WO2002066189A1 - Cutting method by rotary tool - Google Patents

Cutting method by rotary tool Download PDF

Info

Publication number
WO2002066189A1
WO2002066189A1 PCT/JP2002/001552 JP0201552W WO02066189A1 WO 2002066189 A1 WO2002066189 A1 WO 2002066189A1 JP 0201552 W JP0201552 W JP 0201552W WO 02066189 A1 WO02066189 A1 WO 02066189A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
concave portion
contour
rotary tool
numerical data
Prior art date
Application number
PCT/JP2002/001552
Other languages
French (fr)
Japanese (ja)
Inventor
Shinjiro Yamada
Seiki Sato
Shinichi Abe
Takashi Inomata
Naoki Horiguchi
Kazuyasu Suda
Jun Nishijima
Original Assignee
Incs Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Incs Inc. filed Critical Incs Inc.
Publication of WO2002066189A1 publication Critical patent/WO2002066189A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • B23C3/16Working surfaces curved in two directions
    • B23C3/20Working surfaces curved in two directions for shaping dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C3/00Milling particular work; Special milling operations; Machines therefor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/36Nc in input of data, input key till input tape
    • G05B2219/36214Pocket machining, area clearance, contained cutting, axis milling

Definitions

  • the present invention relates to a cutting method, and more particularly, to a cutting method for forming a concave portion, a convex portion, and the like including a curved surface in a material by a cutting process using a rotary blade.
  • a method of forming concave portions and convex portions in a material such as a material by cutting is to rotate a cutting tool such as a drill or an end mill with a so-called spin drunit and cut the material to form concave portions and convex portions in a desired shape. There is a way to do it.
  • the amount of cutting per unit time is reduced by using a thin drill or a mill to increase processing accuracy. Therefore, a long working time is required until the concave and convex portions are completed.
  • a tool having a large cutting portion with a large removal amount is used, fine processing cannot be performed on the concave portion, the convex portion, and the like. For this reason, for example, in the concave portion for mold cavity, the concave portion is roughly cut with a thick cut portion. Kaloe is performed, and finally, the surface of the concave portion is finally finished with a tool having a cutting part for fine finishing.
  • the present invention focuses on the above points, and has as its basic object to provide a cutting method capable of performing high-precision cutting in a short working time. Disclosure of the invention
  • the present invention provides a method for forming a concave portion having at least a part formed of a curved surface in a material.
  • This method divides (a) the numerical value of the concave portion to be formed into a numerical value for each of a plurality of concave portions having different heights at upper and lower positions divided by contour lines divided by a predetermined height difference. And (b) using the elongated first rotating tool having cutting edges formed on the tip and side surfaces based on the numerical data for each of the concave portions, along the contour line that defines the highest concave portion.
  • D cutting the region surrounded by the contour groove cut in the previous step using the rotary tool of (1), and forming the highest concave portion on the surface of the material in a shape having a flat bottom; ) Based on the numerical data for each of the concave portions, using the first rotating tool
  • the bottom of the concave portion formed in the previous step, following the concave portion formed in the previous step, is equal to the thickness of the concave portion inside the contour line along the contour line that divides the concave portion having a height.
  • the surface of the concave portion is cut by a thin rotary blade, so that fine processing can be performed, processing accuracy is improved, and in some cases, finishing processing is unnecessary.
  • the present invention provides a method for forming a convex portion at least partially constituted by a curved surface on a material.
  • This method comprises the steps of: (a) forming a numerical value of a concave portion surrounding a convex portion to be formed by different heights vertically separated by contour lines divided by a predetermined height difference; (B) based on the numerical data for each of the concave portions, using a first elongated rotary tool having cutting edges formed on the tip and side surfaces. Cutting a contour groove having a depth equal to the thickness of the highest concave portion inside the contour line along the contour line defining the high concave portion; and (c) numerical value data for each concave portion.
  • the area outside the contour groove cut in the previous process is cut, and the highest concave portion is formed into a shape having a flat bottom.
  • D using the first rotating tool, on the bottom surface of the concave portion formed in the previous process, based on the numerical value data for each concave portion, Along a contour line that defines a concave portion having a height next to the formed concave portion, the inside of the contour line is A step of cutting a contour groove having a depth equal to the thickness of the concave portion, and (e) cutting in the previous step using the second rotary tool based on a numerical data for each concave portion. Cutting a region outside the contour groove to form a new concave portion having a flat bottom surface continuing below the already formed concave portion; and (f) forming the concave portion in the material. Repeating steps (d) and (e) until
  • the guide groove along a cutting line on which the contour groove is to be formed is formed by the first rotating tool. Form. According to such a configuration, the guide groove is formed at a more accurate position.
  • the guide groove is formed by the first rotary tool moving a plurality of times along a cutting line.
  • the difference in the predetermined height is 3 ⁇ m to 50 ⁇ m.
  • the present invention provides the first rotating tool, wherein the first rotating tool has a tip and a side face.
  • a cutting tool provided with a cutting blade and having an elongated cylindrical cutting portion having a diameter D of 1 mm or less and a ratio LZD of the effective length L to the diameter D of 10 or more.
  • FIG. 1 is a schematic perspective view of a machining center for performing a cutting process according to an embodiment of the present invention.
  • FIG. 2 is a side view of a ball end mill used for cutting according to the embodiment of the present invention.
  • FIG. 3 is a side view of a flat end mill used for cutting according to the embodiment of the present invention.
  • FIG. 4 is a side view of a mill having a substantially triangular tip at a cutting portion used for cutting according to the embodiment of the present invention.
  • FIG. 5 is a cross-sectional view illustrating a process of dividing the concave portion for forming the concave portion into the concave portion according to the first embodiment of the present invention.
  • FIG. 6 is a perspective view illustrating a process of dividing the concave portion for forming the concave portion into the concave portion according to the first embodiment of the present invention.
  • FIG. 7 is a perspective view illustrating a contour groove corresponding to the uppermost concave portion in the first embodiment of the present invention.
  • FIG. 8 is a cross-sectional view illustrating cutting of a contour groove for the uppermost concave portion in the first embodiment of the present invention.
  • FIG. 9 is a perspective view illustrating cutting of a region surrounded by a contour groove for the uppermost concave portion in the first embodiment of the present invention.
  • FIG. 10 is a perspective view showing the uppermost concave portion formed by cutting in the first embodiment of the present invention.
  • FIG. 11 is a perspective view illustrating cutting in a contour groove corresponding to the second concave portion in the first embodiment of the present invention.
  • FIG. 12 is a perspective view illustrating cutting of a region surrounded by a contour groove for the second concave portion in the first embodiment of the present invention.
  • FIG. 13 is a perspective view of a recess formed by cutting in the first embodiment of the present invention.
  • FIG. 14 is a cross-sectional view illustrating a contour groove corresponding to the uppermost concave portion in the second embodiment of the present invention.
  • FIG. 15 is a perspective view for explaining contour groove cutting of the uppermost concave portion in the second embodiment of the present invention.
  • FIG. 16 is a perspective view for explaining cutting of the outer region of the contour groove corresponding to the uppermost concave portion in the second embodiment of the present invention.
  • FIG. 1 is a schematic perspective view of the machining center 1.
  • the machining center 1 includes a base 2 installed on a floor surface, and a processing section 4 disposed above the base 2.
  • a processing table 8 on which a workpiece 6 to be cut is placed is provided below the processing section 4.
  • the processing table 8 is configured to be able to move vertically and horizontally by a known mechanism based on numerical data for cutting.
  • a head 10 is provided above the processing table 8, and a unit mounting portion 14 to which the spindle unit 12 is detachably mounted is provided below the head 10. ing.
  • the spindle unit 12 is attached to the unit mounting section 12 so that the cutting tool 16 attached to the tip of the spindle unit 12 faces the caroe table 8 and can cut the work 6 on the processing table 8. I have.
  • the head 10 is provided with a number for cutting by a known mechanism. It is possible to move vertically and horizontally with respect to the worktable 8 based on the value data ⁇
  • a chuck is built in the unit mounting portion 14, and a force bra (not shown) at the rear end of the spindle unit 12 is coupled to the chuck, thereby connecting the spindle unit 12 to the unit mounting portion 14. It can be detachably attached and fixed.
  • the spindle unit 12 is capable of cutting a workpiece 6 by rotating a cutting tool 16 attached to the tip of a rotatable main spindle at a speed of 500 rpm or more per minute by a built-in motor. It is.
  • the worktable 6 on which the work 6 is mounted and the spin drunk unit 12 are relatively moved based on the numerical data relating to the cutting work, so that the work 6 can be moved as desired. Can be cut.
  • the machining center 1 is equipped with a so-called ATC (Automatic Tool Changer) that can automatically change the spindle unit 12.
  • ATC Automatic Tool Changer
  • a replacement spindle unit mounting portion 18 is provided on the side of the head 10 for mounting a replacement spindle unit.
  • a plurality of replacement spindle units 20 to which cutting tools having different dimensions and shapes are mounted are mounted on the niche mounting portion 18.
  • a replacement unit for replacing the spindle unit 12 attached to the unit mounting portion 14 with the replacement spindle unit 20 attached to the replacement spindle unit mounting portion 18 is provided below the head 10.
  • An arm 22 is provided below the head 10.
  • the replacement spindle unit mounting section 18 sequentially moves the replacement spindle unit 20 in the direction of the replacement arm 22 by a drive mechanism (not shown), and the desired replacement spindle unit.
  • the unit 20 is configured to be gripped by the replacement arm 22 and exchangeable with the spindle unit 12 mounted on the unit mounting portion 14. Therefore, in machining center 1, the unit is mounted on the unit mounting section 14.
  • the work 6 can be subjected to various processes by exchanging the hinged unit 12 to be worn.
  • a cutting tool 16 which is a rotary tool attached to a spindle unit or a plurality of replacement spindle units 20 attached to a unit mounting portion is connected to a built-in motor output shaft. It is integrated with the main shaft.
  • the types of cutting tools 16 include the so-called ball end mill 24 (Fig. 2), in which the tip of the cutting part is substantially hemispherical, and the so-called flat end mill 26 (Fig. 3), in which the tip of the cutting part has a flat tip.
  • a mill 28 (FIG. 4) having a substantially conical cutting end.
  • a plurality of types of ball end mills 24, flat end mills 26, and mills 28 having different thicknesses (diameters) of cutting portions are mounted on a plurality of replacement spindle units 20, respectively.
  • Each of these minoles 24, 26, 28 has a cutting blade at the tip 24a, 26a, 28a and the side face 24b, 26b, 28b.
  • These mills include a thin mill with a diameter D of 1 mm or less and a slender cylindrical cutting part with a ratio L / D of effective length L to diameter D of 10 or more, that is, a small diameter cutting part. And thicker mills with a larger diameter than thinner mills.
  • FIGS. 5 to 13 a first embodiment of the present invention in which, for example, a concave portion serving as a cavity of a mold for manufacturing a cellular phone component is formed in a metal material for a mold (work 6).
  • the formation of the concave portion by the cutting method described above will be described.
  • metal materials for molds include, for example, rolled steel for general structures (SS), carbon steel for machine structures (SC, SCK), carbon tool steel (SK), alloy tool steel (SKS, SKD), High speed steel (SN C), high carbon chromium, bearing steel (SN J), nickel chromium molybdenum steel (SNC M), chromium molybdenum steel (SCM), aluminum chromium molybdenum steel (SA CM), pre-hardened steel, high tensile aluminum alloy And aluminum alloys such as duralumin (A7075) and copper alloys.
  • the numerical data of the concave portion to be formed is divided into numerical data for each of a plurality of concave portions having different heights up and down, which are defined by contour lines divided by a predetermined difference in height.
  • the concave portion W formed by the dotted line in FIG. 5 is horizontally divided at predetermined intervals as shown in FIG. 5 and FIG.
  • the concave portions W 1 to Wn are formed, and numerical values corresponding to the concave portions W 1 to Wn are generated.
  • the above-mentioned predetermined interval which is the thickness of each concave portion
  • the diameter of the tool to be used is extremely small, such as 0.2 mm, the diameter is about 3 m.
  • the diameter of the tool to be used is relatively large, such as l mm, the maximum diameter is about 50 mm. Is set.
  • the thickness of each concave portion is extremely large with respect to the dimension of the work 6 for clarity.
  • This step may be performed by an external computer for generating numerical data of the concave portion, an external or built-in computer for controlling the machining chamber, or another computer.
  • 1 2 is mounted on the unit mounting section 1 4, and the aluminum alloy (A7705) work 6 to be cut is placed on the processing table 4 and fixed.
  • a guide groove gl is formed along the contour line R1 using the ball-and-mill 24, which is the first slender rotating tool with cutting edges formed at the tip and side, along the contour line R1 that defines the highest concave portion W1. ( Figure 7).
  • the depth of the guide groove gl is smaller than the thickness of the concave portion W1.
  • the “contour line that defines the concave portion” means the concave portion and the concave portion located above and below the concave portion. And contour lines drawn at positions where the boundary surface intersects the contour surface of the concave portion. Therefore, the contour line R 1 that defines the concave portion W 1 at the highest position corresponds to the contour of the concave portion on the surface of the work 6, and the contour line R 2 that defines the second concave portion W 2 is the highest.
  • a boundary line between the concave portion W1 at the position and the second concave portion W2 is a contour line drawn at a position crossing the contour surface of the concave portion.
  • the cutting portion 24 c of the ball end mill 24 is moved by moving the cutting portion 24 c of the ball end mill 24 along the guide groove g 1 while rotating it at, for example, more than 50,000 rotations. Then, a vertical contour groove G1 having a depth equal to the thickness of the highest concave portion W1 is cut (FIGS. 7 and 8).
  • the formation of the guide groove gl and the contour groove G1 is based on the numerical data of the highest concave portion W1, and the inside of the contour line R1 where the cutting portion 24c of the ball end mill 24 defines the highest concave portion W1 This is performed by relatively moving the worktable 4 on which the work 6 is placed and the spindle unit 12 so that the workpiece moves along the contour line R1. Therefore, the formed contour groove G1 is inscribed in the contour line; R1.
  • the spindle unit 12 mounted on the spindle unit mounting section 14 is attached to a ball end mill having a cutting section 240 c larger than the ball end mill 24 used for cutting the groove.
  • Replace the spindle unit 20 with a new one.
  • the area surrounded by the contour groove G1 is cut using a thick ball end mill to make the highest recess W1 into a shape with a flat bottom. Formed on the surface of work 6 (Fig. 9).
  • the cutting portion 240 c of the ball-end mill moves in the region surrounded by the contour groove G1 and moves in the region surrounded by the contour groove G1.
  • FIG. 10 An uppermost concave portion W1 having a flat bottom is formed (FIG. 10).
  • the spindle unit 12 mounted on the spindle unit mounting portion 14 is transferred to the ball end mill 24 (first rotary tool) used for cutting the guide groove gl and the contour groove G1.
  • the cutting portion 24c of the ball end mill 24 is rotated at, for example, 500,000 revolutions or more per minute, so that the cutting portion 24c is formed on the bottom surface of the uppermost concave portion W1, which is the concave portion formed in the previous process.
  • a guide groove g 2 is formed along the contour line (that is, inscribed in the contour line) inside the contour line that defines the second concave portion W 2 at the height position next to the uppermost concave portion W 1. ( Figure 11).
  • the cutting portion 24c of the ball end mill 24 is moved along the guide groove g2 while rotating the cutting portion 24c of the ball end mill 24 at 500 or more revolutions per minute.
  • a vertical profile groove G2 having a depth equal to the thickness of the concave portion W2 is cut.
  • the formation of the guide groove (g 2) and the contour groove (G 2) is based on the numerical data of the second concave portion W 2, and the cutting portion 24 c of the ball end mill 24 is formed by the second concave portion W 2 Is carried out by moving the worktable 4 on which the work 6 is placed and the spindle unit 12 relatively so as to move along the contour line which defines the spindle unit again.
  • a guide groove g and a contour groove G are formed by cutting the narrow cutting portion 24c for each concave portion W, and then the metal material in the region surrounded by the contour groove G is removed by the thick cutting portion 240C. This process is repeated until the lowermost concave portion Wn is cut and formed to complete the concave portion W (FIG. 13).
  • the inner surface of the recess W formed in this manner is microscopically configured by a minute step-like shape whose height is the thickness of the recess, but the thickness of the recess is reduced to the dimension of the recess.
  • the inner surface becomes a substantially smooth curved surface. Therefore, the height (thickness) of the concave portion is changed according to the accuracy of the inner surface required for the concave portion.
  • the concave portion W since all the contours of the concave portion W are cut by the cut portion 24c having a small diameter, the concave portion W requires fine processing like a thin cut portion K shown in FIG. 8 and the like. Even if there is a part, it is possible to machine such a part requiring fine machining with high accuracy without changing tools.
  • a metal material for a mold (work 6) is used to form, for example, a convex portion forming a cavity of a mold for manufacturing a part of a mobile phone.
  • the formation of the projections by the cutting method according to the second embodiment of the present invention will be described.
  • the concave portion W which is a space, surrounds the convex portion P.
  • the object to be formed is a convex portion, but the convex portion to be formed: a space around P ( (Recess) Since the metal material located at W is gradually removed by cutting with a rotary tool, the guide groove g and the contour groove G are formed so as to circumscribe the contour line R, and Except that the outer metal material is removed, it basically has the same configuration as the concave portion formation of the first embodiment.
  • the numerical data of the portion (recess) to be removed from the data of the convex portion to be formed which is generated based on the design digital data generated by the three-dimensional CAD, is calculated.
  • the numerical data is divided into numerical data for each of a plurality of concave portions having different height positions in the vertical direction, which are defined by contour lines divided by a predetermined height difference.
  • a spindle unit 12 to which a ball mill 24 having a thin mill, in this embodiment, a diameter D of 0.4 mm and an effective length L of 10 mm is mounted is mounted on the unit mounting portion 14, and Place and fix work 6 to be machined on 4.
  • a guide groove gl is formed along the contour line that partitions the highest concave portion W1 .
  • the cutting part 24 c of the ball end mill 24 is moved by moving the cutting part 24 c of the ball end mill 24 along the guide groove g 1 while rotating at least 500 ° rotation or more.
  • the formation of the guide groove g 1 and the contour groove G 1 is based on the numerical value of the highest concave portion W 1, and the cutting section 24 c of the ball end mill 24 defines the highest concave portion W 1 This is performed by relatively moving the worktable 4 on which the work 6 is placed and the spindle unit 12 so as to move along the contour line outside the work. Therefore, the formed contour groove G1 circumscribes the contour line R1.
  • the spindle unit 12 mounted on the spindle unit mounting portion 14 is attached to a ball end mill having a cutting portion 240 c larger than the ball end mill 24 used for cutting the groove.
  • the highest concave portion W1 is formed on the surface of the work 6 in a shape having a flat bottom (FIG. 16).
  • the cutting part 240c of the ball-end mill moves in the area outside the contour groove G1 and moves in the area surrounded by the contour groove G1. This is performed by relatively moving the worktable 4 on which the work 6 is placed and the spindle unit 12 so as to perform cutting and removal.
  • a guide groove g and a contour groove G are cut and formed in each of the concave portions W by a thin cut portion 24c, and thereafter, a thick cut portion 240 is formed.
  • the step of removing the metal material in the region outside the contour groove G is repeated until the lowermost concave portion Wn is formed by cutting and the concave portion W is completed.
  • the outer surface of the convex portion P formed in this manner has a microscopic shape formed by minute steps whose height is equal to the thickness of the concave portion. By setting the dimensions very small for this dimension, this surface will be a substantially smooth curved surface. Therefore, the height (thickness) of the concave portion is changed according to the required surface accuracy of the convex portion.
  • the concave portion W or the convex portion: P is constituted by the wall of the contour groove cut by the small-diameter cutting portion, the concave portion W For example, even when it is used as a mold cavity, finishing is not required.
  • the removal of the metal material in the area surrounded by the contour groove (first embodiment) or the area outside the contour groove (second embodiment) is performed by a thick rotary tool having a large cutting amount. This removal can be completed in a short time, Alternatively, the time required for forming the projections is reduced.
  • the present invention is not limited to the embodiments described above.
  • all the concave portions have the same thickness.
  • the thickness of each concave portion (the difference in the predetermined height) is set according to the inclination of the inner surface of the concave portion (or the surface of the convex portion) formed by the concave portion. For example, the thickness may be increased in a portion where the inclination is large, and the thickness may be decreased in a portion where the inclination is small.
  • the machining center 1 in which the spindle unit can be automatically replaced is used.
  • the present invention can be implemented in a cutting machine in which the spindle unit cannot be replaced automatically or cannot be replaced. It is. In such a cutting machine, the operator manually replaces the entire spindle unit or the cutting tool (mill) in order to perform cutting with a mill having cutting sections of different diameters.
  • a ball end mill is used as a cutting tool, but other types of mills such as a flat end mill (FIG. 3), or a groove is formed by using another rotary tool, or The portion surrounded by the groove or the outer portion of the groove may be removed.
  • the guide groove and the contour groove are formed by rotating the cutting tool at 500 rpm or more, but the present invention is not limited to this rotation speed. However, for example, the number of revolutions may be more than or equal to 30000 revolutions per minute or less.
  • the above embodiment is a cutting process for forming a concave portion in a metal material, but the present invention cuts another type of material. ] Applicable to processing.
  • the guide groove and the contour groove are formed by the same mill in all the concave portions, but the mill to be used may be changed depending on the concave portion.
  • the above-mentioned predetermined interval which is the thickness of each concave portion, may be set to be substantially the same as the cutting depth (depth) that the cutting tool to be used can cut at one time, or set to a value larger than this. You may. If it is set to a value larger than the depth of cut (depth)
  • the cutting tool is moved along the cutting path a plurality of times while changing the position in the vertical (Z) direction to cut the guide groove or the contour groove, and In this case, cutting is performed in a region surrounded by or outside the contour groove.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Numerical Control (AREA)
  • Milling Processes (AREA)

Abstract

A cutting method capable of cutting with a high accuracy in short working time to form a recessed part (W) at least partly formed of a curved surface in a material, comprising the steps of sorting the numerical data on the formed recessed part into the numerical data on a plurality of recessed part sections formed by dividing the recessed part by contour lines, cutting contour grooves by using a first rotary tool, cutting the areas surrounded by the contour grooves cut in the previous step by using a second rotary tool larger in diameter than the first rotary tool, cutting the contour grooves in the bottom surfaces of the recessed portions formed in the previous step by using the first rotary tool, cutting the areas surrounded by the contour grooves cut in the previous step by using the second rotary tool, and repeating these steps until the recessed part is formed in the material.

Description

明 細 書  Specification
回転工具による切削加工方法  Cutting method with rotary tool
技術分野 Technical field
本発明は、 切削加工方法に関し、 詳細には、 回転刃を用いた切削加工によって 曲面を含む凹部、 凸部などを材料に形成する切削加工方法に関する。  The present invention relates to a cutting method, and more particularly, to a cutting method for forming a concave portion, a convex portion, and the like including a curved surface in a material by a cutting process using a rotary blade.
Height
切削加工により材料等の材料に凹部、 凸部等を形成する方法には、 所謂スピン ドルュニットでドリル、 ェンドミル等の切削工具を回転駆動させ材料を切削し、 所望形状の凹部、 凸部等を形成していく方法がある。  A method of forming concave portions and convex portions in a material such as a material by cutting is to rotate a cutting tool such as a drill or an end mill with a so-called spin drunit and cut the material to form concave portions and convex portions in a desired shape. There is a way to do it.
また、 特に、 成型用金型のように細かい凹凸を備えた凹部、 凸部を形成するす る場合には、 放電加工による加工も行われている。  In particular, when forming concave and convex portions having fine irregularities such as a molding die, machining by electric discharge machining is also performed.
上述したようなスピンドルュニットを用いて凹部、 凸部等を切削加工により形 成する切肖加工方法では、 加工精度を上げるべく細いドリルでまたはミルを使用 すると、 単位時間あたりの切削量が少なくなるため、 凹部、 凸部等が完成するま でに長い作業時間が必要となる。 一方、 削取り量が大きい太い切削部を有するェ 具を使用すると、 凹部、 凸部等に細かい加工を施すことができない。 このため、 例えば金型キヤビティ用の凹部では、 太い切削部で凹部を概略的に切肖!]形成して おき、 次いで、 中間的な太さの切削部を有する工具で凹部の表面の中間仕上げカロ ェを行い、 最後に、 細い仕上げ用の切削部を有する工具で凹部の表面の最終仕上 げカロェを行っている。  In the cutting method, in which concave parts and convex parts are formed by cutting using a spindle unit as described above, the amount of cutting per unit time is reduced by using a thin drill or a mill to increase processing accuracy. Therefore, a long working time is required until the concave and convex portions are completed. On the other hand, if a tool having a large cutting portion with a large removal amount is used, fine processing cannot be performed on the concave portion, the convex portion, and the like. For this reason, for example, in the concave portion for mold cavity, the concave portion is roughly cut with a thick cut portion. Kaloe is performed, and finally, the surface of the concave portion is finally finished with a tool having a cutting part for fine finishing.
更に、 放電加工では、 放電加工用の電極を作成するために時間、 および、 費用 がかかり、 又、 凹部の奥に位置する加工部位などを加工することが困難である。 本発明は、 以上の点に着目し、 短い作業時間で高い精度の切肖 U加工が可能な切 削加工方法を提供することを、 基本的な課題とする。 発明の開示 Further, in the electric discharge machining, it takes time and cost to prepare an electrode for electric discharge machining, and it is difficult to machine a machining portion located at the back of the concave portion. The present invention focuses on the above points, and has as its basic object to provide a cutting method capable of performing high-precision cutting in a short working time. Disclosure of the invention
上記課題を解決するため、 本発明は、 少なくとも一部分が曲面で構成された凹 部を材料に形成する方法を提供する。 この方法は、 ( a )形成する凹部の数値デ —夕を、 所定の高さの差によって区分した等高線によって区画される上下に高さ 位置の異なる複数の凹部分毎の数値デ一夕に分ける工程と、 (b )前記凹部分毎 の数値データに基き、 先端と側面とに切削刃が形成された細長い第 1の回転工具 を用いて、 最も高い凹部分を区画する等高線に沿って該等高線の内側に、 前記最 も高い凹部分の厚さに等しい深さを有する輪郭溝を切削する工程と、 (c )前記 凹部分毎の数値データに基き、 前記第 1の回転工具より太い第 2の回転工具を用 いて、 前工程で切削された輪郭溝に囲まれた領域を切削して、 前記最も高い凹部 分を平坦な底を有する形状に前記材料の表面に形成する工程と、 (d ) 前記凹部 分毎の数値データに基き、 前記第 1の回転工具を用いて、 前工程で形成された凹 部分の底面に、 前工程で形成された凹部分に次く、高さの凹部分を区画する等高線 に沿って該等高線の内側に前記凹部分の厚さに等しい深さを有する輪郭溝を切削 する工程と、 (e )前記凹部分毎の数値データに基き、 前記第 2の回転工具を用 いて、 前工程で切削された輪郭溝に囲まれた領域を切削して、 既に形成されてい る凹部分の下に連続し平坦な底面を有する新たな凹部分を形成する工程と、 (f )前記材料に前記凹部が形成されるまで、 (d ) および (e ) を繰り返す工程と 、 からなる。  In order to solve the above-mentioned problems, the present invention provides a method for forming a concave portion having at least a part formed of a curved surface in a material. This method divides (a) the numerical value of the concave portion to be formed into a numerical value for each of a plurality of concave portions having different heights at upper and lower positions divided by contour lines divided by a predetermined height difference. And (b) using the elongated first rotating tool having cutting edges formed on the tip and side surfaces based on the numerical data for each of the concave portions, along the contour line that defines the highest concave portion. A step of cutting a contour groove having a depth equal to the thickness of the highest concave portion inside of the first groove; and (c) a second groove thicker than the first rotary tool based on numerical data for each concave portion. (D) cutting the region surrounded by the contour groove cut in the previous step using the rotary tool of (1), and forming the highest concave portion on the surface of the material in a shape having a flat bottom; ) Based on the numerical data for each of the concave portions, using the first rotating tool The bottom of the concave portion formed in the previous step, following the concave portion formed in the previous step, is equal to the thickness of the concave portion inside the contour line along the contour line that divides the concave portion having a height. Cutting a contour groove having a depth, and (e) cutting an area surrounded by the contour groove cut in the previous step using the second rotary tool based on the numerical data for each of the concave portions. Forming a new recess having a continuous and flat bottom surface under the already formed recess; and (f) until the recess is formed in the material, (d) and (e). ) Is repeated.
このような構成によれば、 凹部の表面は、 細い回転刃によって切削されること になるので、 細かい加工が可能となり、 また、 加工精度も向上し、 さらに、 場合 によっては、 仕上げ加工が不要となる。  According to such a configuration, the surface of the concave portion is cut by a thin rotary blade, so that fine processing can be performed, processing accuracy is improved, and in some cases, finishing processing is unnecessary. Become.
さらに、 本発明は、 少なくとも一部分が曲面で構成された凸部を材料に形成す る方法を提供する。 この方法は、 (a )形成する凸部を囲む凹部の数値デ一夕を 、 所定の高さの差によって区分した等高線によって区画される上下に高さの異な る複数の凹部分毎の数値データに分ける工程と、 (b ) 前記凹部分毎の数値デー 夕に基き、 先端と側面とに切削刃が形成された細長い第 1の回転工具を用いて、 最も高い凹部分を区画する等高線に沿って該等高線の内側に前記最も高い凹部分 の厚さに等しい深さを有する輪郭溝を切削する工程と、 (c )前記凹部分毎の数 値デ一夕に基き、 前記第 1の回転工具より太い第 2の回転工具を用いて、 前工程 で切削された輪郭溝の外側の領域を切削して、 前記最も高い凹部分を平坦な底を 有する形状に前記材料の表面に形成する工程と、 (d ) 前記凹部分毎の数値デ一 夕に基き、 前記第 1の回転工具を用いて、 前工程で形成された凹部分の底面に、 前工程で形成された凹部分に次ぐ高さの凹部分を区画する等高線に沿って該等高 線の内側に前記凹部分の厚さに等しい深さを有する輪郭溝を切削する工程と、 ( e ) 前記凹部分毎の数値デ一夕に基き、 前記第 2の回転工具を用いて、 前工程で 切削された輪郭溝の外側の領域を切削して、 既に形成されている凹部分の下に連 続し平坦な底面を有する新たな凹部分を形成する工程と、 (f ) 前記材料に前記 凹部が形成されるまで、 (d ) および (e ) を繰り返す工程と、 からなる。 Further, the present invention provides a method for forming a convex portion at least partially constituted by a curved surface on a material. This method comprises the steps of: (a) forming a numerical value of a concave portion surrounding a convex portion to be formed by different heights vertically separated by contour lines divided by a predetermined height difference; (B) based on the numerical data for each of the concave portions, using a first elongated rotary tool having cutting edges formed on the tip and side surfaces. Cutting a contour groove having a depth equal to the thickness of the highest concave portion inside the contour line along the contour line defining the high concave portion; and (c) numerical value data for each concave portion. Based on the above, using a second rotating tool thicker than the first rotating tool, the area outside the contour groove cut in the previous process is cut, and the highest concave portion is formed into a shape having a flat bottom. (D) using the first rotating tool, on the bottom surface of the concave portion formed in the previous process, based on the numerical value data for each concave portion, Along a contour line that defines a concave portion having a height next to the formed concave portion, the inside of the contour line is A step of cutting a contour groove having a depth equal to the thickness of the concave portion, and (e) cutting in the previous step using the second rotary tool based on a numerical data for each concave portion. Cutting a region outside the contour groove to form a new concave portion having a flat bottom surface continuing below the already formed concave portion; and (f) forming the concave portion in the material. Repeating steps (d) and (e) until
このような構成によっても、 凸部の表面は、 細い回転刃によって切削されるこ とになるので、 細かい加工が可能となり、 また、 加工精度も向上し、 さらに、 場 合によっては、 仕上げ加工が不要となる。  Even with such a configuration, the surface of the convex portion is cut by a thin rotary blade, so that fine processing is possible, processing accuracy is improved, and, in some cases, finishing processing is performed. It becomes unnecessary.
本発明は、 一態様において、 前記第 1の回転工具による輪郭溝の切削に先立つ て、 前記輪郭溝が形成されることになる切削加工線に沿つた案内溝を、 前記第 1 の回転工具によって形成する。 このような構成によれば、 案内溝がより正確な位 置に形成される。  In one embodiment, prior to cutting the contour groove by the first rotating tool, the guide groove along a cutting line on which the contour groove is to be formed is formed by the first rotating tool. Form. According to such a configuration, the guide groove is formed at a more accurate position.
本発明は一態様において、 前記第 1の回転工具が切削加工線に沿って複数回移 動することにより前記案内溝が形成される。  In one aspect of the present invention, the guide groove is formed by the first rotary tool moving a plurality of times along a cutting line.
本発明は、 一態様において、 前記所定の高さの差が 3〃mないし 5 0〃mであ る。 また、 本発明は、 一態様において、 前記第 1の回転工具は、 先端と側面とに 切削刃を備え直径 Dが 1 mm以下であり且つ有効長 Lと直径 Dとの比率 LZDが 1 0以上の細長い円筒状の切削部を有する切削工具である。 In one aspect of the present invention, the difference in the predetermined height is 3 μm to 50 μm. Also, in one aspect, the present invention provides the first rotating tool, wherein the first rotating tool has a tip and a side face. A cutting tool provided with a cutting blade and having an elongated cylindrical cutting portion having a diameter D of 1 mm or less and a ratio LZD of the effective length L to the diameter D of 10 or more.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1ほ、 本発明の実施形態の切削加工を行うマシニングセン夕の概略的な斜視 図である。  FIG. 1 is a schematic perspective view of a machining center for performing a cutting process according to an embodiment of the present invention.
図 2は、 本発明の実施形態の切削加工に用いられるボールェンドミルの側面図 である。  FIG. 2 is a side view of a ball end mill used for cutting according to the embodiment of the present invention.
図 3は、 本発明の実施形態の切削加工に用いられるフラットエンドミルの側面 図である。  FIG. 3 is a side view of a flat end mill used for cutting according to the embodiment of the present invention.
図 4は、 本発明の実施形態の切削加工に用いられる切削部の先端が略三角形状 のミルの側面図である。  FIG. 4 is a side view of a mill having a substantially triangular tip at a cutting portion used for cutting according to the embodiment of the present invention.
図 5は、 本発明の第 1実施形態の凹部形成の凹部を凹部分に分ける工程を説明 する断面図である。  FIG. 5 is a cross-sectional view illustrating a process of dividing the concave portion for forming the concave portion into the concave portion according to the first embodiment of the present invention.
図 6は、 本発明の第 1実施形態の凹部形成の凹部を凹部分に分ける工程を説明 する斜視図である。  FIG. 6 is a perspective view illustrating a process of dividing the concave portion for forming the concave portion into the concave portion according to the first embodiment of the present invention.
図 7は、 本発明の第 1実施形態における、 最上部の凹部分の輪郭溝を説明する 斜視図である。  FIG. 7 is a perspective view illustrating a contour groove corresponding to the uppermost concave portion in the first embodiment of the present invention.
図 8は、 本発明の第 1実施形態における、 最上部の凹部分の輪郭溝切削を説明 する断面図である。  FIG. 8 is a cross-sectional view illustrating cutting of a contour groove for the uppermost concave portion in the first embodiment of the present invention.
図 9は、 本発明の第 1実施形態における、 最上部の凹部分の輪郭溝に囲まれた 領域の切削を説明する斜視図である。  FIG. 9 is a perspective view illustrating cutting of a region surrounded by a contour groove for the uppermost concave portion in the first embodiment of the present invention.
図 1 0は、 本発明の第 1実施形態における、 切削形成された最上部の凹部分を 示す斜視図である。  FIG. 10 is a perspective view showing the uppermost concave portion formed by cutting in the first embodiment of the present invention.
図 1 1は、 本発明の第 1実施形態における、 第 2の凹部分の輪郭溝に切削を説 明する斜視図である。 図 1 2は、 本発明の第 1実施形態における、 第 2の凹部分の輪郭溝に囲まれた 領域の切削を説明する斜視図である。 FIG. 11 is a perspective view illustrating cutting in a contour groove corresponding to the second concave portion in the first embodiment of the present invention. FIG. 12 is a perspective view illustrating cutting of a region surrounded by a contour groove for the second concave portion in the first embodiment of the present invention.
図 1 3は、 本発明の第 1実施形態における、 切削形成された凹部の斜視図であ る。  FIG. 13 is a perspective view of a recess formed by cutting in the first embodiment of the present invention.
図 1 4は、 本発明の第 2実施形態における、 最上部の凹部分の輪郭溝を説明す る断面図である。  FIG. 14 is a cross-sectional view illustrating a contour groove corresponding to the uppermost concave portion in the second embodiment of the present invention.
図 1 5は、 本発明の第 2実施形態における、 最上部の凹部分の輪郭溝切削を説 明する斜視図である。  FIG. 15 is a perspective view for explaining contour groove cutting of the uppermost concave portion in the second embodiment of the present invention.
図 1 6は、 本発明の第 2実施形態における、 最上部の凹部分の輪郭溝の外側領 域の切削を説明する斜視図である。  FIG. 16 is a perspective view for explaining cutting of the outer region of the contour groove corresponding to the uppermost concave portion in the second embodiment of the present invention.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施形態を図面に沿って説明する。 まず、 本発明の一実施形態 の切削加工方法を実施する数値制御タイプの切削加工機 (マシニングセン夕) の 概略構成を説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, a schematic configuration of a numerical control type cutting machine (machining center) that implements a cutting method according to an embodiment of the present invention will be described.
図 1は、 マシニングセン夕 1の概略的な斜視図である。 図 1に示されているよ うに、 マシニングセン夕 1は、 床面に設置される基部 2と、 この基部 2の上方に 配置された加工部 4とを備えている。 加工部 4の下方位置には、 切削加工される 被加工物 (ワーク) 6が載置される加工台 8が設けられている。加工台 8は、 公 知の機構によって、 切削加工用の数値デ一夕に基づいて、 上下および水平方向に 移動できるように構成されている。  FIG. 1 is a schematic perspective view of the machining center 1. As shown in FIG. 1, the machining center 1 includes a base 2 installed on a floor surface, and a processing section 4 disposed above the base 2. A processing table 8 on which a workpiece 6 to be cut is placed is provided below the processing section 4. The processing table 8 is configured to be able to move vertically and horizontally by a known mechanism based on numerical data for cutting.
加工台 8の上方には、 へヅド 1 0が設けられており、 このへッド 1 0の下方に は、 スピンドルュニット 1 2が着脱自在に装着されるュニット装着部 1 4が設け られている。 スピンドルュニヅト 1 2は、 先端に取付けられた切削工具 1 6がカロ ェ台 8に対向し、 加工台 8上のワーク 6を切削加工できるように、 ユニット装着 部 1 2に取付けられている。 ヘッド 1 0は、 公知の機構により、 切削加工用の数 値データに基づいて、 加工台 8に対して上下方向及び水平方向に移動可能である ο A head 10 is provided above the processing table 8, and a unit mounting portion 14 to which the spindle unit 12 is detachably mounted is provided below the head 10. ing. The spindle unit 12 is attached to the unit mounting section 12 so that the cutting tool 16 attached to the tip of the spindle unit 12 faces the caroe table 8 and can cut the work 6 on the processing table 8. I have. The head 10 is provided with a number for cutting by a known mechanism. It is possible to move vertically and horizontally with respect to the worktable 8 based on the value data ο
ュニヅト装着部 1 4にはチャックが内蔵され、 スピンドルュニヅト 1 2の後端 の力ブラ (図示せず) をこのチャックに結合させることによって、 スピンドルュ ニット 1 2をュニヅト装着部 1 4に着脱自在に装着固定することができる。 この スピンドルュニヅ ト 1 2は、 回転可能な主軸の先端に取付けられた切削工具 1 6 を内蔵モー夕によって毎分 5 0 0 0 0回転以上で高速回転させ、 ワーク 6を切削 加工することができるものである。  A chuck is built in the unit mounting portion 14, and a force bra (not shown) at the rear end of the spindle unit 12 is coupled to the chuck, thereby connecting the spindle unit 12 to the unit mounting portion 14. It can be detachably attached and fixed. The spindle unit 12 is capable of cutting a workpiece 6 by rotating a cutting tool 16 attached to the tip of a rotatable main spindle at a speed of 500 rpm or more per minute by a built-in motor. It is.
従って、 マシニングセン夕 1では、 ワーク 6が載置された加工台 8とスピンド ルュニット 1 2とを切削加工に関する数値デ一夕に基づいて相対的移動させるこ とにより、 ワーク 6を所望のように切削加工することができる。  Therefore, in the machining center 1, the worktable 6 on which the work 6 is mounted and the spin drunk unit 12 are relatively moved based on the numerical data relating to the cutting work, so that the work 6 can be moved as desired. Can be cut.
マシニングセン夕 1は、 スピンドルュニヅト 1 2を自動的する交換することが できる所謂 A T C (自動工具交換装置) を備えている。 図 1に示されているよう に、 へヅド 1 0の側方には、 交換用のスピンドルュニヅトが装着される交換用ス ピンドルュニヅト装着部 1 8が設けられ、 この交換用スピンドルュニヅト装着部 1 8には、 異なった寸法形状の切削工具が取付けられた複数の交換用スピンドル ユニット 2 0が装着されている。  The machining center 1 is equipped with a so-called ATC (Automatic Tool Changer) that can automatically change the spindle unit 12. As shown in FIG. 1, a replacement spindle unit mounting portion 18 is provided on the side of the head 10 for mounting a replacement spindle unit. A plurality of replacement spindle units 20 to which cutting tools having different dimensions and shapes are mounted are mounted on the niche mounting portion 18.
また、 ヘッド 1 0の下方には、 ユニット装着部 1 4に取付けられたスピンドル ュニヅト 1 2を交換用スピンドルュニツト装着部 1 8に装着された交換用スピン ドルュニット 2 0と交換するための交換用アーム 2 2が設けられている。 本実施 形態では、 交換用スピンドルユニット装着部 1 8は、 図示しない駆動機構によつ て、 交換用スピンドルユニット 2 0を交換用アーム 2 2方向に順次移動させ、 所 望の交換用スピンドルュニヅト 2 0を交換用アーム 2 2に把持させ、 ュニヅト装 着部 1 4に装着されているスピンドルュニヅ ト 1 2と交換することができるよう に構成されている。従って、 マシニングセン夕 1では、 ュニヅ ト装着部 1 4に装 着されるスヒンドルュニヅト 12を交換することにより、 ワーク 6に種々の加工 を施すことができる。 In addition, below the head 10, a replacement unit for replacing the spindle unit 12 attached to the unit mounting portion 14 with the replacement spindle unit 20 attached to the replacement spindle unit mounting portion 18 is provided. An arm 22 is provided. In the present embodiment, the replacement spindle unit mounting section 18 sequentially moves the replacement spindle unit 20 in the direction of the replacement arm 22 by a drive mechanism (not shown), and the desired replacement spindle unit. The unit 20 is configured to be gripped by the replacement arm 22 and exchangeable with the spindle unit 12 mounted on the unit mounting portion 14. Therefore, in machining center 1, the unit is mounted on the unit mounting section 14. The work 6 can be subjected to various processes by exchanging the hinged unit 12 to be worn.
本実施形態では、 ュニヅト装着部に取付けられたスピンドルュニットあるいは 複数の交換用スピンドルュニヅト 20に取付けられている回転工具である切削ェ 具 16は、 内蔵モー夕出力軸に連結された主軸と一体化されている。切削工具 1 6の種類としては、 切削部の先端が略半球凸状の所謂ボールエンドミル 24 (図 2)、 切削部の先端が切削部の先端が平坦な所謂フラヅトエンドミル 26 (図 3 )、 切削部の先端が略円錐形状のミル 28 (図 4)等がある。 また、 切削部の太 さ (径) が異なる複数種類のボールエンドミル 24、 フラッ トエンドミル 26、 ミル 28が、 複数の交換用スピンドルュニヅト 20にそれそれ取付けられている 。 これらのミノレ 24、 26、 28は、 いずれも、 先端 24a、 26 a、 28 aと 側面 24b、 26b、 28 bとに切削刃を備えている。 これらのミルには、 直径 Dが 1 mm以下であり且つ有効長 Lと直径 Dとの比率 L/Dが 10以上の細長い 円筒状の切削部を備えている細い即ち切削部の径が小さいミルと、 細いミルより 径の大きな太いミルとが含まれている。  In the present embodiment, a cutting tool 16 which is a rotary tool attached to a spindle unit or a plurality of replacement spindle units 20 attached to a unit mounting portion is connected to a built-in motor output shaft. It is integrated with the main shaft. The types of cutting tools 16 include the so-called ball end mill 24 (Fig. 2), in which the tip of the cutting part is substantially hemispherical, and the so-called flat end mill 26 (Fig. 3), in which the tip of the cutting part has a flat tip. There is a mill 28 (FIG. 4) having a substantially conical cutting end. In addition, a plurality of types of ball end mills 24, flat end mills 26, and mills 28 having different thicknesses (diameters) of cutting portions are mounted on a plurality of replacement spindle units 20, respectively. Each of these minoles 24, 26, 28 has a cutting blade at the tip 24a, 26a, 28a and the side face 24b, 26b, 28b. These mills include a thin mill with a diameter D of 1 mm or less and a slender cylindrical cutting part with a ratio L / D of effective length L to diameter D of 10 or more, that is, a small diameter cutting part. And thicker mills with a larger diameter than thinner mills.
次に、 図 5乃至図 13に沿って、 金型用の金属材料 (ワーク 6) に、 例えば、 携帯電話の部品を製造する金型のキヤビティとなる凹部を形成する本発明の第 1 実施形態の切削加工方法による凹部形成を説明する。 一般に、 金型用の金属材料 としては、 例えば、 一般構造用圧延鋼材 (SS)、 機械構造用炭素鋼 (SC、 S CK)、 炭素工具鋼 (SK)、 合金工具鋼 (SKS、 SKD)、 高速度鋼 (SN C)、 高炭素クロム、 軸受鋼 (SN J)、 ニッケルクロムモリブデン鋼 (SNC M)、 クロムモリプデン鋼 (SCM)、 アルミニウムクロムモリブデン鋼 (SA CM)、 プリハードン鋼、 高張力アルミ合金及びジュラルミン (A7075)等 のアルミ合金、 銅合金等がある。  Next, according to FIGS. 5 to 13, a first embodiment of the present invention in which, for example, a concave portion serving as a cavity of a mold for manufacturing a cellular phone component is formed in a metal material for a mold (work 6). The formation of the concave portion by the cutting method described above will be described. Generally, metal materials for molds include, for example, rolled steel for general structures (SS), carbon steel for machine structures (SC, SCK), carbon tool steel (SK), alloy tool steel (SKS, SKD), High speed steel (SN C), high carbon chromium, bearing steel (SN J), nickel chromium molybdenum steel (SNC M), chromium molybdenum steel (SCM), aluminum chromium molybdenum steel (SA CM), pre-hardened steel, high tensile aluminum alloy And aluminum alloys such as duralumin (A7075) and copper alloys.
まず、 三次元 CADで作成された設計ディジ夕ルデータに基づいて生成された 形成すべき凹部の数値デ一夕を、 所定の高さの差によって区分した等高線によつ て区画される上下に高さの異なる複数の凹部分毎の数値デ一夕に分ける。 具体的 には、 図 5に点線で示す形成する凹部 Wを、 数値デ一夕上で、 図 5および図 6に 示されているように所定間隔で水平方向に分割して、 n枚の薄板状の凹部分 W 1 ないし Wnとし、 各凹部分 W 1ないし Wnに相当する数値デ一夕を生成する。 各 凹部分の厚さとなる上記所定間隔は、 輪郭溝を切削する際に使用される切削工具 の径、 加工する凹部の形状等の条件を考慮して設定される。 例えば、 使用するェ 具の径が 0 . 2 mmと極めて細い場合には、 3 m程度に、 また、 使用する工具 の径が l mmと比較的太い場合には、 最大 5 0〃m程度に設定される。 尚、 図面 においては、 明確化のため、 各凹部の厚さをワーク 6の寸法に対して、 極めて大 きく描いている。 First, it was generated based on design digital data created by 3D CAD. The numerical data of the concave portion to be formed is divided into numerical data for each of a plurality of concave portions having different heights up and down, which are defined by contour lines divided by a predetermined difference in height. Specifically, the concave portion W formed by the dotted line in FIG. 5 is horizontally divided at predetermined intervals as shown in FIG. 5 and FIG. The concave portions W 1 to Wn are formed, and numerical values corresponding to the concave portions W 1 to Wn are generated. The above-mentioned predetermined interval, which is the thickness of each concave portion, is set in consideration of conditions such as the diameter of a cutting tool used for cutting the contour groove, the shape of the concave portion to be processed, and the like. For example, when the diameter of the tool to be used is extremely small, such as 0.2 mm, the diameter is about 3 m. When the diameter of the tool to be used is relatively large, such as l mm, the maximum diameter is about 50 mm. Is set. In the drawings, the thickness of each concave portion is extremely large with respect to the dimension of the work 6 for clarity.
この工程は、 凹部の数値デ一夕を生成する外部のコンビュ一夕、 マシニングセ ン夕を制御するための外部の或いは内蔵のコンピュータ、 または、 その他のコン ピュー夕のいずれで行っても良い。  This step may be performed by an external computer for generating numerical data of the concave portion, an external or built-in computer for controlling the machining chamber, or another computer.
次いで、 または、 これと同時或いはこれに先立って、 細いミル、 本実施形態で は直径 Dが 0 . 4 mm、 有効長 Lが 1 0 mmのボ一ルェンドミル 2 4が取付けら れたスピンドルュニット 1 2をュニット装着部 1 4に装着させ、 切削加工を施す アルミ合金 (A 7 0 7 5 ) ワーク 6を加工台 4に載置'固定する。  Then, or simultaneously with or before this, a spindle unit on which a thin mill, in this embodiment a ball mill 24 having a diameter D of 0.4 mm and an effective length L of 10 mm, is mounted. 1 2 is mounted on the unit mounting section 1 4, and the aluminum alloy (A7705) work 6 to be cut is placed on the processing table 4 and fixed.
次いで、 スピンドルュニヅト 1 2の内蔵モ一夕によってボールェンドミル 2 4 を例えば毎分 5 0 0 0 0回転以上で回転させながら、 最も高い位置にある凹部分 部 W 1の数値データに基き、 先端と側面とに切削刃が形成された細長い第 1の回 転工具であるボールェンドミル 2 4を用いて、 最も高い凹部分 W 1を区画する等 高線 R 1に沿って、 案内溝 g lを形成する (図 7 ) 。 案内溝 g lの深さは、 凹部 分 W 1の厚さより小さい。  Next, based on the numerical data of the concave portion W1 at the highest position, while rotating the ball end mill 24 at, for example, 500 rpm or more per minute by the built-in motor of the spindle unit 12, A guide groove gl is formed along the contour line R1 using the ball-and-mill 24, which is the first slender rotating tool with cutting edges formed at the tip and side, along the contour line R1 that defines the highest concave portion W1. (Figure 7). The depth of the guide groove gl is smaller than the thickness of the concave portion W1.
「凹部分を区画する等高線」 とは、 当該凹部分とそのすく、上に位置する凹部分 と境界面が凹部の輪郭面と交わった位置に引かれる等高線である。従って、 最も 高い位置にある凹部分 W 1を区画する等高線 R 1は、 ワーク 6の表面における凹 部の輪郭線に相当し、 2番目の凹部分 W 2を区画する等高線 R 2は、 最も高い位 置にある凹部分 W 1と 2番目の凹部分 W 2の境界面が凹部の輪郭面と交わつた位 置に引かれる等高線となる。 The “contour line that defines the concave portion” means the concave portion and the concave portion located above and below the concave portion. And contour lines drawn at positions where the boundary surface intersects the contour surface of the concave portion. Therefore, the contour line R 1 that defines the concave portion W 1 at the highest position corresponds to the contour of the concave portion on the surface of the work 6, and the contour line R 2 that defines the second concave portion W 2 is the highest. A boundary line between the concave portion W1 at the position and the second concave portion W2 is a contour line drawn at a position crossing the contour surface of the concave portion.
次いで、 ボールェンドミル 2 4の切削部 2 4 cを、 例えば每分 5 0 0 0 0回転 以上で回転させながら、 案内溝 g 1に沿って移動させることによって、 ボールェ ンドミル 2 4の切削部 2 4 cで、 最も高い凹部分 W 1の厚さに等しい深さを有す る鉛直方向の輪郭溝 G 1を切削する (図 7、 図 8 ) 。 案内溝 g lおよび輪郭溝 G 1の形成は、 最も高い凹部分 W 1の数値データに基づいて、 ボールエンドミル 2 4の切削部 2 4 cが最も高い凹部分 W 1を区画する等高線 R 1の内側をこの等高 線 R 1に沿って動くように、 ワーク 6が載置された加工台 4とスピンドルュニヅ ト 1 2とを相対的に移動させることによって実行される。従って、 形成された輪 郭溝 G 1は、 等高線; R 1に内接している。  Next, the cutting portion 24 c of the ball end mill 24 is moved by moving the cutting portion 24 c of the ball end mill 24 along the guide groove g 1 while rotating it at, for example, more than 50,000 rotations. Then, a vertical contour groove G1 having a depth equal to the thickness of the highest concave portion W1 is cut (FIGS. 7 and 8). The formation of the guide groove gl and the contour groove G1 is based on the numerical data of the highest concave portion W1, and the inside of the contour line R1 where the cutting portion 24c of the ball end mill 24 defines the highest concave portion W1 This is performed by relatively moving the worktable 4 on which the work 6 is placed and the spindle unit 12 so that the workpiece moves along the contour line R1. Therefore, the formed contour groove G1 is inscribed in the contour line; R1.
次いで、 スピンドルュニヅト装着部 1 4に装着されているスピンドルュニヅト 1 2を、 溝の切削で使用したボールェンドミル 2 4より太い切削部 2 4 0 cを有 するボールェンドミルが取付けられているスピンドルュニヅト 2 0と交換する。 そして、 最上部の凹部分 W 1の数値データに基き、 太いボールエンドミルを用 いて、 輪郭溝 G 1に囲まれた領域を切削して、 最も高い凹部分 W 1を平坦な底を 有する形状にワーク 6の表面に形成する (図 9 ) 。 この切削は、 最も高い凹部分 W 1の数値デ一夕に基づいて、 ボールェンドミルの切削部 2 4 0 cが輪郭溝 G 1 に囲まれた領域内を動いて輪郭溝 G 1に囲まれた領域内の金属材料を切削除去す るように、 ワーク 6が載置された加工台 4とスピンドルュニット 1 2とを相対的 に移動させることによって実行される。 本実施形態では、 図 9に一点鎖線で示さ れる経路 Pに沿って、 太いボールェンドミルの切削部 2 4 0 cが、 輪郭溝 G 1に 囲まれた領域内を動いて、 輪郭溝 G 1に囲まれた領域の金属材料が全て切削除去 され、 平坦な底を有する最上部の凹部分 W 1が形成される (図 1 0 ) 。 Next, the spindle unit 12 mounted on the spindle unit mounting section 14 is attached to a ball end mill having a cutting section 240 c larger than the ball end mill 24 used for cutting the groove. Replace the spindle unit 20 with a new one. Then, based on the numerical data of the uppermost recess W1, the area surrounded by the contour groove G1 is cut using a thick ball end mill to make the highest recess W1 into a shape with a flat bottom. Formed on the surface of work 6 (Fig. 9). In this cutting, based on the numerical value of the highest concave portion W1, the cutting portion 240 c of the ball-end mill moves in the region surrounded by the contour groove G1 and moves in the region surrounded by the contour groove G1. This is performed by relatively moving the worktable 4 on which the work 6 is placed and the spindle unit 12 so as to cut and remove the metal material inside. In the present embodiment, FIG. Along the path P, the cutting portion 240c of the thick ball-end mill moves in the area surrounded by the contour groove G1, and all the metal material in the area surrounded by the contour groove G1 is cut and removed. An uppermost concave portion W1 having a flat bottom is formed (FIG. 10).
次いで、 スピンドルュニヅト装着部 1 4に装着されているスピンドルュニヅト 1 2を、 案内溝 g lおよび輪郭溝 G 1の切削で使用したボールエンドミル 2 4 ( 第 1の回転工具) に取り替え、 このボールエンドミル 2 4の切削部 2 4 cを例え ば毎分 5 0 0 0 0回転以上で回転させて、 前工程で形成された凹部分である最上 部の凹部分 W 1の底面に、 最上部の凹部分 W 1に次ぐ高さ位置にある 2番目の凹 部分 W 2を区画する等高線の内側でこの等高線に沿った (即ち、 この等高線に内 接した) 案内溝 g 2を形成する (図 1 1 ) 。  Next, the spindle unit 12 mounted on the spindle unit mounting portion 14 is transferred to the ball end mill 24 (first rotary tool) used for cutting the guide groove gl and the contour groove G1. Then, the cutting portion 24c of the ball end mill 24 is rotated at, for example, 500,000 revolutions or more per minute, so that the cutting portion 24c is formed on the bottom surface of the uppermost concave portion W1, which is the concave portion formed in the previous process. A guide groove g 2 is formed along the contour line (that is, inscribed in the contour line) inside the contour line that defines the second concave portion W 2 at the height position next to the uppermost concave portion W 1. (Figure 11).
次いで、 ボールェンドミル 2 4の切削部 2 4 cを毎分 5 0 0 0 0回転以上で回 転させながら、 案内溝 g 2に沿って移動させることによって、 ボールエンドミル 2 4の切削部 2 4 cで、 凹部分 W 2の厚さに等しい深さを有する鉛直方向の輪郭 溝 G 2を切削する。 案内溝 (g 2 ) および輪郭溝 ( G 2 ) の形成は、 2番目の凹 部分 W 2の数値デ一夕に基づいて、 ボールェンドミル 2 4の切削部 2 4 cが 2番 目の凹部分 W2を区画する等高線に沿って動くように、 ワーク 6が載置された加 ェ台 4とスピンドルュニット 1 2とを相対的移動させることによって実行される 再び、 スピンドルュニヅト装着部 1 4に装着されてるスピンドルュニヅト 1 2 を、 溝の切削で使用したボールエンドミル 2 4より太い切削部 2 4 0 cを有する ボールェンドミルが取付けられているスピンドルュニヅト 2 0と交換し、 2番目 の凹部分 W 2の数値デ一夕に基き、 太いボールエンドミルを用いて、 輪郭溝 G 2 に囲まれた領域を切削して (図 1 2 ) 、 2番目の凹部分 W 2を平坦な底を有する 形状に最上部の凹部分 W 1の下に形成する。 この切削も、 最上部の凹部分 W 1の 切削時と同様に、 2番目の凹部分 W 2の数値データに基づいて、 ボールエンドミ ルの切削部 2 4 0 cが輪郭溝 G 2に囲まれた領域内を動いて輪郭溝 G 2に囲まれ た領域内の金属材料を切削除去するように、 ワーク 6が載置された加工台 4とス ピンドルュニヅト 1 2とを相対的に移動させることによって実行される。 本実施 形態では、 2番面の凹部分 W 2の切削時も、 図 9に一点鎖線で示されているよう な経路 Pに沿って、 ボールェンドミルの切削部 2 4 0 cが輪郭溝 G 2に囲まれた 領域内を動き、 輪郭溝 G 2に囲まれた領域の金属材料が全て切削除去され、 平坦 な底を有する 2番目の凹部分 W 2が形成される。 Next, the cutting portion 24c of the ball end mill 24 is moved along the guide groove g2 while rotating the cutting portion 24c of the ball end mill 24 at 500 or more revolutions per minute. A vertical profile groove G2 having a depth equal to the thickness of the concave portion W2 is cut. The formation of the guide groove (g 2) and the contour groove (G 2) is based on the numerical data of the second concave portion W 2, and the cutting portion 24 c of the ball end mill 24 is formed by the second concave portion W 2 Is carried out by moving the worktable 4 on which the work 6 is placed and the spindle unit 12 relatively so as to move along the contour line which defines the spindle unit again. Replace the spindle unit 12 mounted on the spindle unit 20 with a ball end mill having a cutting portion 240 c larger than the ball end mill 24 used for cutting the groove, Based on the numerical value of the second concave portion W2, the area surrounded by the contour groove G2 was cut using a thick ball end mill (Fig. 12), and the second concave portion W2 was flattened. It is formed below the uppermost concave portion W1 in a shape having an appropriate bottom. This cutting is also performed based on the numerical data of the second recess W2 in the same manner as when cutting the top recess W1. Processing in which the workpiece 6 is placed so that the cutting part 240 c of the tool moves in the area surrounded by the contour groove G2 to cut and remove the metal material in the area surrounded by the contour groove G2. This is performed by relatively moving the table 4 and the spindle unit 12. In the present embodiment, even when cutting the concave portion W2 of the No. 2 surface, the cutting portion 240 c of the ball-end mill is cut into the contour groove G2 along the path P indicated by the dashed line in FIG. The metal material in the region surrounded by the contour groove G2 is cut and removed, and the second concave portion W2 having a flat bottom is formed.
各凹部分 Wに対して、 細い切削部 2 4 cで案内溝 gおよび輪郭溝 Gを切削形成 し、 その後、 太い切削部 2 4 0 Cで輪郭溝 Gに囲まれた領域の金属材料を除去す る工程が、 最下部の凹部分 Wnが切削形成されて凹部 Wが完成する (図 1 3 ) ま で繰り返される。  A guide groove g and a contour groove G are formed by cutting the narrow cutting portion 24c for each concave portion W, and then the metal material in the region surrounded by the contour groove G is removed by the thick cutting portion 240C. This process is repeated until the lowermost concave portion Wn is cut and formed to complete the concave portion W (FIG. 13).
このようにして形成された凹部 Wの内表面は、 ミクロ的には、 高さが凹部分の 厚さである微小な階段形状によって構成されているが、 凹部分の厚さを凹部 の 寸法に対して極めて小さく設定することにより、 この内表面は実質的には滑らか な曲面となる。 従って、 凹部に必要とされる内表面の精度に応じて、 凹部分の高 さ (厚さ) は変更される。  The inner surface of the recess W formed in this manner is microscopically configured by a minute step-like shape whose height is the thickness of the recess, but the thickness of the recess is reduced to the dimension of the recess. By setting it to be extremely small, the inner surface becomes a substantially smooth curved surface. Therefore, the height (thickness) of the concave portion is changed according to the accuracy of the inner surface required for the concave portion.
上記実施形態では、 凹部 Wの輪郭は全て細い径の切削部 2 4 cで切削されるの で、 凹部 Wが図 8等に示されている細い切れ込み部 Kのような細かい加工を必要 とする部分を有する場合でも、 工具を交換することなく、 高い精度でこのような 細かい加工を必要とする部分を加工することが可能となる。  In the above embodiment, since all the contours of the concave portion W are cut by the cut portion 24c having a small diameter, the concave portion W requires fine processing like a thin cut portion K shown in FIG. 8 and the like. Even if there is a part, it is possible to machine such a part requiring fine machining with high accuracy without changing tools.
次に、 図 1 4乃至図 1 6に沿って、 金型用の金属材料 (ワーク 6 ) に、 例えば 、 携帯電話の部品を製造する金型のキヤビティを構成する凸部を材料に形成する 本発明の第 2実施形態の切削加工方法による凸部形成を説明する。 本実施形態で は、 凸部 Pを取り囲んで空間部である凹部 Wが配置されることになる。  Next, according to FIGS. 14 to 16, for example, a metal material for a mold (work 6) is used to form, for example, a convex portion forming a cavity of a mold for manufacturing a part of a mobile phone. The formation of the projections by the cutting method according to the second embodiment of the present invention will be described. In the present embodiment, the concave portion W, which is a space, surrounds the convex portion P.
本実施形態では、 形成対象が凸部であるが、 形成する凸部: Pの周囲の空間部 ( 凹部) Wに位置する金属材料を、 回転工具により段階的に切削により除去してい くので、 案内溝 gおよび輪郭溝 Gが等高線 Rに外接するように形成される点、 お よび、 輪郭溝の外側の金属材料が除去される点を除き、 基本的には、 第 1の実施 形態の凹部形成と共通の構成を有する。 In the present embodiment, the object to be formed is a convex portion, but the convex portion to be formed: a space around P ( (Recess) Since the metal material located at W is gradually removed by cutting with a rotary tool, the guide groove g and the contour groove G are formed so as to circumscribe the contour line R, and Except that the outer metal material is removed, it basically has the same configuration as the concave portion formation of the first embodiment.
即ち、 三次元 C ADで作成された設計ディジ夕ルデ一夕に基づいて生成された 形成すべき凸部のデ一夕から除去すべき部分 (凹部) の数値データを算出し、 こ の凹部の数値デ一夕を、 所定の高さの差によって区分した等高線によって区画さ れる上下に高さ位置の異なる複数の凹部分毎の数値デ一夕に分ける。 次いで、 細 いミル、 本実施形態では直径 Dが 0 . 4 mm、 有効長 Lが 1 0 mmのボールェン ドミル 2 4が取付けられたスピンドルュニヅ ト 1 2をュニット装着部 1 4に装着 させ、 加工台 4に切肖加工を施すワーク 6を載置 ·固定する。  That is, the numerical data of the portion (recess) to be removed from the data of the convex portion to be formed, which is generated based on the design digital data generated by the three-dimensional CAD, is calculated. The numerical data is divided into numerical data for each of a plurality of concave portions having different height positions in the vertical direction, which are defined by contour lines divided by a predetermined height difference. Next, a spindle unit 12 to which a ball mill 24 having a thin mill, in this embodiment, a diameter D of 0.4 mm and an effective length L of 10 mm is mounted is mounted on the unit mounting portion 14, and Place and fix work 6 to be machined on 4.
次いで、 スピンドルュニヅト 1 2の内蔵モ一夕によってボールェンドミル 2 4 を例えば毎分 5 0 0 0 0回転以上で回転させながら、 最も高い位置にある凹部分 部 W 1の数値データに基き、 先端と側面とに切削刃が形成された細長い第 1の回 転工具であるボールエンドミル 2 4を用いて、 最も高い凹部分 W 1を区画する等 高線に沿って、 案内溝 g lを形成する。 次いで、 ボールエンドミル 2 4の切削部 2 4 cを每分 5 0 0 0 0回転以上で回転させながら、 案内溝 g 1に沿って移動さ せることによって、 ボールエンドミル 2 4の切削部 2 4 cで、 最も高い凹部分 W 1の厚さに等しい深さを有する鉛直方向の輪郭溝 G 1を切削する (図 1 4、 図 1 5 ) o  Next, based on the numerical data of the concave portion W1 at the highest position, while rotating the ball end mill 24 at, for example, 500 rpm or more per minute by the built-in motor of the spindle unit 12, Using a ball end mill 24, which is the first slender rotating tool with cutting edges formed at the tip and side surfaces, a guide groove gl is formed along the contour line that partitions the highest concave portion W1 . Next, the cutting part 24 c of the ball end mill 24 is moved by moving the cutting part 24 c of the ball end mill 24 along the guide groove g 1 while rotating at least 500 ° rotation or more. To cut a vertical contour groove G1 having a depth equal to the thickness of the highest recess W1 (Fig. 14, Fig. 15) o
案内溝 g 1および輪郭溝 G 1の形成は、 最も高い凹部分 W 1の数値デ一夕に基 づいて、 ボールエンドミル 2 4の切削部 2 4 cが最も高い凹部分 W 1を区画する 等高線の外側をこの等高線に沿って動くように、 ワーク 6が載置された加工台 4 とスピンドルュニット 1 2とを相対的移動させることによって実行される。従つ て、 形成された輪郭溝 G 1は、 等高線 R 1に外接している。 次いで、 スピンドルュニヅト装着部 1 4に装着されてるスピンドルュニット 1 2を、 溝の切削で使用したボールェンドミル 2 4より太い切削部 2 4 0 cを有す るボ一ルェンドミルが取付けられているスピンドルュニヅト 2 0と交換し、 そし て、 最上部の凹部分 W 1の数値デ一夕に基き、 太いボールエンドミルを用いて、 輪郭溝 G 1の外側の領域を切削して、 最も高い凹部分 W 1を平坦な底を有する形 状にワーク 6の表面に形成していく (図 1 6 ) 。 この切削は、 最も高い凹部分 W 1の数値デ一夕に基づいて、 ボールェンドミルの切削部 2 4 0 cが輪郭溝 G 1の 外側の領域を動いて輪郭溝 G 1に囲まれた領域内を切削除去するように、 ワーク 6が載置された加工台 4とスピンドルュニット 1 2とを相対的に移動させること によって実行される。 The formation of the guide groove g 1 and the contour groove G 1 is based on the numerical value of the highest concave portion W 1, and the cutting section 24 c of the ball end mill 24 defines the highest concave portion W 1 This is performed by relatively moving the worktable 4 on which the work 6 is placed and the spindle unit 12 so as to move along the contour line outside the work. Therefore, the formed contour groove G1 circumscribes the contour line R1. Next, the spindle unit 12 mounted on the spindle unit mounting portion 14 is attached to a ball end mill having a cutting portion 240 c larger than the ball end mill 24 used for cutting the groove. Replace the spindle unit 20 with the spindle unit 20 and cut the area outside the contour groove G1 using a thick ball end mill based on the numerical data of the uppermost recess W1. The highest concave portion W1 is formed on the surface of the work 6 in a shape having a flat bottom (FIG. 16). In this cutting, based on the numerical value of the highest concave portion W1, the cutting part 240c of the ball-end mill moves in the area outside the contour groove G1 and moves in the area surrounded by the contour groove G1. This is performed by relatively moving the worktable 4 on which the work 6 is placed and the spindle unit 12 so as to perform cutting and removal.
本実施形態においても、 第 1の実施形態と同様に、 各凹部分 Wに対して、 細い 切削部 2 4 cで案内溝 gおよび輪郭溝 Gを切削形成し、 その後、 太い切削部 2 4 0で輪郭溝 Gの外側の領域の金属材料を除去する工程が、 最下部の凹部分 Wnが 切削形成されて凹部 Wが完成するまで繰り返される。  Also in the present embodiment, similarly to the first embodiment, a guide groove g and a contour groove G are cut and formed in each of the concave portions W by a thin cut portion 24c, and thereafter, a thick cut portion 240 is formed. The step of removing the metal material in the region outside the contour groove G is repeated until the lowermost concave portion Wn is formed by cutting and the concave portion W is completed.
このようにして形成された凸部 Pの外表面は、 ミクロ的には、 高さが凹部分の 厚さに等しい微小な階段によって構成された形状となるが、 凹部分の厚さを凸部 の寸法に対して極めて小さく設定することにより、 この表面は実質的には滑らか な曲面となる。 従って、 凸部に必要とされる表面の精度に応じて、 凹部分の高さ (厚さ) は変更される。  The outer surface of the convex portion P formed in this manner has a microscopic shape formed by minute steps whose height is equal to the thickness of the concave portion. By setting the dimensions very small for this dimension, this surface will be a substantially smooth curved surface. Therefore, the height (thickness) of the concave portion is changed according to the required surface accuracy of the convex portion.
このような第 1および第 2の実施形態によれば、 凹部 W又は凸部: Pの表面は細 ぃ径の切削部によって切削加工された輪郭溝の壁によって構成されているので、 この凹部 Wを、 例えば、 金型キヤビティとして使用する場合であっても、 仕上げ 加工が不要となる。 また、 輪郭溝に囲まれた領域 (第 1実施形態) 、 または、 輪 郭溝の外側の領域 (第 2実施形態) の金属材料の除去は、 切削量が多い太い回転 工具によって行われるので、 この除去を短時間で完了させることができ、 凹部ま たは凸部の形成に要する時間が短縮される。 According to such first and second embodiments, since the surface of the concave portion W or the convex portion: P is constituted by the wall of the contour groove cut by the small-diameter cutting portion, the concave portion W For example, even when it is used as a mold cavity, finishing is not required. In addition, the removal of the metal material in the area surrounded by the contour groove (first embodiment) or the area outside the contour groove (second embodiment) is performed by a thick rotary tool having a large cutting amount. This removal can be completed in a short time, Alternatively, the time required for forming the projections is reduced.
本発明は上述した実施形態に限定されるものではない。 上記実施形態では、 全 ての凹部分を同じ厚さとしたが、 各凹部分の厚さ (所定の高さの差) を凹部分が 形成する凹部内面 (または凸部表面) の傾斜に応じて変えてもよく、 例えば、 傾 斜が大きい部分では厚さを大きくし、 小さい部分では厚さを小さくする。  The present invention is not limited to the embodiments described above. In the above embodiment, all the concave portions have the same thickness. However, the thickness of each concave portion (the difference in the predetermined height) is set according to the inclination of the inner surface of the concave portion (or the surface of the convex portion) formed by the concave portion. For example, the thickness may be increased in a portion where the inclination is large, and the thickness may be decreased in a portion where the inclination is small.
また、 上記実施形態では、 スピンドルユニットを自動的に交換可能なマシニン グセン夕 1が用いられたが、 本発明は、 スピンドルユニットが自動的に交換でき ない或いは交換自体ができない切削加工機でも実施可能である。 このような切削 加工機では、 異なった径の切削部を有するミルで切削を行うために、 オペレータ が手動でスピンドルユニット全体あるいは切削工具 (ミル) を、 交換する。 また、 上 実施形態では、 切削工具として、 ボールエンドミルを使用している が、 フラットエンドミル (図 3 ) 等の他のタイプのミル、 又は、 他の回転工具を 使用して、 溝の形成、 または、 溝に囲まれた部分或いは溝の外側部分の除去を行 つても良い。  In the above embodiment, the machining center 1 in which the spindle unit can be automatically replaced is used. However, the present invention can be implemented in a cutting machine in which the spindle unit cannot be replaced automatically or cannot be replaced. It is. In such a cutting machine, the operator manually replaces the entire spindle unit or the cutting tool (mill) in order to perform cutting with a mill having cutting sections of different diameters. Further, in the above embodiment, a ball end mill is used as a cutting tool, but other types of mills such as a flat end mill (FIG. 3), or a groove is formed by using another rotary tool, or The portion surrounded by the groove or the outer portion of the groove may be removed.
また、 上記実施形態は、 切削工具を毎分 5 0 0 0 0回転以上で回転させて案内 溝、 および、 輪郭溝を形成しているが、 本発明は、 この回転数に限定されるもの ではなく、 例えば、 毎分 3 0 0 0 0回転以上、 または、 それ未満の回転数でもよ い。  In the above-described embodiment, the guide groove and the contour groove are formed by rotating the cutting tool at 500 rpm or more, but the present invention is not limited to this rotation speed. However, for example, the number of revolutions may be more than or equal to 30000 revolutions per minute or less.
さらに、 上記実施形態は金属材料に凹部を形成する切削加工であるが、 本発明 は他の種類の材料を切肖!]加工する場合にも適用できる。  Further, the above embodiment is a cutting process for forming a concave portion in a metal material, but the present invention cuts another type of material. ] Applicable to processing.
また、 上記実施形態では、 全ての凹部分において、 案内溝および輪郭溝は同一 のミルで形成したが、 凹部分によって、 用いるミルを変更してもよい。  In the above embodiment, the guide groove and the contour groove are formed by the same mill in all the concave portions, but the mill to be used may be changed depending on the concave portion.
さらに、 各凹部分の厚さとなる上記所定間隔は、 使用する切削工具が一回に切 削できる切り込み量 (深さ) とほぼ同一に設定しても、 あるいは、 これより大き な値に設定してもよい。切り込み量 (深さ) より大きな値に設定された場合には 、 ある一つの凹部分を切削するときに、 切削工具を上下 (Z ) 方向の位置を変ィ匕 させて複数回、 切削経路に沿って移動させることによって、 案内溝または輪郭溝 の切削、 及び、 輪郭溝に囲まれた或いは輪郭溝の外側の領域の切削が行われるこ とになる。 Further, the above-mentioned predetermined interval, which is the thickness of each concave portion, may be set to be substantially the same as the cutting depth (depth) that the cutting tool to be used can cut at one time, or set to a value larger than this. You may. If it is set to a value larger than the depth of cut (depth) When cutting one concave portion, the cutting tool is moved along the cutting path a plurality of times while changing the position in the vertical (Z) direction to cut the guide groove or the contour groove, and In this case, cutting is performed in a region surrounded by or outside the contour groove.

Claims

1 . 少なくとも一部分が曲面で構成された凹部を材料に形成する切削加工方法 であって、 1. A cutting method for forming a concave portion having at least a part of a curved surface in a material,
( a)形成する凹部の数値デ一夕を、 所定の高さの差によって区分した等高線 によって区画される上下に高さの異なる複数の凹部分毎の数値データに分けるェ 程と、  (a) dividing the numerical data of the concave portion to be formed into numerical data for each of a plurality of concave portions having different heights up and down divided by contour lines divided by a predetermined height difference;
( b ) 前記凹部分毎の数値デ一夕に基き、 先端と側面とに切削刃が形成された 細長い第 1の回転工具を用いて、 最も高い凹部分を区画する等高線に沿って該等 高線の内側に、 前記最も高い凹部分の厚さに等しい深さを有する輪郭溝を切削す る: と、  (b) Based on the numerical data for each of the concave portions, using a first elongated rotary tool having cutting edges formed at the tip and side surfaces, the contour along the contour line that defines the highest concave portion. Cut a contour groove having a depth equal to the thickness of the highest recess inside the line:
( c )前記凹部分毎の数値データに基き、 前記第 1の回転工具より太い第 2の 回転工具を用いて、 前工程で切削された輪郭溝に囲まれた領域を切削して、 前記 最も高い凹部分を平坦な底を有する形状に前記材料の表面に形成する工程と、 (c) cutting a region surrounded by the contour groove cut in the previous step using a second rotary tool thicker than the first rotary tool, based on the numerical data for each concave portion, Forming a high recess on the surface of the material in a shape having a flat bottom;
( d )前記凹部分毎の数値デ一夕に基き、 前記第 1の回転工具を用いて、 前ェ 程で形成された凹部分の底面に、 前工程で形成された凹部分に次ぐ高さの凹部分 を区画する等高線に沿って該等高線の内側に前記凹部分の厚さに等しい深さを有 する輪郭溝を切削する工程と、 (d) Based on the numerical data for each of the concave portions, the first rotary tool is used to set a height next to the concave portion formed in the previous step on the bottom surface of the concave portion formed in the previous step. Cutting a contour groove having a depth equal to the thickness of the concave portion inside the contour line along a contour line defining the concave portion;
( e )前記凹部分毎の数値デ一夕に基き、 前記第 2の回転工具を用いて、 前ェ 程で切削された輪郭溝に囲まれた領域を切削して、 既に形成されている凹部分の 下に連続し平坦な底面を有する新たな凹部分を形成する工程と、  (e) Based on the numerical data for each of the concave portions, the region surrounded by the contour groove cut in the previous step is cut using the second rotary tool to form the already formed concave portion. Forming a new recess having a continuous, flat bottom below the portion;
( f )前記材料に前記凹部が形成されるまで、 (d ) および (e ) を繰り返す 工程と、 からなることを特徴とする切削加工方法。  (f) repeating (d) and (e) until the concave portion is formed in the material.
2 . 少なくとも一部分が曲面で構成された凸部を材料に形成する方法であって  2. A method of forming at least a portion of a convex portion having a curved surface on a material,
( a )形成する凸部を囲む凹部の数値デ一夕を、 所定の高さの差によって区分 した等高線によって区画される上下に高さの異なる複数の凹部分毎の数値デ一夕 に分ける工程と、 (a) The numerical value of the concave part surrounding the convex part to be formed is classified by a predetermined height difference Dividing into numerical data for each of a plurality of concave portions having different heights at the top and bottom defined by the contour lines;
( b )前記凹部分毎の数値データに基き、 先端と側面とに切削刃が形成された 細長い第 1の回転工具を用いて、 最も高い凹部分を区画する等高線に沿って該等 高線の内側に前記最も高い凹部分の厚さに等しい深さを有する輪郭溝を切削する 工程と、  (b) Based on the numerical data for each concave portion, using a first elongated rotary tool having cutting edges formed at the tip and side surfaces, the contour line is defined along a contour line that defines the highest concave portion. Cutting a contour groove having a depth equal to the thickness of the highest recess inside,
( c )前記凹部分毎の数値デ一夕に基き、 前記第 1の回転工具より太い第 2の 回転工具を用いて、 前工程で切削された輪郭溝の外側の領域を切削して、 前記最 も高い凹部分を平坦な底を有する形状に前記材料の表面に形成する工程と、 (c) cutting a region outside the contour groove cut in the previous step using a second rotating tool thicker than the first rotating tool, based on the numerical value data for each of the concave portions, Forming a highest concave portion on the surface of the material in a shape having a flat bottom;
( d )前記凹部分毎の数値デ一夕に基き、 前記第 1の回転工具を用いて、 前ェ 程で形成された凹部分の底面に、 前工程で形成された凹部分に次ぐ高さの凹部分 を区画する等高線に沿って該等高線の内側に前記凹部分の厚さに等しい深さを有 する輪郭溝を切削する工程と、 (d) Based on the numerical data for each of the concave portions, the first rotary tool is used to set a height next to the concave portion formed in the previous step on the bottom surface of the concave portion formed in the previous step. Cutting a contour groove having a depth equal to the thickness of the concave portion inside the contour line along a contour line defining the concave portion;
( e )前記凹部分毎の数値デ一夕に基き、 前記第 2の回転工具を用いて、 前工 程で切削された輪郭溝の外側の領域を切削して、 既に形成されている凹部分の下 に連続し平坦な底面を有する新たな凹部分を形成する工程と、  (e) Based on the numerical data for each of the concave portions, the second rotary tool is used to cut an area outside the contour groove cut in the previous process, thereby obtaining the already formed concave portion. Forming a new recess having a continuous and flat bottom surface below
( f )前記材料に前記凹部が形成されるまで、 (d ) および(e ) を繰り返す 工程と、 からなることを特徴とする切削加工方法。  (f) repeating (d) and (e) until the concave portion is formed in the material.
3 . 請求の範囲第 1項または第 2項に記載の切削加工方法であって、  3. The cutting method according to claim 1 or 2, wherein
前記第 1の回転工具による輪郭溝の切削に先立って、 前記輪郭溝が形成される ことになる切削加工線に沿った案内溝を、 前記第 1の回転工具によって形成する ことを特徴とする切削加工方法。  Prior to cutting the contour groove by the first rotary tool, a guide groove along a cutting line on which the contour groove is to be formed is formed by the first rotary tool. Processing method.
4 . 請求の範囲第 3項に記載の切削加工方法であって、  4. The cutting method according to claim 3, wherein
前記第 1の回転工具が切削加工線に沿って複数回移動することにより前記案内 溝が形成されることを特徴とする切削加工方法。 The cutting method, wherein the guide groove is formed by moving the first rotary tool a plurality of times along a cutting line.
5 . 請求の範囲第 1項ないし第 4項のいずれか 1項に記載の切削加工方法であつ て、 5. The cutting method according to any one of claims 1 to 4, wherein
前記所定の高さの差が、 3〃mないし 5 0 zmであることを特徴とする切削加 ェ方法。  The cutting method, wherein the difference in the predetermined height is 3〃m to 50 zm.
6 . 請求の範囲第 1項ないし第 5項のいずれか 1項に記載の切削加工方法であつ て、  6. The cutting method according to any one of claims 1 to 5, wherein
前記第 1の回転工具は、 先端と側面とに切削刃を備え直径 Dが 1 mm以下であ り且つ有効長 Lと直径 Dとの比率 LZDが 1◦以上の細長い円筒状の切削部を有 する切削工具であることを特徴とする切削加工方法。  The first rotary tool has an elongated cylindrical cutting portion having a cutting blade at a tip and a side surface, a diameter D of 1 mm or less, and a ratio LZD of the effective length L to the diameter D of 1 ° or more. A cutting method characterized in that it is a cutting tool that performs cutting.
PCT/JP2002/001552 2001-02-23 2002-02-21 Cutting method by rotary tool WO2002066189A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001047909A JP2002254232A (en) 2001-02-23 2001-02-23 Cutting method by rotary tool
JP2001-47909 2001-02-23

Publications (1)

Publication Number Publication Date
WO2002066189A1 true WO2002066189A1 (en) 2002-08-29

Family

ID=18909255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001552 WO2002066189A1 (en) 2001-02-23 2002-02-21 Cutting method by rotary tool

Country Status (2)

Country Link
JP (1) JP2002254232A (en)
WO (1) WO2002066189A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3057480A1 (en) * 2016-10-19 2018-04-20 Airbus Operations PROCESS FOR MACHINING A ALVEOLE OF A RAIDI PANEL

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005096399A (en) * 2003-09-02 2005-04-14 Tokyo Denki Univ Ball end mill working method and square end mill working method
JP2009233815A (en) * 2008-03-28 2009-10-15 Ihi Corp Pedestal reinforcing structure and pedestal reinforcing method
DE102012016676B4 (en) * 2012-08-23 2016-02-11 ModuleWorks GmbH Method for roughing a workpiece with a multi-axis milling machine
CN104014856B (en) * 2014-05-16 2016-07-06 苏州创丰精密五金有限公司 A kind of for the processing unit (plant) of square groove in square products
GB201616955D0 (en) * 2016-10-06 2016-11-23 University Of Newcastle Upon Tyne Micro-milling

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1190775A (en) * 1997-09-12 1999-04-06 Makino Milling Mach Co Ltd Cutting work method and device
US5919012A (en) * 1995-09-28 1999-07-06 The Institute Of Physical And Chemical Research (Riken) Method of high speed cutting mold and ultra-high speed milling machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5919012A (en) * 1995-09-28 1999-07-06 The Institute Of Physical And Chemical Research (Riken) Method of high speed cutting mold and ultra-high speed milling machine
JPH1190775A (en) * 1997-09-12 1999-04-06 Makino Milling Mach Co Ltd Cutting work method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3057480A1 (en) * 2016-10-19 2018-04-20 Airbus Operations PROCESS FOR MACHINING A ALVEOLE OF A RAIDI PANEL
EP3311944A1 (en) * 2016-10-19 2018-04-25 Airbus Operations S.A.S. Method for machining a cell of a stiffened panel

Also Published As

Publication number Publication date
JP2002254232A (en) 2002-09-10

Similar Documents

Publication Publication Date Title
JP5370896B2 (en) Manufacturing method of forging mold
JP4833153B2 (en) Apparatus and method for soft machining of bevel gear and method of using the apparatus
EP2915616B1 (en) Rib-machining method
JP4931964B2 (en) High-hardness material processing apparatus and processing method
US20100111632A1 (en) Method and apparatus for non-rotary machining
Pasko et al. High speed machining (HSM)–the effective way of modern cutting
US20120201623A1 (en) Method and apparatus for non-rotary machining
WO2002066189A1 (en) Cutting method by rotary tool
CN1712163A (en) Automatic device and method for machining curve surface of external spiral space
JP2013514902A (en) Method and apparatus for manufacturing bevel gears
JP4182137B1 (en) Gear machining method
JP4820039B2 (en) Cavity processing method and apparatus for continuous casting mold
Reichenbach et al. Micromachining of CP-titanium on a desktop machine-study on bottom surface quality in micro end milling
JP2007283452A (en) Cutting method
JP2002254231A (en) Cutting method
US6089799A (en) Surface finishing method and machine for the same
JP2005212030A (en) Method of manufacturing metal mold for ring band optical element
JP3748099B2 (en) Cutting method and NC data creation device for performing this cutting method
JP4656371B2 (en) Cutting method
JP2009208175A (en) Precursor for lens for glasses, lens for glasses, and working method for the lens
JPH10142405A (en) Fresnel lens and medal mold for fresnel lens molding
JP4819352B2 (en) Manufacturing method of forging die, forging die and forged product
JPH09239631A (en) Numerically controlled machine tool with tool forming function
JP2011011295A (en) Fine recessed part working method and fine recessed part working machine
JP2001300811A (en) Dual contouring work method for cylindrical part

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 69(1) EPC (EPO FORM 1205A SENT 12.12.03)

122 Ep: pct application non-entry in european phase