WO2002070890A1 - Turbine hydraulique immergee omnidirectionnelle a axe perpendiculaire au courant d'eau et applications - Google Patents

Turbine hydraulique immergee omnidirectionnelle a axe perpendiculaire au courant d'eau et applications Download PDF

Info

Publication number
WO2002070890A1
WO2002070890A1 PCT/FR2002/000734 FR0200734W WO02070890A1 WO 2002070890 A1 WO2002070890 A1 WO 2002070890A1 FR 0200734 W FR0200734 W FR 0200734W WO 02070890 A1 WO02070890 A1 WO 02070890A1
Authority
WO
WIPO (PCT)
Prior art keywords
blade
blades
turbine
discs
shaft
Prior art date
Application number
PCT/FR2002/000734
Other languages
English (en)
Inventor
Robert Lipp
Original Assignee
Robert Lipp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Lipp filed Critical Robert Lipp
Publication of WO2002070890A1 publication Critical patent/WO2002070890A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/148Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the static pressure increase due to the wave
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1845Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom slides relative to the rem
    • F03B13/1875Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom slides relative to the rem and the wom is the piston or the cylinder in a pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/20Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" wherein both members, i.e. wom and rem are movable relative to the sea bed or shore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/062Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction
    • F03B17/063Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction the flow engaging parts having no movement relative to the rotor during its rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • F03D3/064Fixing wind engaging parts to rest of rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/21Rotors for wind turbines
    • F05B2240/211Rotors for wind turbines with vertical axis
    • F05B2240/214Rotors for wind turbines with vertical axis of the Musgrove or "H"-type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/31Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape
    • F05B2240/311Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape flexible or elastic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Definitions

  • One of the discs (1) comprises a shaft (3) of rotation being perpendicular to it at its center, and the other (1 ') a simple pivot (4) placed in the same way, aligned with the shaft (3).
  • Each of these two elements (3) and (4) pivots in a bearing (5) and (5 ') carried by the frame (6) which holds the whole of the rotor (as does a "carcass" of an electric motor for its armature).
  • This armature can have the most diverse shapes, but minimally impeding the passage of water through the blades.
  • the number of blades can be limited to only one (FIG. 2).
  • the discs can be replaced by structures of various shapes (arms, beams, etc. FIGS. 1 and 2) performing the same function of holding the blades (2).
  • the blades are immersed in a stream of water perpendicular to the shaft (3) and, when the rotor turns, the thrusts (F) on each of them generate a motor torque exerted on the shaft (3).
  • the latter is most often vertical and it should be noted that the current can come from any direction without affecting the operation (omnidirectional character).
  • the tree (3) may be horizontal ( Figure 10).
  • Figure 4 shows the circular path of the centers of thrust (A) of the blades in a plane perpendicular to the axis (0) of the shaft (3) (this center being located about a quarter of the length of the profile rope blade counted from its leading edge). This profile is generally symmetrical with respect to this rope, but it is not excluded a slight curvature does not prove beneficial to the efficiency of the turbine.
  • the line (NS) passes through the axis (0), being perpendicular to the water current.
  • Points (A) and (A ') represent two locations of center of thrust, on their circular path, which are symmetrical with respect to the line (NS).
  • Each point (A) of the semicircle located on the left of the line (NS) has its symmetrical counterpart on the right.
  • these discs have a lenticular section for better penetration into the water stream. It can be expected that their face turned towards the blades are sufficiently curved so that the flow is accelerated by the narrowing of its passage between them, which can only increase the energy collected.
  • the armature (6) of the rotor can be fixed under the hull of a floating machine (7), either directly, or by means of more or less long spacers to arrange it at the desired depth.
  • This machine can be a buoy, a mooring, a barge, or any other floating structure, which is moored to a bank, or at anchor (several mooring lines are then recommended).
  • the shaft (3) enters its bottoms through a cable gland or joint-spy to be connected to the devices receiving the energy collected by the turbine, which are then located in a dry environment. It can also lead into a well, or pass between two hulls of a multihull floating machine, saving on the stuffing box or gasket.
  • the two bearings (5) and (5 ') can thus not be submerged to avoid corrosion; but they must then, like the tree (3), be very robust because of the very large overhang that they support.
  • the frame (8) of the turbine can be fixed on a solid base anchored to the bottom of the water, the structure of which is studied to arrange it at the desired height (shaft (3) always kept vertical) .
  • This tree can extend beyond the surface of the water to be coupled to the devices that receive the energy produced (Figure 7).
  • it can lead to a sealed enclosure, where these devices are housed (in this case, they are electrical generators), passing through a cable gland or joint spy.
  • This sealed enclosure may be located above the turbine but it will most often be below (FIGS. 5 and 6), - by being attached to the base or housed therein.
  • the cables carrying electrical energy are buried under the water bottom or simply rest on it.
  • the omnidirectional nature of the turbine makes it possible to disregard the direction of the currents, which are often "turning" during the tides.
  • the operation of the turbine differs depending on whether the generator is coupled to a large alternative electricity network whose period is well established, or if it is a question of supplying energy in an isolated place, in modest quantities.
  • the shaft (3) is connected to an alternator, in general by means of a speed multiplier (direct coupling is possible, in particular by recent techniques). Therefore, the rotational speed of the rotor is then constant.
  • the shaft (3) is connected to a direct current generator or to an apparatus directly using the mechanical energy it provides (grinding wheels, saws, etc.).
  • the speed of rotation can be this time a function of that of the current.
  • the mechanical and electrical characteristics of the installation should be carefully chosen according to the variations in the speeds of the water currents to be expected. (It has been seen above that the order of magnitude of the ratio between peripheral speed (v) of the blades and speed (Va) of the current is three, but this figure must be refined by effective tests).
  • This turbine can also be used to supply energy to devices intended to raise the temperature of a water circuit for space heating (by FOUCAUD currents for example), or to actuate grinding wheels, or various mechanisms.
  • the shaft (3) of this turbine can also be arranged horizontally. This is the case when it completely or partially bars a channel ( Figure 10) which channels the current between two approximately or exactly vertical walls (which then play together, with the ground, the role of the armature (6) of the rotor. ).
  • One of the walls carrying the bearing (5 ') of the pivot (4), and the other the bearing (5) of the shaft (3) is also passing through a cable gland or joint spy to lead into a dry compartment where it is connected to devices collecting the energy captured by the turbine.
  • the other part, linked to the first and extending to its trailing edge, is made of flexible and elastic materials.
  • the complete blade regaining its original profile when the water flow is zero; whether the rotor is stopped or rotating.
  • the flexible part of the blade may consist of a single homogeneous material or of several flexible materials, with or without elongate or transverse reinforcements.
  • Each blade can pivot around its pivot in a tubular recess of. this and various Silentblocks or springs (spiral springs or simple elastic blades) are interposed between these two elements by connecting them. They are also reciprocally “set” so that the blade remains perpendicular to the radius (R) which concerns it (like the initial blades not benefiting from this elasticity) when the current is zero (whether the rotor is rotating or not). It is also possible, when the blade is at rest, to have one or more elastic, flat blades, generally made of spring steel, which connect the corresponding bar longitudinally and the leading edge of the blade.
  • blades and the center of the bar being located in the forward extension of the axis of symmetry of the blade at rest and possibly extend to the trailing edge by constituting the median support of the flexible materials necessary to form the blade profile.
  • these blades can optionally constitute the blade. (2) itself, without the addition of other flexible and elastic elements.
  • this elasticity determines a lesser increase in the incidence (i) when, in normal operation, the current (Va) accelerates. This delays the moment of the "unhooking" of the water streams, thus contributing to the operating stability of the device. It is difficult to predict in advance whether the turbine presented here will have a greater development for the exploitation of watercourses than for that of marine currents.
  • An alternator will be housed in a watertight compartment linked to the base. This tightness, as well for the passage of the shaft (3) as for the electric cables and the inspection doors, must be particularly taken care of.
  • the turbine will be started by the general electrical network (by conventional means, as has been said, used for starting synchronous motors). The turbine will continue to "always rotate at the same constant speed determined by the period of the network, even during tidal stalls, with a low energy then drawn from the network.

Abstract

Turbine se présentant comme une 'cage d'écureuil' dont les barreaux sont liés à des pales profilées (2); chacune d'elles étant disposée, lorsque la turbine est au repos hors de l'eau, de telle sorte qu'elle demeure perpendiculaire au rayon (R) qui la concerne. Cette turbine est immergée dans un courant d'eau perpendiculaire à son arbre (3), en étant disposée soit un engin flottant (7) soit sur un socle lourd (8) ancré au fond de l'eau. Son caractère omnidirectionnel permet un fonctionnement dans les courants de marées dits 'tournants'. Ces turbines, même si elles sont en grand nombre sous la mer, peuvent être entièrement invisibles et ne pas gêner la navigation, et ainsi préserver l'intégrité des sites naturels. Les pales, ou leur liaison au 'barreau' les concernant, sont souples et élastiques pour de meilleures adaptations instantanées des incidences au flux relatif sur chaque pale, en vue d'un gain d'énergie et une très grande facilité de démarrage.

Description

TURBINE HYDRAULIQUE IMMERGEE OMNIDIREC IONNELLE A
AXE PERPENDICULAIRE AU _COURANT D'EAU ET APPLICATIONS
Les dispositifs modernes de production d'énergie à partir d'un écoulement naturel d'eau sont en général d'imposantes réalisations. Ils exigent le plus souvent la construction de grands barrages, que ce soit pour des retenues d'eau douce ou l'exploitation de l'énergie des marées. Les sites naturels sont alors considérablement bouleversés, ce qui n'est pas sans inconvénient, surtout du point de vue écologique.
On trouve cependant encore quelques petites et anciennes installations utilisant de petits cours d'eaux, tels des moulins, dont le rendement est extrêmement faible. Une demande existe cependant pour ces petites installations dans des sites isolés, pour une production locale d'énergie.
Aucune réalisation ne semble exploiter le mouvement de l'eau "à l'état brut", c'est-à-dire en prélevant de l'énergie directement de son mouvement naturel d'écoulement. La turbine hydraulique proposée ici, qui peut combler cette lacune, se caractérise en particulier par une très grande simplicité.
Elle se présente sous l'aspect d'un rotor figurant une "cage d'écureuil" (figure 3) constitué classiquement de deux disques parallèles (1) et (1'), dont les barreaux sont ici remplacés par des pales (2) profilées en ailes d'avion (ou des plans minces en tenant lieu sur des réalisations rudimentaires) .
Il sera vu plus loin le grand intérêt de prévoir une certaine élasticité des pales ou de leur liaison avec leur barreau, et comment la réaliser. Dans un premier temps, pour des raisons de simplification, seules les pales rigides fixées sur leur barreau sont considérées dans l'étude qui va suivre. Ces pales sont fixées à espacements égaux, par chacune des extrémités de leur allongement" (terme utilisé pour les ailes d'avion) à la périphérie de ces disques, en étant disposées de façon à ce que les perpendiculaires (R) aux cordes de leur profil passent par l'axe (0) du rotor (figure 4) .
L'un des disques (1) comporte un arbre (3) de rotation lui étant perpendiculaire en son centre, et l'autre (1') un simple pivot (4) placé de même, aligné avec l'arbre (3) . Chacun de ces deux éléments (3) et (4) pivote dans un palier (5) et (5') que porte l'armature (6) qui maintient l'ensemble du rotor (comme le fait une "carcasse" de moteur électrique pour son induit) . Cette armature pouvant avoir les formes les plus diverses, mais en gênant le moins possible le passage de l'eau à travers les pales. Dans certaines réalisations, le nombre des pales peut se limiter à une seule (figure 2) . Les disques peuvent être remplacés par des structures xie formes diverses (bras, poutrelles, etc. figures 1 et 2) effectuant la même fonction de maintien des pales (2) .
Les pales sont plongées dans un courant d'eau perpendiculaire à l'arbre (3) et, lorsque le rotor tourne, les poussées (F) sur chacune d'elles génèrent un couple moteur s'exerçant sur l'arbre (3). Ce dernier est le plus souvent vertical et il convient de remarquer alors que le courant peut venir de n' importe quelle direction sans affecter le fonctionnement (caractère omnidirectionnel) . Dans certaines réalisations, comme il sera vu plus loin, l'arbre (3) peut être horizontal (figure 10). La figure 4 montre le trajet circulaire des centres de poussée (A) des pales dans un plan perpendiculaire à l'axe (0) de l'arbre (3) (ce centre étant situé environ au quart de la longueur de la corde de profil de la pale compté depuis son bord d'attaque). Ce profil étant en général symétrique par rapport à cette corde, mais il n'est pas exclu qu'une légère courbure ne se révèle bénéfique au rendement de la turbine.
La ligne (NS) passe par l'axe (0), en étant perpendiculaire au courant d'eau. Les points (A) et (A') représentent deux emplacements de centre de poussée, sur leur trajet circulaire, qui sont symétriques par rapport à la droite (NS) .
Il sera considéré dans ce qui suit que l'eau est ici un "fluide parfait", ce qui signifie que la poussée (F) sur chaque pale est perpendiculaire à la vitesse relative
(Vr) des molécules d'eau par rapport à la pale. La "traînée" hydrodynamique étant alors considérée nulle, seule la
"portance" est prise en compte, et constitue donc la force
(F). Le vecteur (Vr) étant la somme du vecteur (Va)
(vitesse du courant d'eau) et du vecteur (v) (vitesse linéaire d'entraînement circulaire du centre de poussée (A) de la pale due à- la seule rotation du rotor) .
Soit (B) le point où la droite portant le vecteur (F) coupe cette ligne (NS) Le triangle (AOB) est semblable à celui formé par les vecteurs (Va), (v) , et (Vr) , puisque les côtés de ces triangles sont perpendiculaires deux à deux.
(C'est la seule vitesse (Vr) qui génère la poussée F).
OA/v = AB/Vr = OB/VA donc,
OB OA x Va/v = R x Va/v
(R) étant le rayon (OA) du cercle parcouru par le centre de poussée (A) de la pale considérée.
Comme le rapport Va/v a une valeur constante, il s'ensuit que le point (B) est le même pour tous les points du trajet circulaire des pales (le segment OB étant une constante). Chaque force (F), dont le vecteur représentatif est dit ici "glissant", peut être considérée comme appliquée en n'importe quel point de la droite qui le porte. Le choix du point (B) s'impose logiquement pour point d'application de la résultante de toutes ces forces (F) , car il leur est commun et fixe (en fluide parfait) .
Au passage en (A) et (A' ) (points symétriques par rapport à la droite (NS) des centres de poussée des pales, les forces (F) et (F') sont égales scalairement. Elles s'ajoutent vectoriellement pour former (F"), qui est toujours perpendiculaire à la ligne (NS) . Cette dernière force crée un couple C sur l'arbre (3) valant :
C = F" x OB = F" x Va/v x R
Chaque point (A) du demi-cercle situé à gauche de la ligne (NS) a son homologue symétrique à droite.
Les forces (F) et (F") agissant sur chacun des "couples" de pales ainsi déterminés ont leur résultante (F") appliquée au point (B) . Celle-ci ayant toujours la même direction (celui du courant d'eau). Il s'ensuit que toutes les forces (F') de chacun de ces "couples" ne s'opposent jamais (tout 'au plus, ces forces s'annulent-elles aux passages (N) et (S) des pales) . L'angle (OAB) . représente l'incidence (i) du courant relatif (Vr) , qui est le seul flux à prendre en compte pour la création de la force (F) . Pour que l'écoulement soit partout laminaire, il est connu que (i) ne doit pas dépasser approximativement 18°. Nous pouvons avancer sans faire d'erreur importante que l'incidence maximum (i°) atteinte au cours d'un tour se situe aux environs des points W et E, qui sont les passages frontaux et postérieurs du parcours des pales (en réalité, l'examen attentif de la figure 4 indique que cette incidence maximum se produit un peu au-dessous de ces deux points) .
Ce sont également approximativement en ces points (E) et (W) que le couple exercé est le plus fort, en raison de la plus grande incidence (i) combinée avec une importante vitesse (Vr) du courant relatif (qui intervient par son carré) . La figure 4 montre qu'aux points E et W Tg i° = OB / R
Si la valeur de 1/3 est donnée au rapport
(OB / R) , l'incidence (i°) vaut 18,4° ; ce qui convient très bien comme valeur de l'incidence limite à ne pas dépasser pour éviter les "décrochements" et assurer "l'écoulement laminaire" nécessaire aux bons rendements. II est donc possible d'en conclure que la puissance maximum que pourra recueillir cette turbine se fera lorsque l'ordre de grandeur du rapport (v/va) (vitesse circulaire des pales par rapport à celle du courant) sera environ de trois. II est à noter que les pales se déplaçant ainsi à cette vitesse relativement modeste (trois fois la vitesse
(Va) du courant) ne présentent probablement pas de danger pour la majorité des poissons (qui peuvent nager en général bien plus vite) . Si la vitesse, de rotation est imposée (par exemple, comme il sera vu plus loin, par la période du réseau électrique alternatif connecté), et que le courant (Va) dépasse la valeur optimale prévue, il y a "décrochement" progressif, et limitation de la force (F) s' exerçant sur les pales. Les avaries dues à de trop grands efforts s'exerçant sur la turbine peuvent alors être évitées de ce fait.
Il est possible de simplifier la construction du rotor en supprimant le pivot (4) . Les deux paliers (5) et (5') maintenant le rotor sur son armature (6) sont alors disposés sur le seul arbre (3). Le disque (1') lui-même (ou la structure (1") en tenant lieu) peut être également supprimé; ce qui a cependant alors l'inconvénient de diminuer la cohésion des pales entre elles.
Il est intéressant que ces disques possèdent une section lenticulaire pour une meilleure pénétration dans le courant d'eau. Il peut être prévu que leur face tournée vers les pales soit suffisamment bombée pour que le flux s'accélère par le rétrécissement de son passage entre celles- ci, ce qui ne peut qu'augmenter l'énergie recueillie.
L'armature (6) du rotor peut être fixée sous la coque d'un engin flottant (7), soit directement, soit par l'entremise d' entretoises plus ou moins longues pour la disposer à la profondeur désirée. Cet engin pouvant être une bouée, un corps-mort, une barge, ou toute autre structure flottante, qui est amarré à une berge, ou au mouillage (plusieurs lignes de mouillage sont alors conseillées) .
L'arbre (3) en pénètre ses fonds par un presse- étoupe ou joint-spy pour être connecté aux appareils récepteurs de l'énergie recueillie par la turbine, qui sont alors situés en milieu sec. II peut également déboucher dans un puits, ou passer entre deux coques d'un engin flottant multicoque, en faisant l'économie du presse-étoupe ou joint-spy. Les deux paliers (5) et (5') peuvent ainsi ne pas être immergés pour éviter la corrosion; mais ils doivent alors, de même que l'arbre (3), être très robustes en raison du porte-à-faux très important qu'ils supportent.
Il est même intéressant dans ce cas de faire légèrement dépasser les pales hors de l'eau pour réduire les frottements visqueux du disque (1) ou de la structure qui en tient lieu (les pales sont alors les seuls éléments tournants qui sont immergés lorsque le disque inférieur (1') est supprimé) .
Dans un cours d'eau, de tels engins flottants peuvent s'intégrer au paysage sans le dénaturer, surtout si on les "camoufle" en barques de pêcheurs ou en péniches classiques.
En mer, une seule ligne de mouillage pourra éventuellement suffire, mais il sera indiqué d'en disposer plusieurs pour mieux immobiliser l'engin flottant et empêcher ainsi la torsion des câbles électriques qui transportent l'énergie fournie par la turbine. Contrairement à ce qui précède, l'armature (8) de la turbine peut être fixée sur un socle massif ancré au fond de l'eau dont la structure est étudiée pour la disposer à la hauteur désirée (arbre (3) toujours maintenu vertical) . Cet arbre peut dépasser la surface de l'eau pour être accouplé aux appareils récepteurs de l'énergie produite (figure 7). Il peut au contraire déboucher dans une enceinte étanche, où se trouvent logés ces appareils (dans ce cas, ce sont des générateurs électriques), en passant par un presse-étoupe ou joint-spy. Cette enceinte étanche pouvant se trouver au- dessus de- la turbine mais elle sera le plus souvent au- dessous (figures 5 et 6),- en étant accolée au socle ou logée dans celui-ci. Les câbles transportant l'énergie électrique sont enfouis sous le fond de l'eau ou reposent simplement sur lui.
Comme il a déjà été dit, le caractère omnidirectionnel de la turbine permet de ne pas tenir compte de la direction- des courants, qui sont souvent "tournants" pendant les marées. Le fonctionnement de la turbine diffère suivant que le générateur est accouplé à un réseau d'électricité alternative important dont la période est bien établie, ou s'il s'agit de fournir de l'énergie en un lieu isolé, en quantité modeste. Dans le premier cas, l'arbre (3) est connecté à un alternateur, en général par l'intermédiaire d'un multiplicateur de vitesses de rotation (un accouplement direct est possible, en particulier par de récentes techniques) . De ce fait, la vitesse de rotation du rotor est alors constante.
Dans le second cas, l'arbre (3) est connecté à un générateur de courant continu ou à un appareillage utilisant directement l'énergie mécanique qu'il fournit (meules, scies..., etc.). La vitesse de rotation peut être cette fois fonction de celle du courant. Il y a lieu de bien choisir les caractéristiques mécaniques et électriques de l'installation en fonction des variations des vitesses des courants d'eau à prévoir. (Il a été vu plus haut que l'ordre de grandeur du rapport entre vitesse périphérique (v) des pales et vitesse (Va) du courant est de trois, mais ce chiffre se doit d'être affiné par des essais effectifs) .
Il est à noter qu'en mer les vitesses des courants de marées sont bien déterminées à l'avance sans que soient à craindre d'éventuelles crues dévastatrices.
Que ce soit au large ou dans les cours d'eau, un choix devra être fait entre les turbines installées sur des engins flottants (ancrés, ou amarrés sur berges ou duc- d'Albe) , et celles solidaires de socles posés sur le fond. La première alternative permet un accès facile aux générateurs, mais soumet l'installation aux aléas de la météo ; la seconde exige un compartiment étanche d'approche difficile.
L'option "grand réseau alternatif - vitesse de rotation constante" permet également de' résoudre les difficultés de démarrage que peut présenter cette turbine. Ces difficultés ne se présentent pas, comme il sera vu plus loin, si les pales disposent d'une certaine élasticité agissant sur leur forme ou leur liaison sur les barreaux. L'alternateur se comportant alors provisoirement en moteur synchrone (un montage classique bien connu en électricité permettant le démarrage d'un tel moteur) .
Il est également possible dans cette option de remplacer l'alternateur par un générateur construit comme un moteur asynchrone. Il a été en effet observé (avec étonnement la première fois, parce que non prévu, sur les wagonnets d'une mine) qu'un tel moteur se comporte en générateur de courant alternatif d'appoint lorsqu'il est connecté à un réseau général important qui est déjà sous tension alternative de période donnée. Il est cependant fort possible que le rendement ne soit alors pas excellent. Ce montage présente la particularité intéressante de permettre des vitesses de rotation variées qui peuvent mieux s'adapter aux fluctuations du courant d'eau.
Ces vitesses de rotation sont également variables lorsque des générateurs de courant continu sont employés. Ce dernier pouvant être utilisé tel quel, par exemple pour de petites installations spécifiques à courant continu dans un lieu isolé, ou transformé en courant alternatif par un onduleur. Cette turbine peut également servir à fournir de l'énergie à des appareils destinés à élever la température d'un circuit d'eau pour le chauffage de locaux (par courants de FOUCAUD par exemple), ou pour actionner des meules de broyage, ou des mécanismes divers. L'arbre (3) de cette turbine peut également être disposé horizontalement. C'est le cas lorsqu'elle barre complètement ou partiellement un chenal (figure 10) qui canalise le courant entre deux parois approximativement ou exactement verticales (qui jouent alors ensemble, avec le sol, le rôle de l'armature (6) du rotor). L'une des parois portant le palier (5') du pivot (4), et l'autre le palier (5) de l'arbre (3). Ce dernier passant également dans un presse- étoupe ou joint-spy pour déboucher dans un compartiment sec où il est connecté aux appareils recueillant l'énergie captée par la turbine.
Il est possible de faciliter le démarrage et d' améliorer le fonctionnement de ces turbines en les équipant de pales dont une partie est constituée de matériaux souples et élastiques; l'autre demeurant rigide. La limite entre ces deux parties accolées, rigides et élastiques, se trouve approximativement dans un plan perpendiculaire à la corde des profils, en étant située à peu de distance du bord d'attaque et parallèlement à lui. Seule la partie incluant ce bord d'attaque est rigide et est fixée par chacune de ses deux extrémités aux deux disques (1) et (1' ) dont elle assure la cohésion mutuelle (en jouant le rôle des barreaux de la Mcage d'écureuil" de la figure (3) déjà citée) .
L'autre partie, liée à la première et se prolongeant jusqu'à son bord de fuite, est constituée de matériaux souples et élastiques. La pale complète retrouvant son profil d'origine lorsque le courant d'eau est nul ; que le rotor soit arrêté ou en rotation. La partie souple de la pale pouvant être constituée d'une seule matière homogène ou de plusieurs matériaux souples, comportant ou non des renforts longilignes ou transversaux.
On peut réaliser un effet élastique assez proche tout en conservant aux pales leur totale rigidité. Il faut alors munir chacune d'elles d'un long pivot qui la traverse longitudinalement, perpendiculairement à son profil, très près et à distance constante de son bord d'attaque. Ces pivots sont fixés par leurs deux extrémités sur les disques (1) et (1'), et constituent ainsi exactement les barreaux de la "cage d'écureuil" précédemment évoquée.
Chaque pale peut pivoter autour de son pivot dans un évidement tubulaire de . celle-ci et des Silentblocs ou ressorts divers (ressorts spirales ou simples lames élastiques) sont interposés entre ces deux éléments en les reliant. Ils sont en outre "calés" réciproquement pour que la pale demeure perpendiculaire au rayon (R) qui la concerne (comme les pales initiales ne bénéficiant pas de cette élasticité) lorsque le courant est nul (que le rotor soit en rotation ou non) . On peut également, lorsque la pale est au repos, disposer une ou plusieurs lames élastiques, planes, en général en acier à ressort, qui relient longitudinalement le barreau correspondant et le bord d'attaque de la pale. Ce ou ces lames et le centre du barreau étant situés dans le prolongement vers l'avant de l'axe de symétrie de la pale au repos et se prolonger éventuellement jusqu'au bord de fuite en constituant le support médian des matériaux souples nécessaires pour former le profil de la pale. Dans une réalisation simplifiée, ces lames peuvent éventuellement constituer la pale. (2) elle-même, sans apport d'autres éléments souples et élastiques.
Le simple examen attentif de la figure 4 fait comprendre qu'aux points (W) et (E) par exemple, ces dispositifs élastiques déterminent à l'arrêt une déviation de l'orientation des pales sous l'effet de la force (F) due au courant (Va) . Cette déviation détermine une inflexion de cette force (F) qui crée des couples de démarrage de même sens en (E) et (W) . (Lorsque la turbine n'est pas munie de ces dispositifs élastiques, et qu'elle est à l'arrêt, toutes les forces F s' exerçant sur -les pales passent approximativement par le centre (0) du rotor. Le couple de démarrage est donc pratiquement nul. Il est alors indispensable d'appliquer momentanément un couple moteur extérieur agissant sur son arbre (3); ainsi qu'il a été vu plus haut pour les générateurs fonctionnant momentanément en moteurs alimentés par le réseau électrique extérieur) .
Outre cet effet favorisant le démarrage, cette élasticité détermine une moindre augmentation de l'incidence (i) lorsque, en marche normale, le courant (Va) s'accélère. Ce qui retarde le moment du "décrochement" des filets d'eau, en contribuant ainsi à la stabilité de fonctionnement du dispositif. II est difficile de prévoir à l'avance si la turbine présentée ici aura un développement plus important pour l'exploitation des cours d'eau que pour celle des courants marins.
C'est cette seconde alternative qui est choisie comme exemple de réalisation dans ce qui suit. Dans cette perspective, on peut envisager d'alimenter en courant électrique un endroit isolé, au bord de la mer. Une ou plusieurs turbines peuvent être placées dans une passe menant à un plan d'eau ; ou au large d'une côte où les courants sont violents. Plus ambitieux est l'alimentation d'appoint d'un grand réseau électrique alternatif par l'établissement d'un véritable "champ de turbines" également placées au large ou dans une passe, dans un lieu où les courants de marées sont très forts ("Raz de Sein", par exemple).
Celles-ci auront leur lourd socle déposé sur un fond plat (pour que l'arbre (3) soit à peu près vertical). Des éléments en béton, ou constitués de poutrelles métalliques, portant les deux paliers (5) et (5') seront fixés sur lui pour maintenir la turbine à la bonne hauteur.
Un alternateur sera logé dans un compartiment étanche lié au socle. Cette étanchéité, aussi bien pour le passage de l'arbre (3) que pour les câbles électriques et les portes de visites, devra être particulièrement soignée. Le démarrage de la turbine se fera par le réseau général électrique (par les moyens classiques, comme il a été dit, utilisés pour le démarrage des moteurs synchrones) . La turbine continuera à " tourner toujours à la même vitesse constante déterminée par la période du réseau, même au cours des étals de marées, avec .une faible énergie prélevée alors sur le réseau.
Pour économiser cette énergie, il pourra cependant être envisagé de laisser la turbine s'arrêter d'elle-même, en l'isolant du réseau pendant ces périodes d'étals. La remise en route étant réalisée comme il est dit précédemment .
Une telle installation sera entièrement à l'abri des tempêtes et ne craindra pas de vitesses de courant excessives, car celles-ci ne dépendent que des coefficients de marée (ce qui permet également de bien prévoir à l'avance les taux de production d' électricité et de mettre en fonction à temps les générateurs thermiques d'appoint).
De plus, sur un même littoral, les heures de marées sont étalées dans le temps, ce qui tend à égaliser la production d'énergie.

Claims

REVENDICATIONS
1/ Turbine ayant la configuration d'un rotor formant "cage d'écureuil" constitué de deux disques parallèles (1) et (l')de même axe et de barreaux transversaux qui réunissent leur circonférence, chacun d'eux traversant une pale profilée dans son épaisseur, suivant son allongement, et très près de son bord d'attaque ; cette pale ayant approximativement la forme d'une aile d'avion dont le profil est symétrique par rapport à sa corde lorsqu' elle ne subit aucune poussée, l'"ùn (1) de ces disques comportant -en son centre et perpendiculairement à lui un arbre d'entraînement (3), l'autre disque (1') étant pourvu ou non d'un pivot (4) orienté dans l'alignement de l'arbre (3), des paliers (5) et (5') assurant le maintien sur l'armature (8) de la turbine, ces pales étant orientées au repos de telle sorte que les perpendiculaires (R) aux cordes de leur profil abaissées approximativement depuis leur bord d'attaque passent par l'axe (0) du rotor, ces pales étant destinées à être plongées dans un courant général de liquide dirigé perpendiculairement à l'arbre d'entraînement (3) pour lui appliquer un couple moteur ; cette pale pouvant être remplacée par un plan mince, et les disques (1) et (1') par des structures différentes assurant les mêmes fonctions, caractérisé en ce que les poussées sur les pales dues à ce courant font dévier modérément, d'un angle s' accroissant avec la force de ces poussées, l'orientation de la corde de profil des pales d'un côté ou de l'autre de la position initiale précédemment décrite, par élasticité de la pale ou de sa liaison la liant à son barreau, pour une meilleure adaptation des incidences sur les pales des flux relatifs de liquide, en vue d'augmenter le couple moteur exercé sur l'arbre d'entraînement (3) et de faciliter le démarrage de sa rotation. 2/ Dispositif selon la revendication (1) en vue d'une simplification de construction caractérisé par la suppression du disque (1'), ou de la structure en tenant lieu, ou simplement par la suppression de son pivot (4), les paliers en alignement (5) et (5') disposés sur l'armature (8) de la turbine maintiennent alors tous deux l'arbre (3).
3/ Dispositif selon la revendication 1 caractérisé en ce que les disques (1) et (1') ont une section transversale de forme lenticulaire ou semi-lenticulaire pour une meilleure pénétration dans le liquide ; leur face tournée vers les pales devant être convenablement bombée pour que le flux de liquide soit accéléré par le rétrécissement de son passage entre celles-ci.
4/ Dispositif selon les revendications 1 et 2 caractérisé en ce que, lorsque l'arbre (3) est vertical, la partie supérieure des pales n'est pas immergée afin de supprimer les frottements visqueux du disque (1) ou de la structure en faisant fonction, et de réduire la corrosion du palier (5)et, éventuellement du palier (5') qui maintient également l'arbre (3) lorsque le disque (1') n'existe pas.
5/ Dispositif selon les revendications 1, 2 et 3, caractérisé en ce que, lorsque l'arbre (3) est vertical, la partie inférieure de l'armature (8) de la turbine est solidarisée avec un socle massif solidement fixé ou simplement posé au fond de la mer ou d'un cours d'eau ; l'arbre (3) pénètre, après passage dans un presse-étoupe, dans une enceinte étanche, solidaire du socle, renfermant le générateur électrique auquel il est connecté.
6/ Dispositif selon l'une quelconque des revendications précédentes caractérisé en ce que l'arbre vertical (3) est connecté directement ou par l'intermédiaire d'un multiplicateur de vitesse de rotation à un alternateur qui fournit de l'énergie d'appoint à un réseau général d'électricité déjà existant dont la période impose à la turbine une vitesse de rotation invariable ; cette disposition étant en outre plus particulièrement adaptée pour des turbines immergées au large d'une côte étendue où, de ce fait, les courants de marée ne s'établissent pas aux mêmes heures ; cette turbine étant omnidirectionnelle est particulièrement intéressante pour les « courants tournants » spécifiques aux marées.
Il Dispositif selon la revendication 1 pour modifier l'orientation de la corde de profil des pales par rapport aux disques par déformation élastique de celle-ci ; caractérisé en ce que seule la partie de la pale près de son bord d'attaque est rigide et est fixée aux disques (1) et
(1') en matérialisant ainsi les barreaux de la « cage d'écureuil » ; le reste- de la pale étant constitué de matériaux souples et élastiques qui permettent à la corde de profil de la pale de se courber et de faire ainsi dévier son orientation moyenne par rapport aux disques ; la partie souple de la pale pouvant être constituée d'une seule matière homogène souple ou de plusieurs matériaux souples comportant ou non des renforts longilignes ou transversaux.
8/ Dispositif selon la revendication 1 pour modifier l'orientation de la corde du profil des pales par rapport aux disques (1) et (1'), par élasticité de la liaison entre la pale et le barreau de la « cage d' écureuil » qui la concerne, caractérisé en ce que ce barreau, étant fixé aux disques par chacune de ses extrémités, traverse la pale dans son épaisseur le long et très près du bord d'attaque dans un évidement tubulaire médian, la liaison élastique entre le barreau et la pale étant réalisée dans cet évidement, ou hors de lui, par un Silentbloc ou un « ressort spiral », ou plusieurs, le reste de la pale pouvant être rigide ou élastique.
9/ Dispositif selon les revendications 1 et 8 pour modifier l'orientation de la corde de profil des pales par rapport aux disques (1) et (1') caractérisé en ce qu'une ou plusieurs lames élastiques, eri général en acier à ressort, relient le barreau correspondant et le bord d'attaque de la pale ; ce ou ces lames et le centre du barreau étant situés dans le prolongement vers l'avant de l'axe de symétrie de la pale lorsqu'elle est au repos ; ce ou ces lames élastiques pouvant se prolonger jusqu'au bord de fuite et constituer le support médian des matériaux souples nécessaires pour former le profil de la pale ; ce ou ces lames peuvent éventuellement constituer la pale (2) elle-même, sans apport d'autres éléments souples.
PCT/FR2002/000734 2001-03-02 2002-03-01 Turbine hydraulique immergee omnidirectionnelle a axe perpendiculaire au courant d'eau et applications WO2002070890A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0102851A FR2821647B1 (fr) 2001-03-02 2001-03-02 Turbine hydraulique immergee omnidirectionnelle a axe perpendiculaire au courant d'eau
FR0102851 2001-03-02

Publications (1)

Publication Number Publication Date
WO2002070890A1 true WO2002070890A1 (fr) 2002-09-12

Family

ID=8860650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/000734 WO2002070890A1 (fr) 2001-03-02 2002-03-01 Turbine hydraulique immergee omnidirectionnelle a axe perpendiculaire au courant d'eau et applications

Country Status (2)

Country Link
FR (1) FR2821647B1 (fr)
WO (1) WO2002070890A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2400632A (en) * 2003-04-16 2004-10-20 Anthony Thomas Morse Subsea turbine energy generation apparatus
CN100381698C (zh) * 2005-03-11 2008-04-16 曾碚凯 小功率垂直轴风力发电机
US8297923B2 (en) 2004-05-08 2012-10-30 Kai-Ude Janssen Device for utilizing the kinetic energy of flowing water
US8475084B2 (en) 2007-12-21 2013-07-02 Tidal Energy Limited Tidal flow power generation
WO2022043368A1 (fr) 2020-08-28 2022-03-03 Francis Rey Dispositif d'entrainement en battement d'un plan porteur

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2865777B1 (fr) * 2004-02-04 2006-05-05 Inst Nat Polytech Grenoble Turbomachine hydraulique
FR2882109B1 (fr) 2005-02-14 2010-09-03 Inst Nat Polytech Grenoble Dispositif de maintien d'une turbomachine hydraulique
DE102011084017A1 (de) * 2011-10-05 2013-04-11 Dierk Fischer Schwimmfähiges Wasserströmungskraftwerk
CN111706458B (zh) * 2020-06-23 2021-08-10 浙江海洋大学 一种多能互补海上发电装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2051579A1 (de) * 1970-10-21 1972-04-27 Bruns F Turbine mit Bruns-Bernoullischem Kanteneffekt
WO1992013758A1 (fr) * 1991-02-04 1992-08-20 Flex Foil Technology, Inc. Profile aerodynamique elastique souple module
DE4110540A1 (de) * 1991-03-30 1992-10-01 Adil Sisirak Windkraftanlage
FR2688562A1 (fr) * 1992-03-13 1993-09-17 Allevard Ind Sa Dispositif de protection des silentblocs pour ressorts a lames.
DE4316712A1 (de) * 1993-05-19 1994-11-24 Thomas Fischer Selbstregelnde Luftschraube
WO2000028210A1 (fr) * 1998-11-09 2000-05-18 Aaron Davidson Production d'energie a l'aide d'un fluide
WO2000040859A1 (fr) * 1999-01-06 2000-07-13 Water Power Industries As Turbine entrainee par un milieu fluide

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2731868B1 (fr) * 1995-03-16 1997-06-06 Electricite De France Procede et equipements pour le chauffage d'un liquide electriquement conducteur

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2051579A1 (de) * 1970-10-21 1972-04-27 Bruns F Turbine mit Bruns-Bernoullischem Kanteneffekt
WO1992013758A1 (fr) * 1991-02-04 1992-08-20 Flex Foil Technology, Inc. Profile aerodynamique elastique souple module
DE4110540A1 (de) * 1991-03-30 1992-10-01 Adil Sisirak Windkraftanlage
FR2688562A1 (fr) * 1992-03-13 1993-09-17 Allevard Ind Sa Dispositif de protection des silentblocs pour ressorts a lames.
DE4316712A1 (de) * 1993-05-19 1994-11-24 Thomas Fischer Selbstregelnde Luftschraube
WO2000028210A1 (fr) * 1998-11-09 2000-05-18 Aaron Davidson Production d'energie a l'aide d'un fluide
WO2000040859A1 (fr) * 1999-01-06 2000-07-13 Water Power Industries As Turbine entrainee par un milieu fluide

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KENTFIELD J A C: "A CYCLOTURBINE WITH AUTOMATIC, SELF REGULATING, BLADE-PITCH CONTROL", ASME WIND ENERGY SYMPOSIUM, 1985, pages 147 - 154, XP001041092 *
PONTA F ET AL: "An improved vertical-axis water-current turbine incorporating a channelling device", RENEWABLE ENERGY, PERGAMON PRESS, OXFORD, GB, VOL. 20, NR. 2, PAGE(S) 223-241, ISSN: 0960-1481, XP004243968 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2400632A (en) * 2003-04-16 2004-10-20 Anthony Thomas Morse Subsea turbine energy generation apparatus
GB2400632B (en) * 2003-04-16 2006-04-26 Anthony Thomas Morse Subsea energy generation
US8297923B2 (en) 2004-05-08 2012-10-30 Kai-Ude Janssen Device for utilizing the kinetic energy of flowing water
CN100381698C (zh) * 2005-03-11 2008-04-16 曾碚凯 小功率垂直轴风力发电机
US8475084B2 (en) 2007-12-21 2013-07-02 Tidal Energy Limited Tidal flow power generation
WO2022043368A1 (fr) 2020-08-28 2022-03-03 Francis Rey Dispositif d'entrainement en battement d'un plan porteur

Also Published As

Publication number Publication date
FR2821647A1 (fr) 2002-09-06
FR2821647B1 (fr) 2003-10-24

Similar Documents

Publication Publication Date Title
EP1718863B1 (fr) Turbomachine hydraulique
EP2209990B1 (fr) Turbomachine a turbines hydrauliques a flux transverse a force globale de portance reduite
EP1856406B1 (fr) Dispositif de maintien d'une turbomachine hydraulique
FR3004765A1 (fr) Structure pour eolienne flottante
WO2014060420A1 (fr) Aérogénérateur birotor «en v» sur structure flottante de type spar
EP2620634B1 (fr) Rotor d'hydrolienne comportant au moins une pâle mobile en rotation autour d'un axe radial et des moyens de limitation du mouvement en rotation de ladite pâle, et hydrolienne comprenant un tel rotor
WO2002070890A1 (fr) Turbine hydraulique immergee omnidirectionnelle a axe perpendiculaire au courant d'eau et applications
WO2013079831A1 (fr) Dispositif de récupération d'énergie à partir des courants marins ou des cours d'eau
WO2014106765A1 (fr) Turbine a aubes helicoidales
FR2970525A1 (fr) Installation energetique adaptee pour exploiter un flux de fluide
FR3017906A1 (fr) Centrale houlomotrice a flotteurs decales
WO2013092362A2 (fr) Eolienne à pales montée sur une plateforme rotative
FR2913070A1 (fr) Systeme de production d'energie hydroelectrique par transformation de l'energie cinetique d'un courant d'eau
CA2696758A1 (fr) Turbine a axe vertical compatible avec une eolienne et une hydrolienne
EP3707371B1 (fr) Centrale hydroelectrique flottante pour rivieres peu profondes
FR2994716A1 (fr) Installation de conversion de l'energie marine
FR3012179A1 (fr) Centrale hydroelectrique flottante compacte
FR2867523A3 (fr) Dispositif modulable pour capter l'energie des courants marins ou fluviaux
EP2539581B1 (fr) Systeme de conversion de l'energie d'un fluide naturellement en mouvement
WO2019012233A1 (fr) Centrale hydroelectrique
EP1375914A1 (fr) Ensemble éolienne flottant
EP1674722A1 (fr) Générateur hydraulique flottant
FR3077103A1 (fr) Hydrolienne a axe de rotor incline de 45° par rapport a la verticale
WO2019201705A1 (fr) Eolienne flottante a turbines jumelles a axe vertical et a couplage mecanique
FR3132547A1 (fr) Eolienne à axe vertical, et navire équipé d’au moins une telle éolienne

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP