WO2002055250A1 - Wire electric discharge machining method and device - Google Patents
Wire electric discharge machining method and device Download PDFInfo
- Publication number
- WO2002055250A1 WO2002055250A1 PCT/JP2001/000215 JP0100215W WO02055250A1 WO 2002055250 A1 WO2002055250 A1 WO 2002055250A1 JP 0100215 W JP0100215 W JP 0100215W WO 02055250 A1 WO02055250 A1 WO 02055250A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- workpiece
- electric discharge
- machining
- wire electrode
- wire
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H7/00—Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
- B23H7/38—Influencing metal working by using specially adapted means not directly involved in the removal of metal, e.g. ultrasonic waves, magnetic fields or laser irradiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23H—WORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
- B23H7/00—Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
- B23H7/02—Wire-cutting
Definitions
- the present invention relates to an improvement in a wire electric discharge machining method and apparatus for supplying machining power between a wire electrode and a workpiece and processing the workpiece by a discharger.
- EDM has established a solid position as a machining technology for dies and the like, and has been used extensively in the dies and machining fields of the automobile industry, home appliance industry, semiconductor industry, and so on.
- Fig. 4 is an explanatory view of the mechanism of electric discharge machining.
- 1 is an electrode
- 2 is a workpiece
- 3 is an arc column
- 4 is a machining fluid
- 5 is machining waste generated by electric discharge machining.
- FIG. 5 is an explanatory view showing an example of a machining process of wire electric discharge machining, in which 1 a is a wire electrode, 2 is a workpiece, 4 a is water as a machining fluid, and 6 is an initial hole.
- Fig. 5 (a) shows the first cut, which is rough machining
- Fig. 5 (b) shows the second cut, which is medium finishing after roughing
- Fig. 5 (c) shows final cutting. A third cut is shown.
- FIG. 5 (a) shows an example of the first cut processing in which the wire electrode la is passed through the initial hole 6 and the workpiece 2 is penetrated.
- the surface roughness and precision are finished in the subsequent processing, so not so severe surface roughness and precision are required, and it is important to increase the processing speed especially to improve productivity It is.
- wire electric discharge machining in order to increase the machining speed, water 4a is blown out between the gaps in order to efficiently discharge machining waste from the gaps.
- a method of immersing the workpiece 2 by storing the water 4a in a processing tank (not shown) is used. It is required.
- the working fluid supply means for supplying the working fluid between the poles is used. .
- machining such as the second cut (FIG. 5 (b)) and the third cut (FIG. 5 (c)) after the first cut (FIG. 5 (a)) is also performed. It is performed in water 4a, which is a processing fluid.
- a wire electric discharge machining method is a wire electric discharge machining method for machining a workpiece by generating an electric discharge between a wire electrode and a workpiece, and performing rough machining in a machining fluid.
- a wire electric discharge machining method is a wire electric discharge machining method for machining the workpiece by generating an electric discharge between a wire electrode and the workpiece, wherein the rough machining is performed in a machining fluid.
- the wire electric discharge machining method according to the present invention performs the heating while controlling the relative high frequency vibration between the wire electrode and the workpiece so as not to be a standing wave.
- a wire electric discharge machining apparatus electric discharge energy is supplied between a wire electrode and a workpiece by a machining power supply means, and the wire electrode and the workpiece are relatively moved by a positioning means.
- a wire electric discharge machine for machining the workpiece in the air or in a mist comprising: a high frequency vibration applying means for relatively high frequency vibration of the wire electrode and the workpiece; and And control means for controlling.
- the high-frequency vibration applying means includes a high-frequency vibrator having at least two degrees of freedom in a direction orthogonal and parallel to the traveling direction of the wire electrode.
- the high-frequency vibrator is controlled so that the relative high-frequency vibration between the wire electrode and the workpiece does not become a standing wave.
- the high-frequency vibrator is a direct drive actuator such as a piezoelectric element, a magnetostrictive element, an ultrasonic motor, or a linear motor.
- wire electric discharge machining method and apparatus are configured as described above, in the finishing machining, machining is performed without intervening machining fluid between the electrodes, and the shape accuracy and surface roughness of the workpiece are reduced. Can be improved.
- FIG. 1 is an explanatory diagram showing an example of a wire electric discharge machining method according to an embodiment of the present invention.
- FIG. 2 is an explanatory diagram showing a configuration of the wire electric discharge machine according to the embodiment of the present invention.
- FIG. 3 is a diagram illustrating a configuration example and a function of a high-frequency vibration applying unit according to the embodiment of the present invention.
- FIG. 4 is an explanatory view of a mechanism of electric discharge machining.
- FIG. 5 is an explanatory diagram showing an example of a machining process of wire electric discharge machining.
- FIG. 1 is an explanatory diagram showing an example of a wire electric discharge machining method according to an embodiment of the present invention.
- la wire electrode 2 is a workpiece
- 4a is water as a machining fluid
- 6 is Initial hole 7 is a gas such as air.
- Fig. 1 (a) shows the first cut, which is rough machining
- Fig. 1 (b) shows the second cut, which is finishing machining after rough machining.
- the names of the power cut and the second cut are for convenience only, and the wire electric discharge machining does not necessarily end in two times. In the case of processing that requires high accuracy for the workpiece, the processing may be performed seven or eight times.
- the first cut shown in FIG. 1 (a) is a process in which the wire electrode 1a is passed through the initial hole 6 and the workpiece 2 is penetrated.
- the first cut since the surface roughness and precision are finished in the subsequent processing, not so strict surface roughness and precision are required, and it is important to increase the processing speed especially to improve productivity.
- Processing is performed with water 4a, which is a processing liquid, interposed between the poles as in FIG.
- water 4a which is a processing liquid, interposed between the poles as in FIG.
- machining is performed in the machining fluid even after the first cut, but there are problems such as uncertain transient vibration of the wire electrode as shown in the background art. Not suitable.
- the present invention improves the shape accuracy and surface roughness of a workpiece by performing processing without intervening machining fluid between the poles in finishing.
- the processing is performed in the gas 7 instead of the processing fluid 4a. Is what you do.
- uncertain transient vibration of the wire electrode 1a can be suppressed as described below.
- the electrostatic force acting on the wire electrode 1a and the workpiece 2 when a voltage is applied between the poles is proportional to the dielectric constant between the poles.
- the electrostatic force is several tenths (for example, the dielectric constant is the smallest in vacuum, and the About 80 times in vacuum).
- the vaporizing explosive force due to the discharge is generated by the liquid interposed between the poles, when only the gas 7 exists between the poles, the wire electrode 1a is hardly affected by the vaporizing explosive force. I do not receive it. Therefore, uncertain transient vibration of the wire electrode 1a can be suppressed.
- aerial wire electric discharge machining is effective for high-precision machining, but there is a problem that the machining speed is slower than that of submerged wire electric discharge machining as shown in the background art.
- the main reasons for this are that the amount of workpiece removal is reduced due to the elimination of the vaporizing explosive force generated by discharge, as in submerged electric discharge machining. This is because it adheres to the surface of the workpiece and makes the processing unstable.
- FIG. 2 is an explanatory diagram showing a configuration of a wire electric discharge machine according to an embodiment of the present invention, and shows an example of a configuration capable of realizing aerial wire electric discharge machining as shown in FIG. 1 (b). It is a thing.
- la is a wire electrode
- 2 is a workpiece
- 7 is a gas such as air, oxygen, nitrogen, or an inert gas
- 8 is a wire pobin
- 9a and 9b are wire electrodes 1a and a workpiece.
- 10 is a high frequency vibration applying machine
- 11 is a capstan roller
- 12 is a pinch roller
- 13 is a horizontal surface of the workpiece 2.
- An X table for driving in the direction (X direction), 14 is a Y table for driving the workpiece 2 in the horizontal direction (Y direction), and 15 is a motor (not shown) for driving the X table 13.
- X-axis servo amplifier for driving and controlling the evening 16 is a Y-axis servo amplifier for driving and controlling a motor (not shown) that drives the Y table 14, and 17 is a servo amplifier for driving and controlling the high frequency vibration applying actuator 10.
- Reference numeral 18 denotes processing power supply means, and reference numeral 19 denotes control means.
- FIG. 3 is an explanatory view of a configuration example and a function of the high-frequency vibration applying means.
- 10a is a tip engaging member
- 10Ob and 10c are piezoelectric elements, magnetostrictive elements, Sound wave motor or linear It is a high-frequency vibrator made of a motor or the like.
- FIG. 3 (b) schematically shows a high-frequency vibration waveform applied to the wire electrode 1a by the high-frequency vibration applying means.
- the gas supply means 9a and 9b can be realized by, for example, forming a nozzle around the wire electrode la and supplying a pressurized gas. By supplying the pressurized gas between the electrodes, it is possible to prevent the machining chips removed by the discharge from adhering to the wire electrode and the surface of the workpiece. The air discharge machining can be performed in the air without using such gas supply means 9a and 9b.
- the wire electrode 1a is pinched and pulled by the capstan opening 11 and the pinch roller 12 so that the wire electrode 1a runs, the wire electrode 1a and the workpiece 2 are opposed to each other, and the gas supply means 9a and While supplying gas 7 between the electrode between the wire electrode 1a and the workpiece 2 by 9b, machining power, which is discharge energy, is supplied by the machining power supply means 18 between the poles, and the positioning means X Finish the work 2 by relatively moving the wire electrode 1 a and the work 2 using the table 13 and the Y table 14.
- the control means 19 controls the relative positioning control of the wire electrode la and the workpiece 2 and the control of the electric machining conditions by the positioning means.
- the high-frequency vibrators 10b and 10c constituting the high-frequency vibration applying function 10 are driven by the control means 19 through the support amplifier 17 and are driven through the tip engaging member 10a.
- High frequency vibration is applied to the wire electrode 1a. That is, the wire electrode la is excited by the high-frequency vibrator 10c together with the vibration component (for example, the X direction in the figure) perpendicular to the wire electrode 1a excited by the high-frequency vibrator 10c.
- a vibration component parallel to a (for example, Z direction in the figure) is also added.
- the vibration applied to the wire electrode 1 in this manner is not a standing wave, but as shown in FIG.
- the control means 19 is controlled so that multiple vibrations such that the positions of antinodes and nodes of the vibration mode of the input electrode 1a constantly change are obtained. Therefore, unlike in the case of the standing wave vibration, the processed surface of the workpiece does not have a striped pattern.
- the high-frequency oscillators 10b and 10c which are the actuators that directly drive the tip engaging member 10a, are used as the high-frequency vibration applying actuator 10, the response is high, and the wire electrode la Even when the material, diameter, wire tension, and the like change, the vibration amplitude, frequency, and the like can be controlled with high accuracy and stability.
- the gap between the electrodes is smaller than that in the electric discharge machining, and it is difficult to control the amplitude of the wire electrode. Therefore, the direct drive type high frequency vibration applying actuator 10 as described above is used. It is necessary to perform high-precision control.
- the two-degree-of-freedom actuator consisting of the high-frequency oscillators 10b and 10c is used as the high-frequency oscillator constituting the high-frequency vibration applying actuator 10 has been described.
- an actuator having three or more degrees of freedom to excite the vibration of the wire electrode in the X direction, the Y direction, and the Z direction may be used.
- the case where the high frequency vibration is applied to the wire electrode 1a by the high frequency vibration applying means has been described. However, it is sufficient that the wire electrode 1a and the workpiece 2 are relatively high frequency vibrated. Alternatively, high frequency vibration may be applied to the workpiece 2 instead of the wire electrode 1a.
- the case where the roughing is performed in the working fluid and the finishing is performed in the air has been described. However, the same effect can be obtained when the finishing is performed in the mist. Industrial applicability
- the wire electric discharge machining method and apparatus according to the present invention are particularly suitable for being used for high precision electric discharge machining.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
A wire electric discharge machining device for machining a workpiece (2) in gas and/or mist by feeding electric discharge energy between the poles for a wire electrode (1a) and the workpiece (2) by a machining power feeding means (18) and relatively moving the wire electrode (1a) and the workpiece (2) by a positioning means, wherein the device comprises a high frequency vibration imparting means (10, 17) for setting the wire electrode (1a) and the workpiece (2) in relative high frequency vibration, and a control means (19) for controlling such high frequency vibration. It is possible to attain high accuracy and improved productivity in wire electric discharge machining.
Description
明 細 書 ワイヤ放電加工方法及び装置 技術分野 Description Wire electric discharge machining method and device
この発明は、 ワイヤ電極と被加工物との極間に加工電力を供給し、 放 電工ネルギにより前記被加工物を加工する、 ワイヤ放電加工方法及び装 置の改良に関するものである。 背景技術 The present invention relates to an improvement in a wire electric discharge machining method and apparatus for supplying machining power between a wire electrode and a workpiece and processing the workpiece by a discharger. Background art
放電加工は金型等の加工技術として確固たる地位を築いており、 自動 車産業、 家電産業、 半導体産業等の金型加工の分野において多用されで きた。 EDM has established a solid position as a machining technology for dies and the like, and has been used extensively in the dies and machining fields of the automobile industry, home appliance industry, semiconductor industry, and so on.
第 4図は、 放電加工のメカニズムの説明図であり、 図において、 1は 電極、 2は被加工物、 3はアーク柱、 4は加工液、 5は放電加工により 生成された加工屑である。 以下の (a ) 乃至 (e ) のサイクル (第 4図 の (a ) 乃至 (e ) に対応) を繰返しながら被加工物 2の放電による除 去加工が進行する。 即ち、 (a ) 放電の発生によるアーク柱 3の形成、 ( b ) 放電の熱エネルギによる局部的溶融及び加工液 4の気化、 (c ) 加工液 4の気化爆発力の発生、 (d ) 溶融部 (加工屑 5 ) の飛散、 (e ) 加工液による冷却、 凝固、 極間の絶縁回復、 である。 Fig. 4 is an explanatory view of the mechanism of electric discharge machining. In the figure, 1 is an electrode, 2 is a workpiece, 3 is an arc column, 4 is a machining fluid, and 5 is machining waste generated by electric discharge machining. . While the following cycles (a) to (e) (corresponding to (a) to (e) in FIG. 4) are repeated, removal processing of the workpiece 2 by electric discharge proceeds. That is, (a) formation of the arc column 3 due to the generation of electric discharge, (b) local melting and vaporization of the working fluid 4 due to the heat energy of the discharge, (c) generation of a vaporizing explosive force of the working fluid 4, (d) melting (E) Scattering of the processing waste (5), (e) Cooling, solidification, and insulation recovery between the electrodes due to the working fluid.
この発明は、 放電加工の中でも、 くり貫き加工、 切断加工等に使用さ れるワイヤ放電加工に関するものである。 ワイヤ放電加工は、 特に高精 度化への要求が強まっており、 例えば、 半導体業界等で使用される高精 度金型の加工では、 1〜 2 m程度の高い加工精度が要求されるように なってきている。
第 5図は、 ワイヤ放電加工の加工プロセスの例を示す説明図であり、 図において、 1 aはワイヤ電極、 2は被加工物、 4 aは加工液である水、 6はイニシャルホールであり、 第 5図の (a ) は荒加工であるファース トカットを、 第 5図の (b ) は荒加工後の中仕上げ加工であるセカンド カットを、 第 5図の (c ) は最終仕上げ加工であるサードカットの様子 示してレ る。 TECHNICAL FIELD The present invention relates to wire electric discharge machining used for boring, cutting and the like among electric discharge machining. The demand for high-precision wire electric discharge machining is increasing in particular.For example, machining of high-precision dies used in the semiconductor industry, etc., requires a high machining accuracy of about 1 to 2 m. It is becoming. FIG. 5 is an explanatory view showing an example of a machining process of wire electric discharge machining, in which 1 a is a wire electrode, 2 is a workpiece, 4 a is water as a machining fluid, and 6 is an initial hole. Fig. 5 (a) shows the first cut, which is rough machining, Fig. 5 (b) shows the second cut, which is medium finishing after roughing, and Fig. 5 (c) shows final cutting. A third cut is shown.
第 5図の (a ) のファーストカットの加工例は、 イニシャルホール 6 にワイヤ電極 l aを通し、 被加工物 2をくり貫く加工を示している。 こ のようなファーストカツトの場合、 後の加工で面粗さ及び精度を仕上げ るため、 それほど厳しい面粗さ及び精度は要求されず、 生産性向上のた めに特に加工速度を上げることが重要である。ワイヤ放電加工において、 加工速度を上げるためには、 極間からの加工屑の排出を効率的に行うた め、 水 4 aを極間に噴出することが行われる。 また、 極間への水 4 aの かかりのむらを無くし、 ワイヤ電極 1 aの断線を防止するために、 図示 しない加工槽の中に水 4 aを溜めて被加工物 2を浸漬する方法が用いら れる。 このように、 極間に加工液を供給する加工液供給手段が用いられ る。 . FIG. 5 (a) shows an example of the first cut processing in which the wire electrode la is passed through the initial hole 6 and the workpiece 2 is penetrated. In the case of such a fast cut, the surface roughness and precision are finished in the subsequent processing, so not so severe surface roughness and precision are required, and it is important to increase the processing speed especially to improve productivity It is. In wire electric discharge machining, in order to increase the machining speed, water 4a is blown out between the gaps in order to efficiently discharge machining waste from the gaps. In addition, in order to eliminate uneven distribution of water 4a between the poles and prevent disconnection of the wire electrode 1a, a method of immersing the workpiece 2 by storing the water 4a in a processing tank (not shown) is used. It is required. Thus, the working fluid supply means for supplying the working fluid between the poles is used. .
以上のような従来のワイヤ放電加工では、 ファーストカット (第 5図 の (a ) ) 後のセカンドカツト (第 5図の (b ) ) 及びサードカツト (第 5図の (c ) ) 等の加工も、 加工液である水 4 a中で行われる。 In the conventional wire electric discharge machining as described above, machining such as the second cut (FIG. 5 (b)) and the third cut (FIG. 5 (c)) after the first cut (FIG. 5 (a)) is also performed. It is performed in water 4a, which is a processing fluid.
ワイヤ電極 1 aと被加工物 2の極間に電圧が印加されると、 プラス極 性とマイナス極性は互いに引き合う力が働くため、 この静電力により剛 性の小さいワイヤ電極 1 aは被加工物 2側に引っ張られることになる。 これが、 ワイヤ電極 1 aの振動の原因となり、 このような振幅が大きい と共に不確定な過渡振動により高精度加工が困難になるという問題点が あった。
また、 放電エネルギにより加工液の気化爆発力が発生した状態 (例え ば、 第 4図の (c ) ) では、 ワイヤ電極 1 aには、 加工液の気化爆発力 により被加工物 2と反対方向に大きな力が作用し、 振動が発生する。 こ のような振動により、 被加工物 2の形状に凹凸が生じ、 精度の悪化につ ながるという問題点があつた When a voltage is applied between the wire electrode 1 a and the pole of the workpiece 2, the positive and negative polarities are attracted to each other. It will be pulled to the 2 side. This causes the vibration of the wire electrode 1a, and there is a problem that such high amplitude and uncertain transient vibration make high-precision machining difficult. Also, in a state where the explosive power of the machining fluid is generated by the discharge energy (for example, (c) in FIG. 4), the wire electrode 1 a is in the opposite direction to the workpiece 2 due to the vaporized explosive power of the machining fluid. A large force acts on, causing vibration. Due to such vibration, irregularities are generated in the shape of the workpiece 2, leading to a problem that accuracy is deteriorated.
ワイヤ放電加工の利用分野である半導体業界等において、 例えば、 I Cリードフレームの金型等の加工においては、 形状精度が 1 111、 面粗 さが 1 m R m a x以下というような被加工物に対して極めて高精度か つ非常に滑らかな面粗さが求められる用途が増加しており、 特にこのよ うな用途では、 前記のようなワイヤ電極の振動等に起因する問題点が顕 著であった。 In the semiconductor industry, which is a field of application of wire electric discharge machining, for example, in the processing of dies for IC lead frames, it is necessary to process workpieces with a shape accuracy of 111 and a surface roughness of 1 mR max or less. Applications that require extremely high precision and extremely smooth surface roughness are increasing.In such applications, in particular, the problems caused by the vibration of the wire electrode as described above are prominent. .
このような液中ワイヤ放電加工の問題点を解決するための方策として, 極間に加工液を介在させずに大気中でワイヤ放電加工を行う、 気中ワイ ャ放電加工に関する技術が開示されている (東京農工大学安達他、 「気 中放電加工によるセカンドカットの高精度化」 、 型技術、 第 1 4巻、 第 7号、 1 9 9 9年、 1 5 4頁、 日刊工業新聞社) 。 この技術では、 大気 中におけるワイヤ放電加工により被加工物切断面の真直精度を向上する ことができることが開示されており、 高精度化の観点での意義は大きい が、 加工液中での加工と比べてワイヤ電極と被加工物との間で短絡が発 生しやすい等、 加工安定性及ぴ加工速度の面での問題があり、 実用化が 困難であった。 発明の開示 As a measure to solve such problems of wire submerged wire electric discharge machining, a technology related to submerged wire electric discharge machining, which performs wire electric discharge machining in the air without intervening machining fluid between the electrodes, has been disclosed. (Tokyo University of Agriculture and Technology, Adachi et al., "High Accuracy of Second Cut by Air Discharge Machining", Mold Technology, Vol. 14, No. 7, 1999, pp. 154, Nikkan Kogyo Shimbun) . This technology discloses that the straightness of the cut surface of the workpiece can be improved by wire electric discharge machining in the atmosphere, and this technology has great significance in terms of high accuracy. On the other hand, there were problems in processing stability and processing speed, such as a short circuit between the wire electrode and the workpiece being easily generated, and practical application was difficult. Disclosure of the invention
この発明は、前記のような課題を解決するためになされたものであり、 ワイヤ放電加工の高精度化及び加工生産性の向上を実現することができ るワイヤ放電加工方法及び装置を得ることを目的とする。
この発明に係るワイヤ放電加工方法は、 ワイヤ電極と被加工物との極 間に放電を発生させて前記被加工物を加工するワイヤ放電加工方法にお いて、 加工液中にて荒加工を行う第 1の工程と、 気中又はミスト中にて 仕上げ加工を行う第 2の工程とを備え、 前記第 2の工程において、 前記 ワイヤ電極と被加工物とを相対的に高周波振動させながら加工を行うも のである。 SUMMARY OF THE INVENTION The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a wire electric discharge machining method and apparatus capable of realizing high precision of wire electric discharge machining and improvement of machining productivity. Aim. A wire electric discharge machining method according to the present invention is a wire electric discharge machining method for machining a workpiece by generating an electric discharge between a wire electrode and a workpiece, and performing rough machining in a machining fluid. A first step, and a second step of performing finishing processing in the air or in a mist. In the second step, the processing is performed while relatively vibrating the wire electrode and the workpiece with high frequency. You do it.
また、 この発明に係るワイヤ放電加工方法は、 ワイヤ電極と被加工物 との極間に放電を発生させて前記被加工物を加工するワイヤ放電加工方 法において、 加工液中にて荒加工を行う第 1の工程と、 ミスト中にて仕 上げ加工を行う第 2の工程と、 気中にて仕上げ加工を行う第 3の工程を 備え、 前記第 2の工程及び第 3の工程において、 前記ワイヤ電極と被加 ェ物とを相対的に高周波振動させながら加工を行うものである。 Further, a wire electric discharge machining method according to the present invention is a wire electric discharge machining method for machining the workpiece by generating an electric discharge between a wire electrode and the workpiece, wherein the rough machining is performed in a machining fluid. A first step of performing finishing, a second step of performing finishing in a mist, and a third step of performing finishing in the air, wherein the second and third steps include: The processing is performed while relatively oscillating the wire electrode and the workpiece with high frequency.
また、 この発明に係るワイヤ放電加工方法は、 前記ワイヤ電極と被加 ェ物との相対的な高周波振動が定在波とならないように制御しながら加 ェを行うもので'ある。 Further, the wire electric discharge machining method according to the present invention performs the heating while controlling the relative high frequency vibration between the wire electrode and the workpiece so as not to be a standing wave.
この発明に係るワイヤ放電加工装置は、 加工電力供給手段によりワイ ャ電極と被加工物との極間に放電エネルギを供給し、 位置決め手段によ り前記ワイヤ電極及び被加工物を相対移動させて、 気中又はミスト中に て前記被加工物を加工するワイヤ放電加工装置において、 前記ワイヤ電 極と被加工物とを相対的に高周波振動させる高周波振動付与手段と、 前 記高周波振動付与手段を制御する制御手段とを備えたものである。 また、 この発明に係るワイヤ放電加工装置は、 前言さ高周波振動付与手 段が前記ワイヤ電極走行方向と直交及び平行方向の 2自由度以上の高周 波振動子を有し、 前記制御手段により前記ワイヤ電極と被加工物との相 対的な高周波振動が定在波とならないように前記高周波振動子を制御す るものである。
また、 この発明に係るワイヤ放電加工装置は、 前記高周波振動子が圧 電素子、 磁歪素子、 超音波モータ又はリニアモー夕等の直接駆動ァクチ ユエ一夕であるものである。 In a wire electric discharge machining apparatus according to the present invention, electric discharge energy is supplied between a wire electrode and a workpiece by a machining power supply means, and the wire electrode and the workpiece are relatively moved by a positioning means. A wire electric discharge machine for machining the workpiece in the air or in a mist, comprising: a high frequency vibration applying means for relatively high frequency vibration of the wire electrode and the workpiece; and And control means for controlling. Further, in the wire electric discharge machining apparatus according to the present invention, the high-frequency vibration applying means includes a high-frequency vibrator having at least two degrees of freedom in a direction orthogonal and parallel to the traveling direction of the wire electrode. The high-frequency vibrator is controlled so that the relative high-frequency vibration between the wire electrode and the workpiece does not become a standing wave. Further, in the wire electric discharge machine according to the present invention, the high-frequency vibrator is a direct drive actuator such as a piezoelectric element, a magnetostrictive element, an ultrasonic motor, or a linear motor.
この発明に係るワイヤ放電加工方法及び装置は以上のように構成され ているため、 仕上げ加工において、 極間に加工液を介在させずに加工を 行い、 被加工物の形状精度及び面粗さを改善することができる。 Since the wire electric discharge machining method and apparatus according to the present invention are configured as described above, in the finishing machining, machining is performed without intervening machining fluid between the electrodes, and the shape accuracy and surface roughness of the workpiece are reduced. Can be improved.
また、 極間に発生する加工屑、 ガス等を効率良く排除でき、 放電集中 及び短絡の抑制作用があるため、 気中ワイヤ放電加工が安定し、 加工速 度が向上する。 従って、 加工生産性を向上することができる。 図面の簡単な説明 In addition, machining dust, gas, etc. generated between the poles can be efficiently removed, and the action of suppressing electric discharge concentration and short circuit can be achieved, so that air wire electric discharge machining is stabilized and the machining speed is improved. Therefore, processing productivity can be improved. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 この発明の実施の形態に係るワイヤ放電加工方法の一例を 示す説明図である。 FIG. 1 is an explanatory diagram showing an example of a wire electric discharge machining method according to an embodiment of the present invention.
第 2図は、 この発明の実施の形態に係るワイヤ放電加工装置の構成を 示す説明図である。 FIG. 2 is an explanatory diagram showing a configuration of the wire electric discharge machine according to the embodiment of the present invention.
第 3図は、 この発明の実施の形態に係る高周波振動付与手段の構成例 及び機能の説明図である。 FIG. 3 is a diagram illustrating a configuration example and a function of a high-frequency vibration applying unit according to the embodiment of the present invention.
第 4図は、 放電加工のメカニズムの説明図である。 FIG. 4 is an explanatory view of a mechanism of electric discharge machining.
第 5図は、 ワイヤ放電加工の加工プロセスの例を示す説明図である。 発明を実施するための最良の形態 FIG. 5 is an explanatory diagram showing an example of a machining process of wire electric discharge machining. BEST MODE FOR CARRYING OUT THE INVENTION
第 1図は、 この発明の実施の形態に係るワイヤ放電加工方法の一例を 示す説明図であり、 図において、 l aワイヤ電極、 2は被加工物、 4 a は加工液である水、 6はイニシャルホール、 7は空気等の気体であり、 第 1図の (a ) は荒加工であるファーストカットを、 第 1図の (b ) は 荒加工後の仕上げ加工であるセカンドカツトを示している。 ファース卜
力ット及びセカンドカツトという名称は便宜上のものであり、 必ずしも ワイヤ放電加工が 2回の加工で終了するものではない。 被加工物への要 求精度が高い加工では、 7回、 8回と加工を行う場合もある。 FIG. 1 is an explanatory diagram showing an example of a wire electric discharge machining method according to an embodiment of the present invention. In the figure, la wire electrode, 2 is a workpiece, 4a is water as a machining fluid, and 6 is Initial hole 7 is a gas such as air. Fig. 1 (a) shows the first cut, which is rough machining, and Fig. 1 (b) shows the second cut, which is finishing machining after rough machining. . First The names of the power cut and the second cut are for convenience only, and the wire electric discharge machining does not necessarily end in two times. In the case of processing that requires high accuracy for the workpiece, the processing may be performed seven or eight times.
次に、 加工方法の概略について説明する。 第 1図の (a ) のファース 卜カットは、 イニシャルホール 6にワイヤ電極 1 aを通し、 被加工物 2 をくり貫く加工である。 ファーストカットでは、 後の加工で面粗さ及び 精度を仕上げるため、 それほど厳しい面粗さ及び精度は要求されず、 生 産性向上のために特に加工速度を上げることが重要であり、 背景技術の 第 5図と同様に加工液である水 4 aを極間に介在させて加工を行う。 通常のワイヤ放電加工では、 ファーストカット後も、 加工液中で加工 が進められるが、 背景技術に示したようにワイヤ電極の不確定な過渡振 動等の問題があるため、 高精度加工には適さない。 この発明は、 仕上げ 加工 おいて、 極間に加工液を介在させずに加工を行い、 被加工物の形 状精度及び面粗さを改善するものである。 Next, an outline of the processing method will be described. The first cut shown in FIG. 1 (a) is a process in which the wire electrode 1a is passed through the initial hole 6 and the workpiece 2 is penetrated. In the first cut, since the surface roughness and precision are finished in the subsequent processing, not so strict surface roughness and precision are required, and it is important to increase the processing speed especially to improve productivity. Processing is performed with water 4a, which is a processing liquid, interposed between the poles as in FIG. In ordinary wire electric discharge machining, machining is performed in the machining fluid even after the first cut, but there are problems such as uncertain transient vibration of the wire electrode as shown in the background art. Not suitable. The present invention improves the shape accuracy and surface roughness of a workpiece by performing processing without intervening machining fluid between the poles in finishing.
第 1図の (b ) の仕上げ加工であるセカンドカットでは、 ワイヤ電極 1 aの振動を抑えて加工精度を改善するために、 加工液 4 a中での加工 ではなく、 気体 7中での加工を行うものである。 このような気中ワイヤ 放電加工により、 以下に示すようにワイヤ電極 1 aの不確定な過渡振動 を抑えることができる。 In the second cut, which is the finishing process shown in Fig. 1 (b), in order to suppress the vibration of the wire electrode 1a and improve the processing accuracy, the processing is performed in the gas 7 instead of the processing fluid 4a. Is what you do. By such aerial wire electrical discharge machining, uncertain transient vibration of the wire electrode 1a can be suppressed as described below.
即ち、 極間に電圧が印加されたときにワイヤ電極 1 aと被加工物 2に 作用する静電力は極間の誘電率に比例するため、 同じ極間距離として計 算すると、 極間の介在物が水 4 aである場合に比べて、 極間の介在物が 気体 7である場合は、 前記静電力が数十分の一となる (例えば、 誘電率 は真空中が最も小さく、 水中では真空中の約 8 0倍である) 。 また、 放 電による気化爆発力は極間に介在する液体により生ずるため、 極間に気 体 7しか存在しない場合には、 ワイヤ電極 1 aは気化爆発力の影響をほ
とんど受けない。 従って、 ワイヤ電極 1 aの不確定な過渡振動を抑える ことができる。 That is, the electrostatic force acting on the wire electrode 1a and the workpiece 2 when a voltage is applied between the poles is proportional to the dielectric constant between the poles. When the intervening substance is gas 7, the electrostatic force is several tenths (for example, the dielectric constant is the smallest in vacuum, and the About 80 times in vacuum). Further, since the vaporizing explosive force due to the discharge is generated by the liquid interposed between the poles, when only the gas 7 exists between the poles, the wire electrode 1a is hardly affected by the vaporizing explosive force. I do not receive it. Therefore, uncertain transient vibration of the wire electrode 1a can be suppressed.
以上のように、 気中ワイヤ放電加工は高精度加工に有効であるが、'背 景技術に示したように加工速度が液中ワイヤ放電加工と比べて遅くなる という問題点がある。 この原因の主なものは、 液中放電加工のように放 電により発生する気化爆発力がなくなるため被加工物の除去量が減るこ と、 及び放電により除去された加工屑がワイヤ電極および被加工物表面 に付着し加工を不安定にするためである。 As described above, aerial wire electric discharge machining is effective for high-precision machining, but there is a problem that the machining speed is slower than that of submerged wire electric discharge machining as shown in the background art. The main reasons for this are that the amount of workpiece removal is reduced due to the elimination of the vaporizing explosive force generated by discharge, as in submerged electric discharge machining. This is because it adheres to the surface of the workpiece and makes the processing unstable.
第 2図は、 この発明の実施の形態に係るワイヤ放電加工装置の構成を 示す説明図であり、 第 1図の (b ) に示したような気中ワイヤ放電加工 を実現できる構成例を示したものである。 第 2図において、 l aはワイ ャ電極、 2は被加工物、 7は例えば空気、 酸素、 窒素又は不活性ガス等 の気体、 8はワイヤポビン、 9 a及び 9 bはワイヤ電極 1 aと被加工物 2との極間に気体 7を供給する気体供給手段、 1 0は高周波振動付与ァ クチユエ一夕、 1 1はキヤプスタンローラ、 1 2はピンチローラ、 1 3 は被加工物 2の水平方向 (X方向) の駆動を行うための Xテーブル、 1 4は被加工物 2の水平方向 (Y方向) の駆動を行うための Yテーブル、 1 5は Xテーブル 1 3を駆動する図示しないモー夕を駆動制御する X軸 サーポアンプ、 1 6は Yテーブル 1 4を駆動する図示しないモータを駆 動制御する Y軸サーボアンプ、 1 7は高周波振動付与ァクチユエ一夕 1 0を駆動制御するサ一ボアンプ、 1 8は加工電力供給手段、 1 9は制御 手段である。 FIG. 2 is an explanatory diagram showing a configuration of a wire electric discharge machine according to an embodiment of the present invention, and shows an example of a configuration capable of realizing aerial wire electric discharge machining as shown in FIG. 1 (b). It is a thing. In FIG. 2, la is a wire electrode, 2 is a workpiece, 7 is a gas such as air, oxygen, nitrogen, or an inert gas, 8 is a wire pobin, 9a and 9b are wire electrodes 1a and a workpiece. A gas supply means for supplying gas 7 between the poles of the workpiece 2, 10 is a high frequency vibration applying machine, 11 is a capstan roller, 12 is a pinch roller, and 13 is a horizontal surface of the workpiece 2. An X table for driving in the direction (X direction), 14 is a Y table for driving the workpiece 2 in the horizontal direction (Y direction), and 15 is a motor (not shown) for driving the X table 13. X-axis servo amplifier for driving and controlling the evening, 16 is a Y-axis servo amplifier for driving and controlling a motor (not shown) that drives the Y table 14, and 17 is a servo amplifier for driving and controlling the high frequency vibration applying actuator 10. Reference numeral 18 denotes processing power supply means, and reference numeral 19 denotes control means.
ここで、 高周波振動付与ァクチユエ一夕 1 0及びサ一ポアンプ 1 7が 高周波振動付与手段を構成している。 第 3図は、 この高周波振動付与手 段の構成例及び機能の説明図であり、 図において、 1 0 aは先端係合部 材、 1 O b及び 1 0 cは圧電素子、 磁歪素子、 超音波モータ又はリニア
モータ等からなる高周波振動子である。 また、 第 3図の (b ) は高周波 振動付与手段によりワイヤ電極 1 aに付与される高周波振動波形を模式 的に示したものである。 Here, the high frequency vibration imparting function 10 and the support amplifier 17 constitute high frequency vibration imparting means. FIG. 3 is an explanatory view of a configuration example and a function of the high-frequency vibration applying means. In the figure, 10a is a tip engaging member, 10Ob and 10c are piezoelectric elements, magnetostrictive elements, Sound wave motor or linear It is a high-frequency vibrator made of a motor or the like. FIG. 3 (b) schematically shows a high-frequency vibration waveform applied to the wire electrode 1a by the high-frequency vibration applying means.
また、 気体供給手段 9 a及び 9 bは、 例えば、 ワイヤ電極 l aの周囲 にノズルを形成して圧力気体を供給すること等により実現できる。 この ような圧力気体の極間への供給により、 放電により除去された加工屑の ワイヤ電極及び被加工物表面への付着を防止することができる。 気中ヮ ィャ放電加工は、 このような気体供給手段 9 a及び 9 bを用いずに、 大 気中で行うこともできる。 The gas supply means 9a and 9b can be realized by, for example, forming a nozzle around the wire electrode la and supplying a pressurized gas. By supplying the pressurized gas between the electrodes, it is possible to prevent the machining chips removed by the discharge from adhering to the wire electrode and the surface of the workpiece. The air discharge machining can be performed in the air without using such gas supply means 9a and 9b.
次に動作について説明する。 キヤプスタン口一ラ 1 1及びピンチロー ラ 1 2によりワイヤ電極 1 aを挟持して牽引しワイヤ電極 1 aを走行さ せ、 ワイヤ電極 1 aと被加工物 2を対向させ、 気体供給手段 9 a及び 9 bによりワイャ電極 1 aと被加工物 2との極間に気体 7を供給しながら, 前記極間に加工電力供給手段 1 8により放電エネルギである加工電力を 供給し、 位置決め手段である Xテーブル 1 3及び Yテーブル 1 4等によ りワイヤ電極 1 aと被加工物 2とを相対移動させて被加工物 2の仕上げ 加工を行う。 前記位置決め手段によるワイヤ電極 l aと被加工物 2との 相対位置決め制御及び電気加工条件の制御等は制御手段 1 9により統括 される。 さらに、 制御手段 1 9によりサ一ポアンプ 1 7を介して高周波 振動付与ァクチユエ一夕 1 0を構成する高周波振動子 1 0 b及び 1 0 c が駆動され、 先端係合部材 1 0 aを介してワイヤ電極 1 aに高周波振動 が付与される。 即ち、 ワイヤ電極 l aには、 高周波振動子 1 0 により 励起されるワイヤ電極 1 aに垂直な振動成分 (図中例えば X方向) と共 に、 高周波振動子 1 0 cにより励起されるワイヤ電極 1 aに平行な振動 成分 (図中例えば Z方向) も付与される。 このようにしてワイヤ電極 1 に付与される振動は定在波ではなく、 第 3図の (b ) に示すように、 ヮ
ィャ電極 1 aの振動モードの腹と節の位置が常に変化するような多重振 動となるように制御手段 1 9により制御される。 従って、 定在波振動の 場合のように被加工物の加工面に縞目模様の凹凸等が形成されることは ない。 Next, the operation will be described. The wire electrode 1a is pinched and pulled by the capstan opening 11 and the pinch roller 12 so that the wire electrode 1a runs, the wire electrode 1a and the workpiece 2 are opposed to each other, and the gas supply means 9a and While supplying gas 7 between the electrode between the wire electrode 1a and the workpiece 2 by 9b, machining power, which is discharge energy, is supplied by the machining power supply means 18 between the poles, and the positioning means X Finish the work 2 by relatively moving the wire electrode 1 a and the work 2 using the table 13 and the Y table 14. The control means 19 controls the relative positioning control of the wire electrode la and the workpiece 2 and the control of the electric machining conditions by the positioning means. Further, the high-frequency vibrators 10b and 10c constituting the high-frequency vibration applying function 10 are driven by the control means 19 through the support amplifier 17 and are driven through the tip engaging member 10a. High frequency vibration is applied to the wire electrode 1a. That is, the wire electrode la is excited by the high-frequency vibrator 10c together with the vibration component (for example, the X direction in the figure) perpendicular to the wire electrode 1a excited by the high-frequency vibrator 10c. A vibration component parallel to a (for example, Z direction in the figure) is also added. The vibration applied to the wire electrode 1 in this manner is not a standing wave, but as shown in FIG. The control means 19 is controlled so that multiple vibrations such that the positions of antinodes and nodes of the vibration mode of the input electrode 1a constantly change are obtained. Therefore, unlike in the case of the standing wave vibration, the processed surface of the workpiece does not have a striped pattern.
また、 このような高周波振動をワイヤ電極 1 aに付与しながら気中ヮ ィャ放電加工を行うことにより、 極間に発生する加工屑、 ガス等を効率 良く排除でき、 放電集中及び短絡の抑制作用があるため、 気中ワイヤ放 電加工が安定し、 加工速度が向上する。 従って、 加工生産性を向上する ことができるという効果を奏する。 In addition, by performing aerial wire discharge machining while applying such high-frequency vibration to the wire electrode 1a, machining dust, gas, and the like generated between the electrodes can be efficiently removed, thereby suppressing discharge concentration and short circuit. Since it has an effect, the aerial wire discharge processing is stable and the processing speed is improved. Therefore, there is an effect that processing productivity can be improved.
また、 高周波振動付与ァクチユエ一夕 1 0として先端係合部材 1 0 a を直接駆動するァクチユエ一夕である高周波振動子 1 0 b及び 1 0 cを 用いたため、 応答性が高く、 ワイヤ電極 l aの材質、 直径及びワイヤテ ンション等が変わった場合においても、 振動振幅及び周波数等を高精度 かつ安定に制御することができる。 特に気中放電加工においては、 液中 放電加工に比べ極間間隙が小さいと共にワイヤ電極の振幅の制御が困難 であり、 前記のような直接駆動方式の高周波振動付与ァクチユエ一夕 1 0を用いて高精度の制御を行う必要がある。 In addition, since the high-frequency oscillators 10b and 10c, which are the actuators that directly drive the tip engaging member 10a, are used as the high-frequency vibration applying actuator 10, the response is high, and the wire electrode la Even when the material, diameter, wire tension, and the like change, the vibration amplitude, frequency, and the like can be controlled with high accuracy and stability. In particular, in the electric discharge machining, the gap between the electrodes is smaller than that in the electric discharge machining, and it is difficult to control the amplitude of the wire electrode. Therefore, the direct drive type high frequency vibration applying actuator 10 as described above is used. It is necessary to perform high-precision control.
以上の説明においては、 高周波振動付与ァクチユエ一夕 1 0を構成す る高周波振動子として、 例えば高周波振動子 1 0 b及び 1 0 cからなる 2自由度のァクチユエ一夕を用いる場合を示したが、 例えば X方向、 Y 方向及び Z方向のワイヤ電極の振動を励起するような 3自由度以上のァ クチユエ一夕を用いてもよい。 In the above description, the case where the two-degree-of-freedom actuator consisting of the high-frequency oscillators 10b and 10c is used as the high-frequency oscillator constituting the high-frequency vibration applying actuator 10 has been described. For example, an actuator having three or more degrees of freedom to excite the vibration of the wire electrode in the X direction, the Y direction, and the Z direction may be used.
また、 以上の説明においては、 高周波振動付与手段によりワイヤ電極 1 aに高周波振動を付与する場合について説明したが、 ワイヤ電極 1 a と被加工物 2とを相対的に高周波振動させればよいため、 ワイヤ電極 1 aではなく被加工物 2に高周波振動を付与してもよい。
また、 以上の説明においては、 荒加工を加工液中で行い、 仕上げ加工 を気中で行う場合について説明したが、 仕上げ加工をミスト中で行う場 合においても同様の効果を奏する。 産業上の利用可能性 Further, in the above description, the case where the high frequency vibration is applied to the wire electrode 1a by the high frequency vibration applying means has been described. However, it is sufficient that the wire electrode 1a and the workpiece 2 are relatively high frequency vibrated. Alternatively, high frequency vibration may be applied to the workpiece 2 instead of the wire electrode 1a. In the above description, the case where the roughing is performed in the working fluid and the finishing is performed in the air has been described. However, the same effect can be obtained when the finishing is performed in the mist. Industrial applicability
以上のように、 この発明に係るワイヤ放電加工方法及び装置は、 特に 高精度放電加工作業に用いられるのに適している。
As described above, the wire electric discharge machining method and apparatus according to the present invention are particularly suitable for being used for high precision electric discharge machining.
Claims
1 . ワイヤ電極と被加工物との極間に放電を発生させて前記被加工物 を加工するワイヤ放電加工方法において、 1. In a wire electric discharge machining method of machining a workpiece by generating an electric discharge between a wire electrode and a workpiece,
加工液中にて荒加工を行う第 1の工程と、 A first step of performing rough machining in a machining fluid,
気中又はミスト中にて仕上げ加工を行う第 2の工程とを備え、 前記第 2の工程において、 前記ワイヤ電極と被加工物とを相対 に高 周波振動させながら加工を行うことを特徴とするワイヤ放電加工方法。 A second step of performing finishing processing in the air or in a mist, wherein the second step performs the processing while relatively vibrating the wire electrode and the workpiece with high frequency. Wire electric discharge machining method.
2 . ワイヤ電極と被加工物との極間に放電を発生させて前記被加工物 を加工するワイヤ放電加工方法において、 2. A wire electric discharge machining method for machining the workpiece by generating an electric discharge between the wire electrode and the workpiece.
加工液中にて荒加工を行う第 1の工程と、 A first step of performing rough machining in a machining fluid,
ミスト中にて仕上げ加工を行う第 2の工程と、 A second step of finishing in the mist,
気中にて仕上げ加工を行う第 3の工程を備え、 Equipped with a third step of finishing in the air,
前記第 2の工程及び第 3の工程において、 前記ワイヤ電極と被加工物 とを相対的こ高周波振動させながら加工を行うことを特徴とするワイヤ 放電加工方法。 , In the second and third steps, a wire electric discharge machining method is characterized in that machining is performed while the wire electrode and the workpiece are vibrated relative to each other at a high frequency. ,
3 . 請求の範囲 1又は 2において、 前記ワイヤ電極と被加工物との相 対的な高周波振動が定在波とならないように制御しながら加工を行うこ とを特徴とするワイヤ放電加工方法。 3. The wire electric discharge machining method according to claim 1, wherein the machining is performed while controlling the relative high frequency vibration between the wire electrode and the workpiece so as not to be a standing wave.
4 . 加工電力供給手段によりワイヤ電極と被加工物との極間に放電工 ネルギを供給し、 位置決め手段により前記ワイヤ電極及び被加工物を相 対移動させて、 気中又はミスト中にて前記被加工物を加工するワイヤ放 電加工装置において、
前記ワイヤ電極と被加工物とを相対的に高周波振動させる高周波振動 付与手段と、 4. Discharge energy is supplied between the wire electrode and the workpiece by the processing power supply means, and the wire electrode and the workpiece are moved relative to each other by the positioning means. In wire electric discharge machines that process workpieces, High-frequency vibration applying means for relatively high-frequency vibration of the wire electrode and the workpiece;
前記高周波振動付与手段を制御する制御手段とを備えたことを特徴と するワイヤ放電加工装置。 , Control means for controlling the high-frequency vibration applying means. ,
5 . 請求の範囲 4において、 前記高周波振動付与手段が前記ワイヤ電 極走行方向と直交及び平行方向の 2自由度以上の高周波振動子を有し、 前記制御手段により前記ワイヤ電極と被加工物との相対的な高周波振 動が定在波とならないように前記高周波振動子を制御することを特徴と するワイヤ放電加工装置。 5. In Claim 4, the high-frequency vibration applying means has a high-frequency vibrator having two or more degrees of freedom in directions perpendicular and parallel to the wire electrode traveling direction, and the control means controls the wire electrode and the workpiece. A wire electric discharge machine characterized by controlling the high-frequency vibrator so that the relative high-frequency vibration does not become a standing wave.
6 . 請求の範囲 5において、 前記高周波振動子が圧電素子、 磁歪素子、 超音波モー夕又はリニアモータ等の直接駆動ァクチユエ一夕であること を特徴とするワイヤ放電加工装置。
6. The wire electric discharge machine according to claim 5, wherein the high-frequency vibrator is a directly driven actuator such as a piezoelectric element, a magnetostrictive element, an ultrasonic motor, or a linear motor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2001/000215 WO2002055250A1 (en) | 2001-01-16 | 2001-01-16 | Wire electric discharge machining method and device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2001/000215 WO2002055250A1 (en) | 2001-01-16 | 2001-01-16 | Wire electric discharge machining method and device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2002055250A1 true WO2002055250A1 (en) | 2002-07-18 |
Family
ID=11736914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2001/000215 WO2002055250A1 (en) | 2001-01-16 | 2001-01-16 | Wire electric discharge machining method and device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2002055250A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103551688A (en) * | 2013-10-25 | 2014-02-05 | 南京航空航天大学 | Method and device for improving electric spark high-speed piercing finished surface integrity |
CN109175551A (en) * | 2018-10-13 | 2019-01-11 | 中北大学 | Electrical discharge machining galvanic corrosion product discharge method |
CN109175550A (en) * | 2018-10-13 | 2019-01-11 | 中北大学 | Electrical discharge machining galvanic corrosion product discharger |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5676336A (en) * | 1979-11-21 | 1981-06-23 | Mitsubishi Electric Corp | Wire cut electric spark machining device |
JPS5757208B2 (en) * | 1976-08-19 | 1982-12-03 | Inoue Japax Res | |
JPH09239622A (en) * | 1996-03-02 | 1997-09-16 | Sodick Co Ltd | Aerial electric dischage machining method |
-
2001
- 2001-01-16 WO PCT/JP2001/000215 patent/WO2002055250A1/en active Search and Examination
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5757208B2 (en) * | 1976-08-19 | 1982-12-03 | Inoue Japax Res | |
JPS5676336A (en) * | 1979-11-21 | 1981-06-23 | Mitsubishi Electric Corp | Wire cut electric spark machining device |
JPH09239622A (en) * | 1996-03-02 | 1997-09-16 | Sodick Co Ltd | Aerial electric dischage machining method |
Non-Patent Citations (1)
Title |
---|
Kikai Gijutsu, Vol. 48, No. 5, May 2000 (Tokyo), Masanori KUNIEDA, "Houden Kakou ni Breakthrough wo motarasu Gijutsu Doukou", pages 18-22 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103551688A (en) * | 2013-10-25 | 2014-02-05 | 南京航空航天大学 | Method and device for improving electric spark high-speed piercing finished surface integrity |
CN103551688B (en) * | 2013-10-25 | 2016-03-02 | 南京航空航天大学 | A kind of method and device improving electric spark high speed perforation machining surface integrity |
CN109175551A (en) * | 2018-10-13 | 2019-01-11 | 中北大学 | Electrical discharge machining galvanic corrosion product discharge method |
CN109175550A (en) * | 2018-10-13 | 2019-01-11 | 中北大学 | Electrical discharge machining galvanic corrosion product discharger |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPWO2002040208A1 (en) | Wire electric discharge machining method and apparatus | |
WO2002024389A9 (en) | Electric discharge machining device and electric discharge machining method | |
JP2002036001A (en) | Cutting method, cutting device, tool holding device, optical element, and molding die for optical element | |
WO2002055250A1 (en) | Wire electric discharge machining method and device | |
JPWO2002028581A1 (en) | Wire electric discharge machining method and apparatus | |
WO2002064299A1 (en) | Method and apparatus for electrodischarge wire machining | |
US6903297B2 (en) | Wire electric-discharge machining method and device | |
US4358655A (en) | Method and apparatus for electroerosion machining with a vibrating wire electrode | |
US4383159A (en) | Method of and apparatus for electrical machining with a vibrating wire electrode | |
JP2962583B2 (en) | Strain-free precision numerical control processing method and apparatus by radical reaction | |
JP4321308B2 (en) | Plasma generation method and apparatus | |
WO2002000384A1 (en) | Method and apparatus for electrodischarge wire machining | |
WO2002000383A1 (en) | Method of electrodischarge wire machining | |
JP5027982B2 (en) | EDM machine | |
JP4433630B2 (en) | Air discharge machining apparatus and machining method | |
JP4724087B2 (en) | EDM machine | |
WO1994017947A1 (en) | Die sinking electrical discharge apparatus | |
JPS6111733B2 (en) | ||
JPWO2002040209A1 (en) | Wire electric discharge machining method and apparatus | |
JP4567899B2 (en) | Fine shaft forming method and apparatus | |
JP2018187726A (en) | Vibration cutting device and vibration apparatus | |
JP2006123108A (en) | Electric discharging device | |
JPS646177Y2 (en) | ||
JP2004216496A (en) | Aerial discharge machining method | |
WO2001034333A1 (en) | Electrical discharge surface treating method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CH CN DE JP KR US |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |