WO2002057501A1 - Heating furnace with regenerative burners and method of operating the heating furnace - Google Patents

Heating furnace with regenerative burners and method of operating the heating furnace Download PDF

Info

Publication number
WO2002057501A1
WO2002057501A1 PCT/JP2001/011508 JP0111508W WO02057501A1 WO 2002057501 A1 WO2002057501 A1 WO 2002057501A1 JP 0111508 W JP0111508 W JP 0111508W WO 02057501 A1 WO02057501 A1 WO 02057501A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace
exhaust gas
heating
heating furnace
regenerative
Prior art date
Application number
PCT/JP2001/011508
Other languages
French (fr)
Japanese (ja)
Inventor
Ichiro Sugimoto
Kenta Karube
Masahiro Furukawa
Kazunari Andachi
Original Assignee
Kawasaki Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001008524A external-priority patent/JP3937729B2/en
Priority to JP2001008524A priority Critical patent/JP3937729B2/en
Priority claimed from JP2001008523A external-priority patent/JP3800008B2/en
Priority claimed from JP2001014230A external-priority patent/JP2002212630A/en
Priority claimed from JP2001017017A external-priority patent/JP2002220621A/en
Priority claimed from JP2001016974A external-priority patent/JP2002220620A/en
Priority to CA002403221A priority patent/CA2403221C/en
Priority to BR0109303-7A priority patent/BR0109303A/en
Priority to DE60124691T priority patent/DE60124691T2/en
Priority to CNB018092470A priority patent/CN100338236C/en
Priority to EP01273342A priority patent/EP1275740B1/en
Application filed by Kawasaki Steel Corporation filed Critical Kawasaki Steel Corporation
Priority to US10/220,726 priority patent/US6644962B2/en
Publication of WO2002057501A1 publication Critical patent/WO2002057501A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/52Methods of heating with flames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/66Preheating the combustion air or gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/02Arrangements of regenerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/40Arrangements of controlling or monitoring devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0081Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/36Arrangements of heating devices
    • F27B2009/3638Heaters located above and under the track
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • F27D2017/007Systems for reclaiming waste heat including regenerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0028Regulation
    • F27D2019/0031Regulation through control of the flow of the exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0033Heating elements or systems using burners
    • F27D2099/0053Burner fed with preheated gases
    • F27D2099/0056Oxidant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to a heating furnace having a regenerative parner and its operating method.
  • the present invention relates to a method for optimally controlling a furnace pressure of a heating furnace.
  • the present invention relates to a method for controlling the atmosphere in a heating furnace, and particularly to a method for suppressing an increase in oxygen concentration in the atmosphere.
  • TECHNICAL FIELD The present invention relates to a method for operating a heating furnace having a regenerative parner, and more particularly to an operating method for advantageously performing alternating combustion of a pair of parners in a regenerative parner and a heating furnace used directly in this operation. It is.
  • the present invention relates to a method for measuring the concentration of atmospheric gas in a heating furnace and a heating furnace. Background art
  • Steel heating furnaces are used for the purpose of reheating steel slabs rough-rolled in a lump mill or continuously manufactured slabs to final products at a predetermined temperature suitable for the rolling. I have. This heating furnace is roughly classified into a patch type and a continuous type. Each has its strengths and weaknesses, so they are selectively used according to their purpose. Continuous heating furnaces are widely used in steelworks because they are suitable for mass production in recent years.
  • Figure 1 shows a typical example of a sectional view of a continuous heating furnace. Generally, it consists of the pre-tropical zone 1, the heating zone 2 and the average tropical zone 3 in order from the loading side of the steel material. At least the heating zone 2 and the average tropical zone 3 are heated and maintained at a predetermined temperature by the pana 4.
  • the steel material 5 introduced into the pre-tropical zone 1 from the charging door 1 a moves on the transport path 6, is heated to a predetermined temperature through the heating zone 2 and the soaking zone 3, and is extracted to the predetermined temperature in the soaking zone 3 a From the furnace.
  • Exhaust gas generated by the combustion of the parna 4 is discharged out of the furnace through a flue 7 provided at the entrance of the pre-tropical zone 1.
  • 7a is a recuperator for exchanging the sensible heat of the flue gas in the flue gas with the sensible heat of the air for burner combustion
  • 7b is a damper for furnace pressure control.
  • the continuous heating furnace it is necessary to heat the steel material to a temperature suitable for the subsequent rolling process. If the temperature of the steel material heated in the continuous heating furnace falls below the predetermined lower limit of the rolling temperature, the rolling operation and product quality will be adversely affected. On the other hand, if the temperature of the steel material extracted from the heating furnace rises more than necessary, the heat loss in the continuous steel heating furnace will increase. It becomes important to heat with fuel. Further, in the heating furnace, it is also required to adjust the heating time so that the heated steel material is sequentially supplied from the heating furnace in accordance with the rolling pitch in the rolling process.
  • heat loss especially radiant energy loss from the heating zone
  • Pre-tropical and solitary zones are placed on the entrance and exit sides of the heating zone, and the furnace is partitioned into three sections to reduce heat loss.
  • the steel material to be charged into the continuous heating furnace includes a piece cooled to room temperature, and a hot charge material immediately sent to the rolling process immediately after continuous production, and the temperature at the heating furnace entrance side varies.
  • the heating temperature varies widely, and the throughput of the steel material to be heated in the heating furnace also varies. It is necessary to control the temperature inside the furnace according to these various conditions.
  • the heating temperature is adjusted by increasing or decreasing the burner amount of the parner. At this time, the furnace pressure fluctuates due to the change in the burner amount of the wrench.
  • the furnace pressure in the lower region (hereinafter referred to as the lower zone) bounded by the transfer path in the furnace is a negative pressure (hereinafter simply referred to as negative pressure) with respect to the pressure outside the furnace. Pressure). It was difficult to reliably prevent air from entering through the gap below the loading and extraction doors. It has been difficult to reliably prevent air from entering through the so-called extra oak opening, in which these doors mesh and close together.
  • the comb-shaped opening of the extract rough oak is 3c shown in Fig.14.
  • Japanese Patent Application Laid-Open No. 9-209032 discloses that a furnace pressure damper provided in a flue through which exhaust gas from a heating furnace passes above a solitary tropic zone, and the furnace pressure is adjusted according to the fuel load of the heating furnace. Optimum control is disclosed.
  • the draft of the flue is larger than the pressure loss due to the flow of exhaust gas from the furnace to the flue. Draft is a phenomenon in which buoyancy is generated in the gas heated in the flue / furnace, resulting in negative pressure. In this case, it is difficult to make the lower zone positive by the furnace pressure damper. It was difficult to reliably prevent air from entering through the charging and extraction doors.
  • Japanese Patent Application Laid-Open No. 7-316645 discloses a method in which a gas supply piping system is connected to the outlet of a recuperator of a stack to blow gas such as air into the stack to control furnace pressure.
  • a gas supply piping system is connected to the outlet of a recuperator of a stack to blow gas such as air into the stack to control furnace pressure.
  • it is necessary to provide a new blower, various pipes, and a control system to control the furnace pressure.
  • the equipment costs are high and the maintenance is complicated.
  • the equipment around the heating furnace is complicated and complicated, it is difficult to install a new control system because there is no space to install it.
  • Preventing air from entering the furnace is a matter of product quality and processing. This is extremely important for the operation of the furnace.
  • Various techniques have been proposed for that purpose. For example, in Japanese Patent Application Laid-Open No. 11-172326, flammable gas is ejected from a nozzle provided near the extraction port separately from the heating parner inside the furnace in order to prevent air from entering from the extraction port of the heating furnace. Then, it has been proposed to consume the oxygen in the invading air by the combustion at that time.
  • FIGS. 2A and 2B show examples of the structure of a regenerative burner.
  • the regenerative pan is composed of a pair of pans 40a and 40b, which are placed facing each other between both side walls of the heating furnace soaking body 3.
  • PANA 40B double-purpose
  • preheating of the combustion air is performed using the heat recovered in the heat storage body 42b in the process shown in Fig. 2A.
  • fuel 43b to burn the burner 40b.
  • the exhaust gas in the furnace is sucked from the opposing parner 40a, the exhaust gas is passed through the heat storage body 42a to recover heat, and then guided to the shared passage 41a to be discharged out of the furnace.
  • the exhaust gas is sucked from the wrench during non-combustion, for example, from the wrench 40a or 40b via the regenerator 42a or 42b as shown in FIGS. 2A and 2B.
  • a suction device 8 using a suction fan is arranged, and the suction device 8 is driven to suck exhaust gas from the wrench.
  • the period from the start of combustion of the panner to the set temperature or the furnace atmosphere is reduced to a low temperature range of about 800 ° C.
  • the temperature of the exhaust gas sucked from the wrench and passing through the regenerator also decreases.
  • moisture and sulfur contained in the exhaust gas will condense on the exhaust gas outlet side of the heat storage body and on the subsequent route 45 described above.
  • the liquid, so-called drain, generated by this condensation may stay on the exhaust gas discharge side of the heat storage body. If the combustion operation of the burner is switched to the combustion state as it is, the mixture of drain into the combustion air will cause a problem that the combustion flame temperature will drop.
  • the reduction in combustion flame temperature due to this drain not only reduced the thermal efficiency of the heating furnace, but also hindered low-temperature operation.
  • Japanese Patent Application Laid-Open No. 10-30812 discloses an apparatus shown in FIG.
  • Exhaust gas in the heating furnace (for example, in the solitary zone 3) is flown into the exhaust gas pipe line 50 through the bypass pipe 51 separately from the path to be discharged outside the furnace through the parner 40a and the exhaust gas pipe line 50. It is disclosed that by doing so, the temperature in the exhaust gas piping 50 is maintained at or above the dew point of the exhaust gas.
  • the operation of the suction device is reduced to, for example, less than 10% of its suction capacity, and as a result, the operation of the suction device may become unstable. A swirl flow cannot be obtained stably over the entire surface of the fan blades, and a stall may occur where swirl flow cannot be obtained. Then, it becomes difficult to keep the exhaust gas suction amount from the wrench constant, and abnormal vibration occurs in the power blade, and in some cases, the fan may be damaged.
  • Japanese Patent Application Laid-Open No. 62-40312 discloses that each probe for measuring the oxygen concentration and the CO concentration in a heating furnace is movable, and the concentration is measured at a plurality of measurement positions. It discloses that the air ratio of the wrench is corrected and controlled by calculating the average concentration value.
  • a partition wall is installed in the furnace width direction inside the furnace wall on the extraction side of the heating furnace and below the skid, and a partition wall between the partition wall and the extraction side furnace wall is provided.
  • a heating furnace having an exhaust pipe for discharging an oxygen concentration meter atmosphere gas outside the furnace. It is disclosed that in this heating furnace, the flow rate in the exhaust pipe is controlled while measuring the oxygen concentration using the oxygen concentration meter.
  • An object of the present invention is to propose a furnace pressure control method that can reliably prevent air from entering a heating furnace.
  • the inventors have eagerly studied the intrusion of air when the pressure in the furnace becomes negative. Air enters the furnace from both the loading door and the extraction door. As shown in Fig. 1, a flue 7 is provided immediately after the charging door 1a. The air that has entered through the charging door la immediately passes through the flue 7 and is discharged outside the furnace. It was found that air entering through the charging door 1a was unlikely to cause a rise in the oxygen concentration in the furnace and a decrease in the furnace temperature. Increasing the oxygen concentration in the furnace ⁇ To avoid a decrease in the furnace temperature, it is important to avoid the intrusion of air from the extraction door. To this end, we found that it was important to control the furnace pressure in the solitary tropics where the extraction door was installed.
  • the furnace pressure is controlled by opening and closing the damper provided in the flue, especially when the combustion load is small, by setting the furnace pressure in the lower part of the transport path in the solitary zone to a positive pressure. It is difficult. This is because the amount of exhaust gas generated decreases, and the pressure loss of the exhaust gas from the inside of the furnace to the flue decreases, while the draft increases in the furnace downward. Furnace pressure distribution gradually decreases relatively below the heating furnace. In the lower zone, the draft is larger than the pressure loss of the exhaust gas and negative pressure is likely to occur.
  • a regenerative furnace has been used as a heating source for the continuous furnace, and the heat in the exhaust gas is reused for preheating the combustion air of the parner.
  • furnace pressure control of a heating furnace using a regenerative parner was examined.
  • a regenerative panner is used as a heating source in the lower part of the solitary tropics, strict furnace pressure control is possible by using a mechanism unique to the regenerative panner. Heading, and completed this invention.
  • the present invention relates to a heating furnace using a regenerative A furnace pressure control method using a regenerative burner, characterized by controlling the furnace pressure in the solitary zone by adjusting the exhaust gas suction rate from the above-mentioned burner to the regenerator according to the combustion load of the entire furnace. It is.
  • the present inventors have eagerly studied a method capable of keeping the furnace pressure in the region below the transport path in the solitary zone positive even when the combustion load is small. It was found that diversion air supplied to the regulator inlet side of the flue could be used for furnace pressure control for the purpose of protecting the furnace.
  • the present invention when a recuperator is arranged in the middle of a flue that guides exhaust gas in a heating furnace to the outside of the furnace, and when the recuperator preheats combustion air supplied to a burner that is a heating source of the heating furnace,
  • the flow rate of the diversion air depends on the exhaust gas temperature on the recuperator inlet side and the combustion load of the heating furnace.
  • This is a furnace pressure control method for a heating furnace, characterized in that the furnace pressure is adjusted by controlling the furnace pressure.
  • One of the objects of the present invention is to propose a method capable of reliably preventing air from entering the heating furnace from the extraction door.
  • One of the objects of the present invention is to provide a heating furnace used in this method.
  • the inventors have elaborated on the intrusion of air when the pressure in the furnace becomes negative.In this case, air enters the furnace from both the charging door and the extraction door. As shown in Fig. 1, the flue 7 is provided immediately after the charging door 1a, so the air that has entered through the charging door 1a immediately passes through the flue 7 and is discharged outside the furnace. As a result, it was found that it was difficult to cause an increase in the furnace oxygen concentration and a decrease in the furnace temperature. Therefore, in order to avoid an increase in the oxygen concentration in the furnace and a decrease in the temperature in the furnace, it is important to avoid the intrusion of air from the extraction port. For that purpose, it is necessary to surely shut off the intruding air at the extraction end. Has come to realize that it becomes important.
  • the present inventors have proposed a method of increasing the operating load of a regenerative burner when the combustion load of the regenerative burner is reduced and the exhaust gas suction device must be operated at a load of, for example, less than 10%.
  • the present inventors have found that it is extremely advantageous to guide the exhaust gas from a flue that guides the exhaust gas of the heating furnace to the outside of the furnace to the suction device, and have completed the present invention.
  • a heating furnace using a regenerative parner In the operation of a heating furnace using a regenerative parner, the steps shown in Figs. 2A and 2B are repeated, for example, every several tens of seconds, and heating is performed, so that heating furnace operation with little heat loss is performed. Is realized.
  • the exhaust gas from the regenerative burner is sucked at high speed, so exhaust gas distributed in the furnace width direction is sucked over a wide range.
  • the inventors focused on this phenomenon, and measured the component concentration of the exhaust gas sucked from the regenerative parner, because the exhaust gas in the furnace sucked from the regenerative parner reproduced the atmosphere inside the furnace well.
  • the inventors have found that the concentration of components in the furnace atmosphere can be accurately measured by performing the method described above, and have completed the present invention.
  • the gist of the present invention is as follows.
  • a heat storage type pan having a pre-tropical zone, a heating zone and a soaking zone, and a plurality of regenerative pans arranged with a pair of panners with heat storage bodies facing each other as a heat source of the solitary zone.
  • each pair of regenerative burners is burned alternately, and when not burning, the exhaust gas in the furnace is sucked from the furnace and the exhaust gas is introduced into the regenerator to recover the heat in the exhaust gas into the regenerator. And This recovered heat is used to heat the combustion air of the burner during combustion, and the operation of the heating furnace is carried out.
  • the exhaust gas from the above-mentioned burner to the heat storage unit is used.
  • a furnace pressure control method using a regenerative parner characterized in that the suction pressure is adjusted to control the furnace pressure in the solitary zone.
  • a recuperator is placed in the flue that guides the exhaust gas from the heating furnace to the outside of the furnace. When the recuperator preheats the combustion air supplied to the burner heating source, the recuperator is heated to a high temperature. In order to protect from the atmosphere, when supplying diluent air to the recuperator inlet side of the stack, the diluent air flow rate is adjusted according to the exhaust gas temperature at the recuperator inlet side and the combustion load of the heating furnace.
  • a furnace pressure control method for a heating furnace characterized by adjusting and controlling the furnace pressure.
  • the atmosphere control method for a heating furnace according to 3 or 4 characterized in that the heating parner arranged at the furnace extraction end is operated at a low air ratio under combustion. 6.
  • a heating furnace which has a regenerative parner with a pair of parners provided with a heat accumulator facing each other as a heating source, the parners of each pair of the regenerative parners are alternately burned in a heating furnace. Exhaust gas in the furnace is sucked from the furnace during combustion, the exhaust gas is introduced into the regenerator, heat in the exhaust gas is collected in the regenerator, and the recovered heat is used to heat the combustion air of the parner during combustion.
  • the combustion load of the regenerative When operating the heating furnace, the combustion load of the regenerative A method for operating a heating furnace having a regenerative burner, wherein hot air is supplied to a suction device for sucking exhaust gas in the furnace from the non-burning panner through a regenerator when the size is small. .
  • a heating furnace which has a regenerative parner with a pair of parners provided with a heat accumulator facing each other as a heating source
  • the parners of each pair of the regenerative parners are alternately burned in a heating furnace.
  • Exhaust gas in the furnace is sucked from the furnace during combustion, the exhaust gas is introduced into the regenerator, heat in the exhaust gas is collected in the regenerator, and the recovered heat is used to heat the combustion air of the parner during combustion.
  • a part of the exhaust gas sucked from the above-mentioned wrench is guided to an analyzer to measure the concentration of components in the exhaust gas. How to measure gas concentration.
  • a heat source a plurality of regenerative parners arranged opposite to each other with a pair of panners provided with a heat accumulator are provided, and the pairs of the regenerative parners are alternately burned.
  • the exhaust gas in the furnace is sucked from the burner during non-combustion, the exhaust gas is introduced into the heat accumulator, heat in the exhaust gas is collected in the heat accumulator, and the recovered heat is used for the combustion air of the burner during combustion.
  • reheating furnaces that operate for heating, at least the regenerative burner located in the lower region of the extraction end of the reheating furnace has a combustion control system that is independent of other regenerative burners. And heating furnace.
  • a regenerative parner is provided with a pair of parners with a heat storage body attached to each other, and the parners of each pair of the regenerative parners are alternately burned and not burned.
  • the exhaust gas in the furnace is sucked from the furnace, the exhaust gas is introduced into the heat storage body, the heat in the exhaust gas is recovered by the heat storage body, and the recovered heat is used for heating the combustion air of the parner during combustion.
  • a heating furnace provided with an analyzer for measuring the temperature.
  • Figure 1 shows the structure of a continuous heating furnace.
  • FIG. 2A is a diagram showing the structure of a regenerative parner.
  • FIG. 2B is a diagram showing the structure of a regenerative parner.
  • FIG. 3 is a diagram showing an exhaust gas discharge path in a conventional heating furnace.
  • FIG. 4 is a diagram showing an exhaust gas discharge path in the heating furnace according to the present invention.
  • FIG. 5 is a diagram showing the structure of the continuous heating furnace used in the present invention.
  • FIG. 6 is a diagram showing the relationship between the exhaust gas suction rate and the furnace pressure.
  • FIG. 7 is a diagram showing the relationship between the furnace pressure and the amount of air entering.
  • FIG. 8 is a view showing the structure of a continuous heating furnace used in the present invention.
  • Figure 9 is a diagram showing the relationship between the opening degree of the dilution air flow control valve and the furnace pressure.
  • FIG. 10 is a diagram showing the relationship between the furnace pressure control method and the furnace pressure and the oxygen concentration in the furnace.
  • FIG. 11 is a diagram showing the relationship between the furnace pressure control method and the furnace pressure.
  • FIG. 12 is a diagram showing the relationship between the furnace pressure control method and the oxygen concentration in the furnace.
  • FIG. 13 is a diagram showing the arrangement of the heating parner in the furnace.
  • FIG. 14 is a diagram showing the extraction port of the heating furnace.
  • Figure 15 is a diagram showing the air flow near the heating furnace extraction end.
  • Fig. 16 is a diagram showing the relationship between the air ratio of the heating parner and the combustion amount of intruding air.
  • FIG. 17 is a diagram showing a discharge path of the exhaust gas from the regenerative parner.
  • Figure 18 compares the measured oxygen concentration in the furnace and the average oxygen concentration in the furnace by various methods.
  • FIG. 5 shows a continuous heating furnace used directly in the method of the present invention.
  • This heating furnace is basically the same as that shown in FIG. 1, except that the regenerative parners 40a and 40b shown in FIG. 2A and FIG. This is an example in which a plurality of sets are arranged below the transport path 5.
  • reference numerals 40a and 40b are included, including the shared passage and the heat storage element.
  • the furnace pressure is controlled by adjusting the rate of exhaust gas suction from the above-mentioned burners 40a and 40b to the regenerators 42a and 42b according to the combustion load of the entire heating furnace. Specifically, the furnace pressure in the lower zone is controlled to be positive. There is a characteristic in the place.
  • the furnace pressure was measured with a furnace pressure gauge installed in the lower part of the soaking zone, and the flow rate of exhaust gas passing through the heat storage body of the regenerative parner was adjusted by a flow control valve in accordance with the target furnace pressure.
  • the furnace pressure in the lower zone is controlled to the target furnace pressure by controlling the exhaust gas suction rate.
  • Figure 6 shows the relationship between the exhaust gas suction rate and the furnace pressure.
  • the graph shows the relationship between the furnace pressure in the lower subtropical zone and the exhaust gas suction rate when the exhaust gas suction rate is adjusted according to the combustion load by the above method.
  • Exhaust gas suction rate and furnace pressure are almost inversely proportional.
  • the furnace pressure can be strictly controlled by adjusting the exhaust gas suction rate.
  • the exhaust gas suction rate is a ratio of the amount of exhaust gas sucked into the regenerative burner to the amount of exhaust gas generated by combustion of the regenerative burner. It is determined by actually measuring the exhaust gas flow rate using an exhaust gas flow meter installed in the exhaust gas duct of a regenerative parner.
  • the furnace pressure be controlled in the range of 0 to 0.5 ram Aq by controlling the exhaust gas suction rate as described above. If the furnace pressure in the lower part of the soaking zone is set to 0.5 mmAq or more, the furnace pressure in the upper part of the soaking zone becomes too high, and the gas in the furnace blows out of the furnace, which may damage the extraction door. Fuel intensity also deteriorates.
  • FIG. 8 shows a continuous heating furnace used directly in the method of the present invention.
  • This heating furnace has basically the same configuration as shown in Fig. 1. If the furnace exhaust gas introduced into the recuperator 7a exceeds the upper limit of the heat-resistant temperature of the recuperator 7a, the dilution air 8 is supplied to the inlet of the recuperator 7a of the flue 7 It has a structure that protects the recuperator 7a.
  • Supply lysis air 8 By supplying a predetermined flow rate of the diffusion air 8, a uniform
  • the furnace pressure in the lower part of 3 is controlled to be positive. That is, as shown in Fig. 8, the furnace pressure measured value P.1 by the furnace pressure gauge 3b installed in the lower part of the isotropical zone 3 is compared with the target furnace pressure (positive pressure) by the computing unit 9a. Based on the result, the arithmetic unit 9a first sets the opening of the damper 7b for furnace pressure control, and performs furnace pressure control.
  • the temperature measurement value T.1 at the thermometer 7c provided on the inlet side of the recuperator 7a of the stack 7 and the target temperature of the exhaust gas at that position, that is, the upper temperature limit of the recuperator 7a are compared by the computing unit 9b.
  • the measured temperature value T.1 approaches the upper limit of the heat-resistant temperature of the recuperator 7a, it is supplied to the ventilation fan 8a for supplying the direction air 8 and the flow control valve 8b according to a command from the calculator 9b. Provide an appropriate fan speed and flow control valve opening.
  • the temperature of the exhaust gas introduced into the recuperator 7a is reduced to an allowable range.
  • T.1 becomes equal to the above target temperature, fix the fan speed and the flow control valve opening.
  • Figure 9 shows the relationship between the opening of the flow control valve of the diffusion air 8 and the furnace pressure in the lower part of the soaking zone 3.
  • the heating parner 40 arranged in the lower region of the furnace extraction end is used for other heating parners 40.
  • An independent control system different from the parner 4 is introduced to control the combustion of the heating parner 40 independently.
  • the burner 4 in the heating furnace is generally provided with its pair 4a and 4b facing each other between the side walls of the heating furnace.
  • the heating burner 40 arranged in the lower region of the furnace extraction end is also arranged as a pair of parners 40a and 40b.
  • the combustion of the heating parners 40a and 40b is controlled independently. As shown in Fig. 2A and Fig. 2B, while the extraction door 3a is open, the panner frames of the heating parners 40a and 40b extend in the width direction of the extraction port 3b over the opening width. Perform combustion operation. If a wrench frame is formed over the width of the opening of the outlet 3b in this way, the air that has entered the furnace from the outlet 3 is first blocked by the wrench frame and cannot enter the furnace further. . In addition, since the oxygen of the intruding air is consumed by the perna frame, an increase in the oxygen concentration in the furnace due to the intruding air is avoided.
  • the formation position of the burner frame of the heating parners 40a and 40b In the furnace length direction, it is preferable that the perna frame is as close as possible to the extraction port as far as possible without touching the structure below the extraction port. On the other hand, it is preferable to set the position where the perna frame can block the opening of the extra rough oak in the height direction of the furnace and within the range that does not touch the hearth.
  • a partition wall 8 rising from the hearth is provided inside the furnace of the heating parners 40a and 40b, and the heating parners 40a and 40b are provided. It is preferable to block the air entry path with the above-mentioned wrench frame.
  • the pressure distribution inside the furnace is positive with respect to the pressure outside the furnace (substantially atmospheric pressure) at the upper part, and negative at the lower part with the transfer path 6 as the boundary. Pressure.
  • the draft becomes larger as it goes down, so that the furnace pressure shows a distribution that becomes lower as it goes down.
  • the damper 7b controls the furnace pressure at the height of the transfer path 6 to be equal to the atmospheric pressure.
  • the partition wall 8 When the partition wall 8 is provided, the air that has entered from the back side of the heating parners 40 a and 40 b is blocked by the partition wall 8. Here, it is gradually warmed and becomes ascending flow along the partition wall 8 to reach the positive pressure region at the upper part of the transfer path 6, and is discharged from the furnace from the upper part of the transfer path 6. In this way, it is possible to prevent air that has entered from the back side of the heating parners 40a and 40b from entering the furnace. In addition, in order to cut off the air intrusion path with the parner frame of the heating parners 40a and 40b, the heating parners 40a and 40b must be operated under combustion at a low air ratio. Is preferred. Fig.
  • the partition wall 8 has a width extending between both side walls of the furnace, and it is advantageous to increase the partition wall 8 so that the partition wall 8 does not interfere with the transfer devices in the furnace from the hearth.
  • Fig. 4 shows the exhaust gas discharge route in a continuous heating furnace used directly in the method of the present invention.
  • a pipe is connected between the flue 7 and the path 45 from the wrench 40a or 40b shown in Figs. 2A and 2B to the suction device 8 shown in Fig. 4 via the heat storage element 42a or 42b.
  • Road 10 is established.
  • a piping 10 that guides the exhaust gas in the flue 7 to the suction device 8 through the on-off valve 9 is provided between the inlet side of the suction device 8 and the flue 7 that guides the exhaust gas in the heating furnace out of the furnace. There is a characteristic at the time.
  • the flow rate for measuring the amount of exhaust gas suctioned from the wrench to determine the opening / closing timing of the on-off valve 9 A total of 45a will be provided.
  • a flow control valve 45 b for adjusting the total flow to a predetermined amount is provided between the connection between the pipe 10 and the path 45 and the suction device 8.
  • the on-off valve 9 Is opened to guide the exhaust gas in the flue 7 to the inlet of the suction device 8 in the route 45 to increase the operating load of the suction device 8.
  • the exhaust gas temperature after mixing with the low-temperature exhaust gas that has passed through the heat storage unit does not exceed the upper limit of the durable temperature of the suction device 8, especially the impeller.
  • the diameter of the pipe 10 is selected to control the flow rate of the exhaust gas, and at the same time, the pressure loss between the exhaust gas in the flue at the mixing point and the low-temperature exhaust gas passing through the regenerator is equalized, and the mixed exhaust gas is guided to the suction device 8.
  • the supply of flue gas in the flue via the pipe line 10 is stopped when the amount of suction from the wrench exceeds the required minimum flow rate. That is, the on-off valve 9 of the piping line 10 is closed.
  • the required minimum flow rate is the lower limit of the stable operation area when designing the fan.
  • the flow rate control of the exhaust gas guided to the suction device 8 can also be performed by using the opening / closing valve 9 of the pipe line 10 as a flow rate adjusting valve.
  • the operation of the flow control valve is complicated, the mechanism is complicated, and the equipment cost is high.
  • a simple method of simply opening and closing the pipe line 10 having a predetermined pipe diameter is employed.
  • the pipe diameter of the pipe 10 can be designed, for example, according to the following equations (A) and (B).
  • T b Suction device (represented by a bearing) Endurance temperature upper limit
  • V I Exhaust gas suction volume at minimum burner (extremely low load)
  • V2 Required minimum flow rate of exhaust gas for stable operation of the suction device
  • V3 V2—The amount of exhaust gas to compensate for the difference between VI ⁇ P 1: Pressure loss between the wrench on the line 45 and the line junction ⁇ P 2: Pressure loss on the line 10
  • a recuperator 7a is provided upstream of the pipe 10 of the flue 7. It is preferable to supply the cooled exhaust gas to the piping 10 by passing the exhaust gas in the furnace through the recuperator 7 a in order to extend the durable life of the suction device 8.
  • the flue gas in the heating furnace is not directly mixed with the flue gas from the furnace, but the flue gas in the flue is mixed.
  • the gas to be mixed with the flue gas from the burner is not limited to the flue gas, but may be a high-temperature gas, that is, hot air.
  • a high-temperature gas that is, hot air.
  • air heated to a high temperature may be used, or a separate combustion device may be provided, and the combustion exhaust gas generated therefrom may be mixed.
  • the exhaust gas sucked from the burner 40a or 40b is guided to the outside of the furnace through the shared passage 41a or 41b.
  • the exhaust gas is sucked along the route shown in Fig.17. That is, the combined passages 41a and 41b extending from a plurality of sets of regenerative parners are combined into exhaust gas ducts 8a and 8b provided for each parner group on one side and the other side of the furnace wall, respectively. Then, these exhaust gas ducts 8a and 8b are combined into one conduit 9, and this conduit 9 is connected to the flue 7 of the heating furnace via the suction fan 10. Then, by the suction force of the suction fan 10, the exhaust gas is guided to the flue 7 through the shared passages 41a and 41b, the exhaust gas ducts 8a and 8b, and the conduit 9, and discharged out of the furnace. ing.
  • the probe 11 is inserted in the middle of the conduit 9 in the example shown in FIG.
  • a part of the exhaust gas flowing from the probe 11 through the conduit 9 is sampled, and the concentration of various components is measured using the analyzer 12 with respect to the sampled exhaust gas.
  • the various measured concentration values obtained in this way show a good distribution of the furnace atmosphere, especially in the furnace width direction.
  • This is heat storage It can be used as a representative value of the component concentration at the position in the furnace where the open-end wrench is installed, for example, in the solitary zone 3.
  • the average oxygen concentration in the furnace refers to the gas flow rate and gas flow into the wrench under the condition that the extraction door and the charging door are closed and the furnace pressure is set so that the air entering the furnace is O Nm / h. This is a calculated value theoretically obtained from the component / air ratio. Other conditions will be described in detail in Examples described later.
  • the location where the exhaust gas sucked from the regenerative parner is collected is located downstream of the regenerator of the regenerative parner.
  • the exhaust gas from which heat is recovered by the heat storage body is naturally lower than the furnace temperature. If a probe is introduced downstream of the heat storage body, the probe will not be exposed to a high-temperature atmosphere, and its durable life can be extended.
  • Example 1 In the above case, the case where a continuous heating furnace is used has been described. However, the present invention can be applied to a patch heating furnace / a rotary hearth heating furnace. Example 1
  • a steel slab with a thickness of 220 mm, a width of 1200 mm and a length of 9800 mm was introduced, and 1230 ° from room temperature.
  • An operation of heating to C was performed.
  • the specifications of the four sets of regenerative parners arranged in the soaking zone of the heating furnace are as follows.
  • the furnace pressure was controlled by variously adjusting the exhaust gas suction rate from the wrench according to the combustion load of the entire heating furnace.
  • conventional operations were also performed with a constant exhaust gas suction rate.
  • the oxygen concentration in the furnace is larger than in the conventional method. The fuel consumption rate and the defect rate of slabs were reduced.
  • Figure 7 shows the relationship between the furnace pressure at the lower part of the tropical zone and the amount of air entering in the above operation on average.
  • a steel slab with a thickness of 220 mm, a width of 1200 mm and a length of 9800 mm was introduced, and the room temperature was reduced from room temperature.
  • An operation of heating to 1 230 ° C was performed.
  • the operating conditions are as follows.
  • Heating furnace (Pana) Combustion load 10-100%
  • the dilution air is released.
  • the gas was supplied under the condition that the exhaust gas temperature at the inlet of the recuperator was 750 ° C and the pressure in the soaking lower furnace was> 0 mmAq. In comparison, operations without furnace pressure control using dilution air were also performed.
  • the furnace pressure and oxygen concentration when the extraction door was opened and closed were measured in the same manner.
  • the measurement results show that even if the extraction door is opened and closed, the furnace pressure is controlled by the dilution air to make the furnace pressure positive. And the oxygen concentration can be maintained at a low level.
  • Table 3 also shows the results of the measurements of the amount of air entering the furnace and the oxygen concentration in the atmosphere in the solitary tropics in the various operations described above.
  • Partition wall height 1.2 m from the hearth.
  • Width Same width as furnace width
  • a steel slab with a thickness of 220 mm, a width of 1200 mm and a length of 9800 mm was introduced, and from room temperature to 1230 mm
  • the operation to heat up was performed.
  • the specifications of the four sets of regenerative parners arranged in the soaking zone of the heating furnace are as follows.
  • the heating furnace described above After the exhaust gas sucked from the regenerative parner was passed through the regenerator, a part of the exhaust gas was sampled from the probe 11 inserted in the middle of the conduit 9, and the collected exhaust gas was analyzed by the analyzer 12 The oxygen concentration was measured using.
  • the measurement range of the oxygen concentration in the furnace was 0 to 21 vol%, and the atmosphere temperature in the pipe 9 was 200 ° C.
  • the oxygen concentration was measured via a probe inserted from the hearth of the tropical zone.
  • the furnace pressure can be strictly controlled.
  • This furnace pressure control can reliably prevent air from entering the heating furnace from the extraction door.
  • the deterioration of the quality of the material to be heated can be prevented.
  • the unit fuel consumption in the heating furnace can be improved.
  • the operation of the exhaust gas suction device does not become unstable even when the combustion load of the regenerative burner is small. Since no drain is generated, the operation of the heating furnace is stabilized.
  • the concentration of components in the atmosphere in the heating furnace can be accurately measured. By controlling the furnace atmosphere based on these measurements, high-quality products can be produced.
  • the method for measuring the component concentration in the atmosphere in the heating furnace according to the present invention can be performed using existing equipment, so that new equipment investment is not required and the method can be realized at low cost.

Abstract

A heating furnace with regenerative burners and a method of controlling a furnace pressure; the heating furnace, comprising a plurality sets of regenerative burners having preheat zones, heating zones, uniform zones, and, as heat sources of the uniform heating zones, pairs of burners with heat reservoirs disposed opposedly to each other; a method of controlling the furnace pressure in the uniform heating zones, comprising the step of controlling the sucking rate of exhaust gas from the burners to the heat reservoirs according to the combustion load of the entire heating furnace, whereby the furnace pressure can be strictly controlled by utilizing regenerative burner-specific mechanisms when operating the heating furnaces with less heat loss re-utilizing the heat of the exhaust gas for the pre-heat of combustion air for the burners by using the regenerative burners as the heating sources of the continuous heating furnace.

Description

明細書  Specification
蓄熱式パーナを有する加熱炉およびその操業方法 技術分野  TECHNICAL FIELD The present invention relates to a heating furnace having a regenerative parner and its operating method.
この発明は、 加熱炉の炉圧を最適に制御する方法に関するものであ る。 この発明は、 加熱炉の雰囲気制御、 特に雰囲気における酸素濃度 の上昇を抑制する方法に関するのである。 この発明は、 蓄熱式パーナ を有する加熱炉の操業方法おょぴ加熱炉、 特に蓄熱式パーナにおける 対のパーナの交番燃焼を有利に行うための操業方法およびこの操業に 直接使用する加熱炉に関するものである。 この発明は、 加熱炉内の雰 囲気ガス濃度の測定方法およぴ加熱炉に関するものである。 背景技術  The present invention relates to a method for optimally controlling a furnace pressure of a heating furnace. The present invention relates to a method for controlling the atmosphere in a heating furnace, and particularly to a method for suppressing an increase in oxygen concentration in the atmosphere. TECHNICAL FIELD The present invention relates to a method for operating a heating furnace having a regenerative parner, and more particularly to an operating method for advantageously performing alternating combustion of a pair of parners in a regenerative parner and a heating furnace used directly in this operation. It is. The present invention relates to a method for measuring the concentration of atmospheric gas in a heating furnace and a heating furnace. Background art
鋼材の加熱炉は、 分塊工場で粗圧延された鋼片や、 連続铸造された 铸片を最終製品に圧延するため、 その圧延に適した所定の温度に再加 熱する 目的で用いられている。 この加熱炉は、 パッチ式と連続式とに 大別される。 それぞれ長所および短所があるため、 その 目的に応じて 選択使用されている。 連続式加熱炉は、 近年の大量生産に適している と ころから、 製鉄所などで多用されている。  Steel heating furnaces are used for the purpose of reheating steel slabs rough-rolled in a lump mill or continuously manufactured slabs to final products at a predetermined temperature suitable for the rolling. I have. This heating furnace is roughly classified into a patch type and a continuous type. Each has its strengths and weaknesses, so they are selectively used according to their purpose. Continuous heating furnaces are widely used in steelworks because they are suitable for mass production in recent years.
図 1 に連続式加熱炉の断面図の代表例を示す。 鋼材の装入側から順 に予熱帯 1、 加熱帯 2およぴ均熱帯 3から成るのが一般的である。 少 なく と も加熱帯 2およぴ均熱帯 3 は、 パーナ 4によつて所定温度に加 熱保持されている。 装入扉 1 a から予熱帯 1 に導入された鋼材 5 は、 搬送路 6上を移動し、 加熱帯 2そして均熱帯 3 を経て所定温度に加熱 され、 均熱帯 3出側の抽出扉 3 a から炉外へ搬出される。 パーナ 4の 燃焼によって生じた排ガスは、 予熱帯 1 の入側に設けられた煙道 7か ら炉外に排出される。 また、 7 a は煙道 7の排ガス顕熱をパーナ燃焼 用空気の顕熱に熱交換するためのレキュペレータおよび 7 b は炉圧制 御用のダンパーである。 ここに、 連続式加熱炉では、 その後の圧延工程に適した温度に鋼材 を加熱する必要がある。 連続式加熱炉で加熱された鋼材の温度が所定 の圧延適合温度下限を下回る と、 圧延操業並びに製品品質において悪 影響を招来するこ とになる。 一方、 加熱炉から抽出した鋼材温度が必 要以上に高く なる と、 連続鋼材加熱炉における熱損失が大き く なるこ とから、 連続式加熱炉においては、 鋼材を圧延適合温度まで必要最低 限の燃料で加熱するこ とが重要になる。 さ らに、 加熱炉においては、 圧延工程における圧延ピッチに対応して、 加熱された鋼材が加熱炉か ら順次に供給されるよ う に、 加熱時間を調整するこ と も要求されてい る。 Figure 1 shows a typical example of a sectional view of a continuous heating furnace. Generally, it consists of the pre-tropical zone 1, the heating zone 2 and the average tropical zone 3 in order from the loading side of the steel material. At least the heating zone 2 and the average tropical zone 3 are heated and maintained at a predetermined temperature by the pana 4. The steel material 5 introduced into the pre-tropical zone 1 from the charging door 1 a moves on the transport path 6, is heated to a predetermined temperature through the heating zone 2 and the soaking zone 3, and is extracted to the predetermined temperature in the soaking zone 3 a From the furnace. Exhaust gas generated by the combustion of the parna 4 is discharged out of the furnace through a flue 7 provided at the entrance of the pre-tropical zone 1. 7a is a recuperator for exchanging the sensible heat of the flue gas in the flue gas with the sensible heat of the air for burner combustion, and 7b is a damper for furnace pressure control. Here, in the continuous heating furnace, it is necessary to heat the steel material to a temperature suitable for the subsequent rolling process. If the temperature of the steel material heated in the continuous heating furnace falls below the predetermined lower limit of the rolling temperature, the rolling operation and product quality will be adversely affected. On the other hand, if the temperature of the steel material extracted from the heating furnace rises more than necessary, the heat loss in the continuous steel heating furnace will increase. It becomes important to heat with fuel. Further, in the heating furnace, it is also required to adjust the heating time so that the heated steel material is sequentially supplied from the heating furnace in accordance with the rolling pitch in the rolling process.
連続式加熱炉においては、 熱損失、 と り わけ加熱帯からの放射エネ ルギー損失が大きい。 加熱帯の入出側に予熱帯および均熱帯を配置し て炉内を 3つに仕切ることによって、 熱損失を抑制している。  In a continuous heating furnace, heat loss, especially radiant energy loss from the heating zone, is large. Pre-tropical and solitary zones are placed on the entrance and exit sides of the heating zone, and the furnace is partitioned into three sections to reduce heat loss.
連続式加熱炉に装入する鋼材は、 常温まで冷却された錄片や、 連続 錄造後に直ちに圧延工程へ直送されるホッ トチャージ材などがあり 、 加熱炉入側での温度は様々である。 その加熱温度は多岐にわたり 、 ま た加熱炉での加熱する鋼材の処理量も変化する。 これらの諸々の条件 に応じて、 加熱炉内の温度を制御する必要がある。 パーナの燃焼量を 増減して加熱温度を調整する。 このと きパーナの燃焼量の変化によつ て炉内圧力が変動する。  The steel material to be charged into the continuous heating furnace includes a piece cooled to room temperature, and a hot charge material immediately sent to the rolling process immediately after continuous production, and the temperature at the heating furnace entrance side varies. The heating temperature varies widely, and the throughput of the steel material to be heated in the heating furnace also varies. It is necessary to control the temperature inside the furnace according to these various conditions. The heating temperature is adjusted by increasing or decreasing the burner amount of the parner. At this time, the furnace pressure fluctuates due to the change in the burner amount of the wrench.
炉内圧力が炉外の圧力に比べて低く なる と、 加熱炉の開口部である 装入扉および抽出扉から外部の空気が炉内に侵入する。 炉内に空気が 侵入する と、 炉内温度が低下するため、 パーナの燃焼量を増加する。 燃料原単位が増加してコス トが上昇する。 炉内に空気が侵入する と、 炉内雰囲気の酸素濃度が上昇するため、 炉内に装入した鋼材などの表 面の酸化、 窒化または脱炭等が促進される。 その結果、 鋼材の表面品 質の低下をまねく ことになる。  When the pressure inside the furnace becomes lower than the pressure outside the furnace, external air enters the furnace from the charging door and the extraction door, which are the openings of the heating furnace. When air enters the furnace, the temperature inside the furnace decreases and the burner burns more. Fuel consumption increases and costs rise. When air enters the furnace, the oxygen concentration in the furnace atmosphere increases, which promotes oxidation, nitridation, or decarburization of the surface of steel and the like charged in the furnace. As a result, the surface quality of the steel material will be degraded.
従って、 加熱炉内の圧力を適正に制御するこ とが必要である。 炉圧 制御について、 種々の提案がなされている。 例えば、 特開昭 61— 119 987号公報には、 炉内の排ガス発生量に応じて、 加熱炉の均熱帯の設定 炉圧を炉外の圧力に対して正圧 (以下、 単に正圧という) に制御し、 装入扉および抽出扉からの空気の侵入を防止するこ とが開示されてい る。 この方法によ り 、 垆内の搬送路を境とする上部領域 (以下、 上部 帯という) の炉圧を正圧に制御するこ とは可能である。 しかし、 加熱 炉全体の燃焼負荷が小さい場合は、 炉内の搬送路を境とする下部領域 (以下、 下部帯という) における炉圧が炉外の圧力に対して負圧 (以 下、 単に負圧という) になる。 装入扉および抽出扉の下部の隙間から、 空気の侵入を確実に防ぐこ とは困難であった。 これら扉が櫛歯状に嚙 み合って閉口するいわゆるエキス トラフオーク開口部からの空気の侵 入を確実に防ぐこ とは困難であった。 櫛歯状のエキス ト ラフオーク開 口部とは、 図 1 4に示す 3 c のことである。 Therefore, it is necessary to control the pressure inside the heating furnace appropriately. Various proposals have been made for furnace pressure control. For example, JP-A-61-119 According to No. 987, according to the amount of exhaust gas generated in the furnace, the setting of the soaking zone in the heating furnace is controlled to a positive pressure (hereinafter simply referred to as positive pressure) with respect to the pressure outside the furnace, It also discloses that air can be prevented from entering through the extraction door. According to this method, it is possible to control the furnace pressure in the upper region (hereinafter referred to as the upper zone) bordering on the transfer path in the area to a positive pressure. However, when the combustion load of the entire heating furnace is small, the furnace pressure in the lower region (hereinafter referred to as the lower zone) bounded by the transfer path in the furnace is a negative pressure (hereinafter simply referred to as negative pressure) with respect to the pressure outside the furnace. Pressure). It was difficult to reliably prevent air from entering through the gap below the loading and extraction doors. It has been difficult to reliably prevent air from entering through the so-called extra oak opening, in which these doors mesh and close together. The comb-shaped opening of the extract rough oak is 3c shown in Fig.14.
また、 特開平 9 — 209032号公報には、 均熱帯の上部に加熱炉からの 排ガスが通る煙道内に設けた炉圧力ダンパーによ り 、 加熱炉の燃癍負 荷量に応じて炉圧を最適制御するこ とが開示されている。 しかし、 燃 焼負荷量が小さいと きは炉内から煙道までの排ガスの流れによる圧力 損失に比べて煙道の ドラフ トが大き く なる。 ドラフ ト とは、 煙道ゃ炉 内において加熱された気体に浮力が発生し負圧となるこ とである。 こ の場合は、炉圧ダンパーによって下部帯まで正圧にすることは難しい。 装入扉および抽出扉からの空気の侵入を確実に防ぐこ とは困難であつ た。  Further, Japanese Patent Application Laid-Open No. 9-209032 discloses that a furnace pressure damper provided in a flue through which exhaust gas from a heating furnace passes above a solitary tropic zone, and the furnace pressure is adjusted according to the fuel load of the heating furnace. Optimum control is disclosed. However, when the combustion load is small, the draft of the flue is larger than the pressure loss due to the flow of exhaust gas from the furnace to the flue. Draft is a phenomenon in which buoyancy is generated in the gas heated in the flue / furnace, resulting in negative pressure. In this case, it is difficult to make the lower zone positive by the furnace pressure damper. It was difficult to reliably prevent air from entering through the charging and extraction doors.
特開平 7 — 31 6645号公報には、 煙道のレキュペレータ出側に気体供 給配管系を接続し、 空気等の気体を煙道に吹き込み、 炉圧を制御する 方法が開示されている。 この方法では、 炉圧を制御するために、 新た にブロアや各種配管、 そして制御系を設ける必要がある。 設備費用が 高く 、 そのメ ンテナンスが煩雑である と ころに問題がある。 しかも加 熱炉周辺ははダク トゃ付設機器類が複雑に入り組んでいるため、 配置 スペースがなく制御系を新たに設けることが困難である。  Japanese Patent Application Laid-Open No. 7-316645 discloses a method in which a gas supply piping system is connected to the outlet of a recuperator of a stack to blow gas such as air into the stack to control furnace pressure. In this method, it is necessary to provide a new blower, various pipes, and a control system to control the furnace pressure. There is a problem in that the equipment costs are high and the maintenance is complicated. In addition, since the equipment around the heating furnace is complicated and complicated, it is difficult to install a new control system because there is no space to install it.
加熱炉内への空気の侵入を防止するこ とは、 製品の品質上そして加 熱炉の操業上から、 極めて重要である。 そのための技術が種々提案さ れている。 例えば、 特開平 1 1一 1 72326号公報には、 加熱炉の抽出口か らの空気の侵入を防ぐために、 炉内の加熱パーナとは別に抽出口付近 に設けたノズルから可燃性ガスを噴出して、 その際の燃焼によって侵 入空気中の酸素を消費することが提案さている。 Preventing air from entering the furnace is a matter of product quality and processing. This is extremely important for the operation of the furnace. Various techniques have been proposed for that purpose. For example, in Japanese Patent Application Laid-Open No. 11-172326, flammable gas is ejected from a nozzle provided near the extraction port separately from the heating parner inside the furnace in order to prevent air from entering from the extraction port of the heating furnace. Then, it has been proposed to consume the oxygen in the invading air by the combustion at that time.
しかし抽出口付近に専用の可燃性ガス噴出ノズルを設ける必要があ り、 設備費がかかる。 また、 噴出ノ ズルの設置位置よ り 上方からの侵 入空気に対しては有効であるが、 該嘖出ノ ズルの設置位置よ り下方か らの侵入空気に対しては効果が小さい。 下方は炉圧が負になるため、 ここに向かって空気が侵入するのを避けることはできない。 と り わけ、 エキス トラフオーク開口部からの空気の侵入を確実に防ぐこ とは困難 であった。  However, it is necessary to provide a dedicated flammable gas ejection nozzle near the extraction port, which increases equipment costs. In addition, it is effective for air entering from above the location of the jet nozzle, but less effective for air entering from below the location of the jet nozzle. Since the furnace pressure is negative below, it is inevitable that air will enter this area. In particular, it was difficult to reliably prevent air from entering through the opening of the extra oak.
近年、 連続式加熱炉において、 その加熱源に蓄熱式パーナを用いて、 排ガス中の熱をパーナの燃焼用空気の予熱に再利用する、 熱損失の少 ない加熱炉の操業が行われている。 図 2 Aおよび図 2 Bに蓄熱式バー ナの構造例を示す。 図 2 Aおよぴ図 2 B の例に示すよ う に、 蓄熱式パ ーナは加熱炉均熱体 3の両側壁間で向かい合わせに配置した一対のパ ーナ 40 aおよび 40 b と、 各パーナに炉外から燃焼用空気を導き、 また 炉内の排ガスを各パーナを介して炉外に導く ための兼用通路 41 aおよ ぴ 41 b と、 図示例では各通路のパーナ側開口に配設した蓄熱体 42 a お よび 42 b とから成る。 この蓄熱式パーナは、 そのパーナ対を交互に燃 焼させる。 例えば図 2 Aに示すよ う に、 パーナ 40 a に兼用通路 41 a か ら燃焼用空気を供給する と と もに燃料 43 a を供給し、 パーナ 40 a を燃 焼させた際には、 これと対向するパーナ 40 b から炉内の排ガスを吸引 し、 この排ガスを蓄熱体 42 b に通して熱を回収してから、 兼用通路 41 b に導いて炉外に排出する。  In recent years, in continuous heating furnaces, heat storage furnaces have been used as heat sources, and the heat in exhaust gas has been reused for preheating combustion air for the burners, and operation of the heating furnaces with low heat loss has been performed. . Figures 2A and 2B show examples of the structure of a regenerative burner. As shown in the examples of FIGS. 2A and 2B, the regenerative pan is composed of a pair of pans 40a and 40b, which are placed facing each other between both side walls of the heating furnace soaking body 3. In addition, dual passages 41a and 41b for guiding combustion air from outside the furnace to each parner and for guiding exhaust gas inside the furnace to the outside of the furnace through each parner, and in the example shown, the opening on the parner side of each passage. And heat storage elements 42a and 42b. This regenerative type burner alternately burns the pair of burners. For example, as shown in FIG. 2A, when the combustion air is supplied to the parner 40a from the shared passage 41a, the fuel 43a is supplied, and when the parner 40a is burned, Exhaust gas in the furnace is sucked from a parner 40b facing the furnace, the exhaust gas is passed through a heat storage body 42b to recover heat, and then guided to a combined passage 41b to be discharged out of the furnace.
次いで、 パーナの燃焼運転を切り換え、 かつ、 その際兼用通路 41 a および 41 b の切換弁 44を切り換えて、 上記した空気および排ガスの導 管との接続を変更したのち、 図 2 Bに示すよ う に、 パーナ 40 b に兼用 通路 41 bから蓄熱体 42 b を介して燃焼用空気を供給するに当 り、 先に 図 2 A に示した工程にて蓄熱体 42 b に回収した熱を利用して燃焼用空 気の予熱を図り ながら供給し、 併せて燃料 43 b を供給してパーナ 40 b を燃焼させる。 同時に、 これと対向するパーナ 40 a から炉内の排ガス を吸引し、 この排ガスを蓄熱体 42 a に通して熱を回収してから、 兼用 通路 41 a に導いて炉外に排出する。 Next, after switching the combustion operation of the wrench and switching the switching valve 44 of the shared passage 41a and 41b to change the connection with the air and exhaust gas conduits described above, as shown in FIG. Got it, PANA 40B double-purpose When supplying combustion air from the passage 41b via the heat storage body 42b, preheating of the combustion air is performed using the heat recovered in the heat storage body 42b in the process shown in Fig. 2A. While supplying fuel 43b to burn the burner 40b. At the same time, the exhaust gas in the furnace is sucked from the opposing parner 40a, the exhaust gas is passed through the heat storage body 42a to recover heat, and then guided to the shared passage 41a to be discharged out of the furnace.
以上の図 2 Aおよぴ図 2 B に示したパーナの交番燃焼を、 例えば数 十秒毎に操り返して行う こ とによって、 熱損失の少ない加熱炉操業が できる。  By repeating the above-mentioned alternating combustion of the wrench shown in FIGS. 2A and 2B, for example, every several tens of seconds, it is possible to operate the heating furnace with little heat loss.
ここで、 非燃焼時のパーナからの排ガスの吸引は、 例えば図 2 Aお よび図 2 Bに示すよ う に、 パーナ 40 a または 40 b から蓄熱体 42 a また は 42 b を介して吸引する経路 45の末端に、 例えば吸引フ ァ ンによる吸 引装置 8 を配設し、 この吸引装置 8 を駆動してパーナからの排ガスを 吸引している。  Here, the exhaust gas is sucked from the wrench during non-combustion, for example, from the wrench 40a or 40b via the regenerator 42a or 42b as shown in FIGS. 2A and 2B. At the end of the path 45, for example, a suction device 8 using a suction fan is arranged, and the suction device 8 is driven to suck exhaust gas from the wrench.
と ころで、 以上の蓄熱式パーナを用いた加熱炉の操業において、 パ ーナの燃焼を開始したのち設定温度に至るまでの期間や、 または炉内 の雰囲気を 800 °C程度の低温域に制御する場合は、 パーナから吸引さ れて蓄熱体を通った排ガスの温度も低下する。 その結果、 蓄熱体の排 ガス出側や、 それに続く上記経路 45にて、 排ガス中に含まれる水分や 硫黄分が凝結するこ とになる。 この凝結によって生じた液体、 いわゆ る ドレンが蓄熱体の排ガス出側に滞留するこ とがある。 そのままパー ナの燃焼運転が切り替わり燃焼状態となる と、 燃焼用空気に ドレンが 混入する結果、 燃焼火炎温度が下がる という 問題をまねく。 この ドレ ンによる燃焼火炎温度の低下は、 加熱炉の熱効率を低下させる上、 低 温運転に支障をきたすこ と もあった。  However, in the operation of the heating furnace using the regenerative parner described above, the period from the start of combustion of the panner to the set temperature or the furnace atmosphere is reduced to a low temperature range of about 800 ° C. When controlled, the temperature of the exhaust gas sucked from the wrench and passing through the regenerator also decreases. As a result, moisture and sulfur contained in the exhaust gas will condense on the exhaust gas outlet side of the heat storage body and on the subsequent route 45 described above. The liquid, so-called drain, generated by this condensation may stay on the exhaust gas discharge side of the heat storage body. If the combustion operation of the burner is switched to the combustion state as it is, the mixture of drain into the combustion air will cause a problem that the combustion flame temperature will drop. The reduction in combustion flame temperature due to this drain not only reduced the thermal efficiency of the heating furnace, but also hindered low-temperature operation.
また、 蓄熱式パーナを多数設置した加熱炉では、 パーナから蓄熱体 を通して低温となった排ガスを吸引装置に導く経路が長い。 ドレンは 蓄熱体出側に限らず、 上記経路の途上にも発生するこ とがある。 そし て、 この経路上で発生した ドレンは吸引装置のインペラを腐食する。 ドレン中に含まれる固形分がインペラを磨耗損傷すると重大な事故に 発展するおそれがある。 そのため、 従来、 蓄熱式パーナを有する加熱 炉では、 排ガスの吸引装置の点検を頻繁に行っていた。 さ らに、 吸引 装置のイ ンペラの交換等頻繁な補修に要するコス ト の増加も問題にな つていた。 In addition, in a heating furnace equipped with a number of regenerative parners, there is a long path for introducing low-temperature exhaust gas from the parner through the regenerator to the suction device. Drainage may occur not only on the outlet side of the heat storage unit, but also on the above route. Drain generated on this path corrodes the impeller of the suction device. If the solid content in the drain wears and damages the impeller, it could lead to a serious accident. For this reason, in the past, heating furnaces with regenerative burners had been frequently inspected for exhaust gas suction devices. In addition, the increase in the cost required for frequent repairs such as replacement of the impeller of the suction device was also a problem.
上記した ドレンに関わる諸問題に対して、 特開平 10— 308 12 号公報 には、 図 3 に示す装置が開示されている。 加熱炉内 (例えば均熱帯 3 ) の排ガスを、 パーナ 40 a と排ガス配管路 50を通して炉外に排出する経 路とは別にパイパス管 51を通して排ガス配管路 50に流す。 こ うするこ とによって排ガス配管路 50内の温度を排ガスの露点以上に保持するこ とが開示されている。  To cope with the above-mentioned problems relating to drainage, Japanese Patent Application Laid-Open No. 10-30812 discloses an apparatus shown in FIG. Exhaust gas in the heating furnace (for example, in the solitary zone 3) is flown into the exhaust gas pipe line 50 through the bypass pipe 51 separately from the path to be discharged outside the furnace through the parner 40a and the exhaust gas pipe line 50. It is disclosed that by doing so, the temperature in the exhaust gas piping 50 is maintained at or above the dew point of the exhaust gas.
しかし、 鋼材の厚み方向で温度を均一にするため比較的低温で時間 をかけて加熱する場合や、 設備 トラプルが発生して高負荷燃焼が不可 能の場合などは、 パーナを極めて低い負荷で燃焼させる必要がある。 この場合には、 吸引装置 (ファ ン) をその吸引能力の例えば 10 %未満 にまで下げて運転する結果、 吸引装置の運転が不安定になることがあ る。 ファ ンの翼全面で旋回流が安定して得られず、 失速して旋回流が 得られない個所が発生する。 すると、 パーナからの排ガス吸引量を一 定に保持することが困難となるばかり力 翼に異常振動が発生し、 場 合によってはファ ンが破損するおそれもある。  However, if the steel is heated at a relatively low temperature for a long time to make the temperature uniform in the thickness direction of the steel material, or if high load combustion is not possible due to equipment traps, burn the burner with an extremely low load. Need to be done. In this case, the operation of the suction device (fan) is reduced to, for example, less than 10% of its suction capacity, and as a result, the operation of the suction device may become unstable. A swirl flow cannot be obtained stably over the entire surface of the fan blades, and a stall may occur where swirl flow cannot be obtained. Then, it becomes difficult to keep the exhaust gas suction amount from the wrench constant, and abnormal vibration occurs in the power blade, and in some cases, the fan may be damaged.
上述したよ うに、 特開平 10— 30812 号公報に記載された技術は、 低 負荷で燃焼させた場合の ドレンに関わる諸問題は解決されるが、 吸引 装置の運転が不安定になる問題は解決されない。 また、 同公報に記載 された排ガス配管路 50およびパイパス管 51のそれぞれに制御弁がある ため、 その制御が複雑であるという問題もある。  As described above, the technology described in Japanese Patent Application Laid-Open No. Hei 10-30812 solves the problems related to drainage when burning at low load, but solves the problem that the operation of the suction device becomes unstable. Not done. In addition, since there are control valves in each of the exhaust gas pipe line 50 and the bypass pipe 51 described in the publication, there is also a problem that the control is complicated.
連続式加熱炉は加熱中の鋼材の表面を良好な状態に維持するために、 炉内の雰囲気を厳密に制御するこ とが重要である。 例えば、 炉内雰囲 気における酸素濃度が上昇する と、 炉内に装入した鋼材などの被加熱 材の表面酸化、 窒化或いは脱炭等が促進され、 そのまま圧延を行う と 製品の表面品質が低下する。 製品品質を向上または維持するには、 炉 内雰囲気における酸素濃度の上昇を抑制する必要がある。 そのために は炉内雰囲気における酸素濃度を正確に測定することが重要である。 酸素濃度の他にも、 炉内雰囲気における窒素、 一酸化炭素や窒素酸 化物などについても、同様に濃度を正確に測定することが重要である。 窒素は鋼材表面の窒化に影響を与え、 一酸化炭素はパーナの不完全燃 焼の検知に利用でき、 窒素酸化物は環境排出基準値の管理に必要であ る。 In a continuous heating furnace, it is important to strictly control the atmosphere in the furnace in order to maintain the surface of the steel material being heated in good condition. For example, when the oxygen concentration in the furnace atmosphere increases, the surface oxidation, nitriding, or decarburization of the material to be heated, such as steel, charged in the furnace is promoted, and the rolling is performed as it is. The surface quality of the product is reduced. To improve or maintain product quality, it is necessary to suppress the increase in oxygen concentration in the furnace atmosphere. For that purpose, it is important to accurately measure the oxygen concentration in the furnace atmosphere. In addition to the oxygen concentration, it is also important to accurately measure the concentration of nitrogen, carbon monoxide, nitrogen oxides, etc. in the furnace atmosphere. Nitrogen affects the nitridation of steel surfaces, carbon monoxide can be used to detect incomplete combustion of the wrench, and nitrogen oxides are needed to control environmental emission standards.
ここで、 特開昭 62— 403 12 号公報には、 加熱炉内の酸素濃度おょぴ C O濃度を測定するための各プローブを移動自在と して、 複数の測定 位置にて濃度測定を行い、 平均濃度値を求めるこ と によって、 パーナ の空気比を修正制御することが開示されている。  Here, Japanese Patent Application Laid-Open No. 62-40312 discloses that each probe for measuring the oxygen concentration and the CO concentration in a heating furnace is movable, and the concentration is measured at a plurality of measurement positions. It discloses that the air ratio of the wrench is corrected and controlled by calculating the average concentration value.
しかしながら、 濃度を測定するために、 駆動系や制御系を新たに設 ける必要があるため、 設備費が高い。 そのメ ンテナンスが煩雑である 等の問題があり、 しかも加熱炉はダク トゃ付設機器類が複雑に入り組 んでいるので配置スペースが無く駆動系や制御系を新たに設けるこ と が困難な場合が多かった。  However, equipment costs are high because it is necessary to newly install a drive system and a control system to measure the concentration. If the maintenance is complicated, and the heating furnace is complicated with ducts and other equipment, there is no space for installation and it is difficult to provide a new drive system or control system. There were many.
また、 特開平 9 一 53 120 号公報には、 加熱炉抽出側の炉壁内側かつ スキッ ドの下側に、 炉幅方向に仕切壁を設置し、 この仕切壁と抽出側 炉壁との間に、 酸素濃度計おょぴ雰囲気ガスを炉外に排出する排気管 を備えた加熱炉が開示されている。 この加熱炉において、 上記酸素濃 度計を用いて酸素濃度を測定しつつ、 排気管内の流量制御を行う こ と が開示されている。  Also, in Japanese Patent Application Laid-Open No. Hei 9-53120, a partition wall is installed in the furnace width direction inside the furnace wall on the extraction side of the heating furnace and below the skid, and a partition wall between the partition wall and the extraction side furnace wall is provided. Discloses a heating furnace having an exhaust pipe for discharging an oxygen concentration meter atmosphere gas outside the furnace. It is disclosed that in this heating furnace, the flow rate in the exhaust pipe is controlled while measuring the oxygen concentration using the oxygen concentration meter.
しかし、 仕切壁と抽出側炉壁との間の酸素濃度計で測定を行う ため には、 炉床または炉壁からプローブを揷入する必要がある。 炉床から プロープを挿入する と、 スケール等の落下そして堆積により プロープ に破損や詰ま りが発生するため、 長期にわたり信頼性のある濃度測定 を行う こ とが難しい。 また、 炉壁からプローブを挿入すると、 炉内の 高温域にプローブがさ らされてたわむために、 測定点がずれたり損傷 を生じる、 おそれがある。 発明の開示 However, in order to perform measurement with an oximeter between the partition wall and the extraction furnace wall, it is necessary to insert a probe from the hearth or the furnace wall. When a probe is inserted from the hearth, the probe may be damaged or clogged due to the dropping and accumulation of scale, etc., making it difficult to perform reliable concentration measurement over a long period of time. In addition, when the probe is inserted from the furnace wall, the probe is exposed to the high temperature area in the furnace and bends, causing the measurement points to shift or be damaged. May occur. Disclosure of the invention
この発明の目的のひとつは、 加熱炉内への空気の侵入を確実に防ぐ ことのできる炉圧の制御方法を提案することである。  An object of the present invention is to propose a furnace pressure control method that can reliably prevent air from entering a heating furnace.
発明者らは、 炉内が負圧になった場合の空気の侵入について鋭意究 明した。 装入扉おょぴ抽出扉の両方から炉内に空気が侵入する。 図 1 に示したよ う に、 装入扉 1 a の直後に煙道 7が設けられている。 装入 扉 l aから侵入した空気は、直ちに煙道 7に抜けて炉外に排出される。 装入扉 1 aから侵入した空気は、 炉内酸素濃度の上昇ゃ炉内温度の低 下を引き起こす要因になり難いこ とが判明した。 炉内酸素濃度の上昇 ゃ炉内温度の低下を回避するには、 抽出扉からの空気の侵入を回避す るこ とが肝要である。 そのためには、 抽出扉が設けられている均熱帯 における炉圧を適切に制御することが重要であるこ とを知見した。 なお、 上述したよ う に、 煙道に設けたダンパーの開閉によって炉圧 を制御するのは、 特に燃焼負荷が小さい場合に、 均熱帯の搬送路下方 領域の炉圧を正圧にするこ とは困難である。 なぜなら、 排ガスの発生 量が減少し、 炉内から煙道を抜けるまでの排ガスの圧力損失が減少す る一方で、 炉内では下方に向かう ほど ドラフ トが大きく なる。 炉圧分 布は相対的に加熱炉下方に向かって徐々に低下する。 下部帯では排ガ スの圧力損失に比べて ドラフ トが大きく なつて負圧となり易い。  The inventors have eagerly studied the intrusion of air when the pressure in the furnace becomes negative. Air enters the furnace from both the loading door and the extraction door. As shown in Fig. 1, a flue 7 is provided immediately after the charging door 1a. The air that has entered through the charging door la immediately passes through the flue 7 and is discharged outside the furnace. It was found that air entering through the charging door 1a was unlikely to cause a rise in the oxygen concentration in the furnace and a decrease in the furnace temperature. Increasing the oxygen concentration in the furnace ゃ To avoid a decrease in the furnace temperature, it is important to avoid the intrusion of air from the extraction door. To this end, we found that it was important to control the furnace pressure in the solitary tropics where the extraction door was installed. As described above, the furnace pressure is controlled by opening and closing the damper provided in the flue, especially when the combustion load is small, by setting the furnace pressure in the lower part of the transport path in the solitary zone to a positive pressure. It is difficult. This is because the amount of exhaust gas generated decreases, and the pressure loss of the exhaust gas from the inside of the furnace to the flue decreases, while the draft increases in the furnace downward. Furnace pressure distribution gradually decreases relatively below the heating furnace. In the lower zone, the draft is larger than the pressure loss of the exhaust gas and negative pressure is likely to occur.
と ころで、 連続式加熱炉の加熱源に蓄熱式パーナを用いて、 排ガス 中の熱をパーナの燃焼用空気の予熱に再利用する、 熱損失の少ない加 熱炉の操業が行われている。 蓄熱式パーナを用いた加熱炉の炉圧制御 について検討を加えた。 特に均熱帯の下部域に加熱源と して蓄熱式パ ーナを用いた場合に、 蓄熱式パーナ特有の機構を利用するこ とによつ て、 厳密な炉圧制御が可能であるこ と を見出し、 この発明を完成する に到つた。  At this time, a regenerative furnace has been used as a heating source for the continuous furnace, and the heat in the exhaust gas is reused for preheating the combustion air of the parner. . We examined furnace pressure control of a heating furnace using a regenerative parner. In particular, when a regenerative panner is used as a heating source in the lower part of the solitary tropics, strict furnace pressure control is possible by using a mechanism unique to the regenerative panner. Heading, and completed this invention.
すなわち、 この発明は、 蓄熱式パーナを用いた加熱炉において、 加 熱炉全体の燃焼負荷に応じて、 上記パーナから蓄熱体への排ガス吸引 率を調節して均熱帯での炉圧を制御するこ とを特徴とする蓄熱式パー ナを利用した炉圧制御方法である。 That is, the present invention relates to a heating furnace using a regenerative A furnace pressure control method using a regenerative burner, characterized by controlling the furnace pressure in the solitary zone by adjusting the exhaust gas suction rate from the above-mentioned burner to the regenerator according to the combustion load of the entire furnace. It is.
さ らに、 発明者らは、 燃焼負荷が小さい場合にも均熱帯の搬送路下 方領域の炉圧を正圧にするこ とのできる手法について鋭意究明したと ころ、 煙道に設けたレキュペレータの保護を目的と して、 煙道のレキ ュぺレータ入側に供給するダイ リ ユーショ ンエアを炉圧の制御に利用 できるこ とを見出した。  Furthermore, the present inventors have eagerly studied a method capable of keeping the furnace pressure in the region below the transport path in the solitary zone positive even when the combustion load is small. It was found that diversion air supplied to the regulator inlet side of the flue could be used for furnace pressure control for the purpose of protecting the furnace.
すなわち、 この発明は、 加熱炉内の排ガスを炉外に導く煙道の途上 にレキュペレータを配置し、 該レキュペレータにて、 加熱炉の加熱源 であるパーナに供給する燃焼用空気の予熱を行う際、 レキュペータを 高温雰囲気から保護するために、 煙道のレキュペレータ入側にダイ リ ユーショ ンエアを供給するに当 り 、 レキュペレータ入側の排ガス温度 および加熱炉の燃焼負荷に応じてダイ リ ューシヨ ンエアの流量を調整 し、 炉圧を制御するこ とを特徴とする加熱炉の炉圧制御方法である。 この発明の目的のひとつは加熱炉内への抽出扉からの空気の侵入を 確実に防ぐこ とのできる方途について提案するこ とである。 また、 こ の発明の 目的のひとつはこの方法に使用す—る加熱炉を提供するこ とに ある o  That is, according to the present invention, when a recuperator is arranged in the middle of a flue that guides exhaust gas in a heating furnace to the outside of the furnace, and when the recuperator preheats combustion air supplied to a burner that is a heating source of the heating furnace, In order to protect the recuperator from high-temperature atmosphere, when supplying diluent air to the recuperator inlet side of the flue, the flow rate of the diversion air depends on the exhaust gas temperature on the recuperator inlet side and the combustion load of the heating furnace. This is a furnace pressure control method for a heating furnace, characterized in that the furnace pressure is adjusted by controlling the furnace pressure. One of the objects of the present invention is to propose a method capable of reliably preventing air from entering the heating furnace from the extraction door. One of the objects of the present invention is to provide a heating furnace used in this method.
発明者らは、 炉内が負圧になった場合の空気の侵入について鋭意究 明したと ころ、 その場合、 装入扉おょぴ抽出扉の両方から炉内に空気 が侵入するが、 図 1 に示したよ う に、 装入扉 1 a の直後に煙道 7が設 けられているため、 装入扉 1 a から侵入した空気は、 直ちに煙道 7 に 抜けて炉外に排出されるため、 炉内酸素濃度の上昇ゃ炉内温度の低下 を引き起こす要因になり難いこ とが判明した。 従って、 炉内酸素濃度 の上昇ゃ炉内温度の低下を回避するには、 抽出口からの空気の侵入を 回避することが肝要であり 、 そのためには、 抽出端において侵入空気 を確実に遮断することが重要になることを知見するに到った。  The inventors have elaborated on the intrusion of air when the pressure in the furnace becomes negative.In this case, air enters the furnace from both the charging door and the extraction door. As shown in Fig. 1, the flue 7 is provided immediately after the charging door 1a, so the air that has entered through the charging door 1a immediately passes through the flue 7 and is discharged outside the furnace. As a result, it was found that it was difficult to cause an increase in the furnace oxygen concentration and a decrease in the furnace temperature. Therefore, in order to avoid an increase in the oxygen concentration in the furnace and a decrease in the temperature in the furnace, it is important to avoid the intrusion of air from the extraction port. For that purpose, it is necessary to surely shut off the intruding air at the extraction end. Has come to realize that it becomes important.
この発明の目的のひとつは、 蓄熱式パーナの燃焼負荷が小さい場合 にあっても排ガスの吸引装置の運転が不安定になることのない、 加熱 炉の操業方法について提案するこ とである。 また、 この発明の目的の ひとつは、 この加熱炉の操業方法に使用する加熱炉を提供するこ とに める。 One of the objects of the present invention is when the combustion load of the regenerative It is an object of the present invention to propose a method of operating a heating furnace in which the operation of the exhaust gas suction device does not become unstable. Another object of the present invention is to provide a heating furnace used in the method for operating the heating furnace.
発明者らは、 蓄熱式パーナの燃焼負荷が小さ く なつて、 排ガスの吸 引装置を例えば 10 %未満の負荷で運転するこ と を余儀なく された場合 に、 この吸引装置の運転負荷を高める方途を鋭意究明したと ころ、 加 熱炉の排ガスを炉外に導く煙道から排ガスを吸引装置へと導く こ とが 極めて有利であるこ を見出し、 この発明を完成するに到った。  The present inventors have proposed a method of increasing the operating load of a regenerative burner when the combustion load of the regenerative burner is reduced and the exhaust gas suction device must be operated at a load of, for example, less than 10%. The present inventors have found that it is extremely advantageous to guide the exhaust gas from a flue that guides the exhaust gas of the heating furnace to the outside of the furnace to the suction device, and have completed the present invention.
この発明の目的のひとつは、 加熱炉内雰囲気における成分ガスの濃 度測定を、 既存の設備を利用して正確に行う こ とのできる方法につい て提案するこ とである。 この発明の別の目的は、 加熱炉内雰囲気にお ける成分ガスの濃度測定が可能な加熱炉を提供することにある。  One of the objects of the present invention is to propose a method capable of accurately measuring the concentration of a component gas in a furnace atmosphere using existing equipment. Another object of the present invention is to provide a heating furnace capable of measuring the concentration of a component gas in the atmosphere inside the heating furnace.
蓄熱式パーナを用いた加熱炉の操業において、 図 2 Aおよび図 2 B に示した工程を、 例えば数十秒毎に繰り返して、 加熱を行う こ と によ つて、 熱損失の少ない加熱炉操業が実現するのである。  In the operation of a heating furnace using a regenerative parner, the steps shown in Figs. 2A and 2B are repeated, for example, every several tens of seconds, and heating is performed, so that heating furnace operation with little heat loss is performed. Is realized.
このよ うな蓄熱式パーナを用いた加熱炉の操業において、 蓄熱式バ 一ナの排ガス吸引は高速で行われるため、 炉幅方向に分布する排ガス を広い範囲にわたり 吸引 している。 発明者らは、 この現象に着目 し、 蓄熱式パーナから吸引された炉内の排ガスが、 炉内雰囲気を良く 再現 しているこ とから、 蓄熱式パーナから吸引 された排ガスについて成分 濃度の測定を行えば、 炉内雰囲気における成分濃度が正確に測定され るこ とを見出し、 この発明を完成するに到った。  In the operation of a heating furnace using such a regenerative burner, the exhaust gas from the regenerative burner is sucked at high speed, so exhaust gas distributed in the furnace width direction is sucked over a wide range. The inventors focused on this phenomenon, and measured the component concentration of the exhaust gas sucked from the regenerative parner, because the exhaust gas in the furnace sucked from the regenerative parner reproduced the atmosphere inside the furnace well. The inventors have found that the concentration of components in the furnace atmosphere can be accurately measured by performing the method described above, and have completed the present invention.
この発明の要旨は、 次の通りである。 The gist of the present invention is as follows.
1 . 予熱帯、 加熱帯および均熱帯を有し、 該均熱帯の熱源と して、 蓄熱体を付設したパーナの対を向かい合わせて配した蓄熱式パ ナを、 複数組配設した、 加熱炉において、 蓄熱式パーナの各対のパーナを交 互に燃焼させる と共に、 非燃焼時にはパーナから炉内の排ガスを吸引 し、 上記蓄熱体に排ガスを導入して排ガス中の熱を蓄熱体に回収し、 この回収した熱を燃焼時のパーナの燃焼用空気の加熱に利用 して、 加 熱炉の操業を行う に当 り、 加熱炉全体の燃焼負荷に応じて、 上記パー ナから蓄熱体への排ガス吸引率を調節して均熱帯での炉圧を制御する ことを特徴とする蓄熱式パーナを利用した炉圧制御方法。 1. A heat storage type pan having a pre-tropical zone, a heating zone and a soaking zone, and a plurality of regenerative pans arranged with a pair of panners with heat storage bodies facing each other as a heat source of the solitary zone. In the furnace, each pair of regenerative burners is burned alternately, and when not burning, the exhaust gas in the furnace is sucked from the furnace and the exhaust gas is introduced into the regenerator to recover the heat in the exhaust gas into the regenerator. And This recovered heat is used to heat the combustion air of the burner during combustion, and the operation of the heating furnace is carried out. In accordance with the combustion load of the entire heating furnace, the exhaust gas from the above-mentioned burner to the heat storage unit is used. A furnace pressure control method using a regenerative parner, characterized in that the suction pressure is adjusted to control the furnace pressure in the solitary zone.
2 . 加熱炉内の排ガスを炉外に導く煙道の途上にレキュペレータを 配置し、 該レキュペレータにて、 加熱炉の加熱源であるパーナに供給 する燃焼用空気の予熱を行う際、 レキュペレータを高温雰囲気から保 護するために、 煙道のレキュペレータ入側にダイ リ ユ ーショ ンエアを 供給するに当 り、 レキュペレータ入側の排ガス温度および加熱炉の燃 焼負荷に応じてダイ リ ューシヨ ンエアの流量を調整し、 炉圧を制御す るこ とを特徵とする加熱炉の炉圧制御方法。  2. A recuperator is placed in the flue that guides the exhaust gas from the heating furnace to the outside of the furnace. When the recuperator preheats the combustion air supplied to the burner heating source, the recuperator is heated to a high temperature. In order to protect from the atmosphere, when supplying diluent air to the recuperator inlet side of the stack, the diluent air flow rate is adjusted according to the exhaust gas temperature at the recuperator inlet side and the combustion load of the heating furnace. A furnace pressure control method for a heating furnace, characterized by adjusting and controlling the furnace pressure.
3 . 加熱炉の抽出扉を開放する際、 該加熱炉内に配設した複数の加 熱用パーナの う ち、 炉抽出端の下部域に配置した加熱用パーナの燃焼 を独立に制御し、 該パーナのフ レームを抽出口 の幅方向に該開口幅に わたって延長し、 抽出口からの空気の侵入路をパーナフ レームにて遮 断して、 炉内の酸素濃度の上昇を抑制するこ と を特徴とする加熱炉の 雰囲気制御方法。  3. When the extraction door of the heating furnace is opened, the combustion of the heating parner, which is located in the lower area of the furnace extraction end, is controlled independently of the heating parners arranged in the heating furnace. The frame of the parner is extended in the width direction of the extraction port across the width of the opening, and the entrance path of air from the extraction port is blocked by the panner frame to suppress an increase in the oxygen concentration in the furnace. An atmosphere control method for a heating furnace, characterized in that:
4 .. 3 において、 炉抽出端に配置した加熱用パーナの炉内側に、 炉 床から屹立する仕切壁を設けて該仕切壁に沿う上昇流を形成し、 抽出 口から侵入した空気を上記上昇流に乗せるこ と を特徴とする加熱炉の 雰囲気制御方法。  4. In 3., a partition wall rising from the hearth was provided inside the heating parner at the furnace extraction end to form a rising flow along the partition wall, and the air entering from the extraction port was raised A method for controlling the atmosphere of a heating furnace, characterized by being placed in a flow.
5 . 3 または 4 において、 炉抽出端に配置した加熱用パーナを低空 気比の下に燃焼運転するこ とを特徴とする加熱炉の雰囲気制御方法。 6 . 加熱源と して、 蓄熱体が付帯されたパーナの対を向かい合わせ に配設した蓄熱式パーナを有する、 加熱炉において、 蓄熱式パーナの 各対のパーナを交互に燃焼させると共に、 非燃焼時のパーナから炉内 の排ガスを吸引し、 上記蓄熱体に排ガスを導入して排ガス中の熱を蓄 熱体に回収し、 この回収した熱を燃焼時のパーナの燃焼用空気の加熱 に利用して、 加熱炉の操業を行うに当 り、 蓄熱式パーナの燃焼負荷が 小さい場合に、 上記非燃焼時のパーナから蓄熱体を通して炉内の排ガ スを吸引するための吸引装置に、 熱風を供給するこ とを特徴とする蓄 熱式パーナを有する加熱炉の操業方法。 5.3 The atmosphere control method for a heating furnace according to 3 or 4, characterized in that the heating parner arranged at the furnace extraction end is operated at a low air ratio under combustion. 6. In a heating furnace, which has a regenerative parner with a pair of parners provided with a heat accumulator facing each other as a heating source, the parners of each pair of the regenerative parners are alternately burned in a heating furnace. Exhaust gas in the furnace is sucked from the furnace during combustion, the exhaust gas is introduced into the regenerator, heat in the exhaust gas is collected in the regenerator, and the recovered heat is used to heat the combustion air of the parner during combustion. When operating the heating furnace, the combustion load of the regenerative A method for operating a heating furnace having a regenerative burner, wherein hot air is supplied to a suction device for sucking exhaust gas in the furnace from the non-burning panner through a regenerator when the size is small. .
7 . 熱風が、 加熱炉内の排ガスを炉外に導く煙道内の排ガスである こ とを特徴とする 6 に記載の加熱炉の操業方法。  7. The operating method of the heating furnace according to 6, wherein the hot air is an exhaust gas in a flue that guides the exhaust gas in the heating furnace out of the furnace.
8 . 加熱源と して、 蓄熱体が付帯されたパーナの対を向かい合わせ に配設した蓄熱式パーナを有する、 加熱炉において、 蓄熱式パーナの 各対のパーナを交互に燃焼させる と共に、 非燃焼時のパーナから炉内 の排ガスを吸引し、 上記蓄熱体に排ガスを導入して排ガス中の熱を蓄 熱体に回収し、 この回収した熱を燃焼時のパーナの燃焼用空気の加熱 に利用して、 加熱炉の操業を行う に当 り 、 上記パーナから吸引した排 ガスの一部を分析器に導いて、 排ガス中の成分濃度を測定するこ とを 特徴とする加熱炉内の雰囲気ガス濃度の測定方法。  8. In a heating furnace, which has a regenerative parner with a pair of parners provided with a heat accumulator facing each other as a heating source, the parners of each pair of the regenerative parners are alternately burned in a heating furnace. Exhaust gas in the furnace is sucked from the furnace during combustion, the exhaust gas is introduced into the regenerator, heat in the exhaust gas is collected in the regenerator, and the recovered heat is used to heat the combustion air of the parner during combustion. At the time of operating the heating furnace using the heating furnace, a part of the exhaust gas sucked from the above-mentioned wrench is guided to an analyzer to measure the concentration of components in the exhaust gas. How to measure gas concentration.
9 . 8 において、 蓄熱式パーナから吸引した排ガスの成分濃度測定 値を、 該蓄熱式パーナが設けられた加熱炉内の帯における成分濃度の 代表値と して用いるこ とを特徴とする加熱炉内の雰囲気ガス濃度の測 定方法。  9. The heating furnace according to 9.8, wherein the measured value of the component concentration of the exhaust gas sucked from the regenerative parner is used as a representative value of the component concentration in a zone in the reheating furnace provided with the regenerative parner. Method for measuring the concentration of atmospheric gas in a room.
1 0 . 加熱源と して、 蓄熱体が付帯されたパーナの対を向かい合わ せに配設した蓄熱式パーナの複数を具え、 該蓄熱式パーナの各対のパ ーナを交互に燃焼させる と共に、 非燃焼時のパーナから炉内の排ガス を吸引し、 上記蓄熱体に排ガスを導入して排ガス中の熱を蓄熱体に回 収し、 この回収した熱を燃焼時のパーナの燃焼用空気の加熱に利用し て操業を行う、 加熱炉において、 少なく と も加熱炉の抽出端の下部域 に配置した蓄熱式パーナは、 その他の蓄熱式パーナとは独立した燃焼 制御系を有するこ とを特徴とする加熱炉。  10. As a heat source, a plurality of regenerative parners arranged opposite to each other with a pair of panners provided with a heat accumulator are provided, and the pairs of the regenerative parners are alternately burned. In addition, the exhaust gas in the furnace is sucked from the burner during non-combustion, the exhaust gas is introduced into the heat accumulator, heat in the exhaust gas is collected in the heat accumulator, and the recovered heat is used for the combustion air of the burner during combustion. In reheating furnaces that operate for heating, at least the regenerative burner located in the lower region of the extraction end of the reheating furnace has a combustion control system that is independent of other regenerative burners. And heating furnace.
1 1 . 1 0 において、 独立した燃焼制御系を有する蓄熱式パーナを 加熱炉の抽出扉との間で挟む位置に、 炉床から屹立する仕切壁を設け たことを特徴とする加熱炉。  11. The heating furnace according to 11.10, wherein a partition wall rising from the hearth is provided at a position sandwiching a regenerative parner having an independent combustion control system with an extraction door of the heating furnace.
1 2 . 加熱源と して、 蓄熱体が付帯されたパーナの対を向かい合わ せに配設した蓄熱式パーナを有し、 該蓄熱式パーナの各対のパ一ナを 交互に燃焼させる と共に、 非燃焼時のパーナから炉内の排ガスを吸引 し、 上記蓄熱体に排ガスを導入して排ガス中の熱を蓄熱体に回収し、 この回収した熱を燃焼時のパーナの燃焼用空気の加熱に利用して操業 を行う、 加熱炉において、 該加熱炉内の排ガスを非燃焼時のパーナか ら蓄熱体を介して吸引する経路の末端に吸引装置を配設し、 該経路の 吸引装置入側に、 開閉弁を介して熱風を吸引装置に導く配管路を設け たことを特徴とする加熱炉。 1 2. As a heat source, face to face a pair of wrench with heat storage And a pair of the regenerative burners is burned alternately, and the exhaust gas in the furnace is sucked from the non-burning burner to discharge the exhaust gas into the regenerator. Introduces the heat in the exhaust gas into the heat storage unit and uses the recovered heat to heat the combustion air of the burner during combustion, and operates the furnace. In the heating furnace, the exhaust gas in the heating furnace is not burned A suction device is provided at the end of a path for suctioning the heat from a wrench through a heat storage element, and a piping path for guiding hot air to the suction device via an on-off valve is provided on the suction device inlet side of the path. Characterized heating furnace.
1 3 . 配管路は、 加熱炉内の排ガスを炉外に導く煙道に接続されて なり 、 熱風と して加熱炉内の排ガスを導く ものであるこ とを特徴とす る 1 2に記載の加熱炉。  13. The pipe line according to item 12, wherein the piping is connected to a flue that guides exhaust gas in the heating furnace to the outside of the furnace, and guides the exhaust gas in the heating furnace as hot air. heating furnace.
1 4 . 1 2 または 1 3 において、 煙道の配管路の上流側にレキュぺ レータを設けたこ とを特徴とする加熱炉。  14. A heating furnace according to item 14 or 13, wherein a recuperator is provided on an upstream side of a pipe line of the stack.
1 5 . 加熱源と して、 蓄熱体が付帯されたパーナの対を向かい合わ せに配設した蓄熱式パーナを有し、 該蓄熱式パーナの各対のパーナ 交互に燃焼させる と共に、 非燃焼時のパーナから炉内の排ガスを吸引 し、 上記蓄熱体に排ガスを導入して排ガス中の熱を蓄熱体に回収し、 この回収した熱を燃焼時のパーナの燃焼用空気の加熱に利用して操業 を行う、 加熱炉において、 該加熱炉内の排ガスを非燃焼時のパーナか ら蓄熱体を介して排出する経路の途中に、 排ガスの一部を採取するプ ロープおよび採取した排ガスの成分濃度を測定する分析器を設けたこ とを特徴とする加熱炉。 図面の簡単な説明  15 5. As a heating source, a regenerative parner is provided with a pair of parners with a heat storage body attached to each other, and the parners of each pair of the regenerative parners are alternately burned and not burned. The exhaust gas in the furnace is sucked from the furnace, the exhaust gas is introduced into the heat storage body, the heat in the exhaust gas is recovered by the heat storage body, and the recovered heat is used for heating the combustion air of the parner during combustion. In a heating furnace where operation is performed, a probe for sampling a part of the exhaust gas and a component concentration of the collected exhaust gas in the course of discharging the exhaust gas in the heating furnace from a non-burning burner through a heat storage unit. A heating furnace provided with an analyzer for measuring the temperature. BRIEF DESCRIPTION OF THE FIGURES
図 1 は連続式加熱炉の構造を示す図である。 Figure 1 shows the structure of a continuous heating furnace.
図 2 Aは蓄熱式パーナの構造を示す図である。 FIG. 2A is a diagram showing the structure of a regenerative parner.
図 2 Bは蓄熱式パーナの構造を示す図である。 FIG. 2B is a diagram showing the structure of a regenerative parner.
図 3は従来の加熱炉における排ガスの排出経路を示す図である。 FIG. 3 is a diagram showing an exhaust gas discharge path in a conventional heating furnace.
図 4はこの発明に従う加熱炉における排ガスの排出経路を示す図である 図 5 はこの発明で用いる連続式加熱炉の構造を示す図である。 FIG. 4 is a diagram showing an exhaust gas discharge path in the heating furnace according to the present invention. FIG. 5 is a diagram showing the structure of the continuous heating furnace used in the present invention.
図 6は排ガス吸引率と炉圧との関係を示す図である。 FIG. 6 is a diagram showing the relationship between the exhaust gas suction rate and the furnace pressure.
図 7は炉圧と侵入空気量との関係を示す図である。 FIG. 7 is a diagram showing the relationship between the furnace pressure and the amount of air entering.
図 8はこの発明で使用する連続式加熱炉の構造を示す図である。 FIG. 8 is a view showing the structure of a continuous heating furnace used in the present invention.
図 9 はダイ リ ューショ ンエアの流量調整弁開度と炉圧との関係を示す図 である。 Figure 9 is a diagram showing the relationship between the opening degree of the dilution air flow control valve and the furnace pressure.
図 1 0は炉圧制御方法と炉圧およぴ炉内酸素濃度との関係を示す図で ある。 FIG. 10 is a diagram showing the relationship between the furnace pressure control method and the furnace pressure and the oxygen concentration in the furnace.
図 1 1は炉圧制御方法と炉圧との関係を示す図である。 FIG. 11 is a diagram showing the relationship between the furnace pressure control method and the furnace pressure.
図 1 2は炉圧制御方法と炉内酸素濃度との関係を示す図である。 FIG. 12 is a diagram showing the relationship between the furnace pressure control method and the oxygen concentration in the furnace.
図 1 3は加熱用パーナの炉内配置を示す図である。 FIG. 13 is a diagram showing the arrangement of the heating parner in the furnace.
図 1 4は加熱炉の抽出口を示す図である。 FIG. 14 is a diagram showing the extraction port of the heating furnace.
図 1 5は加熱炉抽出端付近の空気流を示す図である。 Figure 15 is a diagram showing the air flow near the heating furnace extraction end.
図 1 6は加熱用パーナの空気比と侵入空気の燃焼量との関係を示す図 である。 Fig. 16 is a diagram showing the relationship between the air ratio of the heating parner and the combustion amount of intruding air.
図 1 7は蓄熱式パーナからの排ガスの排出経路を示す図である。 FIG. 17 is a diagram showing a discharge path of the exhaust gas from the regenerative parner.
図 1 8は種々の手法による炉内酸素濃度の測定値と炉内平均酸素濃度 とを比較した図である。 発明を実施するための最良の形態 Figure 18 compares the measured oxygen concentration in the furnace and the average oxygen concentration in the furnace by various methods. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明の方法について、 図面を参照して詳細に説明する。 図 5 に、 この発明の方法に直接使用する連続式加熱炉を示す。 この加 熱炉は、 図 1 に示したと ころと基本的に同じであるが、 図 2 Aおよび 図 2 Bに示した蓄熱式パーナ 40 aおよぴ 40 b を、 少なく と も均熱帯 3 の搬送路 5 の下部に複数組配置した例である。 図 5 においては兼用通 路およぴ蓄熱体を含めて符号 40 aおよび 40 b と して示してある。 この 加熱炉の操業において、 加熱炉全体の燃焼負荷に応じて、 上記パーナ 4 0 aおよび 40 bから蓄熱体 42 aおよび 42 bへの排ガス吸引率を調節して 炉圧を制御する。 具体的には下部帯の炉圧を正圧となるよ う に制御す る ところに特徴がある。 Hereinafter, the method of the present invention will be described in detail with reference to the drawings. FIG. 5 shows a continuous heating furnace used directly in the method of the present invention. This heating furnace is basically the same as that shown in FIG. 1, except that the regenerative parners 40a and 40b shown in FIG. 2A and FIG. This is an example in which a plurality of sets are arranged below the transport path 5. In FIG. 5, reference numerals 40a and 40b are included, including the shared passage and the heat storage element. In the operation of the heating furnace, the furnace pressure is controlled by adjusting the rate of exhaust gas suction from the above-mentioned burners 40a and 40b to the regenerators 42a and 42b according to the combustion load of the entire heating furnace. Specifically, the furnace pressure in the lower zone is controlled to be positive. There is a characteristic in the place.
すなわち、 上記加熱炉の操業において、 均熱帯下部に設置した炉圧 計で炉圧を実測し、 目標とする炉圧に応じて、 蓄熱式パーナの蓄熱体 を通過する排ガス流量を流量調節弁を用いて調節し、 排ガス吸引率を 制御すること によ り、 下部帯、 特に均熱帯下部の炉圧を 目標炉圧に制 御する。  In other words, in the operation of the heating furnace, the furnace pressure was measured with a furnace pressure gauge installed in the lower part of the soaking zone, and the flow rate of exhaust gas passing through the heat storage body of the regenerative parner was adjusted by a flow control valve in accordance with the target furnace pressure. By controlling the furnace pressure, the furnace pressure in the lower zone, especially in the lower part of the solitary zone, is controlled to the target furnace pressure by controlling the exhaust gas suction rate.
図 6 に排ガス吸引率と炉圧との関係を示す。 上記の方法で燃焼負荷 に応じて排ガス吸引率を調節した際の、 均熱帯下部の炉圧と排ガス吸 引率との関係を示している。 排ガス吸引率と炉圧はほぼ反比例の関係 にある。 排ガス吸引率を調節するこ とによって、 炉圧を厳密に制御す るこ とが可能である。 なお、 排ガス吸引率とは、 蓄熱式パーナの燃焼 で発生する排ガス量に対する蓄熱式パーナに吸引される排ガス量の割 合である。 蓄熱式パーナの排ガスダク トに設置した排ガス流量計を用 いて排ガス流量を実測するこ と によって求める。  Figure 6 shows the relationship between the exhaust gas suction rate and the furnace pressure. The graph shows the relationship between the furnace pressure in the lower subtropical zone and the exhaust gas suction rate when the exhaust gas suction rate is adjusted according to the combustion load by the above method. Exhaust gas suction rate and furnace pressure are almost inversely proportional. The furnace pressure can be strictly controlled by adjusting the exhaust gas suction rate. Note that the exhaust gas suction rate is a ratio of the amount of exhaust gas sucked into the regenerative burner to the amount of exhaust gas generated by combustion of the regenerative burner. It is determined by actually measuring the exhaust gas flow rate using an exhaust gas flow meter installed in the exhaust gas duct of a regenerative parner.
また、 炉圧は、 上記の排ガス吸引率の調節によって、 均熱帯下部の 炉圧を 0 ~ 0. 5 ram A q の範囲に制御するこ とが好ま しい。 均熱帯下部 の炉圧を 0. 5 mmA q 以上とする と、 均熱帯上部の炉圧が高く なり過ぎ て炉内ガスが炉外へ吹き出し、 抽出扉を損傷する危険性がある。 燃料 原単位も悪化する。  Further, it is preferable that the furnace pressure be controlled in the range of 0 to 0.5 ram Aq by controlling the exhaust gas suction rate as described above. If the furnace pressure in the lower part of the soaking zone is set to 0.5 mmAq or more, the furnace pressure in the upper part of the soaking zone becomes too high, and the gas in the furnace blows out of the furnace, which may damage the extraction door. Fuel intensity also deteriorates.
図 8 に、 こ の発明の方法に直接使用する連続式加熱炉を示す。 この 加熱炉は、 図 1 に示したと ころと基本的に同じ構成である。 レキュぺ レータ 7 a に導入する炉内排ガスが レキュペレータ 7 a の耐熱温度上 限をこえる場合には、 煙道 7のレキュペレータ 7 a の入側に、 ダイ リ ユ ーシヨ ンエア 8 を供給するこ とによって、 レキュペレータ 7 a の保 護がはかられる構造を有する。  FIG. 8 shows a continuous heating furnace used directly in the method of the present invention. This heating furnace has basically the same configuration as shown in Fig. 1. If the furnace exhaust gas introduced into the recuperator 7a exceeds the upper limit of the heat-resistant temperature of the recuperator 7a, the dilution air 8 is supplied to the inlet of the recuperator 7a of the flue 7 It has a structure that protects the recuperator 7a.
このよ うな構造の加熱炉の操業において、 排ガス温度がレキュペレ ータ 7 a の耐熱温度をこえる場合に加えて、 均熱帯 3の特に下部の炉 圧が目標値よ り低下した場合にも、 ダイ リ ューシヨ ンエア 8 を供給す る。 ダイ リ ューシヨ ンエア 8 を所定流量供給するこ とによ り 、 均熱帯 3の下部域の炉圧を正圧となるように制御するところに特徴がある。 すなわち、 図 8 に示すよ うに、 均熱帯 3の下部域に設置した炉圧計 3 b による炉圧測定値 P . 1 と 目標炉圧 (正圧) とを演算器 9 a にて 比較する。 その結果に基づいて演算器 9 aから、 まず炉圧制御用のダ ンパー 7 b の開度設定を行って、 炉圧制御を行う。 In the operation of a heating furnace with such a structure, in addition to the case where the exhaust gas temperature exceeds the heat-resistant temperature of the recuperator 7a and the case where the furnace pressure in the lower part of the tropical zone 3, especially the lower part, falls below the target value, Supply lysis air 8. By supplying a predetermined flow rate of the diffusion air 8, a uniform The feature is that the furnace pressure in the lower part of 3 is controlled to be positive. That is, as shown in Fig. 8, the furnace pressure measured value P.1 by the furnace pressure gauge 3b installed in the lower part of the isotropical zone 3 is compared with the target furnace pressure (positive pressure) by the computing unit 9a. Based on the result, the arithmetic unit 9a first sets the opening of the damper 7b for furnace pressure control, and performs furnace pressure control.
この通常操業において、 煙道 7 の レキュペレータ 7 a の入側に設け た温度計 7 c での温度測定値 T . 1 と当該位置での排ガスの目標温度、 すなわち.レキュペレータ 7 a の耐熱温度上限とを演算器 9 b にて比較 する。 温度測定値 T . 1 がレキュペレータ 7 a の耐熱温度上限に近づ いたならば、 演算器 9 bからの指令によって、 ダイ リ ューシヨ ンエア 8 を供給する送風ファ ン 8 aおよび流量調整弁 8 bにそれぞれ適当な ファン回転数おょぴ流量調整弁開度を与える。 所定流量のダイ リ ユ ー ショ ンエア 8 を煙道 7へ供給し、 ダイ リ ユ ーショ ンエア 8を排ガスに 混合するこ と によって、 レキュペレータ 7 a へ導入される排ガス温度 を許容範囲まで低減する。 温度測定値 T . 1 が上記目標温度と等しく なった時点でファ ン回転数おょぴ流量調整弁開度を固定する。  In this normal operation, the temperature measurement value T.1 at the thermometer 7c provided on the inlet side of the recuperator 7a of the stack 7 and the target temperature of the exhaust gas at that position, that is, the upper temperature limit of the recuperator 7a Are compared by the computing unit 9b. When the measured temperature value T.1 approaches the upper limit of the heat-resistant temperature of the recuperator 7a, it is supplied to the ventilation fan 8a for supplying the direction air 8 and the flow control valve 8b according to a command from the calculator 9b. Provide an appropriate fan speed and flow control valve opening. By supplying the dilution air 8 having a predetermined flow rate to the flue 7 and mixing the dilution air 8 with the exhaust gas, the temperature of the exhaust gas introduced into the recuperator 7a is reduced to an allowable range. When the measured temperature T.1 becomes equal to the above target temperature, fix the fan speed and the flow control valve opening.
一方、 上記通常操業において、 例えばパーナの燃焼負荷が小さ く な つて炉圧計 3 bによる炉圧測定値 P . 1 が目標炉圧から負側になった 場合は、 演算器 9 aから送風ファ ン 8 aおよび流量調整弁 8 bにそれ ぞれ適当なフ ァ ン回転数および流量調整弁開度を与えて、 所定流量の ダイ リ ューシヨ ンエア 8を煙道 7へ供給し、 炉圧の上昇をはかる。 す なわち、 ダイ リューシヨ ンエア 8を煙道 7へ供給すると、 煙道 7を通 過するガス流量が増加するため、 舞道 7 の圧力損失が上昇して炉圧が 上昇する。 その結果均熱帯 3の下部域の炉圧が負圧になることが回避 される。 炉圧測定値 P . 1 が上記目標炉圧と等しく なつた時点でフ ァ ン回転数および流量調整弁開度を固定する。  On the other hand, in the above-mentioned normal operation, for example, when the combustion load of the furnace becomes small and the furnace pressure measurement value P. 8a and the flow control valve 8b are given an appropriate fan rotation speed and flow control valve opening, respectively, to supply the dilution air 8 of a predetermined flow rate to the flue 7 and to increase the furnace pressure. Measure. That is, when the dilution air 8 is supplied to the flue 7, the gas flow rate passing through the flue 7 increases, so that the pressure loss in the flue 7 rises and the furnace pressure rises. As a result, the furnace pressure in the lower part of the tropical zone 3 is prevented from becoming negative. When the measured furnace pressure P.1 becomes equal to the target furnace pressure, the fan speed and the flow control valve opening are fixed.
図 9 に、 ダイ リ ューシヨ ンエア 8の流量調整弁開度と均熱帯 3 の下 部域の炉圧との関係を示す。 ダイ リ ユ ーショ ンエア 8の流量調整によ つて炉圧の制御範囲は極めて大きく なる。 パーナの燃焼負荷が小さい 場合であっても、 ダイ リ ユ ーシヨ ンエア 8の供給によって均熱帯 3 の 下部域の炉圧を正圧にするこ とが容易にできる。 しかも、 既存の設備 を利用するため、 新たな設備投資を行う必要がない。 Figure 9 shows the relationship between the opening of the flow control valve of the diffusion air 8 and the furnace pressure in the lower part of the soaking zone 3. By controlling the flow rate of the dilution air 8, the control range of the furnace pressure becomes extremely large. The burn load of PANA is small Even in this case, it is possible to easily make the furnace pressure in the lower region of the isotropical zone 3 positive by supplying the diurision air 8. Moreover, there is no need to make new capital investments because existing facilities are used.
図 1 に示した連続式加熱炉において、 その炉内に配設した複数の加 熱用パーナ 4 の う ち、 炉抽出端の下部域に配置した加熱用パーナ 40に 対して、その他の加熱用パーナ 4 とは異なる独立した制御系を導入し、 該加熱用パーナ 40の燃焼を独立して制御する。  In the continuous heating furnace shown in Fig. 1, of the plurality of heating parners 4 arranged in the furnace, the heating parner 40 arranged in the lower region of the furnace extraction end is used for other heating parners 40. An independent control system different from the parner 4 is introduced to control the combustion of the heating parner 40 independently.
ここで、 加熱炉内の燃焼用パーナ 4は、 図 1 3に示すよ う に、 その 対 4 aおよび 4 b を加熱炉の両側壁間で向かい合わせに配置して設け るのが通例である。 炉抽出端の下部域に配置した加熱用バーナ 40につ いてもパーナ 40 aおよび 40 b の対と して配置されている。  Here, as shown in Fig. 13, the burner 4 in the heating furnace is generally provided with its pair 4a and 4b facing each other between the side walls of the heating furnace. . The heating burner 40 arranged in the lower region of the furnace extraction end is also arranged as a pair of parners 40a and 40b.
加熱炉で加熱された被加熱材を炉外に抽出するため、 加熱炉の抽出 扉 3 a を開放する際は、 加熱用パーナ 40 aおよび 40 b の燃焼を独立に 制御する。 図 2 Aおよぴ図 2 Bに示すよ う に、 抽出扉 3 a の開放中は 加熱用パーナ 40 aおよび 40 b のパーナフレームが抽出口 3 b の幅方向 に開口幅にわたって延びるよ う に、 燃焼運転を行う。 このよ う に抽出 口 3 bの開口幅にわたるパーナフレームを形成する と、 抽出口 3 わ か ら炉内に侵入した空気は、 まずパーナフレームに遮断されて更に炉内 へ侵入するこ とができない。 しかも侵入空気 の酸素が該パーナフレ ームによって消費されるため、 侵入空気による炉内酸素濃度の上昇は 未然に回避される。  In order to extract the material to be heated heated by the heating furnace to the outside of the furnace, when the extraction door 3a of the heating furnace is opened, the combustion of the heating parners 40a and 40b is controlled independently. As shown in Fig. 2A and Fig. 2B, while the extraction door 3a is open, the panner frames of the heating parners 40a and 40b extend in the width direction of the extraction port 3b over the opening width. Perform combustion operation. If a wrench frame is formed over the width of the opening of the outlet 3b in this way, the air that has entered the furnace from the outlet 3 is first blocked by the wrench frame and cannot enter the furnace further. . In addition, since the oxygen of the intruding air is consumed by the perna frame, an increase in the oxygen concentration in the furnace due to the intruding air is avoided.
特に、 図 1 4に示すよ う に、 抽出口 3 b の下部に櫛歯状のエキス ト ラフオーク開口部 3 c を有する抽出扉では、 このエキス トラフオーク 開口部 3 cから空気が侵入し易いため、 炉抽出端の下部域に配置した 加熱用パーナ 40 a および 40 b のバーナフレームで空気侵入経路を遮断 することは、 極めて有効である。 なお、 加熱用パーナが対で配置され ない場合は、 単独の加熱用パーナのパーナフレームを炉幅方向に延ば す燃焼制御を行えばよい。  In particular, as shown in Fig. 14, in an extraction door having a comb-shaped extract rough oak opening 3c below the extraction opening 3b, air tends to enter through the extract rough oak opening 3c. It is extremely effective to block the air entry path with the burner frames of the heating parners 40a and 40b located in the lower part of the furnace extraction end. If heating parners are not arranged in pairs, combustion control may be performed by extending the parner frame of a single heating parner in the furnace width direction.
ここで、 加熱用パーナ 40 aおよび 40 b のバーナフレームの形成位置 は、 炉長方向において、 パーナフ レームが抽出口下部の構造物に触れ ない範囲で、 かつ可能な限り抽出口に近づけるこ とが好ましい。 一方 炉の高さ方向において、 パーナフ レームがエキス ト ラフオーク開口部 を塞ぐこ とが可能な位置で、 かつ炉床に触れない範囲とすることが好 ましい。 Here, the formation position of the burner frame of the heating parners 40a and 40b In the furnace length direction, it is preferable that the perna frame is as close as possible to the extraction port as far as possible without touching the structure below the extraction port. On the other hand, it is preferable to set the position where the perna frame can block the opening of the extra rough oak in the height direction of the furnace and within the range that does not touch the hearth.
また、 図 1 5 に示すよ う に、 加熱用パーナ 40 aおよぴ 40 bの炉内側 に、 炉床から屹立する仕切壁 8 を設けた上で、 加熱用パーナ 40 aおよ ぴ 40 b のパーナフレームで空気侵入経路を遮断することが好ましい。  As shown in Fig. 15, a partition wall 8 rising from the hearth is provided inside the furnace of the heating parners 40a and 40b, and the heating parners 40a and 40b are provided. It is preferable to block the air entry path with the above-mentioned wrench frame.
ここに、 炉内の圧力分布は、 図 1 5に示すよ う に、 搬送路 6 を境に して上部は炉外の圧力 (ほぼ大気圧) に対して正圧であるが、 下部は 負圧になっている。 すなわち、 通常炉内では、 その下方に至るほど ド ラフ トが大き く なるため、 炉圧は下方になるに従い低く なる分布を呈 する。 このよ うな加熱炉において、 炉内全域を正圧にすると、 炉内上 部はよ り高圧になる結果、 炉内ガスが各開口部よ り 噴出するおそれが ある。 このため、 ダンパ 7 b (図 1参照) によ り搬送路 6の高さ位置 で炉圧が大気圧と等しく なるよ うに制御している。  Here, as shown in Fig. 15, the pressure distribution inside the furnace is positive with respect to the pressure outside the furnace (substantially atmospheric pressure) at the upper part, and negative at the lower part with the transfer path 6 as the boundary. Pressure. In other words, in a normal furnace, the draft becomes larger as it goes down, so that the furnace pressure shows a distribution that becomes lower as it goes down. In such a heating furnace, if the entire area inside the furnace is set to a positive pressure, the pressure in the upper part of the furnace becomes higher and as a result, the gas in the furnace may be ejected from each opening. For this reason, the damper 7b (see FIG. 1) controls the furnace pressure at the height of the transfer path 6 to be equal to the atmospheric pressure.
抽出口 3 b の特にエキス トラフオーク開口部 3 c から侵入した空気 は、 搬送路 6下部に向かって進行し、 大半が加熱用パーナ 40 aおよび 4 O b のパーナフ レームに取り込まれる。 侵入空気が炉内温度よ り低温で あるために、 図 1 5 に破線で示すよ うに、 侵入空気の一部は一旦炉床 に沈む向きに流入する。 この侵入空気は、 加熱用パーナ 40 aおよび 40 b の背面側から炉内深く に進行するため、 少ないながらも炉内に侵入 し易い。  The air that has entered through the extraction opening 3b, particularly through the extra trough oak opening 3c, travels toward the lower part of the transport path 6 and is mostly taken into the heating parners 40a and 4Ob. Since the temperature of the intruding air is lower than the temperature inside the furnace, a part of the intruding air once flows into the hearth, as shown by the broken line in Fig. 15. Since this intruding air travels deep inside the furnace from the back side of the heating parners 40a and 40b, it easily enters the furnace, albeit little.
仕切壁 8 を設ける と、 上記加熱用パーナ 40 a およぴ 40 b の背面側か ら侵入した空気が仕切壁 8で塞き止められる。 ここで徐々に温められ て仕切壁 8に沿う上昇流となって搬送路 6上部の正圧域に至るため、 搬送路 6上部から炉外に排出される。 このよ う に加熱用パーナ 40 aお ょぴ 40 b の背面側から侵入した空気についても炉内への侵入を防止す ることができる。 さ らに、 加熱用パーナ 40 aおょぴ 40 b のパーナフレームで空気侵入 経路を遮断するに当 り 、 加熱用パーナ 40 aおよぴ 40 b を低空気比の下 に燃焼運転するこ とが好ましい。 図 1 6 に抽出端の加熱用パーナにお ける空気比と侵入した空気の該加熱用パーナでの燃焼量との関係を示 す。 加熱用パーナにおける空気比が下がる と、 侵入空気の加熱用パー ナでの燃焼量が増加するこ とが明らかである。 加熱用パーナ 40 aおよ ぴ 40 b を低空気比の下に燃焼運転すれば、 抽出口 3 bから侵入した空 気中の酸素を直ちに燃焼して消費するこ とができ、 炉内雰囲気を低酸 素濃度に保持するのに有効である。 なお、 仕切壁 8は、 炉の両側壁間 にわたる幅で、 炉床から炉内の搬送装置類に干渉しない範囲において 高く するこ とが、 侵入空気の遮断並びに上昇流の形成にとって有利で ある。 When the partition wall 8 is provided, the air that has entered from the back side of the heating parners 40 a and 40 b is blocked by the partition wall 8. Here, it is gradually warmed and becomes ascending flow along the partition wall 8 to reach the positive pressure region at the upper part of the transfer path 6, and is discharged from the furnace from the upper part of the transfer path 6. In this way, it is possible to prevent air that has entered from the back side of the heating parners 40a and 40b from entering the furnace. In addition, in order to cut off the air intrusion path with the parner frame of the heating parners 40a and 40b, the heating parners 40a and 40b must be operated under combustion at a low air ratio. Is preferred. Fig. 16 shows the relationship between the air ratio in the heating end of the extraction end and the amount of air that has penetrated in the heating end. It is clear that the lower the air ratio in the heating parner, the greater the amount of ingress air burned in the heating parner. If the heating parners 40a and 40b are operated under a low air ratio, the oxygen in the air that has entered through the extraction port 3b can be immediately burned and consumed, and the furnace atmosphere can be reduced. It is effective for keeping low oxygen concentration. The partition wall 8 has a width extending between both side walls of the furnace, and it is advantageous to increase the partition wall 8 so that the partition wall 8 does not interfere with the transfer devices in the furnace from the hearth.
図 4にこの発明の方法に直接使用する連続式加熱炉における排ガス の排出経路を示す。 図 2 Aおよぴ図 2 Bに示したパーナ 40 a または 40 bから蓄熱体 42 a または 42 b を介して図 4に示す吸引装置 8 に至る経 路 45と煙道 7 との間に配管路 10を設ける。 吸引装置 8 の入側と、 加熱 炉内の排ガスを炉外に導く煙道 7 と の間に、 開閉弁 9 を介して煙道 7 内の排ガスを吸引装置 8に導く配管路 10を設けると ころに特徴がある。 経路 45には、 吸引装置 8 の入側に、 配管路 10の接続部よ り上流側に、 パーナからの排ガス吸引量を測定して開閉弁 9 の開閉タイ ミ ングを判 断するための流量計 45 a を設ける。 また配管路 10と経路 45の接続部と 吸引装置 8 との間に合計流量を所定量に調整するための流量調整弁 45 b を設ける。  Fig. 4 shows the exhaust gas discharge route in a continuous heating furnace used directly in the method of the present invention. A pipe is connected between the flue 7 and the path 45 from the wrench 40a or 40b shown in Figs. 2A and 2B to the suction device 8 shown in Fig. 4 via the heat storage element 42a or 42b. Road 10 is established. A piping 10 that guides the exhaust gas in the flue 7 to the suction device 8 through the on-off valve 9 is provided between the inlet side of the suction device 8 and the flue 7 that guides the exhaust gas in the heating furnace out of the furnace. There is a characteristic at the time. In the path 45, on the inlet side of the suction device 8, and on the upstream side of the connection of the pipe line 10, the flow rate for measuring the amount of exhaust gas suctioned from the wrench to determine the opening / closing timing of the on-off valve 9 A total of 45a will be provided. In addition, a flow control valve 45 b for adjusting the total flow to a predetermined amount is provided between the connection between the pipe 10 and the path 45 and the suction device 8.
以上の排ガス排出経路をそなえる加熱炉において、 蓄熱式パーナの 燃焼負荷が小さ く なって吸引装置 8 を、 例えば 10 %未満の負荷で運転 する事態になった場合、 上記配管路 10の開閉弁 9 を開いて煙道 7内の 排ガスを、 経路 45の吸引装置 8入側に導いて、 吸引装置 8の運転負荷 を増加させる。  In a heating furnace equipped with the above exhaust gas discharge path, if the suction load 8 is operated at a load of, for example, less than 10% due to a reduction in the combustion load of the regenerative parner, the on-off valve 9 Is opened to guide the exhaust gas in the flue 7 to the inlet of the suction device 8 in the route 45 to increase the operating load of the suction device 8.
具体的には、 煙道 7 内の排ガスを経路 45に導いた際、 煙道内排ガス と蓄熱体を通った低温排ガス との混合後の排ガス温度が、 吸引装置 8 の特にィ ンペラの耐久温度の上限をこえないよ う にする。 配管路 10の 管径を選定して排ガスの流量を制御し、 同時に混合点における煙道内 排ガス と蓄熱体を通った低温排ガスとの圧力損失を同等にして、 混合 排ガスを吸引装置 8に導く。 Specifically, when the flue gas in flue 7 was led to route 45, The exhaust gas temperature after mixing with the low-temperature exhaust gas that has passed through the heat storage unit does not exceed the upper limit of the durable temperature of the suction device 8, especially the impeller. The diameter of the pipe 10 is selected to control the flow rate of the exhaust gas, and at the same time, the pressure loss between the exhaust gas in the flue at the mixing point and the low-temperature exhaust gas passing through the regenerator is equalized, and the mixed exhaust gas is guided to the suction device 8.
この操作によつて、 吸引装置 8 における運転負荷を例えば 10 %以上 に上昇するこ とが簡単に実現し、 極低負荷燃焼での上述した諸問題を 解消できる。  By this operation, it is possible to easily increase the operating load of the suction device 8 to, for example, 10% or more, and to solve the above-described problems in the extremely low load combustion.
次いで、 配管路 10を介した煙道内排ガスの供給は、 パーナからの吸 引量が必要最低流量をこえた時点で停止する。 つま り配管路 10の開閉 弁 9 を閉める。 必要最低流量とは、 ファ ン設計時の安定運転領域下限 を指す。  Next, the supply of flue gas in the flue via the pipe line 10 is stopped when the amount of suction from the wrench exceeds the required minimum flow rate. That is, the on-off valve 9 of the piping line 10 is closed. The required minimum flow rate is the lower limit of the stable operation area when designing the fan.
なお、 上記吸引装置 8 へ導く排ガスの流量制御は、 配管路 10の開閉 弁 9 を流量調整弁とするこ と によつても行う こ とができる。 しかし流 量調整弁の操作は煩雑である上、 その機構も複雑であって設備費も高 い。 この発明では、 所定の管径の配管路 10を単に開閉する、 簡便な手 法を採用した。  The flow rate control of the exhaust gas guided to the suction device 8 can also be performed by using the opening / closing valve 9 of the pipe line 10 as a flow rate adjusting valve. However, the operation of the flow control valve is complicated, the mechanism is complicated, and the equipment cost is high. In the present invention, a simple method of simply opening and closing the pipe line 10 having a predetermined pipe diameter is employed.
ここに、 配管路 10の管径は、 例えば下記式(A) および(B) に従って 設計するこ とができる。  Here, the pipe diameter of the pipe 10 can be designed, for example, according to the following equations (A) and (B).
 Record
(排ガス露点) ≤ T a ≤ T b —— (A) (Exhaust gas dew point) ≤ T a ≤ T b —— (A)
Δ Ρ 1 = Δ Ρ 2 (Β)  Δ Ρ 1 = Δ Ρ 2 (Β)
ただし、  However,
Τ a : V2 = V1 + V3となる混合排ガスの温度 Τ a : Temperature of mixed exhaust gas where V2 = V1 + V3
T b : 吸引装置 (軸受で代表) 耐久温度上限値  T b: Suction device (represented by a bearing) Endurance temperature upper limit
« 、  «,
V I : パーナ最低燃焼 (極低負荷) 時の排ガス吸引量  V I: Exhaust gas suction volume at minimum burner (extremely low load)
V2: 吸引装置を安定運転するための排ガスの必要最低流量 V2: Required minimum flow rate of exhaust gas for stable operation of the suction device
V3: V2— VIの差分を補うための排ガス量 Δ P 1 : 経路 45におけるパーナと配管路合流点との間の圧力損失 Δ P 2 : 配管路 10での圧力損失 V3: V2—The amount of exhaust gas to compensate for the difference between VI ΔP 1: Pressure loss between the wrench on the line 45 and the line junction ΔP 2: Pressure loss on the line 10
また、 図 4に示すよ う に、 煙道 7 の配管路 10の上流側にレキュペレ ータ 7 a を設ける。 レキュペレータ 7 a に炉内排ガスを通すことによ つて、 低温化した排ガスを配管路 10に供給することが、 吸引装置 8 の 耐久寿命を延ばす上で好ましい。  As shown in Fig. 4, a recuperator 7a is provided upstream of the pipe 10 of the flue 7. It is preferable to supply the cooled exhaust gas to the piping 10 by passing the exhaust gas in the furnace through the recuperator 7 a in order to extend the durable life of the suction device 8.
上記の実施形態では、 パーナからの排ガスに、 加熱炉内の排ガスを 直接混合するのではなく 、 煙道内排ガスを混合する よ う にしたため、 加熱炉の炉内圧力に対して外乱とならない。  In the above embodiment, the flue gas in the heating furnace is not directly mixed with the flue gas from the furnace, but the flue gas in the flue is mixed.
なお、 パーナからの排ガスに混合するガスは、 煙道内排ガスに限る 必要はなく、 高温のガス、 つま り熱風であればよい。 例えば、 高温に 加熱された空気でもよいし、 あるいは別途燃焼装置を設け、 そこから 発生する燃焼排ガスを混合するよ う にしてもよい。  The gas to be mixed with the flue gas from the burner is not limited to the flue gas, but may be a high-temperature gas, that is, hot air. For example, air heated to a high temperature may be used, or a separate combustion device may be provided, and the combustion exhaust gas generated therefrom may be mixed.
図 2 Aおよび図 2 Bに示したよ う に、 蓄熱式パーナにおいて、 バー ナ 40 a または 40 b 力 ら吸引した排ガスは、 兼用通路 41 a または 41 b を 介して炉外へ導かれる。 その排ガスの吸引は、 図 1 7に示す経路にて 行われる。 すなわち、 複数組の蓄熱式パーナから延びる兼用通路 41 a および 41 b を、 炉壁の一方側と他方側とのパーナ群毎にそれぞれ設け た排ガスダク ト 8 a および 8 b に集約し、 さ らにこれら排ガスダク ト 8 aおよび 8 b を 1本の導管 9 に集約し、 この導管 9 を吸引ファ ン 1 0 を介して加熱炉の煙道 7 に連通させている。 そして、 吸引ファン 10の 吸引力によって、 兼用通路 41 aおよぴ 41 b、 排ガスダク ト 8 aおよび 8 b、 そして導管 9 を介して、 排ガスを煙道 7へと導き、 炉外に排出 している。  As shown in FIGS. 2A and 2B, in the regenerative burner, the exhaust gas sucked from the burner 40a or 40b is guided to the outside of the furnace through the shared passage 41a or 41b. The exhaust gas is sucked along the route shown in Fig.17. That is, the combined passages 41a and 41b extending from a plurality of sets of regenerative parners are combined into exhaust gas ducts 8a and 8b provided for each parner group on one side and the other side of the furnace wall, respectively. Then, these exhaust gas ducts 8a and 8b are combined into one conduit 9, and this conduit 9 is connected to the flue 7 of the heating furnace via the suction fan 10. Then, by the suction force of the suction fan 10, the exhaust gas is guided to the flue 7 through the shared passages 41a and 41b, the exhaust gas ducts 8a and 8b, and the conduit 9, and discharged out of the furnace. ing.
以上の排ガスの排出経路において、 図 1 7 に示す例では導管 9 の途 上において、 プローブ 1 1を揷入する。 このプローブ 1 1から導管 9 を流 れる排ガスの一部を採取し、 この採取した排ガスについて分析器 12を 用いて各種成分の濃度を測定する。 こ う して得られる各種の測定濃度 値は、 炉内雰囲気の特に炉幅方向分布を良く示している。 これを蓄熱 式パーナを設置した炉内位置、 例えば均熱帯 3 における、 成分濃度の 代表値と して用いることができる。 In the exhaust gas discharge path described above, the probe 11 is inserted in the middle of the conduit 9 in the example shown in FIG. A part of the exhaust gas flowing from the probe 11 through the conduit 9 is sampled, and the concentration of various components is measured using the analyzer 12 with respect to the sampled exhaust gas. The various measured concentration values obtained in this way show a good distribution of the furnace atmosphere, especially in the furnace width direction. This is heat storage It can be used as a representative value of the component concentration at the position in the furnace where the open-end wrench is installed, for example, in the solitary zone 3.
ここで、 上記の蓄熱式パーナから吸引した排ガスを探取して酸素濃 度を測定した場合と、 炉壁から挿入したプローブを介して酸素濃度を 測定した場合とについて、炉内平均酸素濃度に対する誤差を調査した。 その結果を図 1 8 に示す。 蓄熱式パーナから吸引 した排ガスを採取し て酸素濃度を測定した場合は、 実際の炉内平均酸素濃度との差が極め て小さいこ とがわかる。 すなわち、 蓄熱式パーナから吸引した排ガス を調査するこ とによって、 実際の炉内雰囲気の成分濃度の測定ができ る。 なお、 炉内平均酸素濃度とは、 抽出扉およぴ装入扉が閉で、 炉内 侵入空気が O Nm / h となる炉圧設定の条件下において、 パーナに投 入するガス流量、 ガス成分おょぴ空気比から理論的に求めた計算値で ある。 その他の条件は、 後述の実施例において詳しく示す。  Here, the case where the oxygen concentration was measured by searching for the exhaust gas sucked from the regenerative parner and the case where the oxygen concentration was measured via a probe inserted from the furnace wall were compared with the average oxygen concentration in the furnace. The error was investigated. Figure 18 shows the results. When the oxygen concentration was measured by collecting the exhaust gas sucked from the regenerative parner, it was found that the difference from the actual average oxygen concentration in the furnace was extremely small. In other words, the actual concentration of components in the furnace atmosphere can be measured by examining the exhaust gas sucked from the regenerative parner. The average oxygen concentration in the furnace refers to the gas flow rate and gas flow into the wrench under the condition that the extraction door and the charging door are closed and the furnace pressure is set so that the air entering the furnace is O Nm / h. This is a calculated value theoretically obtained from the component / air ratio. Other conditions will be described in detail in Examples described later.
また、 蓄熱式パーナから吸引 した排ガスを採取する位置は、 図 1 7 に示したよ う に、 蓄熱式パーナの蓄熱体の下流側であることが望ま し い。 蓄熱体によって熱が回収された排ガスは、 当然炉内温度よ り低温 になっている。 蓄熱体の下流側でプロ一プを揷入すれば、 プローブが 高温雰囲気にさ ら されるこ とがなく 、 その耐久寿命を延長するこ とが できる。  As shown in Fig. 17, it is desirable that the location where the exhaust gas sucked from the regenerative parner is collected is located downstream of the regenerator of the regenerative parner. The exhaust gas from which heat is recovered by the heat storage body is naturally lower than the furnace temperature. If a probe is introduced downstream of the heat storage body, the probe will not be exposed to a high-temperature atmosphere, and its durable life can be extended.
なお、 以上の事例は連続式加熱炉を用いた場合を説明したが、 パッ チ式加熱炉ゃ回転炉床式加熱炉などにも、 この発明が適用できる。 実施例 1  In the above case, the case where a continuous heating furnace is used has been described. However, the present invention can be applied to a patch heating furnace / a rotary hearth heating furnace. Example 1
図 5 に示した連続式加熱炉 (搬送路高さ : 炉底から 0. 5 m ) を用い て、 厚み : 220mm 、 幅 : 1200mmおよび長さ 9800mmの鋼スラブを導入し て、 室温から 1230°Cまで加熱する操業を行った。 なお、 加熱炉の均熱 帯に配した 4組の蓄熱式パーナの仕様は、 下記のとおり である。  Using a continuous heating furnace (transport path height: 0.5 m from the furnace bottom) shown in Fig. 5, a steel slab with a thickness of 220 mm, a width of 1200 mm and a length of 9800 mm was introduced, and 1230 ° from room temperature. An operation of heating to C was performed. The specifications of the four sets of regenerative parners arranged in the soaking zone of the heating furnace are as follows.
 Record
燃焼容量 : 20000000 ( kcal/ H · パーナ)  Combustion capacity: 20000000 (kcal / H · Pana)
パーナ対間での燃焼切換え時期 : 60 s /回 排ガス吸引率 : 0. 4 〜0. 8 ( _ ) Combustion switching time between pair of wrench: 60 s / time Exhaust gas suction rate: 0.4 to 0.8 (_)
上記の加熱炉の操業において、 表 1 に示すよ う に、 加熱炉全体の燃 焼負荷量に応じて、 パーナからの排ガス吸引率を種々に調節して炉圧 を制御した。 また、 比較と して、 排ガス吸引率を一定と した従来の操 業も行った。 その結果、 加熱炉の実操業における様々な燃焼負荷の条 件で炉圧を安定制御するこ とが可能となり、 表 2に示すよ う に、 従来 の方法に比べて炉内酸素濃度が大き く低減され、 燃料原単位やスラブ 不良率を削減することができた。  In the operation of the heating furnace, as shown in Table 1, the furnace pressure was controlled by variously adjusting the exhaust gas suction rate from the wrench according to the combustion load of the entire heating furnace. For comparison, conventional operations were also performed with a constant exhaust gas suction rate. As a result, it becomes possible to stably control the furnace pressure under various combustion load conditions in the actual operation of the heating furnace, and as shown in Table 2, the oxygen concentration in the furnace is larger than in the conventional method. The fuel consumption rate and the defect rate of slabs were reduced.
また、上記操業における均熱帯下部の炉圧と侵入空気量との関係を、 平均して図 7に整理して示す。  Figure 7 shows the relationship between the furnace pressure at the lower part of the tropical zone and the amount of air entering in the above operation on average.
実施例 2 Example 2
図 8 に示した連続式加熱炉 (搬送路高さ : 炉底から 0. 5 m ) を用い て、 厚み : 220mm 、 幅 : 1200mmおよぴ長さ 9800mmの鋼スラブを導入し て、 室温から 1 230 °Cまで加熱する操業を行った。 操業条件は、 下記の とおりである。  Using a continuous heating furnace (transfer path height: 0.5 m from the furnace bottom) shown in Fig. 8, a steel slab with a thickness of 220 mm, a width of 1200 mm and a length of 9800 mm was introduced, and the room temperature was reduced from room temperature. An operation of heating to 1 230 ° C was performed. The operating conditions are as follows.
 Record
加熱炉 (パーナ) 燃焼負荷 : 10 ~ 100 %  Heating furnace (Pana) Combustion load: 10-100%
ダイ リ ューシヨ ンエア流量 : 0〜 50000 ( Nm 3 / H ) Die Li Yushiyo N'ea flow rate: 0~ 50000 (Nm 3 / H )
レキュペレータ入側排ガス温度 : 750 Ό以下  Exhaust gas temperature at the inlet of the recuperator: 750 Ό or less
煙道のダンパー開度 : 5〜100 %  Flue damper opening: 5-100%
上記の加熱炉の操業において、 レキュペレータ入側排ガス温度が 750 °C以上になった場合、 も しぐは均熱帯の下部域の炉圧が O mmAq以下に なった場合に、 ダイ リ ューシヨ ンエアを、 レキュペレータ入側排ガス 温度 750 °Cかつ均熱下部炉圧 > 0 mmA qとなる条件にて供給した。 ま た、 比較と してダイ リ ューシヨ ンエアによる炉圧制御を行わない操業 も行った。  In the operation of the heating furnace described above, if the exhaust gas temperature at the inlet of the recuperator becomes 750 ° C or more, or if the furnace pressure in the lower part of the solitary tropics becomes O mmAq or less, the dilution air is released. The gas was supplied under the condition that the exhaust gas temperature at the inlet of the recuperator was 750 ° C and the pressure in the soaking lower furnace was> 0 mmAq. In comparison, operations without furnace pressure control using dilution air were also performed.
これらの操業において、加熱炉の燃焼負荷を種々に変化したときの、 抽出扉が閉状態における、 均熱帯の下部域の炉圧および同域における 酸素濃度を測定した。 その測定結果を図 1 0 に示すよ う に、 ダイ リ ュ ーショ ンエアによる炉圧制御を行う こ とによって、 炉圧を正圧に保持 でき、 かつ酸素濃度も低レベルに保持できた。 これに対して、 従来の ダンパーのみによる炉圧制御では、 炉圧および酸素濃度がと もに大き く変化した。 In these operations, when the combustion load of the heating furnace was varied, the furnace pressure in the lower part of the solitary tropics and the oxygen concentration in the same area were measured with the extraction door closed. As shown in Fig. 10, the measurement results By controlling the furnace pressure by using the partition air, the furnace pressure could be maintained at a positive pressure and the oxygen concentration could be maintained at a low level. On the other hand, in the conventional furnace pressure control using only a damper, both the furnace pressure and the oxygen concentration changed greatly.
次に、 同様の操業において、 抽出扉を開閉した際の、 炉圧および酸 素濃度を同様に測定した。 その測定結果をそれぞれ図 1 1およぴ図 1 2に示すよ う に、 抽出扉を開閉した場合にあっても、 ダイ リ ーショ ンエアによる炉圧制御を行う こ とによって、 炉圧を正圧に保持でき、 かつ酸素濃度も低レベルに保持できる。  Next, in the same operation, the furnace pressure and oxygen concentration when the extraction door was opened and closed were measured in the same manner. As shown in Fig. 11 and Fig. 12, the measurement results show that even if the extraction door is opened and closed, the furnace pressure is controlled by the dilution air to make the furnace pressure positive. And the oxygen concentration can be maintained at a low level.
実施例 3 Example 3
図 1 に示した連続式加熱炉において、 鋼スラプを室温から 1 150°Cま で加熱する操業を行った。 そして、 加熱後の鋼スラブを抽出扉 3 a か ら抽出する際に、 抽出端の加熱用パーナ 40 aおよび 40 b を表 3 に示す 条件で燃焼運転した。 また、 図 1 に示した連続式加熱炉に図 1 5 に示 した仕切壁 8 を下記の仕様で設けた、 連続式加熱炉を用いた操業にお いて、 表 3に示す条件で鋼スラブを抽出した。 さ らに、 比較と して、 抽出端の加熱用パーナ 40 aおよび 40 b を他の加熱用パーナ 4 と同じ条 件で燃焼運転する、 在来の加熱炉操業も実施した。  In the continuous heating furnace shown in Fig. 1, operation was performed to heat steel slurp from room temperature to 1150 ° C. Then, when the heated steel slab was extracted from the extraction door 3a, the heating parners 40a and 40b at the extraction end were burned under the conditions shown in Table 3. In addition, in a continuous heating furnace shown in Fig. 1, a partition wall 8 shown in Fig. 15 was provided according to the following specifications. Extracted. In addition, as a comparison, a conventional furnace operation in which the heating parners 40a and 40b at the extraction end were burned under the same conditions as the other heating parners 4 was also performed.
以上の各種操業における、 加熱炉内に侵入した空気量および均熱帯 の雰囲気酸素濃度を測定した結果について、 表 3に併記する。  Table 3 also shows the results of the measurements of the amount of air entering the furnace and the oxygen concentration in the atmosphere in the solitary tropics in the various operations described above.
 Record
仕切壁 高さ : 炉床から 1. 2 m .  Partition wall height: 1.2 m from the hearth.
幅 : 炉幅と同幅  Width: Same width as furnace width
実施例 4 Example 4
図 1 に示した連続式加熱炉 (搬送路高さ : 炉底から 0. 5 m ) を用い て、 厚み : 220mm 、 幅 : 1200mmおよび長さ 9800mmの鋼スラブを導入し て、 室温から 1 230でまで加熱する操業を行った。 なお、 加熱炉の均熱 帯に配した 4組の蓄熱式パーナの仕様は、 下記のとおり である。  Using the continuous heating furnace shown in Fig. 1 (transport path height: 0.5 m from the furnace bottom), a steel slab with a thickness of 220 mm, a width of 1200 mm and a length of 9800 mm was introduced, and from room temperature to 1230 mm The operation to heat up was performed. The specifications of the four sets of regenerative parners arranged in the soaking zone of the heating furnace are as follows.
記 燃焼容量 : 2, 000, 000 ( kcal/ H · パーナ) Record Combustion capacity: 2,000,000 (kcal / H · Pana)
燃焼負荷 : 10〜100 %  Combustion load: 10-100%
パーナ対間での燃焼切換え時期 : 60 s 回  Combustion switching time between pair of wrench: 60 s times
排ガス吸引率 : 60〜90 %  Exhaust gas suction rate: 60 to 90%
上記の加熱炉の操業において、 蓄熱式パーナから吸引 した排ガスを 蓄熱体に通したのち、 導管 9の途上に挿入したプローブ 1 1から排ガス の一部を採取し、 この採取した排ガスについて分析器 12を用いて酸素 濃度を測定した。 なお、 炉内酸素濃度測定範囲は 0〜21 vol %であり、 また導管 9 における管内雰囲気温度は 200°Cであった。 また、 比較と し て、 均熱帯の炉壁から挿入したプローブを介して酸素濃度を測定した。  In the operation of the heating furnace described above, after the exhaust gas sucked from the regenerative parner was passed through the regenerator, a part of the exhaust gas was sampled from the probe 11 inserted in the middle of the conduit 9, and the collected exhaust gas was analyzed by the analyzer 12 The oxygen concentration was measured using. The measurement range of the oxygen concentration in the furnace was 0 to 21 vol%, and the atmosphere temperature in the pipe 9 was 200 ° C. As a comparison, the oxygen concentration was measured via a probe inserted from the hearth of the tropical zone.
これらの測定濃度値を炉内平均酸素濃度と対比した結果は、 図 1 8 に示したとおり であり 、 この発明に従って蓄熱式パーナから吸引 した 排ガスによつて測定した場合は、炉内平均酸素濃度値との誤差は 0. 5 % 未満であった。 これに対して、 炉壁から揷入したプロープを介して酸 素濃度を測定した場合は、 炉内平均酸素濃度値との誤差は 1〜 3 %で めった。 産業上の利用可能性  The results of comparing these measured concentration values with the average oxygen concentration in the furnace are shown in FIG. 18. When the measurement was performed using the exhaust gas sucked from the regenerative parner according to the present invention, the average oxygen concentration in the furnace was measured. The deviation from the value was less than 0.5%. On the other hand, when the oxygen concentration was measured through a probe inserted from the furnace wall, the error from the average oxygen concentration in the furnace was 1-3%. Industrial applicability
以上述べたよ うに、 この発明によれば、 炉圧の制御を厳密に行える。 この炉圧制御によって抽出扉からの加熱炉内への空気の侵入は確実に 防ぐこ とができる。 被加熱材の品質低下が防止できる。 加熱炉におけ る燃料原単位を改善できる。 この発明によれば、 蓄熱式パーナの燃焼 負荷が小さい場合にあっても排ガスの吸引装置の運転が不安定になら ない。 ドレンが発生しないため、 加熱炉の操業が安定する。 この発明 によれば、 加熱炉内雰囲気の成分濃度の測定が正確に行える。 この測 定値に基づく 炉内雰囲気制御によって、 高品質の製品を生み出すこ と ができる。 また、 この発明の加熱炉内雰囲気の成分濃度の測定方法は、 既存の設備を利用して行えるため、 新たな設備投資が必要でなく 、 低 コス トで実現することが可能である。 発 明 例 従 来 例 加熱炉全体 As described above, according to the present invention, the furnace pressure can be strictly controlled. This furnace pressure control can reliably prevent air from entering the heating furnace from the extraction door. The deterioration of the quality of the material to be heated can be prevented. The unit fuel consumption in the heating furnace can be improved. According to the present invention, the operation of the exhaust gas suction device does not become unstable even when the combustion load of the regenerative burner is small. Since no drain is generated, the operation of the heating furnace is stabilized. According to the present invention, the concentration of components in the atmosphere in the heating furnace can be accurately measured. By controlling the furnace atmosphere based on these measurements, high-quality products can be produced. Further, the method for measuring the component concentration in the atmosphere in the heating furnace according to the present invention can be performed using existing equipment, so that new equipment investment is not required and the method can be realized at low cost. Inventive example Conventional example Entire heating furnace
操業 の燃焼負荷 排ガス 均熱帯下部 排ガス 均熱帯下部  Operational combustion load Exhaust gas Lower tropical zone Exhaust gas Lower tropical zone
( % ) 吸引率 炉圧 吸引率 炉圧  (%) Suction rate Furnace pressure Suction rate Furnace pressure
(一) (mmAq) (一) (mmAq)  (One) (mmAq) (One) (mmAq)
1 2 0 0 . 4 0 0 . 8 一 1 . 4  1 2 0 0 .4 0 0 .8 1 1 .4
2 3 0 0 . 4 0 0 . 8 一 1 . 0  2 3 0 0 .4 0 0 .8 1 1 .0
3 4 0 0 . 5 0 0 . 8 一 0 . 7  3 4 0 .0.5 0 0 .8 1 0 .7
4 5 0 0 . 5 0 . 1 0 . 8 一 0 . 5  4 5 0 .0.5 0 .10 0 .8 1 .5
5 6 0 0 . 6 0 . 1 0 . 8 一 0 . 3  5 6 0 0 .6 0 .1 0 .8 1 0 .3
6 7 0 0 . 6 0 . 2 0 . 8 一 0 . 1  6 7 0 .0.6 0 .2 0 .8 1 0 .1
7 8 0 0 . 7 0 . 2 0 . 8 0  7 8 0 0 .7 0 .2 0 .8 0
8 9 0 0 . 7 0 . 3 0 . 8 0 . 1  8 9 0 0 .7 0 .3 0 .8 0 .1
9 1 0 0 0 . 8 0 . 3 0 . 8 ひ . 3  9 1 0 0 0 .8 0 .3 0.8 .3
表 2 Table 2
Figure imgf000028_0001
Figure imgf000028_0001
( * ) 従来例の結果を 1 と した と きの指数 て表示  (*) Displayed as an index when the result of the conventional example is set to 1.
(数値が小さいほど好成績)  (The smaller the number, the better the performance)
表 3  Table 3
操 燃焼負荷( % ) 空気比  Operation Combustion load (%) Air ratio
仕切壁 空気量 備 考 抽出端 その他 抽出端 その他 (Nm 3 /H) Partition wall Air volume Remarks Extraction end Others Extraction end Others (Nm 3 / H)
ノ ーナ パーナ パ一ナ パ一ナ  Nonna Pana Pana Pana
1 100 80 0. 8 1. 05 500 ≤ 1. 0 発明例 1 100 80 0.8 0.8 1.05 500 ≤ 1.0 Invention example
2 100 50 0. 8 1. 05 600 ≤ 1. 5 発明例2 100 50 0.8 0.105 600 ≤ 1.5 Invention example
3 100 50 0. 8 1. 05 有 300 ≤ 1. 0 発明例3 100 50 0.8 0.15 Yes 300 ≤ 1.0 Invention example
4 60 1. 0 5000 5 ~ 10 従来例 4 60 1.0 5000 5 to 10 Conventional example

Claims

請求の範囲 The scope of the claims
1 . 予熱帯、 加熱帯および均熱帯を有し、 該均熱帯の熱源と して、 蓄熱体を付設したパーナの対を向かい合わせて配した蓄熱式パ^ナを、 複数組配設した、 加熱炉において、 蓄熱式パーナの各対のパーナを交 互に燃焼させる と共に、 非燃焼時にはパーナから炉内の排ガスを吸引 し、 上記蓄熱体に排ガスを導入して排ガス中の熱を蓄熱体に回収し、 この回収した熱を燃焼時のパーナの燃焼用空気の加 に利用して、 加 熱炉の操業を行う に当 り、 加熱炉全体の燃焼 荷に応じて、 上記パー ナから蓄熱体への排ガス吸引率を調節して均熱帯での炉庄を制御する ことを特徴とする蓄熱式パーナを利用した炉圧制御方法。  1. Pre-tropical zone, heating zone, and solitary zone, and as the heat source of the solitary zone, a plurality of regenerative pans, which are arranged with a pair of panes provided with a heat storage body facing each other, are arranged. In a heating furnace, each pair of regenerative parners is burned alternately, and when not burning, the exhaust gas in the furnace is sucked from the parner during non-combustion, and the exhaust gas is introduced into the regenerator to transfer the heat in the exhaust gas to the regenerator. The collected heat is used to add heat to the combustion air in the burner during combustion, and the furnace is operated in accordance with the combustion load of the entire heating furnace. A furnace pressure control method using a regenerative parner, characterized by controlling the furnace temperature in a tropical zone by adjusting the exhaust gas suction rate into the furnace.
2 . 加熱炉内の排ガスを炉外に導く煙道の途上にレキュペレータを 配置し、 該レキュペレータにて、 加熱炉の加熱源であるパーナに供給 する燃焼用空気の予熱を行う際、 レキュペレータを高温雰囲気から保 護するために、 煙道のレキュペレータ入側にダイ リ ユ ーショ ンエアを 供給するに当 り、 レキュペレータ入側の排ガス温度おょぴ加熱炉の燃 焼負荷に応じてダイ リ ユ ーショ ンエアの流量を調整し、 炉圧を制御す ることを特徴とする加熱炉の炉圧制御方法。 2. A recuperator is placed in the flue that guides the exhaust gas from the heating furnace to the outside of the furnace. When the recuperator preheats the combustion air supplied to the burner heating source, the recuperator is heated to a high temperature. In order to protect the atmosphere, the supply of diluent air to the recuperator inlet side of the flue depends on the exhaust gas temperature at the recuperator inlet side and the combustion load of the heating furnace. A furnace pressure control method for a heating furnace, comprising adjusting a furnace flow rate and controlling a furnace pressure.
3 . 加熱炉の抽出扉を開放する際、 該加熱炉内に配設した複数の加 熱用パーナの う ち、 炉抽出端の下部域に配置した加熱用パーナの燃焼 を独立に制御し、 該パーナのフ レームを抽出口 の幅方向に該開口幅に わたって延長し、 抽出口からの空気の侵入路をパーナフ レームにて遮 断して、 炉内の酸素濃度の上昇を抑制するこ と を特徴とする加熱炉の 雰囲気制御方法。 3. When the extraction door of the heating furnace is opened, the combustion of the heating parner, which is located in the lower area of the furnace extraction end, is controlled independently of the heating parners arranged in the heating furnace. The frame of the parner is extended in the width direction of the extraction port across the width of the opening, and the entrance path of air from the extraction port is blocked by the panner frame to suppress an increase in the oxygen concentration in the furnace. An atmosphere control method for a heating furnace, characterized in that:
4 . 請求項 3 において、 炉抽出端に配置した加熱用パーナの炉内側 に、炉床から屹立する仕切壁を設けて該仕切壁に沿う上昇流を形成し、 抽出口から侵入した空気を上記上昇流に乗せるこ と を特徴とする加熱 炉の雰囲気制御方法。 4. In claim 3, a partition wall rising from the hearth is provided inside the furnace of the heating parner arranged at the furnace extraction end to form an upward flow along the partition wall, and the air that has entered through the extraction port is discharged. Heating characterized by being placed on an upward flow Furnace atmosphere control method.
5 . 請求項 3 または 4において、 炉抽出端に配置した加熱用パーナ を低空気比の下に燃焼運転するこ と を特徴とする加熱炉の雰囲気制御 方法。 5. The method for controlling the atmosphere of a heating furnace according to claim 3, wherein the heating parner arranged at the furnace extraction end is operated under a low air ratio.
6 . 加熱源と して、 蓄熱体が付帯されたパーナの対を向かい合わせ に配設した蓄熱式パーナを有する、 加熱炉において、 蓄熱式パーナの 各対のパーナを交互に燃焼させる と共に、 非燃焼時のパーナから炉内 の排ガスを吸引 し、 上記蓄熱体に排ガスを導入して排ガス中の熱を蓄 熱体に回収し、 この回収した熱を燃焼時のパーナの燃焼用空気の加熱 に利用して、 加熱炉の操業を行う に当 り 、 蓄熱式パーナの燃焼負荷が 小さい場合に、 上記非燃焼時のパーナから蓄熱体を通して炉内の排ガ スを吸引するための吸引装置に、 熱風を供給するこ とを特徴とする蓄 熱式パーナを有する加熱炉の操業方法。 6. In a heating furnace, which has a regenerative parner with a pair of parners with a heat accumulator facing each other as a heating source, in the heating furnace, the parners of each pair of the regenerative parners are alternately burned, and Exhaust gas in the furnace is sucked from the burner through the furnace, the exhaust gas is introduced into the regenerator, heat in the flue gas is collected in the regenerator, and the recovered heat is used to heat the combustion air of the burner during combustion. In operating the heating furnace, when the combustion load of the regenerative burner is small, the suction device for sucking exhaust gas from the furnace through the regenerator from the non-burning burner is used. A method for operating a heating furnace having a regenerative parner, characterized by supplying hot air.
7 . 熱風が、 加熱炉内の排ガスを炉外に導く煙道内の排ガスである ことを特徴とする請求項 6に記載の加熱炉の操業方法。 7. The operating method of a heating furnace according to claim 6, wherein the hot air is an exhaust gas in a flue that guides an exhaust gas in the heating furnace out of the furnace.
8 . 加熱源と して、 蓄熱体が付帯されたパーナの対を向かい合わせ に配設した蓄熱式パーナを有する、 加熱炉において、 蓄熱式パーナの 各対のパーナを交互に燃焼させる と共に、 非燃焼時のパーナから炉内 の排ガスを吸引し、 上記蓄熱体に排ガスを導入して排ガス中の熱を蓄 熱体に回収し、 この回収した熱を燃焼時のパーナの燃焼用空気の加熱 に利用して、 加熱炉の操業を行う に当 り、 上記パーナから吸引した排 ガスの一部を分析器に導いて、 排ガス中の成分濃度を測定するこ とを 特徴とする加熱炉内の雰囲気ガス濃度の測定方法。 8. In a heating furnace, which has a regenerative parner with a pair of parners provided with a heat accumulator facing each other as a heating source, the parners of each pair of the regenerative parners are alternately burned in a heating furnace. Exhaust gas in the furnace is sucked from the furnace during combustion, the exhaust gas is introduced into the regenerator, heat in the exhaust gas is collected in the regenerator, and the recovered heat is used to heat the combustion air of the parner during combustion. When operating the heating furnace using the furnace, a part of the exhaust gas sucked from the above-mentioned wrench is guided to an analyzer to measure the concentration of components in the exhaust gas. How to measure gas concentration.
9 . 請求項 8 において、 蓄熱式パーナから吸引した排ガスの成分濃 度測定値を、 該蓄熱式パーナが設けられた加熱炉内の带における成分 濃度の代表値と して用いるこ と を特徴とする加熱炉内の雰囲気ガス濃 度の測定方法。 9. The component concentration of the exhaust gas sucked from the regenerative parner according to claim 8. A method for measuring the concentration of an atmospheric gas in a heating furnace, wherein the measured value is used as a representative value of the component concentration in (1) in the heating furnace provided with the regenerative parner.
1 0 . 加熱源と して、 蓄熱体が付帯されたパーナの対を向かい合わ せに配設した蓄熱式パーナの複数を具え、 該蓄熱式パーナの各対のバ ーナを交互に燃焼させる と共に、 非燃焼時のパーナから炉内の排ガス を吸引し、 上記蓄熱体に排ガスを導入して排ガス中の熱を蓄熱体に回 収し、 この回収した熱を燃焼時のパーナの燃焼用空気の加熱に利用し て操業を行う、 加熱炉において、 少なく と も加熱炉の抽出端の下部域 に配置した蓄熱式パーナは、 その他の蓄熱式パーナとは独立した燃焼 制御系を有することを特徴とする加熱炉。 10. As a heat source, a plurality of regenerative parners are provided opposite to each other with a pair of panners provided with a heat storage element, and the burners of each pair of the regenerative parners are alternately burned. In addition, the exhaust gas in the furnace is sucked from the burner during non-combustion, the exhaust gas is introduced into the heat accumulator, heat in the exhaust gas is collected in the heat accumulator, and the recovered heat is used for the combustion air of the burner during combustion. In a heating furnace that operates using heating, at least the regenerative parner arranged at the lower part of the extraction end of the furnace has a combustion control system independent of other regenerative parners. Heating furnace.
1 1 . 請求項 1 0 において、 独立した燃焼制御系を有する蓄熱式パ ーナを加熱炉の抽出扉との間で挟む位置に、 炉床から屹立する仕切壁 を設けたことを特徴とする加熱炉。 11. The claim 10, wherein a partition wall rising from the hearth is provided at a position where the regenerative pan having an independent combustion control system is sandwiched between the heating furnace and the extraction door. heating furnace.
1 2 . 加熱源と して、 蓄熱体が付帯されたパーナの対を向かい合わ せに配設した蓄熱式パーナを有し、 該蓄熱式パーナの各対のパーナを 交互に燃焼させる と共に、 非燃焼時のパーナから炉内の排ガスを吸引 し、 上記蓄熱体に排ガスを導入して排ガス中の熱を蓄熱体に回収し、 この回収した熱を燃焼時のパーナの燃焼用空気の加熱に利用 して操業 を行う、 加熱炉において、 該加熱炉内の排ガスを非燃焼時のパーナか ら蓄熱体を介して吸引する経路の末端に吸引装置を配設し、 該経路の 吸引装置入側に、 開閉弁を介して熱風を吸引装置に導く配管路を設け たことを特徴とする加熱炉。 1 2. As a heat source, a regenerative parner is provided with a pair of panners provided with a heat storage element facing each other, and the parners of each pair of the regenerative parners are alternately burned and non-burned. Exhaust gas in the furnace is sucked from the furnace at the time of introduction, the exhaust gas is introduced into the heat storage body, heat in the exhaust gas is recovered to the heat storage body, and the recovered heat is used for heating the combustion air of the parner during combustion. In a heating furnace, a suction device is disposed at an end of a path for sucking exhaust gas in the heating furnace from a non-combustion burner through a heat storage body, and a suction device is provided on the suction device entrance side of the path. A heating furnace provided with a piping path for guiding hot air to a suction device through an on-off valve.
1 3 . 配管路は、 加熱炉内の排ガスを炉外に導く煙道に接続されて なり 、 熱風と して加熱炉内の排ガスを導く ものであるこ とを特徴とす る請求項 1 2に記載の加熱炉。 1 3. The pipe line is connected to a flue that guides exhaust gas inside the heating furnace to the outside of the furnace, and guides the exhaust gas inside the heating furnace as hot air. 13. The heating furnace according to claim 12, wherein
1 4 . 請求項 1 2または 1 3 において、 煙道の配管路の上流側にレ キュペレータを設けたことを特徴とする加熱炉。 14. The heating furnace according to claim 12, wherein a recuperator is provided on an upstream side of a flue pipe.
1 5 . 加熱源と して、 蓄熱体が付帯されたパーナの対を向かい合わ せに配設した蓄熱式パーナを有し、 該蓄熱式パーナの各対のパーナを 交互に燃焼させる と共に、 非燃焼時のパーナから炉内の排ガスを吸引 し、 上記蓄熱体に排ガスを導入して排ガス中の熱を蓄熱体に回収し、 この回収した熱を燃焼時のパーナの燃焼用空気の加熱に利用 して操業 を行う、 加熱炉において、 該加熱炉内の排ガスを非燃焼時のパーナか ら蓄熱体を介して排出する経路の途中に、 排ガスの一部を採取するプ ロープおょぴ採取した排ガスの成分濃度を測定する分析器を設けたこ とを特徴とする加熱炉。 15 5. As a heating source, a regenerative parner is provided with a pair of parners with heat storage elements attached to each other, and the parners of each pair of the regenerative parners are alternately burned and non-burned. Exhaust gas in the furnace is sucked from the furnace at the time of introduction, the exhaust gas is introduced into the heat storage body, heat in the exhaust gas is recovered to the heat storage body, and the recovered heat is used for heating the combustion air of the parner during combustion. In a heating furnace, a part of the exhaust gas is sampled in the course of discharging the exhaust gas in the heating furnace from the non-combustion burner through a heat storage unit, and a probe is used to collect the exhaust gas. A heating furnace provided with an analyzer for measuring the concentration of each component.
PCT/JP2001/011508 2001-01-17 2001-12-27 Heating furnace with regenerative burners and method of operating the heating furnace WO2002057501A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2001008524A JP3937729B2 (en) 2001-01-17 2001-01-17 Heating furnace atmosphere control method and heating furnace
US10/220,726 US6644962B2 (en) 2001-01-17 2001-12-27 Heating furnace having heat regenerating burners and operation method thereof
CA002403221A CA2403221C (en) 2001-01-17 2001-12-27 Heating furnace with regenerative burners and method of operating the heating furnace
EP01273342A EP1275740B1 (en) 2001-01-17 2001-12-27 Method of operating a heating furnace with regenerative burners
CNB018092470A CN100338236C (en) 2001-01-17 2001-12-27 Heating furnace with regenerative burners and method of operating heating furnace
DE60124691T DE60124691T2 (en) 2001-01-17 2001-12-27 METHOD FOR OPERATING A HEATER WITH REGENERATIVE BURNERS
BR0109303-7A BR0109303A (en) 2001-01-17 2001-12-27 Heating furnace having heat regeneration burners and their method of operation

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2001008524A JP3937729B2 (en) 2001-01-17 2001-01-17 Heating furnace atmosphere control method and heating furnace
JP2001-8523 2001-01-17
JP2001-8524 2001-01-17
JP2001008523A JP3800008B2 (en) 2001-01-17 2001-01-17 Method of operating a heating furnace having a regenerative burner and a heating furnace
JP2001-14230 2001-01-23
JP2001014230A JP2002212630A (en) 2001-01-23 2001-01-23 Method for measuring atmospheric gas concentration in heating furnace, and heating furnace
JP2001-16974 2001-01-25
JP2001016974A JP2002220620A (en) 2001-01-25 2001-01-25 Method for controlling pressure of heating furnace
JP2001-17017 2001-01-25
JP2001017017A JP2002220621A (en) 2001-01-25 2001-01-25 Method for controlling furnace pressure using regenerative burner

Publications (1)

Publication Number Publication Date
WO2002057501A1 true WO2002057501A1 (en) 2002-07-25

Family

ID=27531773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/011508 WO2002057501A1 (en) 2001-01-17 2001-12-27 Heating furnace with regenerative burners and method of operating the heating furnace

Country Status (10)

Country Link
US (1) US6644962B2 (en)
EP (2) EP1757707A3 (en)
KR (1) KR100634776B1 (en)
CN (1) CN100338236C (en)
AT (1) ATE346172T1 (en)
BR (1) BR0109303A (en)
CA (2) CA2639404A1 (en)
DE (1) DE60124691T2 (en)
TW (1) TW524956B (en)
WO (1) WO2002057501A1 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100946071B1 (en) * 2002-12-23 2010-03-10 주식회사 포스코 An apparatus for protecting the intake air in heat furnace
US6997704B2 (en) * 2003-02-28 2006-02-14 Borgwarner Inc. Method and apparatus to aid in the delubrification of parts
KR101020358B1 (en) * 2003-07-07 2011-03-08 재단법인 포항산업과학연구원 Waste heat recovery Apparatus for reheating furnace
KR101108617B1 (en) * 2004-09-02 2012-01-31 재단법인 포항산업과학연구원 Combustion waste gas heat recovery system in reheating furnace
DE202007010480U1 (en) * 2006-08-24 2007-10-04 Lbe Feuerungstechnik Gmbh Radiant heater for heating an industrial furnace
FR2905753B1 (en) * 2006-09-13 2008-11-07 Stein Heurtey METHOD OF HEATING IN OVEN USING FUEL WITH LOW CALORIFIC POWER, AND OVEN USING THE SAME
CN101165406B (en) * 2006-10-19 2010-05-12 鞍钢股份有限公司 Heat storage type combustion method for prolonging reversal time
CN101373067B (en) * 2007-08-24 2010-05-19 宝山钢铁股份有限公司 Method for controlling thermal storage combustion
JP4832501B2 (en) * 2008-12-11 2011-12-07 中外炉工業株式会社 Combustion control method of heat storage combustion type heat treatment furnace
JP4615045B2 (en) * 2008-12-16 2011-01-19 中外炉工業株式会社 Combustion control method of heat storage combustion type heat treatment furnace
KR101038116B1 (en) * 2009-04-02 2011-05-31 재단법인 포항산업과학연구원 apparatus and method of furnace pressure control in regenerative reheating furnace
CN101832713A (en) * 2010-04-30 2010-09-15 山西太钢不锈钢股份有限公司 Method for improving combustion thermal efficiency of regenerative heating furnace
JP5404533B2 (en) * 2010-06-03 2014-02-05 中外炉工業株式会社 Combustion control method of heat storage combustion type heat treatment furnace
CN101967541B (en) * 2010-10-28 2013-02-13 武汉钢铁(集团)公司 Heating method for controlling decarburization in heavy rail billet furnace
TWI413554B (en) * 2011-01-03 2013-11-01 China Steel Corp Furnace pressure control method
MX348387B (en) 2011-03-18 2017-06-08 Ngk Insulators Ltd Tunnel kiln for firing porous ceramic material.
CN102260784A (en) * 2011-07-11 2011-11-30 安徽精诚铜业股份有限公司 Heating furnace
JP5849542B2 (en) * 2011-09-05 2016-01-27 株式会社Ihi Continuous heating furnace
JP6240371B2 (en) 2011-09-05 2017-11-29 株式会社Ihi Heating furnace and continuous heating furnace
KR101320117B1 (en) * 2012-02-28 2013-10-18 현대제철 주식회사 Door apparatus of heating furnace
CN103063806B (en) * 2012-12-18 2015-02-25 秦皇岛首秦金属材料有限公司 Method for detecting abnormity of remaining oxygen in thermal treatment furnace
TWI512258B (en) * 2013-01-24 2015-12-11 China Steel Corp Energy saving method of setting the furnace pressure
KR101386053B1 (en) * 2013-07-22 2014-04-17 주식회사 에스에이씨 Apparatus and method of combustion exhaust control in regenerative reheating furnace
TWI573965B (en) * 2014-11-12 2017-03-11 財團法人工業技術研究院 Modification method of oxygen concentration for combustion system
US10366594B2 (en) * 2015-05-04 2019-07-30 Mountain Optech, Inc. Oil and gas production facility emissions sensing and alerting device, system and method
US20160328943A1 (en) * 2015-05-04 2016-11-10 Moutain Optech, Inc. d/b/a Mountain Secure Systems Oil and gas production facility emissions sensing and alerting device, system and method
CN104930485B (en) * 2015-06-19 2017-03-08 上海优华系统集成技术股份有限公司 A kind of flue gas waste heat recovery system and its recovery method and purposes
DE102016110170B3 (en) * 2016-06-02 2017-11-23 Kopf Holding Gmbh Galvanizing furnace and method for operating a galvanizing furnace
CN106801139A (en) * 2017-01-19 2017-06-06 本钢板材股份有限公司 Annealing furnace optimization of air-fuel ratio method
CN110291352B (en) 2017-02-13 2023-11-17 布卢姆工程公司 Dual mode electric storage burner system and method for heating a furnace using the same
CN108253789A (en) * 2017-12-18 2018-07-06 醴陵友立特种陶瓷有限公司 Multiple preparing heat-accumulating ceramic product shuttle kiln
CN108278906A (en) * 2018-01-17 2018-07-13 上海曙佳科技发展有限公司 Suitable for the optimal control method under the conditions of recuperative heater low load combustion
CN108716852A (en) * 2018-06-13 2018-10-30 佛山市中晨窑炉设备有限公司 A kind of kiln firing oxidation panel secondary combustion system
CN113804008B (en) * 2020-06-12 2023-08-11 宝山钢铁股份有限公司 Control method for improving temperature uniformity of heating furnace
CN111811257B (en) * 2020-06-16 2021-12-21 首钢京唐钢铁联合有限责任公司 Heating furnace combustion control method and device
CN113847821B (en) * 2020-06-28 2023-10-17 宝山钢铁股份有限公司 Pulse control method for heating furnace burner and furnace temperature control method for pulse furnace
WO2022072588A1 (en) * 2020-09-30 2022-04-07 Owens-Brockway Glass Container Inc. Submerged combustion melting exhaust systems
CN115125467B (en) * 2022-07-12 2023-11-28 辛集市澳森金属制品有限公司 Zinc-plating economizer system of utilization waste heat heating

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314170A (en) * 1991-10-31 1994-05-24 Nippon Furnace Kogyo Kaisha, Ltd. Steel heating furnace
JPH06200329A (en) * 1992-12-28 1994-07-19 Nkk Corp Operation of continuous heating furnace having regenerative type burner
JPH09170749A (en) * 1995-10-19 1997-06-30 Nkk Corp Heating furnace and its operating method
JPH09209032A (en) * 1996-02-01 1997-08-12 Nippon Steel Corp Method for controlling optimum furnace pressure in heating furnace
JPH109558A (en) * 1996-06-25 1998-01-16 Kawasaki Steel Corp Control of waste-gas temperature in regenerative combustion device
JPH10185177A (en) * 1996-12-24 1998-07-14 Daido Steel Co Ltd Regenerative burner type heating furnace
JP2589541Y2 (en) * 1993-09-30 1999-01-27 石川島播磨重工業株式会社 Steel heating furnace
JP2885072B2 (en) * 1994-05-30 1999-04-19 住友金属工業株式会社 Heating furnace control method
JPH11172326A (en) * 1997-12-05 1999-06-29 Kawasaki Steel Corp Method for controlling atmosphere in furnace and device therefor
JPH11248151A (en) * 1998-03-06 1999-09-14 Kawasaki Steel Corp Method for controlling suction amount of exhaust gas in regenerative combustion device
JP2001098320A (en) * 1999-09-27 2001-04-10 Kawasaki Steel Corp Control method of furnace pressure in heating furnace

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61119987A (en) 1984-11-14 1986-06-07 新日本製鐵株式会社 Method of controlling furnace pressure of continuous type heating furnace
JPS6240312A (en) 1985-08-15 1987-02-21 Kawasaki Steel Corp Method for controlling atmosphere in furnace
US5266027A (en) * 1992-08-12 1993-11-30 Ngk Insulators, Ltd. Roller-hearth continuous furnace
CN2199437Y (en) * 1994-07-15 1995-05-31 机械工业部第五设计研究院 Heat accumulation type high-temp. reheating burner
JP3379296B2 (en) 1995-08-16 2003-02-24 日本鋼管株式会社 Atmosphere control method of heating furnace
JP3478009B2 (en) 1996-07-16 2003-12-10 Jfeスチール株式会社 Heating furnace with regenerative burner
US6290492B1 (en) * 2000-02-15 2001-09-18 Air Products And Chemicals, Inc. Method of reducing NOx emission from multi-zone reheat furnaces

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5314170A (en) * 1991-10-31 1994-05-24 Nippon Furnace Kogyo Kaisha, Ltd. Steel heating furnace
JPH06200329A (en) * 1992-12-28 1994-07-19 Nkk Corp Operation of continuous heating furnace having regenerative type burner
JP2589541Y2 (en) * 1993-09-30 1999-01-27 石川島播磨重工業株式会社 Steel heating furnace
JP2885072B2 (en) * 1994-05-30 1999-04-19 住友金属工業株式会社 Heating furnace control method
JPH09170749A (en) * 1995-10-19 1997-06-30 Nkk Corp Heating furnace and its operating method
JPH09209032A (en) * 1996-02-01 1997-08-12 Nippon Steel Corp Method for controlling optimum furnace pressure in heating furnace
JPH109558A (en) * 1996-06-25 1998-01-16 Kawasaki Steel Corp Control of waste-gas temperature in regenerative combustion device
JPH10185177A (en) * 1996-12-24 1998-07-14 Daido Steel Co Ltd Regenerative burner type heating furnace
JPH11172326A (en) * 1997-12-05 1999-06-29 Kawasaki Steel Corp Method for controlling atmosphere in furnace and device therefor
JPH11248151A (en) * 1998-03-06 1999-09-14 Kawasaki Steel Corp Method for controlling suction amount of exhaust gas in regenerative combustion device
JP2001098320A (en) * 1999-09-27 2001-04-10 Kawasaki Steel Corp Control method of furnace pressure in heating furnace

Also Published As

Publication number Publication date
DE60124691T2 (en) 2007-09-13
CA2639404A1 (en) 2002-07-25
CA2403221A1 (en) 2002-07-25
EP1275740A4 (en) 2005-03-02
CN1427897A (en) 2003-07-02
EP1275740B1 (en) 2006-11-22
EP1757707A2 (en) 2007-02-28
CA2403221C (en) 2009-02-17
DE60124691D1 (en) 2007-01-04
KR100634776B1 (en) 2006-10-16
KR20020083180A (en) 2002-11-01
TW524956B (en) 2003-03-21
CN100338236C (en) 2007-09-19
EP1275740A1 (en) 2003-01-15
US6644962B2 (en) 2003-11-11
US20030027095A1 (en) 2003-02-06
ATE346172T1 (en) 2006-12-15
EP1757707A3 (en) 2007-06-20
BR0109303A (en) 2002-12-17

Similar Documents

Publication Publication Date Title
WO2002057501A1 (en) Heating furnace with regenerative burners and method of operating the heating furnace
KR101513857B1 (en) Device for securing a furnace provided with a rapid cooling and heating system operating under controlled atmosphere
AU2010244307B2 (en) Control process for an anode baking furnace and adapted furnace using such process
JPH09126665A (en) Recovering method of waste heat of steel heating furnace and facility therefor
CN101835913B (en) Method and strand sintering equipment for continuous sintering and pre-reduction of pelletized mineral material
US20090136884A1 (en) Direct-Fired Furnace Utilizing An Inert Gas To Protect Products Being Thermally Treated In The Furnace
CN115307425A (en) Novel gas roller kiln for sintering lithium battery material
CN1333087C (en) Heating furnace with regenerative burners and method of operating heating furnace
US4069008A (en) Method and apparatus for heating a workpiece
KR20020020268A (en) Apparatus For Controlling Introduced Air In Metal Oxide Reducing Furnace
JP3800008B2 (en) Method of operating a heating furnace having a regenerative burner and a heating furnace
US20080066834A1 (en) Direct-Fired Furnace Utilizing an Inert Gas to Protect Products Being Thermally Treated in the Furnace
CN202595217U (en) Band steel cooling system
JP2002220620A (en) Method for controlling pressure of heating furnace
CN116536506A (en) Furnace pressure control method of atmosphere annealing furnace
JPH083652A (en) Method for sealing inlet of preheating furnace for directly firing furnace and device therefor
JP2002220621A (en) Method for controlling furnace pressure using regenerative burner
JP2002212630A (en) Method for measuring atmospheric gas concentration in heating furnace, and heating furnace
JP2002157023A (en) Furnace pressure control system
US20100183992A1 (en) Device for limiting the exhausting of combustion flue gases at the inlet of a furnace for reheating steel products
JPH0660356B2 (en) Flue gas temperature control method for continuous heating furnace
US732938A (en) Heating-furnace.
Astesiano et al. Strip Annealing Furnaces for New Galvanizing Lines
CN116282844A (en) Heating system and heating method
KR20080056940A (en) A conbustion furnace having shielding facility from airrush-in

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 10220726

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001273342

Country of ref document: EP

Ref document number: 2403221

Country of ref document: CA

Ref document number: 1020027012192

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020027012192

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018092470

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2001273342

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001273342

Country of ref document: EP