WO2002042430A1 - Nucleic acid extraction device - Google Patents

Nucleic acid extraction device Download PDF

Info

Publication number
WO2002042430A1
WO2002042430A1 PCT/JP2000/008338 JP0008338W WO0242430A1 WO 2002042430 A1 WO2002042430 A1 WO 2002042430A1 JP 0008338 W JP0008338 W JP 0008338W WO 0242430 A1 WO0242430 A1 WO 0242430A1
Authority
WO
WIPO (PCT)
Prior art keywords
nucleic acid
tank
disk
extraction device
centrifugal force
Prior art date
Application number
PCT/JP2000/008338
Other languages
French (fr)
Japanese (ja)
Inventor
Naruo Watanabe
Yoshihiro Nagaoka
Yukiko Ikeda
Teruhisa Akashi
Yuji Miyahara
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP2002545136A priority Critical patent/JPWO2002042430A1/en
Priority to PCT/JP2000/008338 priority patent/WO2002042430A1/en
Publication of WO2002042430A1 publication Critical patent/WO2002042430A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/07Centrifugal type cuvettes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0621Control of the sequence of chambers filled or emptied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0861Configuration of multiple channels and/or chambers in a single devices
    • B01L2300/087Multiple sequential chambers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0633Valves, specific forms thereof with moving parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00465Separating and mixing arrangements
    • G01N2035/00495Centrifuges
    • G01N2035/00504Centrifuges combined with carousels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0446Combinations of the above
    • G01N2035/0449Combinations of the above using centrifugal transport of liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • G01N35/04Details of the conveyor system
    • G01N2035/0439Rotary sample carriers, i.e. carousels
    • G01N2035/0453Multiple carousels working in parallel

Definitions

  • the present invention relates to a nucleic acid extraction device for extracting nucleic acids from cells, microorganisms, viruses, and the like in an aqueous solution.
  • nucleic acid extraction There is a genetic diagnosis that uses a nucleic acid to diagnose a subject from this pattern.
  • nucleic acids are extracted from body fluids, tissues, and the like collected from a subject, and diagnosed by pattern analysis of the nucleic acids. For this reason, nucleic acid extraction must be performed accurately.
  • Examples of conventional techniques relating to nucleic acid extraction include, for example, “Bio-experimental illustrations: Basics of molecular biology experiments (1995, Shujunsha) P113-P122”
  • the prior art 1 discloses a method in which an aqueous solution containing a nucleic acid is held in a small container called a tube, and this is manually injected with various treatment liquids, stirred, and repeatedly centrifuged. As a device that automates this operation, it is marketed as Toyobo Co., Ltd. (Nucleic acid automatic separation device, NS-100).
  • the method of holding and treating the aqueous solution containing nucleic acids and various solutions of the prior art 1 in a small container called a tube can increase the sample volume and perform simple processing.
  • Raw There is a problem that it is difficult to extract accurately.
  • a complicated mechanism such as a robot system is adopted to automate these operations, it is difficult to increase the equipment cost and improve the throughput of the processing.
  • the method of processing on a resin-made circular substrate of the prior art 2 is that the aqueous solution containing nucleic acids and various solutions are all held on one substrate, and high-precision extraction is possible without contamination by foreign substances.
  • An object of the present invention is to realize an accurate and highly sensitive nucleic acid extraction device that does not contaminate foreign substances in an apparatus for extracting nucleic acid from an aqueous solution containing nucleic acid, and to provide it at low cost. Disclosure of the invention
  • the present invention provides a rotating disk with an aqueous solution containing nucleic acid, such as blood, provided with a plurality of tanks separated by a flow path or a partition, and connecting the respective tanks by operating an opening / closing mechanism provided in the flow path or the partition. Then, by rotating the disk and operating the opening / closing mechanism, the nucleic acid was extracted while being sequentially moved for each component.
  • nucleic acid such as blood
  • all or a part of the flow path or the partition, the opening / closing mechanism, and the tank are made of a plastic material from which a part of the component is not eluted with respect to the chemical having a protein denaturing action.
  • a predetermined amount of a drug having a denaturing effect on the protein or a drug which is more easily bound to water molecules than nucleic acid is previously enclosed.
  • the drug having a protein denaturing action is a solution obtained by mixing guanidine thiosinate, buenol, phenol, black form and isoamyl alcohol in a ratio of 25: 24: 1, respectively.
  • it refers to chemicals that have the effect of breaking down a membrane made of a protein containing nucleic acids and extracting nucleic acids, such as a solution of chloroform and isoamyl alcohol mixed in a 24: 1 ratio.
  • a chemical that is easier to bind to a water molecule than a nucleic acid refers to a chemical such as ethanol or isopropyl alcohol that has an action of coagulating a nucleic acid dissolved in water when mixed with an aqueous solution containing a nucleic acid.
  • the aqueous solution containing nucleic acids is stored in the tank for each component, and therefore, the aqueous solution containing a large amount of nucleic acids is not limited to the volume per unit length of the flow path connecting them. Can be processed. 'In addition, since all processes can be automated, accurate extraction can be performed without contamination. In addition, the tank holding the aqueous solution is separated by a partition wall, and this tank is manufactured by plastic injection shaping, so that the cost can be reduced. And since it can be used up in one extraction, there is no measurement error due to the difference of the measurement target.
  • FIG. 1 shows that nucleic acid is dissolved from an aqueous solution containing nucleic acid according to the first embodiment of the present invention.
  • FIG. 2 is an external view of a device for extracting nucleic acids from an aqueous solution containing nucleic acids according to the first embodiment
  • FIG. 2 is an external view for explaining a mechanism for centrifuging or stirring the device
  • FIG. FIG. 4 is a view showing a procedure for extracting a nucleic acid from an aqueous solution containing a nucleic acid using the device according to the first embodiment
  • FIG. 4 is a diagram showing a device for extracting a nucleic acid from an aqueous solution containing a nucleic acid according to the second embodiment.
  • FIG. 5 is a diagram showing the relationship between the operation of a mechanism for centrifuging or agitating the device and the operation of an opening / closing mechanism in Fig. 5;
  • FIG. 6 is a diagram illustrating the function of a device for extracting nucleic acid from an aqueous solution containing nucleic acids according to the first embodiment.
  • FIG. 7 is a diagram illustrating the function of a device containing nucleic acids according to a second embodiment of the present invention. Debye to extract nucleic acid
  • FIG. 8 is a diagram showing a procedure for extracting a nucleic acid using a device for extracting a nucleic acid from an aqueous solution containing a nucleic acid according to the second embodiment, and FIG.
  • FIG. 9 is a diagram showing a procedure for extracting the nucleic acid according to the second embodiment.
  • FIG. 4 is a diagram showing the relationship between the operation of a mechanism for centrifuging or agitating the device and the operation of an opening / closing mechanism in a device for extracting nucleic acid from a contained aqueous solution.
  • FIG. 1 (a) shows a plurality of tanks formed on a rotating disk and connected by a flow path having an opening / closing mechanism for extracting nucleic acids from an aqueous solution containing nucleic acids.
  • human whole blood is particularly described as an example of an aqueous solution containing nucleic acids.
  • biological fluids containing nucleic acids or aqueous solutions in which tissues containing nucleic acids are suspended in water. Can be extracted.
  • FIG. 1 (b) is an enlarged view of a portion of the tank and the flow channel in FIG. 1 (a).
  • the disk 100 has a plurality of tanks formed therein.
  • the disk 100 is provided with a mounting hole 102 for being mounted on a drive mechanism and rotated.
  • Disk 1 0 0 has the following layers.
  • a sample holding tank 104 for holding whole blood as a sample for analysis, a separation tank 106 for separating serum from whole blood, and an extraction for removing nucleic acids from a nuclear wall containing nucleic acids
  • the sample holding tank 104 and the separation tank 106 are connected by a flow path 114.
  • the separation tank 106 and the extraction tank 108 are connected by a flow path 116.
  • the flow path 1 16 is provided with an opening / closing mechanism 122 for controlling the movement of the solution on the way.
  • the flow path 118 connects the extraction tank 108 and the recovery tank 110, and includes an opening / closing mechanism 124 for controlling the movement of the solution in the middle thereof.
  • the flow path 120 connects the collection tank 110 and the nucleic acid holding tank 112 and has an opening / closing mechanism 126 for controlling the movement of the solution in the middle thereof.
  • Wiring 1 2 8, wiring 1 3 0, and wiring 1 3 2 are connected to the disc 1 0 0 through the hole 10 2 to control the respective opening and closing mechanisms 1 2 2, 1 2 4 and 1 2 6. Connected to an external (not shown) controller.
  • the opening / closing mechanism of this embodiment is configured by an electromagnetic valve that opens and closes with an electromagnetic force
  • the present invention is not limited to this method, and a system that switches gears and the like with a single drive system to open and close may be used.
  • the sample holding tank 104 is provided with a hole 103 for injecting whole blood.
  • Each tank except for this hole and each flow path are sealed to shut off outside air, preventing foreign matter from entering.
  • Fig. 2 shows a mechanism for generating centrifugal force by rotating the disk 10 ° including the tank and a mechanism for stirring the solution contained in the tank in the disk 100 °. .
  • the disk 100, the rotating shaft 200 and the motor 202 are mounted on the disk 204.
  • the disk 204 is rotationally driven by a rotating shaft 206 of the motor 208.
  • the center of the rotation axis 200 of the disk 100 and the center of the rotation axis 206 of the disk 204 are attached with a predetermined distance therebetween. In this way, it is necessary to provide a rotating shaft at intervals.
  • the centrifugal force applied to each tank can be increased. That is, while rotating around the rotating shaft holding the disk 100, the whole of them is driven in a so-called planetary motion in which the center of the rotating shaft is shifted from the rotating shaft 206 of the disk 204.
  • the disk 204 is provided with wires 2 1 2, 2 1 4 and 2 16, which are connected to the wires 1 2 8 1 3 0 and 1 3 2 provided on the rotating disk 100. ing. In addition, wirings 218 and 220 for driving and controlling the motor 202 are provided on the disk 204. The operation of each opening / closing mechanism on the disk 100, the motor, and the motor 208 for rotating the disk 204 is centrally controlled by the control device 230 via the control line 232. .
  • FIGS. 3 (a) to 3 (f) are diagrams for explaining the operation of extracting nucleic acids from whole blood.
  • FIGS. 3 (a) to 3 (f) there is a protein denaturing effect for removing nucleic acids from the nuclear wall encapsulating nucleic acids, which is not shown in FIG. 1 or FIG.
  • a predetermined amount of the drug 300 is held in the extraction tank 108, and the drug 302, which is easier to bind to water molecules than the nucleic acid, is stored in the recovery tank 110.
  • the arrow 100 0 indicates the direction of the centrifugal force generated by the rotation of the disk 100.
  • FIG. 3 (a) shows a state in which the disk 100 is stationary. At this time, 310 whole blood collected is injected into the sample holding tank 104 from the injection hole 103.
  • FIG. 3 (b) shows the case where the disk 100 is rotated near the separation tank 106 so that the centrifugal force becomes 150 G or more.
  • the whole blood 310 moves from the sample holding tank 104 to the separation tank 106.
  • substances 3 14 other than serum are distributed on the outer periphery of the disc 100 and serum 3 12 is distributed on the rotation center side in the separation tank 106 by centrifugal force.
  • the higher the rotation speed of the disk 100 the more the separation tank 106 The time for separating serum and components other than serum can be shortened.
  • the outlet of the flow path 114 in the separation tank should be It is desirable that the entrance of the flow path 1 16 be located on the side of the center of rotation of the disk 100.
  • the separated serum 312 passes through the flow path 1 16, passes through the opening / closing mechanism 1 2 2 previously opened, and moves to the extraction tank 108.
  • FIG. 3 (c) shows a state in which nucleic acids are extracted from the serum 312 in the extraction tank 108.
  • a predetermined amount of a drug 300 having a protein denaturing action is held in the extraction tank 108 in advance, and the drug 300 reacts with the serum 112.
  • phenol is used as the drug 300 having a protein denaturing effect
  • serum is sent, phenol 300 is initially converted to an oil layer in the extraction tank 108, and serum 12 is in a separated state as an aqueous layer.
  • the amount of phenol 300 is preferably equal to or greater than the amount of serum 112 to be reacted.
  • disk 204 is also in liquid. It was decided to rotate and stir at 08. At this time, the respective opening / closing mechanisms 122 and 124 in the middle of the flow path 116 and the flow path 118 are closed. The centrifugal force generated by the rotation of both disks is synthesized in the extraction tank 108 on the disk 100. For this reason, the rotation speed of the disk 100 and the disk 204 needs to be a value such that the direction of the centrifugal force does not depend on the rotation angle of the disk 100.
  • the extraction tank 108 is provided at a position 45 mm away from the center of the rotation axis 200 (the diameter of the extraction tank 108 is 6 mm), and the rotation axis 200 is the rotation axis. It is located at a distance of 51 mm from 206.
  • the rotation speed of the disk 100 is set to 500 rpm
  • the rotation speed of the disk 204 may be set to be higher than 200 rpm rp'm.
  • the shape of the extraction tank 108 is shown in Fig. 1. In addition to the circular shape shown in FIG. 3, if the shape is a polygon such as a square, the effect of extracting nucleic acids is enhanced.
  • FIG. 3 (d) shows that after the operation of extracting nucleic acids from serum 312 shown in FIG. 3 (c), the rotation of the disk 204 shown in FIG.
  • This figure shows the state when 100 is rotated near the extraction tank 1108 so that the centrifugal force becomes 150 G or more.
  • the phenol 300 has a small centrifugal force in the portion where the centrifugal force increases, and the aqueous solution 3 In between, albumin and globulin, which are proteins in serum (not shown) denatured by phenol 300, are distributed in layers.
  • FIG. 3 (e) shows a so-called centrifugal separation operation of taking out a very small amount of the solution having an increased nucleic acid concentration from the aqueous solution 316 containing the nucleic acid.
  • the recovery tank 110 previously holds a drug 302 that is easier to bind to water molecules than nucleic acids. Then, the chemical 300 and the aqueous solution 316 containing nucleic acid are reacted.
  • ethanol alcohol when ethanol alcohol is used as a drug 302 that is easier to bind to water molecules than nucleic acids, water molecules in the aqueous solution 3 16 and molecules of ethanol alcohol 302 bind to dissolve the nucleic acids. The amount of water that was being used is reduced. For this reason, nucleic acids are precipitated. Furthermore, since the density of the nucleic acid is higher than that of the surrounding water or ethanol alcohol 302, the centrifugal force 1 (precipitates in the direction of 300. The larger the centrifugal force 100, the faster the nucleic acid becomes. Is desirably 1000 g or more. The amount of ethanol alcohol 302 is 2.5 times larger than that of aqueous solution 3 16 to be reacted with ethanol.
  • the recovery tank 110 is designed so that its volume is larger than that of the extraction tank 108 and the separation tank 106. It is a deeper tank in size.
  • this amount may be equal to the amount of the aqueous solution 316 to be reacted therewith.
  • the location where the centrifugal force 1000 becomes maximum is near the opening / closing mechanism 126 in the middle of the flow path 120.
  • FIG. 3 (f) shows the operation of moving the nucleic acid precipitated near the opening / closing mechanism 126 in the middle of the channel 120 to the nucleic acid holding tank 112 together with the nearby aqueous solution. It is. Also at this time, it is desirable that centrifugal force of 1000 G or more is applied to the recovery tank 110. By opening and closing the opening and closing mechanism 126 in the middle of the flow path 120 for a very short time under this gravity, the solution having a high nucleic acid concentration can be moved to the nucleic acid holding tank 112.
  • FIG. 4 (a) shows the control sequence of each motor and the open / close mechanism.
  • the control device 230 drives the disk 210 to rotate the motor 210, the motor 204 rotates the disk 204, and the opening / closing mechanism 122 on the disk 100.
  • 4 and 1 26 show the operation status in the processing state.
  • the positional relationship of each tank on the disk 100 is as shown in Fig. 4 (b).
  • the distance between the center of the rotation axis 200 and the center of the rotation axis 206 is 51 mm.
  • the horizontal axis of the graph is not real time, but the processing content shown at the bottom of the graph.
  • the amount of nucleic acid contained in the solution in the nucleic acid holding tank 112 is proportional to the amount of whole blood injected into the sample holding tank 104. And increase.
  • the amount of the solution in the nucleic acid holding tank 112 is limited to the amount of the solution localized near the opening / closing mechanism 126 in the middle of the channel 120. Therefore, when the amount of nucleic acid contained in the collected whole blood 310 is small, the amount of nucleic acid contained in the finally obtained solution 320 can be increased by increasing the amount of whole blood. Highly sensitive nucleic acid extraction can be performed.
  • the amount of nucleic acid contained in whole blood 310 when the amount of nucleic acid contained in whole blood 310 is large, the amount of nucleic acid contained in final solution 320 can be adjusted by reducing the amount of whole blood. It can handle whole blood with a wide range of nucleic acid concentrations. In addition, since the whole blood, from 310 to solution containing a large amount of nucleic acid, is processed in a plurality of tanks and a flow path connecting them, accurate extraction is possible without the risk of foreign matter entering. it can.
  • each tank, each flow path, and the inlet port 103 set on the circle 100 can be integrally formed by directly cutting out the material forming the disc 100. it can. If they are integrally formed, the disk 100 can be made smaller and the processing cost can be reduced. This means that the disc 100 can be easily made disposable, and the effect of eliminating contamination between samples can be obtained.
  • Polypropylene or fluororesin is suitable as a material for forming the disk 100.
  • any material that does not dissolve its components in whole blood and is not violated by a drug 300 having a protein denaturing effect can be applied.
  • a polycarbonate resin having good formability is used as a material for forming the tank and the flow path, if this surface is coated with a fluororesin, the strength of the disk 100 and the intrusion of foreign matter during processing can be avoided. And the disk 100 can be formed at low cost.
  • a material for forming the tank / flow path a material that elutes trivalent ions such as aluminum can be used. By using the material, a three-dimensional shape such as a tank can be pressed. Production costs can be reduced.
  • each tank and each flow path provided on the disk 100 are formed separately by injection molding of polypropylene, and these are arranged on the disk 100 and connected by bonding. May be manufactured. When manufactured in this manner, the volume of each tank can be adjusted or selected according to the sample, the processing conditions in each tank can be optimized, and the nucleic acid can be extracted efficiently. can get.
  • FIG. 5 shows another embodiment.
  • a new flow path 1 16 0 and an opening / closing mechanism 1 2 are provided between the extraction tank 108 of the previous embodiment (referred to as the first extraction tank in this embodiment) and the collection tank 110.
  • 20 and a second extraction tank 1 080 were installed.
  • phenol is previously stored as a drug 30000 having a protein denaturing action.
  • the aqueous solution containing the nucleic acid extracted in the first extraction tank 1108 is re-extracted with a chemical 30000.
  • FIG. 6 shows the configuration of still another embodiment.
  • the collection tank 110 (referred to as the first collection tank in the present embodiment) and the nucleic acid holding tank 112, a new flow path 1200 and an opening / closing mechanism 124 are added.
  • This is a configuration in which two tanks 110 are installed.
  • ethanol alcohol 302 is held in advance similarly to the first collection tank 110, and the water containing nucleic acid is stored in the first collection tank 110.
  • an injection hole 103 for injecting whole blood as a sample and one processing equipment from the sample holding tank 104 to the nucleic acid holding tank 112 are provided on the disk 100.
  • the same effect can be obtained by installing a plurality of the devices.
  • Providing a plurality of processing facilities on a single disk has the effect of increasing the number of processes per unit time in the process of extracting nucleic acids from aqueous solutions containing a plurality of nucleic acids.
  • FIG. 7 shows a configuration in which a plurality of rooms are provided on a disk in a circumferential direction to extract nucleic acids from an aqueous solution containing nucleic acids, and a partition between the rooms is provided with an opening / closing mechanism.
  • the disk is described as rotating clockwise.
  • the disk 700 is provided with a plurality of tanks (rooms) partitioned by partition walls in the rotation direction and the circumferential direction.
  • the disk 700 is provided with a hole 720 for mounting on a mechanism (rotary shaft) for rotating the disk 700.
  • the disc also has a sample holding tank 706 for holding whole blood, a separation tank 712 for separating serum from whole blood, and a nucleic acid for removing nucleic acids from a nuclear wall containing nucleic acids.
  • a nucleic acid holding tank 736 for holding the prepared nucleic acid.
  • the separation tank 712 provided on the outer peripheral side of the sample holding tank 706 is fractionated by a partition wall 707, and both are controlled by a centrifugal force as an opening / closing mechanism and a spring 710.
  • a sealer 708 is connected by Separation tank 7 12 and extraction tank 7 18 .
  • Separation tank 7 12 and extraction tank 7 18 are separated by partition wall 7 17, and both are connected by a centrifugal force as an opening and closing mechanism and a seal 7 14 controlled by a spring 7 16 .
  • Extraction tank 7 1 8 and The recovery tank 724 is fractionated by a partition wall 723, and is connected by a sealer 702 and a sealer 721 controlled by a centrifugal force as an opening / closing mechanism and a spring 722. .
  • partition wall 723 is also used as a partition wall of the sample holding tank 706 and the recovery tank.
  • the collection tank 724 and the pharmaceutical tank 730 are separated by a partition 729, and both are connected by a centrifugal force as an opening / closing mechanism and a sealer 726 controlled by a panel 728.
  • the recovery tank 724 and the nucleic acid holding tank 736 are connected by a seal 732 controlled by a centrifugal force as an opening / closing mechanism and a spring 734.
  • An injection hole 704 for injecting whole blood is provided on the upper surface of the sample holding tank 706.
  • FIG. 8 (a) With the disk 700 still, the whole blood 750 is injected through the injection hole 704. At this time, the sealer 708 is closed, and the whole blood 750 is confined in the sample holding tank 706. In addition, in the extraction tank 718, a drug 755 having a protein denaturing action is held in advance. In the chemical tank 730, a drug 754 which is easier to bind to water molecules than nucleic acid is held. Next, the disk 700 is rotated (clockwise rotation). Then, as shown in FIG.
  • the serum 758 overflows from the open end of the sealer 714 to the extraction tank 718. To go. 'this At this time, if the opening interval of the sealer 714 is set so that components 756 other than red blood cells cannot exceed the sealer 714, only the serum moves to the extraction tank 718. become.
  • the serum 758 has been moved to the extraction tank 718, and the rotation speed of the disk 700 has been reduced. It shows a closed state.
  • a predetermined amount of a drug 752 having a protein denaturing action is held in the extraction tank 718 in advance.
  • the phenol 752 is separated as an oil layer and the serum 758 is separated as an aqueous layer.
  • the amount of phenol 752 is desirably equal to or greater than the amount of serum 758 to be reacted therewith.
  • phenol 752 and serum 758 are stirred to extract nucleic acids in serum 758. Therefore, the disk 100 in Fig. 2 is replaced by the disk 700, and in addition to the state in which the disk 700 is rotated by the motor 202 around the rotation axis 200, these are mounted.
  • the disc 204 thus formed was rotated by a motor 208 around a rotation axis 206 to stir using planetary motion.
  • the rotation speed of the disk 700 and the disk 204 is the centrifugal force generated by the rotation of the disk 700 and the disk 204 at the outermost periphery of the disk 700 of the extraction tank 718.
  • a value is used so that the direction of the synthesized centrifugal force does not depend on the rotation angle of the disk 700.
  • the rotation speed of the disk 700 is 500 rpm
  • the rotation speed of the disk 204 may be higher than 2000 rpm. However, the rotation speed is set so that the sealers 708 and 714 are closed.
  • FIG. 8 (d) shows an operation of transferring the aqueous solution 760 containing a large amount of nucleic acid distributed in the extraction tank 718 to the recovery tank 724.
  • the disk 700 has a greater number of rotations than the phenol 752 which is a chemical having a protein attribute action in the extraction tank 718 and the aqueous solution 760 containing nucleic acid.
  • the rotation speed is higher than the number of rotations for separating serum 758 and components 756 other than red blood cells, and a centrifugal force of about 300 G is generated in the collection tank.
  • the sealer 7 2 1 moves according to the centrifugal force, A gap is generated between the sealing element 720 and the aqueous solution 760 from the gap to the recovery tank 724.
  • a gap is also formed between the sealer 708 and the sealers 7 and 14 at the same time, but components 756 other than erythrocytes and chemicals 752 that have a protein denaturing action It does not move from 18.
  • FIG. 8 (e) shows an operation of taking out a very small amount of a solution having a high nucleic acid concentration from an aqueous solution 60 containing nucleic acids held in the recovery tank 724.
  • the rotation speed of the disk 700 is set to be higher than the rotation speed of the disk 700 in FIG. 8 (d) so that a centrifugal force of approximately 400 G is generated.
  • the sealer 720 and the sealer 721 connecting the extraction tank 718 and the recovery tank 724 the sealer 721 falls down according to the centrifugal force.
  • the sealer 720 is lowered so as to close the gap with the sealer 721, and the recovery tank 724 is sealed while holding the aqueous solution 760.
  • the centrifugal force be 1000 G or more.
  • the amount of ethanol alcohol 754 is desirably 2.5 times or more of the aqueous solution 760 to be reacted therewith.
  • the recovery tank 724 is deeper in size than the extraction tank 718 and the separation tank 712 so as to have a larger volume.
  • Fig. 8 (f) shows that the nucleic acid precipitated by centrifugal force in the aqueous solution 762 held in the recovery tank 724 and the slight aqueous solution around it are transferred to the nucleic acid holding tank 736.
  • FIG. With a centrifugal force of 1000 G or more, the sealer 732 lowers, and the nucleic acid precipitates and the solution having a higher concentration moves to the nucleic acid holding tank 736. If the centrifugal force is 1000 G or more, the sealer 732 remains lowered, and the nucleic acid continues to accumulate in the nucleic acid holding tank 7336 during centrifugation with this centrifugal force.
  • Fig. 9 (a) shows the motor 210 that the control device 230 rotates the disk 700, the motor 208 that rotates the disk 204, and the control device 230 on the disk 700. It shows the operation of the seals 7 08, 7 14, 7 20, 7 21, 7 26, and 7 36. However, the positional relationship of the sealers 7 08, 7 14, 7 20, 7 21, 7 26, and 7 36 on the disk 700 is as shown in Fig. 9 (b). It is.
  • the distance between the rotation axis 200 and the rotation axis 206 is 53 mm
  • the diameter of the disk 700 is 100 mm.
  • the horizontal axis of the graph is not real time, but the processing contents shown at the bottom of the graph.
  • the tank formed on the disk 700 is partitioned by the partition walls, the amount of whole blood to be processed can be further increased, and the highly sensitive nucleic acid can be obtained. An extraction can be performed. Also, if the entire disc 700 including each tank is manufactured by injection molding of polypropylene or the like, the production cost of the disc 700 can be reduced. Further, if the entire disc 700 including each tank is extruded and shaped with polycarbonate resin, and the surface is coated with a fluororesin, the strength of the disc 700 and entry of foreign matter during processing can be avoided. Furthermore, the disk 700 can be constructed at low cost. This is effective even when the amount of whole blood to be processed is small.If the polycarbonate resin surface is embossed to form each tank and the surface is coated with fluororesin, a disk 700 can be constructed at lower cost. can do.
  • the same effect can be obtained even if a plurality of processing facilities from the hole 704 and the sample holding tank 706 to the nucleic acid holding tank 736 are installed on the disk 700. Wear. By providing a plurality of processing facilities, the effect of increasing the number of processes per unit time in the process of extracting nucleic acids from an aqueous solution containing a plurality of nucleic acids can be obtained.

Abstract

A nucleic acid extraction device so constituted as to extract nucleic acid by moving a nucleic acid-containing solution, by providing a plurality of tanks on a rotating disk, connecting each tank to each other with a flow path provided with an open/close mechanism, and sequentially separate and extract specified components from solutions in respective tanks. An automatic treating by means of a plurality of tanks connected with open/close mechanism-carrying flow paths can treat an aqueous solution containing a large amount of nucleic acid with no foreign matters mixed in to ensure high-sensivity, high-accuracy extraction of nucleic acid and reduce nucleic acid extracting cost and time.

Description

明 細 書  Specification
核酸抽出装置 . 技術分野  Nucleic acid extraction equipment. Technical field
本発明は、 水溶液中にある細胞や微生物、 ウィルス等からその核酸を 抽出する核酸抽出装置に関する。  The present invention relates to a nucleic acid extraction device for extracting nucleic acids from cells, microorganisms, viruses, and the like in an aqueous solution.
背景技術 Background art
核酸を用いて、 これのパターンから被検者の診断を行う遺伝子診断が ある。 この遺伝子診断では、 被検者から採取した体液や組織等から核酸 を抽出し、 これのパターン解析によって診断を行う。 このため、 核酸の 抽出が正確に行われなければならない。 核酸の抽出に関する従来技術と しては、 例えば、 「バイオ実験イラストレイテッ ド①分子生物学実験の 基礎 ( 1 9 9 5 , 秀潤社) P 1 1 3〜P 1 2 2」 (以下、 従来技術 1 と いう) には、 核酸を含む水溶液をチューブと呼ばれる小型の容器に保持 し、 これを手操作にて各種処理液を注入 ·撹拌し、 遠心分離を繰り返す 方法が開示されている。 そして、 この操作を自動化した装置として、 東 洋紡績株式会社 (核酸自動分離装置, N S— 1 0 0 0型) として発売さ れている。  There is a genetic diagnosis that uses a nucleic acid to diagnose a subject from this pattern. In this genetic diagnosis, nucleic acids are extracted from body fluids, tissues, and the like collected from a subject, and diagnosed by pattern analysis of the nucleic acids. For this reason, nucleic acid extraction must be performed accurately. Examples of conventional techniques relating to nucleic acid extraction include, for example, “Bio-experimental illustrations: Basics of molecular biology experiments (1995, Shujunsha) P113-P122” The prior art 1) discloses a method in which an aqueous solution containing a nucleic acid is held in a small container called a tube, and this is manually injected with various treatment liquids, stirred, and repeatedly centrifuged. As a device that automates this operation, it is marketed as Toyobo Co., Ltd. (Nucleic acid automatic separation device, NS-100).
また、 従来 ¾術 2 と して 「Micro 'Total Analysis System ' 2000 Proceedings ( 2 0 0 0 ) 、 P 2 3 9〜P 2 4 2」 は、 樹脂製円形基板上 に溶液保持用槽と反応用微細流路、 発熱素子を設けて、 円形基板を回転 させたときに生ずる遠心力によって送液と反応を行い、 全血から核酸の 抽出と核酸のパターン解析を行う方法が開示されている。  In addition, as a conventional technique 2, “Micro 'Total Analysis System' 2000 Proceedings (2000), P239-P224” is a solution holding tank and a reaction tank on a resin circular substrate. A method is disclosed in which a microchannel and a heating element are provided, and a centrifugal force generated when a circular substrate is rotated is used to cause a reaction and a liquid transfer to extract nucleic acid from whole blood and analyze a pattern of the nucleic acid.
上記従来技術では、 次のような問題が発生し易く、 これを避けること は技術的な困難が伴う。 すなわち、 従来技術 1の核酸を含む水溶液や各 種溶液をチューブと呼ばれる小型の容器に保持し処理する方法は、 試料 容量を多くでき簡易な処理が可能であるが、 操作途中に異物の混入が生 じゃすいという問題があり、 正確な抽出が困難である。 そして、 これら の操作を自動化するためにロボッ トシステム等複雑な機構を採用してい るが、 装置コストが上昇すると共に、 処理のスループッ トを向上させる ことが困難である。 従来技術 2の樹脂製円形基板上で処理する方法は、 核酸を含む水溶液や各種溶液すべてが一つの基板上に保持されており、 異物の混入がなく高精度な抽出が可能であるが、 溶液保持用槽と反応用 微細流路が微細なものであるため試料容量を多くできないという問題が あり、.試料中に含まれる核酸が微量になるとこれを抽出することは困難 である。 そして、 試料または溶液等の混合において、 静止状態で油層と 水相に分かれるような 2液を混合することが難しいため、 これらの状態 のうち油層となるフエノールを用いる方法では、 核酸の抽出を十分に行 うことができなかった。 In the above-mentioned conventional technology, the following problems are likely to occur, and it is technically difficult to avoid them. In other words, the method of holding and treating the aqueous solution containing nucleic acids and various solutions of the prior art 1 in a small container called a tube can increase the sample volume and perform simple processing. Raw There is a problem that it is difficult to extract accurately. Although a complicated mechanism such as a robot system is adopted to automate these operations, it is difficult to increase the equipment cost and improve the throughput of the processing. The method of processing on a resin-made circular substrate of the prior art 2 is that the aqueous solution containing nucleic acids and various solutions are all held on one substrate, and high-precision extraction is possible without contamination by foreign substances. There is a problem that the sample volume cannot be increased because the holding tank and the reaction microchannel are fine, and it is difficult to extract nucleic acids contained in the sample when the amount is small. Since it is difficult to mix two liquids that separate into an oil layer and an aqueous phase in a stationary state when mixing a sample or a solution, etc. Could not go to.
本発明の目的は、核酸を含む水溶液から核酸を抽出する装置において、 異物が混入することなく、 正確でかつ高感度の核酸抽出装置を実現し、 低コス卜で提供することにある。 発明の開示  An object of the present invention is to realize an accurate and highly sensitive nucleic acid extraction device that does not contaminate foreign substances in an apparatus for extracting nucleic acid from an aqueous solution containing nucleic acid, and to provide it at low cost. Disclosure of the invention
本発明は、 回転円盤上に血液などの核酸を含む水溶液を、 流路または 隔壁で区分された複数の槽を備え、 流路または隔壁に設けた開閉機構を 動作することで各槽間を連結し、 円盤の回転と開閉機構の動作により、 その成分毎に順次移動させながら核酸を抽出する構成とした。  The present invention provides a rotating disk with an aqueous solution containing nucleic acid, such as blood, provided with a plurality of tanks separated by a flow path or a partition, and connecting the respective tanks by operating an opening / closing mechanism provided in the flow path or the partition. Then, by rotating the disk and operating the opening / closing mechanism, the nucleic acid was extracted while being sequentially moved for each component.
なお、 流路または隔壁、 開閉機構、 槽の全部または一部が、 タンパク 質の変性作用をもつ薬品に対してその成分の一部が溶出しないプラスチ ック材料で構成する。 さらに、 複数の槽の内いずれかに蛋白質を分離す るため、 蛋白質に対して変性作用を持つ薬品や、 核酸よりも水分子と結 合が容易な薬品を予め所定量封入しておく。 ここで、 タンパク質の変性作用をもつ薬品とは、 グァニジンチォシァ ネート、 ブェノール、 フエノールとクロ口ホルムとイソアミルアルコー ルをそれぞれ 2 5 : 2 4 : 1 に混合した溶液。 または、 クロロホルムとィ ソァミルアルコールを 2 4 : 1 に混合した溶液等、核酸を内包するタンパ ク質でできた膜を破壊し核酸を取り出す作用のある薬品を指す。 In addition, all or a part of the flow path or the partition, the opening / closing mechanism, and the tank are made of a plastic material from which a part of the component is not eluted with respect to the chemical having a protein denaturing action. Furthermore, in order to separate the protein into any of the plurality of tanks, a predetermined amount of a drug having a denaturing effect on the protein or a drug which is more easily bound to water molecules than nucleic acid is previously enclosed. Here, the drug having a protein denaturing action is a solution obtained by mixing guanidine thiosinate, buenol, phenol, black form and isoamyl alcohol in a ratio of 25: 24: 1, respectively. Alternatively, it refers to chemicals that have the effect of breaking down a membrane made of a protein containing nucleic acids and extracting nucleic acids, such as a solution of chloroform and isoamyl alcohol mixed in a 24: 1 ratio.
また、 核酸よりも水分子と結合が容易な薬品とは、 エタノール, イソ プロピルアルコール等、 核酸を含む水溶液に混合することで、 水に溶け ていた核酸を凝集させる作用のある薬品を指す。  In addition, a chemical that is easier to bind to a water molecule than a nucleic acid refers to a chemical such as ethanol or isopropyl alcohol that has an action of coagulating a nucleic acid dissolved in water when mixed with an aqueous solution containing a nucleic acid.
上記構成とすることにより、 核酸を含む水溶液がその成分毎に槽に保 持されるため、 これらを連結した流路の単位長さあたりの容積に制限さ れることなく多量の核酸を含む水溶液を処理することができる。 'また、 すべての処理を自動化できるため、 異物が混入することなく正確な抽出 ができる。 また、 水溶液を保持する槽を隔壁で分離し、 この槽をプラス チックの射出整形で製作することにより、 コス トの低減をはかることが できる。 そして、 一回の抽出でこれを使い切ることができるため、 被測 定対象の違いによる測定誤差が生じない特徴がある。 また、 水溶液を保 持する槽を隔壁で分離しこの槽を脱着可能にすることにより、 各槽での 処理において最適な条件を設定することができ、 効率のよい抽出が可能 になる。 また、 核酸を含む水溶液を移動させるため、 輸送能力が向上し 抽出のスル一プッ トを向上させることができる。 さらに、 この遠心力を 用いて核酸を含む水溶液として血液を処理すれば、 遠心分離の効果で血 清を得ることができるため、 抽出のスループッ トを向上させることがで きる。 図面の簡単な説明  With the above configuration, the aqueous solution containing nucleic acids is stored in the tank for each component, and therefore, the aqueous solution containing a large amount of nucleic acids is not limited to the volume per unit length of the flow path connecting them. Can be processed. 'In addition, since all processes can be automated, accurate extraction can be performed without contamination. In addition, the tank holding the aqueous solution is separated by a partition wall, and this tank is manufactured by plastic injection shaping, so that the cost can be reduced. And since it can be used up in one extraction, there is no measurement error due to the difference of the measurement target. In addition, by separating the tank holding the aqueous solution with a partition and making this tank detachable, it is possible to set optimal conditions for the treatment in each tank, and it becomes possible to perform efficient extraction. Further, since the aqueous solution containing the nucleic acid is moved, the transport capacity is improved, and the throughput of extraction can be improved. Furthermore, if blood is treated as an aqueous solution containing nucleic acids using this centrifugal force, serum can be obtained by the effect of centrifugation, and thus the throughput of extraction can be improved. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の第 1 の実施例による核酸を含む水溶液から核酸を 抽出するデバイスの外観図、 第 2図は、 第 1の実施例による核酸を含む 水溶液から核酸を抽出するデバイスを遠心または攪拌するための機構を 説明するための外観図、 第 3図は、 第 1の実施例による核酸を含む水溶 液から核酸を抽出するデバイスを用いて核酸を抽出する手順を示す図、 第 4図は、 第 Γの実施例による核酸を含む水溶液から核酸を抽出するデ バイスにおける、 これを遠心または攪拌するための機構と開閉機構の動 作の関連を示す図、 第 5図は、 第 1の実施例による核酸を含む水溶液か ら核酸を抽出するデバイスの機能を説明する図、 第 6図は、 第 1の実施 例による核酸を含む水溶液から核酸を抽出するデバイスの機能を説明す る図、 第 7図は、 本発明の第 2の実施例による核酸を含む水溶液から核 酸を抽出するデバイスの外観図、 第 8図は、 第 2の実施例による核酸を 含む水溶液から核酸を抽出するデバイスを用いて核酸を抽出する手順を 示す図、 第 9図は、 第 2の実施例による核酸を含む水溶液から核酸を抽 出するデバイスにおける、 これを遠心または攪拌するための機構と開閉 機構の動作の関連を示す図である。 発明を実施するための最良の形態 FIG. 1 shows that nucleic acid is dissolved from an aqueous solution containing nucleic acid according to the first embodiment of the present invention. FIG. 2 is an external view of a device for extracting nucleic acids from an aqueous solution containing nucleic acids according to the first embodiment, FIG. 2 is an external view for explaining a mechanism for centrifuging or stirring the device, and FIG. FIG. 4 is a view showing a procedure for extracting a nucleic acid from an aqueous solution containing a nucleic acid using the device according to the first embodiment, and FIG. 4 is a diagram showing a device for extracting a nucleic acid from an aqueous solution containing a nucleic acid according to the second embodiment. Fig. 5 is a diagram showing the relationship between the operation of a mechanism for centrifuging or agitating the device and the operation of an opening / closing mechanism in Fig. 5; FIG. 6 is a diagram illustrating the function of a device for extracting nucleic acid from an aqueous solution containing nucleic acids according to the first embodiment. FIG. 7 is a diagram illustrating the function of a device containing nucleic acids according to a second embodiment of the present invention. Debye to extract nucleic acid FIG. 8 is a diagram showing a procedure for extracting a nucleic acid using a device for extracting a nucleic acid from an aqueous solution containing a nucleic acid according to the second embodiment, and FIG. 9 is a diagram showing a procedure for extracting the nucleic acid according to the second embodiment. FIG. 4 is a diagram showing the relationship between the operation of a mechanism for centrifuging or agitating the device and the operation of an opening / closing mechanism in a device for extracting nucleic acid from a contained aqueous solution. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の一実施例を図面に従い詳細に説明する。  Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
第 1図 ( a ) は、 核酸を含む水溶液から核酸を抽出するため、 回転円 盤上に形成された、 開閉機構を備えた流路で連結された複数の槽を示し たものである。 本実施例では、 特に、 核酸を含む水溶液としてヒトの全 血を例に述べるが、 生物の体液であって核酸を含むもの、 または、 核酸 を含む組織を水に懸濁した水溶液についても同様に抽出できる。  FIG. 1 (a) shows a plurality of tanks formed on a rotating disk and connected by a flow path having an opening / closing mechanism for extracting nucleic acids from an aqueous solution containing nucleic acids. In this example, human whole blood is particularly described as an example of an aqueous solution containing nucleic acids. However, the same applies to biological fluids containing nucleic acids or aqueous solutions in which tissues containing nucleic acids are suspended in water. Can be extracted.
第 1図 (b ) は、 第 1図 ( a ) の槽と流路の部分の拡大図である。 円 盤 1 0 0には複数の槽が形成されている。 又、 円盤 1 0 0は、 駆動機構 に取付けて回転させるための装着用の穴 1 0 2が設けてある。 円盤 1 0 0には、 次に述べる各層が設けてある。 分析用のサンプルである全血を 保持するためのサンプル保持槽 1 0 4と、 全血から血清を分離するため の分離槽 1 0 6 と、 核酸を内包する核壁から核酸を取り出すための抽出 槽 1 0 8と、水溶液中に拡散した核酸を収集するための回収槽 1 1 0 と、 抽出した核酸を保持する核酸保持槽 1 1 2である。 サンプル保持槽 1 0 4と分離槽 1 0 6は流路 1 1 4で連結してある。 分離槽 1 0 6 と抽出槽 1 0 8とは流路 1 1 6で連結してある。 この流路 1 1 6には途中に溶液 の移動を制御するための開閉機構 1 2 2を備えている。 流路 1 1 8は、 抽出槽 1 0 8 と回収槽 1 1 0とを連結し、 その途中に溶液の移動を制御 する開閉機構 1 2 4を備えている。 流路 1 2 0は、 回収槽 1 1 0と核酸 保持槽 1 1 2 とを連結し、 その途中に溶液の移動を制御する開閉機構 1 2 6を備えている。 配線 1 2 8、 と配線 1 3 0と、 配線 1 3 2 とは各開 閉機構 1 2 2 、 1 2 4、 1 2 6を制御するため、 穴 1 0 2を介して円盤 1 0 0の外部にある (図示しない) 制御装置に接続されている。 本実施 例の開閉機構は電磁力で開閉する電磁弁で構成してあるが、 本方式に限 らず 1つの駆動系で歯車等を切り替えて開閉する方式等でもよい。 FIG. 1 (b) is an enlarged view of a portion of the tank and the flow channel in FIG. 1 (a). The disk 100 has a plurality of tanks formed therein. The disk 100 is provided with a mounting hole 102 for being mounted on a drive mechanism and rotated. Disk 1 0 0 has the following layers. A sample holding tank 104 for holding whole blood as a sample for analysis, a separation tank 106 for separating serum from whole blood, and an extraction for removing nucleic acids from a nuclear wall containing nucleic acids A tank 108, a collection tank 110 for collecting nucleic acids diffused in the aqueous solution, and a nucleic acid holding tank 112 for holding extracted nucleic acids. The sample holding tank 104 and the separation tank 106 are connected by a flow path 114. The separation tank 106 and the extraction tank 108 are connected by a flow path 116. The flow path 1 16 is provided with an opening / closing mechanism 122 for controlling the movement of the solution on the way. The flow path 118 connects the extraction tank 108 and the recovery tank 110, and includes an opening / closing mechanism 124 for controlling the movement of the solution in the middle thereof. The flow path 120 connects the collection tank 110 and the nucleic acid holding tank 112 and has an opening / closing mechanism 126 for controlling the movement of the solution in the middle thereof. Wiring 1 2 8, wiring 1 3 0, and wiring 1 3 2 are connected to the disc 1 0 0 through the hole 10 2 to control the respective opening and closing mechanisms 1 2 2, 1 2 4 and 1 2 6. Connected to an external (not shown) controller. Although the opening / closing mechanism of this embodiment is configured by an electromagnetic valve that opens and closes with an electromagnetic force, the present invention is not limited to this method, and a system that switches gears and the like with a single drive system to open and close may be used.
サンプル保持槽 1 0 4には、 全血を注入する穴 1 0 3が設けられてい る。この穴以外の各槽と各流路とば外気を遮断するため密閉されており、 異物の進入を防いでいる。  The sample holding tank 104 is provided with a hole 103 for injecting whole blood. Each tank except for this hole and each flow path are sealed to shut off outside air, preventing foreign matter from entering.
第 2図は、 槽を含む円盤 1 0 ◦について、 これを回転させて遠心力を 発生させる機構と、 円盤 1 0 0中の槽に含まれる溶液を撹拌するための 機構を示したものである。 円盤 1 0 0と回転軸 2 0 0およびモーター 2 0 2は、 円盤 2 0 4に搭載される。 この円盤 2 0 4は、 モ一夕一 2 0 8 の回転軸 2 0 6によって回転駆動される。 本実施例では、 円盤 1 0 0の 回転軸 2 0 0中心と、 円盤 2 0 4の回転軸 2 0 6中心とは所定の距離を 開けて取付けられている。 このように、 間隔を開けて回転軸を設けるこ とで、 後述するように各槽に加わる遠心力を大きくすることができる。 すなわち、 円盤 1 0 0を保持する回転軸で回転しながら、 これら全体を 円盤 2 0 4の回転軸 2 0 6と回転軸中心をずらして駆動する所謂遊星運 動をさせている。 、 Fig. 2 shows a mechanism for generating centrifugal force by rotating the disk 10 ° including the tank and a mechanism for stirring the solution contained in the tank in the disk 100 °. . The disk 100, the rotating shaft 200 and the motor 202 are mounted on the disk 204. The disk 204 is rotationally driven by a rotating shaft 206 of the motor 208. In this embodiment, the center of the rotation axis 200 of the disk 100 and the center of the rotation axis 206 of the disk 204 are attached with a predetermined distance therebetween. In this way, it is necessary to provide a rotating shaft at intervals. Thus, as described later, the centrifugal force applied to each tank can be increased. That is, while rotating around the rotating shaft holding the disk 100, the whole of them is driven in a so-called planetary motion in which the center of the rotating shaft is shifted from the rotating shaft 206 of the disk 204. ,
円盤 2 0 4には、 配線 2 1 2、 2 1 4、 2 1 6が設けられおり、 この 配線は回転円盤 1 0 0に設けた配線 1 2 8、 1 3 0、 1 3 2に接続され ている。 また、 円盤 2 0 4上には、 モーター 2 0 2を駆動制御するため の配線 2 1 8、 2 2 0も設けてある。 円盤 1 0 0上にある各開閉機構と モーター及び円盤 2 0 4を回転するためのモータ 2 0 8の動作は、 制御 線 2 3 2を介して制御装置 2 3 0で集中的に制御される。  The disk 204 is provided with wires 2 1 2, 2 1 4 and 2 16, which are connected to the wires 1 2 8 1 3 0 and 1 3 2 provided on the rotating disk 100. ing. In addition, wirings 218 and 220 for driving and controlling the motor 202 are provided on the disk 204. The operation of each opening / closing mechanism on the disk 100, the motor, and the motor 208 for rotating the disk 204 is centrally controlled by the control device 230 via the control line 232. .
第 3図 ( a ) から第 3図 ( f ) は、 全血から核酸を抽出する動作を説 明するため図である。 なお、 第 3図 ( a ) から第 3図 ( f ) では、 第 1 図又は第 2図には図示していない、 核酸を内包する核壁から核酸を取り 出すためにタンパク質の変性作用がある薬品 3 0 0を抽出槽 1 0 8の中 に、核酸よりも水分子と結合が容易な薬品 3 0 2を回収槽 1 1 0の中に、 予め決められた量だけ保持している。 また、 矢印 1 0 0 0は、 円盤 1 0 0が回転することによって発生する遠心力の方向を示している。  FIGS. 3 (a) to 3 (f) are diagrams for explaining the operation of extracting nucleic acids from whole blood. In FIGS. 3 (a) to 3 (f), there is a protein denaturing effect for removing nucleic acids from the nuclear wall encapsulating nucleic acids, which is not shown in FIG. 1 or FIG. A predetermined amount of the drug 300 is held in the extraction tank 108, and the drug 302, which is easier to bind to water molecules than the nucleic acid, is stored in the recovery tank 110. The arrow 100 0 indicates the direction of the centrifugal force generated by the rotation of the disk 100.
第 3図 ( a ) は円盤 1 0 0が静止状態にあるときを示したものである。 このとき採血した全血 3 1 0を、 注入穴 1 0 3からサンプル保持槽 1 0 4に注入する。  FIG. 3 (a) shows a state in which the disk 100 is stationary. At this time, 310 whole blood collected is injected into the sample holding tank 104 from the injection hole 103.
次に、 第 3図 ( b ) は円盤 1 0 0を分離槽 1 0 6付近において遠心力 が 1 5 0 0 G以上になるよう回転させたときを示したものである。 全血 3 1 0はサンプル保持槽 1 0 4から分離槽 1 0 6に移動する。 そして、 この回転を 5分程度続けると、 分離槽 1 0 6では遠心力によって、 血清 以外の物質 3 1 4が円盤 1 0 0の外周側に、 血清 3 1 2が回転中心側に 分布する。 このとき、 円盤 1 0 0の回転数が高いほど、 分離槽 1 0 6で 血清と血清以外の成分とが分離する時間を短くできる。 前述のような分 離状態となるため、 分離された純度の高い血清を次の抽出層 1 0 8に送 るためには、分離槽における流路 1 1 4の出口を円盤 1 0 0の外周側に、 流路 1 1 6の入り口を円盤 1 0 0の回転中心側に設置することが望まし い。 分離された血清 3 1 2は、 流路 1 1 6を通って予め開いていた開閉 機構 1 2 2を通り抜けて抽出槽 1 0 8に移動する。 Next, FIG. 3 (b) shows the case where the disk 100 is rotated near the separation tank 106 so that the centrifugal force becomes 150 G or more. The whole blood 310 moves from the sample holding tank 104 to the separation tank 106. When this rotation is continued for about 5 minutes, substances 3 14 other than serum are distributed on the outer periphery of the disc 100 and serum 3 12 is distributed on the rotation center side in the separation tank 106 by centrifugal force. At this time, the higher the rotation speed of the disk 100, the more the separation tank 106 The time for separating serum and components other than serum can be shortened. In order to send the separated high-purity serum to the next extraction layer 108 because of the separation state described above, the outlet of the flow path 114 in the separation tank should be It is desirable that the entrance of the flow path 1 16 be located on the side of the center of rotation of the disk 100. The separated serum 312 passes through the flow path 1 16, passes through the opening / closing mechanism 1 2 2 previously opened, and moves to the extraction tank 108.
第 3図 ( c ) は、 抽出槽 1 0 8内において、 血清 3 1 2から核酸を抽 出する状態を示したものである。 抽出槽 1 0 8内には、 予めタンパク質 の変性作用をもつ薬品 3 0 0が所定量保持されており、 この薬品 3 0 0 と血清 1 1 2 とが反応する。 なお、 タンパク質の変性作用をもつ薬品 3 0 0 として、 例えば、 フエノールを用いた場合には、 血清が送られてき たとき、 抽出槽 1 0 8内で当初フエノール 3 0 0は油層として、 血清 3 1 2は水層として分離状態にある。 また、 フエノール 3 0 0の量は、 反 応させる血清 1 1 2と同量かそれよりも多いことが望ましい。  FIG. 3 (c) shows a state in which nucleic acids are extracted from the serum 312 in the extraction tank 108. A predetermined amount of a drug 300 having a protein denaturing action is held in the extraction tank 108 in advance, and the drug 300 reacts with the serum 112. For example, when phenol is used as the drug 300 having a protein denaturing effect, when serum is sent, phenol 300 is initially converted to an oil layer in the extraction tank 108, and serum 12 is in a separated state as an aqueous layer. The amount of phenol 300 is preferably equal to or greater than the amount of serum 112 to be reacted.
前述のように、 血清 3 1 2 と薬品 3 0 0が分離状態にあるため、 円盤 1 0 0をモ 夕 2 0 2で回転している状態に加えて、 円盤 2 0 4もモ一 夕 2 0 8で回転させて撹拌することにした。 この時、 流路 1 1 6 と流路 1 1 8の途中にあるそれぞれの開閉機構 1 2 2、 1 2 4は閉じている。 なお、 円盤 1 0 0上の抽出槽 1 0 8において両円盤の回転によって生じ る遠心力が合成される。 このため、 円盤 1 0 0と円盤 2 0 4の回転数は、 遠心力の方向が円盤 1 0 0の回転角度に依存しないような値にする必要 がある。 例えば、 抽出槽 1 0 8は回転軸 2 0 0の中心から 4 5 m mの離 れた位置に設け (抽出槽 1 0 8の直径は 6 m mとする) 、 回転軸 2 0 0 は、 回転軸 2 0 6から 5 1 m mの距離に配置してある。 そして、 円盤 1 0 0の回転数を 5 0 0 r p mとした場合は、 円盤 2 0 4の回転数を 2 0 0 0 r p 'mよりも高くすればよい。 なお、 抽出槽 1 0 8の形は、 図 1か ら第 3図に示したような円形の他、 四角形等、 多角形にすれば核酸を抽 出する効果が高くなる。 As described above, since serum 310 and drug 300 are in a separated state, in addition to rotating disk 100 in motor 202, disk 204 is also in liquid. It was decided to rotate and stir at 08. At this time, the respective opening / closing mechanisms 122 and 124 in the middle of the flow path 116 and the flow path 118 are closed. The centrifugal force generated by the rotation of both disks is synthesized in the extraction tank 108 on the disk 100. For this reason, the rotation speed of the disk 100 and the disk 204 needs to be a value such that the direction of the centrifugal force does not depend on the rotation angle of the disk 100. For example, the extraction tank 108 is provided at a position 45 mm away from the center of the rotation axis 200 (the diameter of the extraction tank 108 is 6 mm), and the rotation axis 200 is the rotation axis. It is located at a distance of 51 mm from 206. When the rotation speed of the disk 100 is set to 500 rpm, the rotation speed of the disk 204 may be set to be higher than 200 rpm rp'm. The shape of the extraction tank 108 is shown in Fig. 1. In addition to the circular shape shown in FIG. 3, if the shape is a polygon such as a square, the effect of extracting nucleic acids is enhanced.
次に、 第 3図 (d ) は、 第 3図 (c ) に示した血清 3 1 2から核酸を 抽出する操作の後、 第 2図に示した円盤 2 0 4の回転を停止し、 円盤 1 0 0を抽出槽 1 0 8付近において、 遠心力が 1 5 0 0 G以上になるよう 回転させたときの状態を示したものである。 このとき、 タンパク質の変 性作用をもつ薬品 3 0 0として、 例えばフエノールを用いた場合には、 フエノール 3 0 0を遠心力が大きくなる部分に、 核酸を含む水溶液 3 1 6は遠心力が小さくなる部分に、 その間にはフエノール 3 0 0によって 変性された血清中の蛋白である (図示しない') アルブミンやグロブリン が層状に分布する。 次に、 流路 1 1 8中にある開閉機構 1 2 4を開く と、 核酸を含む水溶液 3 1 6が抽出槽 1 0 8から回収槽 1 1 0に移動する。 次に、 第 3図 ( e ) には、 核酸を含む水溶液 3 1 6から核酸濃度を高 く した微量の溶液を取り出す、 いわゆる遠心分離操作を示したものであ る。 回収槽 1 1 0には、 予め、 核酸よりも水分子と結合が容易な薬品 3 0 2が保持されている。 そして、 薬品 3 0 0 と核酸を含む水溶液 3 1 6 を反応させる。 核酸よりも水分子と結合が容易な薬品 3 0 2として、 例 えば、 エタノールアルコールを用いると、 水溶液 3 1 6中の水分子とェ 夕ノールアルコール 3 0 2の分子が結合し、 核酸を溶かしていた水の容 量が少なくなる。 このため、 核酸は析出する。 さらに、 核酸の密度が周 りの水やエタノールアルコール 3 0 2よりも大きいため、 遠心力 1 (3 0 0の方向に沈殿する。 このときの遠心力 1 0 0 0は、 大きいほど早く核 酸が沈殿し、 1 0 0 0 0 G以上であることが望ましい。 また、 ェタノ一 ルアルコール 3 0 2の量は、 これと反応させる水溶液 3 1 6の 2 . 5倍 量がそれよりも多.いことが望ましい。 このため、 回収槽 1 1 0は、 抽出 槽 1 0 8や分離槽 1 0 6と比べて、 その容積が大きくなるように、 その 寸法においてより深い槽となっている。 ここで、 核酸よりも水分子と結 合が容易な薬品 3 0 2として、 例えば、 イソプロピルアルコールを用れ ば、 この量は、 これと反応させる水溶液 3 1 6の量と等量でよい。 Next, FIG. 3 (d) shows that after the operation of extracting nucleic acids from serum 312 shown in FIG. 3 (c), the rotation of the disk 204 shown in FIG. This figure shows the state when 100 is rotated near the extraction tank 1108 so that the centrifugal force becomes 150 G or more. At this time, for example, when phenol is used as the drug 300 having a protein-degrading action, the phenol 300 has a small centrifugal force in the portion where the centrifugal force increases, and the aqueous solution 3 In between, albumin and globulin, which are proteins in serum (not shown) denatured by phenol 300, are distributed in layers. Next, when the opening / closing mechanism 124 in the flow path 118 is opened, the aqueous solution 316 containing nucleic acid moves from the extraction tank 108 to the recovery tank 110. Next, FIG. 3 (e) shows a so-called centrifugal separation operation of taking out a very small amount of the solution having an increased nucleic acid concentration from the aqueous solution 316 containing the nucleic acid. The recovery tank 110 previously holds a drug 302 that is easier to bind to water molecules than nucleic acids. Then, the chemical 300 and the aqueous solution 316 containing nucleic acid are reacted. For example, when ethanol alcohol is used as a drug 302 that is easier to bind to water molecules than nucleic acids, water molecules in the aqueous solution 3 16 and molecules of ethanol alcohol 302 bind to dissolve the nucleic acids. The amount of water that was being used is reduced. For this reason, nucleic acids are precipitated. Furthermore, since the density of the nucleic acid is higher than that of the surrounding water or ethanol alcohol 302, the centrifugal force 1 (precipitates in the direction of 300. The larger the centrifugal force 100, the faster the nucleic acid becomes. Is desirably 1000 g or more.The amount of ethanol alcohol 302 is 2.5 times larger than that of aqueous solution 3 16 to be reacted with ethanol. For this reason, the recovery tank 110 is designed so that its volume is larger than that of the extraction tank 108 and the separation tank 106. It is a deeper tank in size. Here, for example, when isopropyl alcohol is used as the chemical 302 that is easier to bind to a water molecule than a nucleic acid, this amount may be equal to the amount of the aqueous solution 316 to be reacted therewith.
第 1図から第 3図に示す構成によれば、 遠心力 1 0 0 0が最大になる 所としては、 流路 1 2 0の途中にある開閉機構 1 2 6付近になる。  According to the configuration shown in FIG. 1 to FIG. 3, the location where the centrifugal force 1000 becomes maximum is near the opening / closing mechanism 126 in the middle of the flow path 120.
次に、 第 3図 ( f ) には流路 1 2 0の途中にある開閉機構 1 2 6付近 に沈殿した核酸を、 付近の水溶液と共に核酸保持槽 1 1 2に移動させる 操作を示したものである。 このときも、 回収槽 1 1 0には遠心力が 1 0 0 0 0 G以上かかっていることが望ましい。 この重力下で、 流路 1 2 0 の途中にある開閉機構 1 2 6をきわめて短い時間開閉することにより、 核酸濃度が高い溶液を核酸保持槽 1 1 2に移動できる。 例えば、 遠心力 1 0 0 0 0 G、 流路 1 2 0の断面積が 1平方 m m、 開閉時間 1 m秒のと き、 核酸保持槽 1 1 2中には、 5 0マイクロリッ トルの溶液が保持でき る。 また、 核酸保持槽 1 1 2の容積が予め目的の容量に設定されている ときには、 開閉機構 1 2 6を短時間に開閉する必要はなく、 核酸保持槽 1 1 2の中に溶液が満たされるまで開閉機構 1 2 6を開けておけばよい, 第 4図 ( a ) には、 各モータと、 開閉機構の制御シーケンスを示した ものである。 すなわち、 制御装置 2 3 0が円盤 1 0 0を回転させるモー 夕一 2 0 2と、 円盤 2 0 4を回転させるモーター 2 0 8 と、 円盤 1 0 0 上の開閉機構 1 2 2、 1 2 4、 1 2 6について、 処理状態における動作 状況を示したものである。 ただし、 各槽の円盤 1 0 0上での位置関係は 第 4図 (b ) に示した通りである。 また、 回転軸 2 0 0の中心と回転軸 2 0 6の中心との距離は 5 1 m mとしている。 また、 グラフの横軸は実 時間ではなく、 グラフ下部に記した処理内容としている。  Next, FIG. 3 (f) shows the operation of moving the nucleic acid precipitated near the opening / closing mechanism 126 in the middle of the channel 120 to the nucleic acid holding tank 112 together with the nearby aqueous solution. It is. Also at this time, it is desirable that centrifugal force of 1000 G or more is applied to the recovery tank 110. By opening and closing the opening and closing mechanism 126 in the middle of the flow path 120 for a very short time under this gravity, the solution having a high nucleic acid concentration can be moved to the nucleic acid holding tank 112. For example, if the centrifugal force is 100 000 G, the cross-sectional area of the flow path 120 is 1 mm2, and the opening and closing time is 1 ms, 50 microliters of solution will be contained in the nucleic acid holding tank 112. Can be maintained. In addition, when the volume of the nucleic acid holding tank 112 is set to a target volume in advance, it is not necessary to open and close the opening / closing mechanism 126 in a short time, and the solution is filled in the nucleic acid holding tank 112. The open / close mechanism 126 may be opened up to this point. FIG. 4 (a) shows the control sequence of each motor and the open / close mechanism. That is, the control device 230 drives the disk 210 to rotate the motor 210, the motor 204 rotates the disk 204, and the opening / closing mechanism 122 on the disk 100. 4 and 1 26 show the operation status in the processing state. However, the positional relationship of each tank on the disk 100 is as shown in Fig. 4 (b). The distance between the center of the rotation axis 200 and the center of the rotation axis 206 is 51 mm. Also, the horizontal axis of the graph is not real time, but the processing content shown at the bottom of the graph.
以上述べたように、 本実施例によれば、 核酸保持槽 1 1 2中の溶液に. 含まれる核酸の量は、 サンプル保持槽 1 0 4に注入される全血量に比例 して増加する。 核酸保持槽 1 1 2中の溶液量は、 流路 1 2 0の途中にあ る開閉機構 1 2 6付近に局在する溶液量に限定される。 そのため、 採血 した全血 3 1 0に含まれる核酸量が少ない場合には、 全血量を増やすこ とで最終的に得られる溶液 3 2 0中に含まれる核酸量を増やすことがで き、 高感度な核酸抽出を行うことができる。 As described above, according to this example, the amount of nucleic acid contained in the solution in the nucleic acid holding tank 112 is proportional to the amount of whole blood injected into the sample holding tank 104. And increase. The amount of the solution in the nucleic acid holding tank 112 is limited to the amount of the solution localized near the opening / closing mechanism 126 in the middle of the channel 120. Therefore, when the amount of nucleic acid contained in the collected whole blood 310 is small, the amount of nucleic acid contained in the finally obtained solution 320 can be increased by increasing the amount of whole blood. Highly sensitive nucleic acid extraction can be performed.
逆に、 全血 3 1 0に含まれる核酸量が多い場合には、 全血量を少なく することで、 最終的に得られる溶液 3 2 0中に含まれる核酸量を調整す ることができ、 幅広い核酸濃度をもつ全血に対応することができる。 ま た、 全血 3 1 0から核酸を多く含む溶液 3 2 0まで、 複数の槽とこれを 結ぶ流路の中で処理が行われるため.、 異物の進入の恐れがなく正確な抽 出ができる。  Conversely, when the amount of nucleic acid contained in whole blood 310 is large, the amount of nucleic acid contained in final solution 320 can be adjusted by reducing the amount of whole blood. It can handle whole blood with a wide range of nucleic acid concentrations. In addition, since the whole blood, from 310 to solution containing a large amount of nucleic acid, is processed in a plurality of tanks and a flow path connecting them, accurate extraction is possible without the risk of foreign matter entering. it can.
以上述べた実施例では、 円 1 0 0上に設置した各槽と、 各流路と、 注入口 1 0 3は、 円盤 1 0 0を形成する材料を直接く り抜いて一体形成 することができる。 一体形成すれば、 円盤 1 0 0を小型化でき処理コス 卜の低減を図ることができる。 これは、 円盤 1 0 0をデイスポーザブル 化が容易なことを意味し、 検体間のコンタミネーシヨ ンをなくすことが できるという効果も得られる。 円盤 1 0 0を形成する材料としては、 ポ リプロピレンやフッ素樹脂が適している。 この他にも、 全血にその成分 が解け出さず、 タンパク質の変性作用をもつ薬品 3 0 0 に犯されない材 料であれば適用可能である。 さら 、 槽ゃ流路を形成する材料として、 整形性の良いポリカーボネ一ト樹脂を用いるときには、 この表面をフッ 素樹脂で被覆すれば、 円盤 1 0 0の強度と処理における異物の混入を避 ける'ことができ、 しかも、 低コス トで円盤 1 0 0を構成することができ るという効果がある。 また、 槽ゃ流路を形成する材料として、 アルミ二 ゥム等 3価のイオンを溶出する材料も利用することができる。 前記材料 を用いることで、 槽等の立体的な形状をプレス加工することができ、 製 造コストを押さえることができる。 In the embodiment described above, each tank, each flow path, and the inlet port 103 set on the circle 100 can be integrally formed by directly cutting out the material forming the disc 100. it can. If they are integrally formed, the disk 100 can be made smaller and the processing cost can be reduced. This means that the disc 100 can be easily made disposable, and the effect of eliminating contamination between samples can be obtained. Polypropylene or fluororesin is suitable as a material for forming the disk 100. In addition, any material that does not dissolve its components in whole blood and is not violated by a drug 300 having a protein denaturing effect can be applied. Further, when a polycarbonate resin having good formability is used as a material for forming the tank and the flow path, if this surface is coated with a fluororesin, the strength of the disk 100 and the intrusion of foreign matter during processing can be avoided. And the disk 100 can be formed at low cost. Further, as a material for forming the tank / flow path, a material that elutes trivalent ions such as aluminum can be used. By using the material, a three-dimensional shape such as a tank can be pressed. Production costs can be reduced.
また、 円盤 1 0 0上に設けた各槽と各流路とを、 それぞれ別々にポリ プロピレンの射出整形で形成し、 これらを円盤 1 ◦ 0上に配置するとと もに、 接着にて連結して製作してもよい。 このようにして製作すると、 各槽の容積を検体に応じて調整または選択でき、 各槽での処理条件を最 適化することができ、 効率のよい核酸抽出を行うことができるという効 果が得られる。  In addition, each tank and each flow path provided on the disk 100 are formed separately by injection molding of polypropylene, and these are arranged on the disk 100 and connected by bonding. May be manufactured. When manufactured in this manner, the volume of each tank can be adjusted or selected according to the sample, the processing conditions in each tank can be optimized, and the nucleic acid can be extracted efficiently. can get.
第 5図に他の実施例を示す。 本実施例は、 先の実施例の抽出槽 1 0 8 (本実施例では第 1の抽出槽称す) と回収槽 1 1 0の間に、 新たに流路 1 1 6 0と開閉機構 1 2 2 0と第 2の抽出槽 1 0 8 0を設置したもので ある。 第 2の抽出槽 1 0 8 0内には、 予め、 タンパク質の変性作用をも つ薬品 3 0 0 0 としてフエノールを保持している。 この第 2の抽出槽 10 8 0では、 第 1の抽出槽 1 0 8で抽出した核酸を含む水溶液を、 さら に薬品 3 0 0 0で再抽出を行う構成にしたものである。 本構成にするこ とで、 回収槽 1 1 0に移動する溶液に含まれるタンパク質を、 先の構成 の場合に比べさらに少なくすることができ、 核酸の抽出精度を向上させ る効果が得られる。  FIG. 5 shows another embodiment. In this embodiment, a new flow path 1 16 0 and an opening / closing mechanism 1 2 are provided between the extraction tank 108 of the previous embodiment (referred to as the first extraction tank in this embodiment) and the collection tank 110. 20 and a second extraction tank 1 080 were installed. In the second extraction tank 1800, phenol is previously stored as a drug 30000 having a protein denaturing action. In the second extraction tank 1800, the aqueous solution containing the nucleic acid extracted in the first extraction tank 1108 is re-extracted with a chemical 30000. With this configuration, the amount of protein contained in the solution that moves to the recovery tank 110 can be further reduced as compared with the case of the previous configuration, and the effect of improving the accuracy of nucleic acid extraction can be obtained.
第 6図さらに他の実施例の構成を示す。本構成では、 回収槽 1 1 0 (本 実施例では第 1の回収槽と称する) と核酸保持槽 1 1 2の間に、 新たに 流路 1 2 0 0 と開閉機構 1 2 4 0と第 2の槽 1 1 0 0を設置した構成と したものである。 第 2の回収槽 1 1 0 0内には、 予め、 第 1の回収槽 1 1 0と同様にエタノールアルコール 3 0 2を保持しておき、 第 1 の回収 槽 1 1 0で核酸を含む水層から核酸濃度を高くした微量の液を取り出す, その後、 さらに、 第 2の回収槽 1 1 0 0で、 この微量の液とエタノール アルコール 3 0 2を混合して遠心分離操作を行い、 再度核酸濃度を高く した微量の溶液を取り出す構成とした。 従って、 核酸保持槽 1 1 2に移 動する溶液に含まれる糖分をさらに少なくすることができ、 核酸の抽出 精度を向上させる効果が得られる。 FIG. 6 shows the configuration of still another embodiment. In this configuration, between the collection tank 110 (referred to as the first collection tank in the present embodiment) and the nucleic acid holding tank 112, a new flow path 1200 and an opening / closing mechanism 124 are added. This is a configuration in which two tanks 110 are installed. In the second collection tank 110, ethanol alcohol 302 is held in advance similarly to the first collection tank 110, and the water containing nucleic acid is stored in the first collection tank 110. Take out a small amount of the nucleic acid with a higher nucleic acid concentration from the layer.After that, in the second recovery tank 110, mix this small amount of the solution with ethanol alcohol 302, perform centrifugation, and re- It was designed to take out a small amount of solution with a high concentration. Therefore, transfer to the nucleic acid holding tank 1 1 2 The amount of sugar contained in the moving solution can be further reduced, and the effect of improving the accuracy of nucleic acid extraction can be obtained.
なお、 上記実施例では円盤 1 0 0上にはサンプルである全血を注入す る注入穴 1 0 3 とサンプル保持槽 1 0 4から核酸保持槽 1 1 2までの処 理設備を 1つ設けた例で説明したが、 複数設置しても同様の効果を得る ことができる。 複数の処理設備を 1つの円盤上に設けることで、 複数の 核酸を含む水溶液からそれぞれ核酸を抽出する処理において、 単位時間 辺りの処理数を増やす効果が得られる。  In the above embodiment, an injection hole 103 for injecting whole blood as a sample and one processing equipment from the sample holding tank 104 to the nucleic acid holding tank 112 are provided on the disk 100. As described above, the same effect can be obtained by installing a plurality of the devices. Providing a plurality of processing facilities on a single disk has the effect of increasing the number of processes per unit time in the process of extracting nucleic acids from aqueous solutions containing a plurality of nucleic acids.
以下、 本発明の他の実施例を、 第 7図を用いて詳細に説明する。  Hereinafter, another embodiment of the present invention will be described in detail with reference to FIG.
第 7図は、 核酸を含む水溶液から核酸を抽出するため、 円盤上に円周 方向に複数の部屋を設け、 部屋の間の隔壁には開閉機構を備えた構成と したものである。 本実施例では円盤は時計周りに回転するものとして説 明する。  FIG. 7 shows a configuration in which a plurality of rooms are provided on a disk in a circumferential direction to extract nucleic acids from an aqueous solution containing nucleic acids, and a partition between the rooms is provided with an opening / closing mechanism. In this embodiment, the disk is described as rotating clockwise.
円盤 7 0 0には、 回転方向および円周方向に隔壁で仕切られた複数の 槽 (部屋) が設けてある。 円盤 7 0 0には、 円盤 7 0 0を回転させるた めの機構 (回転軸) に装着するための穴 7 0 2が設けてある。 また、 円 盤内には全血を保持するためのサンプル保持槽 7 0 6と、 全血から血清 を分離するための分離槽 7 1 2 と、 核酸を内包する核壁から核酸を取り 出すための抽出槽 7 1 8と、 水溶液中に拡散した核酸を収集す.るための 回収槽 7 2 4と、 核酸よりも水分子と結合が容易な薬品を保持する薬品 槽 7 3 0 と、抽出した核酸を保持する核酸保持槽 7 3 6 とが設けてある。 図のように、 サンプル保持槽 7 0 6の外周側に設けられた分離槽 7 1 2は、 隔壁 7 0 7で分画され、 両者は開閉機構としての遠心力とバネ 7 1 0で制御される封止子 7 0 8で連結されている。 分離槽 7 1 2と抽出 槽 7 1 8は隔壁 7 1 7で分画され、 両者は開閉機構としての遠心力とバ ネ 7 1 6で制御される封止子 7 1 4で連結されている。 抽出槽 7 1 8 と 回収槽 7 2 4は、 隔壁 7 2 3で分画され、 開閉機構としての遠心力とバ ネ 7 2 2で制御される封止子 7 2 0と封止子 7 2 1で連結されている。 なお、 隔壁 7 2 3は、 サンプル保持槽 7 0 6 と回収槽の隔壁としても用 いられている。 回収槽 7 2 4と藥品槽 7 3 0は隔壁 7 2 9で分画され、 両者は開閉機構としての遠心力とパネ 7 2 8で制御される封止子 7 2 6 で連結されている。 回収槽 7 2 4と核酸保持槽 7 3 6は、 開閉機構とし ての遠心力とバネ 7 3 4で制御される封止子 7 3 2で連結されている。 また、 サンプル保持槽 7 0 6の上面には全血を注入する注入穴 7 0 4が 設置されている。 The disk 700 is provided with a plurality of tanks (rooms) partitioned by partition walls in the rotation direction and the circumferential direction. The disk 700 is provided with a hole 720 for mounting on a mechanism (rotary shaft) for rotating the disk 700. The disc also has a sample holding tank 706 for holding whole blood, a separation tank 712 for separating serum from whole blood, and a nucleic acid for removing nucleic acids from a nuclear wall containing nucleic acids. Extraction tank 7 18, collection tank 7 2 4 for collecting nucleic acids diffused in aqueous solution, and chemical tank 7 30 holding chemicals that bind water molecules more easily than nucleic acids And a nucleic acid holding tank 736 for holding the prepared nucleic acid. As shown in the figure, the separation tank 712 provided on the outer peripheral side of the sample holding tank 706 is fractionated by a partition wall 707, and both are controlled by a centrifugal force as an opening / closing mechanism and a spring 710. Are connected by a sealer 708. Separation tank 7 12 and extraction tank 7 18 are separated by partition wall 7 17, and both are connected by a centrifugal force as an opening and closing mechanism and a seal 7 14 controlled by a spring 7 16 . Extraction tank 7 1 8 and The recovery tank 724 is fractionated by a partition wall 723, and is connected by a sealer 702 and a sealer 721 controlled by a centrifugal force as an opening / closing mechanism and a spring 722. . Note that the partition wall 723 is also used as a partition wall of the sample holding tank 706 and the recovery tank. The collection tank 724 and the pharmaceutical tank 730 are separated by a partition 729, and both are connected by a centrifugal force as an opening / closing mechanism and a sealer 726 controlled by a panel 728. The recovery tank 724 and the nucleic acid holding tank 736 are connected by a seal 732 controlled by a centrifugal force as an opening / closing mechanism and a spring 734. An injection hole 704 for injecting whole blood is provided on the upper surface of the sample holding tank 706.
次に、 第 8図 ( a ) から第 8図 ( f ) を用いて、 円盤 7 0 0を用いた 核酸抽出の動作を説明する。  Next, the operation of nucleic acid extraction using the disk 700 will be described with reference to FIGS. 8 (a) to 8 (f).
第 8図 ( a ) において、 円盤 7 0 0静止させた状態で、 注入穴 7 0 4 から全血 7 5 0を注入する。 このとき、 封止子 7 0 8は閉じており、 全 血 7 5 0がサンプル保持槽 7 0 6に閉じ込められる。 また、 抽出槽 7 1 8には、 予めタンパク質の変性作用をもつ薬品 7 5 2力 薬品槽 7 3 0 には核酸よりも水分子と結合が容易な薬品 7 5 4が保持されている。 次に、 円盤 7 0 0を回転(時計回りに回転)する。 すると、 第 8図 (b ) に示すように、 円盤 7 0 0の最外周における遠心力が 1 5 0 0 G以上に なる回転数に達すると、 封止子 7 0 8 と封止子 7 1 4が開き、 サンプル 保持槽 7 0 6に保持されていた全血 7 5 0は、分離槽 7 1 2に移動する。 なお封止子 7 1 4は抽出槽 7 1 8に全血が流れ込まない程度に外周側に 向けて移動して開放状態となってい.る。 分離槽 7 1 2では、 円盤 7 0 0 の外側の遠心力が大きいところに赤血球以外の成分 7 5 6が分布し、 血 清 7 5 8はこれよりも内側に分布する。 そして、 全血 7 5 0がサンプル 保持槽 7 0 6から分離槽 7 1 2に移動するにつれて、 血清 7 5 8は封止 子 7 1 4の先端の開放部分から抽出槽 7 1 8にあふれ出していく。 'この とき、 赤血球以外の成分 7 5 6は封止子 7 1 4を越えることができない ように封止子 7 1 4の開放間隔を設定すると、 抽出槽 7 1 8へは血清の みが移動することになる。 In FIG. 8 (a), with the disk 700 still, the whole blood 750 is injected through the injection hole 704. At this time, the sealer 708 is closed, and the whole blood 750 is confined in the sample holding tank 706. In addition, in the extraction tank 718, a drug 755 having a protein denaturing action is held in advance. In the chemical tank 730, a drug 754 which is easier to bind to water molecules than nucleic acid is held. Next, the disk 700 is rotated (clockwise rotation). Then, as shown in FIG. 8 (b), when the centrifugal force at the outermost circumference of the disk 700 reaches a rotation speed of 150 G or more, the seals 7 08 and 7 1 4 is opened, and the whole blood 750 held in the sample holding tank 706 moves to the separation tank 712. In addition, the sealer 714 moves toward the outer peripheral side to the extent that whole blood does not flow into the extraction tank 718, and is in an open state. In the separation tank 712, components 756 other than erythrocytes are distributed where the centrifugal force is large outside the disk 700, and the serum 758 is distributed further inside. Then, as the whole blood 750 moves from the sample holding tank 706 to the separation tank 712, the serum 758 overflows from the open end of the sealer 714 to the extraction tank 718. To go. 'this At this time, if the opening interval of the sealer 714 is set so that components 756 other than red blood cells cannot exceed the sealer 714, only the serum moves to the extraction tank 718. become.
次に、 第 8図 ( c ) に、 血清 7 5 8が抽出槽 7 1 8に移動し終わり、 円盤 7 0 0の回転数を下げて封止子 7 0 8と封止子 7 1 4が閉じた状態 を示し'ている。 この抽出槽 7 1 8内には予めタンパク質の変性作用をも つ薬品 7 5 2が所定量保持されている。 タンパク質の変性作用をもつ薬 品 7 5 2として、 例えば、 フエノールを用いるときには、 抽出槽 7 1 8 内でフエノール 7 5 2は油層として、 血清 7 5 8は水層として分離状態 にある。 ここで、 フエノール 7 5 2の量は、 これと反応させる血清 7 5 8 と同量かそれよりも多いことが望ましい。  Next, in FIG. 8 (c), the serum 758 has been moved to the extraction tank 718, and the rotation speed of the disk 700 has been reduced. It shows a closed state. A predetermined amount of a drug 752 having a protein denaturing action is held in the extraction tank 718 in advance. When, for example, phenol is used as the drug 752 having a protein denaturing effect, in the extraction tank 718, the phenol 752 is separated as an oil layer and the serum 758 is separated as an aqueous layer. Here, the amount of phenol 752 is desirably equal to or greater than the amount of serum 758 to be reacted therewith.
次に、 血清 7 5 8中の核酸を抽出するために、 フエノール 7 5 2 と血 清 7 5 8を撹拌するする。 そこで、 第 2図における円盤 1 0 0を円盤 7 0 0に代替して、 円盤 7 0 0が回転軸 2 0 0を中心にモーター 2 0 2で 回転している状態に加えて、 これらが搭載された円盤 2 0 4を、 回転軸 2 0 6を中心にモータ一 2 0 8で回転させて遊星運動を利用して撹拌す ることにした。 このとき、 円盤 7 0 0 と円盤 2 0 4の回転数としては、 抽出槽 7 1 8の円盤 7 0 0最外周部分において円盤 7 0 0と円盤 2 0 4 が回転することによって生じる遠心力が合成され、 その合成遠心力の方 向が円盤 7 0 0の回転角度に依存しないような値を用いる。 例えば、 円 盤 7 0 0の半径が 5 0 m mで、 回転軸 2 0 0 と回転軸 2 0 6 との距離が 5 3 m mとし、 さらに円盤 7 0 0の回転数が 5 0 0 r p mの場合は、 円 盤 2 0 4の回転数は 2 0 0 0 r p mよりも高くすればよい。 ただし、 封 止子 7 0 8 と封止子 7 1 4が閉じた状態になる回転数にする。  Next, phenol 752 and serum 758 are stirred to extract nucleic acids in serum 758. Therefore, the disk 100 in Fig. 2 is replaced by the disk 700, and in addition to the state in which the disk 700 is rotated by the motor 202 around the rotation axis 200, these are mounted. The disc 204 thus formed was rotated by a motor 208 around a rotation axis 206 to stir using planetary motion. At this time, the rotation speed of the disk 700 and the disk 204 is the centrifugal force generated by the rotation of the disk 700 and the disk 204 at the outermost periphery of the disk 700 of the extraction tank 718. A value is used so that the direction of the synthesized centrifugal force does not depend on the rotation angle of the disk 700. For example, if the radius of the disk 700 is 50 mm, the distance between the rotation axis 200 and the rotation axis 206 is 53 mm, and the rotation speed of the disk 700 is 500 rpm The rotation speed of the disk 204 may be higher than 2000 rpm. However, the rotation speed is set so that the sealers 708 and 714 are closed.
この撹拌を行った後、 第 2図に示した円盤 2 0 4の回転を停止しする と共に、 円盤 7 0 0の回転数を高くする。 これにより、 抽出槽 7 1 8内 で遠心力が大きいところにフエノール 7 5 2が分布し、 核酸を含む水溶 液 7 6 0はこれよりも内側に分布し、 その間にはフエノ一ル 7 5 2によ つて変性された血清中の蛋白である (図示しない) アルブミンゃグロブ リンが層状に分布する。 After the stirring, the rotation of the disk 204 shown in FIG. 2 is stopped, and the rotation speed of the disk 700 is increased. This allows the extraction tank 7 1 8 The phenol 752 is distributed where the centrifugal force is large, and the aqueous solution 760 containing nucleic acids is distributed further inside, while the phenol 752 is in the serum denatured by the phenol 752. Albumin / globulin, which is a protein (not shown), is distributed in layers.
次に、 第 8図 (d ) は、 抽出槽 7 1 8中に分布した核酸を多く含む水 溶液 7 6 0を、 回収槽 7 2 4に移す操作を示したものである。 このとき、 円盤 7 0 0は、 抽出槽 7 1 8におけるタンパク質の属性作用を持つ薬品 であるフエノール 7 5 2と、 核酸を含む水溶液 7 6 0を分離する回転数 よりも、 さらに、 分離槽 7 1 2において血清 7 5 8 と赤血球以外の成分 7 5 6に分離する回転数よりも高く、 およそ回収槽に 3 0 0 0 Gの遠心 力が生じるようにする。 このとき、 抽出槽 7 1 8 と回収槽 7 2 4を連結 している封止子 7 2 0と封止子 7 2 1のうち、 封止子 7 2 1が遠心力に 応じて移動し、 封止子 7 2 0との間に隙間を発生し、 この隙間から水溶 液 7 6 0が回収槽 7 2 4に移る。 しかし、 封止子 7 0 8 と封止子 7 , 1 4 も同時に隙間が生じるが、 赤血球以外の成分 7 5 6やタンパク質の変性 作用をもつ薬品 7 5 2はそれぞれ槽 7 1 2と槽 7 1 8から移動すること はない。  Next, FIG. 8 (d) shows an operation of transferring the aqueous solution 760 containing a large amount of nucleic acid distributed in the extraction tank 718 to the recovery tank 724. At this time, the disk 700 has a greater number of rotations than the phenol 752 which is a chemical having a protein attribute action in the extraction tank 718 and the aqueous solution 760 containing nucleic acid. In step 12, the rotation speed is higher than the number of rotations for separating serum 758 and components 756 other than red blood cells, and a centrifugal force of about 300 G is generated in the collection tank. At this time, of the sealer 720 and the sealer 721 connecting the extraction tank 7 18 and the recovery tank 7 2 4, the sealer 7 2 1 moves according to the centrifugal force, A gap is generated between the sealing element 720 and the aqueous solution 760 from the gap to the recovery tank 724. However, a gap is also formed between the sealer 708 and the sealers 7 and 14 at the same time, but components 756 other than erythrocytes and chemicals 752 that have a protein denaturing action It does not move from 18.
次に、 第 8図 ( e ) は回収槽 7 2 4に保持した核酸を含む水溶液 Ί 6 0から、 核酸濃度を高くした微量の溶液を取り出す操作を示したもので ある。 その時の、 円盤 7 0 0の回転数は、 第 8図 (d ) に.おける円盤 7 0 0の回転数よりも高くして、 およそ 4 0 0 0 Gの遠心力が生じるよう にする。 このとき、 抽出槽 7 1 8と回収槽 7 2 4を連結している封止子 7 2 0と封止子 7 2 1のうち、封止子 7 2 1が遠心力に応じ下がり切る。 それと同時に、 封止子 7 2 0が封止子 7 2 1 との隙間を閉じるよう下が り、 回収槽 7 2 4は水溶液 7 6 0を保持したまま密閉化される。 さらに、 円盤 7 0 0の回転数を上げて、 およそ 5 0 0 0 Gの遠心力が生じるよう にする。 このとき、 回収槽 7 2 4と薬品槽 7 3 0を連結している封止子 7 2 6が下がり、 薬品槽 7 3 0に保持されている核酸よりも水分子と結 合が容易な薬品 7 5 4が回収槽 7 2 4に移る。 それにより、 水溶液 7 6 0 と反応した水溶液 7 6 2 となる。 ここでは、 核酸よりも水分子と結合 が容易な薬品 7 5 4として、 例えば、 ェ夕ノールアルコールを用いた。 これにより、 水溶液 7 6 2中では、 水分子とエタノールアルコールの分 子が結合し核酸を溶かしていた水の容量が少なくなる。 このため、 核酸 は析出し、 さらに、 核酸の密度が周りの水やエタノールアルコールより も大きくなり、 遠心力より大きな方向に沈殿する。 この沈殿は、 遠心力 が大きいほど短い時間で行える。 また、 核酸濃度が低い水溶液 7 6 0の 沈殿に適用することができ.、 遠心力は 1 0 0 0 0 G以上であることが望 ましい。 また、 エタノールアルコール 7 5 4の量は、 これと反応させる 水溶液 7 6 0の 2 . 5倍量かそれよりも多いことが望ましい。 このため、 回収槽 7 2 4は、 抽出槽 7 1 8や分離槽 7 1 2に比べて、 容積が大きく なるよう、 その寸法においてより深い槽となっている。 Next, FIG. 8 (e) shows an operation of taking out a very small amount of a solution having a high nucleic acid concentration from an aqueous solution 60 containing nucleic acids held in the recovery tank 724. At this time, the rotation speed of the disk 700 is set to be higher than the rotation speed of the disk 700 in FIG. 8 (d) so that a centrifugal force of approximately 400 G is generated. At this time, of the sealer 720 and the sealer 721 connecting the extraction tank 718 and the recovery tank 724, the sealer 721 falls down according to the centrifugal force. At the same time, the sealer 720 is lowered so as to close the gap with the sealer 721, and the recovery tank 724 is sealed while holding the aqueous solution 760. Furthermore, increasing the number of revolutions of the disk 700 so that centrifugal force of about 500 G is generated To At this time, the seal 7 2 6 connecting the collection tank 7 2 4 and the chemical tank 7 30 is lowered, and a chemical that binds more easily to water molecules than the nucleic acid held in the chemical tank 7 30 7 5 4 moves to the collection tank 7 2 4. Thereby, an aqueous solution 762 reacted with the aqueous solution 760 is obtained. In this case, for example, ethanol alcohol was used as the chemical 754 which is easier to bind to water molecules than nucleic acids. As a result, in the aqueous solution 762, the volume of water in which the nucleic acid is dissolved due to the combination of the water molecule and the ethanol alcohol molecule is reduced. As a result, the nucleic acid precipitates, and the density of the nucleic acid becomes larger than that of surrounding water or ethanol alcohol, and the nucleic acid precipitates in a direction larger than the centrifugal force. This precipitation takes less time as the centrifugal force increases. Further, it can be applied to the precipitation of an aqueous solution 760 having a low nucleic acid concentration. It is preferable that the centrifugal force be 1000 G or more. Also, the amount of ethanol alcohol 754 is desirably 2.5 times or more of the aqueous solution 760 to be reacted therewith. For this reason, the recovery tank 724 is deeper in size than the extraction tank 718 and the separation tank 712 so as to have a larger volume.
次に、 第 8図 ( f ) は、 回収槽 7 2 4に保持された水溶液 7 6 2中の 遠心力で沈殿した核酸と、 その周辺のわずかな水溶液を、 核酸保持槽 7 3 6に移動させる操作を示したものである。 1 0 0 0 0 G以上の遠心力 で封止子 7 3 2は下がり、 核酸が沈殿してその濃度が高くなつた溶液が 核酸保持槽 7 3 6に移動する。 遠心力を 1 0 0 0 0 G以上であれば, 封 止子 7 3 2は下がったままになるので、 この遠心力で遠心を続ける間、 核酸は核酸保持槽 7 3 6に溜り続ける。 そして、 円盤 7 0 0の回転を下 げ停止するときには、 1 0 0 0 0 Gを切った時点で封止子 7 3 6は閉じ るので、 核酸保持槽 7 3 6から核酸が再び拡散していくことはない。 第 9図 ( a ) は、 制御装置 2 3 0が円盤 7 0 0を回転させるモー夕一 2 0 2と、 円盤 2 0 4を回転させるモーター 2 0 8と、 円盤 7 0 0上の 封止子 7 0 8 と 7 1 4と 7 2 0と 7 2 1 と 7 2 6と 7 3 6の動作を示し たものである。 ただし、 封止子 7 0 8と 7 1 4と 7 2 0 と 7 2 1 と 7 2 6 と 7 3 6.の円盤 7 0 0上での位置関係は第 9図 (b ) に示した通りで ある。 ここでは、 回転軸 2 0 0と回転軸 2 0 6の距離は 5 3 mm、 円盤 7 0 0の直径は 1 0 0 mmとしている。 また、 グラフの横軸は実時間で はなく、 グラフ下部に記した処理内容としている。 Next, Fig. 8 (f) shows that the nucleic acid precipitated by centrifugal force in the aqueous solution 762 held in the recovery tank 724 and the slight aqueous solution around it are transferred to the nucleic acid holding tank 736. FIG. With a centrifugal force of 1000 G or more, the sealer 732 lowers, and the nucleic acid precipitates and the solution having a higher concentration moves to the nucleic acid holding tank 736. If the centrifugal force is 1000 G or more, the sealer 732 remains lowered, and the nucleic acid continues to accumulate in the nucleic acid holding tank 7336 during centrifugation with this centrifugal force. Then, when the rotation of the disk 700 is reduced and stopped, the sealer 736 is closed when the diameter of the disk 700 is cut, so that the nucleic acid diffuses again from the nucleic acid holding tank 736. I will not go. Fig. 9 (a) shows the motor 210 that the control device 230 rotates the disk 700, the motor 208 that rotates the disk 204, and the control device 230 on the disk 700. It shows the operation of the seals 7 08, 7 14, 7 20, 7 21, 7 26, and 7 36. However, the positional relationship of the sealers 7 08, 7 14, 7 20, 7 21, 7 26, and 7 36 on the disk 700 is as shown in Fig. 9 (b). It is. Here, the distance between the rotation axis 200 and the rotation axis 206 is 53 mm, and the diameter of the disk 700 is 100 mm. The horizontal axis of the graph is not real time, but the processing contents shown at the bottom of the graph.
以上述べたように、 本実施例によれば、 円盤 7 0 0上に形成する槽が 隔壁で分画されているため、 処理する全血量をさらに多くすることがで き、 高感度な核酸抽出を行うことができる。 また、 各槽を含む円盤 7 0 0全体を、 ポリプロピレン等を射出整形して製作すれば、 円盤 7 0 0の 製造コス トを下げることができるという特徴がある。 また、 各槽を含む 円盤 7 0 0全体をポリカーボネ一ト樹脂で押し出し整形し、 この表面を フッ素樹脂で被覆すれば、 円盤 7 0 0の強度と処理における異物の混入 を避けることができる。 さらに、 低コス トで円盤 7 0 0を構成すること ができる。 これは、 処理する全血量が少ないときにも有効で、 ポリカー ポネート樹脂表面を型押しで各槽を形成して表面をフッ素樹脂で被覆す れば、 より低コストで円盤 7 0 0を構成することができる。  As described above, according to the present embodiment, since the tank formed on the disk 700 is partitioned by the partition walls, the amount of whole blood to be processed can be further increased, and the highly sensitive nucleic acid can be obtained. An extraction can be performed. Also, if the entire disc 700 including each tank is manufactured by injection molding of polypropylene or the like, the production cost of the disc 700 can be reduced. Further, if the entire disc 700 including each tank is extruded and shaped with polycarbonate resin, and the surface is coated with a fluororesin, the strength of the disc 700 and entry of foreign matter during processing can be avoided. Furthermore, the disk 700 can be constructed at low cost. This is effective even when the amount of whole blood to be processed is small.If the polycarbonate resin surface is embossed to form each tank and the surface is coated with fluororesin, a disk 700 can be constructed at lower cost. can do.
なお、 第 2図に示した円盤 7 0 0をモーター 2 0 2で回しながら、 こ れ全体を乗せた円盤 2 0 4をモーター 2 0 8で回す撹拌工程において、 抽出槽 7 1 8内にフッ素樹脂の小片等の撹拌子を予め入れておく と、 撹 拌の効果が高まり、 撹拌時間を短くすることができる。 また、 モーター 2 0 8で円盤 2 0 4を回すことなく、 円盤 7 0 0を回すモータ一 2 0 2 を間欠的に回転と停止を繰り返して撹拌すれば、 装置構成を簡易にする ことができ装置コス トを低減することができる。  In addition, in the stirring process in which the disk 204 on which the entire disk is mounted is rotated by the motor 208 while the disk 700 illustrated in FIG. 2 is rotated by the motor 202, fluorine is contained in the extraction tank 718. If a stirrer such as a small piece of resin is inserted in advance, the effect of stirring can be enhanced and the stirring time can be shortened. In addition, if the motor 210 that rotates the disk 700 is intermittently rotated and stopped and stirred without rotating the disk 204 with the motor 208, the device configuration can be simplified. Equipment costs can be reduced.
なお、 円盤 7 0 0上には穴 7 0 4とサンプル保持槽 7 0 6から核酸保 持槽 7 3 6までの処理設備を複数設置しても同様の効果を得ることがで きる。 複数の処理設備を設けることで、 複数の核酸を含む水溶液からそ れぞれ核酸を抽出する処理において、 単位時間辺りの処理数を増やす効 果が得られる。 The same effect can be obtained even if a plurality of processing facilities from the hole 704 and the sample holding tank 706 to the nucleic acid holding tank 736 are installed on the disk 700. Wear. By providing a plurality of processing facilities, the effect of increasing the number of processes per unit time in the process of extracting nucleic acids from an aqueous solution containing a plurality of nucleic acids can be obtained.

Claims

請求の範囲 The scope of the claims
1 . 円盤上に槽を設け、 前記円盤を回転して、 回転による遠心力を用い て溶液から核酸を抽出する装置において、  1. A tank is provided on a disk, and the disk is rotated to extract nucleic acid from a solution using centrifugal force generated by rotation.
前記槽を複数設け、 前記槽と槽の間に開閉機構を備えた流路を設け、 溶液中の成分毎に順次槽を移動させて核酸を抽出すること.を特徴とする 核酸抽出装置。  A nucleic acid extraction device, comprising: providing a plurality of the tanks; providing a channel having an opening / closing mechanism between the tanks; and sequentially moving the tank for each component in the solution to extract nucleic acids.
2 . 核酸を含有する溶液から核酸を抽出する核酸抽出装置において、 円盤上に核酸を含有する溶液を注入し所定量の貯えるサンプル保持層 と、 前記核酸を含有する溶液から血清を分離する分離槽と、 前記分離さ れた血清から核酸を抽出する抽出槽と、 抽出された核酸を集収する回収 槽と、 収集された核酸を保持する核酸保持槽を設け、 各槽間を流路また は隔壁で仕切り、 前記流路または隔壁に開閉機構を設け、 前記円盤を回 転駆動して遠心力の作用を用いて核酵を抽出することを特徴とする核酸 抽出装置。  2. In a nucleic acid extraction apparatus for extracting a nucleic acid from a solution containing a nucleic acid, a sample holding layer for injecting the solution containing the nucleic acid on a disk and storing a predetermined amount thereof, and a separation tank for separating serum from the solution containing the nucleic acid An extraction tank for extracting nucleic acids from the separated serum, a collection tank for collecting the extracted nucleic acids, and a nucleic acid holding tank for holding the collected nucleic acids, and a flow path or partition between the tanks. An opening / closing mechanism provided in the flow path or the partition wall, and the disk is rotated to extract a nuclease using the action of centrifugal force.
3 . 前記流路または隔壁、 開閉機構、 およぴ各槽の全部または一部が、 タンパク質の変性作用をもつ薬品に対してその成分の一部が溶出しない プラスチック材料で構成したことを特徴とする請求の範囲第 2項記載の 核酸抽出装置。 3. All or a part of the flow path or partition, the opening / closing mechanism, and each tank are made of a plastic material that does not elute a part of its components with respect to a drug having a protein denaturing action. 3. The nucleic acid extraction device according to claim 2, wherein
4 . 前記開閉機構が、 遠心力の大きさに依存して開閉することを特徴と する請求の範囲第 2項記載の核酸抽出装置。  4. The nucleic acid extraction device according to claim 2, wherein the opening and closing mechanism opens and closes depending on the magnitude of centrifugal force.
5 . 前記開閉機構が、 電磁力により開閉することを特徴とする請求項第 2項記載の核酸抽出装置。  5. The nucleic acid extraction device according to claim 2, wherein the opening and closing mechanism opens and closes by an electromagnetic force.
6 . 前記各槽間を溶液が移動する力は遠心力により発生すること特徴と する請求の範囲第 1項または第 2項記載の核酸抽出装置。  6. The nucleic acid extraction device according to claim 1, wherein a force for moving the solution between the tanks is generated by centrifugal force.
7 . 前記抽出槽には、 核酸を内包する核壁から核酸を取り出すためにタ ンパク質の変性作用をもつ薬品を、 予め所定量保持させておく ことを特 徴とする請求の範囲第 2項記載の核酸抽出装置。 7. The extraction tank is characterized in that a predetermined amount of a drug having a protein denaturing effect is held in advance in order to remove the nucleic acid from the nuclear wall containing the nucleic acid. The nucleic acid extraction device according to claim 2, wherein the nucleic acid extraction device is characterized in that:
8 . 前記回収槽には、 核酸よりも水分子と結合が容易な薬品を保持する 構成としていることを特徴とする請求の範囲第 2項記載の核酸抽出装置 c 9 . 前記複数の槽を設けた円盤と前記円盤を回転駆動する駆動装置を、 別に駆動装置を備えた円盤上に取付けて遠心力の増加を図る構成と した こと特徴とする請求の範囲第 1項〜第 8項のいづれか 1項に記載の核酸 抽出装置。 8. The nucleic acid extraction device c9 according to claim 2, wherein the recovery tank holds a chemical that is easier to bind to water molecules than nucleic acids. 9. The disk according to any one of claims 1 to 8, wherein the disc and a driving device for rotating and driving the disc are mounted on a disc separately provided with a driving device to increase the centrifugal force. Item 10. The nucleic acid extraction device according to Item 8.
1 0 . 前記サンプル保持槽と、 分離槽と、 '抽出槽と、 回収槽と、 核酸保 持槽とが回転円盤の回転中心側から順次外周側に配置され各槽間に開閉 機構を備えた流路で結合されていることを特徴とする請求の範囲第 2項 記載の核酸抽出装置。  10. The sample holding tank, the separation tank, the extraction tank, the recovery tank, and the nucleic acid holding tank are sequentially arranged on the outer peripheral side from the rotation center side of the rotating disk, and an opening / closing mechanism is provided between each tank. 3. The nucleic acid extraction device according to claim 2, wherein the nucleic acid extraction device is connected by a channel.
PCT/JP2000/008338 2000-11-27 2000-11-27 Nucleic acid extraction device WO2002042430A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002545136A JPWO2002042430A1 (en) 2000-11-27 2000-11-27 Nucleic acid extraction device
PCT/JP2000/008338 WO2002042430A1 (en) 2000-11-27 2000-11-27 Nucleic acid extraction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/008338 WO2002042430A1 (en) 2000-11-27 2000-11-27 Nucleic acid extraction device

Publications (1)

Publication Number Publication Date
WO2002042430A1 true WO2002042430A1 (en) 2002-05-30

Family

ID=11736716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/008338 WO2002042430A1 (en) 2000-11-27 2000-11-27 Nucleic acid extraction device

Country Status (2)

Country Link
JP (1) JPWO2002042430A1 (en)
WO (1) WO2002042430A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004212050A (en) * 2002-05-08 2004-07-29 Hitachi High-Technologies Corp Chemical analysis apparatus and genetic diagnostic apparatus
US20110244522A1 (en) * 2010-03-30 2011-10-06 Tae Seok Seo Rotational pcr equipment and pcr method using the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0084983A1 (en) * 1982-01-14 1983-08-03 Jean Guigan Device for conditioning a sample for multiple analysis
EP0106536A2 (en) * 1982-09-15 1984-04-25 Ortho Diagnostic Systems Inc. Carousel microparticle separating, washing and reading device and method of use
EP0187699A2 (en) * 1985-01-07 1986-07-16 Btg International Limited Automatic chemistry machine
JPH0335144A (en) * 1989-06-30 1991-02-15 Nippon Shoji Kk Rotary cuvette
EP0569115A2 (en) * 1992-05-05 1993-11-10 General Atomics High throughput DNA preparation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0084983A1 (en) * 1982-01-14 1983-08-03 Jean Guigan Device for conditioning a sample for multiple analysis
EP0106536A2 (en) * 1982-09-15 1984-04-25 Ortho Diagnostic Systems Inc. Carousel microparticle separating, washing and reading device and method of use
EP0187699A2 (en) * 1985-01-07 1986-07-16 Btg International Limited Automatic chemistry machine
JPH0335144A (en) * 1989-06-30 1991-02-15 Nippon Shoji Kk Rotary cuvette
EP0569115A2 (en) * 1992-05-05 1993-11-10 General Atomics High throughput DNA preparation system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GREGORY J. KELLOGG ET AL.: "Centrifugal microfluidics: Applications", MICRO TOTAL ANALYSIS SYSTEM 2000 PROCEEDINGS, May 2000 (2000-05-01), pages 239 - 242, XP002936553 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004212050A (en) * 2002-05-08 2004-07-29 Hitachi High-Technologies Corp Chemical analysis apparatus and genetic diagnostic apparatus
US20110244522A1 (en) * 2010-03-30 2011-10-06 Tae Seok Seo Rotational pcr equipment and pcr method using the same
US8906624B2 (en) * 2010-03-30 2014-12-09 Korea Advanced Institute Of Science And Technology (Kaist) Rotational PCR equipment and PCR method using the same

Also Published As

Publication number Publication date
JPWO2002042430A1 (en) 2004-03-25

Similar Documents

Publication Publication Date Title
US8323507B2 (en) Device and method for the elimination of magnetic particles from a liquid
KR101563687B1 (en) Microfluidic cartridge for target molecule purification molecule purification apparatus using the same and molecule purification purification method
JP3551293B2 (en) Nucleic acid extraction device
CN107076768B (en) For measuring the rotatable cylinder of the property of biological sample
JP4095886B2 (en) Chemical analysis device and genetic diagnosis device
KR101102532B1 (en) Cartridge containing reagent therein, microfluidic device having the cartridge, manufacturing method of the microfluidic device, biochemistry analysis method using microfluidic device
JP4133803B2 (en) Nucleic acid purification structure
US7384602B2 (en) Chemical analysis apparatus and genetic diagnostic apparatus
US20090209752A1 (en) Device and method for treating or cleaning sample material, in particular nucleic acids
KR101912435B1 (en) Nucleic acids purification device and nucleic acids purification method
US11268631B2 (en) Microfluidic valve and a chip or system comprising the microfluidic valve
US20100112695A1 (en) Apparatus And Methods For Processing Tissue to Release Cells
BR112012016286B1 (en) method of processing and / or analyzing a sample under centrifugal force and sample processing cartridge
US20060263265A1 (en) Blood micro-separator
CN113699023B (en) Microfluidic chip, mixing device, molecular diagnosis equipment and sample detection method
CA2599338A1 (en) Flow switching on a multi-structured microfluidic cd (compact disc) using coriolis force
JPWO2006038682A1 (en) Solid-liquid separation / measurement structure and solid-liquid separation / measurement method
KR102300539B1 (en) Interface module for measurment of rt-pcr and rotational rt-pcr device
WO2002042430A1 (en) Nucleic acid extraction device
CN204608019U (en) A kind of reagent cartridge being provided with magnetic bead transfer organization
EP1503209A1 (en) Chemical analyzer and gene diagnosing apparatus
KR102565215B1 (en) Interface module for rt-pcr and apparatus using the same
CN113546699A (en) Fluid device, apparatus and method for dispensing a fluid
KR20190083723A (en) Pretreatment system for concentration and purification of samples
JP3582632B2 (en) Container for nucleic acid extraction

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 545136

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase