JPS6240312A - Method for controlling atmosphere in furnace - Google Patents

Method for controlling atmosphere in furnace

Info

Publication number
JPS6240312A
JPS6240312A JP17863885A JP17863885A JPS6240312A JP S6240312 A JPS6240312 A JP S6240312A JP 17863885 A JP17863885 A JP 17863885A JP 17863885 A JP17863885 A JP 17863885A JP S6240312 A JPS6240312 A JP S6240312A
Authority
JP
Japan
Prior art keywords
furnace
gas
air
atmosphere
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17863885A
Other languages
Japanese (ja)
Inventor
Tsutomu Yoshizato
吉里 勉
Chukichi Kawabata
川畑 忠吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP17863885A priority Critical patent/JPS6240312A/en
Publication of JPS6240312A publication Critical patent/JPS6240312A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To execute optimum control of the atmosphere in a furnace by freely movably inserting probes into the furnace, measuring the concns. of the gaseous O2 and CO in a waste gas at plural positions and correcting and controlling an air-fuel ratio according to the deviation between the average value thereof and the set value. CONSTITUTION:The respective probes 11a, 11b of a gaseous O2 densitometer and gaseous CO densitometer are inserted into the furnace 10 and are inserted by each specified length into the furnace 10 by a driving device 12. The atmosphere in the furnace is introduced into respective gas analyzers 13 via plural measuring points 24'-1-24'-n through measuring holes 24-1 provided at the top end of the probes 11a, 11b. The analyzed concn. values of the O2 and CO are inputted to a computer 14 by which the respective average concn. values are determined. The values are compared with the set value of the required combustion air volume of an air-fuel ratio controller 17. A combustion air control valve 22 is controlled according to the deviation therebetween by which the air-fuel ratio is decreased or increased.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、炉内における雰囲気制御方法に係り、特に、
鋼材加熱炉及び熱処理炉等の炉内の雰囲気を全体に亘り
測定して適確に制御する雰囲気制御方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method of controlling atmosphere in a furnace, and in particular,
The present invention relates to an atmosphere control method for accurately controlling the atmosphere in a steel heating furnace, heat treatment furnace, etc. by measuring the entire atmosphere inside the furnace.

〔従来の技術〕[Conventional technology]

従来一般に炉内の雰囲気制御において、炉内の酸素濃度
(以下0.ガスa flと称す)或は一酸化炭素濃度(
以下COガス濃度と称す)を測定する場合、夫々の濃度
を測定するプローブは炉内の特定位置に固定している。
Conventionally, in controlling the atmosphere in a furnace, the oxygen concentration (hereinafter referred to as 0.gas afl) or carbon monoxide concentration (
When measuring the CO gas concentration (hereinafter referred to as CO gas concentration), probes for measuring each concentration are fixed at specific positions within the furnace.

このため測定して得られた各々の測定値は炉内のある特
定の一点のCOガス又は0.ガス濃度を指示しているに
過ぎず、炉内の雰囲気状況或は燃焼状況を正しく反映し
ていない。また、燃焼条件、炉圧等の変動により、炉内
の未燃ガス及び燃焼排ガスの流れは常に変化しており、
現状のプローブを固定して測定する方法では、上記各種
の変動の影響を受け、精度の良い炉内雰囲気制御は不可
能であった。
For this reason, each measurement value obtained by measurement is the CO gas at a certain point in the furnace or 0. It merely indicates the gas concentration, and does not accurately reflect the atmospheric conditions or combustion conditions inside the furnace. Additionally, the flow of unburned gas and flue gas in the furnace is constantly changing due to fluctuations in combustion conditions, furnace pressure, etc.
The current method of measuring with a fixed probe is affected by the various fluctuations mentioned above, making it impossible to control the furnace atmosphere with high precision.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

紙上のように、従来から行われてきた方法は、あくまで
も炉内の特定点つまり各々のプローブの特定点の挿入深
度で測定して得られたCOガス及びO,ガス濃度測定値
を以って炉内雰囲気を制御しているに過ぎず、最適な炉
内雰囲気制御を常に得ることはできなかった。
As stated on paper, the conventional method is to measure CO gas and O gas concentration values obtained by measuring at a specific point in the furnace, that is, at the insertion depth of each probe at a specific point. The method merely controls the atmosphere inside the furnace, and it has not been possible to always obtain optimal control of the atmosphere inside the furnace.

〔発明の目的〕[Purpose of the invention]

本発明は、前記従来の問題点を解消するべくなされたし
ので、常に炉内の廃ガス中のO,ガス濃度及びCOガス
濃度を適確に測定して、該測定値に基づき炉内の雰囲気
制御を最適に行うことのできる雰囲気制御方法を提供す
ることを目的とする。
The present invention was made in order to solve the above-mentioned conventional problems. Therefore, the O gas concentration and CO gas concentration in the waste gas in the furnace are always accurately measured, and based on the measured values, the concentration in the furnace is It is an object of the present invention to provide an atmosphere control method that can optimally control the atmosphere.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、炉内の雰囲気制御方法において、燃焼廃ガス
中のO,ガス濃度及びCOガス濃度を測定ずろ各々のプ
ローブを炉内に移動自在に挿入して複数の測定位置で各
々測定して、該各々の測定値に基づき平均濃度値を各々
求め、該平均濃度値と目標設定値との偏差に応じて、空
燃比を修正制御することにより前記目的を達成したしの
である。
The present invention is a method for controlling the atmosphere in a furnace, in which each probe is movably inserted into the furnace to measure O, gas concentration, and CO gas concentration in combustion waste gas at a plurality of measurement positions. The above object has been achieved by determining an average concentration value based on each of the measured values, and correcting and controlling the air-fuel ratio according to the deviation between the average concentration value and the target setting value.

〔作  用〕[For production]

本発明においては、0.ガス濃度及びCOガス濃度を炉
内での測定位置を可変とし、炉内の複数点の濃度を測定
するようにしたので、6帯の燃焼廃ガス中の前記0.ガ
ス決びCOガス濃度の平均値を常に正確にall定する
ことができ、従って、これ等の平均値に基づき、常に最
適な炉内雰囲気制御を行うことがで上る。
In the present invention, 0. The measurement position of the gas concentration and CO gas concentration in the furnace was made variable, and the concentration at multiple points in the furnace was measured. It is possible to always accurately determine the average value of the CO gas concentration, and therefore it is possible to always perform optimal furnace atmosphere control based on these average values.

即ち、一般に燃焼過程における廃ガス中の02ガス濃度
〔0,〕は、燃焼に寄与しない過剰空気量Qexの21
%として、次式で表わされる。
That is, in general, the 02 gas concentration [0,] in the waste gas during the combustion process is 21 of the excess air amount Qex that does not contribute to combustion.
It is expressed as % by the following formula.

C02) −〇、21 X QexX / Qgx t
o。
C02) −〇, 21 X QexX / Qgx t
o.

= (0,21X (Qf−Ao−m(1−77+))
 /(Qf−Go・773+Qr ・Ao−m(1−η
+)) X 100(%)・・・・・・・・(I)又同
じく廃ガス中の000度〔CO3は、次式で表わされる
= (0,21X (Qf-Ao-m(1-77+))
/(Qf-Go・773+Qr・Ao-m(1-η
+))

CCo) = (Qr(1773)・77 、)/(Q
r−Go・n a+Qf(1−n 3)+ Qf−Ao
 −m(i77 +))X +00(%)・・・・・・
・・・(2)ここでQ「は燃料流量、AOは理論空気量
、Goは理論発生ガスfftQgは燃焼ガス量、η、は
燃焼空気が燃焼に寄与する効率、η3は燃焼ガスのうち
完全燃焼される割合、η、は未燃ガスのうちCOの割合
、mは空気比である。
CCo) = (Qr(1773)・77,)/(Q
r-Go・na+Qf(1-n 3)+Qf-Ao
-m(i77 +))X +00(%)...
...(2) Here, Q is the fuel flow rate, AO is the theoretical air amount, Go is the theoretically generated gas, fftQg is the combustion gas amount, η is the efficiency of combustion air contributing to combustion, and η3 is the completeness of the combustion gas. The combusted proportion, η, is the proportion of CO in the unburned gas, and m is the air ratio.

従って燃焼状態、燃焼負荷、空気比などによって、炉内
の未燃焼ガス、廃ガス中の0.及びCOガス濃度がガス
流れや測定位置で異ったものとなる。
Therefore, depending on combustion conditions, combustion load, air ratio, etc., the amount of unburned gas in the furnace and waste gas may vary. and CO gas concentration differs depending on the gas flow and measurement position.

そこで本発明では02濃度計及びCO濃度計のプローブ
を移動測定し、これにより測定位置の影響を消去できる
ようにして、一層の適確な制御を行うことかできるよう
にするものである。
Therefore, in the present invention, the probes of the 02 densitometer and the CO densitometer are moved for measurement, thereby making it possible to eliminate the influence of the measurement position, thereby making it possible to perform more accurate control.

〔実 施 例〕〔Example〕

以下図面を参照して、本発明の実施例を詳細に説明する
Embodiments of the present invention will be described in detail below with reference to the drawings.

本実施例は第1図に示す如く、本発明を予熱帯。In this embodiment, as shown in FIG. 1, the present invention is applied to a preheating zone.

加熱帯及び均熱帯から構成される加熱炉10における特
に加熱帯の燃焼制御装置の代表例に適用したしのについ
て説明する。
A description will be given of a method applied to a typical example of a heating zone combustion control device in a heating furnace 10 consisting of a heating zone and a soaking zone.

加熱帯に配設された図示しないバーナに燃料を送り込む
ための燃料配管には、燃料流ff1Qfを測定する燃料
流量計20が配設されている。該燃料流量計20で測定
された燃料流ff1Q「は図示しない加熱帯の炉温測定
装置の炉温測定値Tmと目標炉温設定値Taとの偏差に
基づいて、該偏差を解消するための燃料流量調節器16
が制御信号を出力して、燃料流量制御弁21を制御して
炉温を目標設定値に保持する。
A fuel flow meter 20 for measuring the fuel flow ff1Qf is disposed in a fuel pipe for feeding fuel to a burner (not shown) disposed in the heating zone. The fuel flow ff1Q' measured by the fuel flow meter 20 is determined based on the deviation between the furnace temperature measurement value Tm of the furnace temperature measurement device of the heating zone (not shown) and the target furnace temperature set value Ta, and is calculated based on the deviation. Fuel flow regulator 16
outputs a control signal to control the fuel flow control valve 21 to maintain the furnace temperature at the target set value.

空燃比設定器17は、前記燃料流m計20で測定された
燃料流量Qfに比例する必要燃焼空気fiAom(1±
α)を演算ずろ。
The air-fuel ratio setter 17 sets the required combustion air fiAom(1±
Calculate α).

該必要燃焼空気fflAom(1±α)(αは空燃比の
全過剰係数)の信号は、燃焼空気流量調節器18に出力
されろと+12に、図示省略したバーナに送り込むため
の空気配管に燃焼空気量Qaを測定する燃焼空気流m計
23の測定値と、前記燃焼空気流量調節器18の設定値
との偏差に基づいて、該偏差を解消するように燃焼空気
制御弁22を制御している。一方、炉内の雰囲気ガスを
採取して0.ガス濃度計13a及びCOガス濃度計13
bへ導びく導入管26の先端側には炉内へ挿入設定長さ
が可変自在となる前記a度肝13a、 +3bの各々の
プローブ、lla、 llb (図ではOl、COガス
濃度計を1ケのプローブで代表図示する)が配設されて
いる。該各々のプローブ11a。
A signal of the required combustion air fflAom(1±α) (α is the total excess coefficient of the air-fuel ratio) is output to the combustion air flow rate regulator 18, and the signal is output to the combustion air flow rate regulator 18, and the signal is sent to the air piping for feeding to the burner (not shown). Based on the deviation between the measured value of the combustion air flow meter 23 that measures the air amount Qa and the set value of the combustion air flow rate regulator 18, the combustion air control valve 22 is controlled to eliminate the deviation. There is. On the other hand, the atmospheric gas inside the furnace was sampled and 0. Gas concentration meter 13a and CO gas concentration meter 13
On the tip side of the introduction pipe 26 leading to the inlet pipe 26, there are probes 13a and 11b (in the figure, one Ol and CO gas concentration meter), each of which has a variable insertion length into the furnace. (representatively shown in the figure). each probe 11a.

11bの炉外側には炉内挿入長さを可変とするプローブ
移動駆動装置12が設けられている。また各プローブl
la、 llbの移動相当長さえたけ密封するシール筒
体25が取付けられている。そして図示しないモータに
連結されたラックL2aと各プローブ11に固設された
ビニオン12bが噛合い、図示省略の炉内挿入長さ制御
装置の指令により一定長さづつ炉内へ送出して、各プロ
ーブ11の先端側に設けられた測定穴24−1より炉内
のn個の測定点(24’ −1〜24’ −n)の炉内
雰囲気を順次側々の導入管26を通して各ガス分析計1
3に導入する。或はまた、前記炉内挿入長さ制御装置の
指令に基づき、プローブを炉内へ最大挿入長さItma
xまで一度に送出して、プローブ11の筒体に設けられ
た各測定位置に対応する測定穴24’−1〜24’−n
から炉内雰囲気を一気に、前記各ガス分析計13に導入
するようにする。
A probe moving drive device 12 is provided outside the furnace 11b to make the length of insertion into the furnace variable. Also, each probe l
A seal cylindrical body 25 is attached that seals the cylinder by a length corresponding to the movement of 1a and 1b. Then, the rack L2a connected to a motor (not shown) and the pinion 12b fixed to each probe 11 mesh with each other, and the pinion 12b is sent into the furnace at a constant length according to a command from an in-furnace insertion length control device (not shown). The atmosphere inside the furnace at n measurement points (24'-1 to 24'-n) in the furnace is sequentially measured through the measurement hole 24-1 provided on the tip side of the probe 11 through the introduction pipes 26 on each side for each gas analysis. Total 1
Introduced in 3. Alternatively, the maximum insertion length Itma of the probe into the furnace may be determined based on a command from the furnace insertion length control device.
measurement holes 24'-1 to 24'-n corresponding to each measurement position provided in the cylindrical body of the probe 11.
The atmosphere inside the furnace is introduced into each of the gas analyzers 13 at once.

このようにして導入された各ガスは各ガス分析計13で
分析して、炉内の各測定点の雰囲気ガスを測定するが、
常時は各プローブ11の先端位置に位置する測定穴24
−1を炉壁より11m1nに位置させる。
Each gas introduced in this way is analyzed by each gas analyzer 13 to measure the atmospheric gas at each measurement point in the furnace.
The measurement hole 24 is normally located at the tip of each probe 11.
-1 is located 11 m1n from the furnace wall.

ザンブリング測定時のみ、炉内へ最大挿入長さII m
 a xまで突出させ、この挿入設定位置をl(max
としこの時の各プローブ11の炉壁側の測定穴24’ 
−nの位置を常時測定するH m i nの位置に相当
さ仕ると常時測定する測定穴24川とサンプリング時の
測定穴24’ −nとにより測定したCo9及び0.ガ
ス濃度と各測定穴24’ −1〜24’−nでのガス濃
度との対応をつけることかできる。
Maximum insertion length into the furnace II m only during zumbling measurement
a x, and set this insertion setting position to l(max
Measurement hole 24' on the furnace wall side of each probe 11 at this time
-n corresponds to the position of Hmin, which is constantly measured, and Co9 and 0. It is possible to make a correspondence between the gas concentration and the gas concentration at each measurement hole 24'-1 to 24'-n.

つまり各ガス濃度の測定穴24−1により常時測定して
、該測定値を各測定穴24’ −1〜24’−nて測定
された測定値との関係を、予めサンプリングff1ll
定した結果より求めておき、常時はCO及び02ガス濃
度の谷プローブの測定穴24川の測定値で炉内雰囲気を
モニタリングずろことかできろ。この炉内へ最大挿入長
さII m a x或は一定長さ順次送出して測定ずろ
時は、燃焼負荷、空燃比等の一定の変更条件を1:?<
足したとき行い、常時は各プローブ11を11m1nの
位置で測定オろ。或は一定時間毎にザンブリング測定し
て乙かまわない。
In other words, each gas concentration is constantly measured by the measurement hole 24-1, and the relationship between the measured value and the measurement value measured by each measurement hole 24'-1 to 24'-n is determined in advance by sampling ff1ll.
You can always monitor the atmosphere in the furnace using the measured values from the 24 measurement holes of the valley probe for CO and 02 gas concentrations. When the maximum insertion length II m a x or a certain length is sequentially sent into the furnace and the measurement is delayed, certain changing conditions such as combustion load and air-fuel ratio are changed to 1:? <
Perform the measurement when adding up, and always measure each probe 11 at the position of 11m1n. Alternatively, Zumbling measurement may be performed at regular intervals.

このようにしてサンプリングされた炉内雰囲気は0.ガ
ス及びCoガス濃度計13a、 13tiて各々分析さ
れ、各41定点に対する02ガス濃度値(02)、。
The atmosphere inside the furnace sampled in this way was 0. Gas and Co gas concentration meters 13a and 13ti were analyzed, respectively, and 02 gas concentration values (02) for each of 41 fixed points.

〔02) t、−(02) nlび(Oカス濃度値(C
O)、。
[02) t, -(02) nl(O scum concentration value (C
O),.

(CO)2・[:C0)nが5測定される。該各々の測
定値は演算器14に入力され該各々の測定値の平均値各
々の測定値を炉内のガス流れ等を考慮した係数Kiて補
正或は重み付けをした各積分値る炉の区画断面積Anを
乗じて燃焼ガス中の0.ガス量及びCOガス量の相当f
f1X (0,)、 X (Co)を求める。該各々の
相当fftX Co、) 、 X (Co)と前記燃料
流ff1Qr及び燃焼空気流ff1Qaに基づき、CP
U15では02ガス%及びCOガス%の平均濃度値を演
算する。
(CO)2.[:C0)n is measured 5 times. Each of the measured values is inputted to the calculator 14, and the average value of each measured value is corrected or weighted by a coefficient Ki that takes into account the gas flow in the furnace, etc. to calculate the integral value for each section of the furnace. Multiplying the cross-sectional area An gives the value of 0. Equivalent f of gas amount and CO gas amount
Find f1X (0,), X (Co). Based on the respective equivalent fftX Co, ),
In U15, the average concentration value of 02 gas% and CO gas% is calculated.

該演算は例えばCO,)−02ガス%=XCO,’]/
Σ(Qf+ Qa)、  (Co) −COガス%=x
(Co)/Σ(Qf+Qa)として算出する。このよう
にして求められた平均濃度値(0,)(Co)は前記空
燃比調節器17の燃焼燃料量に対する必要燃焼空気量A
om(1±α)の設定値に補正値(0,)、(Co)と
して加算されて、0、ガス濃度が各炉帯毎に設定する不
感帯β1以上となれば空燃比を減少させる如く燃焼空気
制御弁22を制御する。
The calculation is, for example, CO,)-02 gas%=XCO,']/
Σ(Qf+Qa), (Co) -CO gas%=x
Calculated as (Co)/Σ(Qf+Qa). The average concentration value (0,) (Co) obtained in this way is the required combustion air amount A for the combustion fuel amount of the air-fuel ratio regulator 17.
The correction values (0,) and (Co) are added to the set value of om (1±α), and when the gas concentration reaches 0 and the dead zone β1 set for each furnace zone or more, combustion is performed to reduce the air-fuel ratio. Controls the air control valve 22.

又、COガス濃度が各炉帯毎に設定する不感帯β。Also, the CO gas concentration is a dead zone β set for each furnace zone.

以上となれば空燃比を増加させろ如く燃焼空気制御弁2
2を制御ずろ。
If it is above, increase the air-fuel ratio. Combustion air control valve 2
Control 2.

なお、測定した02及びCOガス濃度の平均濃度値Σ(
0,) /n、Σ[CO)/nを用い炉内のガス流れを
同一と見做して、前記平均濃度値〔0,〕及び〔CO〕
より、第2図に示す空燃比と00%及び07%の関係を
CPt115に演算させて、目標O7及びCOガス濃度
になるよう空燃比調節器17へ入力して前記空燃比を補
正するよう制御ずろ。
In addition, the average concentration value Σ(
0,) /n, Σ[CO)/n and assuming that the gas flow in the furnace is the same, the average concentration value [0,] and [CO]
Therefore, the CPt 115 calculates the relationship between the air-fuel ratio and 00% and 07% shown in FIG. 2, and controls the air-fuel ratio to be corrected by inputting it to the air-fuel ratio regulator 17 so that the target O7 and CO gas concentrations are achieved. Zuro.

この補正制御は第2図に示ず空燃比と00%及び0、%
の関係に基つき例えば加熱帯の〔0,〕の弔均濃度値1
.0%を前述の測定値として得、目標設定0、ガス濃度
0.6%とずろには空気比1.03に制御ずろように空
燃比調節器17が制御指令を燃焼空気流量調節器18へ
出力して燃焼空気制御弁22を絞り流量を調節する。
This correction control is not shown in Figure 2.
Based on the relationship, for example, the average concentration value 1 of [0,] in the heating zone
.. 0% is obtained as the above-mentioned measured value, the target setting is 0, the gas concentration is 0.6%, and the air-fuel ratio regulator 17 sends a control command to the combustion air flow rate regulator 18 to control the air ratio to 1.03. The output is output to throttle the combustion air control valve 22 to adjust the flow rate.

このようにして、炉内のCO及びO,ガス濃度を各プロ
ーブ11の挿入位置を可変として測定することにより適
確にO7及びCOガス濃度分布を知り最適な雰囲気制御
を行うことができる。
In this way, by measuring the CO, O, and gas concentrations in the furnace by varying the insertion position of each probe 11, it is possible to accurately know the O7 and CO gas concentration distribution and perform optimal atmosphere control.

なお、前記実施例は、予熱帯、加熱帯及び均熱帯を有す
る連続鋼片加熱炉に適用したものであるが、本発明の適
用はこれに限定されず、熱処理炉等の炉内の雰囲気制御
にも適用できる。また0、ガス濃度を測定する場合、直
接挿入をジルコニア分析計を用いることも可能である。
In addition, although the above embodiment is applied to a continuous billet heating furnace having a pre-heating zone, a heating zone, and a soaking zone, the application of the present invention is not limited to this, and is applicable to atmosphere control in a furnace such as a heat treatment furnace. It can also be applied to Furthermore, when measuring the gas concentration, it is also possible to use a zirconia analyzer for direct insertion.

そしてまた、この雰囲気制御は燃焼空気制御の代りに燃
焼燃料量の流量を制御してもよいことは勿論である。
Of course, this atmosphere control may also be performed by controlling the flow rate of the combustion fuel instead of controlling the combustion air.

〔発明の効果〕 以上説明した通り、本発明によれば、炉内の0゜ガス及
びCOガス濃度を各測定位置で測定できるので常に適確
な雰囲気制御ができる。又この測定方法により正確な燃
焼制御を行うことができる等の侵れた効果を有する。
[Effects of the Invention] As explained above, according to the present invention, the 0° gas and CO gas concentrations in the furnace can be measured at each measurement position, so that the atmosphere can always be controlled accurately. This measurement method also has the advantage of allowing accurate combustion control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る加熱炉々内のCOガスおよび0
.ガス濃度の測定と炉内雰囲気制御方法を説明する図、
第2図は、炉内のCOガス及びO,ガス濃度と空燃比と
の関係を示す線図である。 符号lO・・・加熱炉  [1・・・ガス濃度測定プロ
ーブlta、 llb・・・02及びCOガス濃度測定
プローブ12・プローブ移動駆動装置 12a・・ラッ
ク12b・・・ピニオン  13・・・ガス分析計L3
a、 13b・・・02ガス及びCOガス濃度分析計1
4・・・演算器 15・・・CI’0 1G・・・燃料
流量調節器17・・空燃比調節器   18・・・空気
流量調節器19・・・燃料流量発信器  20・・・燃
料流量計21・・・燃焼燃料制御弁  22・・・燃焼
空気制御弁23・・・燃焼空気流量計  24・・・測
定穴25・・・シール筒体
FIG. 1 shows CO gas and CO gas in the heating furnace according to the present invention.
.. Diagram explaining gas concentration measurement and furnace atmosphere control method,
FIG. 2 is a diagram showing the relationship between CO gas and O in the furnace, gas concentration, and air-fuel ratio. Symbol lO...Heating furnace [1...Gas concentration measurement probe lta, llb...02 and CO gas concentration measurement probe 12/probe movement drive device 12a...Rack 12b...Pinion 13...Gas analysis Total L3
a, 13b...02 gas and CO gas concentration analyzer 1
4... Arithmetic unit 15... CI'0 1G... Fuel flow rate regulator 17... Air-fuel ratio regulator 18... Air flow rate regulator 19... Fuel flow rate transmitter 20... Fuel flow rate Total 21...Combustion fuel control valve 22...Combustion air control valve 23...Combustion air flow meter 24...Measuring hole 25...Seal cylinder

Claims (1)

【特許請求の範囲】[Claims] 炉内の雰囲気を制御するに際して、炉内の酸素濃度及び
一酸化炭素濃度を測定する各プローブを移動自在に挿入
して複数の測定位置での炉内雰囲気ガス中の前記酸素濃
度及び一酸化炭素濃度を各々測定し、該測定値にもとづ
き平均濃度値を各々求め、該平均濃度値と目標設定値と
の偏差に応じて、空燃比を修正制御することを特徴とす
る炉内における雰囲気制御方法。
When controlling the atmosphere in the furnace, each probe for measuring the oxygen concentration and carbon monoxide concentration in the furnace is movably inserted to measure the oxygen concentration and carbon monoxide concentration in the furnace atmosphere gas at a plurality of measurement positions. A method for controlling the atmosphere in a furnace, characterized in that each concentration is measured, each average concentration value is determined based on the measured values, and the air-fuel ratio is corrected and controlled according to the deviation between the average concentration value and a target setting value. .
JP17863885A 1985-08-15 1985-08-15 Method for controlling atmosphere in furnace Pending JPS6240312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17863885A JPS6240312A (en) 1985-08-15 1985-08-15 Method for controlling atmosphere in furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17863885A JPS6240312A (en) 1985-08-15 1985-08-15 Method for controlling atmosphere in furnace

Publications (1)

Publication Number Publication Date
JPS6240312A true JPS6240312A (en) 1987-02-21

Family

ID=16051955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17863885A Pending JPS6240312A (en) 1985-08-15 1985-08-15 Method for controlling atmosphere in furnace

Country Status (1)

Country Link
JP (1) JPS6240312A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6644962B2 (en) 2001-01-17 2003-11-11 Kawasaki Steel Corporation Heating furnace having heat regenerating burners and operation method thereof
JP2006504263A (en) * 2002-10-25 2006-02-02 ホガナス アクチボラゲット Heat treatment of iron-based components
JP2009057607A (en) * 2007-08-31 2009-03-19 Ntn Corp Heat treatment furnace
JP2015511995A (en) * 2012-03-09 2015-04-23 バオシャン アイアン アンド スティール カンパニー リミテッド Method for producing normalized silicon steel substrate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6644962B2 (en) 2001-01-17 2003-11-11 Kawasaki Steel Corporation Heating furnace having heat regenerating burners and operation method thereof
JP2006504263A (en) * 2002-10-25 2006-02-02 ホガナス アクチボラゲット Heat treatment of iron-based components
JP2009057607A (en) * 2007-08-31 2009-03-19 Ntn Corp Heat treatment furnace
JP2015511995A (en) * 2012-03-09 2015-04-23 バオシャン アイアン アンド スティール カンパニー リミテッド Method for producing normalized silicon steel substrate

Similar Documents

Publication Publication Date Title
CN101182926B (en) Stove-fuel flow online control device and method thereof
WO2001084111A1 (en) Emission monitoring system and method
CN103134328A (en) Method and device for industrial furnace atmosphere automatic combustion control
JPS6240312A (en) Method for controlling atmosphere in furnace
US5392312A (en) Method and device for regulating the combustion air flow rate of a flue rate gas collection device of a metallurgical reactor, corresponding collection device and metallurgical reactor
GB2042221A (en) Automatic control of burner combustion
US3416470A (en) Method of controlling and/or regulating induced draught fans for waste heat boilers
CN106766974B (en) A kind of air/fuel ratio detecting apparatus
JPH0645867B2 (en) Atmosphere heat treatment control device
CN204594879U (en) A kind of result of combustion of tobacco pyrolysis smog burst size measurement mechanism
AU2020102324A4 (en) Online Monitoring Instrument for Multiple Environmental Elements
JP4671136B2 (en) Combustion control method for rotary melting furnace
CN113032970A (en) Method and system for measuring oxygen content of flue gas of power station
KR100804233B1 (en) Oxygen concentration control method in case of firing multiple fuels
SU1520343A1 (en) Method of measuring carbon monoxide in flue gases
JPH02195255A (en) Apparatus for measuring carbon potential in furnace atmosphere in reduction atmosphere furnace
JP7315747B1 (en) Exhaust gas duct equipment for industrial furnaces
CN112050657B (en) Control method for pressure in component and coating fire-proof test furnace
TR2022015293A2 (en) INDUSTRIAL OVEN OXYGEN MEASUREMENT SYSTEM AND METHOD
Wang et al. Online measurement and control system development of combustion state for rolling reheating furnace
RU2096480C1 (en) Automatic natural gas flow rate regulation system for blast furnace tuyere
SU1677067A1 (en) Device for monitoring melting conditions in open-hearth furnace
RU2352933C1 (en) Analyser of carbon and sulphur
JP2797943B2 (en) Mixed gas calorie control device
JPS5917169B2 (en) Atmosphere control method for non-oxidizing furnace