TWI573965B - Modification method of oxygen concentration for combustion system - Google Patents

Modification method of oxygen concentration for combustion system Download PDF

Info

Publication number
TWI573965B
TWI573965B TW103139197A TW103139197A TWI573965B TW I573965 B TWI573965 B TW I573965B TW 103139197 A TW103139197 A TW 103139197A TW 103139197 A TW103139197 A TW 103139197A TW I573965 B TWI573965 B TW I573965B
Authority
TW
Taiwan
Prior art keywords
oxygen concentration
concentration
original
load
critical value
Prior art date
Application number
TW103139197A
Other languages
Chinese (zh)
Other versions
TW201617562A (en
Inventor
李俊賢
鄭儀誠
徐振凱
陳俊彥
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW103139197A priority Critical patent/TWI573965B/en
Priority to CN201410704813.9A priority patent/CN105698211B/en
Publication of TW201617562A publication Critical patent/TW201617562A/en
Application granted granted Critical
Publication of TWI573965B publication Critical patent/TWI573965B/en

Links

Description

燃燒系統的氧氣濃度修正方法 Method for correcting oxygen concentration of combustion system

本揭露是有關於一種燃燒系統的氧氣濃度修正方法,且特別是有關於一種可修正原始氧氣濃度的燃燒系統的氧氣濃度修正方法。 The present disclosure relates to a method of modifying the oxygen concentration of a combustion system, and more particularly to an oxygen concentration correction method for a combustion system that can correct the original oxygen concentration.

鍋爐可燃燒燃煤產生熱量去讓水轉變成蒸氣,藉由蒸氣推動渦輪機可產生電力。為了獲得一定的燃燒效率及降低空氣汙染,在燃燒過程中需要人為依據經驗設定鍋爐所需要的氧氣量率。然而,每一批的燃煤品質變異大,例如其組成及含水量都不同,如此導致每批燃煤在人為控制上的困難。 Boilers can burn coal to generate heat to convert water into steam, which can be powered by steam. In order to obtain a certain combustion efficiency and reduce air pollution, it is necessary to manually set the oxygen rate required by the boiler in the combustion process. However, each batch of coal has a large variation in coal quality, such as its composition and water content, which makes it difficult for each batch of coal to be artificially controlled.

本揭露係有關於一種燃燒系統的氧氣濃度修正方法,可自動修正氧氣濃度,兼顧低空氣汙染及高燃燒效率。 The disclosure relates to a method for correcting the oxygen concentration of a combustion system, which can automatically correct the oxygen concentration, taking into account low air pollution and high combustion efficiency.

根據本揭露之一實施例,提出一種燃燒系統的氧氣濃度修正方法。燃燒系統的氧氣濃度修正方法包括以下步驟。該燃燒系統依據一負載與原始氧氣濃度關係曲線,決定一原始氧氣濃度,其中負載與原始氧氣濃度關係曲線表示不同負載下所需要 的原始氧氣濃度;以原始氧氣濃度進行燃燒;判斷所排出的一氮氧化物濃度是否高於一第一臨界值;若氮氧化物濃度高於第一臨界值,決定一箝制氧氣濃度;以箝制氧氣濃度進行燃燒;決定一氮氧化物預估濃度;判斷於一第一時間區間內氮氧化物預估濃度是否低於第一臨界值;若於第一時間區間內氮氧化物預估濃度低於第一臨界值,以原始氧氣濃度進行燃燒;以及,若於第一時間區間內氮氧化物預估濃度未低於第一臨界值,下調負載與原始氧氣濃度關係曲線的原始氧氣濃度。 In accordance with an embodiment of the present disclosure, a method of modifying an oxygen concentration of a combustion system is presented. The oxygen concentration correction method of the combustion system includes the following steps. The combustion system determines an original oxygen concentration according to a load versus original oxygen concentration curve, wherein the load versus the original oxygen concentration curve indicates that the load is required under different loads. Raw oxygen concentration; burning at the original oxygen concentration; determining whether the concentration of nitrogen oxides discharged is higher than a first critical value; if the nitrogen oxide concentration is higher than the first critical value, determining a clamping oxygen concentration; Oxygen concentration for combustion; determining a predicted concentration of nitrogen oxides; determining whether the predicted concentration of nitrogen oxides is lower than the first critical value in a first time interval; if the predicted concentration of nitrogen oxides is low in the first time interval At the first critical value, the combustion is performed at the original oxygen concentration; and if the predicted concentration of nitrogen oxides in the first time interval is not lower than the first critical value, the original oxygen concentration of the load versus the original oxygen concentration is lowered.

為了對本揭露之上述及其他方面有更佳的瞭解,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下: In order to better understand the above and other aspects of the present disclosure, the preferred embodiments are described below in detail with reference to the accompanying drawings.

100‧‧‧燃燒系統 100‧‧‧Combustion system

105‧‧‧燃料 105‧‧‧fuel

110‧‧‧鍋爐 110‧‧‧Boiler

120‧‧‧控制模組 120‧‧‧Control Module

121‧‧‧控制器 121‧‧‧ Controller

122‧‧‧計時器 122‧‧‧Timer

130‧‧‧送風機 130‧‧‧Air blower

d‧‧‧修正比例 D‧‧‧ Revised ratio

Dout,COx、(Dout,COx)7、(Dout,COx)9‧‧‧碳氧化物濃度 D out, COx , (D out, COx ) 7 , (D out, COx ) 9 ‧‧‧Carbon oxide concentration

Dout,NOx‧‧‧氮氧化物濃度 D out, NOx ‧ ‧ NOx concentration

Dout,O2‧‧‧氧氣濃度 D out, O2 ‧‧‧Oxygen concentration

DO2、(DO2)2、(DO2)2’、(DO2)3、(DO2)3’、(DO2)7、(DO2)7’‧‧‧原始氧氣濃度 D O2 , (D O2 ) 2 , (D O2 ) 2' , (D O2 ) 3 , (D O2 ) 3' , (D O2 ) 7 , (D O2 ) 7' ‧‧‧ Original Oxygen Concentration

Dr,O2‧‧‧箝制氧氣濃度 D r, O2 ‧ ‧ clamp oxygen concentration

Din,O2‧‧‧輸入氧氣濃度 D in, O2 ‧‧‧Input oxygen concentration

Dp,NOx、(Dp,NOx)2、(Dp,NOx)3、(Dp,NOx)5‧‧‧氮氧化物預估濃度 D p, NOx , (D p, NOx ) 2 , (D p, NOx ) 3 , (D p, NOx ) 5 ‧ ‧ NOx predicted concentration

ΔD1、ΔD2‧‧‧總修正量 ΔD1, ΔD2‧‧‧ total correction

L1‧‧‧第一臨界值 L1‧‧‧ first critical value

L2‧‧‧第二臨界值 L2‧‧‧ second threshold

L3‧‧‧第三臨界值 L3‧‧‧ third threshold

ΔL1、ΔL2‧‧‧差值 ΔL1, ΔL2‧‧‧ difference

M2‧‧‧第二時變模型 M2‧‧‧ second time-varying model

M1‧‧‧第一時變模型 M1‧‧‧ first time-varying model

P‧‧‧負載 P‧‧‧load

S1、S1’‧‧‧負載與原始氧氣濃度關係曲線 S1, S1'‧‧‧ load versus original oxygen concentration curve

S2‧‧‧時間與箝制氧氣濃度關係曲線 S2‧‧‧ Time vs. clamped oxygen concentration curve

S3‧‧‧時間與氧氣濃度關係曲線 S3‧‧‧ time vs. oxygen concentration curve

S4‧‧‧時間與氮氧化物預估濃度關係曲線 S4‧‧‧ Time vs. predicted concentration of nitrogen oxides

S105、S110、S115、S120、S127、S125、S130、S135、S140、S145、S150、S155、S160、S162、S165、S180‧‧‧步驟 Steps S105, S110, S115, S120, S127, S125, S130, S135, S140, S145, S150, S155, S160, S162, S165, S180‧‧

t1、t2、t3、t4、t5、t6、t7、t8、t9‧‧‧時間點 T1, t2, t3, t4, t5, t6, t7, t8, t9‧‧

T‧‧‧時間 T‧‧‧ time

T1‧‧‧第一時間區間 T1‧‧‧ first time interval

T2‧‧‧第一時間區間 T2‧‧‧ first time interval

T3‧‧‧第三時間區間 T3‧‧‧ third time interval

T4‧‧‧第四時間區間 T4‧‧‧ fourth time interval

第1A及1B圖繪示依照本揭露一實施例之燃燒系統的氧氣濃度修正方法流程圖。 1A and 1B are flow charts showing a method for correcting the oxygen concentration of a combustion system according to an embodiment of the present disclosure.

第2圖繪示依照本揭露一實施例之燃燒系統的示意圖。 2 is a schematic view of a combustion system in accordance with an embodiment of the present disclosure.

第3圖繪示依照本揭露一實施例之負載與氧氣濃度關係曲線圖。 FIG. 3 is a graph showing load versus oxygen concentration in accordance with an embodiment of the present disclosure.

第4圖繪示依照本揭露一實施例之決定箝制氧氣濃度的示意圖。 FIG. 4 is a schematic view showing the determination of the oxygen concentration of the clamp according to an embodiment of the present disclosure.

第5圖繪示依照本揭露一實施例之預估氮氧化物濃度的示意圖。 FIG. 5 is a schematic diagram showing the predicted concentration of nitrogen oxides according to an embodiment of the present disclosure.

第6A圖繪示依照本揭露一實施例之下調原始氧氣濃度的方法示意圖。 FIG. 6A is a schematic diagram showing a method of adjusting the original oxygen concentration according to an embodiment of the present disclosure.

第6B圖繪示在下調原始氧氣濃度後氮氧化物濃度的變化圖。 Figure 6B is a graph showing the change in nitrogen oxide concentration after down-regulating the original oxygen concentration.

第7圖繪示修正後之負載與原始氧氣濃度關係曲線圖。 Figure 7 is a graph showing the relationship between the corrected load and the original oxygen concentration.

第8圖繪示依照本揭露一實施例之時間與碳氧化物濃度的關係圖。 Figure 8 is a graph showing the relationship between time and carbon oxide concentration in accordance with an embodiment of the present disclosure.

第9圖繪示修正後之負載與原始氧氣濃度關係曲線圖。 Figure 9 is a graph showing the relationship between the corrected load and the original oxygen concentration.

第1A及1B圖繪示依照本揭露一實施例之燃燒系統的氧氣濃度修正方法流程圖。 1A and 1B are flow charts showing a method for correcting the oxygen concentration of a combustion system according to an embodiment of the present disclosure.

於步驟S105(如第1A圖所示)中,請同時參照第2及3圖,第2圖繪示依照本揭露一實施例之燃燒系統的示意圖。燃燒系統100包括鍋爐110、控制模組120及送風機130。送風機130送出含氧的空氣進入鍋爐110內,與送入鍋爐110內的燃料105參與燃燒產生熱量去加熱水,使水轉變成蒸氣而推動渦輪機,進而產生電力。燃料105例如是燃煤。控制模組120例如是分散控制系統(Distributed Control System,DCS),其包括至少一控制器121及計時器122,其中一控制器121可控制送風機130送出空氣進入鍋爐110。 In step S105 (shown in FIG. 1A), please refer to FIGS. 2 and 3 simultaneously. FIG. 2 is a schematic diagram of a combustion system according to an embodiment of the present disclosure. The combustion system 100 includes a boiler 110, a control module 120, and a blower 130. The blower 130 sends oxygen-containing air into the boiler 110, and the fuel 105 fed into the boiler 110 participates in combustion to generate heat to heat the water, converts the water into steam, and drives the turbine to generate electricity. The fuel 105 is, for example, coal fired. The control module 120 is, for example, a distributed control system (DCS), and includes at least one controller 121 and a timer 122. One of the controllers 121 controls the blower 130 to send air into the boiler 110.

第3圖繪示依照本揭露一實施例之負載與氧氣濃度關係曲線圖。本步驟中,控制模組120依據負載與原始氧氣濃度關係曲線S1,決定原始氧氣濃度DO2(單位例如是%),其中負載與原始氧氣濃度關係曲線S1表示不同的負載P所需要的原始氧氣濃度DO2。在實際運作中,不同時間點可能需要相同或不同的負載P,控制模組120可依據不同時間點所需要的負載從負載與氧氣濃度關係曲線S1去決定原始氧氣濃度DO2。此處的負載P指的是例如每單位時間所需要的燃煤量(如公頓/小時),然本揭露實施例不限制負載P的單位。此處的原始氧氣濃度指的是鍋爐燃燒每一批燃煤時一開始所使用的初始氧氣濃度,然負載與原始氧氣濃度關係曲線S1在本揭露方法中可被自動修正,以下將詳細說明。 FIG. 3 is a graph showing load versus oxygen concentration in accordance with an embodiment of the present disclosure. In this step, the control module 120 determines the original oxygen concentration D O2 (the unit is, for example, %) according to the load and the original oxygen concentration relationship S1, wherein the load versus the original oxygen concentration curve S1 represents the original oxygen required for the different load P. Concentration D O2 . In actual operation, the same or different load P may be required at different time points, and the control module 120 may determine the original oxygen concentration D O2 from the load and oxygen concentration relationship curve S1 according to the load required at different time points. The load P herein refers to, for example, the amount of coal burned per unit time (e.g., a ton/hour), although the disclosed embodiment does not limit the unit of the load P. The original oxygen concentration herein refers to the initial oxygen concentration used at the beginning of each batch of coal combustion in the boiler, and the load versus raw oxygen concentration curve S1 can be automatically corrected in the present disclosure method, as will be described in detail below.

於步驟S110(如第1A圖所示)中,控制模組120以原始氧氣濃度DO2作為輸入至鍋爐110內的輸入氧氣濃度Din,O2(輸入氧氣濃度Din,O2繪示於第2圖),並據以決定所需的空氣量(其氧氣濃度大致上等於原始氧氣濃度DO2)。在決定所需空氣量後,控制模組120控制送風機130作動,以送出所需空氣量給鍋爐110參與燃燒。鍋爐110在燃燒過程中,會排出氮氧化物、碳氧化物(如一氧化碳)及/或氧氣,其分別具有氮氧化物濃度Dout,NOx(單位例如是ppm)、碳氧化物濃度Dout,COx(單位例如是ppm)及氧氣濃度Dout,O2(單位例如是ppm)。氮氧化物濃度Dout,NOx、碳氧化物濃度Dout,COx及氧氣濃度Dout,O2可於鍋爐110的煙道內或鍋爐110外部的排煙囪量測。 In step S110 (shown in FIG. 1A), the control module 120 uses the original oxygen concentration D O2 as the input oxygen concentration D in, O2 input to the boiler 110 (the input oxygen concentration D in, O2 is shown in the second Figure) and to determine the amount of air required (its oxygen concentration is roughly equal to the original oxygen concentration D O2 ). After determining the required amount of air, the control module 120 controls the blower 130 to act to deliver the required amount of air to the boiler 110 for combustion. The boiler 110 emits nitrogen oxides, carbon oxides (such as carbon monoxide) and/or oxygen during combustion, which have a nitrogen oxide concentration D out, NOx (unit is, for example, ppm), and carbon oxide concentration D out, respectively. COx (unit is, for example, ppm) and oxygen concentration D out, O2 (unit is, for example, ppm). The nitrogen oxide concentration D out, NOx , carbon oxide concentration D out, COx and oxygen concentration D out, O2 can be measured in the stack of the boiler 110 or outside the boiler 110.

在燃燒過程中,若原始氧氣濃度DO2過高,則排出的氮氧化物濃度Dout,NOx可能過高而導致空氣汙染;相反地,若原始氧氣濃度DO2不足,則容易導致燃燒效率不佳而排出過高的碳氧化物濃度Dout,COx。然而,透過本揭露實施例之氧氣濃度修正方法,可在燃燒過程中,依據排出的氮氧化物濃度Dout,NOx及碳氧化物濃度Dout,COx,自動修正負載與原始氧氣濃度關係曲線S1,以兼顧高燃燒效率與低空氣污染。以下係進一步說明。 During the combustion process, if the original oxygen concentration D O2 is too high, the exhausted nitrogen oxide concentration D out, NOx may be too high to cause air pollution; conversely, if the original oxygen concentration D O2 is insufficient, it is easy to cause combustion efficiency. Good and excessively high carbon oxide concentration D out, COx . However, according to the oxygen concentration correction method of the disclosed embodiment, the relationship between the load and the original oxygen concentration can be automatically corrected according to the exhausted nitrogen oxide concentration D out, the NOx and the carbon oxide concentration D out, COx during the combustion process. To balance high combustion efficiency with low air pollution. The following is further explained.

於步驟S115(如第1A圖所示)中,控制模組120判斷從鍋爐110排出的氮氧化物濃度Dout,NOx是否大於第一臨界值L1(第一臨界值L1繪示於第4圖);若是,則進入步驟S120;若否,則進入步驟S165。 In step S115 (as shown in FIG. 1A), the control module 120 determines whether the nitrogen oxide concentration D out discharged from the boiler 110 is greater than the first critical value L1 (the first critical value L1 is shown in FIG. 4). If yes, go to step S120; if no, go to step S165.

於步驟S120(如第1A圖所示)中,由於氮氧化物濃度 Dout,NOx大於第一臨界值L1(第一臨界值L1繪示於第4圖),表示在目前氧氣設定下的燃燒可能或預期會導致空氣汙染。因此,控制模組120決定一箝制氧氣濃度Dr,O2為設定點(箝制氧氣濃度Dr,O2繪示於第4圖),藉以將氮氧化物濃度Dout,NOx控制在第一臨界值L1之下,避免後續可能發生的空氣汙染。以下係進一步說明如何決定箝制氧氣濃度Dr,O2In step S120 (as shown in FIG. 1A) , NOx is greater than the first critical value L1 due to the nitrogen oxide concentration Dout (the first critical value L1 is shown in FIG. 4), indicating combustion under the current oxygen setting. It may or may be expected to cause air pollution. Therefore, the control module 120 determines a clamped oxygen concentration D r, O 2 is a set point (the clamped oxygen concentration D r , O 2 is shown in FIG. 4 ), thereby controlling the nitrogen oxide concentration D out, NOx at the first critical value. Under L1, avoid possible subsequent air pollution. The following is a further description of how to determine the clamped oxygen concentration D r,O2 .

請參照第4圖,其繪示依照本揭露一實施例之決定箝制氧氣濃度的示意圖。控制模組120將第一臨界值L1作為上限並將此臨界值依時序輸入至第一時變模型M1,可獲得及時對應之輸出值,此輸出值為箝制氧氣濃度Dr,O2。經觀察一段時間後,數個箝制氧氣濃度Dr,O2可構成時間與箝制氧氣濃度關係曲線S2。時間與箝制氧氣濃度關係曲線S2係表示在不同的時間點下的箝制氧氣濃度Dr,O2。由於持續更新之時變模型M1能夠符合氮氧化物濃度及氧濃度之間之即時關係,若將此箝制氧氣濃度Dr,O2作為輸入至鍋爐110的輸入氧氣濃度Din,O2來控制鍋爐110的燃燒,可預期所產生的氮氧化物濃度Dout,NOx也會被限制在第一臨界值L1之下,因此可預防過多的空氣污染發生。 Please refer to FIG. 4, which is a schematic diagram of determining the concentration of oxygen in the clamp according to an embodiment of the present disclosure. The control module 120 takes the first critical value L1 as an upper limit and inputs the critical value to the first time-varying model M1 according to the timing, and obtains a timely corresponding output value, and the output value is the clamped oxygen concentration D r, O2 . After a period of observation, several clamped oxygen concentrations D r, O2 may constitute a curve S2 of time versus clamped oxygen concentration. The time vs. clamped oxygen concentration curve S2 represents the clamped oxygen concentration Dr, O2 at different time points. Since the continuously updated time-varying model M1 can conform to the instantaneous relationship between the nitrogen oxide concentration and the oxygen concentration, if the oxygen concentration D r, O 2 is clamped as the input oxygen concentration D in, O 2 input to the boiler 110 , the boiler 110 is controlled. The combustion can be expected to produce a nitrogen oxide concentration D out, which is also limited below the first critical value L1, thus preventing excessive air pollution from occurring.

第一時變模型M1,可為一m階數之時間序列模型,其結構如下式(1)所示,其模型參數可隨時間而改變故為時變。式(1)中,x(n)為輸入變數,表示在時間點n的氮氧化物濃度Dout,NOx的上限L1,y(n)表示在時間點n的箝制氧氣濃度Dr,O2,z-1為單位時間延遲運算元,而參數c1...、cm、d0、d1...、dm可由過去m個單位時間到目前之氮 氧化物濃度Dout,NOx以及氧氣濃度Dout,O2之量測資訊經一演算法決定,其中演算法可採用疊代(recursive)形式演算法,對參數c1...、cm、d0、d1...、dm進行即時線上估測,並進行模型更新,其中疊代形式演算法可採用方法例如遺忘因子最小平方法(least squares with forgetting factor method)或投影法(projection method)。 The first time-varying model M1 can be a time-series model of one m-order, and its structure is as shown in the following formula (1), and the model parameters can be changed with time and thus become time-varying. In the formula (1), x(n) is an input variable indicating the nitrogen oxide concentration D out at the time point n , and the upper limit L1 of NOx , y(n) represents the clamped oxygen concentration D r, O2 at the time point n, z -1 is a unit time delay operation unit, and the parameters c 1 , ... , c m , d 0 , d 1 , ... , d m can be obtained from the past m unit time to the current nitrogen oxide concentration D out, The measurement information of NOx and oxygen concentration D out, O2 is determined by an algorithm, wherein the algorithm can adopt a recursive form algorithm for parameters c 1 , ... , c m , d 0 , d 1 , ... , d m performs on-line estimation, and performs model update, wherein the iterative formal algorithm can adopt a method such as a least squares with forgetting factor method or a projection method.

於步驟S125(如第1A圖所示)中,控制模組120以箝制氧氣濃度Dr,O2作為輸入氧氣濃度Din,O2去控制鍋爐110進行燃燒,以將氮氧化物濃度Dout,NOx限制在第一臨界值L1之下,進而降低過多的空氣污染。 In step S125 (as shown in FIG. 1A), the control module 120 controls the boiler 110 to perform combustion to clamp the oxygen concentration D r, O 2 as the input oxygen concentration D in, O 2 to set the nitrogen oxide concentration D out, NOx. It is confined below the first critical value L1, thereby reducing excessive air pollution.

於步驟S127(如第1A圖所示)中,控制模組120判斷負載與原始氧氣濃度關係曲線S1的累積的總修正量ΔD1(下式(3),容後詳述)是否已達一容許修正量;若是,則進入步驟S115,不考慮修正負載與原始氧氣濃度關係曲線S1;若否,則進入步驟S130,考慮修正負載與原始氧氣濃度關係曲線S1。上述容許修正量例如是介於約原曲線50%至約90%之間的一數值。此外,若是原始氧氣濃度關係曲線S1尚未修正或第一次執行本流程,則可從步驟S127直接進入步驟S130。 In step S127 (as shown in FIG. 1A), the control module 120 determines whether the accumulated total correction amount ΔD1 (the following formula (3), detailed later) of the load and the original oxygen concentration relationship curve S1 has reached an allowable level. The correction amount; if yes, the process proceeds to step S115, and the corrected load and the original oxygen concentration relationship curve S1 are not considered; if not, the process proceeds to step S130, and the corrected load and the original oxygen concentration relationship curve S1 are considered. The above allowable correction amount is, for example, a value between about 50% and about 90% of the original curve. Further, if the original oxygen concentration relationship curve S1 has not been corrected or the flow is executed for the first time, step S130 may be directly proceeded from step S127.

於步驟S130(如第1A圖所示)中,在以箝制氧氣濃度Dr,O2控制鍋爐燃燒之後或同時,控制模組120的計時器122開始從零計時。 In step S130 (as shown in FIG. 1A), the timer 122 of the control module 120 begins to count from zero after or at the same time controlling the boiler combustion with the clamped oxygen concentration Dr, O2 .

於步驟S135(如第1A圖所示)中,控制模組120決定氮氧 化物預估濃度Dp,NOx,以預測在以原始氧氣濃度DO2作為輸入氧氣濃度Din,O2的情況下,模擬所預估的氮氧化物預估濃度Dp,NOx是否會下降至第一臨界值L1以下。以下係進一步說明如何決定氮氧化物預估濃度Dp,NOxIn step S135 (as shown in FIG. 1A), the control module 120 determines the predicted concentration of nitrogen oxides D p, NOx to predict the initial oxygen concentration D O2 as the input oxygen concentration D in, O 2 . Simulate the predicted predicted concentration of nitrogen oxides D p, whether NOx will fall below the first critical value L1. The following is a further description of how to determine the predicted concentration of nitrogen oxides D p, NOx .

請參照第5圖,其繪示依照本揭露一實施例之預估氮氧化物濃度的示意圖。本步驟中,依據隨著時間變化的負載對應到負載與氧氣關係曲線可獲得在某一時間下之原始氧氣濃度設定點,以此設定點輸入至第二時變模型M2,可獲得即時氮氧化物預估濃度Dp,NOx。時間與氧氣濃度關係曲線S3表示不同時間點的原始氧氣濃度DO2而時間與氮氧化物預估濃度關係曲線S4表示不同時間點的氮氧化物預估濃度Dp,NOxPlease refer to FIG. 5, which is a schematic diagram of estimating the concentration of nitrogen oxides according to an embodiment of the present disclosure. In this step, the original oxygen concentration set point at a certain time can be obtained according to the load change with time according to the load-to-oxygen relationship curve, and the set point is input to the second time-varying model M2, and the instant nitrogen oxidation can be obtained. The predicted concentration D p, NOx . The time vs. oxygen concentration curve S3 represents the original oxygen concentration D O2 at different time points and the time vs. NOx predicted concentration curve S4 represents the predicted concentration of nitrogen oxides D p, NOx at different time points.

第二時變模型M2可為一m階數之時間序列模型,其結構如下式(2)所示。式(2)中,y(n)為輸入變數,表示在時間點n的原始氧氣濃度DO2(如第5圖所示),x(n)為輸出變數,表示在時間點n的氮氧化物預估濃度Dp,NOx(如第5圖所示),而參數a1...、am、b0、b1...、bm可由過去m個時間點到目前的氧氣濃度Dout,O2及氮氧化物濃度Dout,NO以一演算法決定,其中演算法可採用疊代形式演算法,對參數a1...、am、b0、b1...、bm進行即時線上估測,並進行模型更新,其中疊代形式演算法可採用方法例如遺忘因子最小平方法或投影法。 The second time varying model M2 can be a time series model of one order m, and its structure is as shown in the following formula (2). In equation (2), y(n) is an input variable representing the original oxygen concentration D O2 at time n (as shown in Figure 5), and x(n) is the output variable, indicating nitrogen oxidation at time n The predicted concentration D p, NOx (as shown in Figure 5), and the parameters a 1 , ... , a m , b 0 , b 1 , ... , b m can be used from the past m time points to the present The oxygen concentration D out, O2 and the nitrogen oxide concentration D out, NO are determined by an algorithm, wherein the algorithm can adopt an iterative form algorithm for the parameters a 1 , ... , a m , b 0 , b 1 , ... , b m performs on-line estimation and model update, wherein the iterative formal algorithm can adopt a method such as a forgetting factor least square method or a projection method.

透過經由第二時變模型M2所獲得的氮氧化物預估 濃度Dp,NOx,可判斷負載與原始氧氣濃度關係曲線S1是否需要修正。 Whether or not the load and the original oxygen concentration relationship curve S1 need to be corrected can be judged by the predicted concentration D p, NOx of the nitrogen oxide obtained by the second time-varying model M2.

進一步地說,在步驟S140(如第1B圖所示)中,請參照第6A及6B圖,第6A圖繪示依照本揭露一實施例之下調原始氧氣濃度的方法示意圖,而第6B圖繪示在下調原始氧氣濃度後氮氧化物濃度的變化圖。本步驟中,控制模組120判斷於第一時間區間T1(如第6A圖所示)內氮氧化物預估濃度Dp,NOx(如第6B圖所示)是否小於第一臨界值L1(如第6B圖所示);若是,則進入步驟S145;若否,則進入步驟S155。第一時間區間T1例如是介於5分鐘至15分鐘之間的一任意時間值,然亦可為其它時間值。 Further, in step S140 (as shown in FIG. 1B), please refer to FIGS. 6A and 6B. FIG. 6A is a schematic diagram showing a method of adjusting the original oxygen concentration according to an embodiment of the present disclosure, and FIG. 6B A graph showing changes in nitrogen oxide concentration after down-regulating the original oxygen concentration. In this step, the control module 120 determines whether the predicted concentration of nitrogen oxides Dp, NOx (as shown in FIG. 6B) in the first time interval T1 (as shown in FIG. 6A) is less than the first critical value L1 ( If it is shown in FIG. 6B); if yes, go to step S145; if no, go to step S155. The first time interval T1 is, for example, an arbitrary time value between 5 minutes and 15 minutes, but may be other time values.

在步驟S145(如第1B圖所示)中,若第一時間區間T1內氮氧化物預估濃度Dp,NOx小於第一臨界值L1,例如,數個時間點的氮氧化物預估濃度Dp,NOx都低於第一臨界值L1,表示控制模組120若繼續使用負載與原始氧氣濃度關係曲線S1決定輸入氧氣濃度Din,O2,則預期氮氧化物預估濃度Dp,NOx會下降。據此,控制模組120可不修正負載與原始氧氣濃度關係曲線S1,繼續以現有的負載與原始氧氣濃度關係曲線S1決定原始氧氣濃度DO2,並以決定的原始氧氣濃度DO2作為輸入氧氣濃度Din,O2去控制鍋爐110的燃燒。 In step S145 (as shown in FIG. 1B), if the NOx predicted concentration Dp in the first time interval T1 , NOx is less than the first critical value L1, for example, the predicted concentration of nitrogen oxides at several time points D p, NOx are lower than the first critical value L1, indicating that if the control module 120 continues to use the load and the original oxygen concentration relationship S1 to determine the input oxygen concentration Di n, O2 , the expected concentration of nitrogen oxides D p, NOx Will fall. Accordingly, the control module 120 can determine the original oxygen concentration D O2 with the original load and the original oxygen concentration relationship S1 without correcting the load and the original oxygen concentration relationship S1, and determine the original oxygen concentration D O2 as the input oxygen concentration. D in , O 2 to control the combustion of the boiler 110.

在步驟S150(如第1B圖所示)中,控制模組120決定以原始氧氣濃度DO2作為輸入氧氣濃度Din,O2去控制鍋爐110的燃燒時,計時器122歸零,以使在步驟S130中,計時器122可 重零開始計時。 In step S150 (as shown in FIG. 1B), the control module 120 determines to control the combustion of the boiler 110 with the original oxygen concentration D O2 as the input oxygen concentration D in, O 2 , and the timer 122 is reset to zero in order to In S130, the timer 122 can start counting by resetting to zero.

在步驟S155(如第1B圖所示)中,若第一時間區間T1內氮氧化物預估濃度Dp,NOx不小於第一臨界值L1,例如,數個時間點的氮氧化物預估濃度Dp,NOx在第一臨界值L1附近上下變化或數個時間點的氮氧化物預估濃度Dp,NOx都高於第一臨界值L1,表示控制模組120若繼續使用負載與原始氧氣濃度關係曲線S1決定輸入氧氣濃度Din,O2,則預期氮氧化物預估濃度Dp,NOx會大於第一臨界值L1,而導致過多空氣汙染。據此,控制模組120下調原始氧氣濃度DO2,以下進一步說明下調方法。 In step S155 (as shown in FIG. 1B), if the NOx predicted concentration D p in the first time interval T1 , NOx is not less than the first critical value L1, for example, the NOx prediction at several time points The concentration D p, the NOx changes up and down in the vicinity of the first critical value L1 or the predicted concentration of nitrogen oxides D p and NOx at several time points are higher than the first critical value L1, indicating that the control module 120 continues to use the load and the original The oxygen concentration relationship curve S1 determines the input oxygen concentration D in, O2 , and then the expected concentration of nitrogen oxides D p , NOx will be greater than the first critical value L1, resulting in excessive air pollution. Accordingly, the control module 120 lowers the original oxygen concentration D O2 , and further describes the down regulation method below.

由第6B圖可知,在經過第一時間區間T1後,如在時間點t1時,氮氧化物預估濃度Dp,NOx仍高於第一臨界值L1。據此,控制模組120每隔一第二時間區間T2調降原始氧氣濃度DO2一修正比例d,直到氮氧化物預估濃度Dp,NOx低於第一臨界值L1且呈下降趨勢。修正比例d例如是介於0.05%至5%之間的一任意數值,而第二時間區間T2例如是介於5分鐘至15分鐘之間的一任意時間值或其它時間值。 As can be seen from Fig. 6B, after the first time interval T1 has elapsed, as at time t1, the predicted concentration of nitrogen oxides Dp, NOx is still higher than the first critical value L1. Accordingly, the control module 120 reduces the original oxygen concentration D O2 by a correction ratio d every second time interval T2 until the nitrogen oxide predicted concentration D p , NOx is lower than the first critical value L1 and shows a downward trend. The correction ratio d is, for example, an arbitrary value between 0.05% and 5%, and the second time interval T2 is, for example, an arbitrary time value or other time value between 5 minutes and 15 minutes.

進一步地說,如第6A圖所示,在時間點t1經過第二時間區間T2後,即於時間點t2,控制模組120調降0.1%的原始氧氣濃度DO2,使時間點t2的原始氧氣濃度(DO2)2下降至(DO2)2’;然後,將調降後的原始氧氣濃度(DO2)2’輸入至第二時變模型M2而獲得對應的氮氧化物預估濃度(Dp,NOx)2(如第6B圖所示);接著,在步驟S160中,控制模組120判斷氮氧化物預估濃 度(Dp,NOx)2是否呈下降趨勢。 Further, as shown in FIG. 6A, after the time interval t1 passes the second time interval T2, that is, at the time point t2, the control module 120 reduces the original oxygen concentration D O2 by 0.1%, so that the original time point t2 is obtained. The oxygen concentration (D O2 ) 2 drops to (D O2 ) 2' ; then, the adjusted original oxygen concentration (D O2 ) 2' is input to the second time-varying model M2 to obtain the corresponding predicted concentration of nitrogen oxides. (D p, NOx ) 2 (as shown in Fig. 6B); Next, in step S160, the control module 120 determines whether the predicted concentration of nitrogen oxides (D p , NOx ) 2 is decreasing.

判斷是否呈下降趨勢有幾種方法,以下係舉出其中二種方法。在第一種方法中,若氮氧化物預估濃度(Dp,NOx)2的下降幅度小於一定比例,則判斷氮氧化物預估濃度(Dp,NOx)2未呈下降趨勢。舉例來說,如第6B圖所示,時間點t2的氮氧化物預估濃度(Dp,NOx)2與第一臨界值L1的差值ΔL1與第一臨界值L1的比值(ΔL1/L1)小於一第一比例,則判斷氮氧化物預估濃度(Dp,NOx)2未呈下降趨勢;反之,若比值ΔL1/L1等於或大於第一比例,則判斷氮氧化物預估濃度(Dp,NOx)2呈下降趨勢,則進入步驟S162。此處的第一比例例如是介於5%至10%之間的一任意數值。在第二種方法中,若連續數個時間點(例如是介於三個至十個時間點之間的一數值)的氮氧化物預估濃度Dp,NOx呈下降趨勢,則判斷氮氧化物預估濃度Dp,NOx呈下降趨勢。 There are several ways to determine whether there is a downward trend. The following two methods are listed below. In the first method, if the predicted decrease in the concentration of nitrogen oxides (D p, NOx ) 2 is less than a certain ratio, it is judged that the predicted concentration of nitrogen oxides (D p, NOx ) 2 does not show a downward trend. For example, as shown in FIG. 6B, the ratio of the difference ΔL1 between the predicted concentration of nitrogen oxides (D p, NOx ) 2 and the first critical value L1 at time t2 to the first critical value L1 (ΔL1/L1) If it is less than a first ratio, it is judged that the predicted concentration of nitrogen oxides (D p, NOx ) 2 does not show a downward trend; conversely, if the ratio ΔL1/L1 is equal to or greater than the first ratio, the predicted concentration of nitrogen oxides is judged ( When D p, NOx ) 2 shows a downward trend, the process proceeds to step S162. The first ratio here is, for example, an arbitrary value between 5% and 10%. In the second method, if the NOx predicted concentration D p and the NOx decrease trend for several consecutive time points (for example, a value between three and ten time points), the nitrogen oxidation is judged. The predicted concentration D p, NOx showed a downward trend.

在步驟S160(如第1B圖所示)中,判斷氮氧化物預估濃度Dp,NOx是否呈下降趨勢;若是,回到步驟S162;若否,回到步驟S155。 In step S160 (shown in FIG. 1B), it is judged whether or not the NOx predicted concentration Dp, NOx is in a downward trend; if so, the process returns to step S162; if not, the process returns to step S155.

在步驟S155(如第1B圖所示)中,由於氮氧化物預估濃度Dp,NOx未呈下降趨勢,則繼續下調原始氧氣濃度DO2。例如,由於在時間點t2時的氮氧化物預估濃度(Dp,NOx)2(如第6B圖所示)未呈下降趨勢,因此,如第6A圖所示,在下個時間點t3時,控制模組120繼續調降0.1%的原始氧氣濃度,使時間點t3的原始氧氣濃度(DO2)3下降至(DO2)3’;然後,將調降後的原始氧氣濃度 (DO2)3’輸入至第二時變模型M2而獲得對應的氮氧化物預估濃度(Dp,NOx)3(繪示於第6B圖);接著,在步驟S160中,控制模組120判斷氮氧化物預估濃度Dp,NOx是否呈下降趨勢;若否,再回到步驟S155,繼續下調原始氧氣濃度DO2;若是,則進入步驟S162。 In step S155 (as shown in Fig. 1B) , the NOx does not show a downward trend due to the predicted concentration of nitrogen oxides Dp, and the original oxygen concentration D O2 is continuously lowered. For example, since the predicted concentration of nitrogen oxides (D p, NOx ) 2 (as shown in Fig. 6B) at the time point t2 does not show a downward trend, as shown in Fig. 6A, at the next time point t3 The control module 120 continues to reduce the original oxygen concentration by 0.1%, so that the original oxygen concentration (D O2 ) 3 at the time point t3 is decreased to (D O2 ) 3 ' ; then, the original oxygen concentration after the reduction (D O2 ) 3' is input to the second time-varying model M2 to obtain a corresponding predicted concentration of nitrogen oxides (D p, NOx ) 3 (shown in FIG. 6B); then, in step S160, the control module 120 determines the nitrogen Whether the oxide concentration D p and NOx are in a downward trend; if not, returning to step S155, the original oxygen concentration D O2 is continuously lowered; if yes, the process proceeds to step S162.

如第6A及6B圖所示,本實施例中,在時間點t1、t2、t3及t4時,氮氧化物預估濃度Dp,NOx均未呈下降趨勢,直到時間點t5時,依據調降後的原始氧氣濃度(DO2)5’所預估的氮氧化物預估濃度(Dp,NOx)5已呈下降趨勢(例如下降幅度ΔL2超過第一比例)。據此,進入步驟S162,開始修正負載與原始氧氣濃度關係曲線S1。 As shown in FIGS. 6A and 6B, in the present embodiment, at the time points t1, t2, t3, and t4, the predicted concentrations of nitrogen oxides Dp and NOx do not show a downward trend until the time point t5. The predicted initial concentration of oxygen (D O2 ) 5' predicted by the reduced oxygen concentration (D p, NOx ) 5 has shown a downward trend (for example, the magnitude of the decrease ΔL2 exceeds the first ratio). Accordingly, the process proceeds to step S162, where the correction of the load versus the original oxygen concentration curve S1 is started.

在步驟S162(如第1B圖所示)中,如第7圖所示,其繪示修正後之負載與原始氧氣濃度關係曲線圖。依據下式(3)計算出總修正量ΔD1;然後,控制模組120將整條負載與原始氧氣濃度關係曲線S1往下修正此總修正量ΔD1,而獲得修正後之負載與原始氧氣濃度關係曲線S1’。修正後的曲線S1’使鍋爐110的燃燒兼顧低空氣汙染及高燃燒效率。進一步地說,本揭露實施例之燃燒系統的氧氣濃度修正方法可因應每批燃煤的變異(例如,每批燃煤的含水量、組成都不同)而修正原始氧氣濃度DO2,以符合空污標準及高燃燒效率。 In step S162 (as shown in FIG. 1B), as shown in FIG. 7, a graph showing the relationship between the corrected load and the original oxygen concentration is shown. Calculate the total correction amount ΔD1 according to the following formula (3); then, the control module 120 corrects the total correction amount ΔD1 by the entire load and the original oxygen concentration relationship curve S1, and obtains the relationship between the corrected load and the original oxygen concentration. Curve S1'. The corrected curve S1' allows the combustion of the boiler 110 to achieve both low air pollution and high combustion efficiency. Further, the oxygen concentration correction method of the combustion system of the embodiment of the present disclosure can correct the original oxygen concentration D O2 according to the variation of each batch of coal (for example, the water content and composition of each batch of coal) to meet the empty Pollution standards and high combustion efficiency.

式(3)中,修正比例di表示第i次(每一次對應不同的時間點)的修正比例,其可介於0.05%至5%間的一比例值,DO2,i表示第i次的修 正比例di對應到的原始氧氣濃度DO2,而n表示修正次數,其可視實際狀況而定。本實施例中,如第6A及6B圖所示,修正次數n係4次(時間點t2至t5共4次)。此外,第i次的原始氧氣濃度DO2,i可從負載與原始氧氣濃度關係曲線S1獲得。以第6A圖的時間點t2舉例來說,由於控制模組120已知對應時間點t2的一特定負載,因此可由時間與原始氧氣濃度關係曲線S1(如第3圖所示)得知對應該特定負載的原始氧氣濃度DO2In the formula (3), the correction ratio d i represents the correction ratio of the i-th time (each time corresponding to a different time point), which may be a proportional value between 0.05% and 5%, and D O2,i represents the i-th time. The correction ratio d i corresponds to the original oxygen concentration D O2 , and n represents the number of corrections, which may depend on the actual situation. In the present embodiment, as shown in Figs. 6A and 6B, the number of corrections n is four times (four times from time point t2 to t5). Further, the i-th original oxygen concentration D O2,i can be obtained from the load versus the original oxygen concentration curve S1. For example, at time point t2 of FIG. 6A, since the control module 120 knows a specific load corresponding to the time point t2, it can be known from the time and the original oxygen concentration relationship curve S1 (as shown in FIG. 3). The original oxygen concentration D O2 for a particular load.

在完成負載與原始氧氣濃度關係曲線S1的修正後,可回到步驟S115,繼續監控鍋爐的燃燒狀況。後續的燃燒控制及修正基礎可改採用修正後的負載與原始氧氣濃度關係曲線S1’。 After the correction of the load and the original oxygen concentration relationship curve S1 is completed, the process returns to step S115 to continue monitoring the combustion state of the boiler. Subsequent combustion control and correction basis can be modified to use the corrected load versus raw oxygen concentration curve S1'.

在步驟S115中,若控制模組120判斷從鍋爐110排出的氮氧化物濃度Dout,NOx小於第一臨界值L1(如第4圖所示),則進入步驟S165,以監控碳氧化物濃度Dout,COx的濃度變化。 In step S115, if the control module 120 determines the nitrogen oxide concentration D out discharged from the boiler 110 , and the NOx is less than the first critical value L1 (as shown in FIG. 4), the process proceeds to step S165 to monitor the carbon oxide concentration. D out, the concentration of COx changes.

在步驟S165(如第1A圖所示)中,如第8圖所示,其繪示依照本揭露一實施例之時間與碳氧化物濃度的關係圖。本步驟中,控制模組120判斷從鍋爐110排出的碳氧化物濃度Dout,COx是否大於第二臨界值L2;若是,進入步驟S180;若否,回到步驟S115,繼續監控鍋爐的燃燒狀況。舉例來說,控制模組120可判斷碳氧化物濃度Dout,COx大於第二臨界值L2的時間T(如第8圖所示)是否持續超過第三時間區間T3,其中第三時間區間T3例如是介於10分鐘至30分鐘之間的一時間值;若是,則控制模組120判斷從鍋爐110排出的碳氧化物濃度Dout,COx大於第二臨界值L2,據此進入步驟S180,上修負載與原始氧氣濃度關係曲線S1,以降低碳氧化物濃 度。 In step S165 (shown in FIG. 1A), as shown in FIG. 8, a graph showing the relationship between time and carbon oxide concentration according to an embodiment of the present disclosure is shown. In this step, the control module 120 determines whether the carbon oxide concentration D out discharged from the boiler 110 , COx is greater than the second critical value L2; if yes, proceeds to step S180; if not, returns to step S115 to continue monitoring the combustion state of the boiler . For example, the control module 120 can determine whether the carbon oxide concentration D out, the time T at which the COx is greater than the second threshold L2 (as shown in FIG. 8 ) continues to exceed the third time interval T3 , wherein the third time interval T3 For example, a time value between 10 minutes and 30 minutes; if yes, the control module 120 determines the carbon oxide concentration D out discharged from the boiler 110 , and the COx is greater than the second critical value L2, and proceeds to step S180. The load is compared with the original oxygen concentration curve S1 to reduce the carbon oxide concentration.

在步驟S180(如第1A圖所示)中,請參照第8及9圖,第9圖繪示修正後之負載與原始氧氣濃度關係曲線圖。如第8圖所示,在時間點t6時,碳氧化物濃度Dout,COx大於第二臨界值L2,則控制模組120依據下式(4)將整條負載與原始氧氣濃度關係曲線S1往上修正一修正量ΔD2,如第9圖所示。 In step S180 (as shown in FIG. 1A), please refer to FIGS. 8 and 9. FIG. 9 is a graph showing the relationship between the corrected load and the original oxygen concentration. As shown in FIG. 8, at time t6, when the carbon oxide concentration Dout, COx is greater than the second critical value L2, the control module 120 compares the entire load to the original oxygen concentration curve S1 according to the following formula (4). Correct the correction amount ΔD2 upward as shown in Fig. 9.

ΔD2=u×D O2.........................(4) Δ D 2= u × D O 2 .........................(4)

式(4)中,修正比例u可介於0.05%至10%之間的一比例值,DO2表示對應的原始氧氣濃度。以第8圖的時間點t6舉例來說,由於控制模組120已知對應時間點t6的一特定負載,因此可由時間與原始氧氣濃度關係曲線S1(如第3圖所示)或最新修正的氧氣濃度關係曲線S1’得知對應該特定負載的原始氧氣濃度DO2,然後帶入上式(4)以求得修正量ΔD2。 In the formula (4), the correction ratio u may be a proportional value between 0.05% and 10%, and D O2 represents the corresponding original oxygen concentration. For example, at time point t6 of FIG. 8, since the control module 120 knows a specific load corresponding to the time point t6, it can be time-supplied with the original oxygen concentration curve S1 (as shown in FIG. 3) or newly corrected. The oxygen concentration relationship curve S1' is known to correspond to the original oxygen concentration D O2 of a specific load, and then taken into the above formula (4) to obtain the correction amount ΔD2.

在步驟S180(如第1A圖所示)後,可回到步驟S115,繼續監控氮氧化物濃度Dout,NOx的變化。後續的燃燒控制及修正基礎可改採用修正後的負載與原始氧氣濃度關係曲線S1’。 After step S180 (as shown in FIG. 1A), the process returns to step S115 to continue monitoring the change in the nitrogen oxide concentration Dout, NOx . Subsequent combustion control and correction basis can be changed to use the corrected load versus raw oxygen concentration curve S1'.

如第8圖所示,控制模組120在步驟S165(如第1A圖所示)中判斷時間點t7時的碳氧化物濃度Dout,COx仍大於第二臨界值L2,因此再進入步驟S180(如第1A圖所示),繼續依據上式(4)將整條負載與原始氧氣濃度關係曲線S1’往上修正一修正量ΔD2,然後回到步驟S115(如第1A圖所示)先判斷氮氧化物是否出過第一臨界值,若否再回到步驟S165(如第1A圖所示)繼續監控碳氧化物濃度Dout,COx的濃度變化。接著,控制模組120在步驟S165(如第1A圖 所示)中判斷時間點t8時的碳氧化物濃度Dout,COx仍大於第二臨界值L2,再次進入步驟S180(如第1A圖所示),繼續依據上式(4)將整條負載與原始氧氣濃度關係曲線S1’往上修正一修正量ΔD2,然後回到步驟S115(如第1A圖所示)。直到時間點t9時,碳氧化物濃度Dout,COx低於第二臨界值L2,表示碳氧化物濃度Dout,COx已受到有效控制,因此回到步驟S115(如第1A圖所示),繼續監控鍋爐110的整體燃燒狀況。 As shown in FIG. 8, the control module 120 determines the carbon oxide concentration D out at the time point t7 in step S165 (as shown in FIG. 1A), and the COx is still greater than the second threshold L2, so the process proceeds to step S180. (As shown in Fig. 1A), continue to correct the entire load and the original oxygen concentration relationship curve S1' upward by a correction amount ΔD2 according to the above formula (4), and then return to step S115 (as shown in Fig. 1A). It is judged whether or not the nitrogen oxides have passed the first critical value, and if not, returning to step S165 (as shown in FIG. 1A), the carbon oxide concentration D out and the concentration of COx are continuously monitored. Next, the control module 120 determines the carbon oxide concentration D out at the time point t8 in step S165 (as shown in FIG. 1A), and the COx is still greater than the second threshold L2, and proceeds to step S180 again (as shown in FIG. 1A). Further, the entire load and the original oxygen concentration relationship curve S1' are further corrected by a correction amount ΔD2 according to the above formula (4), and then the process returns to step S115 (as shown in FIG. 1A). Until time t9, the carbon oxide concentration D out, COx is lower than the second critical value L2, indicating the carbon oxide concentration D out, COx has been effectively controlled, so return to step S115 (as shown in FIG. 1A), The overall combustion condition of the boiler 110 is continuously monitored.

如第9圖所示,修正後的負載與原始氧氣濃度關係曲線S1’使鍋爐110的燃燒兼顧低空氣汙染及高燃燒效率。進一步地說,本揭露實施例之燃燒系統的氧氣濃度修正方法可因應每批燃煤的變異(如每批燃煤的含水量、組成都不同)而修正原始氧氣濃度,以符合空污標準及高燃燒效率。 As shown in Fig. 9, the corrected load versus the original oxygen concentration curve S1' allows the combustion of the boiler 110 to achieve both low air pollution and high combustion efficiency. Further, the oxygen concentration correction method of the combustion system of the embodiment of the present disclosure can correct the original oxygen concentration according to the variation of each batch of coal (such as the water content and composition of each batch of coal) to meet the air pollution standard and High combustion efficiency.

綜上所述,雖然本揭露已以較佳實施例揭露如上,然其並非用以限定本揭露。本揭露所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作各種之更動與潤飾。因此,本揭露之保護範圍當視後附之申請專利範圍所界定者為準。 In the above, the disclosure has been disclosed in the above preferred embodiments, and is not intended to limit the disclosure. Those skilled in the art can make various changes and modifications without departing from the spirit and scope of the disclosure. Therefore, the scope of protection of this disclosure is subject to the definition of the scope of the appended claims.

S105、S110、S115、S120、S125、S127、S130、S135、S165、S180‧‧‧步驟 Steps S105, S110, S115, S120, S125, S127, S130, S135, S165, S180‧‧

Claims (11)

一種燃燒系統的氧氣濃度修正方法,適用於一燃燒系統,包括:依據一負載與原始氧氣濃度關係曲線,決定一原始氧氣濃度,其中該負載與原始氧氣濃度關係曲線表示不同負載下所需要的該原始氧氣濃度;以該原始氧氣濃度進行燃燒;判斷所排出的一氮氧化物濃度是否高於一第一臨界值;若該氮氧化物濃度高於該第一臨界值,決定一箝制氧氣濃度;以該箝制氧氣濃度進行燃燒;決定一氮氧化物預估濃度;判斷於一第一時間區間內該氮氧化物預估濃度是否低於該第一臨界值;若於該第一時間區間內該氮氧化物預估濃度低於該第一臨界值,以該原始氧氣濃度進行燃燒;以及若於該第一時間區間內該氮氧化物預估濃度未低於該第一臨界值,下調該原始氧氣濃度;其中,決定該箝制氧氣濃度之步驟更包括:將該第一臨界值作為上限並輸入至一第一時變模型,而決定該箝制氧氣濃度。 A method for correcting oxygen concentration of a combustion system is applicable to a combustion system, comprising: determining an original oxygen concentration according to a load versus original oxygen concentration curve, wherein the load versus raw oxygen concentration curve indicates that the load is required under different loads Raw oxygen concentration; burning at the original oxygen concentration; determining whether the concentration of nitrogen oxides discharged is higher than a first critical value; if the nitrogen oxide concentration is higher than the first critical value, determining a clamped oxygen concentration; Compressing with the oxygen concentration; determining an estimated concentration of nitrogen oxides; determining whether the predicted concentration of nitrogen oxides is lower than the first critical value in a first time interval; if the first time interval is within the first time interval The predicted concentration of nitrogen oxides is lower than the first critical value, and the combustion is performed at the original oxygen concentration; and if the predicted concentration of the nitrogen oxides is not lower than the first critical value in the first time interval, the original is lowered The oxygen concentration; wherein the step of determining the clamping oxygen concentration further comprises: using the first critical value as an upper limit and inputting to a first time-varying model The decision to suppress the oxygen concentration. 如申請專利範圍第1項所述之燃燒系統的氧氣濃度修正方法,其中以該箝制氧氣濃度進行燃燒之步驟後,該氧氣濃度修正方法更包括:開始計時;其中,若於該第一時間區間內該氮氧化物預估濃度低於該第一臨界值,以該原始氧氣濃度進行燃燒之步驟後,該氧氣濃度修正方法更包括:計時歸零。 The oxygen concentration correction method of the combustion system of claim 1, wherein the oxygen concentration correction method further comprises: starting timing; wherein, in the first time interval, After the estimated concentration of the nitrogen oxide is lower than the first critical value, after the step of burning the original oxygen concentration, the oxygen concentration correction method further comprises: timing zeroing. 如申請專利範圍第1項所述之燃燒系統的氧氣濃度修正方法,其中決定該氮氧化物預估濃度之步驟更包括:取得一時間與氧氣濃度關係曲線,其中該時間與氧氣濃度關係曲線表示不同時間點的該原始氧氣濃度;將該時間與氧氣濃度關係曲線輸入至一第二時變模型,而決定一時間與氮氧化物預估濃度關係曲線,其中該時間與氮氧化物預估濃度關係曲線表示不同時間點的該氮氧化物預估濃度。 The method for correcting the oxygen concentration of the combustion system according to claim 1, wherein the step of determining the predicted concentration of the nitrogen oxides further comprises: obtaining a relationship between the time and the oxygen concentration, wherein the time versus oxygen concentration is expressed by a curve. The original oxygen concentration at different time points; the time-oxygen concentration relationship curve is input to a second time-varying model, and the relationship between the time and the predicted concentration of nitrogen oxides is determined, wherein the time is related to the predicted concentration of nitrogen oxides. The relationship curve represents the predicted concentration of nitrogen oxides at different time points. 如申請專利範圍第1項所述之燃燒系統的氧氣濃度修正方法,其中下調該原始氧氣濃度之步驟更包括:若在該第一時間區間內該氮氧化物預估濃度未低於該第一臨界值,則每隔一第二時間區間下調該負載與原始氧氣濃度關係 曲線之該原始氧氣濃度一修正比例,直到該氮氧化物預估濃度低於該第一臨界值且呈下降趨勢。 The method for modifying an oxygen concentration of a combustion system according to claim 1, wherein the step of lowering the original oxygen concentration further comprises: if the predicted concentration of the nitrogen oxide is not lower than the first in the first time interval The critical value is used to adjust the relationship between the load and the original oxygen concentration every second time interval. The original oxygen concentration of the curve is a corrected ratio until the predicted concentration of nitrogen oxides is lower than the first critical value and exhibits a downward trend. 如申請專利範圍第1項所述之燃燒系統的氧氣濃度修正方法,更包括:若該氮氧化物濃度未低於該第一臨界值,判斷所排出的一碳氧化物濃度是否高於一第二臨界值;以及若該碳氧化物濃度高於該第二臨界值,上調該負載與原始氧氣濃度關係曲線。 The method for correcting the oxygen concentration of the combustion system according to claim 1, further comprising: if the concentration of the nitrogen oxide is not lower than the first critical value, determining whether the concentration of the one carbon oxide discharged is higher than a first a second critical value; and if the carbon oxide concentration is higher than the second critical value, the load is adjusted to a relationship with the original oxygen concentration. 如申請專利範圍第5項所述之燃燒系統的氧氣濃度修正方法,其中若該碳氧化物濃度高於該第二臨界值,上調該負載與原始氧氣濃度關係曲線之步驟更包括:判斷該碳氧化物濃度高於該第二臨界值的時間是否持續一第三時間區間;以及若該碳氧化物濃度高於該第二臨界值的時間已持續該第三時間區間,則上調該負載與原始氧氣濃度關係曲線。 The method for modifying an oxygen concentration of a combustion system according to claim 5, wherein if the carbon oxide concentration is higher than the second critical value, the step of adjusting the load to the original oxygen concentration curve further comprises: determining the carbon Whether the time when the oxide concentration is higher than the second critical value lasts for a third time interval; and if the time when the carbon oxide concentration is higher than the second critical value has continued for the third time interval, the load is increased and the original Oxygen concentration curve. 如申請專利範圍第6項所述之燃燒系統的氧氣濃度修正方法,其中上調該負載與原始氧氣濃度關係曲線之步驟更包括:每隔一第四時間區間上調該負載與原始氧氣濃度關係曲線一修正比例,直到該碳氧化物濃度低於該第二臨界值且呈下降趨 勢。 The method for correcting the oxygen concentration of the combustion system according to claim 6, wherein the step of up-regulating the relationship between the load and the original oxygen concentration further comprises: adjusting the load to the original oxygen concentration curve every other fourth time interval. Correcting the ratio until the carbon oxide concentration is lower than the second critical value and decreasing Potential. 如申請專利範圍第5項所述之燃燒系統的氧氣濃度修正方法,其中若該碳氧化物濃度高於該第二臨界值,上調該負載與原始氧氣濃度關係曲線之步驟更包括:上調整條該負載與原始氧氣濃度關係曲線。 The method for modifying an oxygen concentration of a combustion system according to claim 5, wherein if the carbon oxide concentration is higher than the second critical value, the step of adjusting the load to the original oxygen concentration curve further comprises: adjusting the upper strip The load is related to the original oxygen concentration curve. 如申請專利範圍第8項所述之燃燒系統的氧氣濃度修正方法,其中於該燃燒系統依據該負載與原始氧氣濃度關係曲線決定該原始氧氣濃度之步驟中,該燃燒系統依據調整後之該負載與原始氧氣濃度關係曲線決定該原始氧氣濃度。 The method for modifying an oxygen concentration of a combustion system according to claim 8, wherein the combustion system determines the original oxygen concentration according to a curve of the load and the original oxygen concentration, the combustion system is based on the adjusted load. The original oxygen concentration is determined by the relationship with the original oxygen concentration. 如申請專利範圍第1項所述之燃燒系統的氧氣濃度修正方法,其中下調該原始氧氣濃度之步驟更包括:下調整條該負載與原始氧氣濃度關係曲線。 The method for modifying the oxygen concentration of the combustion system according to claim 1, wherein the step of lowering the original oxygen concentration further comprises: adjusting the load to the original oxygen concentration curve of the lower adjustment bar. 如申請專利範圍第10項所述之燃燒系統的氧氣濃度修正方法,其中於該燃燒系統依據該負載與原始氧氣濃度關係曲線決定該原始氧氣濃度之步驟中,該燃燒系統依據調整後之該負載與原始氧氣濃度關係曲線決定該原始氧氣濃度。 The method for modifying an oxygen concentration of a combustion system according to claim 10, wherein in the step of determining the original oxygen concentration according to the load and the original oxygen concentration curve, the combustion system is based on the adjusted load. The original oxygen concentration is determined by the relationship with the original oxygen concentration.
TW103139197A 2014-11-12 2014-11-12 Modification method of oxygen concentration for combustion system TWI573965B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW103139197A TWI573965B (en) 2014-11-12 2014-11-12 Modification method of oxygen concentration for combustion system
CN201410704813.9A CN105698211B (en) 2014-11-12 2014-11-27 Oxygen concentration correction method for combustion system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103139197A TWI573965B (en) 2014-11-12 2014-11-12 Modification method of oxygen concentration for combustion system

Publications (2)

Publication Number Publication Date
TW201617562A TW201617562A (en) 2016-05-16
TWI573965B true TWI573965B (en) 2017-03-11

Family

ID=56295820

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103139197A TWI573965B (en) 2014-11-12 2014-11-12 Modification method of oxygen concentration for combustion system

Country Status (2)

Country Link
CN (1) CN105698211B (en)
TW (1) TWI573965B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW524956B (en) * 2001-01-17 2003-03-21 Kawasaki Steel Co Heating furnace with regenerative burners and method of operating the heating furnace
CN101063872B (en) * 2006-04-25 2011-07-20 神马科技公司 System for optimizing oxygen in a boiler

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59208320A (en) * 1983-05-11 1984-11-26 Toshiba Corp Combustion process controlling method
JPS6237607A (en) * 1985-08-09 1987-02-18 Babcock Hitachi Kk Starting procedure of burning device
CN2570649Y (en) * 2002-08-28 2003-09-03 上海思特经济技术开发公司 Smoke clearing and dust removing device for boiler / manual-operating boiler
CN101225955B (en) * 2008-01-31 2011-03-30 云南电力试验研究院(集团)有限公司电力研究院 Automatic control method of 300 MW grading circulating fluidized bed units
JP4985857B1 (en) * 2011-02-25 2012-07-25 三菱マテリアル株式会社 Control method of NOx concentration in exhaust gas in combustion equipment using pulverized coal
CN104061588B (en) * 2014-07-17 2016-08-31 烟台龙源电力技术股份有限公司 Low nitrogen burning control method and the system of wind control is adjusted based on secondary air register

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW524956B (en) * 2001-01-17 2003-03-21 Kawasaki Steel Co Heating furnace with regenerative burners and method of operating the heating furnace
CN101063872B (en) * 2006-04-25 2011-07-20 神马科技公司 System for optimizing oxygen in a boiler

Also Published As

Publication number Publication date
CN105698211B (en) 2018-04-06
CN105698211A (en) 2016-06-22
TW201617562A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
JP2017200668A (en) Exhaust gas desalination apparatus
RU2017112346A (en) METHOD FOR MONITORING THE STATE OF THE CATALYTIC NEUTRALIZER AND THE ENGINE SYSTEM
JP6135831B2 (en) Combustion control device, combustion control method, and combustion control program
TWI573965B (en) Modification method of oxygen concentration for combustion system
JP2012050912A (en) Denitration controller and denitration control method
CN101839630A (en) Control system and method of baking furnace
JP5037529B2 (en) How to operate a combustion facility
JP6585950B2 (en) Control apparatus and control method
JP2015102314A (en) Boiler system
JP2009523207A5 (en)
US20160326955A1 (en) Method and apparatus for operating a combustion device
JP5648789B2 (en) boiler
TWI626405B (en) Combustion control system and combustion control method
CN114183770A (en) Boiler air volume control method, system and device
KR101607644B1 (en) Method for controlling for rising engine-generatiing using nox concentration
TWI565914B (en) Automatic Feed Control Method for Incinerator
JP5230386B2 (en) Boiler multi-can installation system
RU159803U1 (en) AUTOMATIC AIR CONSUMPTION SYSTEM IN THE DRUM BOILER
CN110578051B (en) Control method of smoke exhaust fan of continuous annealing furnace
KR20160004730A (en) Method for controlling for rising engine-generatiing
JP5541780B2 (en) Boiler multi-can installation system
TWI647416B (en) Water heater motor speed correction device and method thereof
JP6209979B2 (en) Boiler system
JP6330417B2 (en) Boiler system
CN115183243A (en) Water-cooled grate steam load control method