WO2002049084A1 - Exposure method and system, and device producing method - Google Patents

Exposure method and system, and device producing method Download PDF

Info

Publication number
WO2002049084A1
WO2002049084A1 PCT/JP2001/010937 JP0110937W WO0249084A1 WO 2002049084 A1 WO2002049084 A1 WO 2002049084A1 JP 0110937 W JP0110937 W JP 0110937W WO 0249084 A1 WO0249084 A1 WO 0249084A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
exposure
optical system
optical path
exposure beam
Prior art date
Application number
PCT/JP2001/010937
Other languages
French (fr)
Japanese (ja)
Inventor
Naomasa Shiraishi
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2002550300A priority Critical patent/JPWO2002049084A1/en
Priority to AU2002221133A priority patent/AU2002221133A1/en
Publication of WO2002049084A1 publication Critical patent/WO2002049084A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70866Environment aspects, e.g. pressure of beam-path gas, temperature of mask or workpiece
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70858Environment aspects, e.g. pressure of beam-path gas, temperature
    • G03F7/70883Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70933Purge, e.g. exchanging fluid or gas to remove pollutants

Definitions

  • the present invention transfers a mask pattern onto a photosensitive substrate during a photolithography process for manufacturing various devices such as a semiconductor device, an imaging device (CCD), a liquid crystal display device, or a thin film magnetic head. And an exposure method used for the method.
  • a reticle as a mask drawn by enlarging the pattern to be formed by a factor of about 4 to 5 times.
  • a method of reducing and transferring a pattern of a mask or the like onto a wafer (or a glass plate or the like) as a substrate to be exposed using a projection exposure apparatus of a batch exposure type or a scanning exposure type is used.
  • the exposure wavelength has been shifted to a shorter wavelength side in order to cope with miniaturization of a semiconductor integrated circuit.
  • the exposure wavelength is mainly 248 nm of KrF excimer laser, but ArF, which can be regarded as a shorter wavelength, substantially a vacuum ultraviolet region (VUV: Vacuum Ultra traviolet).
  • VUV Vacuum Ultra traviolet
  • Excimer lasers of 193 nm are also entering the stage of practical use. Then, it is shorter F 2 laser and the wavelength 1 5 7 nm, also made suggestions of a projection exposure apparatus using exposure light source in the vacuum ultraviolet region, such as A r 2 lasers having a wavelength of 1 2 6 nm.
  • the light in the vacuum ultraviolet region has been used as exposure light.
  • the light in the vacuum ultraviolet region has a small number of types of high-transmittance optical materials that can be used as illumination optical systems of projection exposure apparatuses, refractive members (lenses, etc.) of projection optical systems, and reticle substrates.
  • optical materials that can be used are limited to fluoride crystals such as fluorite, magnesium fluoride, and lithium fluoride.
  • vacuum ultraviolet light emits oxygen, water vapor, and hydrocarbons.
  • absorption by gas such as elemental gas (hereinafter referred to as “absorptive gas”) is extremely large, in a projection exposure apparatus using vacuum ultraviolet light, it is necessary to remove the absorptive gas from the optical path through which the exposure light passes. It is necessary to replace the gas in the optical path with a gas such as nitrogen or a rare gas that absorbs relatively little of the exposure light (hereinafter referred to as “low-absorbing gas”).
  • low-absorbing gas a gas such as nitrogen or a rare gas that absorbs relatively little of the exposure light
  • the allowable residual concentration of the absorbing gas for example, for oxygen
  • this difference in refractive index occurs not only between the absorbing gas and the low-absorbing gas, but also between two low-absorbing gases (eg, helium and nitrogen). Therefore, it is desirable that the residual concentration of the gas other than the purge gas that replaces the optical path of the exposure light be kept as low as possible even if it is a low-absorbing gas.
  • two low-absorbing gases eg, helium and nitrogen. Therefore, it is desirable that the residual concentration of the gas other than the purge gas that replaces the optical path of the exposure light be kept as low as possible even if it is a low-absorbing gas.
  • the residual gas having a different refractive index from the purge gas not only changes the refractive index of the optical path of the exposure light, but also changes the wavelength of a measurement beam for a laser interferometer for position measurement of a reticle stage or a wafer stage. This has an adverse effect on the reticle and wafer position measurement accuracy.
  • the projection exposure apparatus is required to have an alignment accuracy of about 1 Z4 of its resolution, an alignment mechanism for aligning the reticle and the wafer with high accuracy is provided.
  • the optical system of the alignment sensor for detecting the position of the reticle has a high transmittance for a light beam having an exposure wavelength.
  • the exposure wavelength is in the vacuum ultraviolet region of about 200 nm or less, absorption due to a trace amount of organic or silane-based impurities or a photochemical reaction between the exposure light and the impurities may occur. The resulting fogging material build-up and reduced lens transmission are serious problems.
  • a member that generates impurities for example, a plastic substrate used in an electric circuit for processing an output signal of a photoelectric detector (such as an imaging device) installed on a detection surface of an alignment optical system, is used. It is necessary to avoid disposing it in a space including the optical path of the exposure light. Therefore, the photoelectric detector, which was conventionally arranged in the space including the optical path of the exposure light, should also be installed in the atmosphere outside the space.However, there is also a problem that the vacuum ultraviolet light does not pass through the normal atmosphere. is there.
  • the present invention provides an exposure apparatus capable of obtaining a stable imaging characteristic even if a gas other than the purge gas remains on the optical path of the exposure light, or even if the residual concentration of the gas other than the purge gas fluctuates.
  • the primary purpose is to provide technology.
  • a second object of the present invention is to provide an exposure technique that can use an alignment system suitable for using illumination light having a wavelength range similar to that of short-wavelength exposure light such as a vacuum ultraviolet region. .
  • a third object is to provide an exposure technique capable of setting an alignment system for a reticle or a wafer without giving it. Disclosure of the invention
  • a first exposure apparatus is an exposure apparatus that exposes a second object (W) via a first object () with an exposure beam having a wavelength of 200 nm or less, wherein the first object or the second object is exposed.
  • An alignment optical system (90, 92) that collects alignment light having substantially the same wavelength as the exposure beam that has passed through the mark (RM) above, and is collected by the alignment optical system.
  • a mark detection system having a photoelectric detector (94) for detecting the alignment light is provided, and the refraction members in the alignment optical system are all formed of an optical material that transmits the exposure beam.
  • the transmittance of the alignment optical system of the mark detection system using alignment light (illumination light) substantially equal to the exposure beam in the vacuum ultraviolet region is increased, and the illumination efficiency is increased.
  • An alignment can be made.
  • an example of the optical material that transmits the exposure beam is fluorite or quartz to which fluorine is added.
  • the gas on at least a part of the optical path of the alignment light and the gas inside the partition (40) in which the photoelectric detector is housed with a gas that transmits the exposure beam.
  • an intake port (40a) for inhaling gas inside the partition in a region of the partition adjacent to the photoelectric detector (94).
  • degassed (absorptive gas) from the photoelectric detector is exhausted from the intake port, so that there is no adverse effect such as a decrease in transmittance on the optical path of the exposure beam.
  • a part of the alignment optical system may include a hollow member (80) provided with a reflection member for reflecting the alignment light on an inner wall thereof. As a result, the alignment light can be transmitted efficiently.
  • the alignment optical system further includes a light-sending optical system (8) for irradiating alignment light having substantially the same wavelength as the exposure beam to a mark on the first object or the second object.
  • the light transmitting optical system may include a hollow member (80) provided with a reflecting member for reflecting the alignment light on the inner wall thereof. In the case where, for example, a beam split from the exposure beam is guided as alignment light by the light transmitting optical system, it is not necessary to separately provide a light source for the alignment light.
  • a first exposure method is directed to an exposure method for exposing a second object (W) via an exposure beam through a first object (R) and a projection optical system (PL).
  • the imaging characteristic of the projection optical system is adjusted according to the residual concentration of the second gas.
  • the refractive index of the optical path fluctuates in accordance with the residual concentration, and the image forming characteristic of the projection optical system (for example, Aberrations such as distortion) fluctuate. Therefore, as an example, the imaging characteristics of the projection optical system are adjusted so as to cancel the fluctuation amount of the imaging characteristics. Thus, the imaging characteristics can be stably maintained in a desired state.
  • the exposure beam is vacuum ultraviolet light having a wavelength of about 200 nm or less
  • the type of the first gas (low-absorbing gas) that transmits the exposure beam is limited, and the type of the first gas is low on the optical path. Even when a certain amount of gas other than the first gas is mixed, stable imaging characteristics can be obtained by the present invention.
  • the residual concentration of the second gas exceeds a predetermined level, it is desirable to replace the gas in at least a part of the optical path with the first gas.
  • the fluctuation amount of the imaging characteristic does not become too large, and the imaging characteristic can always be maintained in a desired state.
  • the second gas may be a gas that transmits the exposure beam. Even if the second gas is a low-absorbing gas that transmits the exposure beam, as in the case of the first gas, the difference in the refractive index between the first and second gases causes a difference in the light path.
  • the present invention is effective because the refractive index fluctuates.
  • the second gas is at least one gas selected from the group consisting of oxygen, carbon dioxide, steam, neon, and helium.
  • the second gas is at least one gas selected from the group consisting of oxygen, nitrogen, carbon dioxide, water vapor, neon, argon, and krypton. is there.
  • a second exposure method of the present invention is directed to an exposure method for exposing a second object (W) via an exposure beam through a first object (R) and a projection optical system (PL).
  • the second gas is measured for concentration, and when the residual concentration of the second gas exceeds a predetermined level, the gas in at least a part of the optical path is replaced with the first gas.
  • the gas on the optical path Is replaced by the first gas, the fluctuation of the refractive index in the optical path increases, As a result, the imaging characteristics can be easily maintained in a desired state.
  • the first gas is nitrogen
  • the second gas is at least one of neon and helium.
  • the second gas is at least one gas selected from the group consisting of nitrogen, neon, argon, and krypton.
  • a second exposure apparatus of the present invention is an exposure apparatus that exposes a second object (W) via a first object (R) and a projection optical system (PL) with an exposure beam.
  • An imaging characteristic adjusting device (54 al, 54 a 2, 57) for adjusting the imaging characteristic, and exposing the gas of at least a part of the optical path of the exposure beam to the second object to the exposure object.
  • a gas supply mechanism (71) that replaces the beam with a first gas that passes through the beam, and a gas sensor (7) that measures the concentration of a second gas that is different from the first gas and remains in at least a part of the optical path.
  • 2) and a control system (10) for adjusting the imaging characteristics of the projection optical system via the imaging characteristic adjusting device based on the measurement values of the gas sensor.
  • a third exposure apparatus of the present invention is an exposure apparatus that exposes a second object (W) via a first object (R) and a projection optical system (PL) with an exposure beam.
  • the exposure method of the present invention can be performed.
  • the device manufacturing method of the present invention includes a step of transferring the device pattern (R) onto the workpiece (W) by using any of the exposure methods of the present invention. According to the present invention, since stable imaging characteristics can be obtained, various devices can be mass-produced with high accuracy. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a partially cutaway configuration view showing a projection exposure apparatus according to an example of an embodiment of the present invention.
  • FIG. 2 is a sectional view showing the configuration of the projection optical system PL in FIG.
  • FIG. 3 is an enlarged view, partially cut away, showing the configuration of the reticle alignment microscope 86 in FIG.
  • FIG. 4 is a diagram illustrating an example of a manufacturing process when a semiconductor device is manufactured using the projection exposure apparatus according to the embodiment of the present invention.
  • VUV light vacuum ultraviolet light
  • FIG. 1 is a schematic configuration diagram showing a projection exposure apparatus of this example.
  • an exposure light source 1 and an exposure main body are placed in a clean room on a floor F1 on a certain floor of a semiconductor device manufacturing factory.
  • the gas purifier 71 is installed in the machine room on the floor F2 below that floor.
  • an F 2 laser fluorine laser
  • Other exposure light sources include a Kr 2 laser (krypton dimer laser) with an oscillation wavelength of 146 nm, an Ar 2 laser (argon dimer laser) with an oscillation wavelength of 126 nm, and an A with an oscillation wavelength of 193 nm.
  • the present invention is also effective when a substantially vacuum ultraviolet light source such as an rF excimer laser, a harmonic generator of a YAG laser, or a harmonic generator of a semiconductor laser is used. Furthermore, when using a light source such as a KrF excimer laser (wavelength: 248 nm) or a mercury lamp (i-line, g-line, etc.) as the exposure light source, especially when it is desired to use the exposure light more efficiently To which the present invention can be applied.
  • a substantially vacuum ultraviolet light source such as an rF excimer laser, a harmonic generator of a YAG laser, or a harmonic generator of a semiconductor laser is used.
  • a light source such as a KrF excimer laser (wavelength: 248 nm) or a mercury lamp (i-line, g-line, etc.) as the exposure light source, especially when it is desired to use the exposure light more efficiently To which the present invention can be applied.
  • Exposure light IL as an exposure beam emitted from the exposure light source 1 passes through a beam matching unit (BMU) 2 including a relay lens 21, a mirror 22 for bending the optical path, and relay lenses 23 and 24. And enters the illumination optical system 3.
  • the exposure light IL incident on the illumination optical system 3 is disposed on the exit surface side of a flyer lens 31 (an optical integrator of a rod type can be used instead) as an optical integrator.
  • Aperture stop for illumination system ( ⁇ stop) 32 The light reaches the field stop 36 via the first relay lens group 33, the mirror 34, and the second relay lens group 35.
  • the exposure light IL that has passed through the field stop 36 passes through the first condenser lens group 37, the mirror 38 for bending the optical path, and the second condenser lens group 39 to pass through the pattern area of the reticle R as a mask. Light up.
  • the beam matching unit 2 and the illumination optical system 3 of the present example are respectively housed in sub-chambers 20 and 30 as highly airtight partitions (airtight chambers).
  • the boundary between the two sub-chambers 20 and 30 may be connected to each other.
  • a parallel flat glass may be installed at the boundary or a relay lens 24 may be used instead of the parallel flat glass.
  • the two sub-champers 20 and 30 may be isolated from each other by installing a suitable optical member and sealing the periphery thereof. This is the same for the following hermetic rooms.
  • the airtight chamber may have some gaps as long as the outside air does not enter the sub-chambers 20 and 30.
  • a light beam transmitted through a reticle R forms an image of a pattern of the reticle R on a wafer W as a substrate to be exposed via a projection optical system PL.
  • the reticle R and the wafer W correspond to the first object and the second object of the present invention, and the wafer W is, for example, a semiconductor (silicon or the like) or S ⁇ I (silicon on insulator) or the like. It is a disk-shaped substrate.
  • the inside of the projection optical system PL is an airtight chamber isolated from the outside air.
  • the Z axis is taken parallel to the optical axis AX of the projection optical system PL
  • the X axis is taken parallel to the plane of Fig.
  • the reticle R is held on a reticle stage 41 mounted movably in the X and Y directions on a reticle base 42, and the two-dimensional position of the reticle stage 41 is determined by a laser interferometer 4 3 and a movable mirror arranged corresponding to the reticle stage control based on the measured values and the control information from the main control system 10 on the floor F2 that controls the overall operation of the device.
  • a system (not shown) controls the position and speed of the reticle stage 41.
  • a reticle stage system 4 is composed of a reticle base 42, a reticle stage 41, and a driving mechanism (not shown).
  • the reticle stage system 4 is a reticle stage chamber 40 as a highly airtight partition (airtight chamber). Is housed inside.
  • the wafer W is moved to the wafer stage (Z level) via a wafer holder (not shown).
  • the wafer stage 61 is mounted on the wafer base 62 so as to be movable in the X and Y directions.
  • the two-dimensional position of the wafer stage 61 is measured by the laser interferometer 63 and a movable mirror corresponding to the laser interferometer 63, and is based on the measured values and control information from the main control system 10.
  • a stage control system (not shown) controls the position and speed of the wafer stage 61 in the X and Y directions.
  • the wafer stage 61 is provided with information on focus positions (positions in the optical axis AX direction) at a plurality of measurement points on the surface of the wafer W from an auto focus sensor (not shown, an optical sensor of an oblique incidence type).
  • the focus position of the wafer W and the tilt angles around the X-axis and the Y-axis are controlled by the servo method so that the surface of the wafer W is focused on the image plane of the projection optical system PL during the exposure.
  • the wafer stage system 6 is composed of the wafer base 62, the wafer stage 61, and a driving mechanism (not shown).
  • the wafer stage system 6 is a wafer stage chamber as a highly airtight partition (airtight chamber). Stored in 60.
  • the reticle R and the wafer W are projected onto one shot area on the wafer W via the projection optical system PL through the projection optical system PL, and the reticle R and the wafer W are projected in the Y direction using the speed ratio of the projection optical system PL as a speed ratio.
  • the operation of synchronously moving the wafer W and the operation of stepping the wafer W are repeated in a step-and-scan manner.
  • the projection exposure apparatus of this embodiment is of the scanning exposure type, but it goes without saying that the present invention is also effective for a batch exposure type projection exposure apparatus such as a stepper.
  • an imaging type reticle alignment microscope 86 as an alignment system for the reticle R is arranged above the reticle stage 41 in the reticle stage room 40.
  • the reticle alignment microscope 86 of this example uses light having the same wavelength as the exposure light IL as alignment light. Therefore, the illumination light IL 1 for alignment that is branched from the optical path of the exposure light IL by the half mirror 81 arranged between the relay lens 23 and the relay lens 24 in the beam matching unit 2
  • the light is guided to a reticle alignment microscope 86 via an alignment light transmitting system 8 disposed in a long and narrow airtight chamber 80 provided between the chamber 20 and the reticle stage chamber 40.
  • the alignment light transmission system 8 is on the beam matching unit 2 side And a lens 82, an optical path bending mirror 83, 84, and a lens 85.
  • the exposure wavelength is a long wavelength exceeding 200 nm
  • light branched from the exposure light can be guided to the alignment system through a flexible optical fiber bundle.
  • the exposure light IL in the vacuum ultraviolet region it is difficult to obtain a cheap optical fiber that can transmit the illumination light in that wavelength region with a small loss of light amount at present.
  • the illumination light is transmitted through an alignment light transmission system 8 consisting of a refraction member and a reflection member.
  • the projection optical system PL of this example incorporates an imaging characteristic adjustment mechanism (detailed later) for adjusting (controlling) the imaging characteristics such as distortion and astigmatism within a predetermined range.
  • the main control system 10 sends control information S2 to the imaging characteristic controller 57 to adjust the imaging characteristics so that the imaging characteristics of the projection optical system PL fall within a predetermined target range.
  • the exposure light IL such as oxygen, water vapor, carbon dioxide (CO 2, etc.), and hydrocarbon-based (organic) gas is emitted from the optical path. It is necessary to eliminate “absorbent gas”, which is a gas that has a strong absorption rate for water.
  • the gas that transmits the exposure beam that is, in this example, the “low-absorbing gas” that has low absorption of the exposure light I in the vacuum ultraviolet region includes nitrogen and rare gases (helium, neon, argon, krypton, xenon, radon ), And their mixtures.
  • the projection exposure apparatus of this example uses the “purge gas” selected from these low-absorbing gases based on, for example, the required stability of the imaging characteristics and the operation cost, and uses the exposure light source 1
  • a gas exchange mechanism gas supply mechanism
  • the optical paths of the exposure light IL from the exposure light source 1 to the wafer W are the first sub-chamber 20 and the second sub-chamber 30 as an airtight chamber, the reticle stage chamber 40, and the projection optical system PL, respectively.
  • And are divided into optical paths inside the Jehachi stage room 60.
  • the gas exchange mechanism of this example is composed of a gas purifying device 71 installed on the floor F2, a plurality of sub-chambers 20 as sub-chambers, a sub-chamber 30 and a reticle stage room 4 from the gas purifying device 71. 0, inside projection optical system PL, and wafer stage An air supply pipe 11 A to 15 A with an electromagnetic valve for supplying a purge gas to each of the chambers 60, and an exhaust pipe 11 1 B to 5 B with an electromagnetic valve for collecting the gas in the hermetic chamber, And an impurity concentration meter 72 (gas sensor) for measuring the residual concentration of a predetermined impurity gas other than the purge gas in the gas collected and installed in the exhaust pipes 11 B to 15 B.
  • an impurity concentration meter 72 gas sensor
  • the gas purifier 71 of this example has an exhaust factory pipe 16A for releasing the gas having an increased impurity concentration from the collected gas to the outside at any time, and a high-purity purge gas to the outside gas.
  • a gas supply pipe 16B for refilling the gas purifier 71 from a source (not shown) is connected.
  • the interior of the purge gas of the projection optical system PL, and nitrogen or other low refractive index as compared with the gas, therefore the density rocking Ragya temperature is desirably c specifically the use of high optical stability helium to changes
  • helium gas has a thermal conductivity that is about three times higher than that of neon and about six times that of nitrogen gas, and is excellent in temperature stability. And about 1/8 of nitrogen gas.
  • optical materials for refractive members having good transmittance for vacuum ultraviolet light are fluorite (CaF 2 ), magnesium fluoride (MgF 2 ), and lithium fluoride ( (LiF) etc.
  • fluoride crystals generally have a large coefficient of thermal expansion, and the lens may expand due to a rise in temperature due to absorption of exposure light, resulting in poor imaging characteristics.
  • fluoride crystals generally have a large coefficient of thermal expansion, and the lens may expand due to a rise in temperature due to absorption of exposure light, resulting in poor imaging characteristics.
  • helium is used as a purge gas
  • helium has a high thermal conductivity and also has a cooling effect on the lens. Since it is excellent, it is possible to suppress the deterioration of the imaging characteristics due to the expansion of the lens.
  • Nitrogen can also be used as a purge gas for the optical path of the exposure light I inside the wafer stage chamber 60 ⁇ reticle stage chamber 40.
  • the optical path of the laser interferometer 63 for measuring the position of the wafer W and the optical path of the laser interferometer 43 for measuring the position of the reticle R are refracted in order to maintain high measurement accuracy. It is desirable that the fluctuation of the rate (optical path length) be small. Therefore, even as a purge gas for the optical path of the laser sensitometers 43 and 63, that is, a purge gas inside the reticle stage chamber 40 and the wafer stage chamber 60, the refractive index is low, and density fluctuations and temperature fluctuations occur. It is desirable to use helium which has a small change in the optical path length with respect to.
  • gas that can be used as the purge gas such as helium Of rare gases.
  • gas exchange mechanism including the gas purifying device 71 will be described by taking as an example a case where the gas inside the projection optical system PL is replaced with a purge gas.
  • gas collected from inside the projection optical system PL through the exhaust pipe 14B enters an impurity concentration meter 72 such as a mass spectrometer, and the concentration (residual concentration) of the impurity gas in the gas is reduced.
  • the measured information is output to the main control system 10 as a signal S1.
  • the purge gas and the impurity gas correspond to the first and second gases, respectively, of the present invention
  • the impurity gas is one of the above-mentioned absorptive gases which is a management target gas remaining in the optical path of the exposure light. It is.
  • the impurity gas remains in the projection optical system PL, not only the transmittance of the exposure light passing through the projection optical system PL but also the image forming characteristics of the projection optical system PL are affected by the refractive index of the impurity gas. Effect. Therefore, unlike other airtight chambers, the concentration of impurity gas is measured. In particular, in the present embodiment, the residual concentration of a specific low-absorbency gas other than the purge gas contained in the impurity gas is measured (details will be described later).
  • the gas that has passed through the impurity concentration meter 72 in the exhaust pipe 14 B is collected by the gas purifier 71.
  • the gas purifier 71 has a HEPA filter (high-efficiency part iculate ai rf ilter) and a chemical filter for removing fine foreign matter such as dust. Oxygen, water vapor, carbon dioxide, and Absorbing gases such as organic and organic gases are removed by the chemical filter.
  • the absorbing gas in the impurity gas is removed, and the gas from which the absorbing gas has been removed is supplied into the projection optical system PL through the air supply pipe 14A. At that time, the residual concentration of absorbent gas as an impurity has been suppressed, for example, to 1 ppm or less, respectively.
  • the interior of the projection optical system PL, the air supply pipe 14A, and the exhaust pipe 14B naturally have an airtight structure.
  • a small amount of external gas (air) enters the space (such as the lens barrel of the projection optical system PL) to which the purge gas is supplied from the lens holding structure.
  • the main components of the gas (air) to be mixed are nitrogen, oxygen, argon, etc.
  • the oxygen in this is purified using a simple adsorbent whose main component is a powder of a metal such as iron or magnesium. It can be easily absorbed (removed) by a vessel.
  • purge gas from which absorbent gas has been removed using gas purifier 71 Has replaced the gas inside.
  • the electromagnetic valves of the air supply pipes 11A to 15A and the exhaust pipes 11B to 15B are opened and closed in order to independently supply the purge gas to each of the plurality of hermetic chambers.
  • the purge gas is supplied to each of the hermetic chambers independently using one gas purifier 71, but the gas purifier 71 is individually supplied to all the hermetic chambers.
  • a purge gas may be supplied completely independently by installing a gas purifier similar to that described above.
  • the sub-chambers 20 and 30 and the reticle stage chamber 40 are regarded as one hermetic chamber as a whole, and a common gas purifying device 71 is used.
  • the purge gas may be supplied in common.
  • a gas purifying device may be provided for each type of purge gas.
  • the residual concentration of a specific low-absorbing gas other than the purge gas is measured.
  • a specific low-absorbing gas other than the purge gas For example, when helium is used as the purge gas, other low-absorbing gases do not absorb the exposure light much, but since their refractive index is larger than that of helium, they are projected due to an increase in their residual concentration.
  • the refractive index of the optical path in the optical system PL may increase, and the imaging performance of the projection optical system PL may deteriorate. Further, these low-absorbing gases are hardly chemically reacted, and it is difficult to sufficiently remove them with the above-described chemical filter in the gas purification device 71.
  • the gas collected in the gas purifier 71 shown in Fig. 1 and passed through the chemical filter can be cooled by a refrigerator using a Stirling engine or the like.
  • the gas is supplied to a low-absorbing gas removing device (not shown) such as a cooling device such as a cryopump, and the entire gas is converted to the boiling point of these gases (185.9 ° C in argon, nitrogen Then, cool down to less than 195.8 ° C) to liquefy and remove these gases (all low-absorbing gases except for the helium), and supply the high-purity purge gas thus obtained to each hermetic chamber. do it.
  • a low-absorbing gas removing device such as a cooling device such as a cryopump
  • Such a low-absorbing gas removing apparatus is large, consumes large power, and is a source of vibration. Therefore, it is not preferable to install the apparatus near the exposure apparatus.
  • nitrogen and rare gases which are low-absorbing gases, hardly absorb exposure light, even if they are mixed in the purge gas, the transmittance is maintained at a high level, and there is no problem such as a decrease in exposure amount. .
  • the gas inside the projection optical system PL is When a predetermined low-absorbing gas containing nitrogen or a rare gas (other than helium) is mixed, its concentration is measured, and the state of the projection optical system 5 is positively changed based on the measured value. Therefore, the deterioration (aberration fluctuation) of the imaging characteristics is corrected.
  • the impurity concentration meter 72 composed of the mass spectrometer etc.
  • the concentration (residual concentration) of a specific low-absorbing gas other than the above-mentioned absorbing gas in addition to the above-mentioned absorbing gas is measured, and the measurement information is sent to the signal S. Output as 1 to the main control system 10.
  • the purge gas is helium
  • the low-absorbency gas whose concentration is to be measured is nitrogen and a rare gas other than helium.
  • the measurement information of the concentration indicates the concentration of each low-absorbing gas in the gas in the projection optical system PL, and the refractive index of the gas in the projection optical system PL can be calculated from the concentration information.
  • the main control system 10 predicts the amount of change in the imaging characteristics (distortion, etc.) of the projection optical system PL from the calculated refractive index, and sends it to the imaging characteristic controller 57 so as to cancel the amount of change.
  • the control information S2 is sent, and a predetermined optical member in the projection optical system PL is driven accordingly.
  • the imaging characteristics of the projection optical system PL can be improved without using an expensive low-absorbing gas removing device. Exposure can be maintained with high accuracy while maintaining a desired state.
  • the low-absorbing gases that are expected to be mixed under actual use conditions are nitrogen and argon, which have a large composition in the atmosphere. , Nitrogen and argon, or only nitrogen.
  • FIG. 2 is a cross-sectional view showing a detailed configuration of the projection optical system PL.
  • the projection optical system PL has, as an example, four lens holders 55a to 55a in a cylindrical lens barrel 51.
  • the lenses L 41 and L 42 are held.
  • the configuration of the lens groups is an example, and the number of the lens groups, the number of lenses in each lens group, and the like are arbitrary.
  • the lens barrel 51 has an airtight structure, and the reticle stage chamber 40 side (upper side in FIG.
  • the first lens holder 55a is connected to a lens barrel 51 via, for example, three holding mechanisms 54a1 and 54a2 (the third holding mechanism is not shown, the same applies hereinafter).
  • the second to fourth lens holders 55b, 55c, and 55d also have three holding mechanisms 54b1, 54b2, and 54c respectively. 1, 54 c 2 and the holding mechanism 54 d 1, 54 d 2 are held in the lens barrel 51.
  • Each of these holding mechanisms 5 4 al to 5 4 d 2 includes a small movable member such as a piezo element or a motorized micro-mechanism therein, whereby the lens holders 55 a to 55 d respectively
  • the position of the projection optical system PL in the direction of the optical axis and the inclination angle around two orthogonal axes on a plane perpendicular to the optical axis can be adjusted within a predetermined minute range.
  • a predetermined lens holder in the lens holders 55a to 55d is displaced in two directions orthogonal to a plane perpendicular to the optical axis, or You may make it rotate around an axis.
  • the holding mechanisms 54a1 to 54d2 are driven by the imaging characteristic controller 57 independently of each other.
  • the positions and inclination angles of the lens holders 55 a to 55 d are determined by the imaging characteristic controller 57 so that the control information S 2 Is set to the state specified by. Since the control information S 2 is generated so as to offset the fluctuation amount of the imaging characteristics due to the residual concentration of the low absorption gas measured by the impurity concentration meter 72 in FIG. 1, the projection optical system The imaging characteristics (aberration characteristics) of the system PL are maintained in a desired state.
  • the fluctuation of the imaging state of the projection optical system PL (the fluctuation of aberration) is not caused only by the change of the composition of the gas in the optical path. This is performed based on other factors, such as fluctuations in atmospheric pressure and the history of exposure energy absorbed by the projection optical system PL. In addition, it is possible to determine from the design data of the projection optical system PL which lens block should be moved and how much with respect to the history of gas composition, atmospheric pressure fluctuation, and exposure energy. In order to increase the control accuracy, the imaging state is evaluated while actually varying the gas composition, atmospheric pressure, exposure energy history, etc. using the projection optical system PL, and the control parameters are determined based on the results. One night is determined, and this control parameter is stored as a table You may.
  • the wavelength of the exposure light may be shifted in addition to driving the optical elements in the projection optical system PL.
  • the position of the wafer 1 (reticle R) and the position of the wafer stage 61 (wafer W) (for example, the position in the Z direction) may be controlled.
  • the projection optical system PL of this example is a refractive system, in order to satisfactorily correct chromatic aberration by using a small number of optical materials in the vacuum ultraviolet region
  • the projection optical system PL is, for example, disclosed in International Publication (W 0) 00 / As disclosed in 39623, as a straight cylindrical catadioptric system configured by arranging a plurality of refractive lenses along one optical axis and two concave mirrors each having an opening near the optical axis.
  • a catadioptric system or the like having an optical axis bent in a V-shape may be used.
  • the concave mirror reflection member
  • the concave mirror may be movable in order to adjust the imaging characteristics.
  • the purge gas is helium and the concentration of other nitrogen or argon becomes a certain level or more, for example, 100 ppm or more, the correction is no longer performed. Becomes difficult.
  • the concentration of nitrogen or argon or the like in the impurity concentration meter 72 shown in FIG. 1 becomes equal to or higher than a predetermined concentration (for example, 100 ppm as described above)
  • the gas was collected by the gas purification device 71.
  • the gas may be discharged to the outside through the exhaust pipe 16A, and a new high-purity purge gas may be supplied to the gas purifier 71 through the air supply pipe 16B instead.
  • the gas inside the projection optical system PL may be replaced with the supplied high-purity purge gas. Thereby, the imaging characteristics can be maintained in a desired state.
  • a purge gas cylinder (for example, a helium cylinder) is connected to the gas purifying device 71, and if necessary, The gas may be replenished from the cylinder.
  • the projection optical system PL is targeted for gas replacement with a purge gas (particularly helium), measurement of the concentration of a low-absorbent gas (nitrogen or a rare gas) other than the purge gas, and information based on the measurement information.
  • a purge gas particularly helium
  • the wafer stage chamber 60 ⁇ the reticle stage chamber 40 also has an example.
  • the refractive index of the optical path of the laser interferometers 63 and 43 fluctuates, and the interferometer Adversely affect measured values.
  • the residual concentration of the low-absorbent gas other than the purge gas in the return gas from the exhaust pipes 15B and 13B was measured, and the measured value of the interferometer was determined based on the measured value. Is desirably corrected. Thereby, control accuracy of wafer stage 61 and reticle stage 41 can be improved.
  • a reticle alignment microscope 86 for detecting an alignment mark (reticle mark) of reticle R is disposed above reticle stage 41, and wafer W is also provided on the lower side surface of projection optical system PL.
  • An alignment sensor (not shown) for detecting the above alignment mark is provided.
  • RA microscope reticle alignment microscope
  • FIG. 3 is an enlarged view of a main part showing the configuration of the RA microscope 86 of the present example.
  • the reticle stage 41 accommodates the reticle stage chamber 40 containing the reticle stage system.
  • the RA microscope 86 is arranged above the.
  • the RA microscope 86 uses light in the same wavelength range as the exposure light IL as the alignment 3 ⁇ 4, in FIG. 1, the illumination for the alignment branched from the optical path of the exposure light IL in the beam matching unit 2
  • the light IL 1 is guided to an RA microscope 86 via an alignment light transmission system 8 arranged in a long and narrow airtight chamber 80.
  • a hollow pipe in which a metal film such as aluminum is coated on the inner surface as a reflective film may be used as the elongated airtight chamber 80.
  • the material of this pipe is glass
  • the metal film (reflection film) on the inner surface can be formed by a method such as MOC VD (organic metal CVD).
  • MOC VD organic metal CVD
  • one end of the hollow pipe (for example, the RA microscope 86 side) is connected to the other end (the beam matching unit 2 side) from the other end.
  • the gas can be caused to flow by this pressure difference, and the inside can be replaced with a purge gas.
  • the illumination light IL 1 guided to the RA microscope 86 in the reticle stage room 40 passes through a mirror 87, a relay lens 88, and reaches a beam splitter 89 for branching.
  • the illumination light IL 1 transmitted around the reticle mark RM passes through the projection optical system PL and illuminates a reference mark (not shown) provided near the wafer W on the wafer stage 61 in FIG. I do.
  • the light reflected from the reference mark is returned to the reticle R again via the projection optical system PL.
  • the illumination light IL 1 reflected by the reticle mark RM and the illumination light IL 1 reflected by the reference mark on the wafer stage side and returned to the reticle R side are the mirror 91 and the object lens 90.
  • the illumination light IL 1 transmitted through the beam splitter 89 passes through a field lens 92 to a two-dimensional image sensor 94 such as a CCD in the image pickup device 95 (photoelectric detection).
  • An image of the reticle mark RM and an image of the reference mark on the wafer stage side are formed thereon.
  • the illumination light IL 1 is at the exposure wavelength
  • the image of the reference mark via the projection optical system PL and the image of the reticle mark RM are placed on the image sensor 94 without providing an optical system for correction. Is formed.
  • a cover glass 93 is disposed on the incident surface side of the imaging device 94 of the imaging device 95.
  • the electric signal from the image pickup device 94 is supplied to a drive circuit 96 installed outside the reticle stage chamber 40 (the gas inside the reticle stage 40 is replaced with a purge gas), where it is amplified and the image signal S is amplified. It becomes 3 and is supplied to the main control system 10 in FIG.
  • an electric signal cable between the imaging element 94 and the driving circuit 96 is provided on a partition of the reticle stage chamber 40, for example, a current introducer for a vacuum device. It is connected via a type connector (MS connector).
  • MS connector type connector
  • the main control system 10 in FIG. 1 processes the image signal S3 to determine the amount of displacement in the X and Y directions between the reticle mark; M and the corresponding reference mark. Similarly, the amount of misalignment between another reticle mark on reticle R and the corresponding reference mark is detected, and the positional relationship of reticle R with respect to the coordinate system of wafer stage system 6 is determined based on these misalignments. Is calculated, and reticle alignment is performed by this.
  • the drive circuit 96 is installed outside the reticle stage chamber 40 as in this example because of the organic gas (degassing) released from various electric components included in the drive circuit 96. This is to prevent a decrease in the transmittance of the exposure light. Therefore, when components that minimize degassing are used for the drive circuit 96, the drive circuit 96 can also be arranged in the reticle stage chamber 40. In this case, wiring for transmitting the image signal S3 from the drive circuit 96 is connected via a current introducer type connector (MS connector).
  • MS connector current introducer type connector
  • a means for forcibly exhausting gas near the drive circuit 96 as a measure against a small amount of degassing and heat radiation from the electric components in the drive circuit 96.
  • This exhaust system can be realized, for example, by disposing an end of a pipe branched from the exhaust pipe 13B of the reticle stage chamber 40 near the drive circuit 96.
  • an exhaust port 40 a communicating with the exhaust pipe 13 B in the partition wall of the reticle stage chamber 40 may be arranged near the drive circuit 96.
  • the exhaust port 40a may be arranged near the imaging device 95.
  • the RA microscope 86 of the present example is arranged in the reticle stage chamber 40, but the RA microscope 86 is arranged in an airtight chamber like the alignment light transmission system 8. You may.
  • mirror 87, relay lens 88, beam splitter 89, objective lens 90, mirror for epi-illumination provided in RA microscope 86 91, the field lens 92 and the imaging device 95 may be arranged in an airtight room.
  • the optical system (reticle alignment optical system) in the above-mentioned alignment light transmission system 8 and RA microscope 86 is an optical system that uses illumination light having the same wavelength as the exposure light IL in the vacuum ultraviolet region.
  • All of the optical materials of the refraction member such as the lens that constitutes the above use a fluoride crystal such as fluorite that transmits vacuum ultraviolet light.
  • a fluoride crystal such as fluorite that transmits vacuum ultraviolet light.
  • crystals such as lithium fluoride, magnesium fluoride, strontium fluoride, lithium monolithium) aluminum and fluoride, lithium, strontium and aluminum monofluoride, etc.
  • Fluoride glass made of zirconium-barium mulanthanum aluminum, quartz glass doped with fluorine, quartz glass doped with hydrogen in addition to fluorine, quartz glass containing OH groups, and fluorine (4) Improved quartz such as quartz glass containing an H group may be used.
  • fluorine-doped quartz in which the transmittance of vacuum ultraviolet light is improved by adding fluorine is used. It is also possible to use.
  • fluorine-doped quartz can be used as an optical material of a refractive member such as a lens.
  • a part of the exposure light IL branched in the beam matching unit 2 is used as the alignment light, but a configuration is provided in which a dedicated light source for emitting the alignment light is separately provided. There may be.
  • magnification of the projection optical system PL in the above embodiment may be not only reduced (for example, 1/4, 1Z5, etc.) but also any of 1: 1 and enlargement. It is also possible to use X-rays as the exposure beam. In this case, a reflective optical system (a reticle of a reflective type should be used) may be used as the projection optical system.
  • the illumination optical system and projection optical system composed of multiple lenses are incorporated into the exposure apparatus main body to perform optical adjustment, and a reticle stage and a wafer stage consisting of many mechanical parts are attached to the exposure apparatus main body to perform wiring and piping. Connect and adjust further
  • the projection exposure apparatus of the present embodiment can be manufactured.
  • temperature and cleanliness are controlled. It is desirable to perform in a clean room.
  • FIG. 4 shows an example of a semiconductor device manufacturing process.
  • a wafer W is manufactured from a silicon semiconductor or the like.
  • a photoresist is applied on the wafer W (step S10), and the wafer W is loaded on the wafer stage of the projection exposure apparatus of FIG.
  • reticle R1 is picked up on the reticle stage shown in FIG. 1 and this reticle R1 is moved below the illumination area, so that the entire pattern of reticle R1 on wafer W is transferred.
  • Scan exposure is performed on the shot area SE of the first row.
  • the wafer W is, for example, a wafer having a diameter of 300 mm (12-inch wafer).
  • the size of the shot area SE is, for example, 25 mm in the non-scanning direction and 33 mm in the scanning direction. This is a rectangular area.
  • step S14 a predetermined pattern is formed in each shot region SE of the wafer W by performing development, etching, ion implantation, and the like.
  • step S16 a photoresist is applied on the wafer W, and then in step S18, another reticle R2 is loaded on the reticle stage shown in FIG. Moving downward, the pattern of the reticle R2 is scanned and exposed on each shot area SE on the wafer W.
  • step S20 a predetermined pattern is formed in each shot area of the wafer W by performing development, etching, ion implantation, and the like of the wafer W.
  • the above-described exposure step to pattern formation step (step S16 to step S20) are repeated as many times as necessary to manufacture a desired semiconductor device. And the wafer
  • step S22 which separates each chip CP on the W one by one, the bonding process and the packaging process (step S24), the semiconductor device .SP as a product is Manufactured.
  • the application of the exposure apparatus of the present invention is not limited to an exposure apparatus for manufacturing a semiconductor device.
  • the present invention can be widely applied to an exposure apparatus and an exposure apparatus for manufacturing various devices such as an imaging device (such as a CCD), a micro machine, a thin film magnetic head, and a DNA chip.
  • an exposure step exposure apparatus
  • a mask a photomask, a reticle, etc.
  • the refraction member of the mark detection system is formed of an optical material that transmits the exposure beam
  • the alignment light having a wavelength range similar to the short wavelength exposure light such as a vacuum ultraviolet region
  • a purge gas is supplied on the optical path using alignment light having a wavelength range similar to a short wavelength exposure beam such as a vacuum ultraviolet region.
  • a short wavelength exposure beam such as a vacuum ultraviolet region.
  • the first gas purge gas
  • the imaging characteristic is adjusted according to the residual concentration of the second gas in the optical path
  • the first gas (purge gas) may be placed on the optical path of the exposure beam. Even if a gas other than the purge gas remains in the chamber, or the residual concentration of the gas other than the purge gas fluctuates, stable imaging characteristics can always be obtained. Therefore, it is possible to greatly relax the specification of the amount of the other gas mixed with the purge gas, and it is possible to realize a stable exposure apparatus.
  • an exposure apparatus is used in comparison with a method in which a low-absorbing gas such as nitrogen or argon is liquefied and removed using a cooling device that is expensive, consumes large power, and is a vibration source. Necessary surface of a clean room that can be miniaturized and houses the exposure equipment And the manufacturing cost and operating cost of the exposure apparatus can be reduced.
  • a low-absorbing gas such as nitrogen or argon

Abstract

An exposure method and system capable of providing stable imaging characteristics even when gas other than a purge gas remains on the light path of exposure light, or even when the residual concentration of gas other than the purge gas varies. Vacuum-UV-region exposure light (IL) from an exposure light source (1) illuminates a reticle (R) to transfer the reticle's pattern image onto a wafer (W) via a projection optical system (PL). The reticle (R) and the wafer (W) are respectively housed in a reticle stage room (40) and a wafer stage room (60) that are air-tight rooms, the inside of the projection optical system (PL) is turned to an air-tight room, and purge gas transmitting the exposure light (IL) is supplied to those air-tight rooms from a gas purifying device (71). For example, imaging characteristics of the projection optical system (PL) are adjusted via an imaging characteristic controller (57) according to the residual concentration of gas other than the purge gas in the projection optical system (PL) so as to offset variation amounts of imaging characteristics caused by this residual concentration.

Description

明 細 書 露光方法及び装置、 並びにデバイス製造方法' 技術分野.  Description Exposure method and apparatus, and device manufacturing method 'technical field.
本発明は、 例えば半導体素子、 撮像素子 (C C D) 、 液晶表示素子、 又は薄膜 磁気へッド等の各種デバイスを製造するためのフォトリソグラフイエ程中で、 マ スクパターンを感光基板上に転写するために使用される露光方法及び装置に関す る。 背景技術  The present invention transfers a mask pattern onto a photosensitive substrate during a photolithography process for manufacturing various devices such as a semiconductor device, an imaging device (CCD), a liquid crystal display device, or a thin film magnetic head. And an exposure method used for the method. Background art
半導体集積回路、 液晶ディスプレイ等の電子デバイスの微細パターンを形成す るためのフォトリソグラフイエ程では、 形成すべきパターンを 4〜 5倍程度に比 例拡大して描画したマスクとしてのレチクル (又はフォトマスク等) のパターン を、 一括露光方式又は走查露光方式の投影露光装置を用いて被露光基板としての ウェハ (又はガラスプレート等) 上に縮小転写する方法が用いられている。  In the photolithography process for forming fine patterns of electronic devices such as semiconductor integrated circuits and liquid crystal displays, a reticle (or photo) as a mask drawn by enlarging the pattern to be formed by a factor of about 4 to 5 times. A method of reducing and transferring a pattern of a mask or the like onto a wafer (or a glass plate or the like) as a substrate to be exposed using a projection exposure apparatus of a batch exposure type or a scanning exposure type is used.
その微細パターンの転写に使用される投影露光装置においては、 半導体集積回 路の微細化に対応するために、 その露光波長がより短波長側にシフトして来てい る。 現在、 その露光波長は K r Fエキシマレーザの 2 4 8 n mが主流となってい るが、 より短波長の実質的に真空紫外域 (VUV: Vacuum Ul traviolet) とみな すことができる A r Fエキシマレーザの 1 9 3 n mも実用化段階に入りつつある。 そして、 更に短い波長 1 5 7 n mの F 2 レーザや、 波長 1 2 6 nmの A r 2 レー ザ等の真空紫外域の露光光源を使用する投影露光装置の提案も行なわれている。 上記の如く、 最近の投影露光装置においては、 露光光として波長 2 0 0 nm程 度以下の真空紫外域の光が使用されるようになって来ている。 しかしながら、 こ の真空紫外域の光は、 投影露光装置の照明光学系や投影光学系の屈折部材 (レン ズ等) 、 及びレチクルの基板として使用できる高透過率の光学材料の種類が少な く、 現状で使用できる光学材料は、 蛍石、 フッ化マグネシウム、 フッ化リチウム 等のフッ化物結晶等に限定される。 また、 真空紫外光は、 酸素や水蒸気、 炭化水 素ガス等の気体 (以下、 「吸収性ガス」 と言う。)による吸収も極めて大きいため、 真空紫外光を用いる投影露光装置では、 露光光が通る光路から吸収性ガスを排除 するために、 その光路の気体を露光光に対して比較的吸収の少ない窒素や希ガス 等の気体 (以下、 「低吸収性ガス」 と言う。)で置換する必要がある。 低吸収性ガ スのうちで実際に光路上の気体を置換するために使用される気体は、 「パージガ ス」 と呼ばれている。 In a projection exposure apparatus used for transferring the fine pattern, the exposure wavelength has been shifted to a shorter wavelength side in order to cope with miniaturization of a semiconductor integrated circuit. At present, the exposure wavelength is mainly 248 nm of KrF excimer laser, but ArF, which can be regarded as a shorter wavelength, substantially a vacuum ultraviolet region (VUV: Vacuum Ultra traviolet). Excimer lasers of 193 nm are also entering the stage of practical use. Then, it is shorter F 2 laser and the wavelength 1 5 7 nm, also made suggestions of a projection exposure apparatus using exposure light source in the vacuum ultraviolet region, such as A r 2 lasers having a wavelength of 1 2 6 nm. As described above, in recent projection exposure apparatuses, light in the vacuum ultraviolet region having a wavelength of about 200 nm or less has been used as exposure light. However, the light in the vacuum ultraviolet region has a small number of types of high-transmittance optical materials that can be used as illumination optical systems of projection exposure apparatuses, refractive members (lenses, etc.) of projection optical systems, and reticle substrates. Currently, optical materials that can be used are limited to fluoride crystals such as fluorite, magnesium fluoride, and lithium fluoride. In addition, vacuum ultraviolet light emits oxygen, water vapor, and hydrocarbons. Since the absorption by gas such as elemental gas (hereinafter referred to as “absorptive gas”) is extremely large, in a projection exposure apparatus using vacuum ultraviolet light, it is necessary to remove the absorptive gas from the optical path through which the exposure light passes. It is necessary to replace the gas in the optical path with a gas such as nitrogen or a rare gas that absorbs relatively little of the exposure light (hereinafter referred to as “low-absorbing gas”). The gas used to actually replace the gas in the optical path among the low-absorbing gases is called "purge gas".
吸収性ガスの許容残留濃度に関して、 例えば酸素については、 露光光の光路中 の平均濃度を、 p p mオーダ程度の許容レベル以下に抑える必要がある。 吸収性 ガスの残留濃度が、 上記のような許容レベルを超えてしまう場合には、 被露光基 板としてのウェハ上での露光エネルギーが著しく低下することになる。 また、 吸 収性ガスの種類によっては、 その屈折率が上記のパージガスの屈折率と大きく異 なる。 そのため、 パージガスの種類と異なる吸収性ガスが光路上に残留している と、 その残留濃度によっては光路上での屈折率が変動し、 これによつて投影光学 系の結像特性が大きく変動して、 転写像を劣化させてしまう恐れもある。 更に、 この屈折率差は、 吸収性ガスと低吸収性ガスとの間に生じるのみではなく、 2つ の低吸収性ガス (例えばヘリウム及び窒素) の間でも生じる。 従って、 露光光の 光路を置換するパージガス以外の気体は、 たとえ低吸収性ガスであってもその残 留濃度はできるだけ低く抑えることが望ましい。  Regarding the allowable residual concentration of the absorbing gas, for example, for oxygen, it is necessary to keep the average concentration of the exposure light in the optical path below the allowable level on the order of ppm. If the residual concentration of the absorbing gas exceeds the allowable level as described above, the exposure energy on the wafer as the substrate to be exposed will be significantly reduced. Also, depending on the type of the absorbing gas, its refractive index is significantly different from that of the above-mentioned purge gas. Therefore, if an absorbing gas different from the type of the purge gas remains on the optical path, the refractive index on the optical path fluctuates depending on the residual concentration, and the imaging characteristics of the projection optical system greatly fluctuate. As a result, the transferred image may be degraded. Furthermore, this difference in refractive index occurs not only between the absorbing gas and the low-absorbing gas, but also between two low-absorbing gases (eg, helium and nitrogen). Therefore, it is desirable that the residual concentration of the gas other than the purge gas that replaces the optical path of the exposure light be kept as low as possible even if it is a low-absorbing gas.
そして、 パージガスと屈折率の異なる気体の残留は、 露光光の光路の屈折率を 変化させるばかりでなく、 レチクルステージやウェハステージ等の位置計測用の レーザ干渉計用の計測ビームの波長も変化させるため、 レチクルやウェハの位置 計測精度にも悪影響を及ぼす。  The residual gas having a different refractive index from the purge gas not only changes the refractive index of the optical path of the exposure light, but also changes the wavelength of a measurement beam for a laser interferometer for position measurement of a reticle stage or a wafer stage. This has an adverse effect on the reticle and wafer position measurement accuracy.
また、 投影露光装置には、 その解像度の 1 Z4程度の位置合わせ精度が要求さ れるため、 レチクル及びウェハを高精度に位置合わせするためのァライメント機 構が備えられている。 特に、 レチクルの位置合わせ (位置検出) に際して露光波 長の光束を使用する場合には、 そのレチクルの位置を検出するためのァライメン トセンサの光学系は、 露光波長の光束に対して高い透過率を有する必要がある。 また、 露光波長が、 ほぼ 2 0 0 n m以下の真空紫外域となると、 微量の有機系 又はシラン系の不純物質による吸収や、 露光光と不純物質との光化学反応によつ て生じる曇り物質の堆積及びレンズ透過率の低下が深刻な問題となる。 そこで、 不純物質を発生する部材、 例えば、 ァライメント光学系の検出面に設置される光 電検出器 (撮像素子等) の出力信号を処理するための電気回路に使用されるブラ スチック基板等を、 露光光の光路を含む空間に配置することは避ける必要がある。 従って、 従来は露光光の光路を含む空間内に配置されていた光電検出器も同空間 外の大気中に設置すべきであるが、 真空紫外光は通常の大気中を透過しないとい う問題もある。 In addition, since the projection exposure apparatus is required to have an alignment accuracy of about 1 Z4 of its resolution, an alignment mechanism for aligning the reticle and the wafer with high accuracy is provided. In particular, when a light beam having an exposure wavelength is used for alignment (position detection) of a reticle, the optical system of the alignment sensor for detecting the position of the reticle has a high transmittance for a light beam having an exposure wavelength. Must have. In addition, when the exposure wavelength is in the vacuum ultraviolet region of about 200 nm or less, absorption due to a trace amount of organic or silane-based impurities or a photochemical reaction between the exposure light and the impurities may occur. The resulting fogging material build-up and reduced lens transmission are serious problems. Therefore, a member that generates impurities, for example, a plastic substrate used in an electric circuit for processing an output signal of a photoelectric detector (such as an imaging device) installed on a detection surface of an alignment optical system, is used. It is necessary to avoid disposing it in a space including the optical path of the exposure light. Therefore, the photoelectric detector, which was conventionally arranged in the space including the optical path of the exposure light, should also be installed in the atmosphere outside the space.However, there is also a problem that the vacuum ultraviolet light does not pass through the normal atmosphere. is there.
本発明は斯かる点に鑑み、 露光光の光路上にパージガス以外の気体が残留して いても、 又はそのパージガス以外の気体の残留濃度が変動しても、 安定した結像 特性の得られる露光技術を提供することを第 1の目的とする。  In view of the above, the present invention provides an exposure apparatus capable of obtaining a stable imaging characteristic even if a gas other than the purge gas remains on the optical path of the exposure light, or even if the residual concentration of the gas other than the purge gas fluctuates. The primary purpose is to provide technology.
更に、 本発明は、 真空紫外域のような短波長の露光光と同程度の波長域の照明 光を用いる場合に適したァライメント系を使用できる露光技術を提供することを 第 2の目的とする。  A second object of the present invention is to provide an exposure technique that can use an alignment system suitable for using illumination light having a wavelength range similar to that of short-wavelength exposure light such as a vacuum ultraviolet region. .
また、 本発明は、 真空紫外域のような短波長の露光光と同程度の波長域の照明 光を用いて、 その光路上にパージガスを供給する場合に、 その光路に対して悪影 響を与えることなく、 レチクル又はウェハ用のァライメント系を設置できる露光 技術を提供することを第 3の目的とする。 発明の開示  In addition, the present invention has an adverse effect on the optical path when the purge gas is supplied on the optical path using illumination light having a wavelength range similar to the short-wavelength exposure light such as a vacuum ultraviolet region. A third object is to provide an exposure technique capable of setting an alignment system for a reticle or a wafer without giving it. Disclosure of the invention
本発明による第 1の露光装置は、 波長 2 0 0 n m以下の露光ビームで第 1物体 ( ) を介して第 2物体 (W) を露光する露光装置において、 その第 1物体又は その第 2物体上のマーク (R M) を通過した、 その露光ビームと実質的に同じ波 長のァライメント光を集光するァライメント光学系 (9 0, 9 2 ) と、 このァラ ィメント光学系によって集光されたそのァライメント光を検出する光電検出器 ( 9 4 ) とを有するマーク検出系を備え、 そのァライメント光学系中の屈折部材 は、 全てその露光ビームを透過する光学材料より形成されるものである。  A first exposure apparatus according to the present invention is an exposure apparatus that exposes a second object (W) via a first object () with an exposure beam having a wavelength of 200 nm or less, wherein the first object or the second object is exposed. An alignment optical system (90, 92) that collects alignment light having substantially the same wavelength as the exposure beam that has passed through the mark (RM) above, and is collected by the alignment optical system. A mark detection system having a photoelectric detector (94) for detecting the alignment light is provided, and the refraction members in the alignment optical system are all formed of an optical material that transmits the exposure beam.
本発明によれば、 ほぼ真空紫外域の露光ビームと同程度のァライメント光 (照 明光) を用いたマーク検出系のァライメント光学系の透過率が高くなり、 照明効 率が高くなるため、 高精度にァライメントを行うことができる。 この場合、 その露光ビームを透過する光学材料の一例は蛍石、 又はフッ素を添 加した石英である。 According to the present invention, the transmittance of the alignment optical system of the mark detection system using alignment light (illumination light) substantially equal to the exposure beam in the vacuum ultraviolet region is increased, and the illumination efficiency is increased. An alignment can be made. In this case, an example of the optical material that transmits the exposure beam is fluorite or quartz to which fluorine is added.
また、 そのァライメント光の光路の少なくとも一部の光路上の気体、 及びその 光電検出器が収納される隔壁 (4 0 ) の内部の気体をその露光ビームを透過する 気体で置換することが望ましい。 これによつて光電検出器の検出信号の S N比を 高めることができる。  Further, it is desirable to replace the gas on at least a part of the optical path of the alignment light and the gas inside the partition (40) in which the photoelectric detector is housed with a gas that transmits the exposure beam. Thereby, the SN ratio of the detection signal of the photoelectric detector can be increased.
更に、 その隔壁のその光電検出器 (9 4 ) に近接する領域にその隔壁の内部の 気体を吸気する吸気口 (4 0 a ) を設けることが望ましい。 これによつて、 その 光電検出器からの脱ガス (吸収性ガス) は、 その吸気口から排気されるため、 露 光ビームの光路に透過率低下等の悪影響を及ぼすことがない。  Furthermore, it is desirable to provide an intake port (40a) for inhaling gas inside the partition in a region of the partition adjacent to the photoelectric detector (94). As a result, degassed (absorptive gas) from the photoelectric detector is exhausted from the intake port, so that there is no adverse effect such as a decrease in transmittance on the optical path of the exposure beam.
また、 そのァライメント光学系の一部に、 その内壁にそのァライメント光を反 射させる反射部材を設けた中空部材 (8 0 ) を含むようにしてもよい。 これによ つて、 そのァライメント光を効率的に伝達することができる。  Further, a part of the alignment optical system may include a hollow member (80) provided with a reflection member for reflecting the alignment light on an inner wall thereof. As a result, the alignment light can be transmitted efficiently.
また、 そのァライメント光学系は、 さらに、 その露光ビームと実質的に同じ波 長のァライメント光をその第 1物体又はその第 2物体上のマークに照射する送光 光学系 (8 ) を備え、 その送光光学系中に、 その内壁にそのァライメント光を反 射させる反射部材を設けた中空部材 (8 0 ) を含むようにしてもよい。 その送光 光学系によって、 一例として露光ビームから分岐したビームをァライメント光と して導く場合には、 ァライメント光の光源を別途設ける必要がなくなる。  The alignment optical system further includes a light-sending optical system (8) for irradiating alignment light having substantially the same wavelength as the exposure beam to a mark on the first object or the second object. The light transmitting optical system may include a hollow member (80) provided with a reflecting member for reflecting the alignment light on the inner wall thereof. In the case where, for example, a beam split from the exposure beam is guided as alignment light by the light transmitting optical system, it is not necessary to separately provide a light source for the alignment light.
次に、 本発明による第 1の露光方法は、 露光ビームで第 1物体 (R) 及び投影 光学系 (P L ) を介して第 2物体 (W) を露光する露光方法において、 その露光 ビームの光路の少なくとも一部の光路の気体をその露光ビームを透過する第 1の 気体で置換すると共に、 その少なくとも一部の光路に残留するその第 1の気体と 異なる第 2の気体の濃度を計測し、 その第 2の気体の残留濃度に応じてその投影 光学系の結像特性を調整するものである。  Next, a first exposure method according to the present invention is directed to an exposure method for exposing a second object (W) via an exposure beam through a first object (R) and a projection optical system (PL). Replacing the gas in at least a part of the optical path with a first gas that transmits the exposure beam, and measuring the concentration of a second gas different from the first gas remaining in the at least a part of the optical path, The imaging characteristic of the projection optical system is adjusted according to the residual concentration of the second gas.
斯かる本発明において、 その露光ビームの光路にその第 2の気体が残留してい ると、 その残留濃度に応じてその光路の屈折率が変動して、 その投影光学系の結 像特性 (例えばディストーション等の収差) が変動する。 そこで、 一例として、 その結像特性の変動量を相殺するようにその投影光学系の結像特性を調整するこ とによって、 その結像特性を所望の状態に安定に維持することができる。 In the present invention, when the second gas remains in the optical path of the exposure beam, the refractive index of the optical path fluctuates in accordance with the residual concentration, and the image forming characteristic of the projection optical system (for example, Aberrations such as distortion) fluctuate. Therefore, as an example, the imaging characteristics of the projection optical system are adjusted so as to cancel the fluctuation amount of the imaging characteristics. Thus, the imaging characteristics can be stably maintained in a desired state.
特に、 露光ビームが波長 2 0 0 n m程度以下の真空紫外光であると、 その露光 ビームを透過する第 1の気体 (低吸収性ガス) の種類が限定されて来るが、 その 光路上にその第 1の気体以外の気体が或る程度混入しても、 本発明によって安定 な結像特性が得られる。  In particular, when the exposure beam is vacuum ultraviolet light having a wavelength of about 200 nm or less, the type of the first gas (low-absorbing gas) that transmits the exposure beam is limited, and the type of the first gas is low on the optical path. Even when a certain amount of gas other than the first gas is mixed, stable imaging characteristics can be obtained by the present invention.
この場合、 その第 2の気体の残留濃度が所定レベルを超えたときに、 その少な くとも一部の光路の気体をその第 1の気体で再置換することが望ましい。 これに よって、 結像特性の変動量が大きくなり過ぎることがなくなり、 その結像特性を 常に所望の状態に維持できる。  In this case, when the residual concentration of the second gas exceeds a predetermined level, it is desirable to replace the gas in at least a part of the optical path with the first gas. As a result, the fluctuation amount of the imaging characteristic does not become too large, and the imaging characteristic can always be maintained in a desired state.
ま 、 その第 2の気体は、 その露光ビームを透過する気体であってもよい。 そ の第 2の気体がその第 1の気体と同様に、 その露光ビームを透過する低吸収性ガ スであっても、 その第 1及び第 2の気体間の屈折率差によってその光路上の屈折 率が変動するため、 本発明が有効である。  Further, the second gas may be a gas that transmits the exposure beam. Even if the second gas is a low-absorbing gas that transmits the exposure beam, as in the case of the first gas, the difference in the refractive index between the first and second gases causes a difference in the light path. The present invention is effective because the refractive index fluctuates.
これらの場合、 その第 1の気体が窒素であるとすると、 一例としてその第 2の 気体は酸素、 炭酸ガス、 水蒸気、 ネオン、 及びヘリウムよりなる気体群から選ば れた少なくとも一つの気体である。  In these cases, assuming that the first gas is nitrogen, by way of example, the second gas is at least one gas selected from the group consisting of oxygen, carbon dioxide, steam, neon, and helium.
一方、 その第 1の気体がヘリウムであるとすると、 一例としてその第 2の気体 は酸素、 窒素、 炭酸ガス、 水蒸気、 ネオン、 アルゴン、 及びクリプトンよりなる 気体群から選ばれた少なくとも一つの気体である。  On the other hand, if the first gas is helium, as an example, the second gas is at least one gas selected from the group consisting of oxygen, nitrogen, carbon dioxide, water vapor, neon, argon, and krypton. is there.
次に、 本発明の第 2の露光方法は、 露光ビームで第 1物体 (R) 及び投影光学 系 (P L ) を介して第 2物体 (W) を露光する露光方法において、 その露光ビ一 ムの光路の少なくとも一部の光路の気体をその露光ビームを透過する第 1の気体 で置換し、 その少なくとも一部の光路に残留し、 かつその露光ビームを透過し、 その第 1の気体と異なる第 2の気体の濃度を計測し、 その第 2の気体の残留濃度 が所定レベルを超えたときに、 その少なくとも一部の光路の気体をその第 1の気 体で再置換するものである。  Next, a second exposure method of the present invention is directed to an exposure method for exposing a second object (W) via an exposure beam through a first object (R) and a projection optical system (PL). Replacing the gas in at least a part of the optical path with a first gas that transmits the exposure beam, remaining in at least a part of the optical path, and transmitting the exposure beam and different from the first gas The second gas is measured for concentration, and when the residual concentration of the second gas exceeds a predetermined level, the gas in at least a part of the optical path is replaced with the first gas.
斯かる本発明によれば、 低吸収性ガスよりなるが、 その第 1の気体とは異なる 第 2の気体の露光ビームの光路上での残留濃度が上昇した塲合に、 その光路上の 気体をその第 1の気体で再置換するため、 その光路の屈折率変動が大きくなり過 ぎることがなくなり、 結像特性を容易に所望の状態に維持することができる。 この場合、 その第 1の気体が窒素であるとすると、 一例としてその第 2の気体 はネオン及びヘリゥムの少なくとも一方である。 According to the present invention, when the residual concentration of the exposure beam of the second gas, which is composed of the low-absorbent gas but is different from the first gas, on the optical path increases, the gas on the optical path Is replaced by the first gas, the fluctuation of the refractive index in the optical path increases, As a result, the imaging characteristics can be easily maintained in a desired state. In this case, assuming that the first gas is nitrogen, as an example, the second gas is at least one of neon and helium.
一方、 その第 1の気体がヘリウムであるとすると、 一例としてその第 2の気体 は窒素、 ネオン、 アルゴン、 及びクリプトンよりなる気体群から選ばれた少なく とも一つの気体である。  On the other hand, if the first gas is helium, by way of example, the second gas is at least one gas selected from the group consisting of nitrogen, neon, argon, and krypton.
次に、 本発明の第 2の露光装置は、 露光ビームで第 1物体 (R) 及び投影光学 系 (P L ) を介して第 2物体 (W) を露光する露光装置において、 その投影光学 系の結像特性を調整する結像特性調整装置 (5 4 a l , 5 4 a 2 , 5 7 ) と、 そ の露光ビームのその第 2物体までの光路の少なくとも一部の光路の気体をその露 光ビームを透過する第 1の気体で置換する気体供給機構 (7 1 ) と、 その少なく とも一部の光路に残留するその第 1の気体と異なる第 2の気体の濃度を計測する 気体センサ (7 2 ) と、 この気体センサの計測値に基づいてその結像特性調整装 置を介してその投影光学系の結像特性を調整する制御系 (1 0 ) とを有するもの である。  Next, a second exposure apparatus of the present invention is an exposure apparatus that exposes a second object (W) via a first object (R) and a projection optical system (PL) with an exposure beam. An imaging characteristic adjusting device (54 al, 54 a 2, 57) for adjusting the imaging characteristic, and exposing the gas of at least a part of the optical path of the exposure beam to the second object to the exposure object. A gas supply mechanism (71) that replaces the beam with a first gas that passes through the beam, and a gas sensor (7) that measures the concentration of a second gas that is different from the first gas and remains in at least a part of the optical path. 2) and a control system (10) for adjusting the imaging characteristics of the projection optical system via the imaging characteristic adjusting device based on the measurement values of the gas sensor.
また、 本発明の第 3の露光装置は、 露光ビームで第 1物体 (R) 及び投影光学 系 (P L ) を介して第 2物体 (W) を露光する露光装置において、 その露光ビー ムのその第 2物体までの光路の少なくとも一部の光路の気体をその露光ビームを 透過する第 1の気体で置換する気体供給機構 (7 1 ) と、 その少なくとも一部の 光路に残留し、 かつその露光ビームを透過し、 その第 1の気体と異なる第 2の気 体の濃度を計測する気体センサ (7 2 ) と、 その気体供給機構を制御し、 この気 体センサの計測値に基づいてその少なくとも一部の光路の気体をその第 1の気体 で再置換する制御機構 (1 0 ) とを有するものである。  Further, a third exposure apparatus of the present invention is an exposure apparatus that exposes a second object (W) via a first object (R) and a projection optical system (PL) with an exposure beam. A gas supply mechanism (71) for replacing gas in at least a part of the optical path to the second object with a first gas that transmits the exposure beam, and a gas supply mechanism that remains in at least a part of the optical path and exposes the gas. A gas sensor that transmits the beam and measures the concentration of a second gas different from the first gas, and a gas supply mechanism that controls the gas supply mechanism, and based on the measured value of the gas sensor, A control mechanism (10) for re-substituting the gas in a part of the optical path with the first gas.
これらの露光装置によって、 本発明の露光方法を実施することができる。  With these exposure apparatuses, the exposure method of the present invention can be performed.
次に、 本発明のデバイス製造方法は、 本発明の何れかの露光方法を用いてデバ イスパターン (R) をワークピース (W) 上に転写する工程を有するものである。 本発明によつて安定な結像特性が得られるため、 各種デバィスを高精度に量産す ることができる。 図面の簡単な説明 Next, the device manufacturing method of the present invention includes a step of transferring the device pattern (R) onto the workpiece (W) by using any of the exposure methods of the present invention. According to the present invention, since stable imaging characteristics can be obtained, various devices can be mass-produced with high accuracy. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の形態の一例の投影露光装置を示す一部を切り欠いた構 成図である。 図 2は、 図 1中の投影光学系 P Lの構成を示す断面図である。 図 3 は、 図 1中のレチクルァライメント顕微鏡 8 6の構成を示す一部を切り欠いた拡 大図である。 図 4は、 本発明の実施の形態の投影露光装置を用いて半導体デバイ スを製造する場合の製造工程の一例を示す図である。 発明を実施するための最良の形態  FIG. 1 is a partially cutaway configuration view showing a projection exposure apparatus according to an example of an embodiment of the present invention. FIG. 2 is a sectional view showing the configuration of the projection optical system PL in FIG. FIG. 3 is an enlarged view, partially cut away, showing the configuration of the reticle alignment microscope 86 in FIG. FIG. 4 is a diagram illustrating an example of a manufacturing process when a semiconductor device is manufactured using the projection exposure apparatus according to the embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の好ましい実施の形態の一例につき図面を参照して説明する。 本 例は、 露光ビームとして真空紫外光 (VUV光) を用いる投影露光装置に本発明 を適用したものである。  Hereinafter, an example of a preferred embodiment of the present invention will be described with reference to the drawings. In this example, the present invention is applied to a projection exposure apparatus using vacuum ultraviolet light (VUV light) as an exposure beam.
図 1は、 本例の投影露光装置を示す概略構成図であり、 この図 1において、 例 えば半導体デバイス製造工場の或る階の床 F 1上のクリーンルーム内に、 露光光 源 1及び露光本体部が設置され、 その階下の床 F 2上の機械室内にガス純化装置 7 1等の付属設備が設置されている。 露光光源 1としては、 真空紫外域の発振波 長 1 5 7 nmの F 2 レーザ (フッ素レーザ) が使用されている。 それ以外に露光 光源として、 発振波長 1 4 6 n mの K r 2 レーザ (クリプトンダイマーレーザ) 、 発振波長 1 2 6 n mの A r 2 レーザ (アルゴンダイマ一レーザ) 、 発振波長 1 9 3 n mの A r Fエキシマレ一ザ、 Y A Gレーザの高調波発生装置、 又は半導体レ ' 一ザの高調波発生装置等の実質的に真空紫外域の光源を使用する場合にも本発明 は有効である。 更に、 露光光源として、 K r Fエキシマレーザ (波長 2 4 8 n m) や水銀ランプ ( i線、 g線等) 等の光源を使用する場合にも、 特に露光光の利用 ' 効率を高めたい場合には本発明が適用できる。 FIG. 1 is a schematic configuration diagram showing a projection exposure apparatus of this example. In FIG. 1, for example, an exposure light source 1 and an exposure main body are placed in a clean room on a floor F1 on a certain floor of a semiconductor device manufacturing factory. The gas purifier 71 is installed in the machine room on the floor F2 below that floor. As the exposure light source 1, an F 2 laser (fluorine laser) having an oscillation wavelength of 157 nm in the vacuum ultraviolet region is used. Other exposure light sources include a Kr 2 laser (krypton dimer laser) with an oscillation wavelength of 146 nm, an Ar 2 laser (argon dimer laser) with an oscillation wavelength of 126 nm, and an A with an oscillation wavelength of 193 nm. The present invention is also effective when a substantially vacuum ultraviolet light source such as an rF excimer laser, a harmonic generator of a YAG laser, or a harmonic generator of a semiconductor laser is used. Furthermore, when using a light source such as a KrF excimer laser (wavelength: 248 nm) or a mercury lamp (i-line, g-line, etc.) as the exposure light source, especially when it is desired to use the exposure light more efficiently To which the present invention can be applied.
露光光源 1から射出された露光ビームとしての露光光 I Lは、 リレーレンズ 2 1、 光路折り曲げ用のミラー 2 2、 及びリレーレンズ 2 3 , 2 4よりなるビーム マッチングユニット (B MU) 2を通過して照明光学系 3に入射する。 照明光学 系 3に入射した露光光 I Lは、 ォプティカル ·ィンテグレー夕としてのフライァ ィレンズ 3 1 (この代わりにロッドタイプのオプティカル ·インテグレー夕の使 用も可能である) 、 その射出面側に配置される照明系の開口絞り (σ絞り) 3 2、 第 1リレーレンズ群 3 3、 ミラー 3 4、 及び第 2リレーレンズ群 3 5を経て視野 絞り 3 6に至る。 そして、 視野絞り 3 6を通過した露光光 I Lは、 第 1コンデン サレンズ群 3 7、 光路折り曲げ用のミラー 3 8、 及び第 2コンデンサレンズ群 3 9を介してマスクとしてのレチクル Rのパターン領域を照明する。 Exposure light IL as an exposure beam emitted from the exposure light source 1 passes through a beam matching unit (BMU) 2 including a relay lens 21, a mirror 22 for bending the optical path, and relay lenses 23 and 24. And enters the illumination optical system 3. The exposure light IL incident on the illumination optical system 3 is disposed on the exit surface side of a flyer lens 31 (an optical integrator of a rod type can be used instead) as an optical integrator. Aperture stop for illumination system (σ stop) 32, The light reaches the field stop 36 via the first relay lens group 33, the mirror 34, and the second relay lens group 35. The exposure light IL that has passed through the field stop 36 passes through the first condenser lens group 37, the mirror 38 for bending the optical path, and the second condenser lens group 39 to pass through the pattern area of the reticle R as a mask. Light up.
本例のビームマッチングユニット 2及び照明光学系 3は、 それぞれそれぞれ気 密性の高い隔壁 (気密室) としてのサブチャンバ 2 0及び 3 0内に収納されてい る。 この場合、 2つのサブチャンバ 2 0 , 3 0の境界部は連通していてもよい力 一例としてその境界部に平行平板ガラスを設置したり、 平行平板ガラスの代わり' にリレーレンズ 2 4のような光学部材を設置して、 その周囲を封止することによ つて、 2つのサブチャンパ 2 0 , 3 0を互いに隔離してもよい。 これは以降の気 密室についても同様である。 なお、 気密室としては、 外気がサブチャンバ 2 0 , 3 0内に混入しない構成であれば、 多少の隙間があってもよい。  The beam matching unit 2 and the illumination optical system 3 of the present example are respectively housed in sub-chambers 20 and 30 as highly airtight partitions (airtight chambers). In this case, the boundary between the two sub-chambers 20 and 30 may be connected to each other. For example, a parallel flat glass may be installed at the boundary or a relay lens 24 may be used instead of the parallel flat glass. The two sub-champers 20 and 30 may be isolated from each other by installing a suitable optical member and sealing the periphery thereof. This is the same for the following hermetic rooms. The airtight chamber may have some gaps as long as the outside air does not enter the sub-chambers 20 and 30.
図 1において、 レチクル Rを透過した光束は、 投影光学系 P Lを介して被露光 基板としてのウェハ W上にそのレチクル Rのパターンの像を形成する。 レチクル R及びウェハ Wが本発明の第 1物体及び第 2物体に対応しており、 ゥェ八 (wafe r) Wは例えば半導体 (シリコン等) 又は S〇 I (si l icon on insulator)等の円板 状の基板である。 また、 投影光学系 P Lの内部は外気と隔離された気密室とされ ている。 以下、 投影光学系 P Lの光軸 AXに平行に Z軸を取り、 Z軸に垂直な平 面内で図 1の紙面に平行に X軸を、 図 1の紙面に垂直に Y軸を取って説明する。 先ず、 レチクル Rは、 レチクルベース 4 2上で X方向、 Y方向に移動自在に載 置されたレチクルステージ 4 1上に保持され、 レチクルステージ 4 1の 2次元的 な位置は、 レーザ干渉計 4 3及びこれに対応して配置された移動鏡によって、計測 され、 この計測値、 及び装置全体の動作を統轄制御する床 F 2上の主制御系 1 0 からの制御情報に基づいてレチクルステージ制御系 (不図示) がレチクルステー ジ 4 1の位置及び速度を制御する。 レチクルベース 4 2、 レチクルステージ 4 1、 及びこの駆動機構 (不図示) 等からレチクルステージ系 4が構成され、 レチクル ステージ系 4は、 気密性の高い隔壁 (気密室) としてのレチクルステージ室 4 0 内に収納されている。  In FIG. 1, a light beam transmitted through a reticle R forms an image of a pattern of the reticle R on a wafer W as a substrate to be exposed via a projection optical system PL. The reticle R and the wafer W correspond to the first object and the second object of the present invention, and the wafer W is, for example, a semiconductor (silicon or the like) or S〇I (silicon on insulator) or the like. It is a disk-shaped substrate. The inside of the projection optical system PL is an airtight chamber isolated from the outside air. Hereinafter, the Z axis is taken parallel to the optical axis AX of the projection optical system PL, the X axis is taken parallel to the plane of Fig. 1 in a plane perpendicular to the Z axis, and the Y axis is taken perpendicular to the plane of Fig. 1. explain. First, the reticle R is held on a reticle stage 41 mounted movably in the X and Y directions on a reticle base 42, and the two-dimensional position of the reticle stage 41 is determined by a laser interferometer 4 3 and a movable mirror arranged corresponding to the reticle stage control based on the measured values and the control information from the main control system 10 on the floor F2 that controls the overall operation of the device. A system (not shown) controls the position and speed of the reticle stage 41. A reticle stage system 4 is composed of a reticle base 42, a reticle stage 41, and a driving mechanism (not shown). The reticle stage system 4 is a reticle stage chamber 40 as a highly airtight partition (airtight chamber). Is housed inside.
一方、 ウェハ Wは、 不図示のウェハホルダを介してウェハステージ (Zレベリ ングステージ) 6 1上に保持され、 ウェハステージ 6 1はウェハべ一ス 6 2上に X方向、 Y方向に移動自在に載置されている。 ウェハステージ 6 1の 2次元的な 位置は、 レーザ干渉計 6 3及びこれに対応して配置された移動鏡によって計測さ れており、 この計測値及び主制御系 1 0からの制御情報に基づいてゥェ八ステー ジ制御系 (不図示) がウェハステージ 6 1の X方向、 Y方向の位置及び速度を制 御する。 また、 ウェハステージ 6 1は、 不図示のオートフォーカスセンサ (斜入 射方式で光学式のセンサ) からのウェハ Wの表面の複数の計測点でのフォーカス 位置 (光軸 A X方向の位置) の情報に基づいて、 露光中にウェハ Wの表面が投影 光学系 P Lの像面に合焦されるように、 サーポ方式でウェハ Wのフオーカス位置 及び X軸、 Y軸の回りの傾斜角を制御する。 ウェハベース 6 2、 ウェハステージ 6 1、 及びこの駆動機構 (不図示) 等からウェハステージ系 6が構成され、 ゥェ ハステージ系 6は、 気密性の高い隔壁 (気密室) としてのウェハステージ室 6 0 内に収納されている。 On the other hand, the wafer W is moved to the wafer stage (Z level) via a wafer holder (not shown). The wafer stage 61 is mounted on the wafer base 62 so as to be movable in the X and Y directions. The two-dimensional position of the wafer stage 61 is measured by the laser interferometer 63 and a movable mirror corresponding to the laser interferometer 63, and is based on the measured values and control information from the main control system 10. A stage control system (not shown) controls the position and speed of the wafer stage 61 in the X and Y directions. Also, the wafer stage 61 is provided with information on focus positions (positions in the optical axis AX direction) at a plurality of measurement points on the surface of the wafer W from an auto focus sensor (not shown, an optical sensor of an oblique incidence type). The focus position of the wafer W and the tilt angles around the X-axis and the Y-axis are controlled by the servo method so that the surface of the wafer W is focused on the image plane of the projection optical system PL during the exposure. The wafer stage system 6 is composed of the wafer base 62, the wafer stage 61, and a driving mechanism (not shown). The wafer stage system 6 is a wafer stage chamber as a highly airtight partition (airtight chamber). Stored in 60.
露光時には、 レチクル Rのパターンの像を投影光学系 P Lを介してウェハ W上 の一つのショット領域に投影した状態で、 レチクル Rとウェハ Wとを投影光学系 P Lの倍率を速度比として Y方向に同期移動する動作と、 ウェハ Wをステップ移 動する動作とがステップ ·アンド ·スキャン方式で繰り返される。 このように本 例の投影露光装置は、 走査露光方式であるが、 本発明はステッパー等の一括露光 型の投影露光装置にも有効であることは言うまでもない。 レチクルステージ室 4 0内のレチクルステージ 4 1の上方に、 レチクル R用のァ ライメント系としての撮像方式のレチクルァライメント顕微鏡 8 6が配置されて いる。 本例のレチクルァライメント顕微鏡 8 6は、 ァライメント光として、 露光 光 I Lと同じ波長の光を使用している。 そのため、 ビームマッチングユニット 2 中のリレ一レンズ 2 3とリレーレンズ 2 4との間に配置されたハーフミラ一 8 1 によって、 露光光 I Lの光路から分岐されたァライメント用の照明光 I L 1は、 サブチャンバ 2 0とレチクルステージ室 4 0との間に架設された細長い気密室 8 0内に配置されたァライメント送光系 8を介して、 レチクルァライメント顕微鏡 8 6に導かれている。 ァライメント送光系 8は、 ビームマッチングユニット 2側 からレンズ 8 2、 光路折り曲げ用のミラー 8 3 , 8 4、 及びレンズ 8 5を配置し て構成されている。 At the time of exposure, the reticle R and the wafer W are projected onto one shot area on the wafer W via the projection optical system PL through the projection optical system PL, and the reticle R and the wafer W are projected in the Y direction using the speed ratio of the projection optical system PL as a speed ratio. The operation of synchronously moving the wafer W and the operation of stepping the wafer W are repeated in a step-and-scan manner. As described above, the projection exposure apparatus of this embodiment is of the scanning exposure type, but it goes without saying that the present invention is also effective for a batch exposure type projection exposure apparatus such as a stepper. Above the reticle stage 41 in the reticle stage room 40, an imaging type reticle alignment microscope 86 as an alignment system for the reticle R is arranged. The reticle alignment microscope 86 of this example uses light having the same wavelength as the exposure light IL as alignment light. Therefore, the illumination light IL 1 for alignment that is branched from the optical path of the exposure light IL by the half mirror 81 arranged between the relay lens 23 and the relay lens 24 in the beam matching unit 2 The light is guided to a reticle alignment microscope 86 via an alignment light transmitting system 8 disposed in a long and narrow airtight chamber 80 provided between the chamber 20 and the reticle stage chamber 40. The alignment light transmission system 8 is on the beam matching unit 2 side And a lens 82, an optical path bending mirror 83, 84, and a lens 85.
これに関して、 露光波長が 2 0 0 n mを超えるような長波長であるときには、 露光光から分岐した光を可撓性を有する光ファイバ束を介してァライメント系に 導くことも可能である。 しかしながら、 本例のように真空紫外域の露光光 I Lが 使用されている場合には、 その波長域の照明光を少ない光量損失で伝送できる安 価な光ファイバは現状では入手困難であるため、 本例ではその照明光を屈折部材 及び反射部材ょりなるァライメント送光系 8を介して伝送している。  In this regard, when the exposure wavelength is a long wavelength exceeding 200 nm, light branched from the exposure light can be guided to the alignment system through a flexible optical fiber bundle. However, in the case where the exposure light IL in the vacuum ultraviolet region is used as in this example, it is difficult to obtain a cheap optical fiber that can transmit the illumination light in that wavelength region with a small loss of light amount at present. In this example, the illumination light is transmitted through an alignment light transmission system 8 consisting of a refraction member and a reflection member.
更に、 本例の投影光学系 P Lには、 ディストーション、 及び非点収差等の結像 特性を所定範囲内で調整 (制御) するための結像特性調整機構 (詳細後述) が組 み込まれている。 主制御系 1 0は、 投影光学系 P Lの結像特性が所定の目標範囲 内に収まるように、 制御情報 S 2を結像特性コントローラ 5 7に送ってその結像 特性を調整する。  Further, the projection optical system PL of this example incorporates an imaging characteristic adjustment mechanism (detailed later) for adjusting (controlling) the imaging characteristics such as distortion and astigmatism within a predetermined range. I have. The main control system 10 sends control information S2 to the imaging characteristic controller 57 to adjust the imaging characteristics so that the imaging characteristics of the projection optical system PL fall within a predetermined target range.
さて、 本例のように真空紫外光を露光光 I Lとする場合には、 その光路から酸 素、 水蒸気、 炭酸ガス (C O 2 等) 、 及び炭化水素系 (有機物) の気体等の露光 光 I Lに対して強い吸収率を持つ気体である 「吸収性ガス」 を排除する必要があ る。 一方、 露光ビームを透過する気体、 即ち本例では真空紫外域の露光光 I に 対する吸収の少ない 「低吸収性ガス」 には、 窒素及び希ガス (ヘリウム、 ネオン、 アルゴン、 クリプトン、 キセノン、 ラドン) 、 並びにそれらの混合気体がある。 そして、 本例の投影露光装置には、 それらの低吸収性ガスの内から例えば必要と される結像特性の安定性や運転コスト等に基づいて選択した 「パージガス」 を用 いて、 露光光源 1から被露光基板としてのウェハ Wまでの露光光 I Lの全部の光 路上の気体を置換するための気体交換機構 (気体供給機構) が備えられている。 図 1において、 露光光源 1からウェハ Wまでの露光光 I Lの光路は、 それぞれ 気密室としての第 1のサブチャンバ 2 0、 第 2のサブチャンバ 3 0、 レチクルス テージ室 4 0、 投影光学系 P L、 及びゥェ八ステージ室 6 0の内部の光路に分割 されている。 本例の気体交換機構は、 床 F 2上に設置されたガス純化装置 7 1と、 このガス純化装置 7 1から複数の気密室としてのサブチャンバ 2 0、 サブチャン バ 3 0、 レチクルステージ室 4 0、 投影光学系 P Lの内部、 及びウェハステージ 室 60にそれぞれパージガスを供給するための電磁バルブ付きの給気管 1 1 A〜 15 Aと、 それらの気密室内の気体を回収するための電磁バルブ付きの排気管 1 1 B〜l 5Bと、 これらの排気管 1 1 B〜l 5 Bの途中に設置されて回収される 気体中のパージガス以外の所定の不純物ガスの残留濃度を計測する不純物濃度計 72 (気体センサ) とを備えている。 なお、 図 1においては、 図面を見やすくす るために、 投影光学系 PL用の給気管 14A及び排気管 14Bのみがガス純化装 置 71に接続されているが、 他の給気管 1 1A〜13A, 15A、 及び排気管 1 1 B〜13B, 1 5 Bも同様にそれぞれガス純化装置 71に接続されている。 更 に、 排気管 1 1 B〜13B, 1 5 Bの途中にもそれぞれ不純物濃度計 72と同様 の不純物濃度計が設置されている。 When the vacuum ultraviolet light is used as the exposure light IL as in this example, the exposure light IL such as oxygen, water vapor, carbon dioxide (CO 2, etc.), and hydrocarbon-based (organic) gas is emitted from the optical path. It is necessary to eliminate “absorbent gas”, which is a gas that has a strong absorption rate for water. On the other hand, the gas that transmits the exposure beam, that is, in this example, the “low-absorbing gas” that has low absorption of the exposure light I in the vacuum ultraviolet region includes nitrogen and rare gases (helium, neon, argon, krypton, xenon, radon ), And their mixtures. The projection exposure apparatus of this example uses the “purge gas” selected from these low-absorbing gases based on, for example, the required stability of the imaging characteristics and the operation cost, and uses the exposure light source 1 A gas exchange mechanism (gas supply mechanism) is provided to replace the gas on the entire optical path of the exposure light IL from the wafer to the wafer W as the substrate to be exposed. In FIG. 1, the optical paths of the exposure light IL from the exposure light source 1 to the wafer W are the first sub-chamber 20 and the second sub-chamber 30 as an airtight chamber, the reticle stage chamber 40, and the projection optical system PL, respectively. , And are divided into optical paths inside the Jehachi stage room 60. The gas exchange mechanism of this example is composed of a gas purifying device 71 installed on the floor F2, a plurality of sub-chambers 20 as sub-chambers, a sub-chamber 30 and a reticle stage room 4 from the gas purifying device 71. 0, inside projection optical system PL, and wafer stage An air supply pipe 11 A to 15 A with an electromagnetic valve for supplying a purge gas to each of the chambers 60, and an exhaust pipe 11 1 B to 5 B with an electromagnetic valve for collecting the gas in the hermetic chamber, And an impurity concentration meter 72 (gas sensor) for measuring the residual concentration of a predetermined impurity gas other than the purge gas in the gas collected and installed in the exhaust pipes 11 B to 15 B. In FIG. 1, only the air supply pipe 14A and the exhaust pipe 14B for the projection optical system PL are connected to the gas purification device 71 to make the drawing easier to see, but the other air supply pipes 11A to 13A , 15A, and the exhaust pipes 11B to 13B, 15B are similarly connected to the gas purifier 71, respectively. Furthermore, an impurity concentration meter similar to the impurity concentration meter 72 is installed in each of the exhaust pipes 11B to 13B and 15B.
更に本例のガス純化装置 71には、 回収された気体の内で不純物濃度が高くな つた気体を外部に随時放出するための排気用工場配管 16 Aと、 高純度のパージ ガスを外部の気体源 (不図示) からガス純化装置 7 1に補充するための給気用ェ 場配管 16 Bとが接続されている。  Further, the gas purifier 71 of this example has an exhaust factory pipe 16A for releasing the gas having an increased impurity concentration from the collected gas to the outside at any time, and a high-purity purge gas to the outside gas. A gas supply pipe 16B for refilling the gas purifier 71 from a source (not shown) is connected.
サブチャンバ 20〜ウェハステージ室 60の内部の気体を置換するためのパー ジガスの種類は露光波長にもよるが、 例えば波長 1 57 nmの F2 レーザを露光 光 I Lとする場合には、 その波長での窒素ガスの透過率が高いため、 パ一ジガス として安価な窒素ガスを使用することができる。 ただし、 投影光学系 PLの内部 のパージガスについては、 窒素や他の気体に比べて屈折率が低く、 従って密度揺 らぎゃ温度変化に対する光学的安定性の高いヘリウムを使用することが望ましい c 具体的に、 ヘリウムガスは熱伝導率がネオンの 3倍程度、 かつ窒素ガスの 6倍程 度と高く、 温度安定性に優れていると共に、 気圧の変化に対する屈折率の変動量 がネオンの 1ノ 2程度、 かつ窒素ガスの 1/8程度と小さくなつている。 When the type of par purge gas for replacing the gas inside the sub-chamber 20 to the wafer stage chamber 60 depending on the exposure wavelength, for example, for an F 2 laser having a wavelength of 1 57 nm as the exposure light IL, the wavelength Since nitrogen gas has a high transmittance in the atmosphere, inexpensive nitrogen gas can be used as the purge gas. However, the interior of the purge gas of the projection optical system PL, and nitrogen or other low refractive index as compared with the gas, therefore the density rocking Ragya temperature is desirably c specifically the use of high optical stability helium to changes In addition, helium gas has a thermal conductivity that is about three times higher than that of neon and about six times that of nitrogen gas, and is excellent in temperature stability. And about 1/8 of nitrogen gas.
また、 真空紫外光に対して良好な透過率を有する屈折部材 (レンズ等) 用の光 学材料は、 現状では蛍石 (C aF2 ) 、 フッ化マグネシウム (MgF2 ) 、 及び フッ化リチウム (L i F) 等のフッ化物結晶に限られているが、 フッ化物結晶は 一般に熱膨張係数が大きく、 露光光の吸収に伴う温度上昇によりレンズが膨張し て、 結像特性が悪化することが懸念される。 これに関しても、 パージガスとして ヘリウムを使用すれば、 ヘリウムは熱伝導率が高く、 レンズの冷却効果の点でも 優れているため、 レンズの膨張による結像特性の悪化を抑制することができる。 また、 ウェハステージ室 6 0ゃレチクルステ一ジ室 4 0の内部の露光光 I の 光路用のパージガスとしては、 窒素を使用することも可能である。 しかしながら、 ウェハ Wの位置を計測するためのレーザ干渉計 6 3の光路や、 レチクル Rの位置 を計測するためのレ一ザ干渉計 4 3の光路に関しては、 計測精度を高く維持する ために屈折率 (光路長) の変動が少ないことが望ましい。 このため、 レ一ザ千渉 計 4 3 , 6 3の光路用のパージガス、 即ちレチクルステージ室 4 0及びウェハス テージ室 6 0の内部のパージガスとしても、 屈折率が低く、 密度揺らぎや温度変 化に対する光路長変化の少ないヘリウムを使用することが望ましい。 At present, optical materials for refractive members (such as lenses) having good transmittance for vacuum ultraviolet light are fluorite (CaF 2 ), magnesium fluoride (MgF 2 ), and lithium fluoride ( (LiF) etc., but fluoride crystals generally have a large coefficient of thermal expansion, and the lens may expand due to a rise in temperature due to absorption of exposure light, resulting in poor imaging characteristics. I am concerned. Also in this regard, if helium is used as a purge gas, helium has a high thermal conductivity and also has a cooling effect on the lens. Since it is excellent, it is possible to suppress the deterioration of the imaging characteristics due to the expansion of the lens. Nitrogen can also be used as a purge gas for the optical path of the exposure light I inside the wafer stage chamber 60 ゃ reticle stage chamber 40. However, the optical path of the laser interferometer 63 for measuring the position of the wafer W and the optical path of the laser interferometer 43 for measuring the position of the reticle R are refracted in order to maintain high measurement accuracy. It is desirable that the fluctuation of the rate (optical path length) be small. Therefore, even as a purge gas for the optical path of the laser sensitometers 43 and 63, that is, a purge gas inside the reticle stage chamber 40 and the wafer stage chamber 60, the refractive index is low, and density fluctuations and temperature fluctuations occur. It is desirable to use helium which has a small change in the optical path length with respect to.
なお、 露光光 I Lとして波長 1 2 7 n mのアルゴンダイマーレーザ (A r 2 レ 一ザ) を使用する場合には、 窒素も吸収性ガスとなってしまうため、 パージガス として使用できる気体は、 ヘリウム等の希ガスに限定される。 In the case of using the wavelength 1 2 7 nm argon dimer laser (A r 2 Les monodentate) as the exposure light IL, since nitrogen also becomes absorptive gas, gas that can be used as the purge gas, such as helium Of rare gases.
次に、 ガス純化装置 7 1を含む気体交換機構の動作につき、 投影光学系 P Lの 内部の気体をパージガスで置換する場合を例に取って説明する。 図 1において、 投影光学系 P Lの内部から排気管 1 4 Bを通して回収された気体は、 質量分析計 等からなる不純物濃度計 7 2に入り、 その気体中の不純物ガスの濃度 (残留濃度) が計測され、 この計測情報が信号 S 1として主制御系 1 0に出力される。 この場 合、 パージガス及び不純物ガスがそれぞれ本発明の第 1及び第 2の気体に対応し、 不純物ガスは、 上記の吸収性ガスのうち、 露光光の光路内に残留する管理対象と された気体である。 なお、 この不純物ガスが投影光学系 P Lに残留することによ つて、 投影光学系 P Lを通過する露光光の透過率のみならず、 不純物ガスの屈折 率により投影光学系 P Lの結像特性に影響を及ぼす。 従って、 他の気密室とは異 なり、 不純物ガスの濃度を計測することとしている。 特に、 本実施形態では、 不 純物ガスに含まれるパージガス以外の特定の低吸収性ガスの残留濃度を計測する こととしている (詳細後述) 。  Next, the operation of the gas exchange mechanism including the gas purifying device 71 will be described by taking as an example a case where the gas inside the projection optical system PL is replaced with a purge gas. In FIG. 1, gas collected from inside the projection optical system PL through the exhaust pipe 14B enters an impurity concentration meter 72 such as a mass spectrometer, and the concentration (residual concentration) of the impurity gas in the gas is reduced. The measured information is output to the main control system 10 as a signal S1. In this case, the purge gas and the impurity gas correspond to the first and second gases, respectively, of the present invention, and the impurity gas is one of the above-mentioned absorptive gases which is a management target gas remaining in the optical path of the exposure light. It is. When the impurity gas remains in the projection optical system PL, not only the transmittance of the exposure light passing through the projection optical system PL but also the image forming characteristics of the projection optical system PL are affected by the refractive index of the impurity gas. Effect. Therefore, unlike other airtight chambers, the concentration of impurity gas is measured. In particular, in the present embodiment, the residual concentration of a specific low-absorbency gas other than the purge gas contained in the impurity gas is measured (details will be described later).
その排気管 1 4 B中の不純物濃度計 7 2を通過した気体は、 ガス純化装置 7 1 に回収される。 ガス純化装置 7 1内には、 塵等の微細な異物を除去するための H E P Aフィルタ (high ef f iciency part iculate ai r-f i l ter) 、 及び化学的フィ ル夕が設置されており、 その回収された気体中の酸素、 水蒸気、 二酸化炭素、 及 び有機系の気体等の吸収性ガスはその化学的フィル夕によつて除去される。 ガス 純化装置 7 1では不純物ガスの内の吸収性ガスが除去され、 このように吸収性ガ スが除去された気体が給気管 1 4 Aを介して投影光学系 P Lの内部に供給される。 その際の不純物としての吸収性ガスの残留濃度は、 例えばそれぞれ 1 p p m以下 に抑えられている。 The gas that has passed through the impurity concentration meter 72 in the exhaust pipe 14 B is collected by the gas purifier 71. The gas purifier 71 has a HEPA filter (high-efficiency part iculate ai rf ilter) and a chemical filter for removing fine foreign matter such as dust. Oxygen, water vapor, carbon dioxide, and Absorbing gases such as organic and organic gases are removed by the chemical filter. In the gas purifying device 71, the absorbing gas in the impurity gas is removed, and the gas from which the absorbing gas has been removed is supplied into the projection optical system PL through the air supply pipe 14A. At that time, the residual concentration of absorbent gas as an impurity has been suppressed, for example, to 1 ppm or less, respectively.
なお、 真空紫外光は、 水蒸気によっても吸収されるため、 ガス純化装置 7 1内 に水蒸気を除去する除去装置を設けることが望ましい。  Since vacuum ultraviolet light is also absorbed by water vapor, it is desirable to provide a removal device for removing water vapor in the gas purification device 71.
これらの場合、 投影光学系 P Lの内部や給気管 1 4 A、 排気管 1 4 Bは当然に 気密構造である。 しかしながら、 特に投影光学系 P Lのレチクル側やウェハ側の 端部のレンズ保持構造については、 投影光学系 P Lの結像性能から要求される機 械精度と、 完全な気密構造との両立が困難である場合には、 レンズ保持構造部分 からパージガスが供給される空間 (投影光学系 P Lの鏡筒等) 内に、 外部の気体 (空気) が微量ながら混入して来る。 混入する気体 (空気) の主成分は窒素、 酸 素、 アルゴン等であるが、 この内の酸素は、 鉄やマグネシウム等の金属の粉末を 主成分とするような簡易な吸着材を用いた純化器により、 容易に吸収 (除去) す ることができる。  In these cases, the interior of the projection optical system PL, the air supply pipe 14A, and the exhaust pipe 14B naturally have an airtight structure. However, especially for the lens holding structure at the end of the projection optical system PL on the reticle side or wafer side, it is difficult to achieve both the mechanical accuracy required from the imaging performance of the projection optical system PL and a completely airtight structure. In some cases, a small amount of external gas (air) enters the space (such as the lens barrel of the projection optical system PL) to which the purge gas is supplied from the lens holding structure. The main components of the gas (air) to be mixed are nitrogen, oxygen, argon, etc. The oxygen in this is purified using a simple adsorbent whose main component is a powder of a metal such as iron or magnesium. It can be easily absorbed (removed) by a vessel.
一方、 窒素や空気中に 1 %程度存在するアルゴンは、 このような簡易な吸着材 による除去は困難であり、 混入した微量の窒素やアルゴン等の気体が、 除去され ることなく、 パージガス中に蓄積される恐れがある。  On the other hand, it is difficult to remove nitrogen and argon present in air at about 1% by such a simple adsorbent.A small amount of gas such as nitrogen or argon mixed in the purge gas is not removed. There is a risk of accumulation.
他の気密室 (サブチャンバ 2 0 , 3 0、 レチクルステージ室 4 0、 ウェハステ —ジ室 6 0 ) に対しても同様に、 ガス純化装置 7 1を用いて吸収性ガスが除去さ れたパージガスによってその内部の気体が置換されている。 この際に、 複数の気 密室毎に独立にパージガスを供給するために、 給気管 1 1 A〜1 5 A及び排気管 1 1 B〜l 5 Bの電磁バルブの開閉が行われる。 このように本例では、 1台のガ ス純化装置 7 1を用いて各気密室に対して互いに独立にパージガスを供給してい るが、 全部の気密室に対して個別にガス純化装置 7 1と同様のガス純化装置を設 けて、 完全に独立にパージガスの供給を行ってもよい。 それ以外に、 例えばサブ チャンパ 2 0 , 3 0、 及びレチクルステージ室 4 0は全体として一つの気密室と みなして共通のガス純化装置 7 1を用いるというように、 複数の気密室に対して 共通にパージガスの供給を行うようにしてもよい。 例えば露光光 I Lの光路を複 数に分割し、 分割された光路毎に異なる種類のパージガスを供給するような場合 には、 パージガスの種類毎にガス純化装置を設けるようにしてもよい。 Similarly, for other airtight chambers (subchambers 20, 30; reticle stage chamber 40, wafer stage chamber 60), purge gas from which absorbent gas has been removed using gas purifier 71. Has replaced the gas inside. At this time, the electromagnetic valves of the air supply pipes 11A to 15A and the exhaust pipes 11B to 15B are opened and closed in order to independently supply the purge gas to each of the plurality of hermetic chambers. As described above, in this example, the purge gas is supplied to each of the hermetic chambers independently using one gas purifier 71, but the gas purifier 71 is individually supplied to all the hermetic chambers. A purge gas may be supplied completely independently by installing a gas purifier similar to that described above. In addition to this, for example, the sub-chambers 20 and 30 and the reticle stage chamber 40 are regarded as one hermetic chamber as a whole, and a common gas purifying device 71 is used. The purge gas may be supplied in common. For example, when the optical path of the exposure light IL is divided into a plurality of parts and different types of purge gas are supplied to each of the divided optical paths, a gas purifying device may be provided for each type of purge gas.
また、 上記のように、 投影光学系 P Lに関してはパージガス以外の特定の低吸 '収性ガスの残留濃度を計測対象としている。 例えばパージガスとしてヘリウムを 使用する場合、 その他の低吸収性ガスであっても露光光を大きく吸収することは 無いが、 その屈折率がヘリウムに比べて大きいため、 これらの残留濃度の上昇に より投影光学系 P L内の光路の屈折率が大きくなり、 投影光学系 P Lの結像性能 が悪化してしまう恐れがある。 また、 これらの低吸収性ガスは化学的に反応しに くく、 ガス純化装置 7 1中の上記の化学的フィルタで十分に除去することは難し い。  Further, as described above, regarding the projection optical system PL, the residual concentration of a specific low-absorbing gas other than the purge gas is measured. For example, when helium is used as the purge gas, other low-absorbing gases do not absorb the exposure light much, but since their refractive index is larger than that of helium, they are projected due to an increase in their residual concentration. The refractive index of the optical path in the optical system PL may increase, and the imaging performance of the projection optical system PL may deteriorate. Further, these low-absorbing gases are hardly chemically reacted, and it is difficult to sufficiently remove them with the above-described chemical filter in the gas purification device 71.
それでも敢えてこれらの低吸収性ガスを除去するためには、 一例として図 1の ガス純化装置 7 1内に回収されて化学的フィル夕を通過した気体を、 スターリン グエンジン等を用いた冷凍機やクライオポンプ等の冷却装置等の低吸収性ガス除 去装置 (不図示) に供給し、 ここでその気体の全体を、 これらの気体の沸点 (ァ ルゴンでは一 1 8 5 . 9 °C、 窒素では— 1 9 5 . 8 °C) 以下に冷却し、 これらの 気体 (ヘリゥム以外の全ての低吸収性ガス) を液化して除去し、 こうして得られ た高純度のパージガスを各気密室に供給すればよい。  Nevertheless, in order to remove these low-absorbing gases, as an example, the gas collected in the gas purifier 71 shown in Fig. 1 and passed through the chemical filter can be cooled by a refrigerator using a Stirling engine or the like. The gas is supplied to a low-absorbing gas removing device (not shown) such as a cooling device such as a cryopump, and the entire gas is converted to the boiling point of these gases (185.9 ° C in argon, nitrogen Then, cool down to less than 195.8 ° C) to liquefy and remove these gases (all low-absorbing gases except for the helium), and supply the high-purity purge gas thus obtained to each hermetic chamber. do it.
このような低吸収性ガス除去装置は、 大型で消費電力も大きく、 且つ振動源と なるため、 露光装置の近くへの設置はあまリ好ましくない。 また、 低吸収性ガス である窒素や希ガスは、 露光光を殆ど吸収しないため、 それがパ一ジガスに混入 していても透過率は高く維持されて、 露光量低下等の問題は生じない。 そこで本 例では、 そのような低吸収性ガス除去装置を使用することなく、 安定な結像特性 を得るために、 例えばパージガスとしてヘリウムを使用する場合に、 投影光学系 P L内部の気体中に、 窒素や希ガス (ヘリウム以外) よりなる所定の低吸収性ガ スが混入しているときに、 その濃度を計測して、 その計測値に基づいて投影光学 系 5の状態を積極的に変化させて、 結像特性の劣化 (収差変動) を補正するもの とする。  Such a low-absorbing gas removing apparatus is large, consumes large power, and is a source of vibration. Therefore, it is not preferable to install the apparatus near the exposure apparatus. In addition, since nitrogen and rare gases, which are low-absorbing gases, hardly absorb exposure light, even if they are mixed in the purge gas, the transmittance is maintained at a high level, and there is no problem such as a decrease in exposure amount. . Therefore, in this example, in order to obtain stable imaging characteristics without using such a low-absorbing gas removing device, for example, when helium is used as a purge gas, the gas inside the projection optical system PL is When a predetermined low-absorbing gas containing nitrogen or a rare gas (other than helium) is mixed, its concentration is measured, and the state of the projection optical system 5 is positively changed based on the measured value. Therefore, the deterioration (aberration fluctuation) of the imaging characteristics is corrected.
そのため、 図 1の質量分析計等からなる不純物濃度計 7 2は、 排気管 1 4 Bを 通して供給される投影光学系 P L内部の気体中で、 上記の吸収性ガスの他に、 パ ージガス以外の特定の低吸収性ガスの濃度 (残留濃度) を計測し、 その計測情報 を信号 S 1として主制御系 1 0に出力する。 パ一ジガスがヘリウムであるときに は、 その濃度計測対象の低吸収性ガスは、 窒素、 及びヘリウム以外の希ガスとな る。 その濃度の計測情報は、 投影光学系 P L内の気体中のそれぞれの低吸収性ガ スの濃度を表しており、 この濃度情報より、 投影光学系 P L内の気体の屈折率を 算出することが可能となる。 主制御系 1 0は、 この算出された屈折率から投影光 学系 P Lの結像特性 (ディストーション等) の変動量を予測し、 この変動量を相 殺するように結像特性コントローラ 5 7に制御情報 S 2を送り、 これに応じて投 影光学系 P L内の所定の光学部材が駆動される。 この結果、 投影光学系 P L中の パージガスに別の種類の低吸収性ガスが混入している場合でも、 高価な低吸収性 ガス除去装置を使用することなく、 投影光学系 P Lの結像特性を所望の状態に維 持して、 高精度に露光を継続することが可能となる。 Therefore, the impurity concentration meter 72 composed of the mass spectrometer etc. In the gas inside the projection optical system PL that is supplied through the filter, the concentration (residual concentration) of a specific low-absorbing gas other than the above-mentioned absorbing gas in addition to the above-mentioned absorbing gas is measured, and the measurement information is sent to the signal S. Output as 1 to the main control system 10. When the purge gas is helium, the low-absorbency gas whose concentration is to be measured is nitrogen and a rare gas other than helium. The measurement information of the concentration indicates the concentration of each low-absorbing gas in the gas in the projection optical system PL, and the refractive index of the gas in the projection optical system PL can be calculated from the concentration information. It becomes possible. The main control system 10 predicts the amount of change in the imaging characteristics (distortion, etc.) of the projection optical system PL from the calculated refractive index, and sends it to the imaging characteristic controller 57 so as to cancel the amount of change. The control information S2 is sent, and a predetermined optical member in the projection optical system PL is driven accordingly. As a result, even if another kind of low-absorbing gas is mixed in the purge gas in the projection optical system PL, the imaging characteristics of the projection optical system PL can be improved without using an expensive low-absorbing gas removing device. Exposure can be maintained with high accuracy while maintaining a desired state.
なお、 実際の使用条件で混入が予想される低吸収性ガスは、 大気中での組成の 大きな窒素とアルゴンとであるので、 不純物濃度計 7 2による濃度計測対象を、 低吸収性ガスについては、 窒素とアルゴンとに限定するか、 あるいは窒素のみに 限定することもできる。  The low-absorbing gases that are expected to be mixed under actual use conditions are nitrogen and argon, which have a large composition in the atmosphere. , Nitrogen and argon, or only nitrogen.
ここで、 投影光学系 P Lの結像特性調整機構の一例につき図 2を参照して説明 する。  Here, an example of the imaging characteristic adjusting mechanism of the projection optical system PL will be described with reference to FIG.
図 2は、 投影光学系 P Lの詳細な構成を示す断面図であり、 この図 2において、 投影光学系 P Lは、 一例として円筒状の鏡筒 5 1内に 4個のレンズホルダ 5 5 a 〜5 5 dを介してそれぞれ第 1群のレンズ L 1 1 , L 1 2、 第 2群のレンズ L 2 1 , L 2 2、 第 3群のレンズ L 3 1 , L 3 2、 及び第 4群のレンズ L 4 1 , L 4 2を保持することによって構成されている。 なお、 このレンズ群の構成は一例で あり、 そのレンズ群の個数及び各レンズ群内のレンズの枚数等は任意である。 鏡 筒 5 1は気密構造であり、 レチクルステージ室 4 0側 (図 2中上側) には、 露光 光束を透過し、 且つ気密性を保っために、 蛍石等のフッ化物結晶からなる透過窓 5 2が配置されている。 また、 ウェハステージ室 6 0側 (図 2中下側) にも、 同 様な構成の透過窓 5 3が配置されている。 更に、 図 2では図示省略されているが、 鏡筒 5 1には、 図 1の給気管 1 4 A及び排気管 1 4 Bが接続されている。 FIG. 2 is a cross-sectional view showing a detailed configuration of the projection optical system PL. In FIG. 2, the projection optical system PL has, as an example, four lens holders 55a to 55a in a cylindrical lens barrel 51. The first lens group L 11, L 12, the second lens group L 21, L 22, the third lens group L 31, L 32, and the fourth lens group through 5 5 d The lenses L 41 and L 42 are held. Note that the configuration of the lens groups is an example, and the number of the lens groups, the number of lenses in each lens group, and the like are arbitrary. The lens barrel 51 has an airtight structure, and the reticle stage chamber 40 side (upper side in FIG. 2) has a transmission window made of a fluoride crystal such as fluorite in order to transmit an exposure light beam and maintain airtightness. 5 2 are arranged. Further, a transmission window 53 having a similar configuration is arranged on the wafer stage chamber 60 side (the lower side in FIG. 2). Further, although not shown in FIG. 2, An air supply pipe 14 A and an exhaust pipe 14 B in FIG. 1 are connected to the lens barrel 51.
図 2において、 第 1のレンズホルダ 5 5 aは、 例えば 3個の保持機構 5 4 a 1 , 5 4 a 2 ( 3番目の保持機構は不図示、 以下同様。)を介して鏡筒 5 1内に保持さ れ、 同様に第 2〜第 4のレンズホルダ 5 5 b , 5 5 c , 及び 5 5 dもそれぞれ 3 個の保持機構 5 4 b 1 , 5 4 b 2、 保持機構 5 4 c 1 , 5 4 c 2、 及び保持機構 5 4 d 1 , 5 4 d 2を介して鏡筒 5 1内に保持されている。 これらの保持機構 5 4 a l ~ 5 4 d 2は、 それぞれその内部にピエゾ素子や電動マイクロメ一夕等の 微小可動部材を含み、 これによつて、 レンズホルダ 5 5 a〜5 5 dは、 それぞれ 投影光学系 P Lの光軸方向の位置、 及びその光軸に垂直な平面上の直交する 2軸 の回りでの傾斜角が所定の微少範囲内で調整可能とされている。 なお、 更に保持 機構による駆動の自由度を増加させて、 例えばレンズホルダ 5 5 a〜5 5 d内の 所定のレンズホルダを光軸に垂直な平面内で直交する 2方向に変位させるか、 光 軸の回りに回転させるようにしてもよい。 保持機構 5 4 a 1〜5 4 d 2は、 互い に独立に結像特性コントローラ 5 7によって駆動される。  In FIG. 2, the first lens holder 55a is connected to a lens barrel 51 via, for example, three holding mechanisms 54a1 and 54a2 (the third holding mechanism is not shown, the same applies hereinafter). Similarly, the second to fourth lens holders 55b, 55c, and 55d also have three holding mechanisms 54b1, 54b2, and 54c respectively. 1, 54 c 2 and the holding mechanism 54 d 1, 54 d 2 are held in the lens barrel 51. Each of these holding mechanisms 5 4 al to 5 4 d 2 includes a small movable member such as a piezo element or a motorized micro-mechanism therein, whereby the lens holders 55 a to 55 d respectively The position of the projection optical system PL in the direction of the optical axis and the inclination angle around two orthogonal axes on a plane perpendicular to the optical axis can be adjusted within a predetermined minute range. In addition, by further increasing the degree of freedom of driving by the holding mechanism, for example, a predetermined lens holder in the lens holders 55a to 55d is displaced in two directions orthogonal to a plane perpendicular to the optical axis, or You may make it rotate around an axis. The holding mechanisms 54a1 to 54d2 are driven by the imaging characteristic controller 57 independently of each other.
そして、 図 1の主制御系 1 0からの制御情報 S 2に応じて、 結像特性コント口 —ラ 5 7によってレンズホルダ 5 5 a〜5 5 dの位置及び傾斜角がその制御情報 S 2によって指定される状態に設定される。 その制御情報 S 2は、 図 1の不純物 濃度計 7 2によって計測される低吸収ガスの残留濃度による結像特性の変動量を 相殺するように生成されているため、 これによつて、 投影光学系 P Lの結像特性 (収差特性) が所望の状態に維持される。  Then, in accordance with the control information S 2 from the main control system 10 in FIG. 1, the positions and inclination angles of the lens holders 55 a to 55 d are determined by the imaging characteristic controller 57 so that the control information S 2 Is set to the state specified by. Since the control information S 2 is generated so as to offset the fluctuation amount of the imaging characteristics due to the residual concentration of the low absorption gas measured by the impurity concentration meter 72 in FIG. 1, the projection optical system The imaging characteristics (aberration characteristics) of the system PL are maintained in a desired state.
なお、 投影光学系 P Lの結像状態の変動 (収差の変動) は、 光路中の気体の組 成の変化のみによって生じるものではないので、 その結像特性コントローラ 5 7 による結像特性の制御は他の要因、 例えば気圧の変動や投影光学系 P Lが吸収し た露光エネルギーの履歴等にも基づいて行なわれる。 また、 気体の組成、 気圧変 動、 露光エネルギーの履歴に対して、 どのレンズブロックをどの程度移動すれば 良いかは、 投影光学系 P Lの設計データから求めることが可能である。 また、 そ の制御精度を高めるために、 実際に投影光学系 P Lを用いて気体の組成、 気圧、 露光エネルギーの履歴等を変動させつつ結像状態を評価して、 その結果に基づい て制御パラメ一夕を決定し、 この制御パラメ一夕をテーブルとして記憶しておい てもよい。 Note that the fluctuation of the imaging state of the projection optical system PL (the fluctuation of aberration) is not caused only by the change of the composition of the gas in the optical path. This is performed based on other factors, such as fluctuations in atmospheric pressure and the history of exposure energy absorbed by the projection optical system PL. In addition, it is possible to determine from the design data of the projection optical system PL which lens block should be moved and how much with respect to the history of gas composition, atmospheric pressure fluctuation, and exposure energy. In order to increase the control accuracy, the imaging state is evaluated while actually varying the gas composition, atmospheric pressure, exposure energy history, etc. using the projection optical system PL, and the control parameters are determined based on the results. One night is determined, and this control parameter is stored as a table You may.
また、 投影光学系 P Lの結像特性を実質的に制御するためには、 投影光学系 P L中の光学素子を駆動する以外に、 露光光の波長シフトを行ってもよく、 更に、 レチクルステージ 4 1 (レチクル R) やウェハステージ 6 1 (ウェハ W) の位置 (例えば Z方向の位置) を制御してもよい。  To substantially control the imaging characteristics of the projection optical system PL, the wavelength of the exposure light may be shifted in addition to driving the optical elements in the projection optical system PL. The position of the wafer 1 (reticle R) and the position of the wafer stage 61 (wafer W) (for example, the position in the Z direction) may be controlled.
なお、 本例の投影光学系 P Lは屈折系であるが、 真空紫外域で少ない光学材料 を用いて色収差を良好に補正するために、 投影光学系 P Lを、 例えば国際公開 (W 0) 00/39623 に開示されているように、 1本の光軸に沿って複数の屈折レンズと、 それぞれ光軸の近傍に開口を有する 2つの凹面鏡とを配置して構成される直筒型 の反射屈折系としてもよく、 更に光軸が V字型に折れ曲がつた反射屈折系等とし てもよい。 これらの構成では、 結像特性を調整するために凹面鏡 (反射部材) を 移動可能としてもよい。  Although the projection optical system PL of this example is a refractive system, in order to satisfactorily correct chromatic aberration by using a small number of optical materials in the vacuum ultraviolet region, the projection optical system PL is, for example, disclosed in International Publication (W 0) 00 / As disclosed in 39623, as a straight cylindrical catadioptric system configured by arranging a plurality of refractive lenses along one optical axis and two concave mirrors each having an opening near the optical axis. Alternatively, a catadioptric system or the like having an optical axis bent in a V-shape may be used. In these configurations, the concave mirror (reflection member) may be movable in order to adjust the imaging characteristics.
なお、 上記のような収差補正には限界があり、 パージガスがヘリウムである場 合に、 それ以外の窒素又はアルゴン等の濃度が或る程度以上、 例えば 1 0 0 0 p p m以上となると、 もはや補正が困難となる。 その際には、 図 1の不純物濃度計 7 2で窒素又はアルゴン等の濃度が所定濃度 (例えば、 上述した 1 0 0 0 p p m) 以上になった場合に、 ガス純化装置 7 1で回収された気体を排気用工場配管 1 6 Aを通して外部に放出し、 その代わりに新しい高純度のパージガスを、 給気用ェ 場配管 1 6 Bを通してガス純化装置 7 1に補充すればよい。 そして、 補充された 高純度のパージガスで投影光学系 P Lの内部の気体を置換すればよい。 これによ つて、 結像特性を所望の状態に維持することができる。  Note that there is a limit to aberration correction as described above, and when the purge gas is helium and the concentration of other nitrogen or argon becomes a certain level or more, for example, 100 ppm or more, the correction is no longer performed. Becomes difficult. In this case, when the concentration of nitrogen or argon or the like in the impurity concentration meter 72 shown in FIG. 1 becomes equal to or higher than a predetermined concentration (for example, 100 ppm as described above), the gas was collected by the gas purification device 71. The gas may be discharged to the outside through the exhaust pipe 16A, and a new high-purity purge gas may be supplied to the gas purifier 71 through the air supply pipe 16B instead. Then, the gas inside the projection optical system PL may be replaced with the supplied high-purity purge gas. Thereby, the imaging characteristics can be maintained in a desired state.
なお、 そのように配管 1 6 Bを通してパージガスをガス純化装置 7 1に補充す る代わりに、 ガス純化装置 7 1にパージガスのボンべ (例えばヘリウムボンべ) を接続しておき、 必要に応じてそのボンベからパ一ジガスを補充するようにして もよい。  Instead of replenishing the gas purifying device 71 with the purge gas through the pipe 16 B, a purge gas cylinder (for example, a helium cylinder) is connected to the gas purifying device 71, and if necessary, The gas may be replenished from the cylinder.
以上の実施の形態では、 投影光学系 P Lを対象としてパージガス (特にへリウ ム) でのガス置換、 パージガス以外の低吸収性ガス (窒素や希ガス) の濃度測定、 及びその測定情報に基づいた結像特性の補正方法につき説明した。 これに関して、 上述のように、 ウェハステージ室 6 0ゃレチクルステージ室 4 0についても、 例 えばパージガスとしてのヘリウムでガス置換が行われている状態で、 それ以外の 低吸収性ガスが混入した場合には、 レーザ干渉計 6 3, 4 3の光路の屈折率が変 動し、 干渉計の計測値に悪影響を与える。 従って、 上記の実施の形態と同様に、 排気管 1 5 B, 1 3 Bからの戻りガス中のパージガス以外の低吸収性ガスの残留 濃度を計測し、 その値に基づいて干渉計の計測値を補正することが望ましい。 こ れによって、 ウェハステージ 6 1及びレチクルステージ 4 1の制御精度を向上さ せることができる。 In the embodiment described above, the projection optical system PL is targeted for gas replacement with a purge gas (particularly helium), measurement of the concentration of a low-absorbent gas (nitrogen or a rare gas) other than the purge gas, and information based on the measurement information. The method of correcting the imaging characteristics has been described. In this regard, as described above, the wafer stage chamber 60 ゃ the reticle stage chamber 40 also has an example. For example, when gas is being replaced with helium as a purge gas and other low-absorbing gas is mixed, the refractive index of the optical path of the laser interferometers 63 and 43 fluctuates, and the interferometer Adversely affect measured values. Therefore, similarly to the above embodiment, the residual concentration of the low-absorbent gas other than the purge gas in the return gas from the exhaust pipes 15B and 13B was measured, and the measured value of the interferometer was determined based on the measured value. Is desirably corrected. Thereby, control accuracy of wafer stage 61 and reticle stage 41 can be improved.
' 次に、 投影露光装置では、 半導体ウェハ上に何層にも亘つて回路パターンを重 ね合わせて露光を行なう必要があるため、 ウェハ Wとレチクル Rのパターン像と を正確に重ね合わせる必要がある。 そのために、 ウェハ W及びレチクル R上に形 成された位置合わせ用のァライメントマークをそれぞれ検出するァライメントセ ンサが必要となる。 そこで、 図 1ではレチクルステージ 4 1の上方にレチクル R のァライメントマーク (レチクルマーク) を検出するためのレチクルァライメン ト顕微鏡 8 6が配置され、 投影光学系 P Lの下部側面にもウェハ W上のァライメ ントマークを検出するためのァライメントセンサ (不図示) が配置されている。 これらのァライメントセンサは、 従来の露光装置にも搭載されているものであり、 本例に独自のものではないが、 本例の投影露光装置のように露光光源が真空紫外 域である場合には、 ァライメントセンサにもそれに応じた構成が採用されている。 以下、 本例のマーク検出系としてのレチクルァライメント顕微鏡 (以下、 「R A顕微鏡」 と言う。) 8 6の構成につき図 3を参照して説明する。  '' Next, in a projection exposure apparatus, it is necessary to perform exposure by superimposing circuit patterns on multiple layers on a semiconductor wafer, so that the wafer W and the pattern image of the reticle R must be accurately superimposed. is there. Therefore, an alignment sensor for detecting alignment marks formed on the wafer W and the reticle R for alignment is required. Therefore, in FIG. 1, a reticle alignment microscope 86 for detecting an alignment mark (reticle mark) of reticle R is disposed above reticle stage 41, and wafer W is also provided on the lower side surface of projection optical system PL. An alignment sensor (not shown) for detecting the above alignment mark is provided. These alignment sensors are also mounted on a conventional exposure apparatus and are not unique to this example. However, when the exposure light source is in the vacuum ultraviolet region as in the projection exposure apparatus of this example, For the alignment sensor, a configuration corresponding to that is also adopted. Hereinafter, the configuration of a reticle alignment microscope (hereinafter, referred to as an “RA microscope”) 86 as the mark detection system of the present example will be described with reference to FIG.
図 3は、 本例の R A顕微鏡 8 6の構成を示す要部の拡大図であり、 この図 3に おいて、 レチクルステージ系が収納されたレチクルステージ室 4 0内で、 レチク ルステージ 4 1の上方に R A顕微鏡 8 6が配置されている。 上述のように、 R A 顕微鏡 8 6はァライメント ¾として露光光 I Lと同じ波長域の光を使用するため、 図 1において、 ビームマッチングユニット 2中で露光光 I Lの光路から分岐され たァライメント用の照明光 I L 1は、 細長い気密室 8 0内に配置されたァライメ ント送光系 8を介して、 R A顕微鏡 8 6に導かれている。  FIG. 3 is an enlarged view of a main part showing the configuration of the RA microscope 86 of the present example. In FIG. 3, the reticle stage 41 accommodates the reticle stage chamber 40 containing the reticle stage system. The RA microscope 86 is arranged above the. As described above, since the RA microscope 86 uses light in the same wavelength range as the exposure light IL as the alignment ¾, in FIG. 1, the illumination for the alignment branched from the optical path of the exposure light IL in the beam matching unit 2 The light IL 1 is guided to an RA microscope 86 via an alignment light transmission system 8 arranged in a long and narrow airtight chamber 80.
なお、 その細長い気密室 8 0として、 内面にアルミニウム等の金属膜が反射膜 とレて被着された中空パイプを使用することもできる。 このパイプの材質はガラ ス等で良く、 内面の金属膜 (反射膜) は MO C VD (有機金属 C VD) 等の製法 で形成することができる。 そして、 このような中空パイプの光路についても、 FIn addition, as the elongated airtight chamber 80, a hollow pipe in which a metal film such as aluminum is coated on the inner surface as a reflective film may be used. The material of this pipe is glass The metal film (reflection film) on the inner surface can be formed by a method such as MOC VD (organic metal CVD). And for the optical path of such a hollow pipe, F
2 レーザの光を透過するためには、 パージガスによる置換が必要であるが、 例え ばその中空パイプの一方の端部 (例えば R A顕微鏡 8 6側) を他端 (ビームマツ チングユニット 2側) より陽圧として、 この気圧差によって気体をフローさせて、 内部をパージガスで置換することができる。 2 In order to transmit the laser light, replacement with a purge gas is necessary. For example, one end of the hollow pipe (for example, the RA microscope 86 side) is connected to the other end (the beam matching unit 2 side) from the other end. As the pressure, the gas can be caused to flow by this pressure difference, and the inside can be replaced with a purge gas.
図 3において、 レチクルステージ室 4 0内の R A顕微鏡 8 6に導かれた照明光 I L 1は、 ミラー 8 7、 リレーレンズ 8 8を経て、 分岐用のビームスプリツ夕 8 9に至り、 ビームスプリツ夕 8 9で反射された照明光 I L 1は、 対物レンズ 9 0、 及び落射照明用のミラー 9 1を介してレチクル Rのパターン面 (下面) のァライ メントマーク (レチクルマーク) RMを照明する。 そして、 レチクルマーク R M の周囲を透過した照明光 I L 1は、 投影光学系 P Lを通過して図 1のウェハステ ージ 6 1上のウェハ Wの近くに設けられた基準マーク (不図示) を照明する。 そ の基準マークからの反射光は、 投影光学系 P Lを介して再びレチクル Rに戻され る。  In FIG. 3, the illumination light IL 1 guided to the RA microscope 86 in the reticle stage room 40 passes through a mirror 87, a relay lens 88, and reaches a beam splitter 89 for branching. The illumination light IL1 reflected by the illuminates the alignment mark (reticle mark) RM on the pattern surface (lower surface) of the reticle R via the objective lens 90 and the mirror 91 for epi-illumination. Then, the illumination light IL 1 transmitted around the reticle mark RM passes through the projection optical system PL and illuminates a reference mark (not shown) provided near the wafer W on the wafer stage 61 in FIG. I do. The light reflected from the reference mark is returned to the reticle R again via the projection optical system PL.
図 3において、 レチクルマーク RMで反射された照明光 I L 1、 及びウェハス テージ側の基準マークで反射されてレチクル R側に戻された照明光 I L 1は、 ミ ラー 9 1及び^物レンズ 9 0を経てビームスプリツ夕 8 9に至り、 ビームスプリ ッ夕 8 9を透過した照明光 I L 1は、 フィールドレンズ 9 2を介して撮像装置 9 5中の C C D等の 2次元の撮像素子 9 4 (光電検出器) 上に、 レチクルマーク R M及びウェハステージ側の基準マークの像を形成する。 この際に、 照明光 I L 1 が露光波長であるため、 特に補正用の光学系を設けることなく、 投影光学系 P L を介したその基準マークの像がレチクルマーク RMの像と共に撮像素子 9 4上に 形成される。 撮像装置 9 5の撮像素子 9 4の入射面側には、 カバ一ガラス 9 3が 配置されている。 撮像素子 9 4からの電気信号は、 レチクルステージ室 4 0 (こ の内部の気体はパージガスで置換されている) の外部に設置された駆動回路 9 6 に供給され、 そこで増幅されて画像信号 S 3となって図 1の主制御系 1 0に供給 される。 この場合、 撮像素子 9 4と駆動回路 9 6との間の電気信号用ケーブルは、 レチクルステージ室 4 0の隔壁部に設けられた、 例えば真空装置用の電流導入器 型のコネクタ (M Sコネクタ) 介して接続されている。 これによつて、 レチクル ステージ室 4 0内の気密性を維持した状態で、 撮像素子 9 4の電気信号を駆動回 路 9 6に供給することができる。 In FIG. 3, the illumination light IL 1 reflected by the reticle mark RM and the illumination light IL 1 reflected by the reference mark on the wafer stage side and returned to the reticle R side are the mirror 91 and the object lens 90. After passing through the beam splitter 89, the illumination light IL 1 transmitted through the beam splitter 89 passes through a field lens 92 to a two-dimensional image sensor 94 such as a CCD in the image pickup device 95 (photoelectric detection). An image of the reticle mark RM and an image of the reference mark on the wafer stage side are formed thereon. At this time, since the illumination light IL 1 is at the exposure wavelength, the image of the reference mark via the projection optical system PL and the image of the reticle mark RM are placed on the image sensor 94 without providing an optical system for correction. Is formed. A cover glass 93 is disposed on the incident surface side of the imaging device 94 of the imaging device 95. The electric signal from the image pickup device 94 is supplied to a drive circuit 96 installed outside the reticle stage chamber 40 (the gas inside the reticle stage 40 is replaced with a purge gas), where it is amplified and the image signal S is amplified. It becomes 3 and is supplied to the main control system 10 in FIG. In this case, an electric signal cable between the imaging element 94 and the driving circuit 96 is provided on a partition of the reticle stage chamber 40, for example, a current introducer for a vacuum device. It is connected via a type connector (MS connector). As a result, the electric signal of the imaging element 94 can be supplied to the drive circuit 96 while maintaining the airtightness in the reticle stage chamber 40.
図 1の主制御系 1 0は、 その画像信号 S 3を処理することによって、 レチクル マーク; Mと対応する基準マークとの X方向、 Y方向の位置ずれ量を求める。 同 様にして、 レチクル R上の別のレチクルマークと対応する基準マークとの位置ず れ量も検出され、 これらの位置ずれ量に基づいて、 ウェハステージ系 6の座標系 に対するレチクル Rの位置関係が算出され、 これによつてレチクルァライメント が行われる。  The main control system 10 in FIG. 1 processes the image signal S3 to determine the amount of displacement in the X and Y directions between the reticle mark; M and the corresponding reference mark. Similarly, the amount of misalignment between another reticle mark on reticle R and the corresponding reference mark is detected, and the positional relationship of reticle R with respect to the coordinate system of wafer stage system 6 is determined based on these misalignments. Is calculated, and reticle alignment is performed by this.
なお、 本例のように、 駆動回路 9 6をレチクルステージ室 4 0の外部に設置す るのは、 駆動回路 9 6に含まれる各種電気部品から放出される有機系ガス (脱ガ ス) による露光光の透過率の低下を防止するためである。 従って、 駆動回路 9 6 に脱ガスを極力低減した部品を使用する場合には、 駆動回路 9 6もレチクルステ ージ室 4 0内に配置することも可能である。 この場合には、 駆動回路 9 6からの 画像信号 S 3を伝える配線を、 電流導入器型のコネクタ (M Sコネクタ) を介し て連結することになる。  The drive circuit 96 is installed outside the reticle stage chamber 40 as in this example because of the organic gas (degassing) released from various electric components included in the drive circuit 96. This is to prevent a decrease in the transmittance of the exposure light. Therefore, when components that minimize degassing are used for the drive circuit 96, the drive circuit 96 can also be arranged in the reticle stage chamber 40. In this case, wiring for transmitting the image signal S3 from the drive circuit 96 is connected via a current introducer type connector (MS connector).
更に、 この場合には、 駆動回路 9 6中の電気部品からの微量な脱ガスや放熱へ の対策として、 駆動回路 9 6の近傍の気体を強制排気する手段を設けることが好 ましい。 この排気系は、 例えばレチクルステージ室 4 0の排気管 1 3 Bから分岐 した管の端を、 駆動回路 9 6の近傍に配置することで実現できる。 別の方法とし て、 レチクルステージ室 4 0の隔壁中で排気管 1 3 Bに通じる排気口 4 0 aを、 その駆動回路 9 6の近傍に配置してもよい。 また、 駆動回路 9 6をレチクルステ ージ室 4 0の外部に設置する場合でも、 撮像装置 9 5 (撮像素子 9 4 ) からの脱 ガスが発生する恐れが有るため、 排気管 1 3 Bに通じる排気口 4 0 aを撮像装置 9 5の近傍に配置するようにしてもよい。  Further, in this case, it is preferable to provide a means for forcibly exhausting gas near the drive circuit 96 as a measure against a small amount of degassing and heat radiation from the electric components in the drive circuit 96. This exhaust system can be realized, for example, by disposing an end of a pipe branched from the exhaust pipe 13B of the reticle stage chamber 40 near the drive circuit 96. As another method, an exhaust port 40 a communicating with the exhaust pipe 13 B in the partition wall of the reticle stage chamber 40 may be arranged near the drive circuit 96. In addition, even when the drive circuit 96 is installed outside the reticle stage room 40, there is a possibility of degassing from the imaging device 95 (the imaging device 94). The exhaust port 40a may be arranged near the imaging device 95.
また、 本例の R A顕微鏡 8 6は、 レチクルステ一ジ室 4 0内に配置される構成 であるが、 R A顕微鏡 8 6は、 ァライメント送光系 8と同様に気密室内に配置さ れる構成であってもよい。 すなわち、 R A顕微鏡 8 6が備える、 ミラー 8 7、 リ レーレンズ 8 8、 ビームスプリツ夕 8 9、 対物レンズ 9 0、 落射照明用のミラー 9 1、 フィールドレンズ 9 2及び撮像装置 9 5を気密室内に配置してもよい。 また、 上記のァライメント送光系 8、 及び R A顕微鏡 8 6内の光学系 (レチク ルァライメント光学系) は、 真空紫外域の露光光 I Lと同じ波長の照明光を使用 する光学系であるため、 それらを構成するレンズ等の屈折部材の光学材料には、 全て真空紫外光を透過する蛍石等のフッ化物結晶を使用している。 そのフッ化物 結晶としては、 蛍石の他に、 フッ化リチウム、 フッ化マグネシウム、 フッ化スト ロンチウム、 リチウム一力)レシゥムーアルミニウム一フロライド、 及びリチウム 一ストロンチウム一アルミニウム一フロラィドなどの結晶や、 ジルコニウムーバ リゥムーランタン一アルミニウムからなるフッ化ガラスや、 フッ素をド一プした 石英ガラス、 フッ素に加えて水素もド一プされた石英ガラス、 OH基を含有させ た石英ガラス、 及びフッ素に加えて〇H基を含有した石英ガラスなどの改良石英 を用いてもよい。 Further, the RA microscope 86 of the present example is arranged in the reticle stage chamber 40, but the RA microscope 86 is arranged in an airtight chamber like the alignment light transmission system 8. You may. In other words, mirror 87, relay lens 88, beam splitter 89, objective lens 90, mirror for epi-illumination provided in RA microscope 86 91, the field lens 92 and the imaging device 95 may be arranged in an airtight room. The optical system (reticle alignment optical system) in the above-mentioned alignment light transmission system 8 and RA microscope 86 is an optical system that uses illumination light having the same wavelength as the exposure light IL in the vacuum ultraviolet region. All of the optical materials of the refraction member such as the lens that constitutes the above use a fluoride crystal such as fluorite that transmits vacuum ultraviolet light. In addition to fluorite, crystals such as lithium fluoride, magnesium fluoride, strontium fluoride, lithium monolithium) aluminum and fluoride, lithium, strontium and aluminum monofluoride, etc. Fluoride glass made of zirconium-barium mulanthanum aluminum, quartz glass doped with fluorine, quartz glass doped with hydrogen in addition to fluorine, quartz glass containing OH groups, and fluorine (4) Improved quartz such as quartz glass containing an H group may be used.
そして、 撮像素子 9 4の撮像面を保護するためのカバーガラス 9 3のような薄 ぃ部材については、 例えばフッ素を添加して真空紫外光での透過率を向上させた、 いわゆるフッ素ドープ石英を使用することも可能である。  For a thin member such as a cover glass 93 for protecting the imaging surface of the imaging element 94, for example, fluorine-doped quartz in which the transmittance of vacuum ultraviolet light is improved by adding fluorine is used. It is also possible to use.
また、 露光光の波長が 2 0 0 nmに近い場合には、 レンズ等の屈折部材の光学 材料としてもフッ素ドープ石英を使用することができる。  When the wavelength of the exposure light is close to 200 nm, fluorine-doped quartz can be used as an optical material of a refractive member such as a lens.
なお、 上記の実施の形態では、 ァライメント光として、 ビームマッチングュニ ット 2内で分岐した露光光 I Lの一部を使用しているが、 ァライメント光を射出 する専用の光源を別途設ける構成であってもよい。  In the above embodiment, a part of the exposure light IL branched in the beam matching unit 2 is used as the alignment light, but a configuration is provided in which a dedicated light source for emitting the alignment light is separately provided. There may be.
また、 上記の実施の形態における投影光学系 P Lの倍率は縮小 (例えば 1 / 4 , 1 Z 5等) のみならず等倍及び拡大のいずれでもよい。 また、 露光ビームとして X線を用いることも可能であり、 この場合には投影光学系として反射系の光学系 (レチクルも反射型タイプのものを用いる) を用いればいい。  Further, the magnification of the projection optical system PL in the above embodiment may be not only reduced (for example, 1/4, 1Z5, etc.) but also any of 1: 1 and enlargement. It is also possible to use X-rays as the exposure beam. In this case, a reflective optical system (a reticle of a reflective type should be used) may be used as the projection optical system.
そして、 複数のレンズから構成される照明光学系、 投影光学系を露光装置本体 に組み込み光学調整をすると共に、 多数の機械部品からなるレチクルステージや ウェハステージを露光装置本体に取り付けて配線や配管を接続し、 更に総合調整 Then, the illumination optical system and projection optical system composed of multiple lenses are incorporated into the exposure apparatus main body to perform optical adjustment, and a reticle stage and a wafer stage consisting of many mechanical parts are attached to the exposure apparatus main body to perform wiring and piping. Connect and adjust further
(電気調整、 動作確認等) をすることにより本実施の形態の投影露光装置を製造 することができる。 なお、 投影露光装置の製造は温度及びクリーン度等が管理さ れたクリーンルームで行うことが望ましい。 (Electrical adjustment, operation confirmation, etc.), the projection exposure apparatus of the present embodiment can be manufactured. In the manufacture of projection exposure equipment, temperature and cleanliness are controlled. It is desirable to perform in a clean room.
次に、 上記の実施の形態の投影露光装置を使用した半導体デバイスの製造工程 の一例につき図 4を参照して説明する。  Next, an example of a semiconductor device manufacturing process using the projection exposure apparatus of the above embodiment will be described with reference to FIG.
図 4は、 半導体デバイスの製造工程の一例を示し、 この図 4において、 まずシ リコン半導体等からウェハ Wが製造される。 その後、 ウェハ W上にフォトレジス トを塗布し (ステップ S 1 0 ) 、 このウェハ Wを図 1の投影露光装置のウェハス テージ上にロードする。 次のステップ S 1 2において、 図 1のレチクルステージ 上にレチクル R 1を口一ドして、 このレチクル R 1を照明領域の下方に移動して、 レチクル R 1のパターンをウェハ W上の全部のショット領域 S Eに走査露光する。 なお、 ウェハ Wは例えば直径 3 0 0 mmのウェハ (1 2インチウェハ) であり、 ショット領域 S Eの大きさは一例として非走査方向の幅が 2 5 mmで走査方向の 幅が 3 3 mmの矩形領域である。 次に、 ステップ S 1 4において、 現像及びエツ チングゃイオン注入等を行うことにより、 ウェハ Wの各ショット領域 S Eに所定 のパターンが形成される。 次に、 ステップ S 1 6において、 ウェハ W上にフォト レジストを塗布し、 その後ステップ S 1 8において、 図 1のレチクルステージ上 に別のレチクル R 2をロードし、 このレチクル R 2を照明領域の下方に移動して、 レチクル R 2のパターンをウェハ W上の各ショット領域 S Eに走査露光する。 そ して、 ステップ S 2 0において、 ウェハ Wの現像及びエッチングやイオン注入等 を行うことにより、 ウェハ Wの各ショッ卜領域に所定のパターンが形成される。 以上の露光工程〜パターン形成工程 (ステップ S 1 6〜ステップ S 2 0 ) は所望 の半導体デバイスを製造するのに必要な回数だけ繰り返される。 そして、 ウェハ FIG. 4 shows an example of a semiconductor device manufacturing process. In FIG. 4, first, a wafer W is manufactured from a silicon semiconductor or the like. Thereafter, a photoresist is applied on the wafer W (step S10), and the wafer W is loaded on the wafer stage of the projection exposure apparatus of FIG. In the next step S12, reticle R1 is picked up on the reticle stage shown in FIG. 1 and this reticle R1 is moved below the illumination area, so that the entire pattern of reticle R1 on wafer W is transferred. Scan exposure is performed on the shot area SE of the first row. The wafer W is, for example, a wafer having a diameter of 300 mm (12-inch wafer). The size of the shot area SE is, for example, 25 mm in the non-scanning direction and 33 mm in the scanning direction. This is a rectangular area. Next, in step S14, a predetermined pattern is formed in each shot region SE of the wafer W by performing development, etching, ion implantation, and the like. Next, in step S16, a photoresist is applied on the wafer W, and then in step S18, another reticle R2 is loaded on the reticle stage shown in FIG. Moving downward, the pattern of the reticle R2 is scanned and exposed on each shot area SE on the wafer W. Then, in step S20, a predetermined pattern is formed in each shot area of the wafer W by performing development, etching, ion implantation, and the like of the wafer W. The above-described exposure step to pattern formation step (step S16 to step S20) are repeated as many times as necessary to manufacture a desired semiconductor device. And the wafer
W上の各チップ C Pを 1つ 1つ切り離すダイシング工程 (ステップ S 2 2 ) や、 ボンディング工程、 及びパッケージング工程等 (ステップ S 2 4 ) を経ることに よって、 製品としての半導体デバイス .S Pが製造される。 Through the dicing process (step S22), which separates each chip CP on the W one by one, the bonding process and the packaging process (step S24), the semiconductor device .SP as a product is Manufactured.
なお、 本発明の露光装置の用途としては半導体デバイス製造用の露光装置に限 定されることなく、 例えば、 角型のガラスプレートに形成される液晶表示素子、 若しくはプラズマディスプレイ等のディスプレイ装置用の露光装置や、 撮像素子 ( C C D等) 、 マイクロマシーン、 薄膜磁気ヘッド、 及び D N Aチップ等の各種 デバイスを製造するための露光装置にも広く適用できる。 更に、 本発明は、 各種 デバイスのマスクパターンが形成されたマスク (フォトマスク、 レチクル等) を フォトリソグフイエ程を用いて製造する際の、 露光工程 (露光装置) にも適用す ることができる。 The application of the exposure apparatus of the present invention is not limited to an exposure apparatus for manufacturing a semiconductor device. For example, a liquid crystal display element formed on a square glass plate, or a display apparatus such as a plasma display. The present invention can be widely applied to an exposure apparatus and an exposure apparatus for manufacturing various devices such as an imaging device (such as a CCD), a micro machine, a thin film magnetic head, and a DNA chip. Furthermore, the present invention The present invention can also be applied to an exposure step (exposure apparatus) when manufacturing a mask (a photomask, a reticle, etc.) on which a device mask pattern is formed using a photolithographic process.
なお、 本発明は上述の実施の形態に限定されず、 本発明の要旨を逸脱しない範 囲で種々の構成を取り得ることは勿論である。 また、 明細書、 特許請求の範囲、 図面、 及び要約を含む 2 0 0 0年 1 2月 1 5日付け提出の日本国特願 2 0 0 0 - 3 8 2 7 0 8の全ての開示内容は、 そつくりそのまま引用して本願に組み込まれ ている。 産業上の利用の可能性  It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various configurations can be adopted without departing from the gist of the present invention. In addition, all disclosures in Japanese Patent Application No. 2000-3802 7708, filed on February 15, 2000, including the specification, claims, drawings, and abstract Is incorporated herein by reference as it is. Industrial applicability
本発明において、 マーク検出系の屈折部材を露光ビームを透過する光学材料よ り形成した場合には、 真空紫外域のような短波長の露光光と同程度の波長域のァ ライメント光を用いる場合に適したァライメント系を実現できる。  In the present invention, when the refraction member of the mark detection system is formed of an optical material that transmits the exposure beam, when the alignment light having a wavelength range similar to the short wavelength exposure light such as a vacuum ultraviolet region is used. It is possible to realize an alignment system suitable for.
また、 光電検出器に近接して、 吸気口を設ける場合には、 真空紫外域のような 短波長の露光ビームと同程度の波長域のァライメント光を用いて、 その光路上に パージガスを供給する場合に、 その光路に対して悪影響を与えることなく、 マス ク又は基板用のァライメント系を設置できる。  When an intake port is provided in the vicinity of the photoelectric detector, a purge gas is supplied on the optical path using alignment light having a wavelength range similar to a short wavelength exposure beam such as a vacuum ultraviolet region. In that case, an alignment system for the mask or substrate can be installed without adversely affecting the optical path.
また、 本発明において、 露光ビームの光路に第 1の気体 (パージガス) を供給 し、 その光路における第 2の気体の残留濃度に応じて結像特性を調整する場合に は、 露光ビームの光路上にパージガス以外の気体が残留していても、 又はそのパ ージガス以外の気体の残留濃度が変動しても、 常に安定した結像特性が得られる。 従って、 そのパージガスに対するそれ以外の気体の混入量の規格を大幅に緩和す ることが可能となり、 安定な露光装置の実現が可能となる。  Further, in the present invention, when the first gas (purge gas) is supplied to the optical path of the exposure beam and the imaging characteristic is adjusted according to the residual concentration of the second gas in the optical path, the first gas (purge gas) may be placed on the optical path of the exposure beam. Even if a gas other than the purge gas remains in the chamber, or the residual concentration of the gas other than the purge gas fluctuates, stable imaging characteristics can always be obtained. Therefore, it is possible to greatly relax the specification of the amount of the other gas mixed with the purge gas, and it is possible to realize a stable exposure apparatus.
また、 本発明において、 露光ビームの光路の第 1の気体 (パージガス) 以外の、 露光ビームを透過する第 2の気体の残留濃度が許容レベルを超えたときに、 その 光路の気体をそのパージガスで再置換する場合にも、 所望の結像特性を得ること ができる。 これらの発明によれば、 例えば窒素やアルゴン等の低吸収性ガスを高 価で、 大消費電力で、 且つ振動源となる冷却装置を用いて液化して除去する方式 と比べて、 露光装置が小型化でき、 露光装置を収納するクリーンルームの必要面 積を低減でき、 更に露光装置の製造コストも運転コストも低減できる。 Further, in the present invention, when the residual concentration of the second gas that transmits the exposure beam other than the first gas (purge gas) in the optical path of the exposure beam exceeds an allowable level, the gas in the optical path is replaced with the purge gas. Even in the case of re-substitution, desired imaging characteristics can be obtained. According to these inventions, an exposure apparatus is used in comparison with a method in which a low-absorbing gas such as nitrogen or argon is liquefied and removed using a cooling device that is expensive, consumes large power, and is a vibration source. Necessary surface of a clean room that can be miniaturized and houses the exposure equipment And the manufacturing cost and operating cost of the exposure apparatus can be reduced.

Claims

請 求 の 範 囲 The scope of the claims
1 . 波長 2 0 0 n m以下の露光ビームで第 1物体を介して第 2物体を露光する露 光装置において、 1. An exposure apparatus that exposes a second object through a first object with an exposure beam having a wavelength of 200 nm or less,
前記第 1物体又は前記第 2物体上のマークを通過した、 前記露光ビームと実質 的に同じ波長のァライメント光を集光するァライメント光学系と、  An alignment optical system that collects alignment light having substantially the same wavelength as the exposure beam, having passed through a mark on the first object or the second object;
該ァライメント光学系によって集光された前記ァライメント光を検出する光電 検出器とを有するマーク検出系を備え、  A mark detection system having a photoelectric detector for detecting the alignment light collected by the alignment optical system,
前記ァライメント光学系中の屈折部材は、 全て前記露光ビームを透過する光学 材料より形成されることを特徴とする露光装置。  An exposure apparatus, wherein the refraction members in the alignment optical system are all formed of an optical material that transmits the exposure beam.
2 . 前記露光ビームを透過する光学材料は蛍石、 又はフッ素を添加した石英であ ることを特徴とする請求の範囲 1に記載の露光装置。  2. The exposure apparatus according to claim 1, wherein the optical material transmitting the exposure beam is fluorite or quartz doped with fluorine.
3 . 前記ァライメント光の光路の少なくとも一部の光路上の気体、 及び前記光電 検出器が収納される隔壁の内部の気体を前記露光ビームを透過する気体で置換す ることを特徴とする請求の範囲 1又は 2に記載の露光装置。  3. The gas on at least a part of the optical path of the alignment light and the gas inside the partition wall in which the photoelectric detector is housed are replaced with a gas that transmits the exposure beam. 3. The exposure apparatus according to range 1 or 2.
4 . 前記隔壁の前記光電検出器に近接する領域に前記隔壁の内部の気体を吸気す る吸気口を設けたことを特徴とする請求の範囲 3に記載の露光装置。  4. The exposure apparatus according to claim 3, wherein a suction port for sucking gas inside the partition is provided in a region of the partition close to the photoelectric detector.
5 . 前記ァライメント光学系の一部に、 その内壁に前記ァライメント光を反射さ せる反射部材を設けた中空部材を含むことを特徴とする請求の範囲 1から 4のい ずれか一項に記載の露光装置。  5. The method according to any one of claims 1 to 4, wherein a part of the alignment optical system includes a hollow member provided with a reflection member for reflecting the alignment light on an inner wall thereof. Exposure equipment.
6 . 前記ァライメント光学系は、 さらに、 前記露光ビームと実質的に同じ波長の ァライメント光を前記第 1物体又は前記第 2物体上のマークに照射する送光光学 系を備え、 前記送光光学系中に、 その内壁に前記ァライメン卜光を反射させる反 射部材を設けた中空部材を含むことを特徴とする請求の範囲 1から 4のいずれか 一項に記載の露光装置。  6. The alignment optical system further includes: a light transmission optical system that irradiates alignment light having substantially the same wavelength as the exposure beam to a mark on the first object or the second object. 5. The exposure apparatus according to claim 1, further comprising a hollow member provided with a reflection member for reflecting the alignment light on an inner wall thereof.
7 . 露光ビームで第 1物体及び投影光学系を介して第 2物体を露光する露光方法 において、  7. An exposure method for exposing a second object with an exposure beam via a first object and a projection optical system,
前記露光ビームの光路の少なくとも一部の光路の気体を前記露光ビームを透過 する第 1の気体で置換すると共に、 前記少なくとも一部の光路に残留する前記第 1の気体と異なる第 2の気体の濃度を計測し、 A gas in at least a part of the optical path of the exposure beam is replaced with a first gas that transmits the exposure beam, and the gas remaining in the at least a part of the optical path is replaced. Measure the concentration of the second gas different from the one gas,
前記第 2の気体の残留濃度に応じて前記投影光学系の結像特性を調整すること を特徴とする露光方法。  An exposure method, comprising: adjusting an imaging characteristic of the projection optical system according to a residual concentration of the second gas.
8 . 前記第 2の気体の残留濃度が所定レベルを超えたときに、 前記少なくとも一 部の光路の気体を前記第 1の気体で再置換することを特徴とする請求の範囲 7に 記載の露光方法。  8. The exposure according to claim 7, wherein when the residual concentration of the second gas exceeds a predetermined level, the gas in the at least part of the optical path is replaced with the first gas. Method.
9 . 前記第 2の気体は、 前記露光ビームを透過する気体であることを特徴とする 請求の範囲 7又は 8に記載の露光方法。  9. The exposure method according to claim 7, wherein the second gas is a gas that transmits the exposure beam.
1 0 . 前記露光ビームは、 波長 2 0 0 n m以下の紫外光であり、  10. The exposure beam is ultraviolet light having a wavelength of 200 nm or less,
前記第 1の気体は窒素であり、  The first gas is nitrogen;
前記第 2の気体は酸素、 炭酸ガス、 水蒸気、 ネオン、 及びヘリウムよりなる気 体群から選ばれた少なくとも一つの気体であることを特徴とする請求の範囲 7又 は 8に記載の露光方法。  9. The exposure method according to claim 7, wherein the second gas is at least one gas selected from the group consisting of oxygen, carbon dioxide, water vapor, neon, and helium.
1 1 . 前記露光ビームは、 波長 2 0 O 'n m以下の紫外光であり、  1 1. The exposure beam is ultraviolet light with a wavelength of 20 O 'nm or less,
前記第 1の気体はへリウムであり、  The first gas is helium;
前記第 2の気体は酸素、 窒素、 炭酸ガス、 水蒸気、 ネオン、 アルゴン、 及びク リプトンよりなる気体群から選ばれた少なくとも一つの気体であることを特徴と する請求の範囲 7又は 8に記載の露光方法。  9. The method according to claim 7, wherein the second gas is at least one gas selected from the group consisting of oxygen, nitrogen, carbon dioxide, water vapor, neon, argon, and krypton. Exposure method.
1 2 . 露光ビームで第 1物体及び投影光学系を介して第 2物体を露光する露光方 法において、  1 2. An exposure method for exposing a second object through a first object and a projection optical system with an exposure beam,
前記露光ビームの光路の少なくとも一部の光路の気体を前記露光ビームを透過 する第 1の気体で置換し、  Replacing the gas in at least a part of the optical path of the exposure beam with a first gas that transmits the exposure beam;
前記少なくとも一部の光路に残留し、 かつ前記露光ビームを透過し、 前記第 1 の気体と異なる第 2の気体の濃度を計測し、  Measuring the concentration of a second gas that remains in the at least a part of the optical path and transmits the exposure beam, and is different from the first gas;
前記第 2の気体の残留濃度が所定レベルを超えたときに、 前記少なくとも一部 の光路の気体を前記第 1の気体で再置換することを特徴とする露光方法。  An exposure method, wherein when the residual concentration of the second gas exceeds a predetermined level, the gas in at least a part of the optical path is replaced with the first gas.
1 3 . 前記第 1の気体は窒素であり、  1 3. The first gas is nitrogen,
前記第 2の気体はネオン及びヘリウムの少なくとも一方であることを特徴とす る請求の範囲 1 2に記載の露光方法。 13. The exposure method according to claim 12, wherein the second gas is at least one of neon and helium.
1 4. 前記第 1の気体はヘリウムであり、 1 4. The first gas is helium,
前記第 2の気体は窒素、 ネオン、 アルゴン、 及びクリプトンよりなる気体群か ら選ばれた少なくとも一つの気体であることを特徴とする請求の範囲 1 2に記載 の露光方法。  The exposure method according to claim 12, wherein the second gas is at least one gas selected from a gas group consisting of nitrogen, neon, argon, and krypton.
1 5 . 露光ビームで第 1物体及び投影光学系を介して第 2物体を露光する露光装 置において、  15. An exposure apparatus that exposes a first object and a second object via a projection optical system with an exposure beam,
前記投影光学系の結像特性を調整する結像特性調整装置と、  An imaging characteristic adjustment device for adjusting the imaging characteristic of the projection optical system,
前記露光ビームの前記第 2物体までの光路の少なくとも一部の光路の気体を前 記露光ビームを透過する第 1の気体で置換する気体供給機構と、  A gas supply mechanism that replaces a gas in at least a part of an optical path of the exposure beam to the second object with a first gas that transmits the exposure beam;
前記少なくとも一部の光路に残留する前記第 1の気体と異なる第 2の気体の濃 度を計測する気体センサと、  A gas sensor for measuring a concentration of a second gas different from the first gas remaining in the at least a part of the optical path;
該気体センサの計測値に基づいて前記結像特性調整装置を介して前記投影光学 系の結像特性を調整する制御系とを有することを特徴とする露光装置。  An exposure apparatus comprising: a control system that adjusts an imaging characteristic of the projection optical system via the imaging characteristic adjustment device based on a measurement value of the gas sensor.
1 6 . 露光ビームで第 1物体及び投影光学系を介して第 2物体を露光する露光装 置において、  16. An exposure apparatus that exposes a first object and a second object via a projection optical system with an exposure beam,
前記露光ビームの前記第 2物体までの光路の少なくとも一部の光路の気体を前 記露光ビームを透過する第 1の気体で置換する気体供給機構と、  A gas supply mechanism that replaces a gas in at least a part of an optical path of the exposure beam to the second object with a first gas that transmits the exposure beam;
前記少なくとも一部の光路に残留し、 かつ前記露光ビームを透過し、 前記第 1 の気体と異なる第 2の気体の濃度を計測する気体センサと、  A gas sensor that remains in at least a part of the optical path and transmits the exposure beam, and measures a concentration of a second gas different from the first gas;
前記気体供給機構を制御し、 該気体センサの計測値に基づいて前記少なくとも 一部の光路の気体を前記第 1の気体で再置換する制御機構とを有することを特徴 とする露光装置。  An exposure apparatus, comprising: a control mechanism that controls the gas supply mechanism, and that replaces the gas in the at least a part of the optical path with the first gas based on a measurement value of the gas sensor.
1 7 . 請求の範囲 7から 1 4のいずれか一項に記載の露光方法を用いてデバイス パターンをワークピース上に転写する工程を有するデバイス製造方法。  17. A device manufacturing method comprising a step of transferring a device pattern onto a workpiece using the exposure method according to any one of claims 7 to 14.
PCT/JP2001/010937 2000-12-15 2001-12-13 Exposure method and system, and device producing method WO2002049084A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002550300A JPWO2002049084A1 (en) 2000-12-15 2001-12-13 Exposure method and apparatus, and device manufacturing method
AU2002221133A AU2002221133A1 (en) 2000-12-15 2001-12-13 Exposure method and system, and device producing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000382708 2000-12-15
JP2000-382708 2000-12-15

Publications (1)

Publication Number Publication Date
WO2002049084A1 true WO2002049084A1 (en) 2002-06-20

Family

ID=18850489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010937 WO2002049084A1 (en) 2000-12-15 2001-12-13 Exposure method and system, and device producing method

Country Status (3)

Country Link
JP (1) JPWO2002049084A1 (en)
AU (1) AU2002221133A1 (en)
WO (1) WO2002049084A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096859A (en) * 2009-10-29 2011-05-12 Canon Inc Exposure apparatus and device manufacturing method
CN112965342A (en) * 2021-02-05 2021-06-15 三河建华高科有限责任公司 Bottom nitrogen-blowing vacuum copying exposure mode close to contact photoetching machine
KR20210119312A (en) * 2020-03-24 2021-10-05 가부시키가이샤 스크린 홀딩스 Exposure Apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08279458A (en) * 1995-04-07 1996-10-22 Nikon Corp Projecting aligner
JPH1167651A (en) * 1997-08-25 1999-03-09 Nikon Corp Projection aligner
JPH11219902A (en) * 1997-11-27 1999-08-10 Nikon Corp Aligner and device manufacturing apparatus
JPH11295056A (en) * 1998-04-15 1999-10-29 Nikon Corp Position detecting method, positioning method, and exposing method
JP2000133583A (en) * 1998-10-27 2000-05-12 Canon Inc Aligner and manufacture thereof
JP2000133588A (en) * 1998-08-18 2000-05-12 Nikon Corp Aligner, manufacture thereof and exposing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08279458A (en) * 1995-04-07 1996-10-22 Nikon Corp Projecting aligner
JPH1167651A (en) * 1997-08-25 1999-03-09 Nikon Corp Projection aligner
JPH11219902A (en) * 1997-11-27 1999-08-10 Nikon Corp Aligner and device manufacturing apparatus
JPH11295056A (en) * 1998-04-15 1999-10-29 Nikon Corp Position detecting method, positioning method, and exposing method
JP2000133588A (en) * 1998-08-18 2000-05-12 Nikon Corp Aligner, manufacture thereof and exposing method
JP2000133583A (en) * 1998-10-27 2000-05-12 Canon Inc Aligner and manufacture thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011096859A (en) * 2009-10-29 2011-05-12 Canon Inc Exposure apparatus and device manufacturing method
KR20210119312A (en) * 2020-03-24 2021-10-05 가부시키가이샤 스크린 홀딩스 Exposure Apparatus
KR102560818B1 (en) * 2020-03-24 2023-07-27 가부시키가이샤 스크린 홀딩스 Exposure Apparatus
CN112965342A (en) * 2021-02-05 2021-06-15 三河建华高科有限责任公司 Bottom nitrogen-blowing vacuum copying exposure mode close to contact photoetching machine
CN112965342B (en) * 2021-02-05 2022-07-12 三河建华高科有限责任公司 Bottom nitrogen blowing vacuum copying exposure device close to contact photoetching machine

Also Published As

Publication number Publication date
JPWO2002049084A1 (en) 2004-04-15
AU2002221133A1 (en) 2002-06-24

Similar Documents

Publication Publication Date Title
TWI230843B (en) Exposure method and device
US6627365B1 (en) Photomask and projection exposure apparatus
US20030076602A1 (en) Method and device for holding optical member, optical device, exposure apparatus, and device manufacturing method
WO1999025010A1 (en) Exposure apparatus, apparatus for manufacturing devices, and method of manufacturing exposure apparatuses
US20010048083A1 (en) Exposure apparatus and its making method, and device manufacturing method
JP4081813B2 (en) Optical apparatus, exposure apparatus, and device manufacturing method
US20050175497A1 (en) Temperature control method and apparatus and exposure method and apparatus
US20050287292A1 (en) Optical element fabrication method, optical element, exposure apparatus, device fabrication method
KR20020036951A (en) Exposure method and apparatus
WO2000048237A1 (en) Exposure method and apparatus
US20030147155A1 (en) Optical element holding device
JP2004063847A (en) Aligner, exposure method, and stage device
JP2004303808A (en) Aligner, exposure method, and film structure
JP2000133588A (en) Aligner, manufacture thereof and exposing method
WO1999060616A1 (en) Exposure method and apparatus
JP2001060548A (en) Exposure method and aligner
KR100760880B1 (en) Projection exposure apparatus, method of manufacturing the projection exposure apparatus, and method of adjusting the projection exposure apparatus
WO2002049084A1 (en) Exposure method and system, and device producing method
US7119952B2 (en) Optical instrument, exposure apparatus, and device manufacturing method
JP4273421B2 (en) Temperature control method and apparatus, and exposure method and apparatus
JP2001291663A (en) Exposure method and aligner, stage module, method of manufacturing the aligner, and method of manufacturing device
JPWO2002075795A1 (en) Exposure method and apparatus, and device manufacturing method
JP2003257821A (en) Optical device and aligner
JP2001102290A (en) Exposure method and aligner thereof
JP2003257822A (en) Optical device and aligner

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002550300

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase