WO2002052142A1 - Module echangeur de chaleur, specialement concu pour un systeme de recyclage des gaz d'echappement - Google Patents

Module echangeur de chaleur, specialement concu pour un systeme de recyclage des gaz d'echappement Download PDF

Info

Publication number
WO2002052142A1
WO2002052142A1 PCT/EP2001/015411 EP0115411W WO02052142A1 WO 2002052142 A1 WO2002052142 A1 WO 2002052142A1 EP 0115411 W EP0115411 W EP 0115411W WO 02052142 A1 WO02052142 A1 WO 02052142A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
exchanger
characteristic
fact
exhaust gases
Prior art date
Application number
PCT/EP2001/015411
Other languages
English (en)
Inventor
Carlos Perez Caseiras
David Paja Burgoa
José Luis GARCIA BERNARD
José Luis LAZARO
Original Assignee
Valeo Termico Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES200003048A external-priority patent/ES2174739B1/es
Application filed by Valeo Termico Sa filed Critical Valeo Termico Sa
Priority to EP01272042A priority Critical patent/EP1343963B1/fr
Priority to DE60133579T priority patent/DE60133579T2/de
Publication of WO2002052142A1 publication Critical patent/WO2002052142A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/163Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing
    • F28D7/1669Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with conduit assemblies having a particular shape, e.g. square or annular; with assemblies of conduits having different geometrical features; with multiple groups of conduits connected in series or parallel and arranged inside common casing the conduit assemblies having an annular shape; the conduits being assembled around a central distribution tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M2026/001Arrangements; Control features; Details
    • F02M2026/004EGR valve controlled by a temperature signal or an air/fuel ratio (lambda) signal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • F02M26/26Layout, e.g. schematics with coolers having bypasses characterised by details of the bypass valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/06Derivation channels, e.g. bypass

Definitions

  • the present invention relates to a heat exchanger module for an exhaust gas recycling system, which can in particular be applied to systems for recycling the exhaust gases from the engine of a vehicle to the intake.
  • This exchanger module can be the heating of the intake air as well as the refrigeration of the exhaust gases which are led to the catalytic converter for petrol engines.
  • EGR valve exhaust Gas Recycling Cooler
  • the actual heat exchanger can have different configurations: for example, it can consist of a tubular flange inside which is arranged a series of parallel tubes in which the gases circulate, the refrigerant spreading in the flange, outside the tubes; in another application, the exchanger is composed of a series of parallel panels which constitute the exchange surfaces heat, so that the exhaust gases and the refrigerant circulate between two panels, in alternating layers.
  • the object of the present invention is to provide a solution to the drawbacks mentioned above, by developing a heat exchanger module, designed specifically for an exhaust gas recycling system making it possible to maintain a minimum level of gas emission. pollutants in the exhaust gases, regardless of the engine's operating condition.
  • the heat exchange module of this invention is of the heat exchanger type equipped with circuits allowing the flow of exhaust gases, the latter comprising among these means the conduits reserved for the flow of gases with heat exchange with a cooling; its peculiarity lies in the fact that the circuits serving for the flow of the exhaust gases comprise at least one by-pass duct, integrated into the exchanger, which is suitable for the circulation of the exhaust gases without these being subjected to a real cooling.
  • bypass duct which can simply be called a "bypass" makes it possible to avoid cooling of the exhaust gases according to the different operating modes of the engine, for example in the event of a cold start, for which its temperature n is not high and cooling it would be dangerous because of the emission of polluting gases it would generate.
  • the exchanger module further comprises circuits for selecting the path of the exhaust gases, thus allowing these selection means to let the gases circulate through the conduits intended for their flow with heat exchange or well by the bypass duct without any real cooling.
  • These means for selecting the path of the exhaust gases are preferably equipped with a temperature detector for these gases; it is thus possible to guarantee that, whatever the operating mode of the engine, the gases will be led to the most appropriate conduit, maintaining the emission of polluting gases at a minimum threshold.
  • the means for selecting the path of the exhaust gases are incorporated at least in part in the heat exchanger module. This feature allows the device to be compact and simple to assemble.
  • the exhaust gas path selection circuits include a three-way valve; this valve can be placed at the inlet of the exchanger, but it can either located at the exit of the exchanger.
  • the means for selecting the path of the exhaust gases comprise a two-position valve which is associated with the bypass pipe mentioned above, which opens or closes the pipe at when the exhaust gases pass.
  • This valve makes it possible to direct the exhaust gases to the conduits with heat exchange or to the bypass, depending on the nature of these gases, in a simple manner and without complicating the structure of the exchanger.
  • this valve is mounted at the outlet of said bypass.
  • the gases must pass through the tubes of the exchanger, while when the valve leaves the passage through the bypass open, the gases preferably take this path, because they lose less dump; it is possible to install either the valve at the inlet of the bypass.
  • valve associated with the bypass is linear drive, since this mode makes it possible to ensure sealing of the assembly more easily; in this case it is possible to choose between a flat seat valve, a needle valve, a gate valve or a piston valve.
  • the valve can be either rotatable, and a choice should be made between butterfly valve, ball valve or rotary valve.
  • the control of the thermostatic valve is more advantageous; its opening and closing are directly controlled by the temperature of the coolant.
  • the thermostatic control removes any external control, which avoids any problem of tightness as well as the need to exercise an external control.
  • the exchanger has the general structure of an exchanger equipped with a bundle of parallel tubes in which the exhaust gases circulate, the bypass being composed of a single tube, section roughly equivalent to the total section of this bundle of tubes; this tube should preferably be installed on the longitudinal axis of the exchanger.
  • This invention also relates to any heat exchanger, in particular for an exhaust gas recycling system, which has circuits for the flow of exhaust gases, including the circuits mentioned above which serve for the flow of gases with heat exchange with a cooling fluid, and which is distinguished by the fact that the circuits serving for the flow of the exhaust gases further comprise at least one bypass, incorporated in the exchanger, suitable for the circulation of the gases exhaust without these being subjected to real cooling.
  • the exchanger preferably consists of means for selecting the path of the exhaust gases, thus allowing these selection means to allow the circulation of gases via the pipes intended for their flow. with heat exchange or via the bypass duct without any real cooling.
  • FIG. 1 schematically represents a heat exchanger module according to the present invention, in the operating position;
  • Figure 2 shows the module of Figure 1 in another operating condition;
  • Figure 3 is a sectional view of the heat exchanger;
  • FIGS. 4 and 5 are views in longitudinal section of an exchanger according to an application of the present invention, in which a valve with planar seat is mounted, respectively in the closed and open position;
  • Figures 6 and 7 are views similar to Figures 4 and 5, for an exchanger provided with a butterfly valve.
  • an EGRC module according to the invention comprises a heat exchanger 1, mainly composed of a flange 10 provided with a bundle of tubes 11 further having inside a bypass duct or by- pass 12, of diameter greater than each of the tubes 11 composing the bundle and which is independent of these.
  • the 3-way valve 2 At the inlet of the exchanger 1 is the 3-way valve 2, through which the exhaust gases enter by a line indicated by the arrow A, and through which they are led, according to the position of the valve, to the bundle of tubes 11 via the line indicated by arrow B, as shown in figure 1, or to bypass 12 via the line indicated by arrow C, as shown in figure 2.
  • the tubes 11 converge at the ends of the flange in two annular collectors, an inlet manifold 13 and an outlet manifold 14, which are arranged around the by- pass 12.
  • the exhaust gases from the engine cylinders pass, through the valve shown in FIG. 1, from valve 2 to the tubes 11, through the inlet manifold 13, while in FIG. 2 the gases pass from valve 2 to line 12.
  • a cooling fluid circulates inside the flange 10, but outside the tubes 11 and the bypass 12, between the fluid inlet 15 and a fluid outlet 16.
  • the module EGRC described also includes circuits making it possible to detect the temperature of the gases leaving the cylinders, as well as means for controlling the valve 2.
  • the operation of the module described is simple: during normal engine operation, the valve 2 remains in the position in FIG. 1, and the exhaust gases are cooled in the exchanger, in the traditional way, since they circulate in the tube bundle 11.
  • the means to control then change the state of the valve to that of FIG. 2, so that most of the exhaust gases pass through the exchanger 1 via the bypass 12: because of the relatively large diameter of this duct, the heat exchange between the gas flow and the cooling fluid is thus reduced, and the gases are not cooled during their passage through the exchanger.
  • the flow of gas recycled by the exchanger is usually between 5 g / s and 15 g / s, for a flow section with a heat exchange of between approximately 500 mm 2 and 1000 mm 2 , this section consisting of a large number of tubes with a hydraulic diameter between 5 mm and 12 mm, inside a flange whose internal diameter is approximately 43 mm to 52 mm.
  • the hydraulic diameter of the tubular bypass can be between approximately 10 mm and 40 mm.
  • the characteristic values of the temperatures of the gases circulating in a traditional exchanger, when the engine has a normal speed, are 300 ° C at the inlet and 150 ° C at the outlet; in the event of a cold start, the gases entering the exchanger are between 100 and 150 ° C and the exchanger cools them down to 50 ° C.
  • the gases leaving the exchanger have practically the same temperature as at the inlet.
  • valve 2 either at the inlet of the exchanger, as presented, or at the outlet; in this case, the pressure difference between the inlet and the outlet passes the exhaust gases through the tube bundle or through the bypass depending on the location of the valve.
  • the modeling technique applied to the valve can take any form suitable for the design of the exchanger and its bypass; he is possible to integrate it in a single module in connection with the exchanger, or to arrange it as an external component.
  • an exchanger module will then be defined for different applications of the means for selecting the path of the gases.
  • a valve 20 is associated with the bypass duct 12 - in the present case it is a plane seat valve - located on the manifold of exit 14.
  • valve 20 is driven (linear drive) via an axis 21, and the outlet manifold 14 is modified as appropriate, the outlet 22 of the gases being effected perpendicular to the axis of the exchanger, to allow to house the valve 20 and its drive devices.
  • bypass duct 12 remains in the closed position, since the gases must necessarily pass through the tubes 11, as shown by the arrows; they are then cooled by the coolant which circulates inside the flange 10 (although its inputs and outputs are not shown in the figures).
  • valve 20 opens, as shown in FIG. 5, most of the gases pass through the bypass duct 12, since they meet only an insignificant resistance there and they are not cooled by their passage in the exchanger.
  • the other linear drive valves which could replace the butterfly valve 20 are needle valves, gate valves of different sections or piston valves.
  • FIGS 6 and 7 show a variant of the application of the exchanger, in which a butterfly valve 20 'has been integrated instead of a plane seat valve 20 as proposed in the previous figures.
  • the drive axis 21 'of the rotary valve, and the valve 21 can pass from the closed position of the bypass duct 12 ( Figure 6) to an open position of the duct 12 ( Figure 7).
  • the modification of the outlet manifold 14 is limited to its elongation which allows it to house the valve 20 '.
  • the other rotary drive valves which may also be suitable for the application described may be two-way ball valves, which are provided with a conduit passing through them, or rotary valves, composed of a plate articulated from a point of its periphery to a hinge pin located on the periphery of the conduit 12 to be closed.
  • a rotary drive valve could be installed, such as the butterfly valve 20 ′, by equipping it with a connecting rod-crank system or the like, inside the exchanger, so that the drive mode goes linear.
  • the bypass valve can be either pneumatic, electric or thermostatic.
  • valve is controlled from the temperature of the gases themselves or from the cooling fluid, so that the bypass duct opens, for example during the cold start of the engine, avoiding thus the exhaust gases do not cool too much.
  • This thermostatic drive mode is placed inside the exchanger, in order to avoid the sealing problems associated with the passage of a drive shaft in the flange.
  • bypass valve in the outlet manifold (or in the inlet manifold) in a single piece, which would have the consequence of improving the tightness of the assembly.
  • the pump body itself will include the connection to the gas circuit.
  • bypass inside the exchanger, as well as its final geometry, may vary from one case to another depending on the type of exchanger: for the tube bundle exchanger, the scheduling shown in the figures is entirely suitable since it does not require any significant modification of the exchanger production lines. For a plate heat exchanger, it would be possible to have a duct with a completely different geometry. For all these cases, what is important lies in the fact that the bypass is integrated in the body of the exchanger.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

L'invention concerne un module échangeur de chaleur, spècialement conçu pour un système de recyclage des gaz d'échappement comprenant un échangeur de chaleur (1) muni de conduits (11) destinés au débit des gaz avec échange calorifique avec un fluide de refroidissement; il se caractérise par le fait qu'il comprend en outre au moins un by-pass (12), intégré à l'échangeur (1), adapté à la circulation des gaz d'échappement sans que ceux-ci subissent un réel refroidissement. Le module peut en outre comprendre des moyens (2; 20; 20') de sélection du parcours des gaz d'échappement, lesquels comprennent de préférence une soupape (20, 20') à deux positions associée audit by-pass (12), qui ouvre ou ferme ce conduit au passage des gaz d'échappement, ou bien une soupape à trois voies (2). Grâce à son encombrement minime et à la grande simplicité de son mode de construction, il permet de refroidir les gaz d'échappement d'une manière sélective tout en maintenant un niveau minimum d'émission de gaz polluants.

Description

MODULE ECHANGEUR DE CHALEUR, SPECIALEMENT CONÇU POUR UN SYSTÈME DE RECYCLAGE DES GAZ D'ÉCHAPPEMENT
La présente invention se rapporte à un module échangeur de chaleur pour un système de recyclage des gaz d'échappement, qui peut en particulier s'appliquer aux systèmes de recyclage des gaz d' échappement du moteur d' un véhicule vers l'admission. Les autres applications de ce module échangeur peuvent être le réchauffement de l'air d' admission ainsi que la réfrigération des gaz d'échappement qui sont conduits vers le pot catalytique pour les moteurs à essence.
Il existe un usage bien établi dans le domaine automobile qui consiste à fournir un système de recyclage des gaz d'échappement d'un moteur Diesel, connu sous la dénomination EGR ou "Exhaust Gas Recycling", de façon à mélanger ces gaz à l'air d'admission, étant donné que la présence des gaz d'échappement dans ledit mélange diminue la production de NOx. Avant d'être mélangés à l'air d'admission, les gaz d' échappement sont refroidis dans un échangeur de chaleur
(EGRC ou "Exhaust Gas Recycling Cooler") monté sur la boucle du système EGR, de façon à améliorer l'efficacité du système. À l'intérieur de la boucle, il y a en outre une soupape (soupape EGR) qui contrôle le passage du gaz d'échappement dans l'échangeur.
L'échangeur de chaleur proprement dit peut avoir différentes configurations: par exemple, il peut se composer d'un flasque tubulaire à l'intérieur duquel est disposée une série de tubes parallèles dans lesquels circulent les gaz, le réfrigérant se répandant dans le flasque, à l'extérieur des tubes; dans une autre application, l'échangeur est composé d'une série panneaux parallèles qui constituent les surfaces d'échange calorifique, afin que les gaz d'échappement et le réfrigérant circulent entre deux panneaux, en couches alternées .
Dans tous les cas, les systèmes actuels EGR qui sont refroidis présentent un inconvénient car les gaz d'échappement circulent via l'échangeur quel que soit le mode de fonctionnement du moteur à partir du moment où la soupape EGR s'ouvre: les gaz sont refroidis pour autant que le moteur fonctionne en régime stable et que leur température est élevée, comme au cours d'un démarrage à froid, lorsque la température des gaz est nettement inférieure .
Cette opération de refroidissement des gaz lorsque leur température n' est pas élevée représente un inconvénient d'un point de vue écologique étant donné qu'elle augmente le niveau d'émissions de CO et d'hydrocarbures, assortie de surcroît d'une nuisance sonore .
Le but de la présente invention est d' apporter une solution aux inconvénients mentionnés ci-dessus, en développant un module échangeur de chaleur, conçu spécifiquement pour un système de recyclage des gaz d' échappement permettant de maintenir un niveau minimal d'émission de gaz polluants dans les gaz d'échappement, quel que soit l'état de fonctionnement du moteur.
Le module d'échange de chaleur de cette invention est du type échangeur de chaleur équipé de circuits permettant le débit des gaz d'échappement, celui-ci comprenant parmi ces moyens les conduits réservés au débit des gaz avec échange de chaleur avec un fluide de refroidissement; sa particularité réside dans le fait que les circuits servant au débit des gaz d' échappement comprennent au moins un conduit de by-pass, intégré à l'échangeur, qui convient à la circulation des gaz d'échappement sans que ceux-ci ne subissent un réel refroidissement .
Le conduit de dérivation, qui peut simplement être appelé "by-pass", permet d'éviter le refroidissement des gaz d'échappement selon les différents modes de fonctionnement du moteur, par exemple en cas de démarrage à froid, pour lequel sa température n' est pas élevée et son refroidissement serait dangereux à cause de l'émission de gaz polluants qu'elle engendrerait.
L'intégration du by-pass à l'intérieur de l'échangeur est très avantageuse, puisqu'elle permet de réduire l'espace nécessaire à cet ensemble; cet élément est très important pour les véhicules dont l'espace disponible est toujours limité.
Parmi une application choisie de cette invention, le module échangeur comprend en outre des circuits pour sélectionner le parcours des gaz d'échappement, permettant ainsi à ces moyens de sélection de laisser les gaz circuler par les conduits destinés à leur débit avec échange de chaleur ou bien par le conduit de by-pass sans qu'il y ait de réel refroidissement.
Ces moyens de sélection du parcours des gaz d'échappement sont de préférence équipés d'un détecteur de température de ces gaz; il est ainsi possible de garantir que, quel que soit le mode de fonctionnement du moteur, les gaz seront menés vers le conduit le plus approprié, maintenant à un seuil minimum l'émission de gaz polluants.
Dans une application plus avantageuse, les moyens de sélection du parcours des gaz d'échappement sont incorporés au moins pour partie dans le module échangeur de chaleur. Cette particularité permet au dispositif d'être compact et simple à monter.
Conformément à une application, les circuits de sélection de parcours des gaz d' échappement comprennent une soupape à trois voies; cette soupape peut être placée à l'entrée de l'échangeur, mais elle peut indifféremment se situer en sortie de l'échangeur.
Même s'il est possible de monter cette soupape en sortie de l'échangeur pour des raisons liées à la fabrication, l'écart de pressions assure la transmission des gaz vers les conduits appropriés, en fonction de la position de la soupape.
Conformément à une application de remplacement de cette soupape à trois voies, les moyens de sélection du parcours des gaz d' échappement comprennent une soupape à deux positions qui est associée au conduit de by-pass cité plus haut, qui ouvre ou ferme le conduit au moment du passage des gaz d'échappement.
Cette soupape permet d' orienter les gaz d'échappement vers les conduits avec échange de chaleur ou vers le by-pass, en fonction de la nature de ces gaz, de manière simple et sans compliquer la structure de 1' échangeur .
Dans une variante de l'application, cette soupape est montée à la sortie dudit by-pass. Lorsque la soupape ferme la sortie de ce conduit, les gaz doivent obligatoirement passer par les tubes de l'échangeur, tandis que quand la soupape laisse le passage par le bypass ouvert, les gaz prennent de préférence ce chemin, parce qu' ils perdent moins de charge; il est possible d'installer indifféremment la soupape à l'entrée du bypass .
Conformément à une application choisie de cette invention, la soupape associée au by-pass est à entraînement linéaire, étant donné que ce mode permet d'assurer une étanchéité de l'ensemble plus aisée; dans ce cas, il est possible de choisir entre une soupape à siège plan, une soupape à pointeau, un robinet-vanne ou une soupape à piston.
La soupape peut indifféremment être à commande rotative, et il conviendra d'effectuer un choix entre une vanne papillon, un clapet à bille ou une soupape rotative. La commande de la soupape thermostatique est plus avantageuse; son ouverture et sa fermeture sont directement commandées par la température du liquide de réfrigération.
La commande thermostatique supprime toute commande externe, ce qui permet d'éviter tout problème d' étanchéité ainsi que la nécessité d'exercer un contrôle externe.
Conformément à une démarche de fabrication particulièrement pratique, l'échangeur présente la structure générale d'un échangeur équipé d'un faisceau de tubes parallèles dans lesquels circulent les gaz d'échappement, le by-pass étant composé d'un seul tube, de section à peu près équivalente à la section totale de ce faisceau de tubes; on installera de préférence ce tube sur l'axe longitudinal de l'échangeur.
Cette solution simplifie la fabrication de l'échangeur de chaleur, étant donné qu'il peut être fabriqué sur une ligne traditionnelle avec seulement quelques légères modifications.
Cette invention concerne également tout échangeur de chaleur, en particulier pour un système de recyclage des gaz d'échappement, qui comporte des circuits servant au débit des gaz d'échappement, y compris les circuits mentionnés ci-dessus qui servent au débit des gaz avec échange calorifique avec un fluide de refroidissement, et qui se distingue par le fait que les circuits servant au débit des gaz d' échappement comprennent en outre au moins un by-pass, incorporé dans l'échangeur, adapté à la circulation des gaz d'échappement sans que ceux-ci ne subissent un réel refroidissement.
En outre, l'échangeur se compose de préférence de moyens de sélection du parcours des gaz d'échappement, permettant ainsi à ces moyens de sélection de permettre la circulation des gaz via les conduits destinés à leur débit avec échange de chaleur ou via le conduit de by-pass sans qu'il y ait de réel refroidissement.
Afin de permettre une meilleure compréhension de ce qui a été exposé auparavant, des plans sont joints à la présente, lesquels présentent de façon schématique et seulement à titre d'exemple non exhaustif, un cas pratique de l'application.
Sur ces plans, la figure 1 représente schématiquement un module échangeur de chaleur conforme à la présente invention, en position de fonctionnement; la figure 2 représente le module de la figure 1 dans une autre condition de fonctionnement; la figure 3 est une vue en coupe de l'échangeur de chaleur; les figures 4 et 5 sont des vues en coupe longitudinale d' un échangeur conformément à une application de la présente invention, dans lequel est montée une soupape à siège plan, respectivement en position fermée et ouverte; enfin les figures 6 et 7 sont des vues semblables aux figures 4 et 5, pour un échangeur muni d'une vanne papillon.
Comme le montrent les figures, un module EGRC conformément à l'invention comporte un échangeur de chaleur 1, composé principalement d'un flasque 10 muni d'un faisceau de tubes 11 présentant en outre à l'intérieur un conduit de dérivation ou by-pass 12, de diamètre supérieur à chacun des tubes 11 composant le faisceau et qui est indépendant de ceux-ci.
En entrée de l'échangeur 1 se trouve la soupape 2, à trois voies, par laquelle entrent les gaz d'échappement par une ligne indiquée par la flèche A, et à travers laquelle ils sont conduits, selon la position de la soupape, vers le faisceau de tubes 11 via la ligne indiquée par la flèche B, comme le montre la figure 1, ou vers le by-pass 12 via la ligne indiquée par la flèche C, comme le montre la figure 2.
Dans les deux cas, les gaz sortent par l'autre extrémité de l'échangeur, par une ligne D qui les conduit vers l'admission aux cylindres.
Comme le montre la figure 3, qui représente plus en détail l'échangeur 1, les tubes 11 convergent aux extrémités du flasque dans deux collecteurs annulaires, un collecteur d'entrée 13 et un collecteur de sortie 14, qui sont disposés autour du by-pass 12. Les gaz d'échappement provenant des cylindres du moteur passent, par la soupape représentée en figure 1, de la soupape 2 vers les tubes 11, à travers le collecteur d'entrée 13, alors qu'en figure 2 les gaz passent de la soupape 2 au conduit 12.
Un fluide de refroidissement circule à l'intérieur du flasque 10, mais à l'extérieur des tubes 11 et du bypass 12, entre l'entrée de fluide 15 et une sortie de fluide 16. Bien que cela ne soit pas représenté, le module EGRC décrit comprend également des circuits permettant de détecter la température des gaz en sortie de cylindres, ainsi que des moyens de contrôle de la soupape 2.
Le fonctionnement du module décrit est simple: pendant le fonctionnement normal du moteur, la soupape 2 reste dans la position de la figure 1, et les gaz d'échappement sont refroidis dans l'échangeur, de manière traditionnelle, étant donné qu'ils circulent dans le faisceau de tubes 11. Cependant, lorsque la température des gaz d'échappement est basse, par exemple dans le cas d'un démarrage à froid ou en faible charge ou lorsque le moteur est en bas régime, il n'est pas opportun de les refroidir plus, puisque cela provoquerait une augmentation des émissions de CO et des hydrocarbures; les moyens de contrôle changent alors l'état de la soupape pour celui de la figure 2, de telle façon que la plupart des gaz d'échappement traversent l'échangeur 1 via le by-pass 12: à cause du diamètre relativement important de ce conduit, l'échange calorifique entre le débit des gaz et le fluide de refroidissement se trouve ainsi réduit, et les gaz ne sont pas refroidis lors de leur passage dans l'échangeur.
Pour une utilisation sur les véhicules de tourisme, le débit de gaz recyclé par l'échangeur est habituellement compris entre 5 g/s et 15 g/s, pour une section d'écoulement avec un échange calorifique compris environ entre 500 mm2 et 1000 mm2, cette section se composant d'un grand nombre de tubes d'un diamètre hydraulique compris entre 5 mm et 12 mm, à l'intérieur d'un flasque dont le diamètre intérieur est d'environ 43 mm à 52 mm.
Dans ce cas, le diamètre hydraulique du by-pass tubulaire peut être compris entre 10 mm et 40 mm environ. Les valeurs caractéristiques des températures des gaz circulant dans un échangeur traditionnel, lorsque le moteur a un régime normal, sont de 300°C à l'entrée et de 150°C à la sortie; en cas de démarrage à froid, les gaz à l'entrée de l'échangeur sont compris entre 100 et 150°C et l'échangeur les refroidit à 50°C. Avec cette invention, grâce au by-pass les gaz en sortie de l'échangeur ont pratiquement la même température qu'à l'entrée.
Il est possible d'installer la soupape 2 soit à l'entrée de l'échangeur, tel que présenté, soit en sortie; dans ce cas, la différence de pression entre l'entrée et la sortie fait passer les gaz d'échappement par le faisceau de tubes ou par le by-pass en fonction de l'emplacement de la soupape.
La technique de modélisation appliquée à la soupape peut revêtir n' importe quelle forme convenant à la conception de l'échangeur et de son by-pass; il est possible de l'intégrer dans un module unique en liaison avec l'échangeur, ou bien de le disposer en tant que composant externe.
En référence aux 4 à 7, on définira ensuite un module échangeur pour des applications différentes des moyens de sélection du parcours des gaz.
Sur la figure 4 on peut considérer un échangeur muni d'un collecteur d'entrée 13, un flasque 10 avec un faisceau de tubes 11 d'échange calorifique, un conduit de dérivation ou by-pass 12, ainsi qu'un collecteur de sortie 14.
Dans ce cas il passe d'un module muni d'une seule soupape à trois voies, qui a pour double fonction de contrôler le débit du gaz via l'EGR et d'ouvrir ou de fermer son accès grâce au by-pass de l'échangeur, à un module d' échangeur muni d'une soupape EGR traditionnelle, située à l'extérieur de l'échangeur (non représentée sur les figures), et d'une seconde soupape associée au conduit de dérivation, cette dernière étant une vanne TOR, intégrée à l'échangeur.
C'est pourquoi, conformément à l'application représentée sur les figures 4 et 5, une soupape 20 est associée au conduit de dérivation 12 - dans le cas présent il s'agit d'une soupape à siège plan - située sur le collecteur de sortie 14.
L'entraînement de la soupape 20 (entraînement linéaire) s'effectue via un axe 21, et le collecteur de sortie 14 est modifié de façon appropriée, la sortie 22 des gaz s' effectuant perpendiculairement à l'axe de l'échangeur, pour permettre d'abriter la soupape 20 et ses dispositifs d'entraînement.
À l'emplacement de la soupape 20 représentée sur la figure 4 le conduit de dérivation 12 reste en position fermée, puisque les gaz doivent obligatoirement traverser les tubes 11, comme le montrent les flèches ; ils sont ensuite refroidis par le liquide de refroidissement qui circule à l'intérieur du flasque 10 (bien que ses entrées et sorties ne soient pas représentées sur les figures) .
Si la soupape 20 s'ouvre, comme représenté en figure 5, la plupart des gaz passent par le conduit de dérivation 12, étant donné qu'ils y rencontrent qu'une résistance insignifiante et qu' ils ne sont pas refroidis par leur passage dans l'échangeur.
Les autres soupapes à entraînement linéaire qui pourraient remplacer la vanne papillon 20 sont les soupapes à pointeau, les robinets-vannes de différentes sections ou les soupapes à piston.
Les figures 6 et 7 montrent une variante de l'application de l'échangeur, dans laquelle on a intégré une vanne papillon 20' au lieu d'une soupape à siège plan 20 comme proposé dans les figures précédentes.
Dans ce cas, l'axe d'entraînement 21' de la soupape rotative, et la soupape 21 peut passer de la position fermée du conduit de dérivation 12 (figure 6) à une position d'ouverture du conduit 12 (figure 7).
Pour cette application, la modification du collecteur de sortie 14 est limitée à son allongement qui lui permet d'héberger la vanne 20'.
Les autres vannes à entraînement rotatif qui peuvent également convenir à l'application décrite peuvent être des clapets à bille à deux voies, qui sont munies d'un conduit les traversant, ou des soupapes rotatives, composées d'une plaque articulée depuis un point de son pourtour à un axe d'articulation situé en périphérie du conduit 12 à fermer.
On pourrait installer une vanne à entraînement rotatif, telle que la vanne papillon 20', en l'équipant d'un système bielle-manivelle ou analogue, à l'intérieur de l'échangeur, pour que le mode d'entraînement passe en linéaire. La vanne du conduit de dérivation peut être soit à entraînement pneumatique, électrique ou thermostatique.
Dans ce dernier cas, la commande de la vanne est effectuée à partir de la température des gaz eux-mêmes ou bien du fluide de refroidissement, afin que le conduit de dérivation s'ouvre, par exemple pendant le démarrage à froid du moteur, évitant ainsi que les gaz d'échappement ne se refroidissent trop. Ce mode d'entraînement thermostatique est placé à l'intérieur de l'échangeur, afin d'éviter les problèmes d' étanchéité liés au passage d'un axe d'entraînement dans le flasque.
Les résultats des essais réalisés démontrent que la solution de la vanne TOR quant au conduit de dérivation est satisfaisante en plus de son installation simple et de son coût raisonnable.
En effet, les essais menés à bien à moyen et bas régime (2250 rpm et 1250 rpm) et lorsque le moteur est en charge basse (PME = 1 bar) , démontrent que les émissions d'hydrocarbures et de monoxyde de carbone sont réduites de manière significative lorsque le conduit de dérivation est complètement ouvert; l'augmentation caractéristique de NOx afférent à la diminution des hydrocarbures et du monoxyde de carbone est quasiment inexistante en basse charge. En régime transitoire, l'amélioration est également importante.
Il serait possible d'incorporer la soupape du bypass dans le collecteur de sortie (ou dans celui d'entrée) dans une seule pièce, ce qui aurait pour conséquence d'améliorer l' étanchéité de l'ensemble. Le corps de pompe lui-même comprendra la connexion au circuit des gaz.
Il est important d' insister sur le fait que jusqu'à présent a été décrite l'invention appliquée à un échangeur dont le type présente un faisceau de tubes dans lesquels les gaz d'échappement circulent, cet échangeur étant intégré dans un flasque dans lequel circule un fluide de refroidissement ; néanmoins cette invention ne se limite pas à ce type concret d' échangeur. Il serait possible d'appliquer à d'autres types d' échangeur un conduit ou passage en dérivation analogue, par exemple un échangeur à plaques parallèles, dans lequel les flux de gaz et de fluide réfrigérant se superposeraient en couches alternées .
L'emplacement réel du by-pass à l'intérieur de l'échangeur, tout comme sa géométrie définitive peuvent varier d'un cas à l'autre selon le type d' échangeur : pour l'échangeur à faisceau de tubes, l'ordonnancement représenté sur les figures convient tout à fait puisqu'il ne requiert aucune modification importante des lignes de fabrication des échangeurs . Pour un échangeur à plaques, il serait possible d' avoir un conduit avec une géométrie tout à fait différente. Pour tous ces cas de figure, ce qui est important réside dans le fait que le by-pass est intégré dans le corps de l'échangeur.
Enfin, bien qu'une représentation concrète de cette invention ait été faite et représentée, il est évident que l'autorité en la matière pourra introduire des variantes ainsi que des modifications, ou encore remplacer certains détails par d'autres de même équivalence technique, sans s'éloigner du champ de protection défini par les revendications ci-jointes.

Claims

REVENDICATIONS
1. Module' échangeur de chaleur, spécialement conçu pour un système de recyclage des gaz d'échappement, qui comprend un échangeur de chaleur (1) muni de moyens servant au débit de ces gaz d'échappement, comportant parmi lesdits moyens, certains conduits (11) destinés au débit des gaz avec échange calorifique avec un fluide de refroidissement, caractérisé par le fait que les moyens servant au débit des gaz d' échappement comprennent en outre au moins un by-pass (12), intégré dans l'échangeur (1), adapté pour que les gaz d'échappement y circulent sans qu'ils ne subissent un réel refroidissement.
2. Module échangeur de chaleur tel que décrit dans la revendication 1, dont la caractéristique réside dans le fait qu'il comprend en outre des moyens (2;20;20') de sélection du parcours des gaz d'échappement, permettant ainsi à ces moyens de sélection de laisser les gaz circuler -par les conduits (11) destinés au débit avec échange calorifique ou bien par le conduit de by-pass (12) sans qu'il y ait de réel refroidissement.
3. Module échangeur de chaleur tel que décrit dans la revendication 2, dont la caractéristique réside dans le fait que lesdits moyens (2;20;20') de sélection du parcours des gaz d' échappement comprennent un détecteur de température desdits gaz. . Module échangeur de chaleur tel que décrit aux revendications 2 ou 3, dont la caractéristique réside dans le fait que lesdits moyens (2;20;20') de sélection de parcours des gaz d'échappement sont au moins intégrés en partie dans le module échangeur de chaleur.
5. Module échangeur de chaleur tel que décrit aux revendications 2 à 4, dont la caractéristique réside dans le fait que lesdits moyens de sélection du parcours des gaz d'échappement sont munis d'une vanne à trois voies (2) .
6. Module échangeur de chaleur tel que décrit à la revendication 5, dont la caractéristique réside dans le fait que ladite vanne à trois voies (2) est située à l'entrée de l'échangeur (1) .
7. Module échangeur de chaleur tel que décrit à la revendication 5, dont la caractéristique réside dans le fait que ladite vanne à trois voies (2) est située en sortie de l'échangeur (1). 8. Module échangeur tel que décrit aux revendications 2 à 4, dont la caractéristique réside dans le fait que lesdits moyens de sélection du parcours des gaz d'échappement comprennent une soupape (20,20') à deux positions, associée au conduit de by-pass (12), qui ouvre ou ferme ledit conduit lors du passage des gaz d' échappement .
9. Module échangeur tel que décrit à la revendication 8, dont la caractéristique réside dans le fait que la soupape (20,20') est montée en sortie dudit by-pass (12) .
10. Module échangeur tel que décrit à la revendication 8, dont la caractéristique réside dans le fait que la soupape (20,20') est montée à l'entrée dudit by-pass (12) . 11. Module échangeur tel que décrit aux revendications 8 à 10, dont la caractéristique réside dans le fait que ladite soupape (20) dispose d'un mode d'entraînement linéaire.
12. Module échangeur tel que décrit à la revendication 11, dont la caractéristique réside dans le fait que ladite soupape (20) est choisie entre une soupape à siège plan, une soupape à pointeau, un robinet-vanne ou une soupape à piston.
13. Module échangeur tel que décrit aux revendications 8 à 10, dont la caractéristique réside dans le fait que ladite soupape (20') dispose d'un mode d'entraînement rotatif.
14. Module échangeur tel que décrit à la revendication 13, dont la caractéristique réside dans le fait que ladite soupape (20' ) est choisie entre une vanne papillon, un clapet à bille ou une soupape rotative.
15. Module échangeur tel que décrit aux revendications 8 à 14, dont la caractéristique réside dans le fait que la commande de ladite soupape (20,20') est thermostatique.
16. Module échangeur de chaleur tel que décrit aux revendications précédentes, dont la caractéristique réside dans le fait qu' il présente la configuration générale d' un échangeur (1) avec un faisceau de tubes parallèles (11) pour permettre le passage des gaz d'échappement, et par le fait que le by-pass se compose d'un tube unique (12) .
17. Module échangeur tel que décrit à la revendication 16, dont la caractéristique réside dans le fait que ledit tube unique (12) a une section quasiment équivalente à celle du faisceau de tubes pré-cité (11) .
18. Module échangeur de chaleur tel que décrit aux revendications 16 ou 17, dont la caractéristique réside dans le fait que ledit tube (12) est positionné sur l'axe longitudinal de l'échangeur (1). 19. Échangeur de chaleur (1), spécialement conçu pour un système de recyclage des gaz d'échappement, qui comprend des moyens nécessaires au débit des gaz d'échappement, comportant parmi lesdits moyens, certains conduits (11) destinés au débit des gaz avec échange calorifique avec un fluide de refroidissement, dont la caractéristique réside dans le fait que les circuits servant au débit des gaz d'échappement comprennent en outre au moins un by-pass (12), monté dans l'échangeur
(1), adapté à la circulation des gaz d'échappement sans que ceux-ci subissent un réel refroidissement. 1 S
20. Échangeur de chaleur (1) tel que décrit à la revendication 19, dont la caractéristique réside dans le fait qu'il comprenne en outre des moyens (2;20;20') de sélection du parcours des gaz d'échappement, permettant ainsi à ces circuits de distribution de laisser les gaz circuler dans les conduits (11) destinés à leur débit avec échange de chaleur ou bien par le conduit de by-pass (12) sans qu'il y ait de réel refroidissement.
PCT/EP2001/015411 2000-12-19 2001-12-17 Module echangeur de chaleur, specialement concu pour un systeme de recyclage des gaz d'echappement WO2002052142A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP01272042A EP1343963B1 (fr) 2000-12-19 2001-12-17 Module echangeur de chaleur, specialement concu pour un systeme de recyclage des gaz d'echappement
DE60133579T DE60133579T2 (de) 2000-12-19 2001-12-17 Wärmetauschermodul, das insbesondere für ein abgasrückführsystem ausgelegt ist

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
ES200003048A ES2174739B1 (es) 2000-12-19 2000-12-19 Modulo intercambiador de calor para un sistema de recirculacion de gases de escape.
ES200003048 2000-12-19
ES200101065 2001-04-27
ES200101065A ES2186535B1 (es) 2000-12-19 2001-04-27 Mejoras en el objeto de la patente principal n- 200003048, por "modulo intercambiador de calor para un sistema de recirculacion de gases de escape".

Publications (1)

Publication Number Publication Date
WO2002052142A1 true WO2002052142A1 (fr) 2002-07-04

Family

ID=26156210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/015411 WO2002052142A1 (fr) 2000-12-19 2001-12-17 Module echangeur de chaleur, specialement concu pour un systeme de recyclage des gaz d'echappement

Country Status (3)

Country Link
EP (1) EP1343963B1 (fr)
AT (1) ATE391844T1 (fr)
WO (1) WO2002052142A1 (fr)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1355058A2 (fr) * 2002-04-15 2003-10-22 Benteler Automobiltechnik GmbH Refroidisseur de gaz d'échappement pour un moteur à combustion interne
EP1519134A2 (fr) * 2003-09-24 2005-03-30 OLMI S.p.A. Echangeur de chaleur
WO2005042960A1 (fr) 2003-10-17 2005-05-12 Honeywell International Inc. Refroidisseur de gaz d'echappement a conduite de derivation interne
DE10349887A1 (de) * 2003-10-25 2005-06-02 Benteler Automobiltechnik Gmbh Kühler für ein Abgas-Rückführ-System bei einem Verbrennungsmotor
DE10350521A1 (de) * 2003-10-29 2005-06-02 Audi Ag Vorrichtung zur Abgasrückführung an Verbrennungskraftmaschinen
ES2234398A1 (es) * 2003-04-30 2005-06-16 Valeo Termico, S.A. Intercambiador de calor, en especial de los gases de escape de un motor.
FR2914701A1 (fr) * 2007-04-05 2008-10-10 Inst Francais Du Petrole Installation pour le refroidissement des gaz d'echappement recircules de moteur a combustion interne et de la vanne de controle de la circulation de ces gaz.
US7610949B2 (en) 2006-11-13 2009-11-03 Dana Canada Corporation Heat exchanger with bypass
FR2932223A1 (fr) * 2008-06-06 2009-12-11 Peugeot Citroen Automobiles Sa Circuit egr possedant un actionneur de vanne de by-pass thermostatique et procede de commande d'un tel circuit egr
ITVI20090072A1 (it) * 2009-03-31 2010-10-01 Materia S R L Scambiatore di calore a giro di fumi
GB2472322A (en) * 2009-08-01 2011-02-02 Ford Global Tech Llc Exhaust gas recirculation (EGR) cooler and bypass arrangement
US7984753B2 (en) 2006-10-18 2011-07-26 Denso Corporation Heat exchanger
EP2743488A1 (fr) * 2012-12-11 2014-06-18 BorgWarner Inc. Dispositif de gestion de gaz d'échappement intégré
WO2014098714A1 (fr) * 2012-12-20 2014-06-26 Scania Cv Ab Échangeur de chaleur comprenant des canaux de dérivation
EP3159646B1 (fr) 2015-10-20 2019-03-06 Borsig GmbH Échangeur de chaleur
CN112066763A (zh) * 2020-09-03 2020-12-11 无锡市申京化工设备有限公司 一种双通道高热传导型列管换热器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE914450C (de) * 1943-01-14 1954-07-01 Hans Windhoff App Und Maschine Vorrichtung zum Kuehlen der Auspuffgase von Brennkraftmaschinen, insbesondere fuer Motorlokomotiven
GB2036287A (en) * 1978-10-23 1980-06-25 Borsig Gmbh A heat exchanger
FR2529656A1 (fr) * 1982-07-01 1984-01-06 Rauma Repola Oy Chaudiere a chaleur perdue
US4993367A (en) * 1988-08-18 1991-02-19 Borsig Gmbh Heat exchanger
DE29714478U1 (de) * 1997-08-13 1997-10-09 Heinrich Gillet Gmbh & Co Kg, 67480 Edenkoben Wärmetauscher in Abgassystemen von Verbrennungsmotoren
DE29611034U1 (de) * 1996-06-12 1997-10-16 Hohenberger, Ralph, 13583 Berlin Anordnung zur Abführung der Verlustwärme eines Verbrennungsmotors
EP0987427A1 (fr) * 1998-09-14 2000-03-22 Modine Manufacturing Company Dispositif pour recirculer un courant de gaz d'échapemenet au conduit d'admission d'un moteur
EP1030050A1 (fr) * 1999-02-16 2000-08-23 Siebe Automotive (Deutschland) GmbH Système de recirculation de gaz d'échappement
US6141961A (en) * 1998-03-11 2000-11-07 Ecia-Equipments Et Composants Pour L'industrie Automobile Exhaust element with heat exchanger

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE914450C (de) * 1943-01-14 1954-07-01 Hans Windhoff App Und Maschine Vorrichtung zum Kuehlen der Auspuffgase von Brennkraftmaschinen, insbesondere fuer Motorlokomotiven
GB2036287A (en) * 1978-10-23 1980-06-25 Borsig Gmbh A heat exchanger
FR2529656A1 (fr) * 1982-07-01 1984-01-06 Rauma Repola Oy Chaudiere a chaleur perdue
US4993367A (en) * 1988-08-18 1991-02-19 Borsig Gmbh Heat exchanger
DE29611034U1 (de) * 1996-06-12 1997-10-16 Hohenberger, Ralph, 13583 Berlin Anordnung zur Abführung der Verlustwärme eines Verbrennungsmotors
DE29714478U1 (de) * 1997-08-13 1997-10-09 Heinrich Gillet Gmbh & Co Kg, 67480 Edenkoben Wärmetauscher in Abgassystemen von Verbrennungsmotoren
US6141961A (en) * 1998-03-11 2000-11-07 Ecia-Equipments Et Composants Pour L'industrie Automobile Exhaust element with heat exchanger
EP0987427A1 (fr) * 1998-09-14 2000-03-22 Modine Manufacturing Company Dispositif pour recirculer un courant de gaz d'échapemenet au conduit d'admission d'un moteur
EP1030050A1 (fr) * 1999-02-16 2000-08-23 Siebe Automotive (Deutschland) GmbH Système de recirculation de gaz d'échappement

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10216773A1 (de) * 2002-04-15 2003-11-06 Benteler Automobiltechnik Gmbh Kühler für ein dem Hauptabgasstrom eines Verbrennungsmotors entnommenes Abgas
DE10216773B4 (de) * 2002-04-15 2004-09-16 Benteler Automobiltechnik Gmbh Kühler für ein dem Hauptabgasstrom eines Verbrennungsmotors entnommenes Abgas
EP1355058A2 (fr) * 2002-04-15 2003-10-22 Benteler Automobiltechnik GmbH Refroidisseur de gaz d'échappement pour un moteur à combustion interne
EP1355058A3 (fr) * 2002-04-15 2006-06-21 Benteler Automobiltechnik GmbH Refroidisseur de gaz d'échappement pour un moteur à combustion interne
ES2234398A1 (es) * 2003-04-30 2005-06-16 Valeo Termico, S.A. Intercambiador de calor, en especial de los gases de escape de un motor.
EP1519134A2 (fr) * 2003-09-24 2005-03-30 OLMI S.p.A. Echangeur de chaleur
EP1519134A3 (fr) * 2003-09-24 2008-02-20 OLMI S.p.A. Echangeur de chaleur
WO2005042960A1 (fr) 2003-10-17 2005-05-12 Honeywell International Inc. Refroidisseur de gaz d'echappement a conduite de derivation interne
US8695332B2 (en) 2003-10-17 2014-04-15 Honeywell International Inc. Internal bypass exhaust gas cooler
US7845338B2 (en) 2003-10-17 2010-12-07 Honeywell International, Inc. Internal bypass exhaust gas cooler
EP2259000A1 (fr) * 2003-10-17 2010-12-08 Honeywell International Inc. refroidisseur de gaz d'échappement avec un bypass
DE10349887A1 (de) * 2003-10-25 2005-06-02 Benteler Automobiltechnik Gmbh Kühler für ein Abgas-Rückführ-System bei einem Verbrennungsmotor
DE10349887B4 (de) * 2003-10-25 2013-03-07 Benteler Automobiltechnik Gmbh Kühler für ein Abgas-Rückführ-System bei einem Verbrennungsmotor
DE10350521A1 (de) * 2003-10-29 2005-06-02 Audi Ag Vorrichtung zur Abgasrückführung an Verbrennungskraftmaschinen
US7984753B2 (en) 2006-10-18 2011-07-26 Denso Corporation Heat exchanger
US7610949B2 (en) 2006-11-13 2009-11-03 Dana Canada Corporation Heat exchanger with bypass
FR2914701A1 (fr) * 2007-04-05 2008-10-10 Inst Francais Du Petrole Installation pour le refroidissement des gaz d'echappement recircules de moteur a combustion interne et de la vanne de controle de la circulation de ces gaz.
WO2008142263A2 (fr) * 2007-04-05 2008-11-27 Ifp Installation pour le refroidissement des gaz d'echappement recircules de moteur a combustion interne et de la vanne de controle de la circulation de ces gaz
WO2008142263A3 (fr) * 2007-04-05 2009-02-19 Inst Francais Du Petrole Installation pour le refroidissement des gaz d'echappement recircules de moteur a combustion interne et de la vanne de controle de la circulation de ces gaz
FR2932223A1 (fr) * 2008-06-06 2009-12-11 Peugeot Citroen Automobiles Sa Circuit egr possedant un actionneur de vanne de by-pass thermostatique et procede de commande d'un tel circuit egr
ITVI20090072A1 (it) * 2009-03-31 2010-10-01 Materia S R L Scambiatore di calore a giro di fumi
GB2472322A (en) * 2009-08-01 2011-02-02 Ford Global Tech Llc Exhaust gas recirculation (EGR) cooler and bypass arrangement
US8528529B2 (en) 2009-08-01 2013-09-10 Ford Global Technologies, Llc Exhaust gas recirculation cooler
GB2472322B (en) * 2009-08-01 2014-10-08 Ford Global Tech Llc An exhaust gas recirculation assembly
EP2743488A1 (fr) * 2012-12-11 2014-06-18 BorgWarner Inc. Dispositif de gestion de gaz d'échappement intégré
WO2014090792A1 (fr) * 2012-12-11 2014-06-19 Borgwarner Inc. Dispositif incorporé de gestion des gaz d'échappement
WO2014098714A1 (fr) * 2012-12-20 2014-06-26 Scania Cv Ab Échangeur de chaleur comprenant des canaux de dérivation
EP3159646B1 (fr) 2015-10-20 2019-03-06 Borsig GmbH Échangeur de chaleur
EP3159646B2 (fr) 2015-10-20 2021-12-29 Borsig GmbH Échangeur de chaleur
CN112066763A (zh) * 2020-09-03 2020-12-11 无锡市申京化工设备有限公司 一种双通道高热传导型列管换热器

Also Published As

Publication number Publication date
ATE391844T1 (de) 2008-04-15
EP1343963B1 (fr) 2008-04-09
EP1343963A1 (fr) 2003-09-17

Similar Documents

Publication Publication Date Title
EP1343963B1 (fr) Module echangeur de chaleur, specialement concu pour un systeme de recyclage des gaz d'echappement
EP0913561B1 (fr) Ligne d'échappement et de recirculation des gaz pour moteur de véhicule automobile
EP2252782B1 (fr) Echangeur de chaleur pour circuit d'alimentation en air d'un moteur de vehicule automobile
EP0197823A1 (fr) Echangeur de chaleur pour véhicule automobile en particulier du type à gaz d'échappement
WO2007063221A1 (fr) Vanne comportant des moyens d'actionnement entre deux conduits de sortie
FR2888887A1 (fr) Appareil de circulation de gaz destine a recirculer des gaz d'echappement d'un moteur a combustion interne
FR2854200A1 (fr) Echappement pour moteur a combustion interne
EP1748179B1 (fr) Système pour le contrôle de la circulation de gaz, en particulier des gaz d'échappement d'un moteur
FR2920834A1 (fr) Dispositif et procede de recirculation des gaz d'echappement d'un moteur thermique
FR2893363A1 (fr) Vanne et dispositif de recyclage de gaz d'echappement pour un moteur
EP1658419A1 (fr) Dispositif de regulation thermique de gaz d'echappement
FR2844224A1 (fr) Systeme de refroidissement d'une chaine de traction hybride pour vehicule automobile.
WO2005116414A1 (fr) Systeme ameliore de regulation de la temperature des gaz admis dans un moteur
EP1432907B1 (fr) Dispositif perfectionne de regulation thermique de l'air d'admission d'un moteur a combustion interne de vehicule automobile
FR2976322A1 (fr) Repartiteur d'air comprenant un dispositif adapte a echanger de la chaleur avec de l'air de suralimentation, et systeme de transfert thermique comprenant un tel repartiteur
WO2008031959A1 (fr) Dispositif améliorant le fonctionnement d'un moteur suralimenté avec un circuit de recirculation de gaz d'echappement
EP3217006B1 (fr) Moteur thermique à système de recirculation des gaz d'échappement
FR2859238A1 (fr) Dispositif de regulation thermique de gaz d'echappement
FR2904857A1 (fr) Dispositif permettant de commander un circuit de circulation d'un liquide de refroidissement ainsi qu'un circuit de circulation d'huile de lubrification d'un moteur thermique de vehicule
FR2983533A1 (fr) Dispositif de regulation thermique de l'air d'admission d'un moteur a combustion interne d'un vehicule automobile et vehicule automobile comprenant un tel dispositif
FR2840355A1 (fr) Ligne d'echappement de moteur a combustion interne comportant une regulation thermique des gaz d'echappement
FR2910068A1 (fr) Dispositif de recirculation des gaz d'echappement d'un moteur a combustion interne de vehicule automobile
WO2017144312A1 (fr) Dispositif de gestion thermique d'un refroidisseur d'air de suralimentation
FR2919674A1 (fr) Dispositif d'orientation et de regulation des gaz d'echappement d'un moteur thermique dans un circuit de recirculation de gaz d'echappement appele egr vers l'admission d'air
EP4291761A1 (fr) Système egr avec préchauffage de dispositif de dépollution

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP PL US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001272042

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001272042

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWG Wipo information: grant in national office

Ref document number: 2001272042

Country of ref document: EP