WO2002064955A1 - System for supplying secondary air in the exhaust system of an internal combustion engine - Google Patents
System for supplying secondary air in the exhaust system of an internal combustion engine Download PDFInfo
- Publication number
- WO2002064955A1 WO2002064955A1 PCT/GB2002/000536 GB0200536W WO02064955A1 WO 2002064955 A1 WO2002064955 A1 WO 2002064955A1 GB 0200536 W GB0200536 W GB 0200536W WO 02064955 A1 WO02064955 A1 WO 02064955A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- pipe
- exhaust pipe
- exhaust
- air supply
- supply pipe
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/18—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
- F01N3/20—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
- F01N3/2006—Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
- F01N3/2046—Periodically cooling catalytic reactors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N1/00—Silencing apparatus characterised by method of silencing
- F01N1/02—Silencing apparatus characterised by method of silencing by using resonance
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2882—Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
- F01N3/2885—Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices with exhaust silencers in a single housing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/30—Arrangements for supply of additional air
- F01N3/34—Arrangements for supply of additional air using air conduits or jet air pumps, e.g. near the engine exhaust port
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N13/00—Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
- F01N13/08—Other arrangements or adaptations of exhaust conduits
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Definitions
- the present invention relates to reciprocating engines of four stroke and more particularly two stroke type and is concerned with that type of such engine which includes an exhaust system, the exhaust system comprising an exhaust pipe which communicates with a silencer, whose upstream portion is divergent in the direction of gas flow through it, one or more oxidising catalysts and an air supply pipe communicating with the exhaust pipe at a position upstream of the catalyst and silencer.
- the exhaust gases of two stroke engines are usually rich in unburnt hydrocarbons, that is to say oil and gasoline, and carbon monoxide, as a result of incomplete combustion and of the fact that purging of the combustion space is commonly performed with an air/gasoline mixture.
- unburnt hydrocarbons that is to say oil and gasoline
- carbon monoxide as a result of incomplete combustion and of the fact that purging of the combustion space is commonly performed with an air/gasoline mixture.
- an oxidising catalyst in the exhaust system whose purpose is to oxidise the hydrocarbons and carbon monoxide to carbon dioxide and water.
- US-A-5887424 discloses such an engine in which air is induced into the silencer by the ejector or entrainment effect. This adds a considerable degree of complexity to the silencer and means that the exhaust system has to be designed to maximise the entrainment of air rather than engine efficiency.
- the air supply pipe includes a Reed valve adapted to open under a pressure differential to permit air to flow into the exhaust pipe and the difference between L 2 and (2L- ! + L 2 ) is between 0.25 and 0.5m, preferably 0.3 and 0.4m and particularly preferably 0.35 to 0.4m, wherein L t is the distance from the junction of the exhaust pipe measured from a first intersection point at which the axes of the exhaust pipe and the air supply pipe intersect, to a point midway along the length in the flow direction of the said upstream divergent portion of the silencer and L 2 is the length of the air supply pipe from the Reed valve to the said first intersection point.
- the invention is based on the recognition that there are wildly varying pressures within the exhaust system and that the pressure wave caused when the interior of the or each cylinder of the engine initially communicates with the exhaust system at the beginning of expulsion of the exhaust gas can be reflected and cause the pressure locally within the exhaust system to fall briefly to sub- atmospheric values of e.g. a maximum of -1000 mbar gauge or more typically down to -400 mbar gauge, e.g. -100 to -300 mbar gauge.
- sub-atmospheric pressures can be sufficient to open a Reed valve and cause a small amount of air to flow through it. Accordingly the air supply pipe is provided with a Reed valve which is caused to open periodically by reduced pressure pulses which act on it.
- a positive pressure wave passes down the exhaust pipe at substantially the speed of sound.
- this wave reaches the junction with the air supply pipe it propagates both along the exhaust pipe and along the air supply pipe waves.
- the first positive wave that continues towards the silencer is progressively reflected back as it reaches the conically diverging portion at the upstream end of the silencer, but in the form of a negative pressure wave, due to the fact that the cross-sectional area of the silencer is inherently larger than that of the exhaust pipe.
- the plane from which the positive wave is reflected is therefore effectively half way along the conically diverging portion in the flow direction.
- this negative pressure wave meets the junction with the air supply pipe it moves up the air supply pipe.
- this negative pressure wave which will be referred to as the first negative pressure wave, reaches the Reed valve it causes it to open for a short period of time, thereby admitting air into the exhaust pipe.
- the second positive wave that continues towards the Reed valve is reflected back at the Reed valve in the form of a positive wave towards the exhaust pipe.
- the exhaust pipe When it reaches the exhaust pipe it expands and is reflected back towards the Reed valve, but in the form of a negative wave.
- this further negative wave which will be referred to as the second negative pressure wave, reaches the Reed valve it causes it to open and admit air. If the phasing of the two negative pressure waves is such that the two waves arrive at the Reed valve substantially simultaneously or substantially overlapping with one another at the Reed valve, it is found that not only is a relatively small volume of air induced but also the force applied to the Reed valve may be sufficient to break it.
- the valve is caused to open twice for two very short periods of time but much of the energy of the waves is consumed by opening the valve and relatively little air is caused to flow into the air supply pipe.
- the phasing of the two waves is such that they overlap very slightly at the Reed valve, the valve will be held open for a longer period of time, i.e. the sum of the duration of the two negative waves, and a sufficient volume of air is induced to achieve the desired beneficial effect.
- the relative phasing of the two negative pressure waves is determined by the distance which they have travelled, namely 3L 2 and 2L ⁇ + L 2 , respectively.
- the waves will overlap slightly at the Reed valve. Since the speed of sound will vary with temperature and the different pipes are at different temperatures, the distances referred to above should be corrected for temperature, namely typically 30°C in the air supply pipe and 500°C in the exhaust pipe. It is immaterial whether the first negative pressure wave arrives at the Reed valve before or after the second negative pressure wave and this is why one length subtracted from the other may result in a positive or negative value.
- the invention is particularly applicable to small two stroke engines of the type which are fitted to small motor scooters or mopeds. Some countries have legislation prohibiting such engines from producing more than a prescribed power output. It is therefore common for such engines to be provided with a blind resonator pipe, whose diameter is less than that of the exhaust pipe and which communicates with the exhaust pipe. This resonator pipe communicates with the exhaust pipe at a position whose distance from the mid-point of the diverging portion of the silencer is substantially equal to its length.
- the positive pressure wave caused by the opening of the exhaust valve is again reflected back from the silencer in the form of a negative wave which travels back towards the exhaust valve.
- the positive wave also travels up the resonator pipe and is reflected back from its closed end, still in the form of a positive pressure wave.
- This wave re-enters the exhaust pipe and also travels towards the exhaust port.
- the resonator pipe is positioned and dimensioned so that the aforementioned positive and negative pressure waves arrive at the exhaust port at the same time, whereby the positive pressure wave counteracts the effect of the negative pressure wave and there is no enhancement of the power output of the engine.
- the positive pressure wave that is reflected back down the resonator pipe and passes along the exhaust pipe towards the exhaust valve is also reflected back into the resonator pipe for a second time, though now in the form of a negative pressure wave due to the fact that the resonator pipe is smaller than the exhaust pipe.
- This negative pressure wave is reflected back from the closed end of the resonator pipe and then passes into the exhaust pipe. It then moves towards the exhaust port and also towards the Reed valve.
- the negative pressure wave reflected back from the silencer will arrive at the Reed valve but will not have the beneficial effect of opening the Reed valve because its effect is neutralised by the positive pressure wave from the resonator pipe discussed above, which arrives at the Reed valve at substantially the same time.
- 3L 2 - (L 2 + 2L 3 + 4L 4 ) should be equal to +0.25m to +0.45m or -0.45m to -0.6m, or more preferably +0.15m to +0.35m or -0.35m to -0.5m, wherein L 2 is the length of the air supply pipe from the Reed valve to a first intersection point at which the axes of the exhaust pipe and the air supply pipe intersect, L 3 is the distance between the first intersection point and a second intersection point, at which the axes of the resonator pipe and the exhaust pipe intersect and L 4 is the length of the resonator pipe from its closed end to the second intersection point.
- the distances must of course again be corrected for the temperature at which they actually operate. There are again two possible ranges into which the distance covered by one pressure wave subtracted from the distance covered by the other pressure wave may fall because it again does not matter in which order the two pressure waves arrive at the Reed valve.
- Figure 1 is a highly schematic view of the relevant portions of a two stroke engine in accordance with the invention.
- Figure 2 is a similar view of an alternative construction of a two stroke engine in accordance with the invention.
- the engine includes a crankcase, a cylinder barrel or block and a cylinder head which form no part of the present invention and are generally designated 2 in Figure 1.
- the cylinder block defines one or more cylinders in which respective pistons are mounted to reciprocate. The pistons are connected by respective connecting rods to a crankshaft.
- an exhaust system including an exhaust pipe 8 whose downstream end is connected to a silencer 10.
- the silencer 10 has an upstream conically divergent portion 11 followed in this case by a cylindrical portion and then a conically convergent portion.
- the silencer communicates with the atmosphere into which the exhaust gases from the engine are discharged.
- the exhaust system also includes an oxidising catalyst 12, which in this case is situated within the silencer 10. The purpose of the oxidising catalyst is to catalyse the conversion of unburnt hydrocarbons and CO into water and C0 2 .
- Communicating with the exhaust pipe 8 at a position between the engine block/cylinder head and the silencer 10 is an air supply pipe 14, the diameter of which is less than the diameter of the exhaust pipe.
- the air supply pipe 14 includes a passive Reed valve 16 which is normally closed but which will open when the pressure applied to it on the exhaust pipe side is less than that on the other side.
- the Reed valve 16 comprises a valve seat 15 and a valve flap 17.
- the Reed valve communicates with the atmosphere via an air supply pipe 14 which includes an air filter 4.
- the distance I- ! is the distance between a point mid-way along the length in the flow direction of the divergent portion 11 of the silencer 10 and the junction of the exhaust pipe 8 with the air supply pipe 14, measured from the point at which their axes intersect.
- the second positive wave moves along the exhaust pipe and is reflected back at the silencer, effectively at a plane which is half way along the length of the diverging portion 11, in the form of negative wave.
- the negative wave moves back along the exhaust pipe and splits into two at the air supply pipe.
- One of these negative waves then arrives at the Reed valve.
- the distances travelled by the two negative waves which arrive at the Reed valve are related by the formula given above so that they arrive at the Reed valve at times such that they overlap slightly.
- the Reed valve is thus held open for one single and relatively long period of time for each time that the exhaust valve opens and this period of time is sufficiently long to admit a sufficient volume of air to cool the catalyst adequately and to result in the combustion of the catalyst of substantially all the unburnt hydrocarbons and carbon monoxide in the exhaust gas.
- the exhaust pipe additionally communicates with a resonator tube 20 which is provided for the reason explained above.
- the length of the resonator tube is substantially equal to its distance from the mid-point of the diverging portion of the silencer and its diameter is less than that of the exhaust pipe.
- a positive wave moves along the exhaust pipe and splits into two at the junction with the air supply pipe.
- the first positive wave moves three times along the air supply pipe and ultimately arrives at the Reed valve in the form of a negative wave, precisely as in the first embodiment.
- the second positive wave continues along the exhaust pipe until it reaches the resonator pipe and then splits into two positive waves, which will be referred to as the first and second positive waves.
- the first positive wave moves along the exhaust pipe and is then reflected back from the silencer in the form of a negative wave.
- the second positive wave moves along the resonator tube and is reflected back at its closed end. When it reaches the exhaust pipe again it splits and part of it travels towards the exhaust valve.
- the second positive wave is also reflected back into the resonator pipe, but in the form of a negative wave.
- This negative wave is reflected back from the closed end of the resonator tube and then passes into the exhaust pipe and ultimately arrives at the Reed valve.
- the lengths of the various pipes are so related that the time of the arrival of the two negative waves at the Reed valve is again such that they overlap slightly, whereby the Reed valve is open for a single relatively long period of time for each time that the exhaust valve opens.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Exhaust Silencers (AREA)
- Exhaust Gas After Treatment (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BR0207192-4A BR0207192A (en) | 2001-02-13 | 2002-02-08 | Reciprocating engine including exhaust system |
EP02711028A EP1362166B1 (en) | 2001-02-13 | 2002-02-08 | System for supplying secondary air in the exhaust system of an internal combustion engine |
CA002436364A CA2436364C (en) | 2001-02-13 | 2002-02-08 | System for supplying secondary air in the exhaust system of an internal combustion engine |
DE60200835T DE60200835T2 (en) | 2001-02-13 | 2002-02-08 | SECONDARY AIR INTAKE TO THE EXHAUST SYSTEM OF A COMBUSTION ENGINE |
US10/467,848 US6789385B2 (en) | 2001-02-13 | 2002-02-08 | System for supplying secondary air in the exhaust system of an internal combustion engine |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB0103522.9A GB0103522D0 (en) | 2001-02-13 | 2001-02-13 | Reciprocating Engines |
GB0103522.9 | 2001-02-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002064955A1 true WO2002064955A1 (en) | 2002-08-22 |
Family
ID=9908644
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2002/000536 WO2002064955A1 (en) | 2001-02-13 | 2002-02-08 | System for supplying secondary air in the exhaust system of an internal combustion engine |
Country Status (8)
Country | Link |
---|---|
US (1) | US6789385B2 (en) |
EP (1) | EP1362166B1 (en) |
CN (1) | CN1249331C (en) |
BR (1) | BR0207192A (en) |
CA (1) | CA2436364C (en) |
DE (1) | DE60200835T2 (en) |
GB (1) | GB0103522D0 (en) |
WO (1) | WO2002064955A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007123875A1 (en) * | 2006-04-18 | 2007-11-01 | Kohler Co. | Engine exhaust systems with secondary air injection systems |
EP2157296A1 (en) * | 2008-06-13 | 2010-02-24 | Yamaha Hatsudoki Kabushiki Kaisha | Engine, vehicle, boat, and engine exhaust method |
EP2163739A1 (en) * | 2008-06-13 | 2010-03-17 | Yamaha Hatsudoki Kabushiki Kaisha | Engine, vehicle, boat, and engine secondary air supply method |
WO2014189442A1 (en) * | 2013-05-21 | 2014-11-27 | Therbo Innovation Ab | A method and a system for exhaust gas handling, an exhaust gas processing unit and an assembly |
EP2511494A4 (en) * | 2009-12-11 | 2015-03-04 | Yamaha Motor Co Ltd | Engine, and vehicle and ship that comprise same |
WO2023016695A1 (en) * | 2021-08-08 | 2023-02-16 | Psa Automobiles Sa | Secondary air line for an exhaust tract of an internal combustion engine, having diodic valve loops |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050039447A1 (en) * | 2003-08-19 | 2005-02-24 | Charles Hsu | Structure of engine exhauster |
US7464543B2 (en) * | 2004-05-25 | 2008-12-16 | Cameron International Corporation | Two-stroke lean burn gas engine with a silencer/catalytic converter |
CA2622203A1 (en) | 2005-10-12 | 2007-04-26 | Kohler Co. | Air cleaner assembly |
JP2007297985A (en) * | 2006-05-01 | 2007-11-15 | Yamaha Motor Co Ltd | Gas exhaust system and vehicle equipped with the gas exhaust system |
JP4988326B2 (en) * | 2006-12-20 | 2012-08-01 | ヤマハ発動機株式会社 | Exhaust system for 4-cycle engine for motorcycles |
US7757482B2 (en) * | 2007-02-21 | 2010-07-20 | Gm Global Technology Operations, Inc. | Variable geometry exhaust cooler |
US20080282672A1 (en) * | 2007-05-17 | 2008-11-20 | Wu Keith | Method and System for Controlling Emission from an Off-Road Engine |
USD632770S1 (en) | 2008-06-13 | 2011-02-15 | Kohler Co. | Cyclonic air cleaner housing |
US8808432B2 (en) | 2008-06-13 | 2014-08-19 | Kohler Co. | Cyclonic air cleaner |
US8485313B2 (en) | 2010-06-18 | 2013-07-16 | Briggs & Stratton Corporation | Muffler and engine system |
CN102720577B (en) * | 2012-06-26 | 2015-04-29 | 徐州重型机械有限公司 | Exhaust system for crane |
US9388718B2 (en) | 2014-03-27 | 2016-07-12 | Ge Oil & Gas Compression Systems, Llc | System and method for tuned exhaust |
US10760475B2 (en) * | 2017-12-15 | 2020-09-01 | Hanon Systems | Integrated passive one way valve in charge air inlet tank |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4177640A (en) * | 1976-05-07 | 1979-12-11 | Nissan Motor Company, Limited | Internal combustion engine system |
EP0694680A2 (en) * | 1994-07-27 | 1996-01-31 | Yamaha Hatsudoki Kabushiki Kaisha | Internal combustion engine |
US5902971A (en) * | 1997-01-31 | 1999-05-11 | Kioritz Corporation | Muffler for internal combustion engine |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3066477A (en) * | 1960-12-19 | 1962-12-04 | Oxy Catalyst Inc | Catalytic exhaust purifier having air control means therefor |
JPS6019911A (en) * | 1983-07-12 | 1985-02-01 | Nippon Soken Inc | Secondary air introduction pipe |
US5431013A (en) * | 1993-01-11 | 1995-07-11 | Fuji Jukogyo Kabushiki Kaisha | Engine exhaust apparatus |
US5392601A (en) * | 1993-02-25 | 1995-02-28 | Michael D. Epstein | Exhaust system for an internal combustion engine |
JP2891668B2 (en) | 1996-04-05 | 1999-05-17 | 川崎重工業株式会社 | Engine exhaust system |
-
2001
- 2001-02-13 GB GBGB0103522.9A patent/GB0103522D0/en not_active Ceased
-
2002
- 2002-02-08 US US10/467,848 patent/US6789385B2/en not_active Expired - Fee Related
- 2002-02-08 WO PCT/GB2002/000536 patent/WO2002064955A1/en not_active Application Discontinuation
- 2002-02-08 BR BR0207192-4A patent/BR0207192A/en not_active Application Discontinuation
- 2002-02-08 CA CA002436364A patent/CA2436364C/en not_active Expired - Fee Related
- 2002-02-08 EP EP02711028A patent/EP1362166B1/en not_active Expired - Lifetime
- 2002-02-08 DE DE60200835T patent/DE60200835T2/en not_active Expired - Fee Related
- 2002-02-08 CN CNB028048571A patent/CN1249331C/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4177640A (en) * | 1976-05-07 | 1979-12-11 | Nissan Motor Company, Limited | Internal combustion engine system |
EP0694680A2 (en) * | 1994-07-27 | 1996-01-31 | Yamaha Hatsudoki Kabushiki Kaisha | Internal combustion engine |
US5902971A (en) * | 1997-01-31 | 1999-05-11 | Kioritz Corporation | Muffler for internal combustion engine |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8429896B2 (en) | 2006-04-18 | 2013-04-30 | Kohler Co. | Engine exhaust systems with secondary air injection systems |
US8925297B2 (en) | 2006-04-18 | 2015-01-06 | Kohler Co. | Engine exhaust systems with secondary air injection systems |
US8925298B2 (en) | 2006-04-18 | 2015-01-06 | Kohler Co. | Engine exhaust systems with secondary air injection systems |
WO2007123875A1 (en) * | 2006-04-18 | 2007-11-01 | Kohler Co. | Engine exhaust systems with secondary air injection systems |
EP2157296A4 (en) * | 2008-06-13 | 2011-02-09 | Yamaha Motor Co Ltd | Engine, vehicle, boat, and engine exhaust method |
US8312713B2 (en) | 2008-06-13 | 2012-11-20 | Yamaha Hatsudoki Kabushiki Kaisha | Internal combustion engine, vehicle, marine vessel, and exhausting method for internal combustion engine |
US8359836B2 (en) | 2008-06-13 | 2013-01-29 | Yamaha Hatsudoki Kabushiki Kaisha | Internal combustion engine, vehicle, marine vessel, and secondary air supply method for internal combustion engine |
EP2163739A4 (en) * | 2008-06-13 | 2011-10-26 | Yamaha Motor Co Ltd | Engine, vehicle, boat, and engine secondary air supply method |
EP2163739A1 (en) * | 2008-06-13 | 2010-03-17 | Yamaha Hatsudoki Kabushiki Kaisha | Engine, vehicle, boat, and engine secondary air supply method |
EP2157296A1 (en) * | 2008-06-13 | 2010-02-24 | Yamaha Hatsudoki Kabushiki Kaisha | Engine, vehicle, boat, and engine exhaust method |
EP2511494A4 (en) * | 2009-12-11 | 2015-03-04 | Yamaha Motor Co Ltd | Engine, and vehicle and ship that comprise same |
WO2014189442A1 (en) * | 2013-05-21 | 2014-11-27 | Therbo Innovation Ab | A method and a system for exhaust gas handling, an exhaust gas processing unit and an assembly |
SE541875C2 (en) * | 2013-05-21 | 2020-01-02 | Therbo Innovation Ab | A method and a system for exhaust gas handling, an exhaust gas processing unit and an assembly |
WO2023016695A1 (en) * | 2021-08-08 | 2023-02-16 | Psa Automobiles Sa | Secondary air line for an exhaust tract of an internal combustion engine, having diodic valve loops |
Also Published As
Publication number | Publication date |
---|---|
CN1249331C (en) | 2006-04-05 |
US20040128986A1 (en) | 2004-07-08 |
CN1491316A (en) | 2004-04-21 |
US6789385B2 (en) | 2004-09-14 |
BR0207192A (en) | 2004-02-10 |
DE60200835D1 (en) | 2004-09-02 |
DE60200835T2 (en) | 2005-07-21 |
EP1362166B1 (en) | 2004-07-28 |
EP1362166A1 (en) | 2003-11-19 |
CA2436364C (en) | 2009-04-14 |
GB0103522D0 (en) | 2001-03-28 |
CA2436364A1 (en) | 2002-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1362166B1 (en) | System for supplying secondary air in the exhaust system of an internal combustion engine | |
US8371256B2 (en) | Internal combustion engine utilizing dual compression and dual expansion processes | |
JP5870488B2 (en) | Intake and exhaust system for multi-cylinder engine | |
US3385052A (en) | Exhaust system | |
RU2439341C2 (en) | Internal combustion engine, transport facility, ocean vessel and method of exhaust for internal combustion engine | |
US3969894A (en) | Internal combustion engine | |
KR920701621A (en) | 2-stroke internal combustion engine with diesel-compressed ignition | |
US3885386A (en) | Annular piston engine with afterburner and separable power turbine | |
US7980232B2 (en) | Four stroke internal combustion engine | |
TWI444534B (en) | Engine, and with its vehicles and ships | |
JP2754978B2 (en) | Control device for 6-cylinder internal combustion engine | |
JP5953786B2 (en) | Exhaust system for multi-cylinder engine | |
US4011725A (en) | Annular piston engine with afterburner and power turbine | |
US11098631B2 (en) | NOx sensor protection system | |
KR100733654B1 (en) | Swirl flow type of catalyst converter | |
JPWO2007004260A1 (en) | Internal combustion engine having exhaust gas detour control mechanism | |
JPH078814Y2 (en) | Engine intake and exhaust pipe structure | |
WO2024176039A1 (en) | Engine with resonator on the exhaust pipe and vehicle comprising said engine | |
RU52611U1 (en) | SILENCER OF THE EXHAUST GAS SYSTEM | |
JP2013185446A (en) | Exhaust device for multi-cylinder engine | |
JP2018141456A (en) | Reciprocating four-stroke spark ignition internal combustion engine | |
JPH02207129A (en) | Two-cycle engine | |
JP2004060546A (en) | Internal combustion engine | |
JPH02267311A (en) | Exhaust device for internal combustion engine | |
JPS56118518A (en) | Four-cycle internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2436364 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 028048571 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2002711028 Country of ref document: EP Ref document number: 01297/DELNP/2003 Country of ref document: IN |
|
WWP | Wipo information: published in national office |
Ref document number: 2002711028 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 10467848 Country of ref document: US |
|
WWG | Wipo information: grant in national office |
Ref document number: 2002711028 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
WWW | Wipo information: withdrawn in national office |
Ref document number: JP |