength and weather resistance can be improved. Further, the paint is a paint containing a binder, a condensed phosphate, a visible light responsive photocatalyst, and a solvent, and the solvent is preferably water. A paint containing water as a solvent and containing a condensed phosphate has good dispersibility of visible light-responsive photocatalyst particles, and a coating film obtained from this paint shows excellent visible light response.
特に、 本発明では、 バインダー、 縮合リン酸塩及び可視光応答性光触媒を含 む塗膜を包含し、 この塗膜は、 光照射下で親水性を示す。 従来の親水性塗料及び塗膜 (例えば、 特開平 11-1659号公報) は、 耐候性を 得るために、 シリカやシリコーンを含むものであった。 それに対して、 本発明 では、 シリカゃシリコーンを含むことなく、 耐候性に優れた塗膜を得ることが できる。 シリカやシリコーンを含むことなく、 耐侯性に優れた塗膜を得ること ができるため、 組成の自由度がまし、 例えば、 バインダー量を増やしたり、 可 視光応答性光触媒の含有量を増やしたりすることも可能である。 In particular, the present invention includes a coating containing a binder, a condensed phosphate, and a visible light-responsive photocatalyst, and the coating shows hydrophilicity under light irradiation. Conventional hydrophilic paints and coatings (for example, JP-A-11-1659) contain silica and silicone to obtain weather resistance. In contrast, according to the present invention, a coating film having excellent weather resistance can be obtained without containing silica-silicone. A coating film with excellent weather resistance can be obtained without containing silica or silicone, so that there is more freedom in composition, for example, increasing the amount of binder or increasing the content of visible light responsive photocatalyst It is also possible.
但し、 本発明における塗料及ぴ塗膜は、 シリカやシリコーンを含むものであ つても良い。 上記塗料及び塗膜において、 縮合リン酸塩の量は、 可視光応答性光触媒の重 量基準で 0 . 5〜5 %、 好ましくは 1〜1 . 2 %配合することによって、 分散 性、 粘度、 安定性等の点で良好な塗料が得られる。 概ね、 可視光応答性光触媒 の比表面積が大きいほど、 また、 表面被覆剤の量が多いほど、 縮合リン酸塩の 最適配合量は多くなる。 また、 可視光応答性光触媒の製法、 表面被覆剤の種類 によっても縮合リン酸塩の最適配合量は異なってくる。 縮合リン酸塩は、 1種 のものに限定する必要はなく、 2種以上のものを組み合わせて使用してもよい。 本発明における塗料及び塗膜は、 上記成分以外に、 コロイド状酸化物をさら に含有させることができる。 コロイド状酸化物としてはコロイド状シリカを挙 げことができる。 コロイド状酸化物は、 微粒子であることからコーティングの 表面積を高め(多孔性にする)、 可視光応答性光触媒と被反応物との接蝕頻度を 高めることができる。 しかし、 コロイド状酸化物は、 本発明の塗膜が、 耐候性 を示すのに必須の成分ではない。 さらに、 本発明においては、 基体上に、 バインダーからなる、 可視光応答性 光触媒粒子を含有しない第一層を設け、 さらに、 該第一層の上に、 バインダー と可視光応答性光触媒粒子とからなる第二層を設けることができる。 可視光応 答性光触媒粒子を含有しない第一層を設けることによって、 基体と、 可視光応 答性光触媒粒子を含有した第二層との結びつきが強固になって、 該可視光応答 性光触媒粒子を基体上に、 一層強固に、 かつ、 一層長期間にわたって接着させ ることができる。 このようなバインダーとしては、 有機系バインダーが好まし い。 さらに、 前記の第一層には、 充填剤として、 可視光応答性光触媒機能を有 さない無機粒子を含有させるのが好ましい。 このような無機粒子としては、 可 視光応答性光触媒機能を有さないように、 酸化ケィ素、 酸化アルミニウムや酸 化ジルコニウムなどで表面処理を施した、 酸化チタン、 酸化ケィ素、 酸化アル ミニゥム、 酸化マグネシウムなどを用いることができる。 本発明においては、 塗料組成物中の可視光応答性光触媒粒子の量は、 該可視 光応答性光触媒粒子とバインダーとの合量に対する容積基準で 5〜9 8 %、 好 ましくは 2 0〜 9 8 %、 より好ましくは 5 0〜 9 8 %、 もっとも好ましくは 7 0〜9 8 %である。 前記塗料組成物には、 架橋剤、 分散剤、 充填剤などを配合 させることができる。 架橋剤としては、 イソシァネート系、 メラミン系などの 通常の架橋剤を、 分散剤としては、 カップリング剤などを使用することができ る。 特に、 塗料組成物中の可視光応答性光触媒粒子の含有量を、 該可視光応答 性光触媒粒子とバインダ一との合量に対する容積基準で 4 0〜9 8 %とする場 合には、 該塗料組成物中にカップリング剤を配合するのが好ましい。 このカツ プリング剤の添加量は、 好ましくは 5〜 5 0 %、 より好ましくは 7〜 3 0 %で ある。 前記のようにして塗布或いは吹き付けた後、 固化させて可視光応答性光触媒 を含む塗膜を得る。 固化は、 乾燥したり、 紫外線を照射したり、 加熱したり、 冷却したり、 架橋剤を使用したりする方法で行なうことができるが、 固化の温 度は、 4 0 0 °Cより低い温度、 好ましくは室温〜 2 0 0 °Cの温度で行なう。 こ の場合、 4 0 0 °Cより高いとバインダーが熱劣化し、 可視光応答性光触媒粒子 が脱離し易くなるため好ましくない。 本発明においては、 イソシァネート系、 メラミン系などの架橋剤を使用して固化させる方法が好ましい。 However, the paint and the coating film in the present invention may contain silica or silicone. In the above paints and coatings, the amount of the condensed phosphate is 0.5 to 5%, preferably 1 to 1.2%, based on the weight of the visible light responsive photocatalyst, whereby dispersibility, viscosity, Good paint is obtained in terms of stability and the like. Generally, the larger the specific surface area of the visible light responsive photocatalyst and the larger the amount of the surface coating agent, the larger the optimal amount of the condensed phosphate. The optimum amount of condensed phosphate varies depending on the method of producing the visible light responsive photocatalyst and the type of surface coating agent. The condensed phosphate need not be limited to one kind, and two or more kinds may be used in combination. The paint and the coating film of the present invention may further contain a colloidal oxide in addition to the above components. Examples of the colloidal oxide include colloidal silica. Since the colloidal oxide is a fine particle, it can increase the surface area of the coating (make it porous) and increase the frequency of contact between the visible light responsive photocatalyst and the reactant. However, colloidal oxides are not Is not an essential component to show Further, in the present invention, a first layer comprising a binder and containing no visible light responsive photocatalyst particles is provided on a substrate, and further, a binder and visible light responsive photocatalyst particles are formed on the first layer. Can be provided. By providing the first layer not containing the visible light responsive photocatalyst particles, the connection between the substrate and the second layer containing the visible light responsive photocatalyst particles is strengthened. Can be adhered to the substrate more firmly and for a longer period of time. As such a binder, an organic binder is preferable. Further, the first layer preferably contains, as a filler, inorganic particles having no visible light responsive photocatalytic function. Such inorganic particles include titanium oxide, silicon oxide, and aluminum oxide that have been surface-treated with silicon oxide, aluminum oxide, zirconium oxide, or the like so as not to have a visible light responsive photocatalytic function. And magnesium oxide. In the present invention, the amount of the visible light responsive photocatalyst particles in the coating composition is 5 to 98%, preferably 20 to 90% by volume based on the total amount of the visible light responsive photocatalyst particles and the binder. It is 98%, more preferably 50-98%, and most preferably 70-98%. The coating composition may contain a crosslinking agent, a dispersing agent, a filler and the like. As the cross-linking agent, a normal cross-linking agent such as an isocyanate-based or melamine-based cross-linking agent can be used, and as the dispersing agent, a coupling agent or the like can be used. In particular, the content of the visible light responsive photocatalyst particles in the coating composition is determined by the When the content is 40 to 98% by volume based on the total amount of the acidic photocatalyst particles and the binder, it is preferable to add a coupling agent to the coating composition. The addition amount of the coupling agent is preferably 5 to 50%, more preferably 7 to 30%. After being applied or sprayed as described above, it is solidified to obtain a coating film containing a visible light responsive photocatalyst. Solidification can be carried out by drying, irradiating with ultraviolet light, heating, cooling, or using a cross-linking agent, but the solidification temperature is lower than 400 ° C. The reaction is preferably carried out at a temperature from room temperature to 200 ° C. In this case, if the temperature is higher than 400 ° C., the binder is thermally degraded, and the visible light-responsive photocatalyst particles are easily removed, which is not preferable. In the present invention, a method of solidifying using an isocyanate-based or melamine-based cross-linking agent is preferable.
[発光ダイォード] [Light emitting diode]
本発明の方法で使用する発光ダイオードは、 少なくとも可視光領域に発光波 長を有するか、 可視光領域のみに発光波長を有する発光ダイオードである。 そ のような発光ダイォードとしては、 例えば、 紫色発光ダイォード、 青色発光ダ ィオード、 緑色発光ダイオード、 黄色発光ダイオード、 または白色発光ダイォ 一ドを挙げることができる。 紫色発光ダイォードは紫外領域から可視光領域に 発光波長を有する。 また、 青色発光ダイオード、 緑色発光ダイオード、 黄色発 光ダイオード、 または白色発光ダイオードは、 可視光領域のみに発光波長を有 する。 青色発光ダイオード (B L U E )、 緑色発光ダイオード (G R E E N)、 及ぴ白色発光ダイオード (WH I T E ) の発光スペクトルを図 4に示す。 本発明の光触媒の活性化方法により活性化された光触媒は、 例えば、 化学反 応方法、 環境浄化方法、 殺菌方法、 親水化方法、 細胞育成方法、 防汚方法等に 利用することができる。 また、 光の照射量や照射時間などは処理する物質の量 などによつて適宜設定できる。 本発明の方法はマイクロケミカルチップなどの 反応系においても利用することができる。 本発明は、 発光ダイォード基板上に可視光応答性光触媒を含む層を有する装 置に関する。 発光ダイオード基板は、 例えば、 少なくとも発光ダイオードとそ の上に設けた光透過性層とからなり、 前記光透過性層の上に前記可視光応答性 光触媒を含む層を設けたものであることができる。 The light emitting diode used in the method of the present invention is a light emitting diode having an emission wavelength at least in the visible light region or having an emission wavelength only in the visible light region. Examples of such a light emitting diode include a purple light emitting diode, a blue light emitting diode, a green light emitting diode, a yellow light emitting diode, and a white light emitting diode. The violet emission diode has an emission wavelength from the ultraviolet region to the visible light region. Further, a blue light emitting diode, a green light emitting diode, a yellow light emitting diode, or a white light emitting diode has an emission wavelength only in a visible light region. Blue light emitting diode (BLUE), green light emitting diode (GREEN), Fig. 4 shows the emission spectrum of the white light emitting diode (WH ITE). The photocatalyst activated by the photocatalyst activation method of the present invention can be used in, for example, a chemical reaction method, an environmental purification method, a sterilization method, a hydrophilization method, a cell growing method, an antifouling method, and the like. Further, the amount of light irradiation and the irradiation time can be appropriately set depending on the amount of the substance to be treated. The method of the present invention can also be used in a reaction system such as a microchemical chip. The present invention relates to a device having a layer containing a visible light responsive photocatalyst on a light emitting diode substrate. The light-emitting diode substrate may include, for example, at least a light-emitting diode and a light-transmitting layer provided thereon, and a layer including the visible light-responsive photocatalyst provided on the light-transmitting layer. it can.
さらに、 本発明の装置は、 発光ダイオードが紫色発光ダイオードであり、 か つ前記光透過性層と前記可視光応答性光触媒を含む層との間に、 4 0 0 n m以 下の波長の光を透過しない層をさらに設けたものであることもできる。 紫色発 光ダイォードは 4 0 0 n m以下の紫外線も含むが、 4 0 0 n m以下の波長の光 を透過しない層 (フィルタ一層) を設けることで、 紫外線をカットして、 例え ば、 可視光応答性光触媒を含む層において細胞等の生体を育成する場合であつ ても、 生体への紫外線の悪影響を抑制することができるという利点がある。 また、 青色発光ダイオード、 緑色発光ダイオード、 黄色発光ダイオード及び 白色発光ダイォードを使用する場合においても、 細胞の生育等に特定の波長の 光が特に影響を及ぼす等の事情がある場合、 発光ダイォードからの光の内の特 定の波長領域の光のみを可視光応答性光触媒を含む層に到達させるように、 適 当なフィルター機能を有するフィルタ一層を設けることもできる。 このフィル ター層は、 4 1 0〜 5 5 0 n mの任意の波長以下の光を透過しない層である事 ができる。 また、 透過特性の異なる 2種のフィルタ一層を組合せることもでき る。 さらに本発明は、 発光ダイオード、 可視光応答性光触媒、 及び前記発光ダイ ォードからの光を前記可視光応答性光触媒に移送するための光移送手段を含む 装置に関する。 ここで、 光移送手段は例えば、 光ファイバ一であることができ る。 上記可視光応答性光触媒を含む層は、 前述のように、 塗料を用いて形成した 塗膜であることができる他に、 例えば、 粉末状態の上記可視光応答性光触媒を 発光ダイォードの上に設けた光透過性層のような基材に塗布することにより形 成することができる。 あるいは、 可視光応答性光触媒が前記可視光応答性光触 媒である場合、 基材上に非晶質または不完全な結晶質の酸化チタン等の原料チ タン化合物を、 必要により適当なバインダーとともに塗布し、 アンモ ア又は その誘導体を塗布膜に含ませるか、 またはアンモニア又はその誘導体を雰囲気 に存在させて、 前記加熱を行うことで、 可視光応答性光触媒を含む層を形成す ることもできる。 上記本発明の装置は、 化学反応、 環境浄化、 殺菌、 脱色、 親水化、 細胞育成 または防汚性付与に使用することができる。 特に、 本発明の装置はマイクロケ ミカルリアクターとして有用である。 また、 本発明の装置は、 照明灯等の照明 や表示灯として使用する事もできる。 実施例 Further, in the device of the present invention, the light emitting diode is a violet light emitting diode, and light having a wavelength of 400 nm or less is transmitted between the light transmitting layer and the layer containing the visible light responsive photocatalyst. A layer that does not transmit light may be further provided. The violet light emitting diode also contains ultraviolet rays of 400 nm or less, but by providing a layer (one layer of filter) that does not transmit light of wavelengths of 400 nm or less, the ultraviolet rays are cut off, for example, visible light response. Even when a living body such as a cell is grown in a layer containing an acidic photocatalyst, there is an advantage that an adverse effect of ultraviolet light on the living body can be suppressed. Also, when using blue light emitting diodes, green light emitting diodes, yellow light emitting diodes, and white light emitting diodes, specific wavelengths are required for cell growth, etc. When there is a situation where light has a particular effect, an appropriate filter function should be used so that only light in a specific wavelength region of the light from the light emitting diode reaches the layer containing the visible light responsive photocatalyst. One filter layer may be provided. This filter layer can be a layer that does not transmit light having an arbitrary wavelength of 410 to 550 nm or less. Also, two types of filters having different transmission characteristics can be combined. Further, the present invention relates to an apparatus including a light emitting diode, a visible light responsive photocatalyst, and a light transfer means for transferring light from the light emitting diode to the visible light responsive photocatalyst. Here, the light transfer means may be, for example, an optical fiber. As described above, the layer containing the visible light responsive photocatalyst can be a coating film formed by using a paint, and for example, the visible light responsive photocatalyst in a powder state is provided on a light emitting diode. It can be formed by applying to a substrate such as a light-transmitting layer. Alternatively, when the visible light-responsive photocatalyst is the above-mentioned visible light-responsive photocatalyst, a raw material titanium compound such as amorphous or incompletely crystalline titanium oxide on a base material is added together with a suitable binder if necessary. A layer containing a visible light responsive photocatalyst can also be formed by applying the above and heating the film by applying an ammonia or a derivative thereof in an atmosphere or by including an ammonia or a derivative thereof in an atmosphere. . The device of the present invention described above can be used for chemical reaction, environmental purification, sterilization, decolorization, hydrophilization, cell growth, or imparting antifouling properties. In particular, the device of the present invention is useful as a microchemical reactor. Further, the device of the present invention can also be used as illumination such as an illumination lamp or an indicator lamp. Example
以下に本発明の実施例を示すが、 本発明はこれに限定されるものではない。 実施例 1  Examples of the present invention will be described below, but the present invention is not limited to these examples. Example 1
メチレンブルーの消色試験  Methylene blue decolorization test
参考例 3で製造した粉体 0. 2 gを水を用いて板ガラス (6X6cm) に均一 に塗布し、 常温にて乾燥させた。 板ガラスの中心付近に 0. 05w t %メチレ ンブルー水溶液を約 2m 1滴下させ、 常温にて乾燥させた。 光源は、 試料に対 して l cmとなるように設置した。光源には青色 LED (日亜化学工業(株)製、 型番 NS SB 450) を 1辺が 1. 5 c mに収まるように碁盤状に 2 X 2合計 4 個ならベたものを用い 1個の発光ダイォードに対し 3. 7V となるように電圧 かけ点灯させた。 試料に対する光の照射時間は、 1 時間とした。 光を照射した 後、 各試料の光を照射した部分の色の変化を表 1に示した。 比較例 1  0.2 g of the powder produced in Reference Example 3 was uniformly applied to a glass plate (6 × 6 cm) using water, and dried at room temperature. About 2 ml of a 0.05 wt% aqueous solution of methylene blue was dropped near the center of the plate glass and dried at room temperature. The light source was set so as to be 1 cm relative to the sample. The light source was a blue LED (Nichia Chemical Industry Co., Ltd., Model No. NS SB 450), a 2 x 2 grid of 4 pieces, so that one side could fit into 1.5 cm. Lighting was performed by applying a voltage to the light emitting diode to 3.7 V. The light irradiation time for the sample was 1 hour. Table 1 shows the color change of the light-irradiated part of each sample after light irradiation. Comparative Example 1
参考例 3で製造した粉体の代わりに市販されている超微粒子酸化チタン粉末 (ST-01 石原産業製) を用いた以外実施例 1と同様にメチレンブルーの消色試 験を行った。 結果を表 1に示す。 比較例 2 A methylene blue decolorization test was performed in the same manner as in Example 1 except that a commercially available ultrafine titanium oxide powder (ST-01 manufactured by Ishihara Sangyo) was used instead of the powder produced in Reference Example 3. Table 1 shows the results. Comparative Example 2
参考例 3で製造した粉体の代わりに市販されている光触媒用酸化チタン粉末 P-25 (デダサ製) を用いた以外実施例 1と同様にメチレンブルーの消色試験を 行った。 結果を表 1に示す。 表 1  A methylene blue decolorization test was performed in the same manner as in Example 1 except that a commercially available titanium oxide powder for photocatalyst P-25 (manufactured by Dedasa) was used instead of the powder produced in Reference Example 3. Table 1 shows the results. table 1
Figure imgf000027_0001
実施例 2 (緑色発光ダイオード)
Figure imgf000027_0001
Example 2 (green light emitting diode)
参考例 3で製造した粉体 0. 2 gを水を用いて板ガラス (6X6cm) に均一 に塗布し、 常温にて乾燥させた。 板ガラスの中心付近に 0. 05 w t %メチ レンブルー水溶液を約 2m 1滴下させ、 常温にて乾燥させた。 光源は、 試料に 対して 1 cmとなるように設置した。 メチレンブルーの着色が見られる部分に 光を照射した。 光源には、 緑色 LED ( 日亜化学工業製、 型番 NSSG450) を 1辺 1. 5 cm角に収まるよう碁盤状に 2X2合計 4個ならベたものを用い 1個の発 光ダイオードに対し 3. 7V となるように電圧かけ点灯させた。 試料に対する 光の照射時間は、 1 時間とした。 光を照射した後、 各試料の光を照射した部分 の色の変化を表 2に示した。 比較例 3 0.2 g of the powder produced in Reference Example 3 was uniformly applied to a glass plate (6 × 6 cm) using water, and dried at room temperature. About 2 ml of a 0.05 wt% aqueous solution of methylene blue was dropped near the center of the plate glass and dried at room temperature. The light source was set so as to be 1 cm from the sample. The part where methylene blue coloring was observed was irradiated with light. The light source used is a green LED (Nichia Corporation, Model No.NSSG450) with a total of 4 2X2 sticks in a checkerboard shape that fits into a 1.5 cm square on each side. The lamp was lit by applying voltage so that the voltage became 7V. The light irradiation time for the sample was 1 hour. Table 2 shows the color change of the light-irradiated part of each sample after light irradiation. Comparative Example 3
参考例 3で製造した粉体の代わりに市販されている超微粒子酸化チタン粉末 (ST-01 石原産業製) を用いた以外実施例 2と同様にメチレンブルーの消色試 験を行った。 結果を表 1に示す。  A decolorization test of methylene blue was performed in the same manner as in Example 2 except that a commercially available ultrafine titanium oxide powder (ST-01 manufactured by Ishihara Sangyo) was used instead of the powder produced in Reference Example 3. Table 1 shows the results.
比較例 4 Comparative Example 4
参考例 3で製造した粉体の代わりに市販されている光触媒用酸化チタン粉末 P- 25 (デダサ製) を用いた以外実施例 2と同様にメチレンブルーの消色試験を 行った。 結果を表 2に示す。  A decolorization test of methylene blue was performed in the same manner as in Example 2 except that commercially available titanium oxide powder for photocatalyst P-25 (manufactured by Dedasa) was used instead of the powder produced in Reference Example 3. Table 2 shows the results.
色の変ィ匕 Color transformation
実施例 2 完全に消色した。  Example 2 The color was completely erased.
比較例 3 消色は見られないがわずかに、 紫色に変色した。  Comparative Example 3 Although no decoloration was observed, the color was slightly changed to purple.
比較例 4 消色は見られないがわずかに、 紫色に変色した。 実施例 3  Comparative Example 4 Although no decoloration was observed, the color was slightly changed to purple. Example 3
青色発光ダイォードによるィソプロパノールの酸化  Oxidation of isopropanol by blue emitting diode
2Lのベルジャー型反応容器を用い、 ガラス板 (5 X 5 cmX 2mm) に参考 例 5で調製した試料 (可視光応答性光触媒) 0. 2 gを水に懸濁し、 塗布した ものを光源から 7 cmの所定の位置に設置した。 光源は、 青色発光ダイオード Using a 2L bell jar type reaction vessel, 0.2 g of the sample (visible light responsive photocatalyst) prepared in Reference Example 5 was suspended in water on a glass plate (5 x 5 cm x 2 mm), and the suspension was coated with a light source. cm. The light source is a blue light emitting diode
(日亜化学工業製 型式: NSPB500S) を 1辺 1. 5 cmの正方形に収まるよう 碁盤状に 3X3合計 9個ならベたものを試料に対し照射設置した。 1個の発光ダ ィォードに対し 3 Vとなるように電圧かけ点灯させた。試料の位置での照度は、 2 5 0 0 1 Xであった。 Nichia Chemical's model: NSPB500S was illuminated and placed in a checkerboard shape with a total of 9 pieces of 3x3 so as to fit into a 1.5 cm square on each side. One light emitting diode Lighting was applied by applying a voltage so that the voltage became 3 V with respect to the diode. The illuminance at the position of the sample was 250001X.
反応は、 反応系内部が、 5 4 0 p p mとなるようにイソプロパノールを投入 した。 また、 反応系内部は、 空気雰囲気 1気圧とし、 湿度は 3 0 %であった。 反応系内のイソプロパノール、 アセ トン、 二酸化炭素のそれぞれの濃度は、 シ リンジを用いて反応系から採取し、 FIDおよび TCDを用いて測定した。  In the reaction, isopropanol was added so that the inside of the reaction system became 540 ppm. The inside of the reaction system was set at 1 atm in an air atmosphere, and the humidity was 30%. The respective concentrations of isopropanol, acetone, and carbon dioxide in the reaction system were collected from the reaction system using a syringe, and measured using FID and TCD.
光を照射してからの、 反応の結果を図 5に示す 実施例 4 Figure 5 shows the results of the reaction after irradiation with light.
参考例 7で得られた試料(可視光応答性光触媒) 6. 00g、表 3に示す縮合リン 酸塩 (ピロリン酸ナトリウム) 0. 04g及ぴ所定量の純水を lOOmLのポリエチレ ン容器に入れ、 直径 5譲のジルコユアポールを使用して、 1時間ポールミル粉 砕した。 この分散溶液にフッ素樹脂分散液、 造膜助剤、 消泡剤を下記の組成と なるように混合し、 水性塗料を調製した。 6.00 g of the sample (visible light responsive photocatalyst) obtained in Reference Example 7 and 0.04 g of the condensed phosphate (sodium pyrophosphate) shown in Table 3 and a predetermined amount of pure water were placed in a 100 mL polyethylene container. Pulverized for 1 hour using a zircon pole having a diameter of 5 mm. A fluororesin dispersion, a film-forming aid, and an antifoaming agent were mixed with the dispersion so as to have the following composition to prepare an aqueous paint.
塗料組成  Paint composition
参考例 7の試料 1 9 . 9 %  Sample of Reference Example 1 19.9%
縮合リン酸塩 1 . 0 %  Condensed phosphate 1.0%
フッ素樹脂 (固形分) 9 . 1 %  Fluororesin (solid content) 9.1%
造膜助剤 1 . 5 %  Coating aid 1.5%
消泡剤 0 . 0 5 %  Antifoaming agent 0.05%
 water
合計 1 0 0 % ガラス基板上に水性シーラー層 (30 μιη)、 アクリルシリコン系塗料層 (1 00 μπι2層) を設けたその上に、 上記塗料を 1層 (30 ^m :塗膜 1) 又は 2層 (30 μΐηΧ 2 :塗膜 2 ) を設けた。 得られた塗膜の NOの酸化活性 (除去 率) を、前記試験例で挙げた方法と同様の方法で測定した。 NO除去率(%) (塗 膜面積 5 X 5cm) を表 3に示す。 Total 100% A water-based sealer layer (30 μιη) and an acrylic silicon-based paint layer (100 μπι2 layer) are provided on a glass substrate, and the above paint is applied on one layer (30 ^ m: coating film 1) or two layers (30 μΐηΧ). 2: Coating film 2) was provided. The NO oxidation activity (removal rate) of the obtained coating film was measured by the same method as that described in the above Test Example. Table 3 shows the NO removal rate (%) (coating area 5 X 5 cm).
表 3  Table 3
Figure imgf000030_0001
参考例 1
Figure imgf000030_0001
Reference example 1
四塩化チタン (関東化学株式会社製、 特級) 50 O gを純水の氷水 (水とし て 2リ ッ トル) に添加し、 攪拌し、 溶解し、 四塩化チタン水溶液を得た。 この 水溶液 200 gをスターラーで攪拌しながら、 約 50m lのアンモエア水 (N H3として 1 3 w t %含有) をできるだけ速やかに加えた。 アンモニア水の添 加量は、 水溶液の最終的な pHが約 8になるように調整した。 これにより水溶 液は白色のスラリー状となった。 さらに攪拌を 1 5分間続けた後、 吸引濾過器 で濾過した。 濾取した沈殿は 2 Om 1のアンモニア水 (NH3として 6w t % 含有) に分散させ、 スターラーで約 20時間攪拌した後、 再度吸引濾過して、 白色の加水分解物を得た。 得られた白色の加水分解物を坩堝に移し、 電気炉を用い、 大気中 400°Cで 1時間加熱し、 黄色の生成物を得た。 得られた生成物の XRDの測定結果を図 3の上段に示す。 併せて、 白色の加 水分解物を 50°Cで乾燥してものの XRDの測定結果も図 3の下段に示す。 こ の結果から、 白色の加水分解物を 50°Cで乾燥したものは、 アモルファスであ り、 得られた生成物がアナターゼ型ニ酸化チタンであることが分かる。 50 Og of titanium tetrachloride (special grade, manufactured by Kanto Chemical Co., Ltd.) was added to pure water of ice water (2 liters as water), stirred and dissolved to obtain an aqueous solution of titanium tetrachloride. While stirring 200 g of the aqueous solution with a stirrer, about 50 ml of aqueous ammonia (containing 13 wt% as NH 3 ) was added as quickly as possible. The addition amount of aqueous ammonia was adjusted so that the final pH of the aqueous solution was about 8. This turned the aqueous solution into a white slurry. After further stirring for 15 minutes, the mixture was filtered with a suction filter. The precipitate collected by filtration was dispersed in 2 Om 1 of aqueous ammonia (containing 6 wt% as NH 3 ), stirred for about 20 hours with a stirrer, and suction-filtered again to obtain a white hydrolyzate. The obtained white hydrolyzate was transferred to a crucible and heated at 400 ° C. for 1 hour in the air using an electric furnace to obtain a yellow product. The XRD measurement results of the obtained product are shown in the upper part of FIG. The lower part of Fig. 3 also shows the XRD measurement results of the white hydrolyzate dried at 50 ° C. From these results, it can be seen that the white hydrolyzate dried at 50 ° C. is amorphous, and the obtained product is anatase-type titanium dioxide.
得られた生成物と白色の加水分解物を 50°Cで乾燥したものの吸収スぺクト ルを、 積分球を取り付けた日立自記分光光度計 (U- 3210) により、 以下の条件 で測定した。  The absorption spectrum of the obtained product and the white hydrolyzate dried at 50 ° C was measured under the following conditions using a Hitachi autograph spectrophotometer (U-3210) equipped with an integrating sphere.
scan speed: 120nm/min、 scan speed: 120nm / min,
response: MEDIUM^ response: MEDIUM ^
band pass: 2.00nm、 band pass: 2.00nm,
リファレンス :硫酸パリゥム Reference: Palladium sulfate
その結果、 得られた生成物の 700 nmにおける反射率を 1 00%としたと きの 450 nmにおける反射率が 6 1%であったのに対し、 白色の加水分解物 を 50°Cで乾燥してものは、 700 nmにおける反射率を 1 00%としたとき の 450 nmにおける反射率は 95 %であった。 また、得られた生成物の E SRスぺクトルを測定した。測定は、真空中(0. l T o r r)、 77K又は常温で行った。 測定条件は以下の通りである。  As a result, the white hydrolyzate was dried at 50 ° C, whereas the reflectance at 450 nm was 61% when the reflectance at 700 nm of the obtained product was 100%. The reflectance at 450 nm was 95% when the reflectance at 700 nm was 100%. In addition, the ESR spectrum of the obtained product was measured. The measurement was carried out in a vacuum (0.1 Torr) at 77K or at room temperature. The measurement conditions are as follows.
〔基本的パラメーター〕 測定温度 77 K又は常温 [Basic parameters] Measurement temperature 77 K or normal temperature
フィールド 324mT±25mT Field 324mT ± 25mT
走査時間 4分 Scan time 4 minutes
Mo d. 0. 1 mT Mod. 0.1 mT
レシーバー · ゲイン 10〜: L 00 (測定感度) Receiver · Gain 10 ~: L 00 (measurement sensitivity)
タイムコンスタント 0. 1秒 Time constant 0.1 second
光源 高圧水銀ランプ 500W Light source High-pressure mercury lamp 500W
フィ 7レター L一 42 Phil 7 Letter L 42
〔試料作成〕  (Sample preparation)
真空脱気 1時間以上 Vacuum deaeration 1 hour or more
〔g値の計算〕  (Calculation of g value)
Mn2 +マーカー (gmn=l. 981 (高磁場側から 3本目)) を基準として g = gmnXHmn/ (Hmn + AH) G = g mn XH mn / (H mn + AH) based on Mn 2 + marker (g mn = l. 981 (third from high magnetic field side))
Hmn: Mn 2 +マーカーの磁場、 ΔΗ: H∞nからの磁場の変化量 図 1 (測定温度 77 K) 及び図 2 (測定温度常温) に、 上段に暗黒下での E SRスペク トル、 中段に 420 nm以下の光 ( 500 Wの高圧水銀ランプを使 用) をカツトするフィルター (L-42) を介して光照射した状態で測定した E S Rスぺクトル、 下段に 420 nm以下の光を力ットするフィルター (L— 42) を使用せずに 500Wの高圧水銀ランプを使用して光照射した状態で測 定した E S Rスぺクトルをそれぞれ示す。 図 1の上段と中段のスぺクトルを比較すると明らかに、 中段のスぺクトルに おいて、 g値力 S 2. 00 :〜 2. 007である主シグナル、 並びに g値が 1. 985〜1. 986及ぴ 2. 024である 2つの副シグナルは、 上段のスぺク トルにおけるより強度が大きかった。 また、 図 1の中段と下段のスペク トルを 比較すると明らかに、 g値が 2. 004〜2. 007である主シグナル、 並び に g値が 1. 985〜1. 986及び 2. 024である 2つの副シグナルの強 度は、 いずれも、 照射光中に 420 nm以下の光を含んでいても実質的に相違 しなかった。 さらに図 2に示すように参考例 1の可視光応答性光触媒は、 前記 3つのシグ ナルが大気中、 常温、 暗黒下及ぴ 420 nm以上の波長を有する光照射下にお ける E S Rにおいても測定される物であった。 H mn: field of Mn 2 + markers, .DELTA..eta: H variation Figure 1 (measurement temperature 77 K) of the magnetic field from ∞n and 2 (Measurement temperature room temperature), E SR spectrum of in the dark in the upper part, An ESR spectrum measured with a filter (L-42) that cuts light of 420 nm or less (using a 500 W high-pressure mercury lamp) in the middle, and a light of 420 nm or less in the lower. The ESR spectrum measured with a 500W high-pressure mercury lamp irradiated without using a filter (L-42) is shown below. Comparing the upper and middle spectrums in Fig. 1 clearly shows that in the middle spectrum, the g-value power S 2.00: the main signal, which is ~ 2.07, and the g-value is 1.985 ~ The two sub-signals, 1.986 and 2.024, were more intense in the upper spectrum. Also, comparing the middle and lower spectra in Fig. 1, it is clear that the main signal has a g value of 2.004 to 2.007, and the g value is 1.985 to 1.986 and 2.024. The intensities of the two sub-signals were not substantially different even when the irradiation light contained light of 420 nm or less. Furthermore, as shown in FIG. 2, the visible light responsive photocatalyst of Reference Example 1 was also measured by ESR when the three signals were in the air, at room temperature, in the dark, and under light irradiation having a wavelength of 420 nm or more. It was a thing to be done.
尚、白色の加水分解物を 50°Cで乾燥してものには、 g値力 S 2. 004〜2. 007である主シグナル、 並びに g値が 1. 985〜1. 986及ぴ 2. 02 4である 2つの副シグナルは、 いずれの E S R測定条件においても観測されな かった。 参考例 2  In addition, when the white hydrolyzate was dried at 50 ° C, the main signal having a g-value power of S 2.004 to 2.007 and a g-value of 1.985 to 1.986 and 2. Two sub-signals, 024, were not observed under any of the ESR measurement conditions. Reference example 2
参考例 1で得られた粉末 3 gを 100 m 1の純水に懸濁しマグネチックスタ 一ラーを用い、 1時間攪拌した。 得られた溶液は吸引濾過を行った。 濾紙上に 残った試料を再度純水に攪拌し、 吸引濾過を行った。 濾過は、 ろ液が pH試験 紙で 6〜 7になるまで 3回繰り返し行った。 得られた粉末は、 11 o°cに設定した乾燥器内に一昼夜放置し、 乾燥させて 可視光応答性光触媒を得た。 参考例 3 3 g of the powder obtained in Reference Example 1 was suspended in 100 ml of pure water, and stirred for 1 hour using a magnetic stirrer. The obtained solution was subjected to suction filtration. The sample remaining on the filter paper was again stirred in pure water and suction filtered. Filtration was repeated three times until the filtrate became 6 to 7 with pH test paper. The obtained powder was allowed to stand in a drier set at 11 ° C. for 24 hours, and dried to obtain a visible light responsive photocatalyst. Reference example 3
300リツトルの反応容器 (冷却及び攪拌が可能) 内に満たした温度 0での 水 207 k gに四塩化チタン 23 k gを徐々に加えた。 このとき水溶液の温度 は、 最高 6°Cであった。 塩化チタン攪拌を 2日間行い透明な四塩化チタン水溶 液を作成した。 作成した四塩化チタン水溶液を攪拌しながら 12. 5%アンモ 二ァ水を滴下すると、 この溶液は徐々に白濁した、 アンモニア水の量は、 白濁 した溶液が pH 8となるように調整した。  23 kg of titanium tetrachloride was gradually added to 207 kg of water at a temperature of 0 filled in a 300 liter reaction vessel (which can be cooled and stirred). At this time, the temperature of the aqueous solution was up to 6 ° C. Titanium chloride was stirred for 2 days to produce a transparent titanium tetrachloride aqueous solution. When 12.5% ammonia water was added dropwise while stirring the prepared titanium tetrachloride aqueous solution, the solution gradually became cloudy. The amount of aqueous ammonia was adjusted so that the cloudy solution had a pH of 8.
白濁した溶液は、 吸引濾過を行った。 濾紙上に残った白色の沈殿物は、 13 1 k gであった。白色の沈殿物は、 200 k gのアンモニア水 として 6%) に分散させたのち、 24時間攪拌し、 吸引濾過を行った。 濾過後白色の沈殿物 は、 108 k gであった。 白色の沈殿物は、 50°Cに設定した強制送風式棚型 乾燥機にいれ、 4日間乾燥を行った。 乾燥後試料は、 17 k gであった。  The cloudy solution was subjected to suction filtration. The amount of the white precipitate remaining on the filter paper was 131 kg. The white precipitate was dispersed in 200 kg of aqueous ammonia (6%), stirred for 24 hours, and subjected to suction filtration. After filtration, the white precipitate was 108 kg. The white precipitate was placed in a forced-air-type shelf dryer set at 50 ° C and dried for 4 days. The sample after drying was 17 kg.
乾燥試料をアルミナ坩堝 (20 X 20 X 5 cm) に l k g入れ、 ガス炉内に 設置し、 試料表面に熱電対を置き、 試料の温度が 400°Cとなるようにして、 1時間焼成した。  The dried sample was placed in an alumina crucible (20 x 20 x 5 cm) at lkg, placed in a gas furnace, a thermocouple was placed on the sample surface, and the sample was fired for 1 hour at a temperature of 400 ° C.
作成した粉末 3 gを 10 Om 1の純水に懸濁しマグネチックスターラーを用 い、 1時間攪拌した。 得られた溶液は吸引濾過を行った。 濾紙上に残った試料 を再度純水に攪拌し、 吸引濾過を行った。 濾過は、 ろ液が pH試験紙で 6〜7 になるまで 3回繰り返し行つた。 得られた粉末は、 11 o°cに設定した乾燥器内に一昼夜放置し、 乾燥させて 可視光応答性光触媒を得た。 参考例 4 (硫酸チタンからの可視光応答材料の製造方法 (1)) 3 g of the prepared powder was suspended in 10 Om 1 of pure water, and stirred for 1 hour using a magnetic stirrer. The obtained solution was subjected to suction filtration. The sample remaining on the filter paper was again stirred in pure water, and suction filtration was performed. Filtration was repeated three times until the filtrate reached 6-7 with pH test paper. The obtained powder was allowed to stand in a drier set at 11 ° C. for 24 hours, and dried to obtain a visible light responsive photocatalyst. Reference Example 4 (Method of manufacturing visible light responsive material from titanium sulfate (1))
硫酸チタン (I V) 溶液として、 硫酸チタン ( I V) 水溶液(関東化学(株) 製商品名:硫酸チタン (I V) (鹿 1級、 硫酸チタン (I V) を 24重量。 /0以上含 有する水溶液))の原液をそのまま用いた。 この水溶液 50 gをスターラーで混 ぜながら、 アンモニア水(アンモニア原液:水 =1 : 1 ) 58 m 1をビュレッ トで できるだけ速やかに加えながら撹搾を続けたところ、 白濁が始まり徐々に結度 が高まった。 さらにアンモニア水を加え、 万能試験紙で pHが 7になるよう調 整した。 24時間経過後に吸引濾過器で濾過した。 濾紙についた白色物は、 p Hが 1 1に調整したアンモニア水中で撹拝し、 再度濾過することを 8回繰り返 し、 洗浄を行い、 白色の粉末を得た。 得られた粉末は、 50°Cで乾燥して、 試 料粉末を得た。 得られた加水分解物(試料粉末)の B E T表面積は、 308. 7 m2/gであった。 得られた試料粉末 8 gを坩堝に入れ、 電気炉に移し、 40 0°Cで 60分間焼成し、 BET表面積が、 89. 4 m2/ gの明るい黄色の粉 末を 6. 3 g得た。 この粉末を X線回折(XRD)試験の結果、 アナタース型酸 化チタンが含まれていることが分かる。 さらに、 X線光電子分光分析装置(アル バックフアイ(株)製商品名: Qu a n t urn 2000 )により測定しこ X線光 電子分光法 (XP S) 試験の結果、 得られるチタンの 2 p電子に帰属されるピ ークの面積と、 酸素の 1 s電子に帰属されるピークの面積とから算出される酸 素元素とチタン元素との存在比(OZT i)は、 上記粉末の結晶構造には酸素欠 損があることを示した。 この酸素欠損により、 粉末 Aは、 明るい又は淡い黄色 に着色し、 可視光活性(光触媒活性)であると考えられる。 As titanium sulfate (IV) solution, titanium sulfate (IV) solution (manufactured by Kanto Chemical Co., trade name:. Titanium sulfate (IV) (1 grade deer, 2 4 weight of titanium sulfate (IV) / 0 above containing a solution )) Stock solution was used as is. While stirring 50 g of this aqueous solution with a stirrer and adding 58 ml of aqueous ammonia (ammonia stock solution: water = 1: 1) as quickly as possible with a burette, stirring was continued. Heightened. Further, ammonia water was added, and the pH was adjusted to 7 with a universal test strip. After 24 hours, the mixture was filtered with a suction filter. The white matter attached to the filter paper was stirred eight times in ammonia water adjusted to pH 11 and filtered again eight times, and washed to obtain a white powder. The obtained powder was dried at 50 ° C. to obtain a sample powder. The BET surface area of the obtained hydrolyzate (sample powder) was 308.7 m 2 / g. 8 g of the obtained sample powder was placed in a crucible, transferred to an electric furnace, and baked at 400 ° C for 60 minutes to obtain 6.3 g of a bright yellow powder having a BET surface area of 89.4 m 2 / g. Was. An X-ray diffraction (XRD) test of this powder shows that it contains anatase-type titanium oxide. Furthermore, it was measured with an X-ray photoelectron spectrometer (trade name: Quanturn 2000, manufactured by ULVAC FAI Co., Ltd.). As a result of the X-ray photoelectron spectroscopy (XPS) test, The abundance ratio (OZTi) between the oxygen element and the titanium element calculated from the area of the peak to be measured and the area of the peak attributed to the 1 s electron of oxygen is as follows: Lack of It showed that there was a loss. Due to this oxygen deficiency, Powder A is colored bright or pale yellow, and is considered to have visible light activity (photocatalytic activity).
得られた粉末の E SRスペク トルを測定した。 測定は、 真空中 (0. Ι Το r r ) 77 Kで行った。 測定条件は参考例 1と同様である。  The ESR spectrum of the obtained powder was measured. The measurement was performed at 77 K in a vacuum (0. The measurement conditions are the same as in Reference Example 1.
図 6 (測定温度 77 Κ) に、 420 nm以下の光 (500Wの高圧水銀ラン プを使用) をカットするフィルター (L— 42) を介して光照射した状態で測 定した E S Rスペク トルを示す。 尚、 喑黒下での E S Rスペク トルも測定した が、 実質的にシグナルは観測されなかった。 図 6に示すスペク トルでは、 g値が 2. 004〜2. 007である主シグナ ル、 並びに g値が 1. 985〜1. 986及び 2. 024である 2つの副シグ ナルが観測された。  Fig. 6 (measuring temperature 77Κ) shows the ESR spectrum measured with light irradiated through a filter (L-42) that cuts light below 420 nm (using a high-pressure mercury lamp of 500 W). . In addition, the ESR spectrum under 喑 black was also measured, but practically no signal was observed. In the spectrum shown in Fig. 6, a main signal with a g-value of 2.004 to 2.007 and two sub-signals with a g-value of 1.985 to 1.986 and 2.024 were observed. .
尚、白色の加水分解物を 50°Cで乾燥してものには、 g値が 2. 004〜 2. 007である主シグナル、 並びに g値が 1. 985〜1. 986及ぴ 2. 02 4である 2つの副シグナルは、 いずれの E S R測定条件においても観測されな かった。 参考例 5 (硫酸チタンからの可視光応答材料の製造方法 (2))  Incidentally, when the white hydrolyzate was dried at 50 ° C, the main signal having a g value of 2.004 to 2.007, and the g value of 1.985 to 1.986 and 2.02 The two secondary signals of 4 were not observed under any of the ESR measurement conditions. Reference Example 5 (Production method of visible light responsive material from titanium sulfate (2))
24%硫酸チタン溶液(関東化学製、鹿一級) 5 0 gを蒸留水 400 mLに加え、 マ グネチックスターラーで撹拌する。 そこに、 濃アンモニア水(28%、 関東化学、 特級)を加えて中和反応を行う。 中和反応後は pH 7に調製し、 15分撹拌する。 この時スターラーが回らなくなる時があるので、 蒸留水を加える(200 mL)。 15 分後撹拌を止めた後にしばらく放置し、 上澄み液を捨てる。 濾過はヌッチェに て行い、この時 2Lのアンモニア水(5:95)で洗浄する。 この作業はろ紙上でケー キ状になったところでアンモニア水を追加する方法である。 その後得られたも のを 60°C、 24時間乾燥させ、 400°C、 1時間で焼成を行って本発明の可視光応 答性光触媒を得た。 Add 50 g of a 24% titanium sulfate solution (Kanto Chemical Co., Ltd., deer grade) to 400 mL of distilled water, and stir with a magnetic stirrer. There, concentrated ammonia water (28%, Kanto Chemical, special grade) is added to perform neutralization reaction. After the neutralization reaction, adjust the pH to 7 and stir for 15 minutes. At this time, add distilled water (200 mL). Fifteen After one minute, stop stirring and let stand for a while. Discard the supernatant. Filter by Nutsche and wash with 2 L of aqueous ammonia (5:95). This work is a method of adding ammonia water when the cake is formed on the filter paper. Thereafter, the obtained product was dried at 60 ° C. for 24 hours, and calcined at 400 ° C. for 1 hour to obtain a visible light responsive photocatalyst of the present invention.
得られた材料の N O酸化活性を上記試験例と同様にして測定し、表 4に示す。 表 4  The N 2 O oxidation activity of the obtained material was measured in the same manner as in the above Test Example, and is shown in Table 4. Table 4
Figure imgf000037_0001
得られた材料の E S Rスペク トルを測定した。 測定は、 真空中 (0. Ι Το r r ) 77 Kで行った。 測定条件は参考例 1と同様である。
Figure imgf000037_0001
The ESR spectrum of the obtained material was measured. The measurement was performed at 77 K in a vacuum (00 Ι Τ rr). The measurement conditions are the same as in Reference Example 1.
図 7 (測定温度 77 Κ) に 420 nm以下の光 ( 500 Wの高圧水銀ランプ を使用) をカットするフィルター (L— 42) を介して光照射した状態で測定 した ESRスぺク トルを示す。 図 7に示すスペク トルでは、 g値力 S2. 004〜2. 007である主シグナ ル、 並びに g値が 1 . 9 8 5〜 1 . 9 8 6及び 2 . 0 2 4である 2つの副シグ ナルが観測された。 Fig. 7 (measuring temperature 77 77) shows the ESR spectrum measured under the condition that light was irradiated through a filter (L-42) that cuts light of 420 nm or less (using a high-pressure mercury lamp of 500 W). . In the spectrum shown in Fig. 7, the main signal whose g-value power is S2.004 to 2.007 is And two sub-signals with g-values of 1.895 to 1.896 and 2.024.
尚、白色の加水分解物を 5 0 °Cで乾燥してものには、 g値力 S 2 . 0 0 4〜2 . 0 0 7である主シグナル、 並びに g値が 1 . 9 8 5〜1 . 9 8 6及び 2 . 0 2 4である 2つの副シグナルは、 いずれの E S R測定条件においても観測されな かった。 参考例 6 (アルコキシドからの製造方法)  In addition, when the white hydrolyzate was dried at 50 ° C., the main signal having a g-value force of S 2 004 to 2.007 and a g-value of 1.985 to Two side signals, 1.986 and 2.024, were not observed under any of the ESR measurement conditions. Reference Example 6 (Production method from alkoxide)
純水 200gに撹拌しながらチタンイソプロポキシド 30gを徐々に加えた(水と チタンイソプロポキシドモル比 =約 10 : 1)。 得られた溶液を約 30分撹拌した 後、 沈殿物 (加水分解物) を濾取し、 沈殿物 (加水分解物) は、 純水に懸濁さ せて 1日撹拌したものを濾過し、 110°Cで乾燥し、 400°Cで 1時間焼成した。 得 られた白色の粉末を試料 Aとする。  While stirring in 200 g of pure water, 30 g of titanium isopropoxide was gradually added (molar ratio of water to titanium isopropoxide = about 10: 1). After stirring the obtained solution for about 30 minutes, the precipitate (hydrolyzate) was collected by filtration, and the precipitate (hydrolyzate) suspended in pure water and stirred for 1 day was filtered. C. and dried at 400.degree. C. for 1 hour. The obtained white powder is designated as Sample A.
沈殿物 (加水分解物) を純水に懸濁させて 1 Θ撹拌する代わりに、 アンモ- ァ水 (アンモニアの濃度: 6 %) に沈殿物 (加水分解物) を懸濁させて 1日撹 拌した使した以外は、 上記操作と同様にして、 黄色粉末を試料 Bとする。 試料 A及ぴ Bの NO活性を前記試験方法と同様にして測定した。結果を以下の 表 5に示す。 表 5 Instead of suspending the precipitate (hydrolyzate) in pure water and stirring for 1Θ, suspend the precipitate (hydrolyzate) in ammonia water (ammonia concentration: 6%) and stir for 1 day. The yellow powder is used as Sample B in the same manner as above, except that the mixture is used. The NO activities of Samples A and B were measured in the same manner as in the above test method. The results are shown in Table 5 below. Table 5
NO活性  NO activity
試料 A Sample A
Figure imgf000039_0001
Figure imgf000039_0001
試料 B Sample B
Figure imgf000039_0002
表 5に示す結果から、 可視光応答性を有する酸化チタンからなる材料は、 酸 化チタン(チタン加水分解物)をアンモニアの共存下で熱処理することで得られ ることが分かる。 得られた材料の E S Rスペク トルを測定した。 測定は、 真空中 (0 . Ι Τ ο r r ) 7 7 Kで行った。 測定条件は参考例 1と同様である。
Figure imgf000039_0002
From the results shown in Table 5, it can be seen that a material composed of titanium oxide having visible light response can be obtained by heat-treating titanium oxide (titanium hydrolyzate) in the presence of ammonia. The ESR spectrum of the obtained material was measured. The measurement is performed in vacuum (0. Ι Ι ο rr) 77 K. The measurement conditions are the same as in Reference Example 1.
図 8 (測定温度 7 7 K) に 4 2 0 n m以下の光 ( 5 0 0 Wの高圧水銀ランプ を使用) をカットするフィルター (L— 4 2 ) を介して光照射した状態で測定 した E S Rスぺク トルを示す。 図 8に示すスペクトルでは、 g値が 2 . 0 0 4〜2 . 0 0 7である主シグナ ル、 並びに g値が 1 . 9 8 5〜1 . 9 8 6及び 2 . 0 2 4である 2つの副シグ ナルが観測された。  Fig. 8 (Measurement temperature 77 K) ESR measured with light irradiated through a filter (L-42) that cuts light below 420 nm (using a 500 W high-pressure mercury lamp) Indicates the spectrum. In the spectrum shown in FIG. 8, the main signal has a g value of 2.004 to 2.007, and g values of 1.985 to 1.986 and 2.024. Two minor signals were observed.
尚、白色の加水分解物を 5 0 °Cで乾燥してものには、 g値力 S 2 . 0 0 4〜 2 . 0 0 7である主シグナル、 並びに g値が 1 . 9 8 5〜1 . 9 8 6及び 2 . 0 2 4である 2つの副シグナルは、 いずれの E S R測定条件においても観測されな かった。 参考例 7 (硫酸チタニルからの製造方法)  In addition, when the white hydrolyzate was dried at 50 ° C., the main signal having a g-value force of S 2.004 to 2.007 and a g-value of 1.985 to Two side signals, 1.986 and 2.024, were not observed under any of the ESR measurement conditions. Reference Example 7 (Production method from titanyl sulfate)
1Lビーカーに 240raLの純水を用意した。これにキシダ化学硫酸チタ-ル(製 品番号 020- 78905) 60gを加え、 ラボミキサーで攪拌溶解した。 次に、 この水溶 液に関東化学(特級) アンモニア水 55mLを加えることにより、加水分解沈殿物 を得た。 得られた沈殿物を吸引ろ過して、 白色の固形分 (沈殿ケーキ) を分離 した。 更に、 このケーキを 1. 0Lの純水で 3回 (ケーキが割れる直前に注ぎ足す 手順で)、 合計 3. 0Lでリンスし、 ろ過洗浄を行った。 最後にろ液が出なくなる まで濾過したケーキを 110°C、 12時間で乾燥し、 乳鉢で粉砕した。 この白色粉 末を、空気中 400°C、 1時間で焼成することにより、 図 1の中段に示すと同様の g値を有する主シグナル及び 2つの副シグナルを示す黄色の材料を得た。 産業上の利用可能性 240raL pure water was prepared in a 1L beaker. 60 g of Kishida Chemical Titanium Sulfate (Product No. 020-78905) was added thereto, and the mixture was stirred and dissolved with a laboratory mixer. Next, 55 mL of Kanto Chemical (special grade) aqueous ammonia was added to this aqueous solution to obtain a hydrolyzed precipitate. The obtained precipitate was subjected to suction filtration to separate a white solid (precipitated cake). Furthermore, the cake was rinsed with 1.0 L of pure water three times (in a procedure of pouring immediately before the cake cracks) for a total of 3.0 L, and filtered and washed. Finally, the filtered cake was dried at 110 ° C. for 12 hours until no filtrate came out, and then ground in a mortar. By firing this white powder in air at 400 ° C for 1 hour, the same A yellow material was obtained showing a major signal with a g value and two minor signals. Industrial applicability
本発明によれば、 可視光線の含有量が高い、 または可視光線のみを含む発光 ダイオードを光源として使用する、 光触媒の活性化方法及び装置を提供するこ とができる。  According to the present invention, it is possible to provide a method and an apparatus for activating a photocatalyst using a light-emitting diode having a high visible light content or containing only visible light as a light source.

Claims

請 求 の 範 囲 The scope of the claims
1. 波長 420 nm以上の光の作用により活性を有する光触媒(以下、可視光 応答性光触媒という)に発光ダイォードの光を照射する、 光触媒の活性化方法。 1. A method for activating a photocatalyst in which a photocatalyst having activity by the action of light having a wavelength of 420 nm or more (hereinafter referred to as a visible light responsive photocatalyst) is irradiated with light of a light emitting diode.
2. 前記可視光応答性光触媒が塗膜に含有されており、 かつ前記発光ダイォ 一ドの光が、 前記塗膜に照射される請求項 1に記載の方法。 2. The method according to claim 1, wherein the visible light responsive photocatalyst is contained in a coating film, and the light of the light emitting diode is applied to the coating film.
3. 可視光応答性光触媒が、 少なくともアナターゼ型酸化チタンを含む酸化 チタンであり、 かつ真空中、 77Kにおいて 420 nm以上の波長を有する.光 の照射下で測定した E S Rにおいて、 g値力 S2. 004〜2. 00 7である主 シグナルと g値が 1. 985〜1. 986及ぴ 2. 024である 2つの副シグ ナルが観測され、 かつこれらの 3つのシグナルは真空中、 77K、 暗黒下にお いて微小に観測される力、 又は実質的に観測されない可視光応答性光触媒であ る請求項 1または 2に記載の方法。 3. The visible light-responsive photocatalyst is a titanium oxide containing at least anatase-type titanium oxide, and has a wavelength of 420 nm or more at 77 K in a vacuum. A main signal of 004 to 2.00 7 and two sub-signals with g values of 1.985 to 1.986 and 2.024 were observed, and these three signals were in vacuum, 77K, dark 3. The method according to claim 1, which is a visible light responsive photocatalyst under which a force is slightly observed or a visible light is not substantially observed.
4. 発光ダイオードが紫色発光ダイオード、 青色発光ダイオード、 緑色発光 ダイオード、 黄色発光ダイオード、 または白色発光ダイオードである請求項 1 〜 3のいずれか 1項に記載の方法。 4. The method according to claim 1, wherein the light emitting diode is a violet light emitting diode, a blue light emitting diode, a green light emitting diode, a yellow light emitting diode, or a white light emitting diode.
5. 請求項 1〜4のいずれか 1項に記載の方法を用いる、 化学反応方法、 環 境浄化方法、 殺菌方法、 親水化方法、 細胞育成方法または防汚方法。 5. A chemical reaction method, an environmental purification method, a sterilization method, a hydrophilization method, a cell growing method, or an antifouling method using the method according to any one of claims 1 to 4.
6. 発光ダイォード基板上に可視光応答性光触媒を含む層を有する装置。 6. An apparatus having a layer containing a visible light responsive photocatalyst on a light emitting diode substrate.
7. 発光ダイオード基板が、 少なくとも発光ダイオードとその上に設けた光 透過性層とからなり、 前記光透過性層の上に前記可視光応答性光触媒を含む層 を設けた請求項 6に記載の装置。 7. The light-emitting diode substrate according to claim 6, wherein the light-emitting diode substrate comprises at least a light-emitting diode and a light-transmitting layer provided thereon, and a layer containing the visible light-responsive photocatalyst is provided on the light-transmitting layer. apparatus.
8. 発光ダイオードが紫色発光ダイオードであり、 かつ前記光透過性層と前 記可視光応答性光触媒を含む層との間に、 400 nm以下の波長の光を透過し ない層をさらに設けた請求項 7に記載の装置。 8. The light-emitting diode is a violet light-emitting diode, and a layer that does not transmit light having a wavelength of 400 nm or less is further provided between the light-transmitting layer and the layer containing the visible light-responsive photocatalyst. Item 7. An apparatus according to Item 7.
9. 発光ダイオード、 可視光応答性光触媒、 及ぴ前記発光ダイオードからの 光を前記可視光応答性光触媒に移送するための光移送手段を含む装置。 9. An apparatus comprising a light emitting diode, a visible light responsive photocatalyst, and light transfer means for transferring light from the light emitting diode to the visible light responsive photocatalyst.
10. 前記可視光応答性光触媒が塗膜に含有されており、 かつ前記光移送手 段は、 前記発光ダイォードからの光を前記塗膜に含有されている可視光応答性 光触媒に移送するための手段である請求項 9に記載の装置。 10. The visible light responsive photocatalyst is contained in a coating film, and the light transferring means is for transferring light from the light emitting diode to the visible light responsive photocatalyst contained in the coating film. The device according to claim 9, which is a means.
1 1. 可視光応答性光触媒が、 少なくともアナターゼ型酸化チタンを含む酸 化チタンであり、 かつ真空中、 77 Kにおいて 420 nm以上の波長を有する 光の照射下で測定した E SRにおいて、 g値が 2. 004〜 2. 007である 主シグナルと g値が 1. 985〜1. 986及び 2. 024である 2つの副シ グナルが観測され、 かつこれらの 3つのシグナルは真空中、 7 7 K、 暗黒下に おいて微小に観測されるか、 又は実質的に観測されない可視光応答性光触媒で ある請求項 6〜1 0のいずれか 1項に記載の装置。 1 1. The g value of the visible light responsive photocatalyst is a titanium oxide containing at least anatase-type titanium oxide, and the ESR measured in a vacuum at 77 K under irradiation with light having a wavelength of 420 nm or more at 77 K. The main signal is 2.004 to 2.007, and the two sub-signals with g-values are 1.985 to 1.986 and 2.024. Claims 6 to 10 wherein the signal is a visible light responsive photocatalyst in which a signal is observed, and these three signals are minutely observed or substantially not observed in vacuum at 77 K in the dark. The device according to any one of the preceding claims.
1 2 . 発光ダイォードが紫色発光ダイォード、 青色発光ダイォード、 緑色発 光ダイオード、 黄色発光ダイオード、 または白色発光ダイオードである請求項 6〜 1 1のいずれか 1項に記載の装置。 12. The device according to any one of claims 6 to 11, wherein the light emitting diode is a violet light emitting diode, a blue light emitting diode, a green light emitting diode, a yellow light emitting diode, or a white light emitting diode.
1 3 . 化学反応、 環境浄化、 殺菌、 脱色、 親水化、 細胞育成または防汚性付 与に用いる請求項 6〜 1 2のいずれか 1項に記載の装置。 13. The device according to any one of claims 6 to 12, wherein the device is used for chemical reaction, environmental purification, sterilization, decolorization, hydrophilization, cell growth, or imparting antifouling properties.
1 4 . 照明または表示用に用いる請求項 6〜1 2のいずれか 1項に記載の装 14. The device according to any one of claims 6 to 12, which is used for lighting or display.
PCT/JP2001/011576 2000-12-28 2001-12-27 Method of activating a photocatalyst and device therefor WO2002053284A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002554228A JPWO2002053284A1 (en) 2000-12-28 2001-12-27 Photocatalyst activation method and apparatus
KR10-2003-7008845A KR20030072373A (en) 2000-12-28 2001-12-27 Method of activating a photocatalyst and device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-402317 2000-12-28
JP2000402317 2000-12-28

Publications (1)

Publication Number Publication Date
WO2002053284A1 true WO2002053284A1 (en) 2002-07-11

Family

ID=18866638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/011576 WO2002053284A1 (en) 2000-12-28 2001-12-27 Method of activating a photocatalyst and device therefor

Country Status (4)

Country Link
JP (1) JPWO2002053284A1 (en)
KR (1) KR20030072373A (en)
CN (1) CN1494458A (en)
WO (1) WO2002053284A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298328A (en) * 2006-04-28 2007-11-15 Shunichi Nakai Photocatalyst activity evaluation device
US8746929B2 (en) 2011-10-14 2014-06-10 GE Lighting Solutions, LLC Device with combined features of lighting and air purification

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101485958B (en) * 2009-01-15 2012-03-14 浙江大学 Photocatalysis reactor for degrading dioxins in flue gas and method for activating photocatalyst
CN102091644B (en) * 2010-12-27 2012-12-12 湖北工业大学 Method for preparing carbon-nitrogen-chlorine co-doped nano titanium dioxide photocatalysts
CN102267768A (en) * 2011-07-06 2011-12-07 西北农林科技大学 Lime-fly ash combined treatment method for high density fluorine-containing waste water

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919422A (en) * 1995-07-28 1999-07-06 Toyoda Gosei Co., Ltd. Titanium dioxide photo-catalyzer
JPH11328743A (en) * 1998-05-20 1999-11-30 Victor Co Of Japan Ltd Optical disk and its recording and reproducing device
JPH11333304A (en) * 1998-05-22 1999-12-07 Kankyo Device Kenkyusho:Kk Photocatalyst and its use
JP2000037615A (en) * 1998-07-23 2000-02-08 Mitsubishi Electric Corp Light source-integrated type photocatalytic apparatus and manufacture thereof
WO2000010706A1 (en) * 1998-08-21 2000-03-02 Ecodevice Laboratory Co., Ltd. Visible radiation type photocatalyst and production method thereof
JP2000143241A (en) * 1998-11-11 2000-05-23 Nippon Alum Co Ltd Production of fine grain of titanium oxide
JP2000325799A (en) * 1999-05-20 2000-11-28 Sony Corp Photocatalytic device
EP1095908A1 (en) * 1999-10-29 2001-05-02 Sumitomo Chemical Company, Limited Titanium oxide, and photocatalyst and photocatalyst coating composition using the same
JP3215698B1 (en) * 2000-01-31 2001-10-09 有限会社環境デバイス研究所 Visible light responsive material and manufacturing method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919422A (en) * 1995-07-28 1999-07-06 Toyoda Gosei Co., Ltd. Titanium dioxide photo-catalyzer
JPH11328743A (en) * 1998-05-20 1999-11-30 Victor Co Of Japan Ltd Optical disk and its recording and reproducing device
JPH11333304A (en) * 1998-05-22 1999-12-07 Kankyo Device Kenkyusho:Kk Photocatalyst and its use
JP2000037615A (en) * 1998-07-23 2000-02-08 Mitsubishi Electric Corp Light source-integrated type photocatalytic apparatus and manufacture thereof
WO2000010706A1 (en) * 1998-08-21 2000-03-02 Ecodevice Laboratory Co., Ltd. Visible radiation type photocatalyst and production method thereof
JP2000143241A (en) * 1998-11-11 2000-05-23 Nippon Alum Co Ltd Production of fine grain of titanium oxide
JP2000325799A (en) * 1999-05-20 2000-11-28 Sony Corp Photocatalytic device
EP1095908A1 (en) * 1999-10-29 2001-05-02 Sumitomo Chemical Company, Limited Titanium oxide, and photocatalyst and photocatalyst coating composition using the same
JP3215698B1 (en) * 2000-01-31 2001-10-09 有限会社環境デバイス研究所 Visible light responsive material and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007298328A (en) * 2006-04-28 2007-11-15 Shunichi Nakai Photocatalyst activity evaluation device
US8746929B2 (en) 2011-10-14 2014-06-10 GE Lighting Solutions, LLC Device with combined features of lighting and air purification

Also Published As

Publication number Publication date
KR20030072373A (en) 2003-09-13
JPWO2002053284A1 (en) 2004-04-30
CN1494458A (en) 2004-05-05

Similar Documents

Publication Publication Date Title
JP3454817B2 (en) Visible light responsive paints, coatings and articles
JP3559892B2 (en) Photocatalytic film and method for forming the same
KR100327997B1 (en) Photocatalytic Complex and Method for Manufacturing the Same
KR100408470B1 (en) Photocatalyst composition, substance containing photocatalyst, and material functioning as photocatalyst and process for producing the same
US20040226813A1 (en) Fluorescent lamp device capable of cleaning air
JP5087184B2 (en) One-pack type coating composition, photocatalyst used therefor, coating film thereof, and production method thereof
EP1393803A1 (en) Light-responsive material and method of manufacturing the same
JP2003275600A (en) Visible ray responsive and adsorptive composite material
EP2145678A1 (en) TiO2-ZnO Nanocomposite film
JP4287695B2 (en) Photocatalyst
WO2002053284A1 (en) Method of activating a photocatalyst and device therefor
JP3885248B2 (en) Photocatalyst composition
JP2004027193A (en) Visible-ray responsive paint, coated film and article
JP4110279B2 (en) Substrate coated with photocatalyst film and method for forming photocatalyst film on substrate
JP2005219966A (en) Production method for titanium oxide solution, titanium oxide solution, and photocatalyst coating material
JPH072522A (en) Production of titanium oxide film
JP2011020033A (en) Visible light-responsive photocatalyst, method for producing the same and photocatalyst coating agent and photocatalyst dispersion obtained by using the same
JP3806998B2 (en) PHOTOCATALYST COMPOSITION, FORMING AGENT THEREOF, AND SUBSTRATE WITH PHOTOCATALYST COMPOSITION
JP2010096359A (en) Refrigerating showcase
JP2004329916A (en) Photocatalyst apparatus using light emitting diode, and application method of light emitting diode
TWI239269B (en) Interior design material or indoor furniture with titanium oxide
JP2010101920A (en) Camera
JP7416427B2 (en) self-cleaning coating
JP2002282652A (en) Nitrogen oxide reducing method
JP2010099098A (en) Pot lid

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 554228

Kind code of ref document: A

Format of ref document f/p: F

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 1020037008845

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018229204

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020037008845

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase