WO2002061403A1 - Dispositif de mesure de concentration de gaz - Google Patents

Dispositif de mesure de concentration de gaz Download PDF

Info

Publication number
WO2002061403A1
WO2002061403A1 PCT/FR2002/000025 FR0200025W WO02061403A1 WO 2002061403 A1 WO2002061403 A1 WO 2002061403A1 FR 0200025 W FR0200025 W FR 0200025W WO 02061403 A1 WO02061403 A1 WO 02061403A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
radiation
optical
emitter
gas
Prior art date
Application number
PCT/FR2002/000025
Other languages
English (en)
Inventor
Pascal Besesty
Engin Molva
Emanuel Hadji
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to US10/250,317 priority Critical patent/US7034325B2/en
Priority to EP02710081A priority patent/EP1348119A1/fr
Priority to JP2002561923A priority patent/JP4242649B2/ja
Publication of WO2002061403A1 publication Critical patent/WO2002061403A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • G01N21/534Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke by measuring transmission alone, i.e. determining opacity
    • G01N2021/536Measurement device mounted at stack
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/39Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers

Definitions

  • the present invention relates to a gas concentration measuring device.
  • the invention applies in various fields such as, for example, the analysis of industrial gaseous emissions, the analysis of exhaust gases from motor vehicles, the control of the admission of pure air into closed chambers, odor control, etc.
  • a particularly advantageous application of the device according to the invention makes it possible to control the proper functioning of the catalytic element of the exhaust line of a vehicle.
  • optical detection devices that use light emitting diodes:
  • Lamps also have the advantage of working in the range of 3 to 6 ⁇ . Due to the very large spectral width of the emitted radiation, it is however also necessary to use interference filters. The emission efficiency is even lower than that of light-emitting diodes. Furthermore, the emission is also very divergent and it is necessary to use corrective optics. In addition, in the case where the signal processing requires amplitude modulation, a mechanical chopper is necessary.
  • none of these devices allows the simultaneous detection of several different gases.
  • the invention does not have the drawbacks mentioned above.
  • the invention relates to a gas concentration measuring device comprising: - a cavity containing at least one gas whose concentration is to be measured, at least a first transmitter consisting of an optical microcavity pumped by optical pumping means and whose emission spectrum is located in the absorption band of the gas, - at least a second transmitter consisting of an optical microcavity pumped by optical pumping means, the emission spectrum of which lies outside the absorption band of the gas, reception means for measuring the optical intensity of a first radiation from the first emitter and transmitted through the cavity and the optical intensity of a second radiation from the second emitter and transmitted through the cavity, and a processing circuit for measuring the concentration of the gas from the optical intensity of the first radiation and the optical intensity of the second radiation.
  • the cavity can be an open or closed cavity.
  • open cavity is meant a cavity which includes openings allowing gases to be entrained in a flow.
  • closed cavity is meant a cavity which does not include such openings.
  • the invention also relates to a device for controlling the operation of an exhaust line catalytic element of a motor vehicle, characterized in that it comprises a device for measuring gas concentration according to the invention.
  • FIG. 1 shows a block diagram of the gas concentration measuring device according to the invention
  • FIG. 2 shows a block diagram of an improvement of the gas concentration measuring device shown in Figure 1;
  • FIG. 3 shows a first embodiment of the gas concentration measuring device according to the invention;
  • FIG. 4 shows a second embodiment of the gas concentration measuring device according to the invention
  • FIG. 5 shows a third embodiment of the gas concentration measuring device according to the invention.
  • FIG. 1 represents a block diagram of a device for measuring gas concentration according to the invention.
  • the device comprises a cavity C containing a gas whose concentration is to be measured, a first radiation emitter El, a second radiation emitter E2, a first reception means RI, a second reception means R2 and an electronic processing circuit T .
  • the emission spectrum of the emitter El is located in the absorption band of the gas to be detected while the emission spectrum of the emitter E2 is located outside the absorption band of the gas to be detected.
  • the radiation 11 and 12 emitted by the transmitters El and E2 pass through the cavity C over a distance d to form, beyond the cavity, the respective radiation tl and t2 detected, respectively, by the reception means Ri and R2.
  • the reception means RI delivers a measurement I of the optical intensity of the radiation t1 and the reception means R2 delivers a measurement I 0 of the optical intensity of the radiation t2.
  • a processing circuit T delivers the measurement of the concentration N of the gas from the optical intensity measurements I and I 0 . He comes:
  • the emitters E1 and E2 each consist of a resonant optical microcavity in which the active region is a semiconductor heterostructure which emits light at a wavelength determined by the choice of the semiconductor and the type heterostructure.
  • the active layer is produced by the epitaxy technique, with semiconductor materials such as, for example, CdHgTe, GaAIN, A1BN, GaAlAs, GaAsSb, GaAISb, etc. or with different families of semiconductor alloys of family II-VI (compounds of Cd, Zn, Hg, Mn, Mg with Se, S, Te), or of family III-V (Ga, Al, In, B with N, As, P, Sb).
  • heterostructures are formed by stacking multilayered alloys on a substrate.
  • the active zone can comprise quantum wells which then constitute the light-emitting zones.
  • the epitaxy is carried out by known means of the “molecular jet epitaxy”, “organometallic epitaxy” or “liquid phase epitaxy” type.
  • the active area produced with the semiconductor materials described above is inside an optical microcavity, consisting of a Fabry-Perot type cavity comprising two mirrors.
  • the Fabry-Perot cavity is calculated so as to match the optical resonance of the cavity with the emission wavelength of the semiconductor.
  • Resonant optical microcavities (of the Fabry-Perot type) are also known to those skilled in the art.
  • the use of a resonant optical microcavity makes it possible to considerably improve the performance of the transmitter compared to a transmission which would take place without a resonant microcavity.
  • the advantages of using a resonant cavity can be listed as follows:
  • Optical pumping requires a source whose wavelength is less than that of the transmitter in order to be able to be absorbed by the active area of the semiconductor.
  • a source whose wavelength is less than that of the transmitter in order to be able to be absorbed by the active area of the semiconductor.
  • a laser diode or a light emitting diode emitting for example at 780nm, 800nm, or 980nm, can be used. It is advantageously not necessary to regulate the emission wavelength of the optical pump. This considerably simplifies the device, since there is no need to regulate the temperature.
  • the transmission power is proportional to the pump power. It can be, for example, between 1 and 100 micro atts at the temperature room.
  • a laser diode will be used, for example, to optically excite the emitters.
  • the input mirror of the optical microcavity is designed to be transparent to the excitation wavelengths of the pump laser diode beam. This is done in a conventional manner, with a dichroic mirror having a transparency band at the excitation wavelengths and a high reflectivity at the wavelength of the transmitter.
  • the emission beams of the infrared emitters E1 and E2 can be modulated in light intensity by the modulation of the beam of the optical pumping element.
  • the pumping element is a laser diode
  • electronic filtering functions for example the synchronous detection function
  • each reception means comprises an interference filter for selecting the light to be received.
  • coded modulation a single reception element can then be activated selectively as a function of the activated transmitter. This mode embodiment of the invention is shown in Figure 2 where a coded modulation control Mod is applied to a single receiving means R.
  • the fact of making a differential measurement between a useful signal measurement and a reference measurement advantageously makes it possible to reduce the ambient noise interference and to eliminate the temperature drifts of the measurement chains.
  • FIG. 3 represents a first exemplary embodiment of a device for measuring gas concentration according to the invention.
  • the device includes four transmitters El, E2, E3, E4 and four detector diodes Dl, D2, D3, D4.
  • the radiation li (i ⁇ l, 2, 3, 4) from the emitter Ei is coupled to the cavity C by a lens Lli.
  • the radiation ti (i ⁇ l, 2, 3, 4) which leaves the cavity C is coupled to the detector Di by a lens Lti.
  • the emission spectrum of the transmitter El is located in the absorption band of a first gas at detect and the emission spectrum of the emitter E3 is located in the absorption band of a second gas to be detected.
  • the emitter E2 is associated with the emitter El for the measurement of the concentration of the first gas and the emitter E4 is associated with the emitter E3 for the measurement of the concentration of the second gas.
  • the device as shown in FIG. 3 comprises four emitters and makes it possible to measure the concentration of two different gases (NI and N2 respectively). More generally, the invention relates a device comprising 2xn emitters for measuring the concentration of n different gases.
  • FIG. 4 represents a second exemplary embodiment of a device for measuring gas concentration according to the invention.
  • mirrors are used for the transmission of radiation in the cavity.
  • the mirrors bi and ci are placed on either side of the cavity C.
  • the mirror ci is oriented so as to allow the radiation ti to exit the cavity through an orifice provided for this purpose.
  • Mirrors can be made, for example, using folded and then polished metal parts. This technology has the advantage of being able to be implemented easily and of avoiding the use of a ZnSe optic.
  • DFi protection deflectors To overcome any fouling of the measurement chains by impurities carried by the gas flow, it is possible to have DFi protection deflectors. In the event of fouling, the DFi deflectors can be cleaned by a high temperature heating device which has the effect of burning the impurities.
  • the processing electronics for the emission and reception of radiation can then be located in the same place. It is then more easily possible to protect the optical transmission and reception parts.
  • the optical path of the radiation which traverses the cavity is a round trip type. This path is then substantially twice as long as the path traveled by the radiation in the previous cases (cf. Figures 1, 2 and 3). This advantageously leads to improving the sensitivity of the measurement chain.
  • FIG. 5 represents a third exemplary embodiment of a device for measuring gas concentration according to the invention.
  • light conductors are used to guide the various radiations li towards the cavity C.
  • light conductors are used to guide the various radiations ti coming from the cavity towards detection means.
  • the light conductors can be, for example, optical fibers or endoscopes.
  • a lens Lli makes it possible to focus the radiation li in the cavity.
  • the radiation that enters the cavity is reflected by a mirror ci.
  • the mirror ci is oriented so as to allow the radiation ti to leave the cavity through an orifice provided for this purpose.
  • An advantage of this embodiment is that it allows the cavity C to be moved away from the optoelectronic processing zone.
  • the treatment area optoelectronics can then be brought to a temperature different from the temperature of the cavity (for example, a lower temperature). This advantage is particularly interesting for the analysis of exhaust gases in an automobile.
  • the emitters can be grouped, on the same substrate, in the form of a strip or matrix of emitters.
  • the transmitters are pumped by a network of laser diodes of wavelength substantially equal, for example, to 800nm.
  • the dimensions of the laser diode network are substantially equal to the dimensions of the pump laser emitters.
  • a bar or a matrix is produced, after epitaxy and manufacture of the mirrors, either by lithography and etching to release the emitting areas opposite the active areas of the pump transmitters, or by masking with a metal mask (engraved holes ) areas which should not emit light.
  • the embodiment of the invention shown in FIG. 5 comprises four emitters and makes it possible to measure the concentration of two different gases.
  • the invention also relates to the case where the device comprises 2xn emitters and makes it possible to measure the concentration of n different gases.
  • the number n can be quite high (for example equal to 10), due to the large possibility of choosing wavelengths in the range 3 ⁇ m-6 ⁇ m.
  • the measurement device comprises as many transmitters including the emission spectrum is located outside the absorption band of gases only of gases whose concentration is to be measured.
  • the invention also relates to the case where the number of emitters whose emission spectrum lies outside the gas absorption band is less than the number of gases whose concentration is to be measured.
  • a single emitter with an emission spectrum outside the gas absorption band can be used to measure the concentration of several different gases.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

L'invention concerne un dispositif de mesure de concentration d'un gaz contenu dans une cavité (C). Un premier émetteur (E1) constitué d'une microcavité optique pompée optiquement et dont le spectre d'émission se situe dans la bande d'absorption du gaz émet un premier rayonnement qui traverse la cavité. Un deuxième émetteur également constitué d'une microcavité optique pompée optiquement et dont le spectre d'émission se situe en dehors de la bande d'absorption du gaz émet un deuxième rayonnement qui travers la cavité. Des moyens de réception (Ri) mesurent l'intensité optique (I) des rayonnements qui ont traversé la cavité. Un circuit de traitement (T) mesure la concentration (N) du gaz à partir des intensités optiques mesurées.L'invention s'applique, entre autres, au contrôle du fonctionnement de l'élément catalytique de la ligne d'échappement d'un véhicule automobile.

Description

DISPOSITIF DE MESURE DE CONCENTRATION DE GAZ
Domaine technique et art antérieur
La présente invention concerne un dispositif de mesure de concentration de gaz.
L'invention s'applique dans différents domaines tels que, par exemple, l'analyse des rejets gazeux industriels, l'analyse des gaz d'échappement des véhicules automobiles, le contrôle de l'admission d'air pur dans des enceintes fermées, le contrôle des odeurs, etc .
Dans le domaine de l'automobile, une application particulièrement avantageuse du dispositif selon l'invention permet le contrôle du bon fonctionnement de l'élément catalytique de la ligne d'échappement d'un véhicule.
Selon l'art connu, différents dispositifs de détection optique de gaz existent. On peut citer, par exemple, des dispositifs utilisant des diodes d'émission laser, des diodes électroluminescentes
(LEDs) , ou des lampes.
Le document « .Revote Sensing of Méthane Gas by Differential Absorption Measurement Using a Wavelength Tunable DFB LD » (Y. Shimose et al., IEEE photonics technology letters, vol 3, N°l, p86, January 1991) et le document « Remote Détection of Méthane wi th a 1 . 66μm Diode Laser » (K. Uehara et al, Applied optics, vol 31, N°6, p 809, February 1992) divulguent des dispositifs qui utilisent des diodes laser. De tels dispositifs mettent en œuvre des circuits électroniques de traitement complexes et coûteux du fait de l'utilisation de diodes dont la longueur d'onde est très faible (typiquement de l'ordre de l,65μm). Ces dispositifs ne sont donc pas aptes à être utilisés dans des domaines d' application grand public tels que, par exemple, le domaine de 1' automobile .
Les dispositifs connus qui utilisent des diodes électroluminescentes présentent l'avantage de travailler à des longueurs d'onde supérieures comprises entre 3 et βμm. Cependant, du fait de la très grande largeur spectrale des rayonnements émis par les diodes, il est nécessaire d'utiliser des filtres interférentiels qui conduisent à un rendement d'émission faible dans la zone d'utilisation. De tels filtres interférentiels sont par ailleurs coûteux. L'utilisation de diodes électroluminescentes présente également d'autres inconvénients. Ainsi, les dérives en température des rayonnements émis par les diodes sont importantes et il est alors nécessaire de mettre en place des circuits de compensation en température. De même, l'émission des rayonnements émis par les diodes est très divergente et nécessite l'emploi d'une optique corrective.
Les documents suivants divulguent des dispositifs de détection optique qui utilisent des diodes électroluminescentes :
- « Efficien t 3. 3μm light emi tting diodes for detecting méthane gas a t room tempéra ture », M.K. Parry et al, Electronics letters, Vol 30, N°23, p 1968, nov 1994, - « InAsSb light emitting diodes and their applications to infrared gas sensors », .Dobbelaere et al., Electronics letters, Vol2 9, N°10, p 890, may 1993, - « Efficient 4.2μm light emitting diodes for detecting C02 a t room tempéra ture », Y.Mao et al, Electronics letters, Vol 32, N°5, p 479, February 1996, - « High power 4 . 6μm LEDs for CO détection grown by LPE », A.Krier et al, Electronics letters, Vol 35, N°19, p 1665, Sept 1999.
Les lampes (filament chaud) présentent également l'avantage de travailler dans la gamme de 3 à 6 μ . Du fait de la très grande largeur spectrale du rayonnement émis, il est cependant également nécessaire d'utiliser des filtres interférentiels . Le rendement d'émission est encore plus faible que celui des diodes électroluminescentes. Par ailleurs, l'émission est également très divergente et il est nécessaire d'utiliser une optique corrective. De plus, dans le cas ou le traitement du signal nécessite une modulation en amplitude, un chopper mécanique est nécessaire.
En résumé, tous les émetteurs mentionnés ci- dessus ne permettent pas de réaliser un dispositif de détection compact, peu coûteux et d'utilisation simple.
Par ailleurs, aucun de ces dispositifs ne permet la détection simultanée de plusieurs gaz différents.
L'invention ne présente pas les inconvénients mentionnés ci-dessus.
Exposé de l'invention
En effet, l'invention concerne un dispositif de mesure de concentration de gaz comprenant : - une cavité contenant au moins un gaz dont la concentration est à mesurer, au moins un premier émetteur constitué d'une microcavité optique pompée par des moyens optiques de pompage et dont le spectre d'émission se situe dans la bande d'absorption du gaz, - au moins un deuxième émetteur constitué d'une microcavité optique pompée par des moyens optiques de pompage et dont le spectre d'émission se situe en dehors de la bande d'absorption du gaz, des moyens de réception pour mesurer l'intensité optique d'un premier rayonnement issu du premier émetteur et transmis à travers la cavité et l'intensité optique d'un deuxième rayonnement issu du deuxième émetteur et transmis à travers la cavité, et un circuit de traitement pour mesurer la concentration du gaz à partir de l'intensité optique du premier rayonnement et de l'intensité optique du deuxième rayonnement.
La cavité peut être une cavité ouverte ou fermée. Par cavité « ouverte », il faut entendre une cavité qui comprend des ouvertures permettant aux gaz d'être entraînés dans un flux. Par cavité « fermée », il faut entendre une cavité qui ne comprend pas de telles ouvertures.
L'invention concerne également un dispositif de contrôle de fonctionnement d'un élément catalytique de ligne d'échappement d'un véhicule automobile caractérisé en ce qu'il comprend un dispositif de mesure de concentration de gaz selon l'invention.
Brève description des figures
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture d'un mode de réalisation préférentiel fait en référence aux figures ci-annexées parmi lesquelles :
- la figure 1 représente un schéma de principe de dispositif de mesure de concentration de gaz selon l'invention ;
- la figure 2 représente un schéma de principe d'un perfectionnement du dispositif de mesure de concentration de gaz représenté en figure 1 ; - la figure 3 représente un premier exemple de réalisation de dispositif de mesure de concentration de gaz selon l'invention ;
- la figure 4 représente un deuxième exemple de réalisation de dispositif de mesure de concentration de gaz selon l'invention ;
- la figure 5 représente un troisième exemple de réalisation de dispositif de mesure de concentration de gaz selon l'invention.
Sur toutes les figures, les mêmes repères désignent les mêmes éléments.
Description détaillée de modes de mise en œuyre de 1' invention
La figure 1 représente un schéma de principe de dispositif de mesure de concentration de gaz selon l'invention. Le dispositif comprend une cavité C contenant un gaz dont la concentration est à mesurer, un premier émetteur de rayonnement El, un deuxième émetteur de rayonnement E2, un premier moyen de réception RI, un deuxième moyen de réception R2 et un circuit de traitement électronique T. Le spectre d'émission de l'émetteur El se situe dans la bande d'absorption du gaz à détecter alors que le spectre d'émission de l'émetteur E2 se situe en dehors de la bande d'absorption du gaz à détecter. Les rayonnements 11 et 12 émis par les émetteurs El et E2 traversent la cavité C sur une distance d pour former, au-delà de la cavité, les rayonnements respectifs tl et t2 détectés, respectivement, par les moyens de réception Ri et R2. Le moyen de réception RI délivre une mesure I de l'intensité optique du rayonnement tl et le moyen de réception R2 délivre une mesure I0 de l'intensité optique du rayonnement t2. Un circuit de traitement T délivre la mesure de la concentration N du gaz à partir des mesures d'intensité optique I et I0 . II vient :
— = exp(- α x d), .10 avec α=a x N, où a est la densité du gaz en πf1ppιrf1, et N est la concentration du gaz en ppm, d étant la longueur du trajet du faisceau optique dans le milieu gazeux comme mentionné précédemment. On peut alors écrire :
Figure imgf000007_0001
δl α x d ≈ — , avec oI=In-I.
10
On en déduit
1 δl
N = x a x d IQ Les émetteurs El et E2 sont constitués, chacun, d'une microcavité optique résonante dans laquelle la région active est une hétérostructure à semi-conducteur qui émet de la lumière à une longueur d'onde déterminée par le choix du semi-conducteur et le type d' hétérostructure . La couche active est fabriquée par la technique d' épitaxie, avec des matériaux semiconducteurs tels que, par exemple, CdHgTe, GaAIN, A1BN, GaAlAs, GaAsSb, GaAISb, etc. ou avec différentes familles d'alliages de semi-conducteurs de famille II- VI (composés de Cd, Zn, Hg, Mn, Mg avec Se, S, Te) , ou de famille III-V (Ga, Al, In, B avec N, As, P, Sb) .
En général, les hétérostructures sont formées par empilement de multicouches d'alliages sur un substrat. La zone active peut comprendre des puits quantiques qui constituent alors les zones émettrices de lumière. L' épitaxie est réalisée par des moyens connus de type «épitaxie par jet moléculaire», «épitaxie par organometalliques», ou «épitaxie en phase liquide».
Dans l'émetteur à microcavité, la zone active réalisée avec les matériaux semi-conducteurs décrits ci-dessus se trouve à l'intérieur d'une microcavité optique, constituée d'une cavité de type Fabry-Perot comprenant deux miroirs. La cavité Fabry-Perot est calculée de façon à faire correspondre la résonance optique de la cavité avec la longueur d'onde d'émission du semiconducteur. Les microcavités optiques résonantes (de type Fabry-Perot) sont également connues par 1 ' homme de 1 ' art . L'utilisation d'une microcavité optique résonante permet d'améliorer considérablement les performances de l'émetteur par rapport à une émission qui aurait lieu sans microcavité résonante. Les avantages liés à l'utilisation d'une cavité résonante peuvent s'énumérer comme suit :
- augmentation de l'émission spontanée et de la quantité de lumière émise (augmentation d'un facteur sensiblement égal à 10) , - affinement spectral de l'émission (le spectre d'émission est affiné d'un facteur 10 à 20),
- meilleure directivité (diminution de la divergence d'un angle d'environ 20°),
- diminution très importante de la dépendance en température de la longueur d'onde d'émission
(diminution d'un facteur 100).
Le pompage optique nécessite une source dont la longueur d'onde est inférieure à celle de l'émetteur afin de pouvoir être absorbée par la zone active du semi-conducteur. Par exemple, pour les émetteurs infrarouges à base de CdHgTe émettant dans la gamme 3- 5μm, une diode laser ou une diode électroluminescente émettant, par exemple à 780nm, 800nm, ou 980nm, peut être utilisée. Il n'est avantageusement pas nécessaire de réguler la longueur d'onde d'émission de la pompe optique. Ceci simplifie considérablement le dispositif, car il n'est pas nécessaire de faire une régulation de température.
La puissance d'émission est proportionnelle à la puissance de pompe. Elle peut être, par exemple, comprise entre 1 et 100 micro atts à la température ambiante. Pour l'application considérée ici, on utilisera, par exemple, une diode laser pour exciter optiquement les émetteurs.
Le miroir d'entrée de la microcavité optique est conçu pour être transparent aux longueurs d'onde d'excitation du faisceau de la diode laser de pompe. Ceci est réalisé d'une manière classique, avec un miroir dichroïque ayant une bande de transparence aux longueurs d'onde d'excitation et une réflectivité élevée à la longueur d'onde de l'émetteur.
D'autre part, il est possible d'augmenter la sensibilité du dispositif avec l'utilisation d'une électronique dédiée. En effet, les faisceaux d'émission des émetteurs infrarouges El et E2 peuvent être modulés en intensité lumineuse par la modulation du faisceau de l'élément optique de pompage. Si l'on considère que l'élément de pompage est une diode laser, on peut moduler le faisceau optique de sortie de l'émetteur infrarouge avec une fréquence supérieure à 100 MHz. A l'aide de cette propriété, on peut utiliser des fonctions de filtrage électronique (par exemple la fonction de détection synchrone) qui permettent de sélectionner le signal utile à détecter (amélioration du rapport signal sur bruit) . De façon générale, chaque moyen de réception comprend un filtre interférentiel pour sélectionner la lumière à recevoir. Dans le cas de la détection synchrone, il est alors possible de supprimer ce filtre des moyens de réception. En utilisant, par exemple, une modulation codée, un seul élément de réception peut alors être activé sélectivement en fonction de l'émetteur activé. Ce mode de réalisation de l'invention est représenté en figure 2 où une commande de modulation codée Mod est appliquée à un unique moyen de réception R.
Selon l'invention, le fait de faire une mesure différentielle entre une mesure de signal utile et une mesure de référence permet avantageusement de réduire les bruits parasites ambiants et de supprimer les dérives en température des chaînes de mesure.
La figure 3 représente un premier exemple de réalisation de dispositif de mesure de concentration de gaz selon l'invention.
Le dispositif comprend quatre émetteurs El, E2, E3, E4 et quatre diodes détectrices Dl, D2, D3, D4. Le rayonnement li (i≈l, 2, 3, 4) issu de l'émetteur Ei est couplé à la cavité C par une lentille Lli. Le rayonnement ti (i≈l, 2, 3, 4) qui sort de la cavité C est couplé au détecteur Di par une lentille Lti. Le signaux électriques issus des détecteurs Di (i=l, 2, 3, 4) sont transmis au circuit de traitement T. Le spectre d'émission de l'émetteur El se situe dans la bande d'absorption d'un premier gaz à détecter et le spectre d'émission de l'émetteur E3 se situe dans la bande d'absorption d'un deuxième gaz à détecter. L'émetteur E2 est associé à l'émetteur El pour la mesure de la concentration du premier gaz et l'émetteur E4 est associé à l'émetteur E3 pour la mesure de la concentration du deuxième gaz.
Le dispositif tel que représenté en figure 3 comprend quatre émetteurs et permet de faire une mesure de concentration de deux gaz différents (respectivement NI et N2) . De façon plus générale, l'invention concerne un dispositif comprenant 2xn émetteurs pour faire une mesure de concentration de n gaz différents .
La figure 4 représente un deuxième exemple de réalisation de dispositif de mesure de concentration de gaz selon l'invention.
Selon ce deuxième exemple, des miroirs sont utilisés pour la transmission du rayonnement dans la cavité. Le rayonnement li (i=l, 2, 3, 4) qui pénètre dans la cavité est successivement réfléchi par les miroirs ai, bi et ci. Les miroirs bi et ci sont placés de part et d'autre de la cavité C. Le miroir ci est orienté de façon à permettre au rayonnement ti de sortir de la cavité par un orifice prévu à cet effet. Les miroirs peuvent être fabriqués, par exemple, à l'aide de pièces métalliques pliées puis polies. Cette technologie présente l'avantage de pouvoir être mise en œuvre facilement et d'éviter l'emploi d'une optique ZnSe. Pour pallier un encrassement éventuel des chaînes de mesure par les impuretés véhiculées par le flux de gaz, on peut disposer des déflecteurs de protection DFi. En cas d'encrassement, les déflecteurs DFi peuvent être nettoyés par un dispositif de chauffage à haute température qui a pour effet de brûler les impuretés.
Selon l'exemple de réalisation de l'invention représenté sur la figure 4, les émetteurs Ei (i=l, 2, 3, 4) et les moyens de réception Ri sont placés du même côté de la cavité. Avantageusement, l'électronique de traitement pour l'émission et la réception des rayonnements peut alors être localisée en un même lieu. II est alors plus facilement possible de protéger les parties optiques d'émission et de réception. Par ailleurs, le trajet optique du rayonnement qui parcourt la cavité est un trajet de type aller-retour. Ce trajet est alors sensiblement deux fois plus long que le trajet parcouru par le rayonnement dans les cas précédents (cf. figures 1, 2 et 3) . Cela conduit avantageusement à améliorer la sensibilité de la chaîne de mesure.
La figure 5 représente un troisième exemple de réalisation de dispositif de mesure de concentration de gaz selon l'invention.
Selon ce troisième exemple de réalisation, des conducteurs de lumière sont utilisés pour guider les différents rayonnements li vers la cavité C. De même, des conducteurs de lumière sont utilisés pour guider les différents rayonnements ti issus de la cavité vers des moyens de détection. Les conducteurs de lumière peuvent être, par exemple, des fibres optiques ou des endoscopes .
Le rayonnement li issu de l'émetteur Ei (i=l, 2, 3, 4) est ainsi acheminé vers la cavité C par un conducteur de lumière FEi et le rayonnement ti issu de la cavité est transmis au détecteur Di par un conducteur de lumière FRi. Une lentille Lli permet de focaliser le rayonnement li dans la cavité. Le rayonnement qui pénètre dans la cavité est réfléchi par un miroir ci. Le miroir ci est orienté de façon à permettre au rayonnement ti de sortir de la cavité par un orifice prévu à cet effet.
Un avantage de ce mode de réalisation est de permettre l' éloignement de la cavité C de la zone de traitement optoélectronique. La zone de traitement optoélectronique peut alors être portée à une température différente de la température de la cavité (par exemple, une température plus basse) . Cet avantage est particulièrement intéressant pour l'analyse des gaz d'échappement dans une automobile.
Dans le cadre de l'invention décrite ci-dessus, les émetteurs peuvent être regroupés, sur un même substrat, sous forme de barrette ou de matrice d'émetteurs. Les émetteurs sont pompés par un réseau de diodes laser de longueur d'onde sensiblement égale, par exemple, à 800nm. Les dimensions du réseau de diodes laser sont sensiblement égales aux dimensions des émetteurs laser de pompe. Une barrette ou une matrice est réalisée, après épitaxie et fabrication des miroirs, soit par lithographie et gravure pour dégager des zones émettrices en face des zones actives des émetteurs de pompe, soit en masquant à l'aide d'un masque métallique (trous gravés) les zones qui ne doivent pas émettre de lumière. Le mode de réalisation de l'invention représenté en figure 5 comprend quatre émetteurs et permet de faire une mesure de concentration de deux gaz différents. L'invention concerne également le cas où le dispositif comprend 2xn émetteurs et permet de faire une mesure de concentration de n gaz différents. Avantageusement, le nombre n peut être assez élevé (par exemple égal à 10) , du fait de la grande possibilité de choix de longueurs d'ondes dans la gamme 3μm-6μm.
Selon les modes de réalisation de l'invention décrits aux figures 3, 4 et 5, le dispositif de mesure comprend autant d'émetteurs dont le spectre d'émission se situe en dehors de la bande d'absorption des gaz que de gaz dont la concentration est à mesurer. L'invention concerne cependant également le cas où le nombre d'émetteurs dont le spectre d'émission se situe en dehors de la bande d'absorption des gaz est inférieur au nombre de gaz dont la concentration est à mesurer. Par exemple, un seul émetteur dont le spectre d'émission se situe en dehors de la bande d'absorption des gaz peut être utilisé pour la mesure de concentration de plusieurs gaz différents.

Claims

REVENDICATIONS
1. Dispositif de mesure de concentration de gaz comprenant : - une cavité (C) contenant au moins un gaz dont la concentration est à mesurer, au moins un premier émetteur (El) constitué d'une microcavité optique pompée par des moyens optiques de pompage et dont le spectre d' émission se situe dans la bande d'absorption du gaz, au moins un deuxième émetteur (E2) constitué d'une microcavité optique pompée par des moyens optiques de pompage et dont le spectre d'émission se situe en dehors de la bande d'absorption du gaz, - des moyens de réception (Ri) pour mesurer l'intensité optique (I) d'un premier rayonnement issu du premier émetteur (El) et transmis à travers la cavité (C) et l'intensité optique (I0) d'un deuxième rayonnement issu du deuxième émetteur (E2) et transmis à travers la cavité (C) , et
- un circuit de traitement (T) pour mesurer la concentration (N) du gaz à partir de l'intensité optique (I) du premier rayonnement et de l'intensité optique (I0) du deuxième rayonnement.
2. Dispositif selon la revendication 1, caractérisé en ce qu'il comprend un premier élément optique (Lli) situé sur une première paroi de la cavité pour permettre au rayonnement (li) issu d'un émetteur (Ei) de pénétrer dans la cavité (C) et un deuxième élément optique (Lti) situé sur une deuxième paroi de la cavité située en face de la première paroi pour permettre au rayonnement qui a pénétré dans la cavité de sortir de la cavité (C) .
3. Dispositif selon la revendication 1, caractérisé en ce que la cavité (C) comprend une première ouverture pour permettre au rayonnement (li) issu d'un émetteur (Ei) de pénétrer dans la cavité, en ce que la cavité renferme un système de miroirs (ai, bi, ci) pour propager le rayonnement à l'intérieur de la cavité et en ce que la cavité comprend une deuxième ouverture, voisine de la première ouverture, pour permettre au rayonnement propagé par le système de miroirs de sortir de la cavité (C) .
4. Dispositif selon la revendication 3, caractérisé en ce que le système de miroirs (ai, bi, ci) est configuré de telle sorte que le rayonnement qui pénètre à l'intérieur de la cavité accomplit au moins un trajet sensiblement aller-retour entre la première ouverture et la deuxième ouverture.
5. Dispositif selon la revendication 3 ou 4, caractérisé en ce que les miroirs (ai, bi, ci) sont des pièces métalliques pliées et polies.
6. Dispositif selon l'une quelconque des revendications 3 à 5, caractérisé en ce qu'il comprend un conducteur de lumière (FEi) pour acheminer le rayonnement issu d'un émetteur (Ei) vers la première ouverture et un conducteur de lumière pour acheminer le rayonnement qui sort de la deuxième ouverture vers un moyen de réception (Ri) .
7. Dispositif selon la revendication 6, caractérisé en ce que le conducteur de lumière est une fibre optique ou un endoscope.
8. Dispositif selon la revendication 6 ou 7, caractérisé en ce que les émetteurs sont regroupés sous forme de barrettes ou de matrices.
9. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que les moyens optiques de pompage sont constitués de diodes laser.
10. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que les moyens de réception comprennent un premier moyen de réception pour mesurer l'intensité optique du premier rayonnement (I) et un deuxième moyen de réception pour mesurer l'intensité optique du deuxième rayonnement (Io)
11. Dispositif selon l'une quelconque des revendications 1 à 9, caractérisé en ce que les moyens de réception comprennent au moins un moyen de réception activé sélectivement pour mesurer soit l'intensité optique du premier rayonnement (I), soit l'intensité optique du deuxième rayonnement (I0) .
12. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que des déflecteurs (DFi) sont placés à l'intérieur de la cavité (C) .
13. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que les microcavités optiques du premier (El) et/ou du deuxième
(E2) émetteurs comprennent une région active fabriquée à partir de matériau semi-conducteur CdHgTe, ou GaAlN, ou A1BN, ou GaAlAs, ou GaAsSb, ou GaAISb ou avec des alliages de semi-conducteurs de famille II-VI ou de famille III-V.
14. Dispositif de contrôle de fonctionnement d'un élément catalytique de ligne d'échappement d'un véhicule automobile, caractérisé en ce qu'il comprend un dispositif selon l'une quelconque des revendications précédentes .
PCT/FR2002/000025 2001-01-05 2002-01-04 Dispositif de mesure de concentration de gaz WO2002061403A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/250,317 US7034325B2 (en) 2001-01-05 2002-01-04 Device for measuring gas concentration having dual emitter
EP02710081A EP1348119A1 (fr) 2001-01-05 2002-01-04 Dispositif de mesure de concentration de gaz
JP2002561923A JP4242649B2 (ja) 2001-01-05 2002-01-04 ガス濃度測定デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0100132A FR2819311B1 (fr) 2001-01-05 2001-01-05 Dispositif de mesure de concentration de gaz
FR01/00132 2001-01-05

Publications (1)

Publication Number Publication Date
WO2002061403A1 true WO2002061403A1 (fr) 2002-08-08

Family

ID=8858553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2002/000025 WO2002061403A1 (fr) 2001-01-05 2002-01-04 Dispositif de mesure de concentration de gaz

Country Status (5)

Country Link
US (1) US7034325B2 (fr)
EP (1) EP1348119A1 (fr)
JP (1) JP4242649B2 (fr)
FR (1) FR2819311B1 (fr)
WO (1) WO2002061403A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1809264A2 (fr) * 2004-09-20 2007-07-25 Acrymed, Inc. Compositions antimicrobiennes amorphes
US8412334B2 (en) 2000-06-20 2013-04-02 Boston Scientific Neuromodulation Corporation Treatment of mood and/or anxiety disorders by electrical brain stimulation and/or drug infusion
US8900624B2 (en) 2004-07-30 2014-12-02 Kimberly-Clark Worldwide, Inc. Antimicrobial silver compositions
US9687503B2 (en) 1999-12-30 2017-06-27 Avent, Inc. Devices for delivering oxygen to the wounds
US10251392B2 (en) 2004-07-30 2019-04-09 Avent, Inc. Antimicrobial devices and compositions
DE102008044171B4 (de) 2008-11-28 2022-08-11 Robert Bosch Gmbh Optischer Sensor, Abgasstrang und Verfahren zum Betrieb des Sensors

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6605751B1 (en) * 1997-11-14 2003-08-12 Acrymed Silver-containing compositions, devices and methods for making
CN1678277B (zh) 2002-07-29 2010-05-05 艾克里麦德公司 治疗皮肤病的方法和组合物
US8361553B2 (en) 2004-07-30 2013-01-29 Kimberly-Clark Worldwide, Inc. Methods and compositions for metal nanoparticle treated surfaces
JP2006220625A (ja) * 2005-02-14 2006-08-24 Denso Corp 赤外線式ガス検知装置
US8293965B2 (en) * 2006-04-28 2012-10-23 Kimberly-Clark Worldwide, Inc. Antimicrobial site dressings
AU2007338957B2 (en) * 2006-12-22 2014-05-22 Photonic Innovations Limited Gas detector
CA2743774C (fr) * 2008-11-24 2017-11-28 Kimberly-Clark Worldwide, Inc. Constructions stratifiees antimicrobiennes
US9562855B1 (en) 2009-12-03 2017-02-07 The Arizona Board Of Regents On Behalf Of The University Of Arizona Devices and methods for detection of microorganisms via MIE scattering
WO2010065669A1 (fr) * 2008-12-03 2010-06-10 Jeong-Yeol Yoon Procédés et dispositifs microfluidiques pour la détection de cellule unique d’escherichia coli
US9678005B1 (en) 2008-12-03 2017-06-13 Arizona Board Of Regents On Behalf Of The University Of Arizona Devices and methods for detection of microorganisms
CN103364343A (zh) * 2012-04-10 2013-10-23 天津大学 基于空芯光子晶体光纤的光纤气室装置
EP3538872B1 (fr) 2016-11-11 2022-04-06 Carrier Corporation Methode de mesure d'une condition a base de fibre optique
CN110118710B (zh) * 2019-05-06 2021-09-28 北京航天试验技术研究所 一种煤仓安全监测装置及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241367A (en) * 1990-02-03 1993-08-31 Robert Bosch Gmbh Device for measuring the composition of fluids, in particular the components of exhaust gases from internal combustion engines
DE4235225A1 (de) * 1992-10-13 1994-06-09 Iris Gmbh Infrared & Intellige Sensoranordnung zur Überwachung der Konvertierungsrate eines Abgaskatalysators
DE19634191A1 (de) * 1995-08-24 1997-02-27 John Tulip Vorrichtung und Verfahren zur Gasdetektion
JPH09318528A (ja) * 1996-05-28 1997-12-12 Matsushita Electric Works Ltd ガスセンサ
US5942755A (en) * 1997-02-19 1999-08-24 Dragerwerk Ag Infrared optical gas-measuring system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5797682A (en) * 1993-02-10 1998-08-25 Envirotest Systems Corp. Device and method for measuring temperture of vehicle exhaust

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241367A (en) * 1990-02-03 1993-08-31 Robert Bosch Gmbh Device for measuring the composition of fluids, in particular the components of exhaust gases from internal combustion engines
DE4235225A1 (de) * 1992-10-13 1994-06-09 Iris Gmbh Infrared & Intellige Sensoranordnung zur Überwachung der Konvertierungsrate eines Abgaskatalysators
DE19634191A1 (de) * 1995-08-24 1997-02-27 John Tulip Vorrichtung und Verfahren zur Gasdetektion
JPH09318528A (ja) * 1996-05-28 1997-12-12 Matsushita Electric Works Ltd ガスセンサ
US5942755A (en) * 1997-02-19 1999-08-24 Dragerwerk Ag Infrared optical gas-measuring system

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HADJI E ET AL: "3.3- MUM MICROCAVITY LIGHT EMITTER FOR GAS DETECTION", OPTICS LETTERS, OPTICAL SOCIETY OF AMERICA, WASHINGTON, US, vol. 25, no. 10, 15 June 2000 (2000-06-15), pages 725 - 727, XP000951922, ISSN: 0146-9592 *
HADJI E ET AL: "IR microcavity light emitters for gas detection", CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO 2000). TECHNICAL DIGEST. POSTCONFERENCE EDITION. TOPS VOL.39 (IEEE CAT. NO.00CH37088), CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO 2000). TECHNICAL DIGEST. POSTCONFERENCE EDITION. TOPS VOL.39, SAN FRANC, 2000, Salem, MA, USA, Opt. Soc. America, USA, pages 1 - 2, XP002178064, ISBN: 1-55752-634-6 *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 04 31 March 1998 (1998-03-31) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9687503B2 (en) 1999-12-30 2017-06-27 Avent, Inc. Devices for delivering oxygen to the wounds
US8412334B2 (en) 2000-06-20 2013-04-02 Boston Scientific Neuromodulation Corporation Treatment of mood and/or anxiety disorders by electrical brain stimulation and/or drug infusion
US8900624B2 (en) 2004-07-30 2014-12-02 Kimberly-Clark Worldwide, Inc. Antimicrobial silver compositions
US9888691B2 (en) 2004-07-30 2018-02-13 Avent, Inc. Antimicrobial silver compositions
US10251392B2 (en) 2004-07-30 2019-04-09 Avent, Inc. Antimicrobial devices and compositions
EP1809264A2 (fr) * 2004-09-20 2007-07-25 Acrymed, Inc. Compositions antimicrobiennes amorphes
EP1809264A4 (fr) * 2004-09-20 2008-11-19 Acrymed Inc Compositions antimicrobiennes amorphes
US9289378B2 (en) 2004-09-20 2016-03-22 Avent, Inc. Antimicrobial amorphous compositions
DE102008044171B4 (de) 2008-11-28 2022-08-11 Robert Bosch Gmbh Optischer Sensor, Abgasstrang und Verfahren zum Betrieb des Sensors

Also Published As

Publication number Publication date
JP4242649B2 (ja) 2009-03-25
FR2819311A1 (fr) 2002-07-12
EP1348119A1 (fr) 2003-10-01
JP2004522958A (ja) 2004-07-29
FR2819311B1 (fr) 2003-06-13
US7034325B2 (en) 2006-04-25
US20040108462A1 (en) 2004-06-10

Similar Documents

Publication Publication Date Title
WO2002061403A1 (fr) Dispositif de mesure de concentration de gaz
CA2413471C (fr) Dispositif optoelectronique a filtrage de longueur d'onde integre
EP0511913B1 (fr) Dispositif optoélectronique à guide optique et photodétecteur intégrés
EP2676166B1 (fr) Modulateur terahertz
WO2004042376A1 (fr) Dispositif de support d’elements chromophores
EP2337167A1 (fr) Laser hybride couplé à un guide d'onde
JP5837493B2 (ja) レーザーミラー上に取り付けられた吸収体を備える半導体レーザー
EP0863589B1 (fr) Laser unipolaire multi-longueurs d'ondes
FR2661784A1 (fr) Laser de puissance a miroir actif.
FR2733858A1 (fr) Convertisseur de lumiere d'infrarouge lointain au proche infrarouge
EP0252565B1 (fr) Dispositif semiconducteur intégré du type dispositif de couplage entre un photodéecteur et un guide d'ond lumineuse
FR2667207A1 (fr) Convertisseur de frequences lumineuses.
EP0762580A1 (fr) Amplificateur optique à faible diaphone
EP1089405B1 (fr) Laser semiconducteur à générations paramétriques
EP1019704B1 (fr) Detecteur optique actif
FR2830991A1 (fr) Cavite optique resonante sur une plage continue de frequences
EP0368755B1 (fr) Dispositif de détection d'un signal optique cohérent
FR2849922A1 (fr) Support d'elements chromophores.
EP1745531A2 (fr) Emetteur de rayonnement avec faisceau de pompage incline
WO2024115447A1 (fr) Dispositif à émission de surface, système optique et procédé associé
FR2706090A1 (fr) Dispositif résonateur pour obtenir de la lumière cohérente avec une largeur de bande de fréquence réduite.
WO2003043148A2 (fr) Composant monolithique electro-optique multisections
FR3054893A1 (fr) Dispositif de filtrage destine a detecter, dans un signal optique, au moins une longueur d'onde emise par un laser et une bande de longueurs d'ondes infrarouges
FR2613832A1 (fr) Procede et appareil de mesure de temperature par fibres optiques
FR2753794A1 (fr) Systeme de mesure spectrophotometrique par diodes a cavite resonnante

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002710081

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002561923

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2002710081

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10250317

Country of ref document: US