JP4931964B2 - High-hardness material processing apparatus and processing method - Google Patents

High-hardness material processing apparatus and processing method Download PDF

Info

Publication number
JP4931964B2
JP4931964B2 JP2009144624A JP2009144624A JP4931964B2 JP 4931964 B2 JP4931964 B2 JP 4931964B2 JP 2009144624 A JP2009144624 A JP 2009144624A JP 2009144624 A JP2009144624 A JP 2009144624A JP 4931964 B2 JP4931964 B2 JP 4931964B2
Authority
JP
Japan
Prior art keywords
tool
machining
laser
workpiece
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009144624A
Other languages
Japanese (ja)
Other versions
JP2011000667A (en
Inventor
卓弥 仙波
眞 佐藤
啓 川名
英樹 持田
和寿 矢部
Original Assignee
学校法人福岡工業大学
株式会社牧野フライス製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人福岡工業大学, 株式会社牧野フライス製作所 filed Critical 学校法人福岡工業大学
Priority to JP2009144624A priority Critical patent/JP4931964B2/en
Publication of JP2011000667A publication Critical patent/JP2011000667A/en
Application granted granted Critical
Publication of JP4931964B2 publication Critical patent/JP4931964B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、多結晶ダイヤモンド焼結体(以下PCDという)、立方晶窒化ほう素焼結体(以下CBNという)、超硬合金等の高硬度材でなる工具を作製する加工装置及び加工方法、並びに超硬合金、セラミックス等の高硬度材、高硬度高脆性材でなるワークの加工方法に関する。   The present invention relates to a machining apparatus and a machining method for producing a tool made of a high hardness material such as a polycrystalline diamond sintered body (hereinafter referred to as PCD), a cubic boron nitride sintered body (hereinafter referred to as CBN), a cemented carbide, and the like. The present invention relates to a method for processing a workpiece made of a hard material such as cemented carbide or ceramics, or a high hardness and brittle material.

切削、研削加工用の工具の材料として、PCD、CBN、超硬合金等の高硬度材が知られている。高硬度材でなる工具は、その硬さゆえ作製するのが難しい。例えば、特許文献1にはPCD工具を作製可能なNC研削盤が開示されている。加工されるべき工具素材をワーク主軸に取り付け、研削工具の円板電極との間に加工電圧を印加して放電加工により工具素材を荒加工した後、加工電圧の印加を停止した状態で研削による仕上げ加工を行い、工具を作製するものである。   As materials for tools for cutting and grinding, high-hardness materials such as PCD, CBN, and cemented carbide are known. A tool made of a high hardness material is difficult to manufacture due to its hardness. For example, Patent Document 1 discloses an NC grinder capable of producing a PCD tool. The tool material to be machined is attached to the work spindle, the machining voltage is applied to the disk electrode of the grinding tool, the tool material is roughed by electric discharge machining, and then the grinding voltage is applied with the machining voltage stopped Finishing is performed to produce a tool.

また、超硬合金製の金型、セラミックス製の部品等高硬度材、高硬度高脆性材でなるワークを加工する要求が増えている。高硬度材ワークを加工すると工具の摩耗が早く、加工時間と加工コストの増加を招く。
この高硬度材ワークを加工する工作機械として、例えば、特許文献2にはワークに対してレーザ加工又は機械加工を選択的に施す複合加工機が開示されている。レーザ加工でワークの荒加工を行い、切削又は研削による機械加工でそのワークの仕上げ加工を行うといった使い方ができるものである。
In addition, there is an increasing demand for processing a work made of a hard material such as a cemented carbide alloy die, a ceramic part, or a high hardness and brittle material. When a workpiece with high hardness is machined, the tool wears quickly, resulting in an increase in machining time and machining cost.
As a machine tool for processing this high-hardness material workpiece, for example, Patent Document 2 discloses a composite processing machine that selectively performs laser processing or machining on a workpiece. It can be used in such a way that rough machining of a workpiece is performed by laser processing and finishing of the workpiece is performed by machining by cutting or grinding.

特開2003−311535号公報JP 2003-31535 A 特開2007−83285号公報JP 2007-83285 A

特許文献1に記載の技術のように、工具素材を放電加工した後に研削加工する構成では陽極と陰極とを絶縁したり、放電加工液と研削液とを分別回収する複雑な構造が必要となる問題点がある。また、特許文献2は、高硬度材でなる工具をレーザ加工と機械加工によって作製することを意図していない。   As in the technique described in Patent Document 1, the structure in which the tool material is ground after electric discharge machining requires a complicated structure that insulates the anode and the cathode and separates and collects the electric discharge machining liquid and the grinding liquid. There is a problem. Further, Patent Document 2 does not intend to produce a tool made of a high hardness material by laser machining and machining.

そこで本発明の目的は、PCD、CBN、超硬合金等の高硬度材でなる工具を簡単に作製できる加工装置及び加工方法を提供することである。また、高硬度材ワークを加工するとき、加工能率と工具寿命を両立できる加工方法を提供することである。   Accordingly, an object of the present invention is to provide a machining apparatus and a machining method capable of easily producing a tool made of a high hardness material such as PCD, CBN, and cemented carbide. Another object of the present invention is to provide a machining method capable of achieving both machining efficiency and tool life when machining a hard material workpiece.

前述の目的を達成するため、レーザ加工、及び切削又は研削の機械加工で高硬度材でなる工具を作製する複合加工装置であって、レーザビーム照射手段を有するレーザ加工ヘッドと回転主軸を有する機械加工ヘッドを備えたヘッドユニットと、被加工物を取り付けるテーブルと、X、Y、Zの直動3軸方向と、X軸周りのA軸又はY軸周りのB軸、及びZ軸周りのC軸の回転2軸方向に前記ヘッドユニットと前記テーブルとを相対移動させる送り軸装置と、前記テーブルに設けられ、前記機械加工ヘッドの回転主軸に取り付けた工具を整形仕上げし、刃付け加工を行う砥石車を回転駆動する研削装置と、を具備する複合加工装置が提供される。   In order to achieve the above-mentioned object, it is a combined machining apparatus for producing a tool made of a high hardness material by laser machining and machining of cutting or grinding, and a machine having a laser machining head having a laser beam irradiation means and a rotating spindle A head unit having a machining head, a table for mounting a workpiece, three linear directions of X, Y, and Z, an A axis around the X axis, a B axis around the Y axis, and a C around the Z axis A feed shaft device that relatively moves the head unit and the table in two axial directions of the shaft, and a tool that is provided on the table and attached to the rotating spindle of the machining head is shaped and finished with a blade. There is provided a composite processing apparatus including a grinding apparatus that rotationally drives a grinding wheel.

また、前記複合加工装置を用いて、高硬度材でなる工具を作製する工具作製方法であって、前記複合加工装置のテーブルに工具素材を取り付け、前記レーザビーム照射手段から照射されるレーザビームにより前記工具素材の先端刃部を荒加工し、該工具素材を前記機械加工ヘッドの回転主軸に取り付け、前記工具素材と前記研削装置の砥石車とを接触させながら前記送り装置により相対移動を行わせ、前記工具素材の先端刃部を整形仕上げして刃付け加工を施す工具作製方法が提供される。   Further, a tool manufacturing method for manufacturing a tool made of a high hardness material using the composite processing apparatus, wherein a tool material is attached to a table of the composite processing apparatus, and a laser beam irradiated from the laser beam irradiation means is used. The cutting edge of the tool material is roughly machined, the tool material is attached to the rotating spindle of the machining head, and the tool material and the grinding wheel of the grinding device are brought into contact with each other and the relative movement is performed by the feeding device. There is provided a tool manufacturing method in which the tip blade portion of the tool material is shaped and finished to perform a cutting process.

また、前記複合加工装置を用いて、高硬度材でなる工具を作製する工具作製方法であって、前記機械加工ヘッドの回転主軸に工具素材を取り付け、前記レーザ加工ヘッドと前記機械加工ヘッドとを相対移動させて前記レーザビーム照射手段から照射されるレーザビームにより前記工具素材の先端刃部を荒加工し、その後、前記工具素材と前記研削装置の砥石車とを接触させながら前記送り装置により相対移動を行わせ、前記工具素材の先端刃部を整形仕上げして刃付け加工を施す工具作製方法が提供される。   Further, a tool manufacturing method for manufacturing a tool made of a high hardness material using the composite processing apparatus, wherein a tool material is attached to a rotation main shaft of the machining head, and the laser processing head and the machining head are combined. The tip edge of the tool material is roughly processed by the laser beam irradiated from the laser beam irradiating means and then relatively moved by the feeding device while the tool material and the grinding wheel of the grinding device are in contact with each other. There is provided a tool manufacturing method in which a movement is performed, and a tip edge portion of the tool material is shaped and finished to perform a cutting process.

本発明によれば、レーザ加工ヘッドから照射されるレーザビームによって高硬度材でなる工具素材の先端刃部が荒加工される。その後、荒加工された工具素材は機械加工ヘッドの回転主軸に装着されて回転されるとともに、テーブルに設けられた研削装置の回転駆動される砥石車に接触されながら5軸方向の相対移動が可能な送り軸装置によって先端刃部の輪郭が所望の形状に整形仕上げされ、更にすくい面、逃げ面を加工することによる刃付け加工も行われる。   According to the present invention, the tip edge portion of the tool material made of a high hardness material is rough-processed by the laser beam irradiated from the laser processing head. After that, the rough-processed tool material is mounted on the rotating spindle of the machining head and rotated, and can also be moved relative to each other in the 5-axis direction while being in contact with the grinding wheel driven by the grinding machine provided on the table. The contour of the tip blade portion is shaped and finished into a desired shape by a simple feed shaft device, and further, a cutting process is performed by machining a rake face and a flank face.

上記の工具作製方法で作製する高硬度材でなる工具は、先端刃部が半球形に整形され、その球面に一つ又は複数のすくい面が形成されるボールエンドミルである。また、上記の工具作製方法で作製する高硬度材でなる工具は、先端刃部の横断面が多角形状に形成され、該多角形状の各頂点が構成する稜線が縦断面で円弧形の切刃をなすボールエンドミルである。   A tool made of a high-hardness material produced by the above-described tool production method is a ball end mill in which a tip edge portion is shaped into a hemisphere and one or more rake faces are formed on the spherical surface. In addition, a tool made of a high-hardness material manufactured by the above-described tool manufacturing method has a cross-sectional shape of the tip blade portion formed in a polygonal shape, and a ridgeline formed by each vertex of the polygonal shape is a longitudinal cross-sectional cut in an arc shape. This is a ball end mill with a blade.

また、前記複合加工装置を用いて高硬度材ワークを加工するワークの加工方法であって、上記の工具作製方法で作製した工具を前記機械加工ヘッドの回転主軸に装着し、前記テーブルに取り付けたワークに前記レーザビーム照射手段から照射されるレーザビームにより荒加工を施し、前記機械加工ヘッドの回転主軸に装着した高硬度材でなる工具により前記ワークに仕上げ加工を施すワークの加工方法が提供される。   Further, a workpiece machining method for machining a high-hardness material workpiece using the composite machining apparatus, wherein the tool produced by the above-described tool production method is attached to the rotary spindle of the machining head and attached to the table. Provided is a workpiece machining method in which rough machining is performed on a workpiece with a laser beam emitted from the laser beam irradiation means, and the workpiece is finished with a tool made of a high-hardness material attached to a rotating spindle of the machining head. The

上記の複合加工機を用い、上記の工具作製方法で作製した工具を上記の複合加工機の機械加工ヘッドに装着し、テーブルに取り付けた高硬度材ワークをまずレーザ加工ヘッドから照射されるレーザビームにより荒加工し、その後機械加工ヘッドの工具を用いて機械加工による仕上げ加工を行う。高硬度材ワークは機械加工よりレーザ加工の方が能率よく加工でき、その後切込みの少ない仕上げ加工だけに工具を用いた切削又は研削による機械加工を施す。必要に応じて、レーザ加工ヘッドから照射されるレーザビームによってワークに更にシボ加工を施すこともできる。   Using the above-mentioned composite processing machine, the tool manufactured by the above-mentioned tool manufacturing method is mounted on the machining head of the above-mentioned composite processing machine, and a high-hardness material workpiece attached to the table is first irradiated from the laser processing head Then, rough machining is performed, and then machining is performed using a tool of a machining head. High-hardness workpieces can be machined more efficiently by laser machining than by machining, and then machining by cutting or grinding using a tool is performed only for finishing machining with less cutting. If necessary, the workpiece can be further processed with a laser beam irradiated from the laser processing head.

本発明によれば、複合加工装置のレーザ加工ヘッドから照射されるレーザビームにより高硬度材でなる工具素材でも比較的容易に荒加工できる。その後、同一の複合加工装置の機械加工ヘッドに取り付けた荒加工された工具素材を5軸の送り装置と研削装置との協働作用によって整形仕上げ加工及び刃付け加工する。放電加工特有の絶縁や加工液分別のための構造は必要でなく、レーザ加工、機械加工の切換えが簡単に行え、操作性良く高硬度材でなる工具を作製できる利点がある。   According to the present invention, even a tool material made of a hard material can be roughed relatively easily by a laser beam emitted from a laser processing head of a composite processing apparatus. Thereafter, the roughened tool material attached to the machining head of the same combined machining apparatus is shaped and sharpened by the cooperative action of the 5-axis feeding device and the grinding device. There is no need for a structure for electric discharge machining-specific insulation or machining fluid separation, and there is an advantage that it is possible to easily switch between laser machining and machining, and to produce a tool made of a hard material with good operability.

更に続けて、複合加工装置のテーブルに高硬度材ワークを取り付け、レーザ加工ヘッドにより荒加工を施し、前工程で作製した工具を装着した機械加工ヘッドにより仕上げ加工を施す。このように、一台の加工装置で工具の作製からワークの加工までの一連の作業工程をこなすことができる。超硬合金製の高硬度材ワークやセラミックス製の高硬度高脆性材ワークは、レーザ加工ヘッドによって比較的容易に加工できる。その後、機械加工ヘッドに取り付けた工具によって仕上げ加工を施しワークの加工を完了させる。高硬度材ワークをレーザ加工によって加工能率を上げ、切込みの少ない仕上げ加工のみを機械加工により行って工具の摩耗を極力抑えるので、加工能率と工具寿命の両立を達成することができる。   Subsequently, a high-hardness workpiece is attached to the table of the composite processing apparatus, roughing is performed by the laser processing head, and finishing is performed by the machining head equipped with the tool prepared in the previous step. In this way, a series of work steps from tool fabrication to workpiece machining can be performed with a single machining apparatus. A high-hardness material workpiece made of cemented carbide or a high-hardness high brittleness material workpiece made of ceramics can be processed relatively easily by a laser processing head. Thereafter, finishing is performed by a tool attached to the machining head to complete the workpiece processing. Since the machining efficiency of high-hardness workpieces is increased by laser processing and only the finishing process with few cuts is performed by machining to suppress tool wear as much as possible, both machining efficiency and tool life can be achieved.

本発明の第1の実施形態による複合加工装置の構成を示す概略図である。It is the schematic which shows the structure of the combined processing apparatus by the 1st Embodiment of this invention. 図1に示す複合加工装置により高硬度材でなる工具を作製する方法を示す概略図であり、(a)は荒加工工程を、(b)は仕上げ加工工程をそれぞれ示す。It is the schematic which shows the method of producing the tool which consists of a hard material with the compound processing apparatus shown in FIG. 1, (a) shows a roughing process and (b) shows a finishing process, respectively. 作製した1枚刃のボールエンドミルの先端刃部を示す概略図である。It is the schematic which shows the front-end | tip blade part of the produced single blade ball end mill. 作製した多刃のボールエンドミルの先端刃部を示す概略図であり、(a)は正面図、(b)は底面図である。It is the schematic which shows the front-end | tip blade part of the produced multi-blade ball end mill, (a) is a front view, (b) is a bottom view. 作製した多角形状のボールエンドミルの先端刃部を示す概略図であり、(a)は正面図、(b)は底面図である。It is the schematic which shows the front-end | tip blade part of the produced polygonal ball end mill, (a) is a front view, (b) is a bottom view. 本発明の第2の実施形態による複合加工装置の構成を示す概略図である。It is the schematic which shows the structure of the combined processing apparatus by the 2nd Embodiment of this invention.

以下、図面を参照して、本発明の高硬度材の加工装置及び加工方法の実施形態を説明する。   Hereinafter, embodiments of a processing apparatus and a processing method for a high hardness material of the present invention will be described with reference to the drawings.

最初に、図1を参照して、本発明の第1の実施形態による複合加工装置の全体構成を説明する。加工装置の基台(図示せず)に対して鉛直な上下方向(Z軸方向)に移動可能に設けられた主軸台1には、レーザ加工ヘッド3と機械加工ヘッド5が固定されている。レーザ加工ヘッド3は、レーザビーム照射手段7を有しており、下方に向けてレーザビームLを照射する。レーザビーム照射手段7は、レーザビームを発振するファイバレーザと、発振したレーザビームを集光レンズに導きワークに対して照射する集光機構とから成る。ファイバレーザと集光機構については、ここでは説明を省略する。尚、レーザは、ダイヤモンドに対する光の吸収率が高い1〜2μmの波長のものを用いるのが加工能率上好ましい。   Initially, with reference to FIG. 1, the whole structure of the combined processing apparatus by the 1st Embodiment of this invention is demonstrated. A laser machining head 3 and a machining head 5 are fixed to a spindle stock 1 provided so as to be movable in a vertical direction (Z-axis direction) perpendicular to a base (not shown) of a machining apparatus. The laser processing head 3 has a laser beam irradiation means 7 and irradiates a laser beam L downward. The laser beam irradiation means 7 includes a fiber laser that oscillates a laser beam, and a condensing mechanism that guides the oscillated laser beam to a condensing lens and irradiates the workpiece. The description of the fiber laser and the condensing mechanism is omitted here. In addition, it is preferable in terms of processing efficiency to use a laser having a wavelength of 1 to 2 [mu] m, which has a high light absorption rate for diamond.

機械加工ヘッド5には主軸9が回転支持され、主軸9の軸線はZ軸方向を向いている。主軸9は駆動手段(図示せず)により回転駆動される。主軸9の先端には、切削工具又は研削工具が装着される。レーザ加工ヘッド3から照射されるレーザビームLの光軸と機械加工ヘッド5の主軸9の軸線とは平行になるようにレーザ加工ヘッド3と機械加工ヘッド5は主軸台1に固定されている。   A main shaft 9 is rotatably supported on the machining head 5, and the axis of the main shaft 9 faces the Z-axis direction. The main shaft 9 is rotationally driven by driving means (not shown). A cutting tool or a grinding tool is attached to the tip of the main shaft 9. The laser machining head 3 and the machining head 5 are fixed to the headstock 1 so that the optical axis of the laser beam L emitted from the laser machining head 3 and the axis of the spindle 9 of the machining head 5 are parallel to each other.

加工装置の基台(図示せず)に対して水平な直交2軸方向(X軸方向及びY軸方向)に移動可能に設けられたテーブル台11は、更に、点Oを中心としてY軸周りのB軸方向に回転可能に設けられている。テーブル台11には、テーブル13がテーブル台11に対してZ軸周りのC軸方向に回転可能に設けられている。テーブル台11及びテーブル13は、2つの回転送り軸を有する例えばトラニオン形のテーブル装置で構成される。本実施形態は主軸台1がZ軸方向に、テーブル13がX、Y、B、C軸方向に移動する構成であるが、要は主軸台1とテーブル13とがX、Y、Z、B、C軸方向に相対移動すればよく、テーブルは固定されていて、主軸台1がX、Y、Z軸方向に移動し、機械加工ヘッド5が主軸台1に対してB軸方向に回転し、主軸9がC軸方向に位置決め可能になっていてもよい。B軸に代えて、X軸周りの回転をするA軸を有していてもよい。その他、直動3軸と回転2軸の送り軸装置の構成は、いろいろな形態が考えられる。   The table base 11 provided so as to be movable in two orthogonal biaxial directions (X-axis direction and Y-axis direction) horizontal with respect to the base (not shown) of the processing apparatus is further around the Y-axis around the point O It is provided so as to be rotatable in the B-axis direction. The table 13 is provided with a table 13 that is rotatable relative to the table 11 in the C-axis direction around the Z-axis. The table base 11 and the table 13 are constituted by, for example, a trunnion type table device having two rotation feed shafts. In this embodiment, the headstock 1 moves in the Z-axis direction and the table 13 moves in the X-, Y-, B-, and C-axis directions. In short, the headstock 1 and the table 13 move in the X-, Y-, Z-, and B-directions. The table is fixed, the headstock 1 moves in the X, Y, and Z axis directions, and the machining head 5 rotates in the B axis direction with respect to the headstock 1. The main shaft 9 may be positioned in the C-axis direction. Instead of the B axis, it may have an A axis that rotates around the X axis. In addition, various configurations can be considered for the configuration of the feed shaft device of three linear axes and two rotational axes.

テーブル13上には、加工すべきワークが取り付けられる。また、テーブル13上には、着脱可能に又はワークの加工の支障にならない箇所に研削装置15が設けられる。この研削装置15は、テーブル13上に取り付けられた回転駆動部17と、回転駆動部17の回転軸に取り付けられた砥石車19とで成る。砥石車19は、高硬度材のワークを加工する場合は、緑色炭化ケイ素質系砥石(以下GC砥石という)やダイヤモンド、CBN砥粒をホイールにメタルボンドや電着により保持固着したものを採用するのが好ましい。   On the table 13, a work to be processed is attached. Further, a grinding device 15 is provided on the table 13 so as to be attachable / detachable or at a location where the workpiece processing is not hindered. The grinding device 15 includes a rotation driving unit 17 attached on the table 13 and a grinding wheel 19 attached to a rotation shaft of the rotation driving unit 17. The grinding wheel 19 employs a green silicon carbide-based grindstone (hereinafter referred to as a GC grindstone), diamond, and CBN abrasive grains that are held and fixed to a wheel by metal bonding or electrodeposition when processing a workpiece of a high hardness material. Is preferred.

次に、図1の複合加工装置を用いて、高硬度材でなる工具を作製する方法について、図2を参照して説明する。図2(a)に示すように、テーブル13上には上向きにホルダ取付具31が固定される。ホルダ取付具31にはテーパ穴とクランプ手段が設けられており、工具ホルダ33のテーパシャンクを把持、解放可能である。工具ホルダ33の先端部には工具素材35のシャンク部を把持するチャックが設けられている。このようにしてテーブル13上に上向きに取り付けられた工具素材35に対してレーザ加工ヘッド3からレーザビームLを照射して、工具素材35の先端刃部を荒加工する。そのとき必要に応じてX、Y、Z、B、C軸を移動させ、工具素材35の先端刃部を仕上げ代を残した形状に成形する。   Next, a method for producing a tool made of a high hardness material using the combined machining apparatus of FIG. 1 will be described with reference to FIG. As shown in FIG. 2A, the holder fixture 31 is fixed upward on the table 13. The holder fixture 31 is provided with a tapered hole and clamping means, and can hold and release the tapered shank of the tool holder 33. A chuck for gripping the shank portion of the tool material 35 is provided at the tip of the tool holder 33. In this way, the laser beam L is irradiated from the laser processing head 3 to the tool material 35 mounted upward on the table 13, so that the leading edge portion of the tool material 35 is roughly processed. At that time, the X, Y, Z, B, and C axes are moved as necessary, and the tip edge portion of the tool material 35 is formed into a shape that leaves a finishing allowance.

荒加工した工具素材35を工具ホルダ33とともにホルダ取付具31から取り外し、機械加工ヘッド5の主軸9に取り付ける。テーブル13上のホルダ取付具31を取り外し、図1に示すように、研削装置15をテーブル13上に取り付ける。ボールエンドミルを作製する場合は、図2(b)に示すように、主軸9を回転させ、回転する砥石車19を工具素材35の先端刃部に当接させた状態でB軸を水平から垂直の90°の範囲にわたって移動させ、まず先端刃部を半球状に整形仕上げする。次いで、主軸9の回転を止め、B軸及びC軸を所望の角度位置に位置決めして、回転する砥石車19を工具素材35の先端刃部に当接してすくい面を加工し、刃付けを行う。先端刃部が半球状の研削工具を作製する場合は、すくい面を加工することによる刃付け加工を省略すればよい。この場合、工具素材35の材料成分であるダイヤモンド、CBN、超硬合金等の微小な粒子が砥粒として機能する。   The rough-processed tool material 35 is removed from the holder fixture 31 together with the tool holder 33 and attached to the spindle 9 of the machining head 5. The holder fixture 31 on the table 13 is removed, and the grinding device 15 is attached on the table 13 as shown in FIG. When producing a ball end mill, as shown in FIG. 2 (b), the main shaft 9 is rotated, and the B-axis is vertical from the horizontal in a state where the rotating grinding wheel 19 is in contact with the tip edge portion of the tool material 35. First, the tip edge portion is shaped into a hemispherical shape. Next, the rotation of the main shaft 9 is stopped, the B axis and the C axis are positioned at desired angular positions, the rotating grinding wheel 19 is brought into contact with the tip edge portion of the tool material 35, the rake face is processed, and the blade is attached. Do. When producing a grinding tool having a hemispherical tip, the cutting process by machining the rake face may be omitted. In this case, fine particles such as diamond, CBN, and cemented carbide, which are material components of the tool material 35, function as abrasive grains.

テーブル13上にパレット装着手段を設け、ホルダ取付具31を有したパレット、研削装置15を有したパレット、ワークを取り付けたパレット等の複数のパレットをパレットマガジンに用意しておき、パレット交換手段によってテーブル13との間で自動的にパレット交換することによりテーブル13上にホルダ取付具31、研削装置15、ワーク等を選択的に取り付けることもできる。また、テーブル13上にホルダ取付具31や研削装置15を常時取り付けておいてもよい。更に、工具素材35をテーブル13上に取り付けるとき、ホルダ取付具31や工具ホルダ33を用いず、工具素材35を直接取り付ける取付具を用いてテーブル13上に取り付けてもよい。   A pallet mounting means is provided on the table 13, and a plurality of pallets such as a pallet having a holder fixture 31, a pallet having a grinding device 15, and a pallet to which a work is attached are prepared in a pallet magazine. By automatically exchanging the pallet with the table 13, the holder fixture 31, the grinding device 15, the workpiece and the like can be selectively attached on the table 13. Further, the holder fixture 31 and the grinding device 15 may be always attached on the table 13. Furthermore, when the tool material 35 is mounted on the table 13, the tool material 35 may be mounted on the table 13 using a mounting tool that directly attaches the tool material 35 without using the holder mounting tool 31 and the tool holder 33.

次に、本実施形態の複合加工装置及び工具作製方法でボールエンドミルを作製する場合、どんな先端刃部にするかを図3、図4、図5を用いて説明する。図3は半球状の先端刃部に軸線に対して傾いた1つの平面を加工し、すくい面37としている。半球とすくい面37との稜線が切刃39であり、1枚刃のボールエンドミルとなる。このすくい面37の加工は、主軸9の回転を停止し、B軸とC軸を所望の角度位置に位置決めした状態で砥石車19を回転駆動し、半球の法線方向から砥石車19を工具素材35に当接させ所定量切り込めばよい。   Next, in the case of producing a ball end mill with the combined machining apparatus and tool production method of the present embodiment, what kind of tip edge portion is used will be described with reference to FIGS. 3, 4, and 5. In FIG. 3, a flat surface inclined with respect to the axis is processed into a hemispherical tip edge portion to form a rake surface 37. A ridge line between the hemisphere and the rake face 37 is a cutting edge 39, which is a single-edged ball end mill. The machining of the rake face 37 stops the rotation of the main shaft 9, drives the grinding wheel 19 in a state where the B axis and the C axis are positioned at a desired angular position, and moves the grinding wheel 19 from the normal direction of the hemisphere. A predetermined amount may be cut in contact with the material 35.

図4は、半球状の先端刃部に複数の平面状のすくい面41を形成している。同じく半球とすくい面41との稜線が切刃43である。1枚刃のボールエンドミルのすくい面の加工と同様な方法で各すくい面41の加工を繰り返し行えばよい。このとき、各すくい面41の軸線方向の位置を互いにずらすようにするのが好ましい。このように多刃のボールエンドミルを作製することもできる。図5は、軸線と垂直な横断面が六角形になるように、かつ、六角形の各頂点が構成する稜線が軸線と平行な縦断面で円弧形状の6枚の切刃45をなすように作製したボールエンドミルである。この場合の加工は、主軸9の回転を停止し、C軸を60度ごとに割り出し、各割出し位置で砥石車19を回転駆動させながら、工具素材35との間でX、Z、B軸の同時3軸制御の相対移動を行えばよい。切刃45は幅をもたせるのが好ましい。六角形に代えて、他の多角形状にすることもできる。尚、スクエアボールエンドミルやラジアスエンドミルになるように整形仕上げ加工及び刃付け加工を行うこともできる。また、整形仕上げ加工及び刃付け加工の際は砥石車19が摩耗するので、加工寸法を測定しつつ加工を進め、必要があれば新しい砥石車19に交換して加工精度を高める必要がある。   In FIG. 4, a plurality of planar rake surfaces 41 are formed on the hemispherical tip edge portion. Similarly, the ridge line between the hemisphere and the rake face 41 is the cutting edge 43. What is necessary is just to repeat the process of each rake face 41 by the method similar to the process of the rake face of a 1-blade ball end mill. At this time, it is preferable to shift the positions of the rake faces 41 in the axial direction from each other. In this way, a multi-blade ball end mill can be produced. FIG. 5 shows that the cross section perpendicular to the axis is hexagonal, and that the ridgeline formed by each vertex of the hexagon forms six arcuate cutting blades 45 in a vertical cross section parallel to the axis. It is the produced ball end mill. In this case, the rotation of the main shaft 9 is stopped, the C-axis is indexed every 60 degrees, and the grinding wheel 19 is rotationally driven at each indexing position, while the tool material 35 is rotated with the X, Z, and B axes. The relative movement of the simultaneous 3-axis control may be performed. The cutting blade 45 preferably has a width. Instead of a hexagon, other polygonal shapes can be used. In addition, it is possible to perform shaping finishing processing and blade processing so as to be a square ball end mill or a radius end mill. In addition, since the grinding wheel 19 is worn during the shaping and finishing process, it is necessary to proceed with the processing while measuring the machining dimensions, and to replace the grinding wheel 19 with a new grinding wheel 19 if necessary to increase the processing accuracy.

図6を参照して、本発明の第2の実施形態による複合加工装置の全体構成と、この複合加工装置を用いた工具の作製方法を説明する。加工装置の基台(図示せず)に対して鉛直な上下方向(Z軸方向)に移動可能に設けられている主軸台51に、第1スライダ53と第2スライダ55が設けられている。第1スライダ53は主軸台51に対してX軸と平行なU軸方向に移動可能であり、第2スライダ55は主軸台51に対してZ軸と平行なW軸方向に移動可能である。第1スライダ53には機械加工ヘッド57がY軸周りのB1軸方向に回転可能に取り付けられ、第2スライダ55にはレーザ加工ヘッド59がY軸周りのB2軸方向に回転可能に取り付けられる。機械加工ヘッド57の主軸61は回転駆動されるとともに、回転方向の送り制御が可能なようにC軸機能を有している。   With reference to FIG. 6, the overall configuration of a combined machining apparatus according to a second embodiment of the present invention and a method for producing a tool using the combined machining apparatus will be described. A first slider 53 and a second slider 55 are provided on a spindle base 51 that is movable in a vertical direction (Z-axis direction) perpendicular to a base (not shown) of a processing apparatus. The first slider 53 can move in the U-axis direction parallel to the X-axis with respect to the headstock 51, and the second slider 55 can move in the W-axis direction parallel to the Z-axis with respect to the headstock 51. A machining head 57 is attached to the first slider 53 so as to be rotatable in the B1 axis direction around the Y axis, and a laser machining head 59 is attached to the second slider 55 so as to be rotatable in the B2 axis direction around the Y axis. The spindle 61 of the machining head 57 is rotationally driven and has a C-axis function so that feed control in the rotational direction can be performed.

加工装置の基台(図示せず)にはテーブル63がX軸及びY軸方向に移動可能に設けられ、テーブル63上には研削装置15が常時取り付けられている。更に、テーブル63上には加工すべきワークWの取り付けスペースが確保されている。   A table 63 (not shown) of the processing apparatus is provided with a table 63 movably in the X-axis and Y-axis directions, and a grinding apparatus 15 is always attached on the table 63. Furthermore, a mounting space for the workpiece W to be processed is secured on the table 63.

本実施形態の複合加工装置を用いて高硬度材でなる工具を作製する方法は、工具素材35を機械加工ヘッド57の主軸61に取り付け、機械加工ヘッド57とレーザ加工ヘッド59とをU、W、B1、B2軸方向に相対移動させて、工具素材35の先端刃部をレーザビームLで荒加工する。その後、研削装置15の回転する砥石車19を回転する工具素材35に当接させながらX、Y、Z、B1、C軸を相対移動させて工具素材35の先端刃部を所望形状に整形仕上げ加工し、その後主軸61の回転を停止してC軸で工具素材を割り出し、刃付け加工する。   In the method of manufacturing a tool made of a high hardness material using the composite processing apparatus of the present embodiment, the tool material 35 is attached to the spindle 61 of the machining head 57, and the machining head 57 and the laser processing head 59 are connected to U, W. , B1 and B2 are moved relative to each other in the axial direction, and the leading edge portion of the tool material 35 is roughly processed with the laser beam L. Thereafter, the tip wheel of the tool material 35 is shaped into a desired shape by moving the X, Y, Z, B1, and C axes relative to each other while the rotating grinding wheel 19 of the grinding device 15 is in contact with the rotating tool material 35. After that, the rotation of the spindle 61 is stopped, the tool material is indexed on the C axis, and the blade is machined.

第1又は第2の実施形態の工具作製方法は、高硬度材でなる工具素材の荒加工をレーザ加工を採用して比較的能率よく行い、その後、工具素材と砥石車との5軸方向の相対移動手段により容易に先端刃部の整形仕上げ加工と刃付け加工が行える。   In the tool manufacturing method according to the first or second embodiment, rough machining of a tool material made of a high-hardness material is performed relatively efficiently by using laser processing, and thereafter, the tool material and the grinding wheel in the five-axis direction are used. By the relative movement means, the front end blade portion can be easily shaped and sharpened.

第1又は第2の実施形態の工具作製方法で作成した工具をそのまま機械加工ヘッド5、57の主軸9、61に装着した状態でテーブル13、63上に高硬度材ワークWを取り付ける。まずレーザ加工ヘッド3、59からレーザビームLを照射して、ワークWを荒加工する。次いで主軸9、61に装着されている工具によってワークWに切削又は研削による仕上げ加工を施す。高硬度材ワークはレーザ加工によって比較的能率よく荒加工が行われ、残された微小の仕上げ代だけを切削又は研削によって除去し、仕上げ加工を行う。機械加工で除去する部分は少ないので工具寿命は長くなる。このように、高硬度材ワークの加工に適した工具の作製からそのワークの加工までの工程を1台の複合加工装置で行うこと、及びレーザ加工と機械加工を使い分けることによって、加工能率と工具寿命を両立させて高硬度材ワークを加工できる。尚、ファイバレーザに代えてYAGレーザを用いることもできる。   The high-hardness workpiece W is mounted on the tables 13 and 63 with the tool created by the tool fabrication method of the first or second embodiment mounted on the spindles 9 and 61 of the machining heads 5 and 57 as they are. First, a laser beam L is irradiated from the laser processing heads 3 and 59 to rough process the workpiece W. Next, the workpiece W is finished by cutting or grinding with a tool attached to the spindles 9 and 61. The high-hardness material workpiece is roughed relatively efficiently by laser processing, and only the remaining minute finishing allowance is removed by cutting or grinding to perform finishing. Since there are few parts to be removed by machining, the tool life is extended. In this way, machining efficiency and tooling can be achieved by using a single combined machining device to carry out the steps from the production of a tool suitable for machining a hard material workpiece to the machining of that workpiece, and using laser machining and machining properly. High-hardness workpieces can be machined with a long life. A YAG laser can be used instead of the fiber laser.

高硬度材でなる金型を加工する場合、いわゆるシボ加工を更に行うことがある。その場合はレーザ加工ヘッド3、59からワークWに向けてレーザビームLを照射し、送り軸の送り速度を変化させてビーム照射密度を調節し、シボ加工の深さを制御する手法をとる。複合加工装置が具備している送り機能を利用してレーザ加工の微妙な深さ制御を容易に行える。   When processing a mold made of a high hardness material, so-called embossing may be further performed. In that case, a laser beam L is irradiated from the laser processing heads 3 and 59 toward the workpiece W, and the beam irradiation density is adjusted by changing the feed speed of the feed shaft to control the depth of the embossing process. Subtle depth control of laser processing can be easily performed by using a feed function provided in the composite processing apparatus.

1 主軸台
3 レーザ加工ヘッド
5 機械加工ヘッド
7 レーザビーム照射手段
9 主軸
11 テーブル台
13 テーブル
15 研削装置
19 砥石車
35 工具素材
37、41 すくい面
39、43、45 切刃
L レーザビーム
DESCRIPTION OF SYMBOLS 1 Spindle table 3 Laser processing head 5 Machining head 7 Laser beam irradiation means 9 Main shaft 11 Table base 13 Table 15 Grinding device 19 Grinding wheel 35 Tool material 37, 41 Rake face 39, 43, 45 Cutting edge L Laser beam

Claims (7)

  1. レーザ加工、及び切削又は研削の機械加工で高硬度材でなる工具を作製する複合加工装置であって、
    レーザビーム照射手段を有するレーザ加工ヘッドと回転主軸を有する機械加工ヘッドを備えたヘッドユニットと、
    被加工物を取り付けるテーブルと、
    X、Y、Zの直動3軸方向と、X軸周りのA軸又はY軸周りのB軸、及びZ軸周りのC軸の回転2軸方向に前記ヘッドユニットと前記テーブルとを相対移動させる送り軸装置と、
    前記テーブルに設けられ、前記機械加工ヘッドの回転主軸に取り付けた工具を整形仕上げし、刃付け加工を行う砥石車を回転駆動する研削装置と、
    を具備することを特徴とした複合加工装置。
    A composite processing apparatus for producing a tool made of a high-hardness material by laser processing and machining of cutting or grinding,
    A head unit comprising a laser processing head having a laser beam irradiation means and a machining head having a rotating spindle;
    A table for mounting a workpiece;
    Relative movement of the head unit and the table in the three axes of X, Y, and Z linear movement, and the two axes of rotation of the A axis around the X axis, the B axis around the Y axis, and the C axis around the Z axis A feed shaft device,
    A grinding device that is provided on the table and that rotationally drives a grinding wheel that shapes and finishes a tool attached to a rotating spindle of the machining head and performs a cutting process;
    A composite processing apparatus comprising:
  2. 請求項1に記載の複合加工装置を用いて、高硬度材でなる工具を作製する工具作製方法であって、
    前記複合加工装置のテーブルに工具素材を取り付け、
    前記レーザビーム照射手段から照射されるレーザビームにより前記工具素材の先端刃部を荒加工し、
    荒加工した工具素材を前記機械加工ヘッドの回転主軸に取り付け、
    前記工具素材と前記研削装置の砥石車とを接触させながら前記送り装置により相対移動を行わせ、前記工具素材の先端刃部を整形仕上げして刃付け加工を施すことを特徴とした工具作製方法。
    A tool manufacturing method for manufacturing a tool made of a high-hardness material using the combined machining apparatus according to claim 1,
    A tool material is attached to the table of the composite processing apparatus,
    Roughing the tip edge of the tool material with a laser beam emitted from the laser beam irradiation means,
    Attach the rough tool material to the rotating spindle of the machining head,
    A tool manufacturing method, wherein the tool material and a grinding wheel of the grinding device are brought into contact with each other and are moved relative to each other by the feeding device, and a tip edge portion of the tool material is shaped and subjected to a cutting process. .
  3. 請求項1に記載の複合加工装置を用いて、高硬度材でなる工具を作製する工具作製方法であって、
    前記機械加工ヘッドの回転主軸に工具素材を取り付け、
    前記レーザ加工ヘッドと前記機械加工ヘッドとを相対移動させて前記レーザビーム照射手段から照射されるレーザビームにより前記工具素材の先端刃部を荒加工し、
    その後、前記工具素材と前記研削装置の砥石車とを接触させながら前記送り装置により相対移動を行わせ、前記工具素材の先端刃部を整形仕上げして刃付け加工を施すことを特徴とした工具作製方法。
    A tool manufacturing method for manufacturing a tool made of a high-hardness material using the combined machining apparatus according to claim 1,
    A tool material is attached to the rotating spindle of the machining head,
    The tip cutting portion of the tool material is roughly machined by a laser beam irradiated from the laser beam irradiation means by relatively moving the laser processing head and the machining head,
    Thereafter, the tool material and the grinding wheel of the grinding device are brought into contact with each other, the tool is moved relative to each other, and the tip edge portion of the tool material is shaped and subjected to a cutting process. Manufacturing method.
  4. 前記高硬度材でなる工具は、先端刃部が半球形に整形され、その球面に一つ又は複数のすくい面が形成されるボールエンドミルである、請求項2又は請求項3に記載の工具作製方法。   4. The tool manufacturing according to claim 2, wherein the tool made of the high hardness material is a ball end mill in which a tip edge portion is shaped into a hemispherical shape and one or a plurality of rake faces are formed on a spherical surface thereof. Method.
  5. 前記高硬度材でなる工具は、先端刃部の横断面が多角形状に形成され、該多角形状の各頂点が構成する稜線が縦断面で円弧形の切刃をなすボールエンドミルである、請求項2又は請求項3に記載の工具作製方法。   The tool made of the high-hardness material is a ball end mill in which a cross section of a tip blade portion is formed in a polygonal shape, and a ridgeline formed by each vertex of the polygonal shape forms an arcuate cutting blade in a vertical cross section. The tool manufacturing method of Claim 2 or Claim 3.
  6. 請求項1に記載の複合加工装置を用いて高硬度材ワークを加工するワークの加工方法であって、
    請求項2又は請求項3に記載の工具作製方法で作製した工具を前記機械加工ヘッドの回転主軸に装着し、
    前記テーブルに取り付けたワークに前記レーザビーム照射手段から照射されるレーザビームにより荒加工を施し、
    前記機械加工ヘッドの回転主軸に装着した高硬度材でなる工具により前記ワークに仕上げ加工を施すことを特徴としたワークの加工方法。
    A workpiece machining method for machining a high-hardness material workpiece using the composite machining apparatus according to claim 1,
    A tool produced by the method for producing a tool according to claim 2 or 3 is mounted on a rotating spindle of the machining head,
    The workpiece attached to the table is subjected to roughing with a laser beam irradiated from the laser beam irradiation means,
    A workpiece machining method, wherein the workpiece is finished with a tool made of a high-hardness material mounted on a rotating spindle of the machining head.
  7. 請求項6に記載のワーク加工方法で加工した高硬度材ワークに前記レーザビーム照射手段から照射されるレーザビームにより更にシボ加工を施すワークの加工方法。   A machining method for a workpiece, wherein the high-hardness material workpiece machined by the workpiece machining method according to claim 6 is further subjected to graining with a laser beam emitted from the laser beam irradiation means.
JP2009144624A 2009-06-17 2009-06-17 High-hardness material processing apparatus and processing method Active JP4931964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009144624A JP4931964B2 (en) 2009-06-17 2009-06-17 High-hardness material processing apparatus and processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009144624A JP4931964B2 (en) 2009-06-17 2009-06-17 High-hardness material processing apparatus and processing method

Publications (2)

Publication Number Publication Date
JP2011000667A JP2011000667A (en) 2011-01-06
JP4931964B2 true JP4931964B2 (en) 2012-05-16

Family

ID=43559069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009144624A Active JP4931964B2 (en) 2009-06-17 2009-06-17 High-hardness material processing apparatus and processing method

Country Status (1)

Country Link
JP (1) JP4931964B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107350812A (en) * 2017-06-28 2017-11-17 安徽江淮车轮有限公司 A kind of compact single-power wheel hub end housing drilling deburring integrated device
CN107378498A (en) * 2017-06-28 2017-11-24 安徽江淮车轮有限公司 A kind of end face of polishing formula wheel hub certainly hole structure

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6227986B2 (en) * 2013-11-28 2017-11-08 エステー株式会社 Volatilization equipment
CN105081782B (en) * 2014-05-23 2018-07-20 上海精韧激光科技有限公司 The processing method of hard material
CN104259667A (en) * 2014-09-17 2015-01-07 河南华茂新材料科技开发有限公司 Infrared laser marking machine for grinding wheel production
CN105345480A (en) * 2015-12-05 2016-02-24 芜湖山野电器有限公司 Machining device for pin holes
CN106217057A (en) * 2016-09-21 2016-12-14 苏州市海神达机械科技有限公司 The grinding attachment of inside workpiece screw thread
JPWO2018207299A1 (en) * 2017-05-11 2020-03-12 株式会社長谷川機械製作所 Sphere processing device, sphere processing method
CN107350813B (en) * 2017-06-28 2019-03-08 安徽江淮车轮有限公司 A kind of polishing formula hub end face processing equipment certainly
CN108161620B (en) * 2017-12-27 2020-09-22 芜湖市恒浩机械制造有限公司 Cutting polisher
CN108067886B (en) * 2018-01-30 2019-04-23 温州职业技术学院 It is a kind of it is multi-functional can multi-angle processing work mechanical scanning
CN108526900B (en) * 2018-04-27 2019-07-26 温岭市新航产品设计有限公司 A kind of mailbox processing unit (plant)
CN109093395A (en) * 2018-06-28 2018-12-28 湖州德盛塑料包装材料有限公司 A kind of efficient pig iron disc casting burr remover
CN109014945A (en) * 2018-07-28 2018-12-18 安徽沃德气门制造有限公司 A kind of valve processing severing and grinding device
KR101976441B1 (en) * 2018-11-27 2019-08-28 주식회사 21세기 A Method for Producing Superfine Blade Edge Using Femtosecond Laser
CN110948236A (en) * 2019-11-22 2020-04-03 无为县环江铜业有限公司 Surface smoothing and cutting all-in-one machine for rectangular copper plate
CN111037301B (en) * 2019-12-30 2020-12-29 贵州友擘机械制造有限公司 Shifting fork pin hole machining and positioning device
CN111037304A (en) * 2019-12-31 2020-04-21 苏州市红雨虹五金有限公司 Automatic trimming system for hardware die castings

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0659578B2 (en) * 1985-04-02 1994-08-10 日東工器株式会社 Ring cutter
JP3013448B2 (en) * 1991-01-16 2000-02-28 住友電気工業株式会社 Polycrystalline diamond cutting tool and its manufacturing method
JPH06106441A (en) * 1992-09-28 1994-04-19 Toyoda Mach Works Ltd Working device using work holder
JP4035184B2 (en) * 1996-10-11 2008-01-16 日立ツール株式会社 Polygonal end mill
JPH11179628A (en) * 1997-12-19 1999-07-06 Toshiba Mach Co Ltd Nc machine tool
JP2003311535A (en) * 2002-02-25 2003-11-05 Makino Fraes Seiki Kk Nc grinding machine
JP4647179B2 (en) * 2002-09-11 2011-03-09 株式会社日立製作所 Processing method
JP2005342722A (en) * 2003-01-30 2005-12-15 Sunarrow Ltd Method for marking key with metal plating, and key unit manufacturing method using the same
JP4721844B2 (en) * 2005-09-22 2011-07-13 株式会社牧野フライス製作所 Combined processing machine
JP5105153B2 (en) * 2007-06-27 2012-12-19 三菱マテリアル株式会社 Manufacturing method of processing tool and processing tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107350812A (en) * 2017-06-28 2017-11-17 安徽江淮车轮有限公司 A kind of compact single-power wheel hub end housing drilling deburring integrated device
CN107378498A (en) * 2017-06-28 2017-11-24 安徽江淮车轮有限公司 A kind of end face of polishing formula wheel hub certainly hole structure
CN107378498B (en) * 2017-06-28 2019-06-04 安徽江淮车轮有限公司 A kind of polishing formula wheel hub end face hole structure certainly

Also Published As

Publication number Publication date
JP2011000667A (en) 2011-01-06

Similar Documents

Publication Publication Date Title
JP2015024494A (en) Abrasive tool and method for finishing complex shapes in workpieces
JP5519616B2 (en) Insert assembly for rotary cutting and method of using the same
US8424427B2 (en) Method and apparatus for roll surface machining
KR101879258B1 (en) Negative-type cutting insert, blade-interchangeable rotary cutting tool using same cutting insert, blade-interchangeable rotary cutting tool system, and cutting method
US6935003B2 (en) Compound fabrication process and apparatus
US7140088B2 (en) Turning tool for grooving polishing pad, apparatus and method of producing polishing pad using the tool, and polishing pad produced by using the tool
EP2687321B1 (en) Ultraprecision composite processing device and ultraprecision composite processing method
US7431544B2 (en) Deburring blade, device for mounting of deburring blades and bevel gear cutting machine for chamfering and/or deburring a bevel gear
CN101516559B (en) Deburring by hobbing with integrated secondary deburring without a smoothing tool
JP3244454B2 (en) Cutting and grinding dual use tool
RU2312002C2 (en) Circular grinding method for making tools of hard alloy and circular grinding machine for grinding initial cylindrical blanks at making tool of hard alloy
TWI326233B (en) Precision roll turning lathe
Juneja Fundamentals of metal cutting and machine tools
JP6392909B2 (en) Method for forming cutting edge of rotary cutting tool
US5885199A (en) Compact machining center for multifunction
ES2402423T3 (en) Procedure and device for machining by starting shavings of rotary symmetrical surfaces of a workpiece
CN1612789B (en) Cutting tool and a holder
US7175509B2 (en) Grinder and method of and apparatus for non-contact conditioning of tool
JP5026599B2 (en) Combined lathe
EP1773528B1 (en) Raster cutting technology for ophthalmic lenses
US7101263B2 (en) Flank superabrasive machining
JP4088570B2 (en) Non-rotating cutting tool
RU2600300C2 (en) Method of making gear parts on processed articles
US7930954B2 (en) Method for producing forging die, forging die and forged article
US20120003058A1 (en) Machine tool and method for producing gearing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120214

R150 Certificate of patent or registration of utility model

Ref document number: 4931964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250