WO2002054111A1 - Procede de diagraphie de capacite et serie d'appareils de diagraphie de resistivite complexe - Google Patents

Procede de diagraphie de capacite et serie d'appareils de diagraphie de resistivite complexe Download PDF

Info

Publication number
WO2002054111A1
WO2002054111A1 PCT/CN2001/001654 CN0101654W WO02054111A1 WO 2002054111 A1 WO2002054111 A1 WO 2002054111A1 CN 0101654 W CN0101654 W CN 0101654W WO 02054111 A1 WO02054111 A1 WO 02054111A1
Authority
WO
WIPO (PCT)
Prior art keywords
logging
logging tool
formation
electrode system
resistivity
Prior art date
Application number
PCT/CN2001/001654
Other languages
English (en)
Chinese (zh)
Inventor
Yicheng He
Youming Deng
Jiange Liu
Youzhi Lin
Original Assignee
Well Logging Company Of Xinjiang Petroleum Administration Bureau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Well Logging Company Of Xinjiang Petroleum Administration Bureau filed Critical Well Logging Company Of Xinjiang Petroleum Administration Bureau
Publication of WO2002054111A1 publication Critical patent/WO2002054111A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B49/00Testing the nature of borehole walls; Formation testing; Methods or apparatus for obtaining samples of soil or well fluids, specially adapted to earth drilling or wells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/18Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging
    • G01V3/26Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation specially adapted for well-logging operating with magnetic or electric fields produced or modified either by the surrounding earth formation or by the detecting device

Definitions

  • the invention relates to a logging method in petroleum geological exploration and development and a logging instrument used by using the method.
  • the main way to identify oil and gas layers is to measure formation resistivity and use the Archie model to determine oil and gas saturation.
  • This method is affected by factors such as double mineralization water, argillaceous content, cation exchange capacity, and wettability, and the interpretation coincidence rate is only about 70%.
  • the resistivity of low-resistance oil and gas layers or oil and water layers is similar, it is more difficult to identify oil and water layers.
  • the instruments used to measure the resistivity of the formation are mainly dual lateral logging tools and microsphere focusing (or microlateral) logging tools. These instruments can only be used to measure the resistivity of the formation and have certain limitations.
  • the present invention adopts a method for measuring formation capacitance characteristics to conduct research on hydrocarbon saturation.
  • the purpose is to provide a method for measuring the capacitance characteristics of the formation, which can greatly improve the interpretation compliance rate, so that the oil and gas content of the formation can be proved more accurately. Because the formation capacitance characteristics change with the increase of oil and gas saturation, this method can intuitively and accurately discover the oil and gas layers, and the instruments made using this method can accurately measure many parameters of the formation. In addition, the logging instrument is easy to manufacture and use, and the measurement data is accurate.
  • Figure 1 is a schematic diagram of formation electrical characteristics.
  • Figure 2 is an equivalent schematic diagram of oil-bearing formations.
  • Figure 3 is a block diagram of the complex resistivity logging tool.
  • Figure 4 is a schematic diagram of core complex resistivity measurement by constant current method.
  • the invention is achieved by: Capacitance logging method
  • the logging method used in the present invention is to use the method and principle for measuring core capacitance characteristics used on the ground to measure the capacitance characteristics of a downhole formation.
  • core capacitance characteristics on the ground including: capacitive bridge measurement, charge and discharge area measurement, absorption circuit measurement, resonance circuit measurement, and complex resistivity measurement.
  • Various methods are used in The principle of surface core measurement is the same as that of underground capacitance measurement.
  • the complex resistivity measurement method using the ground constant current method to measure the core complex resistivity is taken as an example.
  • An AC constant current source in series with a current measuring device is added to both ends of the cylindrical core, so that the constant current source, the current measuring device, and the core form a closed loop.
  • the current measuring device is used to measure the current value in the circuit loop. I; Add two ring-shaped measuring electrodes M, N in the middle of the core, and measure the potential difference AV between ⁇ N by a measuring voltmeter between the measuring electrodes.
  • the core resistivity ⁇ has the following relationship with I and AV:
  • k is the electrode coefficient
  • the measured resistivity of the core can be approximated as the pure resistance characteristic of the core.
  • the measured core resistivity is the measured core.
  • the complex resistivity is the mixed characteristic of core impedance and capacitive reactance.
  • the geoelectrical model established by the present invention is:
  • the rock skeleton is non-conductive, and the conductive effect is completed by the muddy bound water on the surface of the skeleton, the crystal water, the water film on the surface of the sand grains, and the liquid in the pores.
  • Sand is a micro-resistor.
  • the combination of micro-resistors in rock is both the resistance of a combination and the electricity of a combination.
  • Capacitive series and parallel networks form a conductive ground plane (as shown in Figure 1).
  • the formation When the formation pores are filled with non-conductive oil and gas, the formation is regarded as an equivalent network of resistance and capacitance in parallel (as shown in Figure 2); when the formation pores are filled with conductive water, the capacitance characteristics are weakened, and the formation is approximately pure resistance Conductive.
  • Table 1 shows a statistical table of the oil and gas display coincidence rate measured using this logging method and confirmed by drilling coring data. The coincidence rate reaches 100%.
  • Complex resistivity logging tool A logging tool that implements the capacitive logging method.
  • the logging tool shown in Figure 3 is used, including: multi-frequency signal source 1, modulated wave current Source 2 (the number is 2 or more, the actual number depends on the requirements), Probe 3 (the number, shape, geometric size, and arrangement are according to requirements), voltage measurement circuit 4, current measurement circuit 5 , Transmission channel 6 and ground computing system 7.
  • Compliance rate column “+” indicates compliance; “-” indicates non-compliance.
  • the multi-frequency signal source 1 generates one or more frequency signals with a frequency change within a range of 30 Hz to 300 KHz, and transmits the signal to one or more modulated wave current sources 2, which are modulated by the modulated wave current source and sent to different Probe 3 in the detection range.
  • the probe sends the modulated wave to the voltage measurement signal and current measurement signal of the corresponding frequency generated by the formation and sends it to the voltage measurement circuit 4 and the current measurement circuit 5, respectively.
  • the voltage measurement circuit 4 and the current measurement circuit 5 The mixed signals of different frequencies are sorted and sorted and then sent to the transmission channel 6, and the transmission channel 6 sends the sorted voltage and current signals to the ground computing system 7.
  • the ground control acquisition and calculation system calculates the low-frequency resistivity R and the high-frequency complex resistivity Z.
  • the electrical formula ZI Xc / (R 2 * X C 2 ) 1/2 the imaginary part X ⁇ is calculated.
  • the higher the R / Z ratio the higher the oil and gas saturation, and the conventional dielectric constant to identify oil, gas, and water methods.
  • Another solution of the complex resistivity tool is to use only a high-frequency power source to measure the complex resistivity Z of the formation, and then combine the low-frequency resistivity R of the conventional logging data to calculate the same parameters as the previous solution.
  • the instrument consists of a high-frequency oscillator, a high-frequency current source, a probe, a voltage measurement circuit, a current measurement circuit, a transmission channel, and a ground control acquisition and calculation system.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Physics & Mathematics (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

L'invention se rapporte à un procédé de diagraphie mis en oeuvre en prospection pétrolière et à un appareil de diagraphie utilisé par ledit procédé. Ce procédé de diagraphie met en oeuvre des méthodes et des principes de mesure des caractéristiques de capacité de la carotte au niveau de la surface terrestre en mesurant les caractéristiques de capacité des couches du puits. Cet appareil de diagraphie comporte une source de signaux multifréquences, une source de courant à ondes modulées, une sonde, des circuits de mesure de la tension, des circuits de mesure du courant, des canaux de transmission et un système informatique situé au niveau de la surface terrestre. Les avantages de cette invention sont les suivants: le procédé de diagraphie permet de trouver précisément et directement les couches contenant du gaz ou du pétrole, au moyen d'une perception sensorielle, du fait de la mise en oeuvre du procédé de mesure des caractéristiques de capacité des couches et du fait que ces caractéristiques de capacité des couches varient avec l'accroissement de la saturation en gaz et en pétrole; cet appareil de diagraphie peut être facilement fabriqué et utilisé et il permet une mesure précise des données.
PCT/CN2001/001654 2001-01-05 2001-12-30 Procede de diagraphie de capacite et serie d'appareils de diagraphie de resistivite complexe WO2002054111A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN01101592.6 2001-01-05
CN01101592.6A CN1363844A (zh) 2001-01-05 2001-01-05 电容测井方法及复电阻率系列测井仪器

Publications (1)

Publication Number Publication Date
WO2002054111A1 true WO2002054111A1 (fr) 2002-07-11

Family

ID=4652152

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2001/001654 WO2002054111A1 (fr) 2001-01-05 2001-12-30 Procede de diagraphie de capacite et serie d'appareils de diagraphie de resistivite complexe

Country Status (2)

Country Link
CN (1) CN1363844A (fr)
WO (1) WO2002054111A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101858988B (zh) * 2009-04-08 2012-08-15 中国石油天然气集团公司 一种大地电磁信号采集方法与装置
CN112878995A (zh) * 2021-03-10 2021-06-01 中国石油天然气集团有限公司 基于近钻头流体介电特性测量的井下溢流检测系统
CN113039447A (zh) * 2018-09-11 2021-06-25 威力登激光雷达美国有限公司 用于在恒定干扰环境中检测电磁信号的系统和方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9045973B2 (en) * 2011-12-20 2015-06-02 General Electric Company System and method for monitoring down-hole fluids
US10018613B2 (en) 2006-11-16 2018-07-10 General Electric Company Sensing system and method for analyzing a fluid at an industrial site
US10914698B2 (en) 2006-11-16 2021-02-09 General Electric Company Sensing method and system
US9658178B2 (en) 2012-09-28 2017-05-23 General Electric Company Sensor systems for measuring an interface level in a multi-phase fluid composition
CN101245702B (zh) * 2008-01-03 2013-02-27 杭州瑞利声电技术公司 恒功率双侧向测井仪
US8542023B2 (en) 2010-11-09 2013-09-24 General Electric Company Highly selective chemical and biological sensors
US9488635B2 (en) * 2010-12-21 2016-11-08 The Hong Kong University Of Science And Technology Pore structure analyzer based on non-contact impedance measurement for cement-based materials
JP6251270B2 (ja) 2012-08-22 2017-12-20 ゼネラル・エレクトリック・カンパニイ 機械の動作状態を測定するためのワイヤレスシステムおよび方法
US10598650B2 (en) 2012-08-22 2020-03-24 General Electric Company System and method for measuring an operative condition of a machine
US10684268B2 (en) 2012-09-28 2020-06-16 Bl Technologies, Inc. Sensor systems for measuring an interface level in a multi-phase fluid composition
CN104122593B (zh) 2013-04-26 2016-10-19 邓友明 一种对勘探测井的电容率频散测量方法和应用方法
CN103643947B (zh) * 2013-12-16 2016-08-17 西南石油大学 一种双电频谱测井仪器与方法
CN105201497B (zh) * 2015-10-09 2018-03-20 王伟男 一种基于地层电阻抗的测井方法及系统
CN105484740B (zh) * 2015-12-04 2018-06-22 中国石油天然气集团公司 一种用于探测地层复电阻率的多频探测装置
CN109270252A (zh) * 2018-11-09 2019-01-25 浙江海洋大学 一种流动相石油污染多孔介质运移的实验装置及方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU438964A1 (ru) * 1972-09-20 1974-08-05 Научно-Исследовательская Лаборатория Физико-Химической Механики Материалов И Технологических Процессов Датчик дл скважинного прибора
SU721790A1 (ru) * 1972-04-14 1980-03-15 Краснодарский Филиал Всесоюзного Научно-Исследовательского Института Геофизических Методов Разведки Устройство дл акустического каротажа
CN86105499A (zh) * 1986-08-19 1988-03-02 李洪刚 超音速螺旋桨
CN87100047A (zh) * 1987-01-06 1988-04-13 哈尔滨工业大学 深浅并测三侧向测井仪
CN1032379A (zh) * 1987-09-30 1989-04-12 大庆石油管理局测井公司 自然电流与环自然电位测井装置
CN1033673A (zh) * 1987-10-30 1989-07-05 施卢默格海外有限公司 测井装置和方法
CN1045866A (zh) * 1989-03-18 1990-10-03 石油工业部石油勘探开发科学研究院油气田开发研究所 全梯度合成测井方法
CN1125483A (zh) * 1993-06-10 1996-06-26 国际壳牌研究有限公司 电测井系统
CN1229876A (zh) * 1999-03-30 1999-09-29 石油大学(北京) 全三维电阻率测井方法
CN1243958A (zh) * 1998-08-03 2000-02-09 邓友明 储层流体性质测量方法及其设备
CN1274426A (zh) * 1997-10-08 2000-11-22 国际壳牌研究有限公司 电阻率测井校正方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU721790A1 (ru) * 1972-04-14 1980-03-15 Краснодарский Филиал Всесоюзного Научно-Исследовательского Института Геофизических Методов Разведки Устройство дл акустического каротажа
SU438964A1 (ru) * 1972-09-20 1974-08-05 Научно-Исследовательская Лаборатория Физико-Химической Механики Материалов И Технологических Процессов Датчик дл скважинного прибора
CN86105499A (zh) * 1986-08-19 1988-03-02 李洪刚 超音速螺旋桨
CN87100047A (zh) * 1987-01-06 1988-04-13 哈尔滨工业大学 深浅并测三侧向测井仪
CN1032379A (zh) * 1987-09-30 1989-04-12 大庆石油管理局测井公司 自然电流与环自然电位测井装置
CN1033673A (zh) * 1987-10-30 1989-07-05 施卢默格海外有限公司 测井装置和方法
CN1045866A (zh) * 1989-03-18 1990-10-03 石油工业部石油勘探开发科学研究院油气田开发研究所 全梯度合成测井方法
CN1125483A (zh) * 1993-06-10 1996-06-26 国际壳牌研究有限公司 电测井系统
CN1274426A (zh) * 1997-10-08 2000-11-22 国际壳牌研究有限公司 电阻率测井校正方法
CN1243958A (zh) * 1998-08-03 2000-02-09 邓友明 储层流体性质测量方法及其设备
CN1229876A (zh) * 1999-03-30 1999-09-29 石油大学(北京) 全三维电阻率测井方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101858988B (zh) * 2009-04-08 2012-08-15 中国石油天然气集团公司 一种大地电磁信号采集方法与装置
CN113039447A (zh) * 2018-09-11 2021-06-25 威力登激光雷达美国有限公司 用于在恒定干扰环境中检测电磁信号的系统和方法
CN112878995A (zh) * 2021-03-10 2021-06-01 中国石油天然气集团有限公司 基于近钻头流体介电特性测量的井下溢流检测系统
CN112878995B (zh) * 2021-03-10 2024-06-07 中国石油天然气集团有限公司 基于近钻头流体介电特性测量的井下溢流检测系统

Also Published As

Publication number Publication date
CN1363844A (zh) 2002-08-14

Similar Documents

Publication Publication Date Title
WO2002054111A1 (fr) Procede de diagraphie de capacite et serie d'appareils de diagraphie de resistivite complexe
US6809521B2 (en) Apparatus and method for wellbore resistivity measurements in oil-based muds using capacitive coupling
JPH02500387A (ja) 枠付きの井戸により貫通された地層における導電度測定
CN101669044A (zh) 用于确定储层地层特性的宽带em测量的应用
CN104122593B (zh) 一种对勘探测井的电容率频散测量方法和应用方法
CN102071931B (zh) 八臂全方位三维侧向测井方法及测井仪
MX2015000136A (es) Sistema y metodo de enfoque de un lateroperfil de arreglo.
AU2012363900B2 (en) Focused array laterolog tool
Revil et al. Complex conductivity of tight sandstones
CN111594154A (zh) 一种测量钻头前方地层电阻率的装置及方法
CN110094195A (zh) 一种基于凹陷电极结构的油基泥浆电成像测井方法
CN106837320A (zh) 一种极板内部发射回流的电成像测量装置及方法
Xi et al. Chromite mapping using induced polarization method based on spread spectrum technology
CN105332697A (zh) 一种测量地层垂直电导率的阵列共面线圈系
CN111948720B (zh) 一种地下导体天线效应压裂监测方法
CN108798656B (zh) 一种基于随钻测井仪器实现电阻率测量的方法及装置
Owen et al. The guard electrode logging system
CN107861160B (zh) 含天然气水合物多孔介质阻抗测量装置的仿真和分析方法
Mosse et al. Dielectric dispersion logging in heavy oil: a case study from the Orinoco belt
US9581719B2 (en) Apparatus and method for oil-based mud formation imaging using resonators
Jiang et al. Measurements of complex resistivity spectrum for formation evaluation
CN108535783B (zh) 一种对电阻率断面进行层位校正的方法及装置
CN105317428B (zh) 确定电磁信道模型的方法及装置
CN206071580U (zh) 随钻电阻率测量装置及其方位电阻率工具
CN102692652B (zh) 一种对离子导电体的双电量测量方法及应用

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP