WO2002059555A1 - Transducteur magnetique portable - Google Patents

Transducteur magnetique portable Download PDF

Info

Publication number
WO2002059555A1
WO2002059555A1 PCT/EP2002/000784 EP0200784W WO02059555A1 WO 2002059555 A1 WO2002059555 A1 WO 2002059555A1 EP 0200784 W EP0200784 W EP 0200784W WO 02059555 A1 WO02059555 A1 WO 02059555A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
pole ends
sensor device
pole
adjacent
Prior art date
Application number
PCT/EP2002/000784
Other languages
English (en)
Inventor
Lutz Axel May
Original Assignee
Fast Technology Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fast Technology Ag filed Critical Fast Technology Ag
Priority to EP02718048A priority Critical patent/EP1360468A1/fr
Publication of WO2002059555A1 publication Critical patent/WO2002059555A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/102Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving magnetostrictive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/104Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving permanent magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/105Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving inductive means

Definitions

  • This invention relates to apparatus and method for sensing torque or force applied to a part.
  • the invention has particular, though not exclusive, application to measuring torque applied about the longitudinal axis of a shaft.
  • circumferential magnetisation One form of magnetisation proposed for a transducer element integral with a shaft is that known as circumferential magnetisation.
  • the magnetisation in this case is generated in a closed circumferentially extending loop about the shaft axis, the material in which the circumferential magnetisation is induced being one exhibiting magnetoelasticity.
  • the magnetised region generates axially-spaced North and South poles with the emanation of a torque-dependent field. Further discussion of circumferential magnetisation is disclosed, for example, in U.S.
  • Longitudinal magnetisation involves creating an annulus of magnetisation in a ferromagnetic transducer region.
  • the magnetisation is axially-directed and establishes a toroid of magnetic flux extending about the axis of the shaft.
  • the annular zone of longitudinal magnetisation referred to in the above-mentioned application is created by rotating a shaft relative to a magnet structure whose poles are axially separated as described with reference to Fig. 6 of WO01/13081.
  • the annular zone of stored or remanent magnetisation is surface adjacent and a closed loop of flux is completed within the ferromagentic material interiorly of the annular zone.
  • a lesser flux path also exists exteriorly of the annular zone as shown, inter alia, in Figs. 7a and 7b of WO01/13081.
  • the region of the shaft in which the stored magnetisation is created thus provides a transducer element.
  • the ferromagnetic material in which the stored magnetisation is created may or may not exhibit significant magnetoelasticity.
  • the field detectable externally of the shaft is torque-dependent. The nature of the torque-dependent response has been found to depend on the width w (in the axial
  • a non-contacting sensor arrangement of one or more sensor devices is associated with the transducer element. Such arrangements are disclosed and discussed in WO01/13081 and WO01/79801 previously mentioned.
  • Suitable sensor devices include saturating core, Hall effect and magnetoresistive types.
  • a preferred sensor circuit incorporating one or more saturating core type devices is disclosed in WO98/52063.
  • the shaft whose magnetisation is discussed above is of solid cross-section, the shaft may be hollow provided the wall thickness is sufficient to sustain the described toroidal flux distribution.
  • the transducer element is a distinct item carried by or integral with the shaft. Consequently a pre-conceived process has to be performed to provide the transducer element together with the sensor arrangement cooperating with it to create the complete transducer assembly.
  • the invention is founded on the concept of applying a magnetic structure having a pair of spaced pole ends at a position in which the pole ends are on or adjacent a part which is of ferromagnetic material and torque in which is to be measured.
  • the magnetic structure includes a magnetic source for magnetising the pole ends with opposite polarity to induce a magnetic flux in the portion of the part between the pole ends.
  • a magnetic sensor device is located intermediate the pole ends to respond to a torque-dependent component of magnetic field emanated from the surface of the part. This concept may be extended to more generally measuring force in a part.
  • Fig. 1 shows one embodiment, of the invention in a hand-held sensor unit for measuring torque in a rotating shaft
  • Fig. 2 illustrates the magnetic field induced in the shaft by the unit of Fig. 1 ;
  • Fig. 3 illustrates a potential problem with the unit of Fig. 1;
  • Fig. 4 shows the provision of magnetic shielding to at least mitigate the problem illustrated in Fig. 3;
  • Fig. 5 shows another embodiment of Fig. 1 employing a permanent magnet source;
  • Fig. 6 shows yet another embodiment of Fig. 1 utilizing two transducer regions.
  • Fig. 1 shows a unit embodying the invention applied to measuring torque in a shaft 30 rotating about an axis A-A.
  • the shaft is of circular cross-section.
  • the unit 40 comprises a magnetic structure 42 of ferromagnetic material. It has a pair of pole ends 44a and 44b between which a magnetic source 46 is provided. To this end the magnetic structure may be of U- or horseshoe shape the source being provided in the base 48 of the U-shape.
  • the source is an electromagnet comprising a coil 50 wound about a core portion of base 48.
  • one pole, 44a Upon energising the coil with direct current I, one pole, 44a say, is made North the other 44b South, and the adjacent surface portion 32 of the shaft closes an axially-directed flux path 52 between the poles as is better seen in Fig. 2.
  • the magnetic field induced in the shaft is longitudinal, that is extending in an axial direction. In contrast to the longitudinal magnetisations discussed above, it is, however, a localized magnetisation in the vicinity of the region between the poles. It is not intended to induce a remanent (permanent) magnetisation into the shaft. To this end it is presently considered that the fields used should not exceed about 30 Gauss.
  • the pole ends are co-planar in the embodiment shown, lying in a common plane tangential to the surface of the shaft 30 at portion 32.
  • the pole end surfaces may be made concave to better engage the shaft surface and may be given a thin coating of a material having good tribological properties.
  • the pole ends could be provided with means such as rollers in a low reluctance path to engage the shaft surface. It may also be desirable in some cases to de-gauss the region of the shaft in which the flux-path 52 is to be established.
  • Fig. 2 illustrates that associated with the internal, surface-adjacent, longitudinal flux induced in the shaft 30 is a component 58 external to the shaft adjacent the surface and capable of being sensed by a magnetic sensor device 60 comprising one or more sensors.
  • Device 60 is adjacent to but not contacting the surface of shaft 30.
  • the sensor device is located intermediate pole ends 44a and 44b and lies in or adjacent the common plane shared by the ends.
  • the sensor device 60 is oriented to respond to the torque-dependent tangential or circumferential component of field. This arises by considering that when the shaft is under torque the longitudinal field direction is skewed from alignment with the axial direction in a direction and to an extent dependent on the direction and magnitude of the torque.
  • the sensor device 60 may also comprise one or more sensors for detecting the axially-directed component of field. This component may be used as a reference against which the torque-dependent component is measured. It will be understood that because real magnetic flux lines extend in curved paths, other sensor orientations may be possible to sense any direction of flux, where the flux is torque-dependent.
  • Fig. 3 illustrates the possibility of stray fields 66 from the coil 50 affecting the magnetic sensor(s) such as 60.
  • This problem can be obviated as illustrated in Fig. 4 by using a magnetic screen 70 which can be realised in the form of an enclosure for the coil and the core portion of the base 48 surrounded by it.
  • a magnetic screen 70 which can be realised in the form of an enclosure for the coil and the core portion of the base 48 surrounded by it.
  • mu- metal may be appropriate for the screening material.
  • A.C. energisation good electrically conductive materials generally are usable such as aluminium.
  • the magnetisation source so far discussed uses a D.C. energised coil.
  • the coil could be A.C. energised.
  • the resultant alternating polarity flux in path 52 would be reflected in an A.C. output from the magnetic sensor(s).
  • This can be employed to advantage by choosing the frequency of energisation and using a frequency- selective technique for detection. These measures can allow a better signal-to- noise ratio to be achieved than would otherwise be possible by discriminating from any local D.C. magnetic fields that may be present and local A.C. magnetic fields, e.g. at the mains (powerline) frequency.
  • FIG. 5 Another form of magnetisation source is illustrated in Fig. 5.
  • the unit of Fig. 5 is equivalent to a D.C. energised unit of Fig. 1 but a source in the form of permanent magnet 46' is provided between the pole ends in the U-shaped magnetic structure, the legs of the U-shape serving to guide the magnetic flux to the poles 44a, 44b.
  • Fig. 6 shows the provision of a unit in which two axially spaced transducer regions 32a, 32b are employed. Separate magnetic structures could be employed for inducing flux in each region but conveniently the regions are activated with opposite polarity using a double-U structure having a common pole 44'a and respective opposite poles 44'b and 44"b. To this end the coils must be energised appropriately and, for example, can be series connected with appropriate polarity as indicated in Fig. 5. The energisation can be D.C. or A.C. as already described.
  • the permanent magnet alternative of Fig. 5 may also be employed with a respective permanent magnet between poles 44'b and 44'a and between poles 44'a and 44"b with like poles directed toward common pole 44'a.
  • a respective sensor device 60' and 60" is provided intermediate pole ends 44'b and 44'a and pole ends 44'a and 44"b. In the embodiment shown all three pole ends are coplanar and colinear and the sensor devices lie in or adjacent the common plane.
  • the sensor devices 60' and 60" are oriented for detecting the torque-dependent components of regions 32a, 32b.
  • the sensor devices 60' and 60" can each comprise more than one sensor device, such as sensors 60a and 60b in Fig. 2a.
  • the sensor devices 60' and 60" are connected in an additive manner as regards the wanted magnetic field components to be detected. This takes into account the opposite polarity of field induced in regions 32a and 32b by the connection of L1 and L2 as shown in Fig. 8. However, the sensor devices will be connected to cancel or nullify a common imposed extraneous field having the same polarity in regions 32a and 32b.
  • the magnetic sensor device(s) may be of the saturating core type connected in a sensor circuit as disclosed in WO98/52063.
  • the complete hand-held unit comprising the magnetic structure and sensor device can be realised as a unitary structure for example by potting or embedding the components in the operative working positions.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

L'invention concerne une unité portable de mesure d'un couple, présentant une structure magnétique (40) à deux extrémités polaires à distance entre elles (44a : 44b) de polarité opposée, applicables sur/ ou au voisinage de la surface d'une portion (32) d'un arbre en rotation (30) en un matériau ferromagnétique, les pôles (44a : 44b) étant espacés dans la direction de l'axe de l'arbre. Un flux magnétique (52) dirigé axialement, adjacent à la surface, est induit dans la portion locale de l'arbre (30) située entre les pôles. Un dispositif détecteur magnétique (60) placé entre les pôles (44a : 44b) est orienté pour détecter un composant, dépendant du couple, du champ magnétique induit extérieur à la surface de l'arbre. Le dispositif détecteur magnétique peut comprendre un détecteur destiné à détecter le composant extérieur dirigé axialement, en tant que référence de mesure. La structure magnétique comprend une source magnétique (16) constituée par un aimant permanent (46') ou par une bobine (50) excitée par un courant alternatif ou continu. Il est prévu, en variante, une structure magnétique double en U présentant un pôle central (44'a) de polarité opposée aux deux pôles extérieurs (44'b : 44''b).
PCT/EP2002/000784 2001-01-25 2002-01-24 Transducteur magnetique portable WO2002059555A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02718048A EP1360468A1 (fr) 2001-01-25 2002-01-24 Transducteur magnetique portable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0101981.9A GB0101981D0 (en) 2001-01-25 2001-01-25 Portable magnetic transducer
GB0101981.9 2001-01-25

Publications (1)

Publication Number Publication Date
WO2002059555A1 true WO2002059555A1 (fr) 2002-08-01

Family

ID=9907521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/000784 WO2002059555A1 (fr) 2001-01-25 2002-01-24 Transducteur magnetique portable

Country Status (3)

Country Link
EP (1) EP1360468A1 (fr)
GB (1) GB0101981D0 (fr)
WO (1) WO2002059555A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007025720A1 (fr) * 2005-08-30 2007-03-08 Nctengineering Gmbh Dispositif de capteur, agencement de capteur et procédé de mesure d'une propriété d'un objet
NL2006395C2 (en) * 2011-03-15 2012-09-18 Grontmij Nederland B V System for calibrating and measuring mechanical stress in at least a part of a rail.
US20130221950A1 (en) * 2012-02-23 2013-08-29 Polycontact Ag Method and measurement arrangement for measuring mechanical stresses in ferromagnetic workpieces
JP2013210365A (ja) * 2012-02-29 2013-10-10 Honda Motor Co Ltd 磁歪式トルクセンサ
EP2708854A1 (fr) * 2012-09-13 2014-03-19 Bourns, Inc. Mesure de position au moyen de détection d'angle et de modulation du flux
JP2014153254A (ja) * 2013-02-12 2014-08-25 Honda Motor Co Ltd 磁歪式トルクセンサ及び電動パワーステアリング装置
EP3051265A1 (fr) * 2015-01-29 2016-08-03 Torque and More (TAM) GmbH Dispositif de mesure de force
EP3123133A4 (fr) * 2014-03-26 2017-11-29 Methode Electronics, Inc. Systèmes et procédés permettant de réduire le bruit de rotation dans un dispositif magnéto-élastique et de mesurer le couple, la vitesse, et l'orientation
US10254181B2 (en) 2014-03-26 2019-04-09 Methode Electronics, Inc. Systems and methods for reducing rotation noise in a magnetoelastic device and measuring torque, speed, and orientation
EP3486628A1 (fr) * 2010-06-21 2019-05-22 ABAS Inc. Système de mesure du couple et da la force
WO2023079435A1 (fr) * 2021-11-02 2023-05-11 LANDMAN, Werner Capteur et procédé de détection

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3861206A (en) * 1972-04-03 1975-01-21 Hitachi Ltd Method and device for measuring a stress employing magnetostriction
US4805466A (en) * 1986-10-16 1989-02-21 Daimler-Benz Aktiengesellschaft Device for the contactless indirect electrical measurement of the torque at a shaft
JPS6486030A (en) * 1987-09-29 1989-03-30 Nippon Soken Torque detector
JPH0526746A (ja) * 1991-07-18 1993-02-02 Kubota Corp トルクセンサ用シールドの製造方法
WO2000058704A1 (fr) * 1999-03-26 2000-10-05 Fast Technology Ag. Capteur de couple et de vitesse

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3861206A (en) * 1972-04-03 1975-01-21 Hitachi Ltd Method and device for measuring a stress employing magnetostriction
US4805466A (en) * 1986-10-16 1989-02-21 Daimler-Benz Aktiengesellschaft Device for the contactless indirect electrical measurement of the torque at a shaft
JPS6486030A (en) * 1987-09-29 1989-03-30 Nippon Soken Torque detector
JPH0526746A (ja) * 1991-07-18 1993-02-02 Kubota Corp トルクセンサ用シールドの製造方法
WO2000058704A1 (fr) * 1999-03-26 2000-10-05 Fast Technology Ag. Capteur de couple et de vitesse

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 013, no. 316 (P - 900) 18 July 1989 (1989-07-18) *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 302 (P - 1553) 10 June 1993 (1993-06-10) *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007025720A1 (fr) * 2005-08-30 2007-03-08 Nctengineering Gmbh Dispositif de capteur, agencement de capteur et procédé de mesure d'une propriété d'un objet
US8058865B2 (en) 2005-08-30 2011-11-15 Nctengineering Gmbh Sensor device, sensor arrangement, and method of measuring a property of an object
EP3486628A1 (fr) * 2010-06-21 2019-05-22 ABAS Inc. Système de mesure du couple et da la force
NL2006395C2 (en) * 2011-03-15 2012-09-18 Grontmij Nederland B V System for calibrating and measuring mechanical stress in at least a part of a rail.
WO2012125029A1 (fr) * 2011-03-15 2012-09-20 Grontmij Nederland B.V. Système pour étalonner et mesurer une contrainte mécanique dans au moins une partie d'un rail
CN103688146A (zh) * 2011-03-15 2014-03-26 荷兰赫隆特迈有限公司 用于校准和测量铁轨的至少一部分中的机械应力的系统
US20130221950A1 (en) * 2012-02-23 2013-08-29 Polycontact Ag Method and measurement arrangement for measuring mechanical stresses in ferromagnetic workpieces
JP2013210365A (ja) * 2012-02-29 2013-10-10 Honda Motor Co Ltd 磁歪式トルクセンサ
CN103675756A (zh) * 2012-09-13 2014-03-26 伯恩斯公司 使用通量调制和角度感测的位置测量
US9488496B2 (en) 2012-09-13 2016-11-08 Bourns, Inc. Position measurement using flux modulation and angle sensing
EP2708854A1 (fr) * 2012-09-13 2014-03-19 Bourns, Inc. Mesure de position au moyen de détection d'angle et de modulation du flux
JP2014153254A (ja) * 2013-02-12 2014-08-25 Honda Motor Co Ltd 磁歪式トルクセンサ及び電動パワーステアリング装置
EP3123133A4 (fr) * 2014-03-26 2017-11-29 Methode Electronics, Inc. Systèmes et procédés permettant de réduire le bruit de rotation dans un dispositif magnéto-élastique et de mesurer le couple, la vitesse, et l'orientation
US10254181B2 (en) 2014-03-26 2019-04-09 Methode Electronics, Inc. Systems and methods for reducing rotation noise in a magnetoelastic device and measuring torque, speed, and orientation
EP3051265A1 (fr) * 2015-01-29 2016-08-03 Torque and More (TAM) GmbH Dispositif de mesure de force
WO2016119931A1 (fr) * 2015-01-29 2016-08-04 Torque And More (Tam) Gmbh Dispositif de mesure des forces
WO2023079435A1 (fr) * 2021-11-02 2023-05-11 LANDMAN, Werner Capteur et procédé de détection

Also Published As

Publication number Publication date
GB0101981D0 (en) 2001-03-14
EP1360468A1 (fr) 2003-11-12

Similar Documents

Publication Publication Date Title
KR920006499B1 (ko) 토오크 센서
US6776057B1 (en) Magnetized transducer element for torque or force sensor
EP0829001B1 (fr) Detecteur de puissance et de couple sans contact et a magnetisation circulaire, et procede pour mesurer le couple et la puissance, avec cet appareil
EP1070237B1 (fr) Capteur magnetique de force et son procede de fabrication
WO2002023146A1 (fr) Systeme de detection de couple magnetique
CA2476543A1 (fr) Mesure de couple pulse, mesure d'une force ou mesure d'ordre general a l'aide d'une bobine et d'un capteur de champ magnetique (de maniere tangentielle et circonferentielle)
PT1211494E (pt) Aparelho e metodo de medida de binario
CA1316714C (fr) Appareil servant a detecter un couple
EP1360468A1 (fr) Transducteur magnetique portable
AU1620502A (en) Measurement of stress in a ferromagnetic material
JP3352366B2 (ja) パルス信号発生装置
ATE371236T1 (de) Münzunterscheidungsvorrichtung, in der frequenzen von wirbelströmen gemessen werden
JPH1038714A (ja) トルク測定装置および該トルク測定装置を用いた紙幣繰り出し機構
RU97113301A (ru) Устройство для локального измерения ферромагнитной фазы аустенитных сталей
JPH0454322A (ja) 磁性粒子式電磁連結装置
WO2002084371A3 (fr) Scanner utilise dans la protection produit
JPS6196430A (ja) トルク測定方法及び軽量トルクメ−タ
SE9503690L (sv) Förfarande och anordning för att bestämma vinkelhastigheten hos en roterande cylindrisk axel av elektriskt ledande meterial
WO2002059556A1 (fr) Magnetisation d'un transducteur magnetique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002718048

Country of ref document: EP

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWP Wipo information: published in national office

Ref document number: 2002718048

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP