WO2002053899A1 - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
WO2002053899A1
WO2002053899A1 PCT/JP2001/010709 JP0110709W WO02053899A1 WO 2002053899 A1 WO2002053899 A1 WO 2002053899A1 JP 0110709 W JP0110709 W JP 0110709W WO 02053899 A1 WO02053899 A1 WO 02053899A1
Authority
WO
WIPO (PCT)
Prior art keywords
sleeve
internal combustion
combustion engine
aluminum alloy
cylinder
Prior art date
Application number
PCT/JP2001/010709
Other languages
French (fr)
Japanese (ja)
Inventor
Syuhei Adachi
Masahiro Mihashi
Kenji Araki
Daisuke Nakao
Original Assignee
Yamaha Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co., Ltd. filed Critical Yamaha Motor Co., Ltd.
Priority to JP2002554381A priority Critical patent/JPWO2002053899A1/en
Publication of WO2002053899A1 publication Critical patent/WO2002053899A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F1/16Cylinder liners of wet type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/02Light metals
    • F05C2201/021Aluminium

Definitions

  • the present invention relates to an internal combustion engine provided with a cylinder port having a sleeve arranged in a cylinder body.
  • a cylinder for an internal combustion engine is manufactured by wrapping a sleeve made of an aluminum alloy in a cylinder body made of an aluminum alloy, press-fitting or shrink-fitting the inner surface of the sleeve to apply a predetermined plating.
  • a cylinder block provided with a piston, and a piston is reciprocally housed in the cylinder of the cylinder block.
  • a cylinder block for an internal combustion engine is an important factor in achieving a high-performance engine with light weight and good thermal conductivity.
  • the aluminum alloy sleeve that is wrapped, press-fitted, or shrink-fitted into this cylinder hook for internal combustion engines has been manufactured by, for example, subjecting a forged pipe to a continuous, extruded pipe material to a predetermined process.
  • materials such as 12Si-13Cu-aluminum have been used for the sleeve material.
  • the cylinder body was made of a highly moldable material such as JISAC2B in the case of a mold structure with good moldability, and the die body was made of a material with good moldability such as JISADC12 material.
  • the cylinder body when wrapping an aluminum alloy sleeve in an aluminum alloy cylinder body, the cylinder body is placed around the sleeve. While the molten metal on the side surrounds and the sleeve is heated and thermally expanded, as the cylinder body is gradually cooled after filling, the sleeve is also cooled and thermally contracted. The molten metal on the cylinder body shrinks when solidified by cooling, and further shrinks as the temperature decreases. If the linear expansion coefficient of the sleeve is high, the tightening force of the sleeve due to solidification shrinkage on the cylinder body side and heat shrinkage after solidification is reduced.
  • the temperature of the sleeve becomes lower than the temperature at the time of wrapping (a value close to the melting temperature of the aluminum alloy). About 0 ° C).
  • the coefficient of linear expansion of the sleeve is high, the tightening force of the sleeve remains relaxed, and a gap may be generated between the sleeve and the cylinder body. The gap between the cylinder body and the sleeve blocks heat transfer from the sleeve to the cylinder body side, causing hot spots and seizure with the piston.
  • the cylinder block and the piston are still attached to the cylinder block even if the specified finish is applied and the horn is finished to increase the cylindricity and roundness of the inner circumference of the sleeve.
  • the sleeve expands thermally.
  • the rigidity increases around the plurality of bolt holes in the cylinder body around the sleeve where the cylinder head is bolted, and it resists thermal expansion, while it is the middle part of the bonnet hole around the sleeve Since the cylinder body has low resistance to thermal expansion, if the sleeve has a high linear expansion coefficient, the cylindricality and roundness of the inner circumference of the sleeve will not be maintained, and the combustion chamber and crank due to piston ring will not be maintained. Isolation from the chamber is reduced, oil consumption increases, and combustion gas blow-through The fuel consumption deteriorates and the oil deteriorates.
  • the sleeve material supporting the plating layer yielded and deteriorated due to the combustion pressure applied through the plating layer, the tension of the piston ring, and the like, and the plating layer could peel off from the sleeve material.
  • melt extruded material is used as the sleeve base material.
  • the melt extruded material has a relatively low silicon (Si) content, and the coefficient of linear expansion is the same as that of the surrounding cylinder. It is equal to or less than aluminum material such as main body.
  • the cylinder block of this combination is manufactured, for example, when the sleeve base material is wrapped by the aluminum die cast material, the sleeve base material and the aluminum alloy are solidified in the process of solidifying the aluminum die cast material. A gap may be formed between the objects, which may deteriorate the accuracy of the inner diameter grinding process in a subsequent process.
  • the presence of the gap causes the thermal conductivity to partially deteriorate, resulting in deterioration of the sleeve's cylindricity, roundness, and other shapes, leading to increased oil consumption and performance degradation.
  • the present invention has been made in view of such circumstances, and has an object to prevent seizure with a piston and to prevent deterioration of fuel efficiency and oil.
  • the subject is.
  • Another object of the present invention is to prevent yield deterioration of the sleeve material, improve rigidity and reduce deformation due to thermal expansion, and reduce oil consumption while maintaining output performance.
  • the goal is to make it possible. Disclosure of the invention
  • the present invention includes a cylinder block in which a sleeve made of an aluminum alloy is wrapped in a cylinder body made of aluminum alloy, and a coefficient of linear expansion of the sleeve is determined by a coefficient of linear expansion of the cylinder body.
  • An internal combustion engine characterized by being smaller. Since the linear expansion coefficient of the sleeve is smaller than the linear expansion coefficient of the cylinder body, the sleeve tightening force due to solidification shrinkage on the cylinder body side and heat shrinkage after solidification does not decrease. There is no gap between them, and heat transfer from the sleeve to the cylinder body is good, making it a hot spot and preventing seizure with the piston.
  • the coefficient of linear expansion of the sleeve is at least 10% smaller than the coefficient of linear expansion of the cylinder body, and the sleeve is caused by solidification shrinkage on the cylinder body side and heat shrinkage after solidification.
  • the tightening force does not decrease further, and there is no gap between the sleeve and the cylinder body.
  • the aluminum alloy forming the sleeve preferably contains silicon (S i) in an amount of 15 to 38% by weight, and the silicon (S i) has an average particle diameter of 2 to 10%. / zm of primary crystal silicon (S i), and the sleeve has an average particle diameter of 20 to 100 m. It is preferable that the aluminum-containing powder is formed by coagulation and solidification, so that the coefficient of linear expansion of the sleeve can be made smaller, and the thermal conductivity, workability and plating properties are not impaired.
  • the present invention includes a cylinder block having an aluminum alloy sleeve disposed in a cylinder body made of aluminum alloy, and a biston in the cylinder of the cylinder block. Is an internal combustion engine that reciprocates
  • the linear expansion coefficient of the piston, the sleeve, and the cylinder main body is characterized by that the cylinder main body has a sleeve ⁇ piston.
  • the aluminum alloy constituting the sleeve contains 1.8% by weight or less of magnesium (Mg), and the sleeve has a rock-well hardness (HRB) of 40 to 70.
  • Mg magnesium
  • HRB rock-well hardness
  • Cu copper
  • Mn manganese
  • Zn zinc
  • the content be 7 to 8.3% by weight, so that the yield deterioration of the sleeve can be prevented, the rigidity can be improved, and deformation due to thermal expansion can be reduced.
  • the inner peripheral surface of the sleeve is subjected to a force re-etching process and then subjected to plating, and the outer surface of the sleeve is provided with a height of 0.1 to 2 mm in a length direction.
  • Figure 1 is a cross-sectional view of a water-cooled 4-cycle internal combustion engine with a dry-type sleeve.
  • FIG. 2 is a cross-sectional view taken along the line II-II of FIG.
  • Figure 3 is a cross-sectional view of a water-cooled four-stroke internal combustion engine with a wet sleeve.
  • FIG. 4 is a diagram showing a manufacturing process of a cylinder hook for an internal combustion engine.
  • FIG. 5 is a view showing the state of the outer surface of the sleeve base material.
  • FIG. 6 is a diagram showing the relationship between the surface depth of the sleeve, the sleeve strength, and the interface gap.
  • Fig. 7 is a diagram showing Ni-P-SiC dispersed composite plating. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention is applied to a water-cooled or air-cooled four-stroke internal combustion engine and a two-stroke internal combustion engine having a cylinder opening for an internal combustion engine, and the sleeve is applied to a wet structure or a dry structure.
  • FIGS. 1 and 2 show a water-cooled four-cycle internal combustion engine having a dry-type sleeve, but the present invention is not limited to this embodiment.
  • the vehicle's 4-cycle engine 1 uses an in-line 4-cylinder engine. You.
  • the cylinder block 2 of the four-cycle engine 1 includes a cylinder body 2 a and a sleeve 3, and a piston 4 is provided on the sleeve 3 so as to be able to reciprocate.
  • the reciprocating motion of the piston 4 rotates a crankshaft (not shown) disposed in the crank chamber 7 via the conrod 5.
  • a cylinder head 6 is provided in the cylinder block 2, and is fixed to the cylinder block 2 by a bolt 8.
  • the piston 4 is provided with a piston ring 4b.
  • the cylinder head 6 is provided with a head cover 180.
  • a combustion chamber 12 is formed by the sleeve 3 of the cylinder block 2, the head 4 a of the piston 4, and the cylinder head 6.
  • a spark plug 86 is attached to the cylinder head 6 so as to face the combustion chamber 12.
  • An intake passage 13 and an exhaust passage 14 are formed in the cylinder head 6, and a collective intake pipe 15 is connected to the intake passage 13.
  • a collective exhaust pipe 16 is connected to the exhaust passage 14.
  • the opening of intake passage 13 facing combustion chamber 12 is opened and closed by intake valve 18, and the opening of exhaust passage 14 facing combustion chamber 12 is opened and closed by exhaust valve 19.
  • the camshafts 32 and 33 of the camshafts 32 and 33 are in contact with the tappets 30 and 31 of the intake valve 18 and the exhaust valve 19, respectively. By rotation, the cams 32a and 33a push the intake valve 18 and the exhaust valve 19 via the tapes 30 and 31 to open and close the intake passage 13 and the exhaust passage 14. I do.
  • a water jacket 20 is formed in the cylinder body 2 a of the cylinder block 2, and a water jacket 21 is formed in the cylinder head 6 in communication with the water jacket 20.
  • This water jacket 2 0, 2 1 The area around the combustion chamber 12 is cooled by cooling water, and the sleeve 3 has a dry structure.
  • Fig. 3 shows a water-cooled four-stroke internal combustion engine with a wet-type sleeve that cools around the combustion chamber 12 with the cooling water of the water jacket 20 and cools the sleeve 3 directly with the cooling water. It has become.
  • a 0 ring 85 is provided between the cylinder body 2a and the sleeve 3 for sealing.
  • a rapidly solidified powder material is formed (step S1), and the rapidly solidified powder material is cold isostatically pressed to form a sleeve material (bilette) (step S2) and vacuum-sintered (step S3). ). Thereafter, heating and hot extruding are performed to form a hollow hollow material and then cooled (step S4). Heat treatment is performed as needed, and the sleeve hollow material is cut and processed (step S5) to form the sleeve 3.
  • the sleeve 3 is wrapped in a cylinder body 2a (step S6), annealed (step S7), plated (step S8), and honed (step S9).
  • step S1 For the rapidly solidified powder material in step S1, for example, an ingot of an aluminum alloy containing silicon (Si), iron (Fe) and other components is prepared for an aluminum (A1) base material. This is melted at about 700 ° C or more, then sprayed in a mist and rapidly cooled and solidified at a cooling rate of 100 V / sec or more to obtain a rapidly solidified powder of aluminum alloy ( (Powder metal).
  • the primary crystal silicon has an average particle diameter of 20 / zm or less.
  • a rapidly solidified powder of an aluminum alloy containing silicon (S i) of preferably 2 to 10 ⁇ m in a range of 15 to 38% by weight is used.
  • aluminum (A1) is used as a base material, and silicon (Si) is 15 to 38% by weight, and iron (Fe) is 1.5%. Wt% or less, copper (Cu) 6.8 wt% or less, magnesium (Mg) 0.2 to 2 wt%, manganese (Mn) 1.5 wt% or less, chromium (Cr) 0.
  • Inclusion components of aluminum alloy rapidly solidified powder of 15 to 38% by weight with Si content increased based on 2000 series or 600 series aluminum alloy specified in JIS
  • silicon (S i) is added to increase wear resistance and seizure resistance by crystallizing hard primary and eutectic silicon grains in the metal structure. Is added to increase the strength at 200 ° C or higher by dispersing and strengthening the metal structure, and copper (Cu) and magnesium (Mg) increase the strength at 200 ° C or lower. It is added in order to increase the content. With respect to the added amount, desired wear resistance, seizure resistance, and necessary strength at high temperatures can be obtained.
  • the dissolved aluminum alloy is sprayed in a mist and solidified by rapid cooling, so that the aluminum alloy powder is flat.
  • the average particle size is about 20 to 100 / zm, and the silicon (S i) contained therein is hardened crystallized in the metal structure of the aluminum alloy that solidifies while powdering.
  • Primary crystal silicon (Si) has an average particle size of 20 / zm or less, preferably 2 to 10 m, and dispersed for each aluminum alloy particle.
  • step S2 the rapidly solidified powder of the aluminum alloy is placed in a mold having an opening in one or more directions, and the plunger is inserted into the mold through the opening while bleeding air. While maintaining the mold in a watertight state, a hydrostatic press is applied to the plunger to apply a hydrostatic pressure, and the rapidly solidified powder material is solidified.
  • step S3 the pre-solidified rapidly solidified powder material is placed in a sintering mold, and the inside of the mold is evacuated and heated and pressurized to form a denser solid mass with almost no air mixing. You.
  • step S4 the solid mass is housed in the extrusion die, heated, extruded from the die portion of the extrusion die into a hollow round bar, that is, a hollow element shape, cut at the cooled portion, and cut into a predetermined length. It is a hollow round bar.
  • the parameters in the process are adjusted so that the hardness of the hollow hollow material after extrusion and cooling becomes not less than the mouthwell hardness (HRB) 40.
  • step S5 the sleeve material is cut to a length, and the inner and outer shape and the end are processed to form a wrapping sleeve.
  • step S6 the sleeve 3 is wrapped around the cylinder main body 2a, and a cylinder die-cast molding that wraps around the sleeve 3 is performed.
  • the sleeve 3 is housed in a mold, and a part of the inner periphery of the sleeve is supported by a supporting member. Is conducted at high pressure. Then, machining of each part of cylinder block 2 and cylinder bores was performed.
  • the sleeve is reliably prevented from coming off even if the tightening force is reduced due to the difference in the coefficient of thermal expansion between the base material and the sleeve during operation. it can.
  • Such irregularities on the outer surface of the sleeve can be used to form fine cracks artificially by adjusting molding conditions such as extrusion speed and temperature when extruding billets. Can be. It is also possible to use a shot blast. In addition to shot blasting, it can be formed by other machining or pickling (etching) of the entire sleeve.
  • the sleeve and the base material are joined using low melting point solder to prevent the sleeve from coming off. You may try.
  • the shot blast means steel balls, carbide beads, stainless steel balls, zinc beads, glass beads with a particle size of 50 to 150 ⁇ m, river sand containing a lot of quartz with a slightly larger particle size, etc.
  • Annealing is performed in step S7.
  • the heat treatment conditions are adjusted so that the hardness of the sleeve 3 after the annealing becomes Rockwell hardness (HRB) 40 or more.
  • HRB Rockwell hardness
  • the plating in step S8 is a plating on the inner surface of the sleeve.
  • a pretreatment consisting of a degreasing treatment, an alkaline etching treatment, and a mixed acid etching treatment, and a base treatment alumite treatment are combined. It consists of five steps of stick processing, and water washing is performed after each step.
  • the inner layer of the sleeve is honed by honing (step S9) to reduce the thickness of the plating film to about 5 mm. 0 ⁇ m, possibly 20 / im ⁇ 100 ⁇ m and the surface roughness of the plating layer is less than 1.0 ⁇ m Rz.
  • the surface of the plating layer can be surely smoothed, the coefficient of friction when sliding the piston 4 and the piston ring 4b can be reduced, and the retention of engine oil can be improved.
  • the lubrication can be improved. Note that Rz is defined in B0601 of the JIS standard.
  • the sleeve 3 made of an aluminum alloy is wrapped in a cylinder body 2a made of an aluminum alloy
  • the sleeve 2 for an internal combustion engine is press-fitted and shrink-fitted. They may be placed.
  • a conventional extruded material is used for the sleeve base material.
  • the extruded material has a relatively low silicon content, and its thermal expansion coefficient is the same as that of the aluminum material of the surrounding cylinder body. It is equal to or less than that.
  • the sleeve base material is filled with the aluminum die cast material. Gaps may occur, which may degrade the accuracy of the inner diameter grinding process in the post-process, and the presence of the gaps may partially degrade the thermal conductivity. This leads to deterioration of the shape such as roundness, which leads to an increase in oil consumption and performance degradation.
  • forming the sleeve 3 with an aluminum alloy material having a silicon (Si) content of 15 to 38% by weight results in a gap between the sleeve base material and the aluminum material. It is effective to prevent the formation of such a layer.However, in the case of ordinary bodily materials, the primary crystal Si grains become several 10 m or more, so even if an attempt is made to form a plating layer on the surface, the adhesion is poor. During processing In addition to the occasional sticking and peeling, sufficient durability such as sticking and peeling during operation cannot be obtained.
  • the sleeve 3 is formed by coagulating and solidifying an aluminum alloy powder having an average particle diameter of 20 to 100 / zm, thereby forming this silicon (Si) into an average particle diameter of 2 to 100.
  • the aluminum alloy constituting the sleeve 3 contains 15 to 38% by weight of silicon (Si) as described above, and the linear expansion coefficient of the sleeve 3 is 15 to 22 (20%). 0 ° C) and smaller than the coefficient of linear expansion of the cylinder body 2a (for example, the coefficient of linear expansion of aluminum alloy ADC12 for JIS die casting 20 (at 200 ° C)).
  • the coefficient of linear expansion of the sleeve 3 is at least 10% smaller than the coefficient of linear expansion of the cylinder body 2a.
  • the molten metal on the cylinder body 2a side surrounds the outer periphery of the sleeve 3, and the sleeve 3 is heated and thermally expanded.
  • the sleeve 3 is also cooled and thermally contracts, and the molten metal on the cylinder body 2a side contracts when cooling and solidifying, and the temperature further increases.
  • heat shrinks as the temperature decreases, it contains 15 to 38% by weight of silicon (Si), and the coefficient of linear expansion of sleeve 3 is at least smaller than the coefficient of linear expansion of cylinder body 2a. 10% smaller value, the sleeve tightening force due to solidification shrinkage on the cylinder body 2a side and heat shrinkage after solidification is not relaxed, and a gap is created between the sleeve 3 and the cylinder body 2a Absent.
  • a rapidly solidified powder solidified extrusion forming material with a chemical composition of silicon alloy (S i) added to an aluminum alloy for the sleeve base material Forming a hollow round rod, a height of 0.1 to 2 mm, and continuous projections parallel to the length direction by adjusting the extrusion conditions, for example, extrusion speed, temperature, etc., or And uniformly distribute microcracks with a depth of 10 ⁇ ⁇ ⁇ 1 ⁇ ⁇ on the surface, or microcracks with a depth of 10 / zm to a maximum of 20% of the thickness of the sleeve base material on the surface.
  • the connection with the cylinder body 2a is strengthened and the heat Transmission can be made uniform.
  • the temperature of the sleeve 3 is lower than the temperature at the time of wrapping (a value close to the melting temperature of the aluminum alloy), but it is 100 ° C to 300 ° C since air cooling and water cooling are performed. 15 to 38% by weight of silicon (Si), and the coefficient of linear expansion of the sleeve 3 is at least 10% smaller than the coefficient of linear expansion of the cylinder body 2a.
  • Si silicon
  • the gap between the sleeve 3 and the cylinder body 2a is not generated, the cylindricity and roundness of the inner circumference of the sleeve are maintained, and the heat from the circumferential surface of the sleeve 3 is maintained.
  • the cylinder body 2a which is the middle part of the bolt hole on the outer periphery of the sleeve, has low resistance to thermal expansion, but contains 15 to 35% by weight of silicon (Si) and has a sleeve 3
  • the coefficient of linear expansion of the sleeve is at least 10% smaller than the coefficient of linear expansion of the cylinder body 2a, and the sleeve 3 has a small thermal expansion and maintains the cylindricity and roundness of the inner circumference of the sleeve.
  • the isolation between the combustion chamber 12 and the crank chamber 7 by the bis-toning ring 4b is improved, and it is possible to prevent an increase in oil consumption, deterioration in fuel efficiency due to combustion gas blow-through, and oil deterioration.
  • the silicon (Si) particle size is sufficiently small, 2 to 10 / zm, so that precipitation of Ni-P plating is not hindered. It is.
  • the aluminum alloy constituting the sleeve 3 contains silicon (Si), and the silicon (Si) has a primary crystal silicon having an average particle size of 2 to 10 lozm.
  • the silicon (S i) on the inner peripheral surface of the sleeve 3 is removed by an all-round leaching process, and irregularities are formed on the inner peripheral surface of the sleeve. Since the silicon (S i) particles are formed and the average particle size is small, fine irregularities can be formed densely, and the bonding area between the inner peripheral surface of the sleeve and the plating layer is increased, thereby further improving the bonding property. It has an anchor effect due to irregularities, and furthermore, the heat transfer area increases due to the increase in the coupling area, the heat of the combustion gas added to the plating layer can be quickly radiated, and the plating layer is separated. Unfortunately. '
  • Silicon (S i) is added to the aluminum alloy that constitutes the sleeve 3. 15 to 35% by weight, the silicon (S i) content is high and the average particle size of the silicon (S i) particles is small, so that finer irregularities can be densely formed.
  • the joint area between the inner peripheral surface of the sleeve and the plating layer is increased, and the joint property can be further improved. In other words, the heat from the inner peripheral surface of the sleeve 3 is transmitted well to the cylinder main body through the metal layer and the sleeve 3 main body, so that hot spots are hardly formed on the sleeve 3 surface. It is possible to prevent burn-in with the piston 4.
  • the sleeve material supporting the plating layer may yield and deteriorate due to the combustion pressure applied through the plating layer, the tension of the piston ring, and the like, and the plating layer may peel from the sleeve material.
  • the rigidity is increased by tightening the cylinder head, and the thermal expansion during operation is not uniform at each part in the circumferential direction of the sleeve. If the hardness is insufficient, the rigidity is low. Deformation due to thermal expansion in the middle part of the head tightening bolt hole is problematic, but silicon (S i) is added to the aluminum alloy of the sleeve by 15 to 38 weight.
  • % And magnesium (Mg) of 1.8% by weight or less, and the sleeve has a Rockwell hardness (HRB) of 40 to 70 to prevent yield deterioration of the sleeve 3 and improve rigidity. And due to thermal expansion Deformation can and child reduced.
  • HRB Rockwell hardness
  • At least one or more of copper (Cu), manganese (Mn), and zinc (Zn) are contained in the aluminum alloy constituting the sleeve in a total amount of 1.7 to 8.3% by weight. Therefore, it is possible to prevent yielding deterioration of the sleeve, improve rigidity, and reduce deformation due to thermal expansion. Further, when the cylinder block 2 is manufactured, for example, when the sleeve base material is wrapped by the aluminum die cast material, the sleeve base material and the aluminum die cast are solidified in the process of solidifying the aluminum die cast material.
  • Gaps are formed between the objects, which may deteriorate the accuracy of the inner diameter grinding process in the subsequent process.Furthermore, the presence of the gaps partially deteriorates the heat conductivity, so Deterioration of the shape, such as cylindricity and roundness, causes an increase in oil consumption and performance, but the sleeve 3, piston 4, and cylinder body 2a are (S i) is formed of an aluminum alloy, and the ratio of the linear expansion coefficients of the sleeve 3, the piston 4, and the cylinder body 2a is 16 to 17: 17 to 18: 20 to 2 Set to 1.
  • the ratio of the silicon (Si) content of the sleeve 3, the piston 4, and the cylinder body 2a is set to 25:17:12.
  • the ratio of the linear expansion coefficients of the piston 4, the sleeve 3, and the cylinder body 2a is set to 16:18:20, when the internal combustion engine is operated, the piston 4 accompanying the thermal expansion of the piston 4 It is possible to keep the change of the tongue clearance in an ideal state, thereby reducing the loss and the noise, and reducing the oil consumption while maintaining the output performance. be able to.
  • the use of an aluminum alloy material having a silicon (Si) content of 15 to 38% by weight causes a gap between the sleeve base material and the aluminum material.
  • the usual crystalline materials can have primary Si grains of several tens of tm or more, so even if an attempt is made to form a paint layer on the surface, the adhesion is poor. Not only does it cause peeling during machining, but also does not provide sufficient durability, such as peeling during operation.
  • the sleeve 3 is formed by agglomerating and solidifying an aluminum alloy powder having an average particle diameter of 20 to 100 ⁇ m, so that the silicon (S i) has an average particle diameter of 200 ⁇ m or less.
  • the silicon (Si) particle size is sufficiently small, not more than 20 / m, so that precipitation of Ni—P plating is not hindered. For this reason, adhesion of the plating can be ensured.
  • the aluminum alloy constituting the sleeve 3 contains silicon (Si), and the silicon (Si) is used as primary crystal silicon (Si) having an average particle diameter of 20 urn or less.
  • silicon (Si) on the inner peripheral surface of the sleeve is removed by the Al force re-etching processing, and irregularities are formed on the inner peripheral surface of the sleeve. Since the average particle diameter of the silicon (Si) particles is small, fine irregularities can be formed densely, and the bonding area between the inner peripheral surface of the sleeve and the plating layer increases, further improving the bonding performance.
  • Possible has an anchoring effect due to the unevenness, and furthermore, the heat transfer area increases due to the increase in the coupling area, the heat of the combustion gas added to the plating layer can be quickly radiated, and the plating layer is separated. Hateful.
  • the silicon (Si) content is high and the silicon (Si) particles are increased. Since the average particle diameter is small, finer irregularities can be formed densely, and the bonding area between the inner peripheral surface of the sleeve and the plating layer is increased, so that the bonding property can be further improved.
  • the sleeve 3 supporting the plating layer is subjected to the pressurizing and heating conditions during the vacuum sintering in step S3 and the cooling conditions after the powders have not been sufficiently bonded, or the heating and hot conditions in step S4.
  • Temperature environment and extrusion in extrusion By setting the diameter reduction ratio during extrusion, the shape of the extrusion opening of the mold, the cooling conditions after extrusion, or the sleeve temperature control (heating, warming or cooling, etc.) conditions during wrapping, or the annealing conditions, etc.
  • the mouth wall hardness (HRB) shall be 40 to 70.
  • the metal layer supporting portion of the sleeve 3 does not undergo plastic deformation. Hard to cause delamination. That is, it is possible to prevent the metal layer from falling off and the sleeve 3 from being abnormally worn, which adversely affects the engine durability.
  • a rapidly solidified powder solidification extrusion forming material having a chemical composition in which a base material of a JIS 2000 series or JIS 6000 series is added with 25% by weight of silicon (Si) to a sleeving base material.
  • the manufacturing process when using was manufactured by the process of FIG.
  • This rapidly solidified powder of an aluminum alloy based on the JIS 2000 system and containing silicon (S i) in an amount that gives a hypereutectic composition is based on aluminum (A 1).
  • silicon (Si) is 15 to 38% by weight
  • iron (Fe) is 1.5% by weight or less
  • copper (Cu) is 1.5 to 6.8% by weight
  • manganese (Mn) is not more than 0.2 to 1.2% by weight
  • chromium (Cr) is not more than 0.1% by weight
  • zinc (Zn) is not more than 0.3% by weight
  • Titanium (Ti) was set to 0.2% by weight or less.
  • the rapidly solidified powder of an aluminum alloy based on JIS 600 and added with an amount of silicon (Si) that becomes a hypereutectic composition is based on aluminum (A1).
  • silicon (S i) is 15 to 38% by weight
  • iron (F e) is less than 1.0% by weight
  • copper (Cu) is 0.4% by weight.
  • manganese (Mn) 0.8% by weight or less chromium (Cr) 0.35% by weight or less
  • Example 1 JIS 600-based 6 06 1 — 25 Si solidified solidified powder was used as the extruded material as a sleeve base material.
  • the Ni-P-SiC dispersed composite Wood was given.
  • Example 2 is a JIS 600-based system of 6 06 1 + 2 to 4 Fe—25 S i quenched solidified powder solidified extruded material used as a sleeve base material, and N i -P-S i C A dispersed composite plating was applied.
  • Example 3 JIS 2000 series 20 17 or 202 4—25 S i rapidly solidified powder solidified extruded material was used as a sleeve substrate, and a Ni—P—S i C dispersed composite plating was applied on the inner surface. gave.
  • the reduction of the oil consumption is an improvement of the cylinder deformation, and attention was paid to improving the contact of the sleeve after the integration.
  • the physical and mechanical properties of this sleeve material are compared and shown in Table 1.
  • the sleeve has a low linear expansion coefficient of aluminum as the base material and has a hard film formed on the inner surface.
  • the linear expansion coefficient ⁇ of the sleeve substrate was reduced compared to the ADC12, an aluminum alloy material of 12Si-3Cu. ⁇
  • the ratio of the linear expansion coefficient of the cylinder body ADC12, which is the wrapping material, to 0.85, and the tightening deformation when inserting the sleeve was improved.
  • the interfacial gap at the time of wrapping is reduced as shown in Table 2 by annealing at 250 ° C. for 1 hour and then cooling.
  • the interface gap between the sleeve and the cylinder body was measured at eight locations in the circumferential direction of the sleeve. In the case of the bore No 4, the mold cooling is stopped as abnormal.
  • extrusion was performed using a rapidly solidified powder solidified extrusion forming material, and by adjusting the extrusion processing conditions, for example, extrusion speed, temperature, etc., as shown in FIG.
  • extrusion processing conditions for example, extrusion speed, temperature, etc.
  • FIG. 1 On the outer surface of the substrate, continuous protrusions 100 with a height of 0.12 mm parallel to the length direction were formed, and a small crack 101 with a depth of 10 ⁇ mlmm was formed on the surface.
  • Figure 6 shows the relationship between the surface depth of the sleeve and the sleeve strength and interfacial gap. The depth of 10 ⁇ to 1 mm on the surface indicates that the sleeve strength is high and the interfacial gap is small. This is the optimal range of the depth, and this depth 10 II!
  • the surface has a depth of 10 nm to a maximum of 20% of the thickness of the sleeve base material, and the strength of the sleeve is large, and the interface gap can be reduced.
  • the bonding of the solid to the cylinder body 2 a is strengthened. And heat transfer can be made uniform.
  • Example 1 a Nigel-based dispersion method containing phosphorus and eutectoids was performed at a high speed, and nickel (Ni) -lin (P) -silicon carbide (Si) was used.
  • the dispersion method of C) is performed at high speed, and this Ni-P-SiC dispersion method has the following properties.
  • Ni-P-SiC dispersion plating When Ni-P-SiC dispersion plating is applied to the inner surface of the sleeve 3, the Ni-P matrix 51 shown in Fig. 7 is applied to the inner surface of the sleeve 3.
  • a plating film 50 containing eutectoid particles 52 of SiC and SiC is formed.
  • An oil pocket 53 composed of a horn is formed on the surface of the mask film 50 for lubrication (Fig. 7 (a)). Further, the sliding of the piston 5 during operation is performed.
  • Fig. 7 (b) hard silicon carbide (SiC) eutectoid particles 52 remain and Ni-P matrix 51 wears, as shown in Fig. 7 (b).
  • Oil pocket 54 occurs. Therefore, oil lubrication can be favorably performed over a long period of time.
  • Ni—P—SiC dispersion plating Ni—SiC dispersion plating
  • Ni—SiC dispersion plating Ni—SiC dispersion plating
  • hard chrome plating — P— S i C dispersion method, especially when heat-treated at about 350 ° C, has higher hardness than hard chrome method and does not contain phosphorus (P). Hardness is greatly increased compared to Tsuki. This indicates that the inclusion of phosphorus increases the hardness after heat treatment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Pistons, Piston Rings, And Cylinders (AREA)

Abstract

An internal combustion engine, comprising a cylinder block formed of an aluminum alloy sleeve cast in an aluminum alloy cast cylinder body, wherein the coefficient of linear expansion of the sleeve is smaller than that of the cylinder body; an internal combustion engine, comprising a cylinder block formed of an aluminum alloy sleeve disposed in an aluminum alloy cast cylinder body, wherein a piston is reciprocatingly stored in the cylinder of the cylinder block, and the coefficients of linear expansion of the sleeve, piston, and cylinder body are larger in that order as sleeve < piston < cylinder body.

Description

明細書 内燃機関 ' 技術分野  Description Internal Combustion Engine '' Technical Field
この発明は、 スリーブをシリ ンダ本体内に配置して構成したシリ ンダブ口 ックを備える内燃機関に関する。 背景技術  The present invention relates to an internal combustion engine provided with a cylinder port having a sleeve arranged in a cylinder body. Background art
内燃機関には、 アルミニウム合金製のスリーブを、 アルミニウム 合金铸造製のシリ ンダ本体に铸包み、 圧入、 あるいは焼き嵌めし、 スリーブ内面に所定のメ ツキを施すようにして製造する内燃機関用 のシリ ンダブロックを備え、 このシリ ンダブロックのシリ ンダ内に ビス トンを往復動可能に収納したものがある。 内燃機関用シリ ンダ プロックは軽量で良好な熱伝導性によって高性能ェンジンを成立さ せる重要な要素である。  For an internal combustion engine, a cylinder for an internal combustion engine is manufactured by wrapping a sleeve made of an aluminum alloy in a cylinder body made of an aluminum alloy, press-fitting or shrink-fitting the inner surface of the sleeve to apply a predetermined plating. There is a cylinder block provided with a piston, and a piston is reciprocally housed in the cylinder of the cylinder block. A cylinder block for an internal combustion engine is an important factor in achieving a high-performance engine with light weight and good thermal conductivity.
この内燃機関用のシリ ンダブ口ックに、 铸包み、 圧入、 あるいは 焼き嵌めされるアルミニゥム合金製のスリーブは、 例えば铸造パイ プゃ連続铸造押し出しパイプ材に所定の加工を施して製作していた。 また、 従来スリーブ材には、 1 2 S i 一 3 C u—アルミニウム材 等の材料を使用していた。 シリ ンダ本体は铸造性の良い金型铸造の 場合には J I S A C 2 B等、 ダイカス ト製造の場合には J I S A D C 1 2材等铸造性の良い材料を使用していた。  The aluminum alloy sleeve that is wrapped, press-fitted, or shrink-fitted into this cylinder hook for internal combustion engines has been manufactured by, for example, subjecting a forged pipe to a continuous, extruded pipe material to a predetermined process. . Conventionally, materials such as 12Si-13Cu-aluminum have been used for the sleeve material. The cylinder body was made of a highly moldable material such as JISAC2B in the case of a mold structure with good moldability, and the die body was made of a material with good moldability such as JISADC12 material.
ところで、 アルミニウム合金製のスリーブを、 アルミニウム合金 铸造のシリ ンダ本体に铸包む場合、 スリ一ブの外周にシリ ンダ本体 側の溶湯が取り囲み、 スリーブが加熱されて熱膨張する一方、 シリ ンダ本体が湯込め後次第に冷却されるに伴ってスリーブも冷却され て熱収縮する。 シリ ンダ本体側の溶湯は、 冷却凝固するとき収縮し、 さらに温度が低下するに伴って熱収縮する。 スリ一ブの線膨張係数 が高いと、 シリ ンダ本体側の凝固収縮及び凝固後の熱収縮によるス リーブ締め付け力が緩和されてしまう。 By the way, when wrapping an aluminum alloy sleeve in an aluminum alloy cylinder body, the cylinder body is placed around the sleeve. While the molten metal on the side surrounds and the sleeve is heated and thermally expanded, as the cylinder body is gradually cooled after filling, the sleeve is also cooled and thermally contracted. The molten metal on the cylinder body shrinks when solidified by cooling, and further shrinks as the temperature decreases. If the linear expansion coefficient of the sleeve is high, the tightening force of the sleeve due to solidification shrinkage on the cylinder body side and heat shrinkage after solidification is reduced.
また、 内燃機関の運転状態においてもスリ一ブの温度は铸包む時 の温度 (アルミニウム合金の溶融温度に近い値) より低くなる (空 冷、 水冷がなされるので、 1 0 0 °C〜 3 0 0 °C程度) 。 内燃機関で は、 スリーブの線膨張係数が高いと、 スリーブ締め付け力が緩和さ れたままであり、 シリ ンダ本体との間で隙間が発生する場合がある。 このシリ ンダ本体との間で隙間でスリ一ブからシリ ンダ本体側への 熱伝達が阻害され、 ホッ トスポッ ト化し、 ピス トンとの焼き付きが 発生したりする。  Also, in the operating state of the internal combustion engine, the temperature of the sleeve becomes lower than the temperature at the time of wrapping (a value close to the melting temperature of the aluminum alloy). About 0 ° C). In the internal combustion engine, if the coefficient of linear expansion of the sleeve is high, the tightening force of the sleeve remains relaxed, and a gap may be generated between the sleeve and the cylinder body. The gap between the cylinder body and the sleeve blocks heat transfer from the sleeve to the cylinder body side, causing hot spots and seizure with the piston.
また、 铸造み完了後 (常温状態) 、 所定のメ ツキを施し、 ホー二 ング仕上げをしてスリーブ内周の円筒度、 真円度を上げても、 シリ ンダブロ ックにクランク軸やピス ト ン等を組み付け、 さ らにシリ ン ダへッ ドをボルト締結して内燃機関として組み立て完了した後、 内 燃機関を運転すると、 スリーブが熱膨張する。 この時シリ ンダへッ ドがボルト締結されるスリ一ブ外周のシリ ンダ本体の複数のボルト 穴回りは剛性が上がり、 熱膨張に抵抗する一方、 スリーブ外周のボ ノレ ト穴の中間部となるシリ ンダ本体は熱膨張に対しての抵抗性は小 さいので、 スリ一ブの線膨張係数が高いとスリーブ内周の円筒度、 真円度が維持されず、 ピス トンリ ングによる燃焼室とクランク室と の隔離性が低下し、 オイル消費量の増大、 燃焼ガスの吹き抜けによ る燃費悪化、 オイル劣化が起きる。 Also, after completing the fabrication (normal temperature condition), the cylinder block and the piston are still attached to the cylinder block even if the specified finish is applied and the horn is finished to increase the cylindricity and roundness of the inner circumference of the sleeve. When the internal combustion engine is operated after the cylinder head has been assembled and the cylinder head has been bolted to complete the assembly of the internal combustion engine, the sleeve expands thermally. At this time, the rigidity increases around the plurality of bolt holes in the cylinder body around the sleeve where the cylinder head is bolted, and it resists thermal expansion, while it is the middle part of the bonnet hole around the sleeve Since the cylinder body has low resistance to thermal expansion, if the sleeve has a high linear expansion coefficient, the cylindricality and roundness of the inner circumference of the sleeve will not be maintained, and the combustion chamber and crank due to piston ring will not be maintained. Isolation from the chamber is reduced, oil consumption increases, and combustion gas blow-through The fuel consumption deteriorates and the oil deteriorates.
また、 メ ツキ層を介して加わる燃焼圧力、 ピス ト ンリ ングの張力 等により、 メ ツキ層を支えるスリーブ材が降伏劣化し、 メ ツキ層が ス リーブ材から剥離する可能性があった。  In addition, the sleeve material supporting the plating layer yielded and deteriorated due to the combustion pressure applied through the plating layer, the tension of the piston ring, and the like, and the plating layer could peel off from the sleeve material.
また、 シリ ンダへッ ド締め付けによる剛性ァップがあり、 運転時 の熱膨張がスリ一ブの円周方向の各部で均一になされない。 特に、 硬度が不足する場合は剛性が低く、 シリ ンダへッ ド締め付けポルト 穴の中間部での熱膨張による変形が大き くなる等の問題がある。  In addition, there is a rigidity gap by tightening the cylinder head, and the thermal expansion during operation is not uniform in each part of the sleeve in the circumferential direction. In particular, when the hardness is insufficient, the rigidity is low, and there are problems such as a large deformation due to thermal expansion in an intermediate portion of the cylinder head fastening port hole.
また、 アルミニウム合金製のスリーブを、 アルミニウム合金铸造 のシリ ンダ本体に铸包み、 圧入、 あるいは焼き嵌めするシリ ンダブ 口ックは、 軽量で良好な熱伝導性によって高性能エンジンを成立さ せる重要な要素である。 ところで、 スリーブ基材には、 例えば溶製 押し出し材が用いられる場合があり、 この場合溶製押し出し材は比 較的低いシリ コン (S i ) 含有量をもち、 線膨張係数は周囲のシリ ンダ本体等のアルミ二ゥム铸物材料と同等かそれ以下である。  In addition, aluminum alloy sleeves are wrapped in a cylinder body made of aluminum alloy, and press-fitted or shrink-fitted, which is important for achieving a high-performance engine with light weight and good thermal conductivity. Element. In some cases, for example, a melt extruded material is used as the sleeve base material. In this case, the melt extruded material has a relatively low silicon (Si) content, and the coefficient of linear expansion is the same as that of the surrounding cylinder. It is equal to or less than aluminum material such as main body.
この組み合わせのシリ ンダブロックを製造する際、 例えばスリ一 ブ基材をアルミニゥムダイカス ト铸物によって铸包む際に、 アルミ ニゥムダイカス ト铸物が凝固する過程において、 スリーブ基材とァ ルミ二ゥム鍀物の間に隙間が生じ、 このために後工程における内径 研削加工時の精度が悪化することがある。  When the cylinder block of this combination is manufactured, for example, when the sleeve base material is wrapped by the aluminum die cast material, the sleeve base material and the aluminum alloy are solidified in the process of solidifying the aluminum die cast material. A gap may be formed between the objects, which may deteriorate the accuracy of the inner diameter grinding process in a subsequent process.
さらに、 隙間の存在は、 熱伝導性が部分的に悪くなることから、 スリーブの円筒度、 真円度などの形状の悪化を招き、 オイル消費の 増大、 性能の劣化の原因となっている。  In addition, the presence of the gap causes the thermal conductivity to partially deteriorate, resulting in deterioration of the sleeve's cylindricity, roundness, and other shapes, leading to increased oil consumption and performance degradation.
この発明は、 かかる実情に鑑みてなされたもので、 ピス ト ンとの 焼き付きを防止し、 また燃費悪化、 オイル劣化を防止することを課 題とするものである。 The present invention has been made in view of such circumstances, and has an object to prevent seizure with a piston and to prevent deterioration of fuel efficiency and oil. The subject is.
また、 この発明は、 スリーブ材が降伏劣化を防止すると共に、 剛 性が向上し、 かつ熱膨張による変形が軽減することを課題と し、 ま た出力性能を維持したまま、 オイル消費量の低減を可能とすること を課題とするものである。 発明の開示  Another object of the present invention is to prevent yield deterioration of the sleeve material, improve rigidity and reduce deformation due to thermal expansion, and reduce oil consumption while maintaining output performance. The goal is to make it possible. Disclosure of the invention
この発明は、 アルミ ニウム合金製のスリーブを、 アルミニウム合 金鎳造製のシリ ンダ本体に铸包んだシリ ンダブロックを備え、 前記スリ一ブの線膨張係数を前記シリ ンダ本体の線膨拡係数より 小さ く したことを特徴とする内燃機関である。 スリーブの線膨張係 数がシリ ンダ本体の線膨張係数より小さいことから、 シリ ンダ本体 側の凝固収縮及び凝固後の熱収縮によるスリーブ締め付け力が低下 することがなく、 スリーブとシリ ンダ本体との間で隙間がなくなり、 スリーブからシリ ンダ本体側への熱伝達が良好でホッ トスポッ ト化 し、 ピス ト ンとの焼き付きを防止することができる。  The present invention includes a cylinder block in which a sleeve made of an aluminum alloy is wrapped in a cylinder body made of aluminum alloy, and a coefficient of linear expansion of the sleeve is determined by a coefficient of linear expansion of the cylinder body. An internal combustion engine characterized by being smaller. Since the linear expansion coefficient of the sleeve is smaller than the linear expansion coefficient of the cylinder body, the sleeve tightening force due to solidification shrinkage on the cylinder body side and heat shrinkage after solidification does not decrease. There is no gap between them, and heat transfer from the sleeve to the cylinder body is good, making it a hot spot and preventing seizure with the piston.
また、 前記スリ一ブの線膨張係数を前記シリ ンダ本体の線膨張係 数より少なく とも 1 0 %小さな値にすることが好ま しく、 シリ ンダ 本体側の凝固収縮及び凝固後の熱収縮によるスリーブ締め付け力が より低下することがなく、 さらにスリ一ブとシリ ンダ本体との間で 隙間がなく なる。  Preferably, the coefficient of linear expansion of the sleeve is at least 10% smaller than the coefficient of linear expansion of the cylinder body, and the sleeve is caused by solidification shrinkage on the cylinder body side and heat shrinkage after solidification. The tightening force does not decrease further, and there is no gap between the sleeve and the cylinder body.
また、 前記スリーブを構成するアルミニウム合金に、 シリ コン (S i ) を 1 5〜 3 8重量%含有させることが好ましく、 また前記シ リ コ ン ( S i ) を平均粒径が 2〜 1 0 /z mの初晶シリ コ ン ( S i ) とする ことが好ま しく、 また前記スリーブを平均粒径が 2 0〜 1 0 0 m のアルミニゥム含金粉末を凝集固化して形成することが好ま しく、 スリ一ブの線膨張係数をより小さ くすることができ、 しかも熱伝導 性、 加工性、 メ ツキ性を損なうことがない。 The aluminum alloy forming the sleeve preferably contains silicon (S i) in an amount of 15 to 38% by weight, and the silicon (S i) has an average particle diameter of 2 to 10%. / zm of primary crystal silicon (S i), and the sleeve has an average particle diameter of 20 to 100 m. It is preferable that the aluminum-containing powder is formed by coagulation and solidification, so that the coefficient of linear expansion of the sleeve can be made smaller, and the thermal conductivity, workability and plating properties are not impaired.
また、 この発明は、 アルミニウム合金製のスリーブを、 アルミ二 ゥム合金铸造製のシリ ンダ本体内に配置して構成したシリ ンダブ口 ックを備え、 このシリ ンダブロックのシリ ンダ内にビス トンを往復 動可能に収納した内燃機関であり、  Further, the present invention includes a cylinder block having an aluminum alloy sleeve disposed in a cylinder body made of aluminum alloy, and a biston in the cylinder of the cylinder block. Is an internal combustion engine that reciprocates
前記ピス ト ン、 スリーブ、 シリ ンダ本体の線膨張係数を、 スリー ブ< ピス ト ンくシリ ンダ本体としたことを特徴とする。 ビス ト ン、 スリーブ、 シリ ンダ本体の線膨張係数を、 スリーブくピス トンくシ リ ンダ本体とすることで、 内燃機関を運転すると、 ピス ト ンの熱膨 張に伴う ピス ト ンク リ アラ ンスの変化を理想的な状態に保つこ とが でき、 これによつて、 ロス及び騒音の低減をはかることができ、 出 力性能を維持したまま、 オイル消費量を低減することができる。  The linear expansion coefficient of the piston, the sleeve, and the cylinder main body is characterized by that the cylinder main body has a sleeve <piston. By setting the linear expansion coefficient of the piston, sleeve, and cylinder body to that of the sleeve, the piston, and the cylinder, when the internal combustion engine is operated, the piston clearance due to the thermal expansion of the piston This makes it possible to keep the change in the oil in an ideal state, thereby making it possible to reduce loss and noise, and to reduce oil consumption while maintaining output performance.
また、 前記スリーブを構成するアルミニウム合金に、 マグネシゥ ム (M g ) を 1 . 8重量%以下を含有させ、 前記スリ一ブはロ ック ゥエル硬度 (H R B ) 4 0〜 7 0であることが好ま しく、 また前記 スリーブを構成するアルミニウム合金に、 銅 (C u ) 、 マンガン (M n ) 、 亜鉛 (Z n ) のいずれか少なく とも 1つあるいは複数を合計で 1 . Further, the aluminum alloy constituting the sleeve contains 1.8% by weight or less of magnesium (Mg), and the sleeve has a rock-well hardness (HRB) of 40 to 70. Preferably, at least one or more of copper (Cu), manganese (Mn), and zinc (Zn) are added to the aluminum alloy forming the sleeve in a total of 1.
7〜8 . 3重量%含有させることが好ま しく、 スリーブの降伏劣化 を防止すると共に、 剛性が向上し、 かつ熱膨張による変形が軽減す ることができる。 It is preferable that the content be 7 to 8.3% by weight, so that the yield deterioration of the sleeve can be prevented, the rigidity can be improved, and deformation due to thermal expansion can be reduced.
また、 前記スリーブの内周面にアル力リエッチング処理をした後、 メ ツキを施すことが好ま しく、 また前記スリーブの基材外表面に、 高さ 0 . 1〜 2 m mの長さ方向に平行が連続した突起を形成すると 共に、 表面に深さ 1 0 n m〜最大でスリーブの基材厚さの 2 0 %の 微小クラ ッ クを一様に分布させることが好ま しい。 図面の簡単な説明 In addition, it is preferable that the inner peripheral surface of the sleeve is subjected to a force re-etching process and then subjected to plating, and the outer surface of the sleeve is provided with a height of 0.1 to 2 mm in a length direction. When forming parallel continuous projections In both cases, it is preferable to uniformly distribute microcracks on the surface with a depth of 10 nm to a maximum of 20% of the sleeve base material thickness. BRIEF DESCRIPTION OF THE FIGURES
図 1 はスリーブが乾式構造の水冷式 4サイクル内燃機関の断面図 である。  Figure 1 is a cross-sectional view of a water-cooled 4-cycle internal combustion engine with a dry-type sleeve.
図 2は図 1 の I I — I I線に沿う断面図である。  FIG. 2 is a cross-sectional view taken along the line II-II of FIG.
図 3はスリーブが湿式構造の水冷式 4サイクル内燃機関の断面図 である。  Figure 3 is a cross-sectional view of a water-cooled four-stroke internal combustion engine with a wet sleeve.
図 4は内燃機関用シリ ンダブ口ックの製造工程を示す図である。 図 5はスリ .一ブ基材の外表面の状態を示す図である。  FIG. 4 is a diagram showing a manufacturing process of a cylinder hook for an internal combustion engine. FIG. 5 is a view showing the state of the outer surface of the sleeve base material.
図 6はスリ一ブ表面き烈深さとスリーブ強度及び界面隙間の関係 を示す図である。  FIG. 6 is a diagram showing the relationship between the surface depth of the sleeve, the sleeve strength, and the interface gap.
図 7は N i — P— S i C分散複合メ ツキを示す図である。 発明を実施するための最良の形態  Fig. 7 is a diagram showing Ni-P-SiC dispersed composite plating. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明の内燃機関の実施の形態について図面に基づいて 説明する。  Hereinafter, an embodiment of an internal combustion engine of the present invention will be described with reference to the drawings.
この発明は、 内燃機関用のシリ ンダブ口ッ クを備える水冷式ある いは空冷式の 4サイクル内燃機関及び 2サイクル内燃機関に適用さ れ、 またスリーブは湿式構造あるいは乾式構造に適用される。  INDUSTRIAL APPLICABILITY The present invention is applied to a water-cooled or air-cooled four-stroke internal combustion engine and a two-stroke internal combustion engine having a cylinder opening for an internal combustion engine, and the sleeve is applied to a wet structure or a dry structure.
この内燃機関の一例として、 図 1及び図 2にスリ一ブが乾式構造 の水冷式 4サイクル内燃機関を示すが、 この発明はこの実施の形態 に限定されない。  As an example of this internal combustion engine, FIGS. 1 and 2 show a water-cooled four-cycle internal combustion engine having a dry-type sleeve, but the present invention is not limited to this embodiment.
車両の 4サイクルェンジン 1 は、 直列 4気筒ェンジンが用いられ る。 4サイクルエンジン 1のシリ ンダブロッ ク 2は、 シリ ンダ本体 2 aとスリーブ 3から構成され、 このスリーブ 3にピス トン 4が往 復動可能に設けられている。 このピス ト ン 4の往復動でコンロ ッ ド 5を介してクラ ンク室 7に配置された図示しないクランク軸が回転 する。 シリ ンダブロック 2にはシリ ンダへッ ド 6が設けられ、 ボル ト 8によ り シリ ンダブロック 2に締付固定されている。 ピス ト ン 4 には、 ピス トンリ ング 4 bが設けられている。 シリ ンダへッ ド 6に はへッ ドカバ一 8 0が設けられている。 The vehicle's 4-cycle engine 1 uses an in-line 4-cylinder engine. You. The cylinder block 2 of the four-cycle engine 1 includes a cylinder body 2 a and a sleeve 3, and a piston 4 is provided on the sleeve 3 so as to be able to reciprocate. The reciprocating motion of the piston 4 rotates a crankshaft (not shown) disposed in the crank chamber 7 via the conrod 5. A cylinder head 6 is provided in the cylinder block 2, and is fixed to the cylinder block 2 by a bolt 8. The piston 4 is provided with a piston ring 4b. The cylinder head 6 is provided with a head cover 180.
シリ ンダブロ ック 2のスリーブ 3、 ピス ト ン 4の頭部 4 aと、 シ リ ンダへッ ド 6 とで燃焼室 1 2が形成されている。 シリ ンダへッ ド 6には燃焼室 1 2に臨むように点火プラグ 8 6が取り付けられてい る。  A combustion chamber 12 is formed by the sleeve 3 of the cylinder block 2, the head 4 a of the piston 4, and the cylinder head 6. A spark plug 86 is attached to the cylinder head 6 so as to face the combustion chamber 12.
また、 シリ ンダへッ ド 6には吸気通路 1 3 と排気通路 1 4が形成 され、 吸気通路 1 3には集合吸気管 1 5が接続される。 また、 排気 通路 1 4には集合排気管 1 6が接続される。  An intake passage 13 and an exhaust passage 14 are formed in the cylinder head 6, and a collective intake pipe 15 is connected to the intake passage 13. A collective exhaust pipe 16 is connected to the exhaust passage 14.
吸気通路 1 3の燃焼室 1 2に臨む開口部は吸気弁 1 8で開閉され、 排気通路 1 4の燃焼室 1 2に臨む開口部は排気弁 1 9で開閉される。 吸気弁 1 8及び排気弁 1 9のタペッ ト 3 0 , 3 1には、 カム軸 3 2 , 3 3のカム 3 2 a, 3 3 aが当接しており、 カム軸 3 2 , 3 3の回 転によってカム 3 2 a, 3 3 aがタペッ ト 3 0 , 3 1を介して吸気 弁 1 8及び排気弁 1 9を押動し、 これにより吸気通路 1 3と排気通 路 1 4を開閉する。  The opening of intake passage 13 facing combustion chamber 12 is opened and closed by intake valve 18, and the opening of exhaust passage 14 facing combustion chamber 12 is opened and closed by exhaust valve 19. The camshafts 32 and 33 of the camshafts 32 and 33 are in contact with the tappets 30 and 31 of the intake valve 18 and the exhaust valve 19, respectively. By rotation, the cams 32a and 33a push the intake valve 18 and the exhaust valve 19 via the tapes 30 and 31 to open and close the intake passage 13 and the exhaust passage 14. I do.
シリ ンダブロ ック 2のシリ ンダ本体 2 aには水ジャケッ ト 2 0が 形成され、 この水ジャケッ ト 2 0に連通してシリ ンダへッ ド 6に水 ジャケッ ト 2 1が形成されている。 この水ジャケッ ト 2 0 , 2 1の 冷却水により燃焼室 1 2の周りを冷却するようになっており、 スリ一 ブ 3が乾式構造である。 A water jacket 20 is formed in the cylinder body 2 a of the cylinder block 2, and a water jacket 21 is formed in the cylinder head 6 in communication with the water jacket 20. This water jacket 2 0, 2 1 The area around the combustion chamber 12 is cooled by cooling water, and the sleeve 3 has a dry structure.
図 3はスリ ーブが湿式構造の水冷式 4サイクル内燃機関であり、 水ジャケッ ト 2 0の冷却水により燃焼室 1 2の周りを冷却すると共 に、 冷却水によりスリーブ 3を直接冷却するようになっている。 水 ジャケッ ト 2 0の下部には、 シリ ンダ本体 2 a とスリ ーブ 3 との間 に 0 リ ング 8 5を設けてシールしている。  Fig. 3 shows a water-cooled four-stroke internal combustion engine with a wet-type sleeve that cools around the combustion chamber 12 with the cooling water of the water jacket 20 and cools the sleeve 3 directly with the cooling water. It has become. At the lower part of the water jacket 20, a 0 ring 85 is provided between the cylinder body 2a and the sleeve 3 for sealing.
次に、 内撚機関用のシリ ンダブロックの製造を、 図 4の内燃機関 用シリ ンダブ口ックの製造工程を示す図に基づいて説明する。  Next, the production of a cylinder block for an internal twist engine will be described with reference to FIG.
急冷凝固粉末材料を形成し (ステップ S 1 ) 、 この急冷凝固粉末 材料を冷間静水圧プレスしてスリーブ素材 (ビレツ ト) を成形し (ス テツプ S 2 ) 、 真空焼結する (ステップ S 3 ) 。 その後、 加熱 · 熱 間押し出し、 スリーブ中空素形材を形成し、 冷却する (ステップ S 4 ) 。 必要に応じて熱処理し、 このスリーブ中空素形材を切断 ·加工し (ス テツプ S 5 ) 、 スリーブ 3を形成する。 このスリーブ 3をシリ ンダ 本体 2 aに铸包み (ステップ S 6 ) 、 焼鈍 (ステップ S 7 ) 、 メ ッ キを行ない (ステップ S 8 ) 、 ホーニング処理する (ステップ S 9 ) 。 ステップ S 1 における急冷凝固粉末材料は、 例えばアルミニウム ( A 1 ) の基材に対してシリ コン (S i ) 、 鉄 (F e ) 及びその他 の成分を含有させたアルミニゥム合金のインゴッ トを準備して、 こ れを約 7 0 0 °C以上で溶解してから、 霧状に散布して冷却速度 1 0 0 V / s e c以上で急激に冷やして凝固させることで、 アルミニウム 合金の急冷凝固粉末 (パウダーメタル) として形成する。  A rapidly solidified powder material is formed (step S1), and the rapidly solidified powder material is cold isostatically pressed to form a sleeve material (bilette) (step S2) and vacuum-sintered (step S3). ). Thereafter, heating and hot extruding are performed to form a hollow hollow material and then cooled (step S4). Heat treatment is performed as needed, and the sleeve hollow material is cut and processed (step S5) to form the sleeve 3. The sleeve 3 is wrapped in a cylinder body 2a (step S6), annealed (step S7), plated (step S8), and honed (step S9). For the rapidly solidified powder material in step S1, for example, an ingot of an aluminum alloy containing silicon (Si), iron (Fe) and other components is prepared for an aluminum (A1) base material. This is melted at about 700 ° C or more, then sprayed in a mist and rapidly cooled and solidified at a cooling rate of 100 V / sec or more to obtain a rapidly solidified powder of aluminum alloy ( (Powder metal).
スリーブ素材 (ビレツ ト) を形成するためのアルミニウム合金粉 末材料と しては、 例えば、 初晶シリ コンの平均粒径が、 2 0 /z m以 下、 好ま しく は 2〜 1 0〃mであるシリ コン (S i ) を 1 5〜3 8 重量%の範囲で含むようなアルミニゥム合金の急冷凝固粉末が使用 される。 As an aluminum alloy powder material for forming a sleeve material (billette), for example, the primary crystal silicon has an average particle diameter of 20 / zm or less. Below, a rapidly solidified powder of an aluminum alloy containing silicon (S i) of preferably 2 to 10 μm in a range of 15 to 38% by weight is used.
このようなアルミニゥム合金の急冷凝固粉末として、 アルミニゥ ム (A 1 ) を基材とし、 全体中に、 シリ コン (S i ) を 1 5〜3 8 重量%、 鉄 (F e ) を 1. 5重量%以下、 銅 (C u) を 6. 8重量 %以下、 マグネシウム (Mg) を 0. 2〜2重量%、 マンガン (Mn) を 1. 5重量%以下、 クロム (C r) を 0. 4重量%以下、 亜鉛 (Z n) を 0. 3重量%以下の範囲で含むようなものがある。  As a rapidly solidified powder of such an aluminum alloy, aluminum (A1) is used as a base material, and silicon (Si) is 15 to 38% by weight, and iron (Fe) is 1.5%. Wt% or less, copper (Cu) 6.8 wt% or less, magnesium (Mg) 0.2 to 2 wt%, manganese (Mn) 1.5 wt% or less, chromium (Cr) 0. Some contain zinc (Zn) in a range of not more than 0.3% by weight and not more than 4% by weight.
このような J I Sに規定の 2 0 0 0番台あるいは 6 0 0 0のアル ミニゥム合金をベースに S i含有量を増加させて 1 5〜 3 8重量% としたアルミニゥム合金の急冷凝固粉末の含有成分において、 シリ コン (S i ) は、 金属組織中に硬質の初晶ゃ共晶のシリ コン粒を晶 出させることで耐摩耗性及び耐焼付性を高めるために添加され、 鉄 (F e ) は、 金属組織を分散強化して 2 0 0 °C以上で高い強度を得 るために添加され、 また、 銅 (C u) 及びマグネシウム (Mg) は、 2 0 0 °C以下での強度を高めるために添加されるものであって、 そ れらの添加量については、 前記の範囲で所望の耐摩耗性や耐焼付性 及び高温での必要な強度を得ることができる。  Inclusion components of aluminum alloy rapidly solidified powder of 15 to 38% by weight with Si content increased based on 2000 series or 600 series aluminum alloy specified in JIS In the above, silicon (S i) is added to increase wear resistance and seizure resistance by crystallizing hard primary and eutectic silicon grains in the metal structure. Is added to increase the strength at 200 ° C or higher by dispersing and strengthening the metal structure, and copper (Cu) and magnesium (Mg) increase the strength at 200 ° C or lower. It is added in order to increase the content. With respect to the added amount, desired wear resistance, seizure resistance, and necessary strength at high temperatures can be obtained.
前記のようなアルミ二ゥム合金の急冷凝固粉末を固化したス リ一 ブ素材では、 溶解したアルミニウム合金を霧状に散布して急冷凝固 させることにより粉末化しているため、 アルミニゥム合金粉末は平 均粒径で約 2 0〜 1 0 0 /zm程度となり、 その中に含まれているシ リ コン ( S i ) は、 粉末化しつつ凝固するアルミニウム合金の金属 組織中に晶出させた硬質の初晶シリ コン (S i ) が平均粒径が、 2 0 /z m以下、 好ましくは 2 〜 1 0 mとなるように微細化されていて、 各アルミニゥム合金粒子毎に分散されている。 In the above-mentioned sleeve material in which the rapidly solidified powder of aluminum alloy is solidified, the dissolved aluminum alloy is sprayed in a mist and solidified by rapid cooling, so that the aluminum alloy powder is flat. The average particle size is about 20 to 100 / zm, and the silicon (S i) contained therein is hardened crystallized in the metal structure of the aluminum alloy that solidifies while powdering. Primary crystal silicon (Si) has an average particle size of 20 / zm or less, preferably 2 to 10 m, and dispersed for each aluminum alloy particle.
ステップ S 2において、 一方あるいは複数方向に開放口を有する 型内に上記アルミニゥム合金の急冷凝固粉末材を込め、 エアー抜き しつつプランジャーを開放口から型内に挿入し、 しかる後プラ ンジ ヤーと型とを水密状態に保ったまま、 ブランジャーに静水圧を負荷 する、 静水圧プレスが実施され、 急冷凝固粉末材料が固められる。  In step S2, the rapidly solidified powder of the aluminum alloy is placed in a mold having an opening in one or more directions, and the plunger is inserted into the mold through the opening while bleeding air. While maintaining the mold in a watertight state, a hydrostatic press is applied to the plunger to apply a hydrostatic pressure, and the rapidly solidified powder material is solidified.
ステップ S 3 において、 予固めされた急冷凝固粉末材料が燒結型 内に収容され、 型内部の真空引きが実施されるとともに加熱加圧さ れ、 空気の混入のほとんど無いより緻密な固形塊とされる。  In step S3, the pre-solidified rapidly solidified powder material is placed in a sintering mold, and the inside of the mold is evacuated and heated and pressurized to form a denser solid mass with almost no air mixing. You.
ステップ S 4において、 押し出し型に固形塊が収容されて加熱さ れ、 押し出し型の口金部から中空の丸棒状すなわち中空素形状に押 し出され、 冷却された部分で切断されて、 所定長の中空丸棒とされ る。 なお、 このステップ S 4において、 押し出し · 冷却後のスリ一 ブ中空素形材の硬度を口ックウエル硬度 (H R B ) 4 0以上となる ように工程上のパラメータを調整する。  In step S4, the solid mass is housed in the extrusion die, heated, extruded from the die portion of the extrusion die into a hollow round bar, that is, a hollow element shape, cut at the cooled portion, and cut into a predetermined length. It is a hollow round bar. In step S4, the parameters in the process are adjusted so that the hardness of the hollow hollow material after extrusion and cooling becomes not less than the mouthwell hardness (HRB) 40.
ステップ S 5 において、 スリ一ブ素材長さに切断され、 内外形及 び端部が加工されて、 鍀包み用スリーブが形成される。  In step S5, the sleeve material is cut to a length, and the inner and outer shape and the end are processed to form a wrapping sleeve.
ステップ S 6におけるスリーブ 3のシリ ンダ本体 2 aへの铸包み は、 スリ ーブ 3を铸包むシリ ンダダイカス ト成形が実施される。 こ の場合の铸包みはスリーブ 3を金型内に収容し、 スリーブ内周の一 部を支持部材で支えた状態で、 金型とスリーブ外周との間の空隙に、 所定のアルミニウム合金の溶湯を高圧で導く ことにより行う。 そし てシリ ンダブ口 ック 2の各部及びシリ ンダボアの機械加工が実施さ In step S6, the sleeve 3 is wrapped around the cylinder main body 2a, and a cylinder die-cast molding that wraps around the sleeve 3 is performed. In this case, the sleeve 3 is housed in a mold, and a part of the inner periphery of the sleeve is supported by a supporting member. Is conducted at high pressure. Then, machining of each part of cylinder block 2 and cylinder bores was performed.
4し o スリーブの铸包み前にスリーブ外周面に凹凸を形成することによ り、 運転中の母材とスリ一ブの熱膨張率の違いにより締め付け力が 低下しても、 スリーブの抜けを確実に防止できる。 このようなスリー ブ外周面の凹凸は、 ビレツ トを押し出し成形する際に、 押し出し速 度と温度などの成形条件を調整することによ り、 人工的に微細なク ラ ックを形成することができる。 またショ ッ トブラス トを用いるこ とも可能である。 ショ ッ トブラス ト以外にも他の機械加工あるいは スリーブ全体の酸洗い (エッチング) 等により形成することができ る。 また、 ショ ッ トブラス ト等によりスリーブ外周に凹凸を形成し て母材との接合性を高める方法に代えて、 低融点半田を用いてスリ一 ブと母材とを接合しスリーブの抜け防止を図ってもよい。 4 o By forming irregularities on the outer peripheral surface of the sleeve before wrapping the sleeve, the sleeve is reliably prevented from coming off even if the tightening force is reduced due to the difference in the coefficient of thermal expansion between the base material and the sleeve during operation. it can. Such irregularities on the outer surface of the sleeve can be used to form fine cracks artificially by adjusting molding conditions such as extrusion speed and temperature when extruding billets. Can be. It is also possible to use a shot blast. In addition to shot blasting, it can be formed by other machining or pickling (etching) of the entire sleeve. Also, instead of using a method such as shot blasting to form irregularities on the outer periphery of the sleeve to improve the bondability with the base material, the sleeve and the base material are joined using low melting point solder to prevent the sleeve from coming off. You may try.
ここでショ ッ トブラス トとは、 粒径が 5 0〜 1 5 0 〃 mの鋼球、 超硬ビーズ、 ステンレス鋼球、 亜鉛ビーズ、 ガラスビーズや、 粒径 はもう少し大きい石英を多く含む川砂等を、 投射機で、 例えば 4 0 〜8 O m / s の投射速度でワークを投射するものを言う。  Here, the shot blast means steel balls, carbide beads, stainless steel balls, zinc beads, glass beads with a particle size of 50 to 150 μm, river sand containing a lot of quartz with a slightly larger particle size, etc. Is a projector that projects a workpiece at a projection speed of, for example, 40 to 8 Om / s.
ステップ S 7において焼鈍が実施される。 この焼鈍後のスリーブ 3の硬度をロッ クウェル硬度 (H R B ) 4 0以上となるように熱処 理条件を調整する。  Annealing is performed in step S7. The heat treatment conditions are adjusted so that the hardness of the sleeve 3 after the annealing becomes Rockwell hardness (HRB) 40 or more.
ステップ S 8におけるメ ツキ処理は、 スリーブ内面のメ ツキであ り、 基本的には、 脱脂処理、 アルカ リエッチング処理、 混酸エッチ ング処理からなる前処理と、 下地処理のアルマイ ト処理と、 複合メ ッキ処理の 5つの工程からなり、 各工程の後に水洗処理が施される。 そして以上のメ ツキ処理 (ステップ S 8 ) の後、 ホーニング (ス テツプ S 9 ) でスリ一ブ内周面のメ ッキ層にホーニング仕上げを施 し、 メ ツキ皮膜の厚みを望ましくは約 5 0 ^ m、 場合によっては 2 0 /i m〜 1 0 0 〃mとするとともに、 メ ツキ層の面粗さを 1 . 0〃m R z 以下にする。 これにより、 確実にメ ツキ層表面を滑らかにすること ができてピス ト ン 4及びビス ト ンリ ング 4 bの摺動時の摩擦係数を 小さ くすることができるとともに、 エンジンオイルの保持性が向上 し潤滑性を向上させることができる。 なお、 R z とは J I S規格の B 0 6 0 1 に定められたものである。 The plating in step S8 is a plating on the inner surface of the sleeve. Basically, a pretreatment consisting of a degreasing treatment, an alkaline etching treatment, and a mixed acid etching treatment, and a base treatment alumite treatment are combined. It consists of five steps of stick processing, and water washing is performed after each step. After the above plating process (step S8), the inner layer of the sleeve is honed by honing (step S9) to reduce the thickness of the plating film to about 5 mm. 0 ^ m, possibly 20 / im ~ 100 μm and the surface roughness of the plating layer is less than 1.0 μm Rz. As a result, the surface of the plating layer can be surely smoothed, the coefficient of friction when sliding the piston 4 and the piston ring 4b can be reduced, and the retention of engine oil can be improved. The lubrication can be improved. Note that Rz is defined in B0601 of the JIS standard.
この発明の実施の形態では、 アルミニゥム合金製のスリ一ブ 3を、 アルミニゥム合金铸造製のシリ ンダ本体 2 aに铸包んだ内燃機関用 シリ ンダブ口ッ ク 2であ が、 圧入、 焼き嵌めによって配置しても 良い。  In the embodiment of the present invention, although the sleeve 3 made of an aluminum alloy is wrapped in a cylinder body 2a made of an aluminum alloy, the sleeve 2 for an internal combustion engine is press-fitted and shrink-fitted. They may be placed.
従来のスリーブ基材には、 溶製押し出し材が用いられ、 この溶製 押し出し材は比較的低いシリ コン含有量をもち、 熱膨張係数は周囲 のシリ ンダ本体のアルミ二ゥム铸物材料と同等かそれ以下であり、 このシリ ンダブロックを製造する際、 スリーブ基材をァルミニゥム ダイカス ト铸物によって铸込む際に、 铸物材が凝固する過程におい て、 スリーブ基材とアルミニウム铸物の間に隙間が生じ、 このため に後工程における内径研削加工時の精度が悪化することがあリ、 さ らに隙間の存在は、 熱伝導性が部分的に悪くなることから、 スリー ブの円筒度、 真円度などの形状の悪化を招き、 オイル消費の増大、 性能の劣化の原因となっている。  A conventional extruded material is used for the sleeve base material. The extruded material has a relatively low silicon content, and its thermal expansion coefficient is the same as that of the aluminum material of the surrounding cylinder body. It is equal to or less than that. When the cylinder block is manufactured, the sleeve base material is filled with the aluminum die cast material. Gaps may occur, which may degrade the accuracy of the inner diameter grinding process in the post-process, and the presence of the gaps may partially degrade the thermal conductivity. This leads to deterioration of the shape such as roundness, which leads to an increase in oil consumption and performance degradation.
このようにシリ コン ( S i ) 含有量を 1 5〜 3 8重量%としたァ ルミニゥム合金铸物でスリーブ 3を形成ることがスリーブ基材とァ ルミ二ゥム铸物の間に隙間が生じさせないことで有効であるが、 通 常の鍀物材料では初晶 S i粒が数 1 0 m以上にもなつてしまうた め、 表面にめっき層を形成しょうとしても、 密着性が悪く、 加工時 にめつき剥離を生じることがあるだけでなく、 運転中にもめつき剥 離を生じるなど充分な耐久性が得られない。 As described above, forming the sleeve 3 with an aluminum alloy material having a silicon (Si) content of 15 to 38% by weight results in a gap between the sleeve base material and the aluminum material. It is effective to prevent the formation of such a layer.However, in the case of ordinary bodily materials, the primary crystal Si grains become several 10 m or more, so even if an attempt is made to form a plating layer on the surface, the adhesion is poor. During processing In addition to the occasional sticking and peeling, sufficient durability such as sticking and peeling during operation cannot be obtained.
このためスリ ーブ 3は平均粒径が 2 0〜 1 0 0 /zmのアルミニゥ ム合金粉末を凝集固化して形成することで、 このシリ コン (S i ) を平均粒径が 2〜 1 0 zmの初晶シリ コン (S i ) としている。 ま た、 スリーブ 3を構成するアルミニウム合金には、 前記したように シリ コン (S i ) を 1 5〜 3 8重量%含有させ、 スリーブ 3の線膨 張係数を 1 5〜 2 2 ( 2 0 0 °Cにて) とし、 シリ ンダ本体 2 aの線 膨張係数より小さ く (例えば、 J I Sダイカス ト用アルミニウム合 金 AD C 1 2の線膨張係数 2 0 ( 2 0 0 °Cにて) と) し、 スリ一ブ 3の線膨張係数をシリ ンダ本体 2 aの線膨張係数より少なく とも 1 0 %小さな値にしている。  For this reason, the sleeve 3 is formed by coagulating and solidifying an aluminum alloy powder having an average particle diameter of 20 to 100 / zm, thereby forming this silicon (Si) into an average particle diameter of 2 to 100. The primary silicon of zm (S i). Further, the aluminum alloy constituting the sleeve 3 contains 15 to 38% by weight of silicon (Si) as described above, and the linear expansion coefficient of the sleeve 3 is 15 to 22 (20%). 0 ° C) and smaller than the coefficient of linear expansion of the cylinder body 2a (for example, the coefficient of linear expansion of aluminum alloy ADC12 for JIS die casting 20 (at 200 ° C)). However, the coefficient of linear expansion of the sleeve 3 is at least 10% smaller than the coefficient of linear expansion of the cylinder body 2a.
したがって、 アルミニゥム合金製のスリーブ 3を、 アルミニウム 合金铸造のシリ ンダ本体 2 aに铸包む場合、 スリーブ 3の外周にシ リ ンダ本体 2 a側の溶湯が取り囲み、 スリーブ 3が加熱されて熱膨 張する一方、 シリ ンダ本体 2 aが湯込め後次第に冷却されるに伴つ てスリーブ 3 も冷却されて熱収縮し、 シリ ンダ本体 2 a側の溶湯は、 冷却凝固するとき収縮し、 さらに温度が低下するに伴って熱収縮す るが、 シリ コ ン (S i ) を 1 5〜 3 8重量%含有させ、 スリ一ブ 3 の線膨張係数をシリ ンダ本体 2 aの線膨張係数より少なく とも 1 0 %小さな値であり、 シリ ンダ本体 2 a側の凝固収縮及び凝固後の熱 収縮によるスリ ーブ締め付け力が緩和されず、 スリーブ 3とシリ ン ダ本体 2 aとの間に隙間が生じない。  Therefore, when the aluminum alloy sleeve 3 is wrapped in the aluminum alloy cylinder body 2a, the molten metal on the cylinder body 2a side surrounds the outer periphery of the sleeve 3, and the sleeve 3 is heated and thermally expanded. On the other hand, as the cylinder body 2a is gradually cooled after filling, the sleeve 3 is also cooled and thermally contracts, and the molten metal on the cylinder body 2a side contracts when cooling and solidifying, and the temperature further increases. Although heat shrinks as the temperature decreases, it contains 15 to 38% by weight of silicon (Si), and the coefficient of linear expansion of sleeve 3 is at least smaller than the coefficient of linear expansion of cylinder body 2a. 10% smaller value, the sleeve tightening force due to solidification shrinkage on the cylinder body 2a side and heat shrinkage after solidification is not relaxed, and a gap is created between the sleeve 3 and the cylinder body 2a Absent.
また、 スリーブ基材に、 アルミニウム合金にシリ コン (S i ) を 加えた化学組成をもつ急冷凝固粉末固化押し出し形成材料を用いて 押出加工により形成し、 この押出加工条件、 例えば押出速度、 温度 等を調整することによって中空丸棒、 高さ 0 . l〜2 m mの長さ方 向に平行な連続した突起を形成する、 あるいは及び、 表面に深さ 1 0 ζ πι〜1 ιη ιηの微小クラックを一様に分布させ、 または表面に深さ 1 0 /z m〜最大でスリ一ブ基材厚さの 2 0 %の微小クラ ックを一様 に分布させ、 スリーブに加工した後も外周表面に突起、 あるいは及 び微小クラ ックを残すようにすることで、 シリ ンダ本体 2 aとの接 合を強固にし、 かつ熱の伝達を均一にすることができる。 In addition, using a rapidly solidified powder solidified extrusion forming material with a chemical composition of silicon alloy (S i) added to an aluminum alloy for the sleeve base material. Forming a hollow round rod, a height of 0.1 to 2 mm, and continuous projections parallel to the length direction by adjusting the extrusion conditions, for example, extrusion speed, temperature, etc., or And uniformly distribute microcracks with a depth of 10 ζ πι ~ 1 ιη ιη on the surface, or microcracks with a depth of 10 / zm to a maximum of 20% of the thickness of the sleeve base material on the surface. By evenly distributing the cracks and leaving protrusions or small cracks on the outer peripheral surface even after processing into the sleeve, the connection with the cylinder body 2a is strengthened and the heat Transmission can be made uniform.
また、 運転状態においてもスリーブ 3の温度は铸包む時の温度 (ァ ルミニゥム合金の溶融温度に近い値) より低くなるが (空冷、 水冷 がなされるので、 1 0 0 °C〜 3 0 0 °C程度) 、 シリ コン (S i ) を 1 5〜3 8重量%含有させ、 スリーブ 3の線膨張係数をシリ ンダ本 体 2 aの線膨張係数より少なく とも 1 0 %小さな値であり、 スリー ブ締め付け力が維持され、 スリーブ 3 とシリ ンダ本体 2 aとの間で 隙間が発生することがなく、 スリーブ内周の円筒度、 真円度が維持 され、 ス リーブ 3円周表面からの熱は、 メ ツキ層、 スリーブ 3本体 内を経てシリ ンダ本体側へ良好に熱伝達されるのでホッ トスポッ ト ができに く く、 ピス トン 4 との焼き付きを防止することができる。 また、 铸造み完了後 (常温状態) 、 所定のメ ツキを施し、 ホー二 ング仕上げをしてスリーブ 3内周の円筒度、 真円度を上げて、 シリ ンダブロ ック 2 にクランク軸やピス ト ン等を組み付け、 さらにシリ ンダへッ ド 6をボルト 8により締結して内燃機関として組み立て完 了した後、 内燃機関を運転すると、 スリーブ 3が熱膨張し、 この時 シリ ンダへッ ド 6がボルト締結されるスリ一ブ外周のシリ ンダ本体 Also, in the operating state, the temperature of the sleeve 3 is lower than the temperature at the time of wrapping (a value close to the melting temperature of the aluminum alloy), but it is 100 ° C to 300 ° C since air cooling and water cooling are performed. 15 to 38% by weight of silicon (Si), and the coefficient of linear expansion of the sleeve 3 is at least 10% smaller than the coefficient of linear expansion of the cylinder body 2a. As a result, the gap between the sleeve 3 and the cylinder body 2a is not generated, the cylindricity and roundness of the inner circumference of the sleeve are maintained, and the heat from the circumferential surface of the sleeve 3 is maintained. Since heat is well transferred to the cylinder body through the metal layer and the inside of the sleeve 3, hot spots are not easily generated, and seizure with the piston 4 can be prevented. After the completion of fabrication (normal temperature condition), a predetermined work is performed, a honing finish is applied, the cylindricity and roundness of the inner circumference of the sleeve 3 are increased, and a crankshaft or a piston is attached to the cylinder block 2. After the assembly of the internal combustion engine is completed by assembling the tongue and fastening the cylinder head 6 with bolts 8 and operating the internal combustion engine, the sleeve 3 thermally expands, and at this time, the cylinder head 6 The cylinder body around the sleeve where the bolts are fastened
2の複数のボルト穴回りは剛性が上がり、 熱膨張に抵抗する一方、 スリーブ外周のボルト穴の中間部となるシリ ンダ本体 2 aは熱膨張 に対しての抵抗性は小さいが、 シ リ コ ン ( S i ) を 1 5〜 3 5重量 %含有させ、 ス リーブ 3の線膨張係数をシリ ンダ本体 2 aの線膨張 係数より少なく とも 1 0 %小さな値であり、 ス リーブ 3が熱膨張が 小さ くてスリ一ブ内周の円筒度、 真円度が維持され、 ビス トンリ ン グ 4 bによる燃焼室 1 2 とクランク室 7 との隔離性が向上し、 オイ ル消費量の増大、 燃焼ガスの吹き抜けによる燃費悪化、 オイル劣化 を防止することができる。 While the rigidity around the multiple bolt holes in 2 is increased and resists thermal expansion, The cylinder body 2a, which is the middle part of the bolt hole on the outer periphery of the sleeve, has low resistance to thermal expansion, but contains 15 to 35% by weight of silicon (Si) and has a sleeve 3 The coefficient of linear expansion of the sleeve is at least 10% smaller than the coefficient of linear expansion of the cylinder body 2a, and the sleeve 3 has a small thermal expansion and maintains the cylindricity and roundness of the inner circumference of the sleeve. In addition, the isolation between the combustion chamber 12 and the crank chamber 7 by the bis-toning ring 4b is improved, and it is possible to prevent an increase in oil consumption, deterioration in fuel efficiency due to combustion gas blow-through, and oil deterioration.
また、 スリーブ 3 とシリ ンダ本体 2 a との間に隙間が生じないよ うにすることができるだけでなく、 メ ッキの密着性も確保すること ができる。 これは、 メ ツキの前処理であるアルカリエッチング工程 において、 シ リ コ ン ( S i ) 粒径が 2〜 1 0 /z mと十分小さいため に、 N i 一 Pメ ツキの析出が阻害されないためである。  Further, not only can a gap be prevented from being formed between the sleeve 3 and the cylinder body 2a, but also the adhesion of the stick can be ensured. This is because in the alkaline etching step, which is a pretreatment for plating, the silicon (Si) particle size is sufficiently small, 2 to 10 / zm, so that precipitation of Ni-P plating is not hindered. It is.
このように発明では、 スリ一ブ 3を構成するアルミニゥム合金に シ リ コ ン ( S i ) を含有させ、 このシリ コ ン ( S i ) を平均粒度が 2〜 : l O z mの初晶シリ コン (S i ) とし、 スリーブ 3の内周面に アルカリエッチング処理することで、 スリーブ内周面のシリコン (S i ) がアル力 リェッチング処理で除去されて、 スリ一ブ内周面に凹凸が 形成され、 しかもシリ コ ン ( S i ) 粒子の平均粒径は小さいので、 微細な凹凸を緻密に形成でき、 スリーブ内周面とメ ツキ層との結合 面積が増加し結合性のより一層の向上が可能で、 凹凸によるアンカー 効果があり、 さらに結合面積の増加で熱伝達面積が増加し、 メ ツキ 層に加えられる燃焼ガスの熱を速やかに放熱可能で、 メ ツキ層の剥 離を起こ しにく い。'  As described above, in the present invention, the aluminum alloy constituting the sleeve 3 contains silicon (Si), and the silicon (Si) has a primary crystal silicon having an average particle size of 2 to 10 lozm. By performing alkali etching on the inner peripheral surface of the sleeve 3, the silicon (S i) on the inner peripheral surface of the sleeve 3 is removed by an all-round leaching process, and irregularities are formed on the inner peripheral surface of the sleeve. Since the silicon (S i) particles are formed and the average particle size is small, fine irregularities can be formed densely, and the bonding area between the inner peripheral surface of the sleeve and the plating layer is increased, thereby further improving the bonding property. It has an anchor effect due to irregularities, and furthermore, the heat transfer area increases due to the increase in the coupling area, the heat of the combustion gas added to the plating layer can be quickly radiated, and the plating layer is separated. Unfortunately. '
また、 スリーブ 3を構成するアルミニウム合金に、 シリコン (S i ) を 1 5〜 3 5重量%含有させることで、 シリ コン (S i ) 含有量が 多く、 かつシリ コン (S i ) 粒子の平均粒径は小さいので、 より微 細な凹凸を緻密に形成でき、 スリーブ内周面とメ ツキ層との結合面 積が増加し結合性のより一層の向上が可能である。 すなわち、 スリ一 ブ 3内周表面からの熱は、 メ ツキ層、 スリーブ 3本体を経て、 シリ ンダ本体側へ良好に熱伝達されるので、 スリーブ 3表面にホッ トス ポッ トができにく く、 ピス トン 4との焼き付きを防止することがで きる。 Silicon (S i) is added to the aluminum alloy that constitutes the sleeve 3. 15 to 35% by weight, the silicon (S i) content is high and the average particle size of the silicon (S i) particles is small, so that finer irregularities can be densely formed. In addition, the joint area between the inner peripheral surface of the sleeve and the plating layer is increased, and the joint property can be further improved. In other words, the heat from the inner peripheral surface of the sleeve 3 is transmitted well to the cylinder main body through the metal layer and the sleeve 3 main body, so that hot spots are hardly formed on the sleeve 3 surface. It is possible to prevent burn-in with the piston 4.
また、 この発明では、 メ ツキ層を介して加わる燃焼圧力、 ピス ト ンリ ングの張力等により、 メ ツキ層を支えるスリーブ材が降伏劣化 し、 メ ツキ層がスリーブ材から剥離する可能性があり、 またシリ ン ダへッ ド締め付けによる剛性アップがあり、 運転時の熱膨張がスリー ブの円周方向の各部で均一になされないで、 特に硬度が不足する場 合は剛性が低く 、 シリ ンダへッ ド締め付けボルト穴の中間部での熱 膨張による変形が六きくなる等の問題があるが、 スリ一ブを構成す るアルミニウム合金に、 シリ コン (S i ) を 1 5〜 3 8重量%と、 マグネシウム (M g) を 1. 8重量%以下を含有させ、 スリーブは ロッ クゥヱル硬度 (H R B) 4 0〜 7 0 とすることで、 スリーブ 3 の降伏劣化を防止すると共に、 剛性が向上し、 かつ熱膨張による変 形が軽減するこ とができる。  Further, in the present invention, the sleeve material supporting the plating layer may yield and deteriorate due to the combustion pressure applied through the plating layer, the tension of the piston ring, and the like, and the plating layer may peel from the sleeve material. In addition, the rigidity is increased by tightening the cylinder head, and the thermal expansion during operation is not uniform at each part in the circumferential direction of the sleeve. If the hardness is insufficient, the rigidity is low. Deformation due to thermal expansion in the middle part of the head tightening bolt hole is problematic, but silicon (S i) is added to the aluminum alloy of the sleeve by 15 to 38 weight. % And magnesium (Mg) of 1.8% by weight or less, and the sleeve has a Rockwell hardness (HRB) of 40 to 70 to prevent yield deterioration of the sleeve 3 and improve rigidity. And due to thermal expansion Deformation can and child reduced.
また、 スリーブを構成するアルミニウム合金に、 銅 (C u) 、 マ ンガン (Mn) 、 亜鉛 (Z n) のいずれか少なく とも 1つあるいは 複数を合計で 1. 7〜8. 3重量%含有させたから、 スリーブの降 伏劣化を防止すると共に、 剛性が向上し、 かつ熱膨張による変形が 軽減することができる。 さらに、 シリ ンダブロ ック 2を製造する際、 例えばスリーブ基材 をアルミニウムダイカス ト铸物によって鍀包む際に、 アルミニウム ダイカス ト铸物が凝固する過程において、 スリ一ブ基材とアルミ二 ゥム铸物の間に隙間が生じ、 このために後工程における内径研削加 ェ時の精度が悪化することがあり、 さらに、 隙間の存在は、 熱伝導 性が部分的に悪くなることから、 スリーブの円筒度、 真円度などの 形状の悪化を招き、 オイル消費の増大、 性能の劣化の原因となって いるが、 ス リーブ 3、 ピス ト ン 4、 シリ ンダ本体 2 aを、 シ リ コ ン ( S i ) を含有するアルミニゥム合金で形成し、 スリーブ 3、 ビス ト ン 4、 シリ ンダ本体 2 aの線膨張係数の比を、 1 6〜 1 7 : 1 7 〜 1 8 : 2 0〜 2 1 とする。 例えば、 シ リ コ ン ( S i ) を含有量を 調整し、 スリーブ 3、 ピス トン 4、 シリ ンダ本体 2 aのシリコン ( S i ) 含有率の比を、 2 5 : 1 7 : 1 2 としてピス トン 4、 スリーブ 3、 シリ ンダ本体 2 aの線膨張係数の比を、 1 6 : 1 8 : 2 0 とするこ とで、 内燃機関を運転すると、 ピス ト ン 4の熱膨張に伴う ピス ト ン ク リ アラ ンスの変化を理想的な状態に保つこ とができ、 これによつ て、 ロス及び騒音の低減をはかることができ、 出力性能を維持した まま、 オイル消費量を低減することができる。 In addition, at least one or more of copper (Cu), manganese (Mn), and zinc (Zn) are contained in the aluminum alloy constituting the sleeve in a total amount of 1.7 to 8.3% by weight. Therefore, it is possible to prevent yielding deterioration of the sleeve, improve rigidity, and reduce deformation due to thermal expansion. Further, when the cylinder block 2 is manufactured, for example, when the sleeve base material is wrapped by the aluminum die cast material, the sleeve base material and the aluminum die cast are solidified in the process of solidifying the aluminum die cast material. Gaps are formed between the objects, which may deteriorate the accuracy of the inner diameter grinding process in the subsequent process.Furthermore, the presence of the gaps partially deteriorates the heat conductivity, so Deterioration of the shape, such as cylindricity and roundness, causes an increase in oil consumption and performance, but the sleeve 3, piston 4, and cylinder body 2a are (S i) is formed of an aluminum alloy, and the ratio of the linear expansion coefficients of the sleeve 3, the piston 4, and the cylinder body 2a is 16 to 17: 17 to 18: 20 to 2 Set to 1. For example, by adjusting the content of silicon (Si), the ratio of the silicon (Si) content of the sleeve 3, the piston 4, and the cylinder body 2a is set to 25:17:12. When the ratio of the linear expansion coefficients of the piston 4, the sleeve 3, and the cylinder body 2a is set to 16:18:20, when the internal combustion engine is operated, the piston 4 accompanying the thermal expansion of the piston 4 It is possible to keep the change of the tongue clearance in an ideal state, thereby reducing the loss and the noise, and reducing the oil consumption while maintaining the output performance. be able to.
また、 シ リ コ ン ( S i ) 含有量を 1 5〜 3 8重量%としたアルミ ニゥム合金铸物を使用することがスリ一ブ基材とアルミ二ゥム铸物 の間に隙間が生じさせないことで有効であるが、 通常の铸物材料で は初晶 S i粒が数 1 0 t m以上にもなつてしまうため、 表面にメ ッ キ層を形成しょう としても、 密着性が悪く、 加工時にメ ッキ剥離を 生じることがあるだけでなく、 運転中にもメ ッキ剥離を生じるなど 充分な耐久性が得られない。 このためスリーブ 3は平均粒径が 2 0〜 1 0 0 〃 mのアルミニゥ ム合金粉末を凝集固化して形成することで、 このシリ コン (S i ) を平均粒径が 2 0 〃m以下の初晶シリ コン ( S i ) としている。 メ ツキの前処理であるアルカリエッチング工程において、 シリコン (S i ) 粒径が 2 0 / m以下と十分小さいために、 N i — Pメ ツキの析出が 阻害されない。 このためメ ツキの密着性が確保することができる。 In addition, the use of an aluminum alloy material having a silicon (Si) content of 15 to 38% by weight causes a gap between the sleeve base material and the aluminum material. Although it is effective to avoid this, the usual crystalline materials can have primary Si grains of several tens of tm or more, so even if an attempt is made to form a paint layer on the surface, the adhesion is poor. Not only does it cause peeling during machining, but also does not provide sufficient durability, such as peeling during operation. For this reason, the sleeve 3 is formed by agglomerating and solidifying an aluminum alloy powder having an average particle diameter of 20 to 100 μm, so that the silicon (S i) has an average particle diameter of 200 μm or less. Primary crystal silicon (Si). In the alkali etching step, which is a pre-treatment for plating, the silicon (Si) particle size is sufficiently small, not more than 20 / m, so that precipitation of Ni—P plating is not hindered. For this reason, adhesion of the plating can be ensured.
このように、 スリーブ 3を構成するアルミニゥム合金にシリ コン ( S i ) を含有させ、 このシリ コン ( S i ) を平均粒径が 2 0 u rn 以下の初晶シリ コン ( S i ) とし、 スリーブ 3の内周面にアルカ リ ェッチング処理することで、 スリーブ内周面のシリ コン ( S i ) が アル力 リエツチング処理で除去されて、 スリ一ブ内周面に凹凸が形 成され、 しかもシリ コン (S i ) 粒子の平均粒径は小さいので、 微 細な凹凸を緻密に.形成でき、 スリーブ内周面とメ ツキ層との結合面 積が増加し結合性めより一層の向上が可能で、 凹凸によるアンカ一 効果があり、 さらに結合面積の増加で熱伝達面積が増加し、 メ ツキ 層に加えられる燃焼ガスの熱を速やかに放熱可能で、 メ ツキ層の剥 離を起こ しにく い。  As described above, the aluminum alloy constituting the sleeve 3 contains silicon (Si), and the silicon (Si) is used as primary crystal silicon (Si) having an average particle diameter of 20 urn or less. When the inner peripheral surface of the sleeve 3 is subjected to arc-etching processing, silicon (S i) on the inner peripheral surface of the sleeve is removed by the Al force re-etching processing, and irregularities are formed on the inner peripheral surface of the sleeve. Since the average particle diameter of the silicon (Si) particles is small, fine irregularities can be formed densely, and the bonding area between the inner peripheral surface of the sleeve and the plating layer increases, further improving the bonding performance. Possible, has an anchoring effect due to the unevenness, and furthermore, the heat transfer area increases due to the increase in the coupling area, the heat of the combustion gas added to the plating layer can be quickly radiated, and the plating layer is separated. Hateful.
また、 スリ一ブ 3を構成するアルミニウム合金に、 シリコン (S i ) を 1 5〜 3 8重量%含有させることで、 シリ コン (S i ) 含有量が 多く、 かつシリ コン (S i ) 粒子の平均粒径は小さいので、 より微 細な凹凸を緻密に形成でき、 スリーブ内周面とメ ツキ層との結合面 積が増加し結合性のより一層の向上が可能である。  Also, by adding 15 to 38% by weight of silicon (Si) to the aluminum alloy constituting the sleeve 3, the silicon (Si) content is high and the silicon (Si) particles are increased. Since the average particle diameter is small, finer irregularities can be formed densely, and the bonding area between the inner peripheral surface of the sleeve and the plating layer is increased, so that the bonding property can be further improved.
また特に、 メ ツキ層を支持するスリーブ 3 はステップ S 3の真空 焼結時の加圧加熱条件及充分に各粉未が結合した後の冷却条件、 あ るいはステップ S 4の加熱 · 熱間押し出しにおける温度環境及び押 し出しにおける縮径率、 金型の押し出し口形状、 押し出し後の冷却 条件、 あるいは铸包む時におけるスリーブ温度管理 (加熱、 保温、 あるいは冷却等) 条件、 あるいは焼鈍条件等を設定することにより、 铸包み状態で口 ックウヱル硬度 (HR B) 4 0〜 7 0 とする。 この ことにより、 爆発圧力やビス ト ンピンの張力がメ ツキ層を介してス リーブ 3に作用しても、 スリーブ 3のメ ッキ層支持部は塑性変形す ることがないので、 メ ッキ層の剥離を起こ しにく い。 すなわち、 メ ツキ層が脱落してスリーブ 3が異常磨耗するようなエンジンの耐久 性に悪影響するようなことを防止できる。 Also, in particular, the sleeve 3 supporting the plating layer is subjected to the pressurizing and heating conditions during the vacuum sintering in step S3 and the cooling conditions after the powders have not been sufficiently bonded, or the heating and hot conditions in step S4. Temperature environment and extrusion in extrusion By setting the diameter reduction ratio during extrusion, the shape of the extrusion opening of the mold, the cooling conditions after extrusion, or the sleeve temperature control (heating, warming or cooling, etc.) conditions during wrapping, or the annealing conditions, etc. In the wrapped state, the mouth wall hardness (HRB) shall be 40 to 70. As a result, even if the explosion pressure or the tension of the screw pin acts on the sleeve 3 via the metal layer, the metal layer supporting portion of the sleeve 3 does not undergo plastic deformation. Hard to cause delamination. That is, it is possible to prevent the metal layer from falling off and the sleeve 3 from being abnormally worn, which adversely affects the engine durability.
実施例としては、 スリ一ブ基材に、 J I S 2000系または J I S 6000 系の基本化学成分に 2 5重量%のシリ コン (S i ) を加えた化学組 成をもつ急冷凝固粉末固化押し出し形成材料を用いるときの製造ェ 程を、 図 4の工程によって製造した。  As an example, a rapidly solidified powder solidification extrusion forming material having a chemical composition in which a base material of a JIS 2000 series or JIS 6000 series is added with 25% by weight of silicon (Si) to a sleeving base material. The manufacturing process when using was manufactured by the process of FIG.
この J I S 2 0 0 0系をベースとし過共晶組成となる量のシリ コ ン (S i ) を加えたアルミニウム合金の急冷凝固粉末は、 アルミ二 ゥム (A 1 ) を基材とし、 全体中に、 シリ コン (S i ) を 1 5〜3 8 重量%、 鉄 (F e) を 1. 5重量%以下、 銅 (C u) を 1. 5〜6. 8重量%、 マグネシウム (Mg) を 1. 8重量%以下、 マンガン (Mn) を 0. 2〜 1. 2重量%、 クロム (C r ) を 0. 1重量%以下、 亜 鉛 (Z n) 0. 3重量%以下、 チタン (T i ) 0. 2重量%以下と した。  This rapidly solidified powder of an aluminum alloy based on the JIS 2000 system and containing silicon (S i) in an amount that gives a hypereutectic composition is based on aluminum (A 1). Among them, silicon (Si) is 15 to 38% by weight, iron (Fe) is 1.5% by weight or less, copper (Cu) is 1.5 to 6.8% by weight, magnesium (Mg) ) Is not more than 1.8% by weight, manganese (Mn) is not more than 0.2 to 1.2% by weight, chromium (Cr) is not more than 0.1% by weight, zinc (Zn) is not more than 0.3% by weight, Titanium (Ti) was set to 0.2% by weight or less.
この J I S 6 0 0 0系をベースとし過共晶組成となる量のシリ コ ン ( S i ) を加えたアルミニゥム合金の急冷凝固粉末は、 アルミ二 ゥム (A 1 ) を基材とし、 全体中に、 シリコン (S i ) を 1 5〜 3 8 重量%、 鉄 (F e ) を 1. 0重量%以下、 銅 (C u) を 0. 4重量 %以下、 マグネシウム (Mg) を 0. 3 5〜: I . 5重量%以下、 マ ンガン (Mn ) を 0. 8重量%以下、 クロム (C r ) を 0. 3 5重 量%以下、 亜鉛 (Z n) 0. 2 5重量%以下、 チタン (T i ) 0. 1 5重量%以下とした。 The rapidly solidified powder of an aluminum alloy based on JIS 600 and added with an amount of silicon (Si) that becomes a hypereutectic composition is based on aluminum (A1). Inside, silicon (S i) is 15 to 38% by weight, iron (F e) is less than 1.0% by weight, and copper (Cu) is 0.4% by weight. % Or less, magnesium (Mg) 0.35 to: 1.5% by weight or less, manganese (Mn) 0.8% by weight or less, chromium (Cr) 0.35% by weight or less, zinc (Zn) 0.25% by weight or less and titanium (Ti) 0.15% by weight or less.
実施例 1 は、 J I S 6 0 0 0系で 6 0 6 1 — 2 5 S i急冷凝固粉 末固化押し出し材をスリ一ブ基材として、 この内面に N i - P- S i C 分散複合メ ツキを施した。  In Example 1, JIS 600-based 6 06 1 — 25 Si solidified solidified powder was used as the extruded material as a sleeve base material. The Ni-P-SiC dispersed composite Wood was given.
実施例 2は、 J I S 6 0 0 0系で 6 0 6 1 + 2〜4 F e— 2 5 S i 急冷凝固粉末固化押し出し材をスリーブ基材として、 この内面に N i - P - S i C分散複合メ ツキを施した。  Example 2 is a JIS 600-based system of 6 06 1 + 2 to 4 Fe—25 S i quenched solidified powder solidified extruded material used as a sleeve base material, and N i -P-S i C A dispersed composite plating was applied.
実施例 3は、 J I S 200 0系で 20 1 7または 2 02 4— 2 5 S i 急冷凝固粉末固化押し出し材をスリーブ基材として、 この内面に N i 一 P— S i C分散複合メ ツキを施した。  In Example 3, JIS 2000 series 20 17 or 202 4—25 S i rapidly solidified powder solidified extruded material was used as a sleeve substrate, and a Ni—P—S i C dispersed composite plating was applied on the inner surface. gave.
この実施例では、 オイル消費量低減はシリ ンダ変形の改善であり、 これに铸込み後スリ一ブ密着を改善することに着目 した。 スリ 一ブ 密着の改善には、 低線膨張係数スリーブ材へ変更することに着目し、 通常の低線膨張係数材は鉄系から軽量、 熱伝達良好材の選定を行な い、 アルミニウム複合材とした。  In this embodiment, the reduction of the oil consumption is an improvement of the cylinder deformation, and attention was paid to improving the contact of the sleeve after the integration. In order to improve the adhesion of the sleeve, we focused on changing to a sleeve material with a low linear expansion coefficient. And
このスリ一ブ材の物性、 機械的性質を比較して表 1 に示し、 低線 膨張係数アルミニウムを基材と し、 内表面に硬質皮膜を形成したス リーブであり、 表 1に示すようにスリ一ブ基材の線膨張係数 αを 1 2 S i — 3 C uのアルミニゥム合金材、 シリ ンダ本体 A D C 1 2と比較し て低減した。 铸包み材であるシリ ンダ本体 A D C 1 2の線膨張係数 との比率は 0. 8 5であり、 スリーブの铸込み時の締め付け変形が 改善された。
Figure imgf000023_0001
また、 2 5 0 °C X 1時間の加熱後除冷する焼鈍により铸包み時の 界面隙間が表 2に示すように減少する。 スリーブの円周方向に 8箇 所でスリーブとシリ ンダ本体との界面隙間を測定した。 ボア N o 4 のものは異常として金型冷却を停止する。
The physical and mechanical properties of this sleeve material are compared and shown in Table 1.The sleeve has a low linear expansion coefficient of aluminum as the base material and has a hard film formed on the inner surface. The linear expansion coefficient α of the sleeve substrate was reduced compared to the ADC12, an aluminum alloy material of 12Si-3Cu.比率 The ratio of the linear expansion coefficient of the cylinder body ADC12, which is the wrapping material, to 0.85, and the tightening deformation when inserting the sleeve was improved.
Figure imgf000023_0001
Further, the interfacial gap at the time of wrapping is reduced as shown in Table 2 by annealing at 250 ° C. for 1 hour and then cooling. The interface gap between the sleeve and the cylinder body was measured at eight locations in the circumferential direction of the sleeve. In the case of the bore No 4, the mold cooling is stopped as abnormal.
表 2
Figure imgf000024_0001
Table 2
Figure imgf000024_0001
鍀包み時の界面隙間が減少すると、 表 1に示すように、 ライナー 基材のヤング率が向上し、 ホーニング後のシリ ンダの真円度、 円筒 度が改善され、 ピス トンリ ングの追従性、 シール性が改善される。  界面 When the interfacial gap at the time of wrapping is reduced, as shown in Table 1, the Young's modulus of the liner substrate is improved, the roundness and cylindricity of the cylinder after honing are improved, and the followability of the piston ring is improved. The sealing performance is improved.
また、 铸包み時の界面隙間が減少すると、 熱伝達性の均一化と改 善が行なわれ、 運転中の局部変形の改善が可能になり、 ホーニング 後のシリ ンダの真円度、 円筒度が改善され、 ピス ト ンリ ングの追従 性、 シール性が改善され、 オイル消費の改善された。  In addition, 界面 When the interfacial gap at the time of wrapping is reduced, heat transfer is made uniform and improved, local deformation during operation can be improved, and the circularity and cylindricity of the cylinder after honing are reduced. Improved piston ring followability and sealability, and improved oil consumption.
前記実施例 1乃至実施例 3において、 急冷凝固粉末固化押し出し 形成材料を用いて押出加工し、 この押出加工条件、 例えば押出速度、 温度等を調整することによって、 図 5に示すように、 スリ ブ基材 の外表面に、 高さ 0 . 1 2 m mの長さ方向に平行な連続した突起 1 0 0を形成すると共に、 表面に深さ 1 0 ^ m l m mの微小クラ ック 1 0 1を一様に分布させた。 図 6はスリ一ブ表面き烈深さとスリーブ強度及び界面隙間の関係 を示す図であり、 表面に深さ 1 0 μ τα〜 1 m mがスリーブ強度が大 き く、 界面隙間を小さ くすることができ烈深さの最適範囲であり、 この深さ 1 0 II!〜 1 m mの微小クラ ック 1 0 1 を一様に分布させ ることで、 铸物のシリ ンダ本体 2 aとの接合を強固にし、 かつ熱の 伝達を均一にすることができる。 In Examples 1 to 3, extrusion was performed using a rapidly solidified powder solidified extrusion forming material, and by adjusting the extrusion processing conditions, for example, extrusion speed, temperature, etc., as shown in FIG. On the outer surface of the substrate, continuous protrusions 100 with a height of 0.12 mm parallel to the length direction were formed, and a small crack 101 with a depth of 10 ^ mlmm was formed on the surface. Were distributed in the same manner. Figure 6 shows the relationship between the surface depth of the sleeve and the sleeve strength and interfacial gap.The depth of 10 μτα to 1 mm on the surface indicates that the sleeve strength is high and the interfacial gap is small. This is the optimal range of the depth, and this depth 10 II! By uniformly distributing the minute cracks 101 of about 1 mm, it is possible to strengthen the bonding between the body and the cylinder body 2a and to make the heat transfer uniform.
また、 表面に深さ 1 0 n m〜最大でスリ一ブ基材厚さの 2 0 %が スリ一ブ強度が大き く、 界面隙間を小さ くすることができ烈深さの 最適範囲であり、 この深さ 1 0 m〜最大でスリ一ブ基材厚さの 2 0 %の微小クラ ック 0 1 を一様に分布させることで、 铸物のシリ ン ダ本体 2 aとの接合を強固にし、 かつ熱の伝達を均一にすることが できる。  In addition, the surface has a depth of 10 nm to a maximum of 20% of the thickness of the sleeve base material, and the strength of the sleeve is large, and the interface gap can be reduced. By uniformly distributing microcracks 01 at a depth of 10 m to a maximum of 20% of the thickness of the sleeve base material, the bonding of the solid to the cylinder body 2 a is strengthened. And heat transfer can be made uniform.
前記実施例 1乃至実施例 3において、 リ ン及び共析物を含む二ッ ゲル系の分散メ ツキを高速で行ない、 ニッケル (N i ) —リ ン (P ) —シリ コ ンカーバイ ト (S i C ) の分散メ ツキを高速で行う もので あるが、 この N i — P— S i C分散メ ツキは、 次のような性質を有 する。  In Examples 1 to 3, a Nigel-based dispersion method containing phosphorus and eutectoids was performed at a high speed, and nickel (Ni) -lin (P) -silicon carbide (Si) was used. The dispersion method of C) is performed at high speed, and this Ni-P-SiC dispersion method has the following properties.
スリーブ 3の内阖面に N i — P— S i C分散メ ツキを施した場合 に、 スリーブ 3の内周面に、 図 7に示すような N i — Pマ ト リ ック ス 5 1及び S i Cの共析粒子 5 2を含むメ ツキ膜 5 0が形成される。 このメ ッキ膜 5 0の表面には、 潤滑のためにホー二ング目からなる オイルポケッ ト 5 3が形成される (図 7 ( a ) ) が、 さらに、 運転 によるピス ト ン 5の摺動が繰り返されると、 図 7 ( b ) のように、 硬いシリ コンカーバイ ト (S i C ) の共析粒子 5 2は残って N i 一 Pマ ト リ ックス 5 1 が摩耗することにより、 新たなオイルポケッ ト 5 4が生じる。 従って、 長期間にわたってオイル潤滑を良好に行わ せることができる。 When Ni-P-SiC dispersion plating is applied to the inner surface of the sleeve 3, the Ni-P matrix 51 shown in Fig. 7 is applied to the inner surface of the sleeve 3. A plating film 50 containing eutectoid particles 52 of SiC and SiC is formed. An oil pocket 53 composed of a horn is formed on the surface of the mask film 50 for lubrication (Fig. 7 (a)). Further, the sliding of the piston 5 during operation is performed. As shown in Fig. 7 (b), hard silicon carbide (SiC) eutectoid particles 52 remain and Ni-P matrix 51 wears, as shown in Fig. 7 (b). Oil pocket 54 occurs. Therefore, oil lubrication can be favorably performed over a long period of time.
また、 温度とメ ツキ硬度との関係を、 上記の N i — P— S i C分 散メ ツキと、 N i — S i C分散メ ツキと、 ハー ドクロムメ ツキとに ついて調べると、 N i — P— S i C分散メ ツキは、 と く に 3 5 0 °C 程度で熱処理すれば、 ハー ドクロムメ ツキより も硬度が高く 、 リ ン (P) を含まない N i — S i C分散メ ツキと比べると硬度が大幅に 高められる。 このことから、 リ ンを含有させることで熱処理後の硬 度が高められることがわかる。  In addition, the relationship between the temperature and the plating hardness is examined for the above-mentioned Ni—P—SiC dispersion plating, Ni—SiC dispersion plating, and hard chrome plating. — P— S i C dispersion method, especially when heat-treated at about 350 ° C, has higher hardness than hard chrome method and does not contain phosphorus (P). Hardness is greatly increased compared to Tsuki. This indicates that the inclusion of phosphorus increases the hardness after heat treatment.
この実施例では、 板状試験片にメ ツキを施したものについてやす り試験、 ドリル孔あけ試験、 加熱急冷試験等によりメ ツキの密着性 を評価したところ、 溶製材に比べ明らかに密着性が向上しているこ とが確認された。 また、 内燃機関の耐久試験を行なったところ、 出 力性能を維持したまま、 オイル消費量が、 従来の約 1 Z2に低減す ることが確認され、 メ ッキ剥離等の トラブルはまつたく発生しなか つ こ o  In this example, when the adhesion of the plate was evaluated by a file test, a drilling test, a heating and quenching test, etc., on the plate-shaped test piece, the adhesion was clearly higher than that of the ingot material. It has been confirmed that it has improved. In addition, a durability test of the internal combustion engine was performed, and it was confirmed that the oil consumption was reduced to about 1 Z2 while maintaining the output performance. Shino Ko
産業上の利用可能 Industrial use
以上のように、 スリ一ブをシリ ンダ本体内に配置して構成したシ リ ンダブ口ッ クを備える内燃機関において、 ビス トンとの焼き付き を防止し、 また燃費悪化、 オイル劣化を防止することができた。 ま た、 スリーブ材が降伏劣化を防止すると共に、 剛性が向上し、 かつ 熱膨張による変形が軽減することができた。 さらに、 内燃機関の出 力性能を維持したまま、 オイル消費量の低減を可能とすることがで きる。  As described above, in an internal combustion engine equipped with a cylinder opening in which the sleeve is disposed in the cylinder body, seizure with bistons is prevented, and fuel consumption and oil deterioration are prevented. Was completed. In addition, the sleeve material prevented yield deterioration, improved rigidity, and reduced deformation due to thermal expansion. Further, it is possible to reduce oil consumption while maintaining the output performance of the internal combustion engine.

Claims

請求の範囲 The scope of the claims
1 . アルミニウム合金製のスリーブを、 アルミニウム合金铸造製の シリ ンダ本体に铸包んだ内燃機関用のシリ ンダブ口ックであり、 前記スリーブの線膨張係数をシリ ンダ本体の線膨拡係数より小さ く したことを特徴とする内燃機関。 1. A cylinder bag for an internal combustion engine in which an aluminum alloy sleeve is wrapped in a cylinder body made of an aluminum alloy, wherein the coefficient of linear expansion of the sleeve is smaller than the coefficient of linear expansion of the cylinder body. An internal combustion engine characterized by the following.
2 . 前記スリーブ 線膨張係数をシリ ンダ本体の線膨張係数より少 なく とも 1 0 %小さな値にしたことを特徵とする請求項 1 に記載の 内燃機関。  2. The internal combustion engine according to claim 1, wherein the sleeve has a coefficient of linear expansion smaller by at least 10% than a coefficient of linear expansion of the cylinder body.
3 . 前記スリーブを構成するアルミニウム合金に、 シリ コン (S i ) を 1 5〜3 8重量%含有させたことを特徴とする請求項 1 または請 求項 2に記載の内燃機関。  3. The internal combustion engine according to claim 1, wherein the aluminum alloy forming the sleeve contains 15 to 38% by weight of silicon (Si).
4 . 前記シリ コン ( S i ) を平均粒径が 2〜 1 0 mの初晶シリ コ ン (S i ) としたことを特徴とする請求項 3に記載の内燃機関。 4. The internal combustion engine according to claim 3, wherein said silicon (S i) is primary silicon (S i) having an average particle size of 2 to 10 m.
5 . 前記スリ一ブ^平均粒径が 2 0〜1 0 0 mのアルミニウム含 金粉末を凝集固化して形成したことを特徴とする請求項 1乃至請求 項 4のいずれか 1項に記載の内燃機関。 5. The method according to claim 1, wherein the aluminum alloy powder having an average particle diameter of 20 to 100 m is formed by agglomeration and solidification. Internal combustion engine.
6 . アルミニウム合金製のスリーブを、 アルミニウム合金铸造製の シリ ンダ本体内に配置して構成したシリ ンダブ口 ックを備え、 この シリ ンダブ口ックのシリ ンダ内にピス トンを往復動可能に収納した 内燃機関であり、  6. Equipped with a cylinder socket that is made by placing an aluminum alloy sleeve inside a cylinder body made of aluminum alloy, so that the piston can reciprocate in the cylinder of this cylinder socket. The stored internal combustion engine,
前記ピス ト ン、 スリーブ、 シリ ンダ本体の線膨張係数を、 スリー ブ<ピス トン <シ ンダ本体としたことを特徴とする請求項 1乃至 請求項 5のいずれか 1項に記載の内燃機関。 The internal combustion engine according to any one of claims 1 to 5, wherein a linear expansion coefficient of the piston, the sleeve, and the body of the cylinder is set to three <piston <body of the cylinder.
7. 前記スリーブを構成するアルミニウム合金に、 マグネシウム (Mg) を 1. 8重量%以下を含有させ、 前記スリーブはロックゥヱル硬度7. The aluminum alloy that forms the sleeve contains 1.8% by weight or less of magnesium (Mg).
(H R B) 4 0〜7 0であることを特徴とする請求項 3項乃至請求 項 6のいずれか 1項に記載の内燃機関。 The internal combustion engine according to any one of claims 3 to 6, wherein (HRB) is 40 to 70.
8. 前記スリーブを構成するアルミニウム合金に、 銅 (C u) 、 マ ンガン (Mn) 、 亜鉛 (Z n) のいずれか少なく とも 1つあるいは 複数を合計で 1. 7〜 8. 3重量%含有させたことを特徴とする請 求項 7に記載の内燃機関。  8. The aluminum alloy composing the sleeve contains at least one or more of copper (Cu), manganese (Mn), and zinc (Zn) in a total of 1.7 to 8.3% by weight. The internal combustion engine according to claim 7, wherein the internal combustion engine is operated.
9. 前記スリーブの内周面にアルカ リエッチング処理をした後、 メ ツキを施したことを特徴とする請求項 5乃至請求項 8のいずれか 1 項に記載の内燃機関。  9. The internal combustion engine according to any one of claims 5 to 8, wherein the inner peripheral surface of the sleeve is subjected to an alkali etching treatment and then subjected to a plating.
1 0. 前記スリーブの基材外表面に、 高さ 0. l〜2 mmの長さ方 向に平行が連続した突起を形成すると共に、 表面に深さ 1 0 m〜 最大でスリーブの基材厚さの 2 0 %の微小クラ ックを一様に分布さ せたことを特徴とする請求項 5乃至請求項 9のいずれか 1項に記載 の内燃機関。  10 0. The outer surface of the base material of the sleeve has a height of 0.1 to 2 mm. A projection parallel to the length direction is formed on the outer surface. The internal combustion engine according to any one of claims 5 to 9, wherein micro cracks having a thickness of 20% are uniformly distributed.
PCT/JP2001/010709 2000-12-07 2001-12-06 Internal combustion engine WO2002053899A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002554381A JPWO2002053899A1 (en) 2000-12-07 2001-12-06 Internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000372883 2000-12-07
JP2000-372883 2000-12-07

Publications (1)

Publication Number Publication Date
WO2002053899A1 true WO2002053899A1 (en) 2002-07-11

Family

ID=18842355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010709 WO2002053899A1 (en) 2000-12-07 2001-12-06 Internal combustion engine

Country Status (2)

Country Link
JP (1) JPWO2002053899A1 (en)
WO (1) WO2002053899A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7216612B2 (en) 2005-08-05 2007-05-15 Yamaha Hatsudoki Kabushiki Kaisha Internal combustion engine having cylinder formed with water jacket and vehicle provided with the same
KR101477324B1 (en) * 2007-08-29 2014-12-29 말레 인터내셔널 게엠베하 Cylinder crank case for an internal combustion engine

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472033A (en) * 1990-07-10 1992-03-06 Nippon Light Metal Co Ltd Aluminum alloy for piston
JPH07132362A (en) * 1993-11-15 1995-05-23 Nissan Motor Co Ltd Cylinder block and its production
DE19829047A1 (en) * 1997-06-30 1999-01-07 Aisin Seiki New aluminium-silicon-copper-magnesium alloy
EP0892075A1 (en) * 1997-07-17 1999-01-20 Yamaha Hatsudoki Kabushiki Kaisha Aluminium alloy for a piston and method of manufacturing a piston
JPH1182151A (en) * 1997-09-11 1999-03-26 Yamaha Motor Co Ltd Cylinder block made of aluminium alloy
JPH11107848A (en) * 1997-10-01 1999-04-20 Sumitomo Electric Ind Ltd Cylinder liner made of powder aluminum alloy
JPH11182341A (en) * 1997-12-18 1999-07-06 Yamaha Motor Co Ltd Sealing structure for engine
JPH11193748A (en) * 1997-12-26 1999-07-21 Yamaha Motor Co Ltd Cylinder block of engine
JPH11229062A (en) * 1998-02-10 1999-08-24 Sumitomo Electric Ind Ltd Sliding member and its production
JP2000088100A (en) * 1998-09-09 2000-03-28 Sumitomo Electric Ind Ltd Aluminum composite piston

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472033A (en) * 1990-07-10 1992-03-06 Nippon Light Metal Co Ltd Aluminum alloy for piston
JPH07132362A (en) * 1993-11-15 1995-05-23 Nissan Motor Co Ltd Cylinder block and its production
DE19829047A1 (en) * 1997-06-30 1999-01-07 Aisin Seiki New aluminium-silicon-copper-magnesium alloy
EP0892075A1 (en) * 1997-07-17 1999-01-20 Yamaha Hatsudoki Kabushiki Kaisha Aluminium alloy for a piston and method of manufacturing a piston
JPH1182151A (en) * 1997-09-11 1999-03-26 Yamaha Motor Co Ltd Cylinder block made of aluminium alloy
JPH11107848A (en) * 1997-10-01 1999-04-20 Sumitomo Electric Ind Ltd Cylinder liner made of powder aluminum alloy
JPH11182341A (en) * 1997-12-18 1999-07-06 Yamaha Motor Co Ltd Sealing structure for engine
JPH11193748A (en) * 1997-12-26 1999-07-21 Yamaha Motor Co Ltd Cylinder block of engine
JPH11229062A (en) * 1998-02-10 1999-08-24 Sumitomo Electric Ind Ltd Sliding member and its production
JP2000088100A (en) * 1998-09-09 2000-03-28 Sumitomo Electric Ind Ltd Aluminum composite piston

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7216612B2 (en) 2005-08-05 2007-05-15 Yamaha Hatsudoki Kabushiki Kaisha Internal combustion engine having cylinder formed with water jacket and vehicle provided with the same
KR101477324B1 (en) * 2007-08-29 2014-12-29 말레 인터내셔널 게엠베하 Cylinder crank case for an internal combustion engine

Also Published As

Publication number Publication date
JPWO2002053899A1 (en) 2004-05-13

Similar Documents

Publication Publication Date Title
US5537969A (en) Cylinder block
KR100304463B1 (en) Coating for reciprocating engine cylinder
JP3582795B2 (en) Method of manufacturing cylinder liner for internal combustion engine using hypereutectic AlSi alloy
JP3664315B2 (en) Method of manufacturing cylinder liner for internal combustion engine using hypereutectic AlSi alloy
JPH0419345A (en) Cylinder block for internal combustion engine and manufacture thereof
US20080000444A1 (en) Piston for an Internal Combustion Engine, Method for Producing Said Piston and Use of a Copper Alloy in the Production of a Piston
US6443211B1 (en) Mettallurgical bonding of inserts having multi-layered coatings within metal castings
US20180111231A1 (en) Method for metallurgically bonding a cylinder liner into a bore in an engine block
JP2552523B2 (en) Combination of cylinder sleeve and piston for internal combustion engine
WO2002053899A1 (en) Internal combustion engine
EP0892075B1 (en) Method of manufacturing a piston from an aluminium alloy.
JP2002174140A (en) Cylinder sleeve and cylinder block for internal combustion engine as well as internal combustion engine
US20190085786A1 (en) Aluminum cylinder block assemblies and methods of making the same
JP2002371302A (en) Sliding member and valve-opening/closing timing control device
JP2002180104A (en) Cylinder sleeve, and cylinder block for internal- combustion engine
JP2002178132A (en) Cylinder sleeve and its method for producing the same, and cylinder block for internal combustion engine
JP3897416B2 (en) Powder aluminum alloy cylinder liner
JPS5996242A (en) Sintered aluminum alloy body and its production
US20200070240A1 (en) Light weight inserts for piston rings, methods of manufacturing thereof and articles comprising the same
JP2893658B2 (en) Sintered aluminum alloy sliding member
JP2002221078A (en) Aluminum alloy-made cylinder block and method of making it
JP2000033455A (en) Forged sleeve for internal combustion engine, its manufacture and cylinder block using the sleeve
JPH11226721A (en) Production of piston
JPH06323327A (en) Connecting rod made aluminum powder alloy
JPS645990B2 (en)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002554381

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase